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Abstract 

In this paper, we propose a new method for the inference of S-system models of 
large-scale genetic networks from the observed time-series data of gene expression patterns. 
The proposed method employs a technique to decompose the genetic network inference 
problem into several subproblems. The S-system parameters are estimated by solving these 
decomposed subproblems. In addition, the proposed method estimates the initial levels of the 
gene expression. The estimation of the initial gene expression levels is necessary when the 
noisy time-series data are given. We verify the effectiveness of the proposed method through 
the genetic network inference problems. 
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1. Introduction 

Advancements in technologies such as DNA microarrays now allow us to measure gene 
expression patterns on a genomic scale [1]. A great number of researchers have taken an interest in 
the inference of underlying genetic networks from the observed time-series data of gene expression 
patterns, and this has become one of the major topics in the bioinformatics field [2]. Numerous 
models have been proposed to describe networks, and numerous algorithms based on individual 
models have been proposed for the inference of genetic networks [2][3][4][5][6][7][19].  

The S-system model is considered an ideal choice for inferring genetic networks, as the model 
is rich enough in structure to capture various dynamics and some methods are available for 
analyzing it [8][9]. The S-system model is a set of non-linear differential equations of the form 
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where iX  is the state variable and N is the number of components in the network. In a genetic 
network, iX  is the expression level of the i-th gene and N is the number of genes in the network. 

iα  and iβ  are multiplicative parameters called rate constants, and jig ,  and jih ,  are exponential 
parameters called kinetic orders. 

Several network inference algorithms based on the S-system model have been proposed 
[8][9][10]. These algorithms estimate all of the S-system parameters ( iα , iβ , jig ,  and jih , ) from 
observed time-series data of the gene expression patterns simultaneously. Since the number of 
S-system parameters is proportional to the square of the number of network components, the 
algorithms must estimate a large number of S-system parameters when we try to infer large-scale 
network systems containing many network components. This is why inference algorithms based on 
the S-system model have been applied only to small-scale networks of less than five genes. For the 
purpose of resolving the high-dimensionality of the genetic network inference problem in the 
S-system model, a problem decomposition strategy, that divides the original problem into several 
subproblems, has been proposed [11][12]. 

The problem decomposition approach enables us to infer S-system models of larger-scale 
genetic networks. However, existing inference algorithms are still incapable of inferring realistic 
genetic networks, as they were designed without considering the noise in the observed time-series 
data. In this paper, we extend the problem decomposition approach to a realistic noisy environment. 
The proposed method estimates the initial levels of the gene expression, as well as the S-system 
parameters, in order to enhance the probability of finding the correct interaction between genes. 
The initial gene expression level and the set of S-system parameters are estimated alternately in 
each decomposed subproblem. We verify the effectiveness of the proposed method by applying it to 
the genetic network inference problems containing 5 and 30 genes, respectively. 

2. Genetic Network Inference Problem 

2.1 Canonical problem definition 

The canonical genetic network inference problem is defined as a function optimization problem 
to minimize the following sum of the squared relative error [8][9]. 
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where tiX ,,exp  is an experimentally observed gene expression level at time t of the i-th gene, 

tiX ,,cal  is a numerically calculated one acquired by solving a system of differential equations (1), N 
is the number of genes in the network, and T is the number of sampling points of observed data. 

Since 2N(N+1) S-system parameters must be determined in order to solve the set of differential 
equations (1), this function optimization problem is 2N(N+1) dimensional. This is too many 
dimensions for non-linear function optimizers in cases where the algorithms are used to infer 
S-system models of large-scale genetic networks containing many network components [11][12]. 

2.2 Problem decomposition 

As mentioned shortly before, the high dimensionality of large-scale network systems makes 
these systems difficult to infer using algorithms based on the S-system model. Very recently, a 
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problem decomposition strategy has been proposed as a means for resolving this high 
dimensionality problem [11][12]. 

