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INTRODUCTION

Viral hemorrhagic septicemia virus (VHSV) is an
aquatic pathogen that infects both freshwater and
marine fish species in many regions of the Northern
Hemisphere. The virus belongs to the Rhabdoviridae
family, genus Novirhabdovirus (Walker et al. 2005),
and is the causative agent of viral hemorrhagic sep-
ticemia (VHS) disease. Due to the potential of VHSV to
cause significant losses in a broad range of hosts and
its ability to spread rapidly, VHS disease is one of 7
viral fish diseases listed as notifiable in the 2008
Aquatic Animal Health Code of the World Organisa-
tion for Animal Health (OIE 2008).

VHSV was first isolated in 1963 from freshwater
cultured rainbow trout Oncorhynchus mykiss in
Egtved, Denmark (Jensen 1963). Over the next 2.5
decades, the virus remained predominantly a
pathogen of European cultured rainbow trout with
only a few isolations made from several different

freshwater species and, curiously, from a few marine
species (Wolf 1988). VHSV was not found outside
Europe until 1988, when it was isolated for the first
time in North America from returning chinook O.
tshawytscha and coho O. kisutch salmon at 2 separate
hatcheries in Washington (Brunson et al. 1989, Hop-
per 1989). In addition to expanding the known geo-
graphic range, VHSV was isolated from an ever
increasing number of marine species in the North
Pacific and North Atlantic oceans (Meyers et al.
1992,1994,1999, Kent et al. 1998, Smail 2000, Isshik et
al. 2001, Dopaz et al. 2002, Hedrick et al. 2003, Kim et
al. 2003). It is unclear whether these new detections
truly represent an expansion of the pathogen or are
merely a consequence of increased sampling. None-
theless, these marine detections of VHSV led to the
speculation that the source for VHSV in the European
rainbow trout aquaculture industry originated from a
marine source which had been spread via the feeding
of infected marine fish products to the cultured trout
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(Meyers & Winton 1995, Stone et al. 1997, Dixon 1999,
Einer-Jensen et al. 2004, Snow et al. 2004).

Historically, VHSV in North America had only been
recovered from marine, estuarine and anadromous fish
populations occurring in coastal waters of the Pacific
Ocean from Alaska to California and the Atlantic
Ocean waters of Maine, New Brunswick and Nova
Scotia (Meyers & Winton 1995, Olivier 2002, Hedrick et
al. 2003). However, in the spring of 2005, VHSV was
isolated for the first time from a mass mortality event in
a freshwater environment in North America. The virus
was isolated from dead or dying freshwater drum
Aplodinotus grunniens in Lake Ontario (Lumsden et
al. 2007). Following this initial discovery, an archived
viral isolate obtained from diseased muskellunge Esox
masquinongy in Lake St. Clair in 2003 was identified
as VHSV, indicating the earliest detection of the virus
in the Great Lakes (Elsayed et al. 2006). The virus has
also been associated with large mortalities of round
gobies Neogobius melanostomus in Lake Ontario and
the Saint Lawrence River (Groocock et al. 2007). To
date, this freshwater strain of VHSV has been isolated
from 28 species of fish in the Great Lakes regions of
Canada and the USA including Lake Michigan, Lake
Huron, Lake St. Clair, Lake Erie, Lake Ontario, the
Saint Lawrence River and from inland lakes in New
York, Michigan, Wisconsin and Ohio (USDA & APHIS
2007).

Phylogenetic analyses based on nucleotide sequence
of nucleo- and glycoprotein genes illustrated that
VHSV isolates group into 4 major genotypes that gen-
erally correlate with geographic location (Benmansour
et al. 1997, Einer-Jensen et al. 2004, 2005 Snow et al.
2004). Genotype I encompasses European freshwater
and north European marine isolates; Genotype II rep-
resents marine isolates originating from the Baltic Sea;
Genotype III consists of North Sea isolates; and Geno-
type IV represents all North American isolates (Skall et
al. 2005). Sequence analysis of the new North Ameri-
can freshwater isolates assigned them to a new sub-
lineage of Genotype IV denoted as Genotype IVb

(Elsayed et al. 2006). This genotype also includes iso-
lates from the brackish waters surrounding New
Brunswick and Nova Scotia, supporting our hypothesis
that the North American freshwater isolates detected
in the Great Lakes may have originated among marine
or estuarine fishes of the Atlantic seaboard of North
America. This new Genotype IVb isolate found in the
Great Lakes region is the only one outside of Europe
that has been associated with significant mortality in
freshwater species.

