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ABSTRACT: The proliferation of DNA 'barcoding’ as a way to catalogue all terrestrial and marine
species has attracted much-needed attention to the diversity of life. The reliance of barcoding on
cytochrome c oxidase subunit I (COI) for species identification has brought into the spotlight the
use and interpretation of mitochondrial data. An increasing number of mitochondrial-like
sequences have been discovered, which are generally regarded as nuclear mitochondrial pseudo-
genes or Numts. The across-the-board approach to categorize unusual mitochondrial DNA
(mtDNA) sequences as Numts may obscure the detection of evolutionary novelties in mtDNA.
Alternative scenarios are presented where unusual mtDNA sequences are not Numts.
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The idea of barcoding life, which entails the se-
quencing of ~650 nucleotides of the mitochondrial
gene cytochrome c oxidase subunit I (COI), has been
promoted as a useful tool to catalogue all living spe-
cies, showcased by the Barcode of Life (BoL) project
(Hebert et al. 2003, 2010). The presence of universal
primers (Folmer et al. 1994), the matrilineal transmis-
sion of mitochondrial DNA (mtDNA) in most species,
the perceived absence of recombination (Elson &
Lightowlers 2006), and, on average, the higher muta-
tion rate compared to nuclear coding genes (Gissi et
al. 2008; but see for further discussion Hudson &
Turelli 2003, Ballard & Whitlock 2004) render this
COI region suitable to measure biodiversity from a
molecular point of view. Barcoding has been ex-
tended to marine metazoans under the auspices of
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the Census of Marine Life (Bucklin et al. 2011), now
more than a decade-long effort. The application of
this technique has led to an appreciation of standing
genetic diversity and the discovery of new genetic
lineages in species, subspecies, and potential cryptic
species in the marine environment (Barber & Boyce
2006, Gémez et al. 2007, Bucklin et al. 2011). How-
ever, despite the haploid nature of mtDNA, non-
identical mtDNA-like sequences may exist in one
individual, and oftentimes they amplify with or
instead of the target mtDNA. These sequences have
been labeled nuclear mitochondrial pseudogenes
(Numts) and are copies of mtDNA genes or almost-
complete mitochondrial genomes that have been trans-
located to the nuclear genome (Lopez et al. 1994, Kim
et al. 2006). Initially, the mitochondrial genes and the
newly translocated nuclear copies of mitochondrial
genes are identical, but over time, if there is reduced
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selection pressure on the nuclear copy, nucleotide
substitutions and indels may introduce stop codons
and shifts in the reading frame of protein-coding
genes, resulting in non-functional mtDNA-like se-
quences. Detection of Numts derived from mitochon-
drial ribosomal RNA (rRNA) or transfer RNA (tRNA)
genes is more challenging, since Numts may be iden-
tified only by changes in the inferred secondary
structure of the transcribed RNA (Zhang & Hewitt
1996). However, conservation of the secondary struc-
ture does not eliminate the possibility of ribosomal
Numts (Olson & Yoder 2002).

These unusual mtDNA-like sequences have been
found in protists, plants, fungi, and animals (Hazkani-
Covo et al. 2010). More relevant to marine biologists,
Numts seem to be especially common in crustaceans
(Williams & Knowlton 2001, Buhay 2009, Schubart
2009), sea urchins (Jacobs & Grimes 1986), tunicates
(Richly & Leister 2004), and fishes (Antunes & Ramos
2005), and have been found more recently in sponges
(Erpenbeck et al. 2011). As the tools of next-generation
sequencing are now becoming available to marine
biologists, Numts will be found most likely in all mar-
ine organisms.

The proliferation of questionable mitochondrial se-
quences in GenBank and the use of these sequences
in studies is problematic (Buhay 2009). The most
well-known example of an inadvertent inclusion of
Numts is by Woodward et al. (1994), where contami-
nant human Numts were interpreted as dinosaur
DNA (Zischler et al. 1995). Buhay (2009, her Table 1)
identified in GenBank at least 14 different data sets
that contain Numts; however, the problem is surely
more widespread, as the search was restricted to
crustacean COI data sets. The inclusion of Numts in
species identification and phylogeographic/phyloge-
netic studies could yield an over-inflated number of
species and misleading patterns of population subdi-
vision/phylogenies (van der Kuyl et al. 1995, Song et
al. 2008, Buhay 2009, Schubart 2009). The percent
divergence between Numts and mtDNA sequence
varies, but segments of extremely high similarity are
present (Woischnik & Moraes 2002). Since popula-
tion-level studies are usually comprised of highly
similar sequences, the inclusion of non-(or slightly)
differentiated Numts will surely go undetected.
Therefore, countermeasures such as performing PCR
on diluted DNA templates, cDNA amplification, and
long-range amplifications should be taken to prefer-
ably amplify orthologous mtDNA sequences (Calvi-
gnac et al. 2011). Attention also should be placed on
a more critical use and curation of mitochondrial
sequences (Buhay 2009), especially nowadays with

the increasing number of BoL studies. Inclusion of
non-orthologous mtDNA sequences in BoL will lead
to an overestimation of the number of species (Song
et al. 2008), but advocates of BoL are not considering
this potential pitfall as a problem, because of the
low incidence of non-orthologous sequences in their
studies (Hebert et al. 2004).