The problem decomposition strategy divides the genetic network inference problem into several 
subproblems, each of which corresponds to each gene. The objective function of the subproblem 
corresponding to the i-th gene is 
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where tiX ,,cal  is the numerically calculated gene expression level at time t of the i-th gene, just as 
described in the previous subsection. In contrast to the previous subsection, however, tiX ,,cal  is 
acquired by solving the following differential equation. 
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jX̂  is an estimated gene expression level obtained not by solving any differential equation, but by 
making a direct estimation from the observed time-series data. Two methods are used to estimate 

jX̂  in this paper. When the data are assumed to be observed with no measurement error, jX̂  is 
estimated using the spline interpolation [13] of the observed gene expression level. When the 
absence of measurement error cannot be confirmed, the value is estimated using local linear 
regression [14], a data smoothing technique. 

The equation (4) is solvable when 2(N+1) S-system parameters (i.e., iα , iβ , Nii gg ,1, ,,L , 

Nii hh ,1, ,,L ) are given. Thus, this decomposition strategy divides a 2N(N+1) dimensional network 
inference problem into N individual 2(N+1) dimensional subproblems. The solutions of the 
equation (4) ( Ni ,,1L= ) completely coincide with the solution of the set of equations (1) only 
when accurate curves are given as the observed gene expression patterns. 

2.3 Use of a priori knowledge 

The genetic network inference problem based on the S-system model may have multiple optima 
due to the high degree-of-freedom and pollution of the time-series data by the measurement error. 
In this study, we try to improve our chances of finding a correct solution by introducing a priori 
knowledge about the genetic network into the objective function. 

The connectivity of the genetic network has been demonstrated to be sparse [15]. When there is 
no interaction between two genes, the S-system parameter values corresponding to the interaction 
( jig ,  and jih , ) are zero. Kikuchi and his colleagues incorporated this knowledge into the objective 
function using a penalty term called the pruning term [9]. This turns out to be an imperfect solution, 
however, as the pruning term pushes all the kinetic orders down to zero, a condition that may make 
prevent the model from finding the existing interactions. To avoid this, we introduce another 
penalty term into the objective function (3), as follows [12]. 
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where jiG ,  and jiH ,  are given by rearranging jig ,  and jih , , respectively, in descending order of 

their absolute values (i.e., Niii GGG ,2,1, ≤≤≤ L  and Niii HHH ,2,1, ≤≤≤ L ). N is the 
number of genes in the network and I is a maximum indegree. The maximum indegree determines 
the maximum number of genes that affect the i-th gene directly. c is a penalty coefficient. 

The first term on the right-hand side of the equation (6) is the same as that of the equation (3). 
The second term on the r.h.s. of the equation (6) is a penalty term that forces most of the kinetic 
orders ( jig ,  and jih , ) down to zero, thereby causing most of the genes to disconnect when this 
penalty term is applied. This term will not penalize, however, when the number of genes that 
directly affect the i-th gene is lower than the maximum indegree I. Thus, the optimum solutions to 
the objective functions (3) and (6) are the same when the number of genes that affect the focused 
(i-th) gene is lower than the maximum indegree. In this paper, we use the equation (6) as the 
objective function that should be minimized. 

3. Estimation of Initial Gene Expression Level 

When we try to solve the decomposed subproblem, the differential equation (4) must be solved. 
In order to solve the differential equation (4), we need to input the initial expression level of the 
gene (the initial state value for the differential equation), in addition to the S-system parameters. 
The initial gene expression level is obtainable from the observed time-series data if they contain no 
measurement error. However, since the data are generally polluted by the measurement noise when 
the gene expression patterns are actually measured, the initial gene expression level should be 
estimated together with the S-system parameters. 

As mentioned just above, the initial gene expression level needs to be estimated when the 
inference algorithm is applied to a realistic genetic network inference problem. However, the 
simultaneous estimation of the initial gene expression level and the S-system parameters makes the 
function optimization problem higher dimensional, and this is inconvenient for function optimizers. 
Therefore, we estimate the initial gene expression level and the set of the S-system parameters 
alternately, i.e., when the initial expression level of the i-th gene is estimated, the S-system 
parameters are fixed to the values of some candidate solution for the i-th subproblem. In this study, 
the fixed S-system parameter values are obtained from the best candidate solution that has ever 
been found. Since the initial expression level of the i-th gene is a unique variable and the rest of the 
model parameters are fixed, the estimation of the initial expression level of the i-th gene is 
formulated as a single dimensional function minimization problem. The objective function of this 
estimation problem is 

