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INTRODUCTION

Marine birnavirus (MABV), a member of the Bir-
naviridae, is an icosahedral unenveloped virus with a
genome consisting of 2 segments of double-stranded
RNA (Dobos et al. 1979). MABV was first isolated from
diseased yellowtail Seriola quiqueradiata in Japan in
1985 (Sorimachi & Hara 1985). Similar birnaviruses have
been isolated from shellfish and other cultured and wild
fish from around the world (Sohn et al. 1995, Cutrin et al.
2000, Isshiki et al. 2001). Many of the birnavirus isolates
were genetically similar (Kitamura et al. 2000), suggest-
ing that all isolates belong to the MABV group. MABVs
have a broad host range in various marine organisms
(Cutrin et al. 2000, Isshiki et al. 2001).

The transmission mode of MABVs has not been
fully defined. MABVs have previously been detected
by PCR from coastal and open seawater (Kitamura &
Suzuki 2000, Suzuki et al. 2001), which suggests that
MABV can be reserved in seawater as a cell-free

form. In addition, yellowtail ascites virus (YAV) and
viral deformity virus (VDV), which belong to the
MABV group, could infect the host organism by bath
challenge (Maeno & Nakajima 1997), suggesting that
MABVs horizontally infect via seawater. Thus, it is
thought that MABVs released from affected fish go
on to infect healthy fish. However, we could not iso-
late MABV from seawater samples (Kitamura &
Suzuki 2000, Suzuki et al. 2001). In order to clarify
why it was not possible to isolate MABV from seawa-
ter, the inactivation process of MABV should be
understood. To investigate the infection route of
MABV via seawater, it is also important to know the
time needed for its inactivation.

It has been reported that virus infectivity is reduced
by exposure to solar ultraviolet (UV) radiation (Suttle &
Chen 1992, Noble & Fuhrman 1997), high temperature
(Chung & Sobsey 1993) and biological factors in
aquatic environments (Yoshimizu et al. 1986a, Kamei
et al. 1987). The goal of the present study was to exam-
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ine the inactivation kinetics and discuss whether
sunlight can inactivate MABV in coastal seawater in
summer.

MATERIALS AND METHODS

The chinook salmon embryo cell line (CHSE-214)
was used for MABV propagation and assay of virus
infectivity. Cells were grown at 20°C in Eagle’s mini-
mum essential medium (MEM, Nissui), which con-
tained 10% fetal bovine serum (FBS). MABV Strain
JPO-97 isolated from the Japanese pearl oyster Pinc-
tada fucata (Kitamura et al. 2000) was used in this
study. The virus was inoculated to monolayer cells of
CHSE-214 in 75 cm2 flasks (Corning). When the cyto-
pathic effect (CPE) reached 100% of the monolayer,
the culture fluid was harvested. Cells were freeze-
thawed twice to obtain the cell-associated viruses. The
culture fluid was centrifuged at 2800 × g at 4°C for
20 min to remove cell debris, and supernatant was
used as a virus sample. The infectivity titer was mea-
sured by the 50% tissue culture infectious dose
(TCID50), calculated by Reed & Muench (1938) using a
96-well tissue culture plate (Corning).

UV intensity was measured using a PUV-500 (Bio-
spherical Instruments) on 22 and 23 August 2001. The
weather on each day was clear, and UV transmission
was calculated using the following formula:

% transmittance  =  (I/I0) × 100

where I0 = intensity of incident monochromatic light at
the surface and I = final intensity of transmitted radia-
tion after passing through the seawater.

The present study was conducted in Uchiumi Bay,
west coast of Ehime Prefecture, Shikoku Island, Japan,
on 25 August 2001. Seawater was collected from 50 cm
depth using a Niskin sampler, and a portion of the sea-
water sample was autoclaved. A total of 50 ml of natural,
autoclaved seawater was poured into sterilized dialysis
tubes (Spectrum; MWCO: 3500, molecular mass cut-off
of 3500 Da), and 3 ml of the virus solution was added to
each tube at a concentration of 108.43 TCID50 ml–1. To pre-
vent breakage, each tube thus prepared was placed in a

transparent polycarbonate bottle with many holes in it to
allow transmittance of UV. In order to know effect of UV
radiation, these samples were divided into 2 groups: one
exposed to sunlight, the other covered with black cloth to
block UV radiation. Thus, we had 4 treatments: natural,
light; natural, dark; autoclave, light; autoclave, dark.
Each treatment group was performed in triplicate. These
treatments were incubated at 50 cm depth. A subsample
was taken from each tube at 20 or 50 min intervals, im-
mediately frozen in liquid nitrogen and then stored at
–80°C until use. Before measuring the infectivity, each
subsample was filtered through a 0.45 µm pore filter
(Millipore).

RESULTS AND DISCUSSION

Water temperature during the experiment ranged
between 27.2 and 28.2°C at 50 cm depth. UV transmis-
sion at 50 cm depth was higher than 70% of the inten-
sity at the surface (Table 1).