Discrimination between Numts and authentic
mitDNA sequences

The general labeling of all mtDNA-like sequences
as Numts deserves further discussion. There are sev-
eral possibilities where the unusual sequences could
represent real mitochondrial sequences and not
Numts, such as male and female mitochondrial line-
ages in a species, genomes of aging mitochondria,
and/or amplifications of damaged DNA templates.

There are well-known instances where both male
and female lineages of mitochondrial genomes exist
in single individuals. Several marine and freshwater
bivalve species carry both maternally and paternally
inherited mtDNAs and transmit the copy specific to
their sex to their progeny through a mechanism
known as doubly uniparental inheritance (DUI)
(Zouros et al. 1994, Doucet-Beaupré et al. 2010). The
extent of this phenomenon in other molluscs or other
phyla is unknown. The average sequence diver-
gence between the male and the female mtDNA
lineages in 3 Mytilus species is ~8.3% (Rawson &
Hilbish 1995), and can be >20% in other species
(Breton et al. 2007). These divergence estimates
would alarm a ‘Numt-aware' biologist who is expect-
ing to recover a single mitochondrial sequence from
a homoplasmic specimen. Both mitochondrial line-
ages are fully functional (Dalziel & Stewart 2002,
Obata et al. 2011), yet the amplification of 2 diver-
gent copies of the same gene (one male and one
female copy) may lead investigators to wrongly con-
clude that they have amplified Numts and exclude
one of the sequences from further analysis.

There is a second mechanism by which true but
highly unusual mitochondrial sequences may be
amplified. According to the mitochondrial free radi-
cal theory (Harman 1992), as organisms age, reactive
oxygen species produced during respiration damage
mitochondrial proteins, lipids, and mtDNA (Kujoth
et al. 2007). Oxidatively damaged mtDNA can be
repaired by excision repair enzymes, but the activity
of repair enzymes declines with increasing age
(de Souza-Pinto et al. 2008). Unrepaired mutations
caused by both damaged mtDNA and DNA replica-
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tion errors accumulate over time, leading to the de-
cline of cellular functions and eventual aging (Kujoth
et al. 2007, Holt 2010). In an aging cell, the pop-
ulation of mitochondria is increasingly dominated
by mutant and by partially deleted mtDNA, since
the shorter, mutant mtDNA can replicate faster than
wild-type mtDNA (Diaz et al. 2002). Rearrangements
and deletions of mtDNA have been found in Caeno-
rhabditis elegans (Melov et al. 1995) and Drosophila
melanogaster (Yui et al. 2003) in aging studies.

Similar to DNA templates from aging tissues, am-
plification and sequencing of damaged or ancient
templates may yield sequences with erroneous base
substitutions or chimeric amplicons (Paabo et al. 1990).
Even though fresh tissues are sought for genetic
comparisons, museum specimens may be the only
source of rare species. Sometimes, these specimens
are decades or even over a century old, and the
method of fixation may be inadequate for DNA work
(e.g. use of formalin, or low-quality ethanol, or poor
preservation techniques). DNA extractions and am-
plifications from these templates may produce
unusual results, yet still the resulting sequences
could be of mitochondrial origin. The incidence of
in vitro recombination of authentic and Numt se-
quences during PCR, which may also produce ano-
malous mtDNA-like sequences, has been attributed
to damaged templates (Thalmann et al. 2004).

Perspectives on mtDNA evolutionary novelties

True Numts are not hard to find. Whole-genome
analyses have shown unequivocally that Numts exist
in eukaryotic genomes (Richly & Leister 2004, Kim et
al. 2006, Hlaing et al. 2009, Hazkani-Covo et al.
2010). However, the use of the term 'Numts' for every
unusual sequence is a misnomer because there are
other alternatives that may explain the genomic ori-
gin and functionality of these sequences. The term
‘mtDNA-like' better describes these sequences, un-
less proven otherwise. How important is this distinc-
tion? Perhaps for the marine molecular systematist,
population geneticist, or barcoding investigator, it
is not critical, because these unusual DNA sequences
could be detected and excluded from the analysis. A
flow chart of suggested actions to reduce the risk of
including non-homologous mtDNA sequences has
been laid out by Song et al. (2008). However, unusual
sequences should not be called Numts, not only be-
cause it may be a misnomer, but because researchers
may be passing up the opportunity to explore evolu-
tionary novelties in mtDNA. In addition to gender-

specific lineages and age-related deterioration of
mtDNA, other exemplar mitochondrial novelties in-
clude recombination, heteroplasmy through intro-
gression (Rokas et al. 2003), gene rearrangements,
and unconventional architectures of mtDNA genomes.

