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INTRODUCTION

The planktonic food web is composed of autotrophs,
such as phytoplankton and autotrophic bacteria, and
heterotrophs, such as bacteria, Protozoa and meso-
and metazooplankton, which play contrasting roles in
the ecosystem as producers (autotrophs) or consumers
(heterotrophs) of organic matter (e.g. Sherr & Sherr
1988, Azam et al. 1993). The balance between these 2
trophic modes determines the net metabolism of the
community, i.e. whether autotrophic production ex-
ceeds respiration, or heterotrophy prevails over auto-
trophic processes. Although planktonic ecosystems
may be out of balance at a given point such as during
the wax and wane of coastal phytoplankton blooms
(Sorokin 1977), oligotrophic systems are generally con-
sidered as slightly net heterotrophic over an annual
cycle (Duarte & Agustí 1998). The main source of the

organic matter in planktonic communities is the pro-
duction by phytoplankton, which is channelled into the
food web either directly through grazing, or indirectly
via the bacterial utilization of dissolved organic carbon
(DOC). Bacteria are also the main entry point for
allochthonous DOC into planktonic food webs, and
therefore play a main role as carbon sources for the
community. The relative importance of bacteria as
sinks (Ducklow et al. 1986, Pomeroy & Deibel 1986,
Pace et al. 1990, Moloney et al. 1991) or links (Pace et
al. 1984, Vézina & Platt 1988) in the carbon flow of food
webs is still under discussion. However, experimental
studies to date have not been able to resolve the role of
bacteria as entry points of the allochthonous organic
matter in structuring food web dynamics, as the bac-
terial carbon derived from autochthonous versus
allochthonous production cannot be readily discrimi-
nated.
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Here we examine the transfer of allochthonous DOC
by bacteria in the food web by focussing on an extreme
environment, cave lagoons, where DOC derived from
allochthonous production is the only source of carbon
for the microbial food web. We focused, in particular,
on differences in the structure and activity of the
planktonic food web in the cave system in relation to
the open coastal waters. The environmental conditions
and the abundance and interactions of bacteria and
heterotrophic nanoflagellates were studied in 5 cave
lagoon systems on the island of Mallorca (Mediter-
ranean Sea, Spain). In these systems, the input of
organic material is largely restricted to allochthonous
input. Although some chemosynthesis may occur, as
suggested for other anchihaline caves (Yager 1991,
Yager & Humphreys 1996), this is limited by the long
residence time of the waters.

MATERIALS AND METHODS

Study area. The calcareous deposits of the Balearic
Islands favor the formation of caves and other karstic
structures, some being very close to the coastline and
thus supplied with both seawater and freshwater. The
southeast coast of Mallorca has numerous cave sys-
tems containing brackish pools with water masses of
different salinity and oxygen concentrations. We
selected 5 of these cave lagoon systems for the present
study: Es Serral (ES), Sa Gleda (SG), Cala Varques
(CV), Es Pont (EP) and Cala Falcó (CF) (Fig. 1).

The cave lagoons studied are shallow, ranging from
1.5 m water depth at EP to 7.0 m at CV. They are
located inland close to the coastline, CV and CF being

at 50 and 10 m distance from the seashore, respec-
tively, ES 0.25 km, EP 0.50 km and SG 1.5 km away.
The topography of CF, CV and EP is described in Trias
& Mir (1977). SG has been described as the largest
aquatic cave in Europe, with up to 10.5 km of sub-
merged passages and chambers explored so far. 

The studies of coastal caves mainly focus on their
hydrogeology (Herman et al. 1985, Smart et al. 1988,
Humphreys et al. 1999), zoology and biogeography
(Stock 1981, Sket 1994, Jaume & Boxshall 1996, 1997),
with only limited ecological work done thus far (Cama-
cho 1992). Early studies on the Protozoa of cave sys-
tems only included a small list of identified organisms
(Kofoid 1899). However, physico-chemical changes,
meromixis and their influence on the food web struc-
ture are barely investigated. The physico-chemical
aspects, such as dissolved Fe distribution (Martínez-
Taberner et al. 2000) and the distribution of organisms,
have only recently been studied (Palmer 1986,
Humphreys 1999, Carey et al. 2001).