The infectivity titer of MABV declined over time in
all treatments (Fig. 1). The mean initial infectivity titer
was 103.80 TCID50 ml–1, even though the original virus
solution had a titer of 6 × 106.43 TCID50 ml–1, suggesting
non-specific adsorption of the virus to the tube. Virus
infectivity in the natural seawater markedly declined
after 120 min incubation in both light and dark treat-
ments. The infectivity titers declined below the detec-
tion limit (102 TCID50 ml–1) after 270 min. By contrast, in
the autoclaved seawater virus infectivity was main-
tained even after 420 min. 

Until now, it has been reported that viruses, especially
phages, can be inactivated by solar UV radiation in en-
vironmental seawater (Suttle & Chen 1992, Noble &
Fuhrman 1997). The loss of the MABV titer was similar in
both the light and dark treatments, although our exper-
iment showed that more than 70% of the UV radiation
was detected at 50 cm depth. This result suggests that
MABV was resistant to solar UV radiation. One type of
birnavirus, infectious pancreatic necrosis virus (IPNV),
has been reported to be inactivated at 1.0 to 1.5 × 105 µW
s–1 cm–2 (Yoshimizu et al. 1986b). Øya & Rimstad (2001)
reported that IPNV is more resistant to UV radiation than
both infectious salmon anaemia virus and viral haemor-
rhagic septicaemia virus. Liltved et al. (1995) also re-
ported that IPNV was more resistant to UV irradiation
(1.99 to 1.25 × 105 µW s–1 cm–2 was needed for 99.9%
inactivation) than Aeromonas salmonicida, Vibrio
anguillarum and Yersinia ruckeri. Together, these re-
ports suggest that birnavirus is resistant to UV radiation,
even under laboratory conditions. Our data indicate that
solar UV radiation at 50 cm depth was not strong enough
to inactivate MABV. Resistance of birnaviruses against
UV radiation may be due to the small size of the virion.
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Table 1. UV transmission rate at 50 cm depth

Wavelength (nm) % transmission
relative to surface

308 74.97
320 73.58
340 78.21
380 82.33
PAR 82.23
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MABV is stable against heating at 56°C for 30 min
(Sorimachi & Hara 1985). Mortensen et al. (1998)
reported that IPNV isolated from the scallop Pecten
maximus was stable at 30°C for 10 d under laboratory
conditions. These findings suggest that birnaviruses
are stable at high temperatures. Our experiment was
performed at temperatures ranging from 27.2 to 28.2°C
at a depth of 50 cm. Thus, neither solar UV radiation
nor temperatures in this range caused the decline in
virus infectivity.

Biological factors such as protease, anti-viral sub-
stance and other microbes are thought to be virus-
inactivating factors. Marine bacteria are known to pro-
duce extracellular protease (Odagami et al. 1994).
Proteolytic enzymes degrade organic matter in ocean
ecosystems (Davey et al. 2001), which is important in
the cycling of organic matter, and these enzymes are
also thought to decay viruses in the ocean. Yoshimizu
et al. (1986a) reported that culture filtrate of Pseudo-
monas isolates from a salmonid hatchery reduced the
infectivity titer of infectious hematopoietic necrosis
virus (IHNV) to a non-detectable level within a 3 d
incubation, and the virus-inhibiting factor produced by
Pseudomonas was inactivated by autoclaving. Our
results may be caused by a similar factor. 

Environmental microorganisms play an important
role in the inactivation of viruses in seawater. Kamei et
al. (1987) reported a similar phenomenon, in which the

infectivity of IPNV was reduced by more than 2 orders
of magnitude after 7 d in natural seawater collected in
summer, whereas the virus was stable even at 14 d in
seawater that was autoclaved or filtered. This loss of
infectivity has also been documented in other articles.
Fujioka et al. (1980) reported that poliovirus was not
detected in natural seawater after a 1 d incubation at
24°C, but was stable even after 3 d in autoclaved or
filtered seawater. Although MABV is relatively stable
compared to other viruses against UV and high temper-
ature, our results showed that reduction of the infectiv-
ity of MABV occurred within 3 h in natural seawater. A
high level of anti-viral bacteria and/or degrading
enzymes might have contributed to this reduction.

We have reported that MABV can be detected in
both coastal areas and the open ocean (Kitamura &
Suzuki 2000, Suzuki et al. 2001), suggesting that even
if infectivity was lost, genomic RNA covered by a cap-
sid protein is stable in seawater. This study could
explain why MABV can be detected by PCR but not by
the cell-culture method (Kitamura & Suzuki 2000,
Suzuki et al. 2001). This present study suggests that
MABV can infect host organisms for <220 min before
the infectivity is lost. Since fish and shellfish are gener-
ally cultured at high densities in net cages, 220 min is
enough time for MABV to infect other individuals.
MABV might be able to transfer horizontally to differ-
ent species, or many individuals of the same species
before inactivation. Finally, we conclude that UV irra-
diation does not necessarily inactivate MABV in nat-
ural seawater. 
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(d) Dark condition; (h) light condition; (Q) original virus titer.

Detection limit of the infectivity titer was 102 TCID50 ml–1
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