One of the long-held analytical advantages of
using mtDNA markers for genetic studies was the
absence of recombination. Ever since the highly
debated paper by Awadalla et al. (1999) brought
mitochondrial recombination back into the spotlight,
it has been generally accepted that there is both
intra- (Lunt & Hyman 1997) and inter-mitochondrial
recombination (Ladoukakis & Zouros 2001), regard-
less of how difficult it is to detect statistically (Rokas
et al. 2003). Mitochondrial recombination has been
proposed as one of the possible mechanisms to
explain the evolution of tandem repeats (Hoelzel et
al. 1993, Campbell & Barker 1999), a common feature
in mtDNA. Tandem duplication followed by deletion
likely causes gene rearrangements (Moritz et al. 1987,
Lavrov et al. 2002). Usually the mitochondrial gene
arrangements are highly conserved, which is why
they have been used extensively in deep metazoan
phylogenetic studies (Boore et al. 1995, Lavrov et al.
2002). However, the degree of conservation of gene
arrangements can greatly vary from taxon to taxon
(Miya et al. 2001, Rawlings et al. 2001, Cunha et al.
2009). During phylogenetic studies, investigators
usually use a set of primers to amplify each desired
gene for all species. If the DNA primers are designed
in the flanking regions of the target gene, and gene
rearrangements of the target or the flanking regions
have occurred in some species, the PCR reactions
will either fail or result in an unusually long or short
sequence. Such results may indicate a novel re-
arrangement of metazoan mtDNA. However, an
investigator may disregard these sequences as non-
orthologous mtDNA sequences or Numts.

During interspecific crosses (i.e. introgression), the
mechanism eliminating paternal mitochondria from
the zygote can break down, allowing mitochondria
from both species to co-exist in the hybrid F1, result-
ing in heteroplasmy. Recombination between the
non-homologous mitochondria will result in haplo-
types that may persist in the population through
backcrosses with either parental species (Rokas et al.
2003). Depending on the spread of these recombi-
nant haplotypes into the population, amplicons from
such specimens with heteroplasmic mtDNA may
result in unusual sequences with heterozygote posi-
tions, unreadable sequences (if the sequences differ
by an indel or more), or chimeric sequences if the
marker transcends the area of recombination. Het-
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eroplasmy through introgression has been observed
in crossings between blue mussel species (Kijewski
et al. 2006). Heteroplasmy has also been reported in
cetaceans (Vollmer et al. 2011), anchovies (Magoulas
& Zouros 1993), and flounders (Hoarau et al. 2002),
although in these cases, the unusual sequences are
most likely caused by paternal leakage of mtDNA. If
researchers are unaware that introgression may be
taking place in the species of study, such sequences
can be easily disregarded as Numts or as other con-
taminants. Since introgression is rather common in
the marine environment (see review by Arnold &
Fogarty 2009), opportunities may be missed to docu-
ment instances of hybridization.

The typical metazoan mtDNA genome is a circular
molecule, about 16 kb long, consisting of 13 protein-
coding genes, 22 tRNA- and 2 rRNA-coding genes,
and an AT-rich control region. The genetic informa-
tion is tightly packed and characterized by stasis in
gene content, compared to other eukaryotes (Adams
& Palmer 2003). A glimpse of ancestral features of
the metazoan mitochondrial genome is offered by the
largest metazoan mtDNA genome in the basal phylum
Placozoa (Signorovitch et al. 2007), introns within
protein-coding regions in both Cnidaria and Placozoa
(Boore 1999, Signorovitch et al. 2007), and the large
intergenic regions in Porifera (Erpenbeck et al. 2009).
We are now discovering that among the higher meta-
zoans, mtDNA genomes also vary in size, gene con-
tent, gene order, and rates of sequence evolution. Ex-
emplar non-conventional architectures of metazoan
mtDNA genomes are the unusually large mtDNA
genomes of the isopod Armadillidium vulgare (Rai-
mond et al. 1999), the frequent re-arrangements in
demosponges (Wang & Lavrov 2008) and vermetid
gastropods (Rawlings et al. 2010), and the 2 circular
mitochondrial chromosomes in the freshwater rotifer
Brachionus plicatilis (Suga et al. 2008). The marine
realm offers a unique evolutionary novelty in the
mitochondrial genomes of cnidarian octocorals, which
possess a coding gene for a mismatch repair protein
(MSH) (Pont-Kingdon et al. 1995) recently inferred
to be the first case of horizontal gene transfer into a
metazoan mitochondrial genome (Bilewitch & Degnan
2011), a hypothesis that challenges the way we thought
metazoan mitochondrial genomes evolve.

Conclusions
As we continue to analyze the mtDNA from an ever-

increasing number of species, we are becoming more
aware of the complexities of the sequenced data. We

should avoid the dichotomy of choices (mtDNA or
Numts), because there are many surprises left to
discover in mtDNA evolution. With the advent of
next-generation sequencing, more genome projects
will yield more Numts (Hazkani-Covo et al. 2010)
and will not only expose the depth of true Numts
in the nuclear genomes, but also help in understand-
ing the evolutionary history of these mitochondrial-
derived sequences and novelties of the mitochondrial
genomes.
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