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ABsTRACT. The testicular localization and expression of Smad2 and Smad3 mRNA involved in the intracellular signal transduction of
activin, inhibin and transforming growth factor-beta (TGF-) were examined under the influence of long and short photoperiod in Syrian
hamsters (Mesocricetus auratus). In situ hybridization detected both Smad2 and Smad3 mRNA in spermatogonia and premeiotic sper-
matocytes in the active testis exposed to a long photoperiod, as well as in the regressed testis exposed to a short photoperiod. Northern
blots showed that Smad2 mRNA was expressed at all stages over long and short photoperiods, whereas Smad3 mRNA was expressed
at high levels in the photoperiod-induced regressed testis. The photoperiodic condition would change the balance between Smad2 and
Smad3 transcripts in the testis. Thus, intracellular Smad2 and Smad3 might participate in transducing signals from activin, inhibin and

TGF-f in spermatogenetic cells.
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Activin, inhibin and transforming growth factor-f (TGF-
B) have been implicated in the paracrine/autocrine regulation
of mammalian spermatogenesis during the developmental
and postnatal periods, because of their biological functions
and localization [2, 7, 21, 31]. Activin promotes the number
of germ cellsin germ cell-Sertali cell co-culture[21]. Incon-
trast, inhibin reduces the numbers of rat and mouse sper-
matogonial cells after an intratesticular injection [31]. The
synthesis of DNA is affected by TGF-f in organ cultures of
therat testis [7].

The Smad family is an important transducer of cytoplas-
mic signals from transmembrane receptors to the nucleus,
upon stimulation by TGF-f [8, 19, 20]. Of the family,
Smad? [1, 5, 13, 18, 23] and Smad3 [3, 17, 23, 35] are acti-
vated by TGF- and activin, while Smadl [9, 13, 14, 16, 34]
and Smad5 are activated by bone morphogenetic protein 2
(BMP-2) [34]. Phosphorylated Smads translocate to the
nucleus and accumulatein responseto TGF-Bsignaling [1, 9,
13, 18, 23], but the biological functions of the Smadsin each
tissue remain to be explored.

Gonadal activity in most seasona breedersismainly regu-
lated by photoperiod. Inresponseto an artificial alterationin
photoperiod, testicular size and function changedrastically in
Syrian hamsters [6]. The TGF-J family is associated with
testicular regulation in seasonal breeders. Testicular inhibin-
o and BB subunit MRNA are significantly altered in the
regressed testis exposed to a short photoperiod (SPP) and
play important roles for the photoperiodic regulation of sper-
matogenesis [30]. However, the importance of Smads as
intracellular mediators in the testicular regulation of the
TGF- family in seasonal breeders remains to be elucidated.

The present study examines the cellular localization of the
Smad2 and Smad3 genes, which areinvolved in the intracel -
lular signal transduction of activin/inhibin/TGF-, in the tes-
tisof Syrian hamster. The relationship between photoperiod

and expression of these genesin the testis of Syrian hamsters
exposed to a short photoperiod is dso investigated.

MATERIALS AND METHODS

Animals and conditions: Male Syrian hamsters
(Mesocricetus auratus) maintained as a closed colony in the
laboratory of Department of Veterinary Anatomy of the Uni-
versity of Tokyo were housed in aroom with along photope-
riod (LPP) of 14L (cool white fluorescent tube light):10D
until reaching sexual maturity at 8 weeks of age. They were
bred in either a short photoperiod (SPP) of 6L:18D or along
photoperiod (LPP) of 14L:10D at a temperature of 23 + 2°C.
Food and water were provided ad libitum. Five to seven ani-
malswere statistically analyzed at 4, 7, 10 and 13 weeks after
exposure to LPP or SPP. The hamsters were anesthetized
with diethy! ether and sacrificed by cervical dislocation. The
testes were rapidly removed, immersed in liquid nitrogen,
weighed and stored at —-80°C until RNA extraction. For in
situ hybridization, the testes were perfused briefly with
saline, followed by Bouin’ sfixative through the | eft ventricle
and immersed in the same fixative overnight at room temper-
ature. They were dehydrated in a graded series of ethanol,
embedded in paraffin, cut at 5 um and applied to silane-
coated dides.