2
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where tiX ,,cal  is acquired by solving the equation (4), and γ ( 10 ≤≤ γ ) is a discount parameter. 
As the fixed S-system parameters obtained from the best candidate are not always optimal, the 
calculated gene expression curve may differ greatly from the actual curve. When the calculated 
curve is incorrect, the algorithm should not be able to fit the curve, especially the latter half of the 
curve, into the observed data. Therefore, in this study, we introduce the discount parameter γ . 
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When the noisy time-series data are given as the observed gene expression patterns, we should 
estimate both the set of the S-system parameters and the initial gene expression level. To estimate 
them, we minimize the objective functions (6) and (7) alternately in this study. 

4. Method for the Inference of Genetic Networks 

In this section, we propose a new method for the inference of S-system models of genetic 
networks. 

4.1 Parameter estimators 

In the proposed method, different parameter estimators, described below, are used to optimize 
the objective functions (6) and (7), respectively. The proposed method applies these parameter 
estimators in order to infer genetic networks. 

4.1.1 Parameter estimator for the S-system parameters 

In order to estimate the S-system parameters, we must optimize the objective function (6) 
mentioned in the section 2. Any type of function optimizer can be applied to this problem. In this 
study, we use GLSDC (a Genetic Local Search with distance independent Diversity Control) [16], a 
method based on the real-coded genetic algorithm. GLSDC has two features important for the 
inference of large-scale genetic networks: it works well on multimodal function optimization 
problems with high-dimensionality and can be suitably applied to parallel computation. GLSDC 
uses the modified Powell’s method [13] as a local search operator. Two genetic operators, ENDX 
(an Extended Normal Distribution Crossover) [16][17] and MGG (Minimal Generation Gap model) 
[18] are also used in GLSDC. The following is an algorithm of GLSDC. 

[Algorithm: GLSDC] 
1. [Initialize] As an initial population, create pn  individuals randomly. Set Generation=0 and the 

iteration number of the converging operations 0iter NN = . 
2. [Local Search Phase] Apply the modified Powell’s method to all individuals in the population. 
3. [Adaptation of iterN ] If the best individual in the population shows no improvement over the 

previous generation, set 0iteriter NNN +← . Otherwise, set 0iter NN = . 
4. [Converging Phase] Execute the exchange of individuals according to the genetic operators, i.e., 

ENDX and MGG, iterN  times. There is no need to calculate the fitness value at this time. 
5. [Termination] Stop if the halting criteria are satisfied. Otherwise, Generation←Generation+ 1 

and go to step 2. 
 
Readers can find more detailed information on GLSDC in [16]. 

As mentioned in the section 3, the initial expression level of the i-th gene is required when 
GLSDC solves the i-th subproblem. The initial level is fixed to the value obtained by minimizing 
the objective function (7), while GLSDC is solving this problem. 

4.1.2 Parameter estimator for the initial gene expression level 

The initial gene expression level is estimated by minimizing the objective function (7) 
mentioned in the section 3. When this problem is solved, the rest of the model parameters are fixed 



 

Chem-Bio Informatics Journal, Vol. 4, No. 1, pp.1-14(2004) 

 6 

ENDX/MGG

Repeat several times

L
oc

al
 S

ea
rc

h
Ph

as
e

C
on

ve
rg

in
g 

Ph
as

e

ENDX/MGG

Local Search

Population Individual

without
    function evaluation

without
    function evaluation

Parameter Estimator for the initial gene expression level

Parameter Estimator for the S-system parameters

G
en

er
at

io
n 

   
   

 G
en

er
at

io
n 

+
 1

Execution of golden section search

 

Figure 1. The framework of the proposed method 
 

to the best candidate solution that has ever been found by GLSDC. As this problem is one 
dimensional, we attempt to solve it with the use of the golden section search [13]. When multiple 
sets of time-series data are given as the observed data, the one-dimensional search is applied to all 
of the sets. 