Sampling. The 5 cave lagoons were sampled from
November 1996 to June 1999. ES and SG were studied
over a seasonal cycle, and the other 3 were studied
sporadically. Vertical profiles of salinity, conductivity,
temperature and dissolved oxygen were measured
with WTW sensors at 10 to 25 cm intervals. Water sam-
ples were obtained using a sampling tube with a dou-
ble cone at the end and connected to a peristaltic pump
(Miracle et al. 1992). 

Water samples were used to determine pH (Crison
501), alkalinity (Strickland & Parsons 1972, Golterman et
al. 1978), total organic carbon (TOC-5000 A, Shimadzu),
the cations Ca, Mg, Na, K, Fe and Sr (ICP-Plasma 2000,
Perkin-Elmer) and suspended matter concentration
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Fig. 1. Location of the 5 cave lagoon systems studied on the Mallorca coastline. (a) General location of the Balearics in the west-
ern Mediterranean Sea; (b) detailed map of Mallorca (extracted from Martínez-Taberner et al. 2000), a section of the coastline
is magnified to better visualize the location of the caves (CF: Cala Falcó; CV: Cala Varques; ES: Es Serral; EP: Es Pont; 

SG: Sa Gleda)
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(APHA-AWWA-WPCF 1989). For the suspended matter
pool, organic and inorganic matter content were deter-
mined by burning organic matter at 550°C. In addition,
the abundance and biomass and activity of planktonic
microorganisms were determined.

Abundance and biomass of planktonic microorgan-
isms. Heterotrophic bacteria (HB) and nanoflagellate
(HNF) abundance were determined by epifluores-
cence microscopy (Porter & Feig 1980). A 60 ml water
sample was fixed with formaldehyde (1% final conc.)
and stained with DAPI (5 µg ml–1, final conc.). Ten to
15 ml were filtered onto 0.2 µm black polycarbonate
filters and 40 ml onto 0.4 µm black polycarbonate fil-
ters. The filters were stored frozen for enumeration by
epifluorescence microscopy with an Olympus IM. The
bacterial biomass was obtained by applying the for-
mula of Norland (1993), assuming an average cellular
volume of 0.048 µm3 cell–1 for coastal northwestern
Mediterranean Sea bacteria (Vázquez-Domínguez
1999). The HNF biomass was obtained by measuring
20 to 100 cells per sample and estimating the average
cell volume by approximation to the nearest geometric
shape. The cellular volume was then multiplied by the
abundance and converted to carbon biomass using
220 fg C µm–3 (Børsheim & Bratbak 1987).

Ciliate abundance was evaluated in the samples col-
lected at CV by sedimentation and inverted micro-
scope enumeration (Utermöhl 1958). Water samples
(1 l) were fixed with acid Lugol’s solution (1% final
conc.) and allowed to settle in the bottles for at least
48 h; 800 ml of the supernatant were extracted and
from the remaining volume 100 ml aliquots were sedi-
mented in chambers for 48 h. The biomass was calcu-
lated from the average cell volume (determined by
approximation to the nearest geometric shape in 20 to
100 ciliates), the abundance and applying the carbon
conversion factor of 0.2 pg C µm–3 (Putt & Stoeckner
1989).

Respiratory activity measurements. The respiratory
activity of plankton was determined by measuring the
activity of the electron transport system (ETS) (Packard
& Williams 1981). Water samples of about 5 l were fil-
tered on Whatman GF/F glass fiber filters, which were
frozen immediately in liquid N2 and stored at –70°C
until analysis. Filters were processed within 1 yr. 