In order to perform risk assessments and make epi-
demiological inferences with the application to provide
management and control strategies for this invasive
pathogen, it is necessary to understand the factors that
affect its stability in the natural environment.

The stability of VHSV in seawater and/or saltwater
has been studied previously (Winton et al. 1991, Parry
& Dixon 1997, Kocan et al. 2001). However, limited
information is available concerning the stability of
VHSV in freshwater. Studies investigating the viability
of VHSV in freshwater were restricted to short time
periods (Winton et al. 1991) or a single isolate (Mori et
al. 2002). Moreover, no data are available regarding
the stability of Genotype IVb isolates from the Great
Lakes regions when held under various environmental
conditions. Therefore, in the present study a thorough
comparison was conducted to evaluate the stability of
4 geographically distinct VHSV isolates in both
freshwater and seawater at temperatures ranging from
4 to 30°C.

MATERIALS AND METHODS

Virus isolates, propagation, and quantification. The
4 virus isolates compared were chosen based on their
differences in geographic location, host species, water
source and genogroup as summarized in Table 1.
Three VHSV isolates comprise geographically distinct
regions and water sources within Canada and one iso-
late originated from a freshwater source in Europe.
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Isolate Host species Water source Genogroup Location Source

99-001 Sardine Marine IVa Beaver Cove, British Columbia, Hedrick et al. (2003)
Sardinops sagax Canada

U13653 Drum Freshwater IVb Bay of Quinte, Lake Ontario, Lumsden et al. (2007)
Aplodinotus grunniens Canada

CA-NB00-01 Mummichog Brackish IVb Ruisseau George Collete, Gagne et al. (2007)
Fundulus heteroclitus New Brunswick, Canada

F1 Rainbow trout Freshwater I Egtved, Denmark Jensen (1965)
Oncorhynchus mykiss

Table 1. Summary of VHS viral isolates used
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Each VHS isolate was propagated on a confluent
monolayer of Epithelioma papulosum cyprini (EPC)
cell line (Fijan et al. 1983). Cells were grown in a
T175 cm2 tissue culture flask (Nunc) containing 70 ml
minimum essential medium (MEM) (Gibco) supple-
mented with 10% fetal bovine serum (FBS), 1% Glu-
taMAX-1 and 0.06% sodium bicarbonate (Gibco)
(MEM-10). Media was decanted and 200 µl of cell
culture supernatant from cultures exhibiting cyto-
pathic effect (CPE) was inoculated onto cells in the
flask containing residual media. After virus inocula-
tion, cells were incubated for 1 h at 15°C followed by
the addition of 70 ml of MEM supplemented with 2%
FBS, 2% Newborn Calf Serum, 14 mM HEPES, Glu-
taMAX-1, 0.03% sodium bicarbonate, 20 µg ml–1

Gentamicin and 1× Antibiotic-Antimycotic (Gibco)
(MEM-4). Cells remained at 15°C until complete
destruction of the monolayer was observed. Virus
infected cell cultures were centrifuged at 3100 × g for
11 min and supernatants containing VHSV were
aliquoted and stored at –80°C. All virus isolates were
passed 2 to 5 times in cell culture before being uti-
lized. Virus stocks were quantified using plaque
assay as described previously (Burke & Mulcahy
1980). Briefly, 8-well tissue culture plates, 70 to 100%
confluent with EPC cells, were inoculated in dupli-
cate with 100 µl of a 10-fold VHSV dilution series.
Plates were incubated at 15°C for 1 h to allow virus
absorption, overlayed with 3 ml per well MEM-4 sup-
plemented with 8.8% methyl cellulose (SIGMA) and
returned to 15°C until CPE was observed (5 to 7 d).
Cells were fixed and stained with a solution of 0.1%
crystal violet and 10% formalin. Titers were recorded
as plaque forming units per ml (pfu ml–1).