4.2 Algorithm 

The simultaneous estimation of the set of the S-system parameters and the initial gene 
expression level makes the function optimization problem higher dimensional, and this is 
inconvenient for function optimizers. Therefore, we estimate them alternately. On the basis of this 
idea, we propose a new method for the inference of genetic networks. In the proposed method, the 
two parameter estimators described above are applied alternately, i.e., the estimation of the initial 
gene expression level is performed at the end of the every cycle (generation) of GLSDC (see Figure 
1). 

When GLSDC estimates the S-system parameters, the initial gene expression level is fixed to 
the value obtained by minimizing the objective function (7), as mentioned above. However, the 
initial level is unavailable at the first generation, because it is estimated after the estimation of the 
S-system parameters. Therefore, only at the first generation, we use the value obtained directly 
from the observed time-series data as the initial gene expression level. 

5. Numerical Experiments 

We conducted a series of numerical experiments to demonstrate the effectiveness of our 
proposed method. Lacking any actual biological data, we used artificial genetic network models as 
a case study in this paper. 
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Table 1. S-system parameters of the target model A 
i iα  1,ig  2,ig  3,ig  4,ig  5,ig  iβ  1,ih  2,ih  3,ih  4,ih  5,ih  
1 5.0 0.0 0.0 1.0 0.0 -1.0 10.0 2.0 0.0 0.0 0.0 0.0 
2 10.0 2.0 0.0 0.0 0.0 0.0 10.0 0.0 2.0 0.0 0.0 0.0 
3 10.0 0.0 -1.0 0.0 0.0 0.0 10.0 0.0 -1.0 2.0 0.0 0.0 
4 8.0 0.0 0.0 2.0 0.0 -1.0 10.0 0.0 0.0 0.0 2.0 0.0 
5 10.0 0.0 0.0 0.0 2.0 0.0 10.0 0.0 0.0 0.0 0.0 2.0 

 

Table 2. 15 sets of the initial gene expression levels used in the experiment of the target 
model A 

Set 1X  2X  3X  4X  5X  
1 1.655967e+00 1.868416e+00 1.032173e-01 2.730268e-01 1.562687e+00 
2 7.862766e-01 5.474855e-01 9.287958e-01 3.894443e-01 9.344040e-01 
3 3.468547e-01 1.994981e+00 1.532913e+00 1.761393e+00 1.264981e+00 
4 8.020131e-01 8.949262e-01 3.135082e-01 7.610533e-02 1.269706e+00 
5 9.590725e-01 2.805737e-01 5.507401e-01 1.694232e+00 5.744767e-01 
6 3.992936e-01 1.849408e+00 2.912736e-01 1.144217e+00 9.988814e-01 
7 1.055713e-02 5.114093e-02 8.495855e-01 1.740444e+00 1.969969e-01 
8 1.489803e+00 9.168820e-01 1.707836e+00 1.827741e+00 2.824051e-01 
9 1.842769e-01 1.589055e+00 6.668454e-01 4.727903e-01 1.265678e+00 

10 1.285646e+00 8.995862e-01 1.994967e-01 8.811659e-01 1.723054e+00 
11 1.336863e-01 4.233753e-01 4.168260e-01 4.823942e-01 5.539923e-01 
12 1.652500e+00 1.744966e+00 3.904404e-01 1.584671e+00 4.339247e-01 
13 1.562800e+00 1.164151e+00 1.391469e+00 6.808265e-01 1.090292e+00 
14 3.271505e-01 1.147837e+00 1.576167e-01 8.645541e-01 2.591408e-01 
15 5.522177e-01 4.220327e-01 1.084436e+00 1.994388e+00 1.050098e+00 

 

5.1 Experiment 1: small-scale network inference with noise-free data 

In this experiment, we confirm that the proposed method has an ability to infer a correct 
S-system model of the genetic network when a sufficient amount of noise-free data is given. 

5.1.1 Experimental setup 

As a target network, we used the S-system model of the small-scale genetic network consisting 
of 5 genes (N=5) [9]. We call this model the target model A, and list its parameters in Table 1. By 
applying the problem decomposition strategy mentioned in the section 2.2, this genetic network 
inference problem was decomposed into 5 subproblems. 