Parallel measurements of respiration by the decrease
in dissolved oxygen concentration in BOD-flasks
during the course of incubation were conducted on 2
occasions. The relationship between respiration mea-
surements obtained by ETS activity measurement
(independent variable) and by the decrease in dis-
solved oxygen gave different slopes of the linear
regression equation for the different caves sampled
(Sintes 2002), due to the different organisms and
physiological state.

Bacterial production measurements. Bacterial pro-
duction was determined via the uptake of [3H]-leucine
([3H]-Leu) (Smith & Azam 1992). Four replicate sam-
ples and 2 controls (with 5% TCA final conc.) of 1.2 ml
each were incubated in Eppendorf tubes with [3H]-Leu
(40 nM final conc.) in the dark at in situ temperature for
4 h. TCA (5% final conc.) was added to terminate the
incubations and the Eppendorf vials were centrifuged
(12 000 × g for 10 min), the supernatant discarded and
the pellet resuspended in 5% (v/v) TCA; the latter step
was repeated 3 times. Finally, the pellet was resus-
pended in 0.5 ml scintillation cocktail and allowed to
sit for 24 h; thereafter, the radioactivity was deter-
mined in a Beckman scintillation counter. The uptake
of [3H]-Leu was calculated and converted to bacterial
carbon production according to Sommaruga & Psenner
(1995). 

Determining the grazing activity of Protozoa. Bac-
terivory of protists was evaluated by the rate of disap-
pearance of fluorescent particles (Pace et al. 1990,
Vaqué et al. 1992). Duplicate 1 l samples were trans-
ferred into polycarbonate bottles with a known con-
centration of tracers (DTAF-stained Escherichia coli
minicells, provided by E. Vázquez). Samples were
mixed and incubated at 19°C in the dark and 60 ml
aliquots were taken at 0, 24 and 48 h and fixed with
glutaraldehyde (1% final conc.). Ten and 40 ml sub-
samples were DAPI-stained and filtered on 0.2 and
0.4 µm polycarbonate filters, respectively, for enumer-
ation of bacteria and DTAF-stained particles, and
HNF. The grazing rate (g, d–1) and the net growth rate
(µ, d–1) were calculated according to the formulas of
Salat & Marrasé (1994):

(1)

(2)

where Ft and F0 are the number of tracers at times t
and 0, respectively, Nt and N0 are the number of nat-
ural bacteria at times t and 0. The number of grazed
bacteria (G, HB ml–1 d–1) was calculated from the
trace particles consumed and the bacterial abun-
dance:

(3)

Total grazed bacteria (TG) was then calculated as:

(4)

The net growth rates of nanoflagellates (µ, d–1) were
calculated as those for bacteria, from the increase in
abundance of flagellates over time assuming exponen-
tial growth. 
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RESULTS

Seasonal dynamics in the cave systems

Physico-chemical characteristics. All cave lagoons
studied showed conductivity and salinity gradients
with values increasing with depth reaching near
marine conductivity values at near-bottom waters. ES,
SG and EP had intense clines, exemplified for SG in
Fig. 2a, which caused meromixis and a layering of the
water column in 3 zones: an upper layer where con-
ductivity increased only slowly (mixolimnion or epil-
imnion), a chemocline where conductivity increased
sharply, and a lower layer where conductivity values
approached marine values. In contrast, CV and CF did
not exhibit such sharp clines and conductivity in-
creased steadily from the surface to near-bottom
waters of the cave lagoons as shown for CV in Fig. 2b. 

Salinity varied little in the layers below the chemo-
cline in all caves over the different seasons (maximum
variation 2.2), while in surface waters it varied by up
to 6.0. 