Water parameters. The stability of the VHSV isolates
was determined in fresh and seawater at 4, 10, 15 and
20°C. Stability in freshwater was further investigated
at 25 and 30°C. Both freshwater and seawater samples
were collected from the wet laboratory at the Pacific
Biological Station. The freshwater source was
Nanaimo municipal water, dechlorinated with sand
and charcoal filters and is hereafter denoted as the
‘raw’ freshwater sample. The seawater source was
taken from the Strait of Georgia at a depth of 80 ft (ca.
24 m) and passed through sand filters; it is hereafter
denoted as the ‘raw’ seawater sample. Aliquots of
these raw freshwater and seawater samples were sub-
sequently passed through a 0.45 µm nitrocellulose
membrane filter (Millipore) to represent the ‘filtered’
sample. The hardness of all water sources was deter-
mined using Lamotte’s direct reading titrator for total
calcium and magnesium hardness. Salinity was deter-
mined using a VistaVision refractometer (VWR) and
the pH of each water source was measured with a
Beckman Φ100 ISFET pH meter.

Viral stability assay. Each of the 4 VHSV isolates
was normalized to 5.3 × 107 pfu ml–1 with MEM-4. One
ml (5.3 × 107 pfu) of virus suspension was added to
49 ml of each of the 4 different water conditions and
incubated in the dark at 4, 10, 15 and 20°C. In addition,
raw and filtered freshwater sources were incubated at
25 and 30°C. All water samples were stabilized to their
respective temperatures for a minimum of 3 d prior to
virus inoculation. Viable virus was titered in each
water/virus combination using plaque assay at Day 0
(45 min after virus inoculation), 1, 2, 3, 7, 14, 17, 21 and
every week thereafter. Virus titrations were carried out
in duplicate using a serial 10-fold dilution series to
ensure countable plaque numbers. When CPE was
observed, plates were stained and plaques counted.
Virus titers were determined based on average plaque
counts from duplicate wells. The stability of European
F1 strain was evaluated 9 mo after the North American
isolates. At this time, the stability of the North Ameri-
can isolates in raw freshwater at 4, 10, 15 and 20°C was
repeated. The 99.9% inactivation (I99.9; 3-log reduc-
tion) was calculated by extrapolating from the log pfu
ml–1 vs. days inactivation plots. The 2 time points that
flank the point at which a 3-log reduction of Day 0
‘titer’ was observed were used to determine the slope
from which I99.9 was extrapolated. Stabilities of the
VHSV strains are reported as I99.9.

RESULTS

Water parameters

The salinity, water hardness (as CaCO3) and pH of
each water sample was measured. The freshwater
samples, both raw and filtered, had a salinity of 0 ppt
and the water was soft with only 11.5 ppm CaCO3. The
pH of the freshwater at time zero for all assay temper-
atures ranged from 6.8 to 7.3. The seawater samples,
both raw and filtered, had a salinity of 31 ppt and water
hardness of 5095.5 ppm CaCO3. The pH of the seawa-
ter samples at all assay temperatures was similar to the
freshwater samples and ranged from 6.9 to 7.2.

VHSV stability in freshwater

Viability of 4 VHSV isolates from geographically dis-
tinct areas was determined in raw and filtered fresh-
water samples held at 6 different temperatures. The
time, in days, required for the I99.9 of the original
(Day 0) VHSV titer in freshwater samples is shown
in Fig. 1a,b. VHSV isolates were less stable in raw
freshwater than in filtered freshwater, and survivabil-
ity decreased with increasing temperature.
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Raw freshwater

In the raw freshwater samples, the 4 VHSV
isolates showed similar stabilities with inactivation
times (I 99.9) ranging from 40 d at 4°C to less than
1 d at 30°C (Fig. 1a). There were no large differ-
ences or patterns in the survivability observed
between the 4 isolates in raw freshwater. The
average time required for a 3-log reduction in
VHSV infectivity at 4, 10, 15, 20, 25 and 30°C was
35, 21, 16, 9, 5, and 2 d respectively. Over the tem-
perature range of 4 to 30°C, virus stability de-
creased an average of 2-fold with every 5° incre-
mental increase.

Repeat evaluation of the stability of each of the 3
North American isolates in raw freshwater at 4, 10, 15
and 20°C revealed inactivation times that ranged from
60 d at 4°C to 9 d at 20°C (Fig. 2). As noted in the first
assay, stability decreased with increasing temperature,
and at 4, 10, 15 and 20°C the average I99.9 time for the
3 North American isolates was 51, 21, 11 and 10 d
respectively.
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Fig. 1. Time to 99.9% inactivation of 4 geographically distinct viral hemorrhagic septicemia virus (VHSV) isolates in (a) raw fresh-
water, (b) filtered freshwater, (c) raw seawater and (d) filtered seawater at temperatures ranging from 4 to 30°C. (b) The 240 d gap
between North American and European strains in filtered freshwater at 4°C is due to staggered assay start dates. Note y-axis
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Filtered freshwater