RNA isolation and northern blots: Total RNA wasisolated
from the testes by ultra-centrifugation on CsCl gradients
[28]. The first strand of cDNA was prepared from 1 ug of
total RNA using reverse transcriptase (Superscript I1; Gibco
BRL, MD) and an oligo dT primer. To prepare a specific
cRNA probe for northern blotting and in situ hybridization,
the polymerase chain reaction (PCR) was performed using
the forward primer 5 -CAGCTTCTCTGAACAAAC-
CAGG-3' and the reverse primer 5-TACTCTGTGGCT-
CAATTCCTGCTG-3 for Smad2, the forward primer 5'-
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CCAGCCATGTCGTCCATCCTGC-3' and the reverse
primer 5'-CCCTTCCGATGGGACACCTGCA-3' for
Smad3 and the forward primer 5 -TGAAGGTCGGTGT-
CAACGGATTTGGC-3' and the reverse primer 5 -CATG-
TAGGCCATGAGGTCCACCAC-3' for G3PDH. The
fragments were inserted into the pGEM-T easy plasmid
(Promega, WI) and sequenced. The plasmid used for in vitro
transcription was digested with Nco . A digoxigenin (DIG)-
|abeled ribonucl eotide probe for Smad2 and Smad3 was syn-
thesized by in vitro transcription in the presence of Sp6 RNA
polymerase (Boehringer-Mannheim, Germany) at 37°C for
90 min. Total RNA (10 ug) was separated by electrophoresis
on 1% agarose gels containing 2.2 M formaldehyde and
transferred onto a Hybond N* membrane (Amersham, UK)
by downward capillary blotting. The membrane was hybrid-
ized with the DIG-labeled RNA probe at 68°C for 16 hr,
washed twice with 2xSSC containing 0.1% SDS at room
temperature for 5 min, then washed with 0.1xSSC containing
0.1% SDS at 68°C for 1 hr. The membrane was incubated
with an anti-DIG alkaline phosphatase-conjugated antibody
and further processed to detect DIG chemiluminescence as
recommended by the manufacturer (CDP-Star; Boehringer-
Mannheim). The quantity of mMRNA was verified by North-
ern blot using a G3PDH probe. Messenger RNA expression
was quantified on X-ray film using NIH image software and
the data are presented as pixels.

In situ hybridization: In situ hybridization was performed
using a new method introduced by Boehringer-Mannheim.
The testes were perfused with Bouin' s fixative and sectioned
at 5 um. Deparaffinized sectionswerefixed in 4% paraform-
aldehyde in phosphate-buffered saline (PBS) for 15 min and
incubated twice in 0.1% diethylpyrocarbonate (Sigma, MO)
for 15 min. The sections were prehybridized in 50% forma-
mide with 5xSSC containing 40 ug/ml sonicated salmon
sperm DNA at 58°C for 2 hr and hybridized at 58°C for 40 hr
with DIG-labeled antisense or sense riboprobes for Smad2
and Smad3. After hybridization, the sectionswere washed in
2xSSC at room temperature for 30 min and at 58°C for 30
min, in 0.1xSSC at 58°C for 30 min, then incubated at room
temperature for 2 hr with akaline phosphatase-coupled anti-
digoxigenin antibody (Boehringer-Mannheim) diluted
1:2000 in buffer 1 (TrissHCI 100 mM, NaCl 150 mM, pH
7.5) containing 0.5% blocking reagent (Boehringer-Man-
nheim). After washing in buffer 1, sections were developed
at room temperature in buffer 2 (Tris-HCI 100 mM, NaCl
100 mM and MgCl, 50 mM, pH 9.5) containing nitro blue
tetrazolium and 5-bromo-4-chloro-3-indolyl phosphate
(Boehringer-Mannheim).

Satistics: Results were statistically analyzed by means of
ANOVA followed by at-test for evaluating statistical differ-
ences between experimental groups. Differences were con-
sidered significant at P<0.05.