Vertical profiles of the other variables also exhibited a
vertical structure. Temperature showed a profile similar
to that of conductivity, and dissolved oxygen decreased
from the surface to the deeper waters of the cave la-
goons. Temperature varied between 15 and 20°C, with
larger fluctuations in the surface waters, while deeper
cave waters maintained almost constant temperature,
ranging from 19 to 20°C throughout the different sea-
sons. Dissolved oxygen concentrations decreased with

depth (Fig. 2, Fig. 3a), reaching low val-
ues towards the bottom of the caves
(minimum 21% saturation). Generally,
even the upper water column was
slightly undersaturated in oxygen for all
seasons; only EP had slightly supersatu-
rated oxygen concentrations at the sur-
face in February (Fig. 3b). Concentra-
tions of iron were below the detection
limit of the method (<11.64 nM) in most
of the lagoons. A remarkable exception
was EP in the winter, with up to
137.88 nM in the mixolimnion (Table 1).
TOC concentration ranged from <21 to
1655 µM for all lagoons. Highest con-
centrations were obtained in CV in the
summer and in SG in the winter at or
above the chemocline (Table 1), al-
though sometimes TOC concentrations
increased again towards the deeper
waters of the cave lagoons.
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Total suspended matter concentrations ranged from
0.82 to 29.30 mg l–1, with a contribution of organic
matter from 3.6 to 25.3%. TOC and the suspended
organic matter concentrations showed a similar verti-
cal distribution although they were not
correlated (r2 = 0.04).

Microbiological characteristics. Bac-
terial abundance peaked in the surface
water of SG in the winter, while in the
chemocline and the monimolimnion bac-
terial abundance increased from winter
towards the summer (Fig. 4b, Table 1).
ES exhibited, however, a higher bacterial
abundance in May than in the other
months (Fig. 4a). A higher bacterial ab-
undance was usually found in the surface
waters of the cave lagoons, decreasing
rapidly below the chemocline, as ex-
emplified for SG in Fig. 5c. Occasionally,
highest bacterial abundance was ob-
served at the chemocline (Fig. 5a) as well
as near the bottom (in ES) (Fig. 5a,b).

HNF abundance peaked in the surface
waters and generally showed a vertical
distribution similar to that of bacteria, as
exemplified for CV in Figs. 6 & 7. Ciliates
were present at very low concentrations
in CV; the highest abundance was found
in the surface waters, decreasing to non-
detectable levels deeper in the water
column of this cave lagoon (Fig. 6).

Respiration rates assessed via ETS
measurements. ETS values were usually
lower in the caves along the coastline
than further inland (Table 1). The vertical
profile of ETS activity showed 2 different

patterns: one with highest values at the surface waters
and also near the bottom (in ES) (Fig. 5b) and almost
non-detectable levels at intermediate depths and at
the chemocline. The other pattern showed highest
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Temp Cond Alk Fe TOC ETS BA BB HNFA HNFB

Sea 51.70 2.57 <11.64 39 5.26 7.53

CF 19.6 18.90 5.16 <11.64 91 3.32 4.76
17.7–20.0 13.70–20.50 5.07–5.25 56–128 nd–10.83 3.29–3.36 4.72–4.81

CV 17.8 25.88 5.47 3.23 4.63 121 75.31
14.4–19.7 6.80–46.20 2.54–7.50 <11.64–28.65 <21 –1655 nd–20.04 0.69–9.85 0.99–14.11 5–474 68.50–82.38

ES 19.4 24.07 5.24 3.03 4.34 116 143.78
15.9–19.7 17.54–26.00 4.91–5.97 <11.64–11.64 <21–814 nd–126.25 0.34–7.99 0.49–11.45 24–325 109.08–209.52

EP 17.6 9.30 4.49 70.37 42 13.08 2.71 3.89
15.7–19.9 3.12–18.82 2.99–5.28 30.44–137.88 37–50 1.20–24.96 0.74–6.40 1.06–9.17

SG 17.3 10.90 5.48 <11.64 4.52 6.48 93 539.64
15.0–19.9 5.20–32.90 5.05–5.92 <21–1159 nd–22.23 0.98–12.25 1.40–17.55 64–116 15.13–4461.93