The stability of each of the 4 VHSV isolates in fil-
tered freshwater was 2 to 18 times greater than
observed in the raw sample. I99.9 times of the isolates in
filtered freshwater samples ranged from >489 d at 4°C
to <2 d at 30°C (Fig. 1b). As in the raw freshwater sam-
ples, no consistent patterns of stability were observed
between the 4 isolates in filtered freshwater. In filtered
freshwater, the average time required for a 3-log
reduction in VHSV infectivity at 10, 15, 20, 25 and
30°C was 255, 125, 52, 15 and 3 d, respectively. At 4°C,
filtered freshwater was a notably stabilizing medium
for the virus. The Great Lakes freshwater isolate
(U13653), the East Coast estuarine isolate (CA-NB00-
01) and the European freshwater isolate (F1) remained
viable for the duration of the study resulting in I 99.9

times that exceed 489 d for isolates U13653 & CA-
NB00-01 and 249 d for isolate F1 (Fig. 1b).

VHSV stability in seawater

The 4 VHSV isolates were considerably less stable in
seawater than freshwater. Among the seawater sam-
ples, the VHSV isolates were slightly more stable in
raw seawater than in the filtered seawater samples.
I99.9 times for each of the 4 VHSV isolates incubated in
the seawater samples are shown in Fig. 1c,d.

Raw seawater

In raw seawater, viral I99.9 times ranged from as long
as 13 d at 4°C to as short as 1.5 d at 20°C (Fig. 1c). No
discernable stability patterns were observed between
the isolates. In raw seawater the average time required
for a 3-log reduction in VHSV infectivity at 4, 10, 15
and 20°C was 12, 7, 4 and 2 d, respectively.

Filtered seawater

When the viral isolates were incubated in filtered sea-
water (Fig. 1d), I99.9 times ranged from 8.7 d at 4°C to 0.5
d at 20°C. As observed in the other water treatments
tested, no consistent stability pattern was observed
among the 4 isolates when held in filtered seawater. In
filtered seawater, the average time required for a 3-log
reduction in VHSV infectivity at 4, 10, 15 and 20°C was
7, 3, 2 and 1 d, respectively.

DISCUSSION

The present study investigated the stability of 4
genetically and geographically distinct VHSV isolates
in fresh- and seawater at different temperatures.

Notably, all the isolates were more stable in freshwater
than seawater. Perhaps less surprising, all isolates
were more stable at lower incubation temperatures
irrespective of water type.

The objective of the present study was to determine
if isolate origin and/or genetic type affects viral stabil-
ity. In particular, we were interested in determining if
the recent North American freshwater VHSV discov-
ered in the Great Lakes region is more stable in fresh-
water than the North American marine strains, thereby
providing a possible explanation for its remarkable
success in the freshwater environment. Similarly, we
wanted to know if VHSV isolates from the marine envi-
ronment were more stable than freshwater isolates in
seawater. Interestingly, results indicate that there was
no correlation between isolate source (i.e. freshwater
or seawater) and stability in the ‘native’ water type. For
instance, freshwater isolates exhibited stability times
similar to the marine and brackish isolates when incu-
bated in freshwater. Likewise, marine isolates showed
no greater stability over the freshwater isolates when
incubated in seawater. These findings correlate with
those of Parry & Dixon (1997), who investigated the
stabilities of 9 VHSV isolates in seawater and found no
evidence that seawater isolates were more stable in
seawater.

It is interesting to note that all VHSV isolates tested
in the present study displayed longer survivability in
freshwater than in seawater. This result corresponds
with the report by Mori et al. (2002), who found that
the infectivity of a VHSV isolate (Obama25) was more
quickly lost in untreated seawater than in freshwater.
It also correlates with stability studies conducted on a
similar aquatic rhabdovirus, infectious hematopoietic
necrosis virus (IHNV), which revealed that salinity is
detrimental to IHNV survival (McAllister & Pilcher
1974, Pietsch et al. 1977, Barja et al. 1983). Taken
together, these data suggest that fish rhabdoviruses
are more stable in freshwater than seawater. Hence, a
freshwater environment does not pose a limitation to
the introduction of VHSV from a marine environment;
rather, water temperature and presence of susceptible
species are the more important considerations. In the
present study, it is unclear as to why VHSV isolates
were more stable in freshwater. However, this may in
part be due to differences in hardness of the 2 water
sources. Pietsch et al. (1977) noted that IHNV survival
decreased with increased water hardness. The sea-
water used in the present study had a water hardness
of 5095.5 ppm CaCO3, whereas freshwater hardness
was considerably lower, with a measurement of only
11.5 ppm CaCO3. It is possible that VHS viruses aggre-
gated more readily in the hard seawater than in the
soft freshwater, and that this aggregation may be in
part responsible for reduced titers. It has been reported

175



Dis Aquat Org 82: 171–178, 2008

that some viruses, particularly rhabdoviruses, aggre-
gate with increasing cationic (such as Mg++, Ca++) con-
centrations (Wallis & Melnick 1962).