RESULTS

Morphological and weight changes of testis: Spermatoge-
nesis was active in the seminiferous tubules of sexually

mature Syrian hamsters (8 weeks old). At 7 weeks after
exposure to SPP, the lumen of some seminiferous tubules
was closed, and spermatogenesis was interrupted. At 13
weeks, spermatogonia and spermatocytes were predominant
in the seminiferous epithelium, but no spermatozoawere rec-
ognized. The diameter of the seminiferous tubules was sig-
nificantly diminished and spermatogenesis was arrested.
Theratio of testicular weight to the body weight of adult Syr-
ian hamsters decreased with exposure to SPP and reached a
minimum at 7 weeks after exposure (Fig. 1). In contrast, the
ratio of testicular weight did not significantly changein ham-
sters exposed to LPP (Fig. 1). After 13 weeks, the hamsters
exposed to SPP had become insensitive to photoperiod, and
their testicular weights gradually increased (data not shown).

Testicular localization of Smad2 and Smad3 mRNA: To
determine the cellular localization of Smad2 and Smad3
mRNA in the testes of Syrian hamsters, we hybridized sec-
tions of testes with DIG-labeled antisense and sense ribo-
probes for Smad2 and Smad3 mRNA. At 8 weeks post
partum, DIG-labeled antisense Smad2 and Smad3 cRNA
probes were detected in the spermatogonia and premeiotic
spermatocytes of control testes (Fig. 2A and C). Inthetestes
of the hamsters exposed to SPP, the DIG-labeled antisense
Smad2 cRNA probe was detected in spermatogonia and pre-
leptotene spermatocytes at 13 weeks after exposure (Fig. 2E
and 1). At this point, the cellular localization of Smad3
MRNA antisense was similar to that of Smad2 mRNA (Fig.
2G). No signals were detected in the sense control (Fig. 2B,
D, Fand H).

Expression of Smad2 and Smad3 mRNA: We examined
Smad?2 and Smad3 mMRNA expression in the testis exposed to
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Fig. 1. Ratio of testis weight to body weight in the Syrian hamsters
exposed to either long photoperiod (m ; LPP, 14L: 10D) or short
photoperiod (O ; SPP, 6L: 18D). Data are expressed as means +
S.E. (n=5-7 animals per group), # P<0.01, # P<0.05 vs. same
exposure period.
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Fig. 2. In situ hybridization of Smad2 and Smad3 mRNA
expression in testes from hamsters exposed to short
(SPP) and long photoperiods (LPP). A: Antisense ribo-
probe specific to Smad2 mRNA at 13 weeks after expo-
sure to LPP. C: Antisense riboprobe specific to Smad3
mRNA at 13 weeks after exposure to LPP. E and |: Anti-
sense riboprobe specific to Smad2 mRNA at 13 weeks
after exposure to SPP. B and F: Sense probe to Smad2. D
and H: Sense probe to Smad3. Arrow indicates sper-
matogonia; arrowhead indicates spermatocytes. S, Sertoli
cells. A-D) x 50, E-H) x 100, 1) x 330. Scale bar = 100
uminA-D, 50 umin E-H and 15 umin .
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Fig. 3. Relative ratio of Smad2 and Smad3 mRNA to G3PDH mRNA in Syrian hamster testis exposed to long photoperiod (LPP;
141 :10D) and short photoperiod (SPP; 6L:18D) determined by Northern blotting. A and C: Relative ratio of Smad2 and Smad3 mRNA
to G3PDH mRNA. B and D: Representative results of Northern blots using DIG-labeled cRNA probe specific for Smad2 and Smad3
mRNA (one animal per lane). Total RNA (10 ug) was Northern blotted. Data are expressed as means + S.E of 5-7 observations.

#P<0.01 vs. same exposure period.