Table 1. Chemical and biological parameters in cave lagoons (mean and range). Temp: temperature (°C); Cond: conductivity (mS cm–2);
Alk: alkalinity (meq l–1); Fe: inorganic iron concentration (nM); TOC: total organic carbon (µM); ETS: electron transport system activity (µg
O2 l–1 d–1); BA: bacterial abundance (105 heterotrophic bacteria ml–1); BB: bacterial biomass (µg C l–1); HNFA: heterotrophic nanoflagellate
abundance (HNF ml–1); HNFB: heterotrophic nanoflagellate biomass (µg C l–1) in the different caves (CF: Cala Falcó; CV: Cala Varques; 
ES: Es Serral; EP: Es Pont; SG: Sa Gleda). Sea: seawater sample for comparison was collected outside at Cala Falcó; nd: not determined
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activities at the surface and the chemocline (in SG).
One irregularity was the high ETS activity at 50 to
60 cm depth in the summer, associated with high sus-
pended matter concentrations in ES (Fig. 5a). ETS
activity also showed a high seasonal variability in all
cave lagoons, peaking in summer in ES (Fig. 4c) and in
SG during the winter (Fig. 4d). 

Spatial dynamics in microbiological parameters 
in CV

Dynamics in bacterial production. Data on bacterial
production are scarce as it was measured only once in
the summer in CV. The vertical profile of the bacterial
production in CV is related to the meromixis of this
lagoon, with higher production rates above the chemo-
cline and decreasing drastically below this layer. Bac-
terial production above the chemocline ranged from
29.97 to 42.23 µg C l–1 d–1 and dropped at the chemo-
cline to 2.89 µg C l–1 d–1, while production ranged from
0.37 to 0.03 µg C l–1 d–1 below the chemocline (Fig. 7).

Bacterivory. Bacterivory was evaluated only once in
the summer in CV. It was fairly constant down to 1.5 m
depth, ranging between 2.9 and 4.5 × 105 HB ml–1 d–1,

and then sharply decreased at the chemocline to 1.2 ×
105 HB ml–1 d–1 (Fig. 6).

Bacterial and protozoan net growth rates deter-
mined from the bacterivory experiments. The growth
rate of HB during summer (Fig. 8) showed a similar dis-
tribution as bacterial production (Fig. 7), but with a
slight decrease at the mixolimnion at 50 cm depth. A
sharp decrease occurred at the chemocline, where
even negative growth rates were obtained, despite the
high bacterial abundance (see ‘Discussion’).

Growth rates of HNF showed a similar vertical distri-
bution to their rates of bacterivory, also decreasing at
50 cm depth (Fig. 8). At the chemocline, the decrease
was sharp, reaching –0.5 d–1.

DISCUSSION

Characterization of the cave lagoons

Coastal cave lagoons are characterized by salinity
gradients with highest salinities in near-bottom waters
associated with the intrusion of marine waters and
salinity minima near the surface due to freshwater
influence. This causes a meromixis of the water
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column (Margalef 1983) with an upper layer where
salinity increases slowly, the mixolimnion, and a
chemocline with a sharp increase in salinity, and a
lower zone with salinity values close to typical marine
values (33.5 in CV). The structure of the water column
derived from the salinity gradient allows the distinc-
tion of 2 classes of caves (Martínez-Taberner et al.
2000): one with intense haloclines such as SG, EP and
ES (Fig. 2a), and others with smooth and progressive
clines, such as CV and CF (Fig. 2b). Vertical profiles of
the other parameters are determined by this vertical
profile in salinity. Temperature generally shows a
profile similar to that of salinity and dissolved oxygen a
gradient with surface maxima. Iron, if detectable, is
highest at the surface, probably associated with input
from freshwater sources.

Significant levels of dissolved Fe were detectable
only in EP (Table 1), in the range of 5 to 759 nM, where
some iron bacteria have been reported (Halbach et al.
2001), although growth based on Fe at circumneutral
pH is believed to occur only at concentrations higher
than 10 µM (Emerson 2000). In this cave lagoon, higher
levels of ETS activity and bacterial abundance occur
despite the lower TOC concentrations. Chemoauto-
trophy could also be due to filamentous sulfur bacteria,
as suggested for other anchihaline cave systems
(Pohlman et al. 1997); however, this has not been tested
in the present study and requires further investigation.