It is well documented that viral survival times are
dependent on the water source in which the testing is
performed, particularly if a component present in the
water reduces the stability of the virus (Wedemeyer et
al. 1978, Toranzo & Hetrick 1982, Barja et al. 1983,
Kamei et al. 1987a, Mori et al. 2002). Previous studies
that assessed virus survival in natural water sources
have indicated that viral degradation is often a result of
proteolytic enzymes produced by bacteria inherent in
these environments (Kamei et al. 1987b, 1988a,b,c).
Additionally, it has been observed that virus inactiva-
tion is accelerated in river water or water that has
passed through a fish farm (LaPatra et al. 2001) or con-
tains sediments (Kamei et al. 1987a). Therefore, for risk
analysis purposes it is necessary to determine the
potential minimum and maximum virus stability times
such that the data have general applicability and cap-
ture survival times that could occur in diverse natural
systems. To this end, we evaluated viral stability in
0.45 µm filtered water, representing a water source
devoid of antiviral components, potentially maximiz-
ing viral stability, as well as a raw water sample that
had undergone sand filtration, representing a source
that likely contained more antiviral agents and thereby
reduced viral stability. In a completely untreated water
sample, decay rates might be expected to be even
greater; however, due to the highly variable nature of
such water sources, one was not assessed in the pre-
sent study. It is also noteworthy that viral stability
times obtained under controlled conditions as pre-
sented in the present study (i.e. water samples contain-
ing serum incubated in the dark at constant tempera-
tures) are presumably longer than would be exhibited
in nature when the virus would be subjected to UV
light and rapidly fluctuating temperatures.

Interestingly, survival times among the raw and fil-
tered seawater samples were fairly similar, suggesting
that the virus inactivating component(s) in seawater
was possibly due to a soluble factor rather than a filter-
able agent. Conversely, survival times of VHSV iso-
lates when incubated in raw freshwater were consider-
ably shorter than those observed in filtered freshwater,
indicating that the component(s) having an effect on
virus survivability was removed through filtration.

Results from the present study reveal that VHSV can
survive for extended periods of time in both seawater
and freshwater, particularly at low temperatures.
VHSV in seawater at 10°C is stable for up to 7 d on
average. Therefore, for waterborne transmission to
occur in seawater, it needs to happen within this time
period. In the marine waters of the Pacific Northwest
(the seawater utilized in the present study) VHSV is

endemic in Pacific herring (Hedrick et al. 2003). These
fish travel in dense schools in which healthy fish are
readily exposed to virus shed from infected fish. In vivo
virus challenge experiments exposing Pacific herring
to VHSV demonstrate that the virus is transmitted after
only 1 h of waterborne exposure (Kocan et al. 1997,
Hershberger et al. 2007). This observation, in conjunc-
tion with our current data of a stability of approxi-
mately 1 wk, could explain how VHSV is so readily
spread through waterborne transmission. We showed
that viral stability times in freshwater were even
longer than in seawater, with VHSV surviving just over
20 d in raw freshwater at 10°C, further suggesting that
virus transmission can occur over long distances.

Overall, the data from the present study confirm that
VHSV is stable outside of a host and suggests the need
to practice biosecurity measures to prevent the spread
of VHSV through aquatic environments. Disinfectants
that may be used to inactivate VHSV include formalin,
sodium hydroxide, chlorine and iodine compounds
which have contact times ranging from 5 to 20 min
(Wolf 1988, Smail 1999). VHSV, although stable in
aquatic environments, has also been shown to be
quickly inactivated using UV irradiation (Wedemeyer
et al. 1978, Wedemeyer 1996, Oye & Rimstad 2001,
Yoshimizu et al. 2005). When possible, movement of
infected water to another location should be avoided
or measures should be taken to disinfect the virus-
contaminated water.
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