SPP and LPP, by Northern blotting. Smad2 mRNA was
expressed at the same level over the whole period during
both SPP and LPP (Fig. 3A and B). On the other hand, the
expression level of Smad3 mRNA was very low during L PP,
but high during SPP at 7 weeks after exposure and this per-
sisted until 13 weeks (Fig. 3C and D). Syrian hamster Smad2
mMRNA, with two major transcripts of about 10 kb and 3 kb,
was expressed at the same level over the whole period during
both SPP and L PP with no significant differences (Fig. 3B).
A major Smad3 transcript of about 6 kb was observed (Fig.
3D). Similar results were obtained in several independent
experiments.

DISCUSSION

The Smad family mediatesthe TGF- family in cytoplasm
[8, 19, 20]. Among them, Smad2 and Smad3 areinvolvedin
signal transduction following activation of the receptors of
activin, inhibin and TGF-$ [1, 3, 5, 13, 17, 18, 23, 35], but
their functions in spermatogenesis remain to be e ucidated.
In the adult mouse, Smad2 mRNA has been detected in pre-
meiotic spermatocytes[32]. The present study localized both
Smad2 and Smad3 mRNA in spermatogonia, and spermato-
cytes before meiosisin both active and regressed hamster tes-
tes. The cellular localization of Smad2 and Smad3 mRNA is
in accordance with localization of TGF-f receptors in sper-
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matogonia and spermatocytes [24] and of activin receptor
MRNA (ActRIIB) in spermatogonia[10]. Thus, Smad2 and
Smad3 might be involved in the signal transduction of pre-
meiotic germ cells.

Northern blotting showed that these hamster Smad
MRNAS were expressed in the testis, with many transcripts,
the function of which in vivo has been unclear. The mRNA
for Smad2 was expressed stably at all stages over both pho-
toperiods, but Smad3 mRNA was expressed at high levelsin
the photoperiod-induced regressed testis. If such limited
expression in spermatogonia and spermatocytes is consid-
ered, the Northern blot results may be interpreted differently.
The population of spermatogonia and spermatocytes in the
seminiferous tubules is elevated in the short photoperiod
induced regressed testes. The expression of Smad3 mRNA
still predominantly increased, but that of Smad2 mRNA
might be reduced. Smad2 and Smad3 may have similar bio-
logical functions because the deduced sequences of their
amino acids are highly homologous. Our Northern blot
results revealed that the balance between Smad2 and Smad3
transcripts was altered by photoperiod. These results indi-
cated Smad2 and Smad3 have different functions in the sea-
sonal cycle of physiological states despite their structural
similarity. Severa investigators have found that levels of
hormonally secreted inhibin are significantly reduced in the
regressed testis of seasonal breeders [12, 15, 22, 27, 29].
Testicular regression induced by photoperiod significantly
affects the expression of testicular inhibin o and B mRNA
in the bank vole [30] and in Siberian hamsters[25]. Activin,
inhibin and Smads as intracellular mediators may have auto-
crine/paracrine roles in the regressed testis of these seasonal
breeders.

Northern blots showed that the testicular expression pro-
file of PAI-1 (Plasminogen Activator Inhibitor-1) mRNA, an
index of the transduction of TGF- and Smads [4, 11, 26,
33], concurred with that of Smad3 mRNA in testes exposed
to SPP (data not shown). Thus, these Smads might mediate
signals from TGF-§ in germ cells to the nucleus. On the
other hand, seem Smads probably do not mediate direct sig-
nals from activin in the regressed testis, because activin
increases the number of spermatogonia and promotes DNA
synthesis[7, 21, 31]. Considering the elevated expression of
inhibin in the regressed testis [25, 30], further studies may be
necessary to distinguish how Smads transmit signals from
activin, inhibin and TGF-8.

In conclusion, this study found that Smad2 and Smad3
mMRNA are localized in the spermatogonia and premeiotic
spermatocytes of Syrian hamster testes exposed to SPP and
LPP. Northern blotting revealed that Smad2 mRNA expres-
sion was stable at all stages over LPP and SPP, whereas
Smad3 mRNA was increasingly modified in the regressed
testis exposed to SPP. How these Smad mRNAS are regu-
lated by photoperiod is currently unknown, but they may par-
ticipatein signal transduction from activin, inhibin and TGF-
Bin Syrian hamster testicular cells.
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