TOC concentrations varied over a remarkable range
in these systems (Table 1), while in the open Mediter-
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ranean Sea DOC concentrations only vary over a
narrow range (50 to 80 µM) (Copin-Montegut & Avril
1993). In the open water column, TOC commonly
closely resembles DOC concentrations (G. J. Herndl
pers. comm.); however, in these cave systems turbu-
lence is generally low, leading to a larger heterogeneity
of the TOC concentrations in the water column (see
Fig. 5). The occasionally extremely low TOC concentra-
tions of <21 µM particularly in the deep waters of the
cave systems which resembled, in terms of salinity
and temperature, closely open Mediterranean waters
might indicate adsorption and/or biological removal of
TOC from infiltrating surface Mediterranean Sea water
through the porous karst. Unfortunately, no data are
available on the infiltration rate and the residence time
of infiltrating Mediterranean Sea water in the karst.

Water column structure and the microbial 
community

Microbial food web structure and processes were
also influenced by the physical structure of the water
column. Microorganisms were generally more abun-
dant and active in the layers above the chemocline,
where a higher protozoan biomass occurred mainly
near the surface, as observed also for other stratified
systems (Fenchel et al. 1990). Bacterial biomass in-
creased at the chemocline but, concomitantly, bacterial
production decreased. This decline in bacterial pro-
duction is reflected in the negative net growth rate,
and low ETS activity was also measured at the chemo-
cline. Taken together, these results indicate that a
rather inactive senescent bacterial community accu-
mulated at the chemocline. In the monimolimnion,
both bacteria and protozoan abundance were low,
although some increase in bacterial numbers was
detectable near the bottom, probably associated with
resuspension of sediment and/or outwelling of nutri-
ents from the sediment. 

Although we have not measured the grazing activity
of protozoans below the chemocline, the bacterial
abundance in the monimolimnion was usually lower
than105 ml–1, which is below the minimum density of
food particles required to support protozoans accord-
ing to Fenchel (1980, 1982a,b); others, however, have
found lower thresholds (e.g. Cho et al. 2000). In these
layers of the water column, HNF abundance varied
between 4 and 69 cells ml–1, values similar to those
obtained for the deep Atlantic (Patterson et al. 1993)
and mesopelagic waters of the NW Mediterranean Sea
(Tanaka & Rassoulzadegan 2002). The abundance of
ciliates in the mixolimnion and chemocline was in the
range given for deep NW Mediterranean waters
(Tanaka & Rassoulzadegan 2002).

If we apply the qualitative model of Gasol (1994) to
determine the control of HNF (Fig. 9), we obtain a
lower abundance of HNF than theoretically expected
based on the bacterial abundance detected, indicating
top-down control of the HNF by ciliates or, more likely,
other predators such as crustaceans. Although these
cave lagoons are oligotrophic systems, there is indica-
tion that predators control HNF abundance, a situation
commonly reported for eutrophic systems. This appar-
ent discrepancy might indicate that Gasol’s (1994)
model is not applicable to these particular environ-
ments as data sets from such environments were not
included in the original model. Another explanation of
the observed pattern might be that a large fraction of
the DAPI-stained particles was inactive or dead cells,
not grazed or grazed only at a lower efficiency by HNF
than highly active cells (Sherr et al. 1992, López-
Amorós et al. 1998). In addition, the protozoans ob-
served in these layers could complement their diet
with detritus or colloidal DOC (Sherr 1988).

We found 2 patterns in the vertical distribution of
ETS: one with maxima at the surface and in near-
bottom waters, and the other with maxima near the
surface and above the chemocline corresponding to
the peak abundance in microorganisms and TOC con-
centrations. However, no direct correlation between
ETS activity and TOC was obtained, probably due to
the fact that TOC comprises primarily refractory
material.
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Occasionally, dynamics in bacterial biomass covaried
with ETS activity (Fig. 5a,c). More commonly, however,
ETS activity was not related to the dynamics in bacter-
ial abundance and biomass (Fig. 5b), indicating that
ETS activity is more an indicator of activity than of bio-
mass (e.g. Packard 1985, Arístegui & Montero 1995).

Comparison between microbial communities in cave
lagoons and other net heterotrophic aquatic systems

Systems similar to that of the cave lagoons are the
deep sea and the groundwater, because they rely on
allochthonously produced organic matter (Smith &
Kaufmann 1999). The deep sea microbial communities,
however, are exposed to complex and variable effects
due to hydrostatic pressure (Jannasch & Wilsen 1982,
Patching & Eardly 1997).

The ETS activity obtained in cave lagoons was low
and comparable to that of oligotrophic marine areas,
e.g. the tropical Pacific (Packard et al. 1975, King et al.
1978) and aphotic deep layers (Packard & Williams
1981, Savenkoff et al. 1993). They were also similar to
the values we obtained for other oligotrophic coastal
areas of the Balearics (Sintes 2002). The activity of the
microbial food web, i.e. bacterial production and bac-
terivory, in cave lagoons is similar to oligotrophic areas
elsewhere (e.g. Eguchi & Ishida 1990, Ribes et al. 1999)
and to the oligotrophic Balearic coasts (Sintes 2002),
while bacterial biomass was substantially lower in the
caves. 

Daily carbon fluxes from bacteria to predators repre-
sent 100% of the bacterial biomass, with twice as much
bacterial production in the mixolimnion, reflecting
situations characteristic for the oligotrophic open sea
(Sintes 2002). At the chemocline, daily carbon flux is
about 1% of the standing stock, but 6 times higher
than production. As stated above, HNF seem to be top-
down controlled, which would imply a bottom-up con-
trol of bacteria by resources. However, the measured
daily carbon fluxes suggest that other predators rather
than HNF can control the bacterial community, at least
in the upper part of the water column. The absence of
a correlation between microbial biomass and TOC,
contrary to observations on aquifers and deep marine
sediments (Kieft et al. 1995, Cragg et al. 1998), implies
that either the availability of organic compounds for
bacterial utilization or the availability of electron
acceptors, mainly oxygen, limit bacterial production,
as suggested for sapropels (Cragg et al. 1998).

Compared to other systems (e.g. the deep sea), bac-
terial biomass of the monimolimnion is similar to that
reported for the 100 to 1000 m depth layer (Nagata et
al. 2001, Tanaka & Rassoulzadegan 2004) and pristine
aquifers (Griebler et al. 2002), while surface bacterial

abundance was similar to groundwater and non-
contaminated wells (Alfreider et al. 1997, Griebler et
al. 2002). Bacterial production in the monimolimnion is
slightly higher than the values reported for the 1000 m
depth horizon in the ocean, while our surface values
are similar to those reported for oceanic surface waters
(Hara et al. 1996, Nagata et al. 2000). 

In conclusion, the microbial food web structure
based on allochthonous organic matter differs little
from that of oligotrophic marine areas. The activities at
the surface, where input of organic matter for potential
bacterial utilization is higher than in the deeper waters
of the cave lagoons, are close to that observed in the
open Mediterranean, or even in coastal sites with high
water exchange with the open sea. Conversely, the
biomass of bacteria and flagellates is significantly
lower in most cases. The water column below the
chemocline in the cave lagoons is characterized by
lower microbial activities (Fig. 7) and biomass, al-
though near-bottom waters can show elevated levels of
biomass and activity, probably associated with input of
organic matter or outwelling of nutrients from the
sediment. It seems that the availability of substrate
limits bacterial abundance while HNF are top-down
controlled. This presents a major difference to oligo-
trophic surface waters, where HNF are mostly bottom-
up controlled.
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