If an insufficient amount of time-series data is given as observed gene expression patterns, the 
high degree-of-freedom of S-system models ensures that many candidate solutions may be found. 
To enhance the probability of finding the correct solution, we used 15 sets of time-series data, each 
covering all 5 genes, as a sufficient amount of observed gene expression data. The sets of 
time-series data were obtained by solving the set of differential equations (1) on the target model A. 
The initial values of these sets are generated randomly, and they are listed in Table 2. In a practical 
application, these sets of time-series data could be obtained by actual biological experiments of 
different experimental conditions. 11 sampling points for the time-series data were assigned on each 
gene in each set, hence the observed time-series data on each gene consisted of 1651115 =×  
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Table 3. Estimated S-system parameters for the target model A 
i iα  1,ig  2,ig  3,ig  4,ig  5,ig  iβ  1,ih  2,ih  3,ih  4,ih  5,ih  
1 4.802 -0.025 -0.002 1.017 -0.002 -1.017 9.790 2.032 -0.005 -0.006 0.001 0.005
2 10.045 1.982 0.008 0.001 0.005 -0.001 10.044 0.002 1.989 -0.001 0.002 0.005
3 10.081 -0.002 -0.991 0.009 -0.003 -0.003 10.078 -0.002 -0.991 1.994 -0.007 -0.002
4 8.086 -0.010 0.004 1.991 0.005 -0.990 10.118 0.000 0.003 0.013 1.978 0.008
5 9.478 0.004 0.010 0.034 2.066 -0.087 9.505 0.007 0.012 0.009 -0.031 2.024

 

Table 4. Estimated initial gene expression levels for the target model A 
Set 1X  2X  3X  4X  5X  
1 1.657616e+00 1.866675e+00 1.031946e-01 2.729209e-01 1.562868e+00 
2 7.863174e-01 5.475139e-01 9.290369e-01 3.897167e-01 9.338474e-01 
3 3.466258e-01 1.995005e+00 1.532000e+00 1.760710e+00 1.264359e+00 
4 8.014521e-01 8.953308e-01 3.135446e-01 7.614276e-02 1.272565e+00 
5 9.596057e-01 2.805703e-01 5.509538e-01 1.693683e+00 5.737853e-01 
6 3.990045e-01 1.849312e+00 2.913377e-01 1.144084e+00 1.002049e+00 
7 1.056477e-02 5.135667e-02 8.495751e-01 1.745016e+00 1.969867e-01 
8 1.491036e+00 9.191003e-01 1.707857e+00 1.825848e+00 2.827157e-01 
9 1.843174e-01 1.588871e+00 6.669493e-01 4.722400e-01 1.262910e+00 

10 1.284880e+00 9.005177e-01 1.995071e-01 8.813032e-01 1.719754e+00 
11 1.336483e-01 4.230248e-01 4.169177e-01 4.828245e-01 5.532325e-01 
12 1.652757e+00 1.743340e+00 3.903545e-01 1.582928e+00 4.327569e-01 
13 1.563244e+00 1.163774e+00 1.392009e+00 6.811343e-01 1.090419e+00 
14 3.270106e-01 1.147585e+00 1.576615e-01 8.634238e-01 2.591978e-01 
15 5.520035e-01 4.222403e-01 1.084154e+00 1.991653e+00 1.050043e+00 

 
sampling points. Spline interpolation was used to obtain jX̂ ’s. Spline interpolated curves of these 

observed data were used as jX̂ ’s in the equation (5), as mentioned in the section 2.2. 
We used the following recommended parameters in GLSDC applied here [16]: the population 

size pn  is 3n, where n is the dimension of the search space; the number of children generated by 
the crossover per selection is 10; and the number of applying the converging operations 0N  is 

pn2 . Five runs were carried out for each subproblem, and each run was continued until the number 
of fitness evaluations reached 6100.1 × . The search regions of the S-system parameters were [0.0, 
20.0] for iα  and iβ , and [-3.0, 3.0] for jig ,  and jih , . The search regions of the initial gene 
expression levels were set to ± 30% of the observed ones (i.e., ]3.1,7.0[ 0,exp,0,exp, ii XX ). The 
maximum indegree I was 5, the penalty coefficient c was 1.0, and the discount parameter γ  was 
0.75. 

The structure skeletalizing technique was introduced in order to reduce the computational cost 
[8]. This technique assigns a value of zero to the kinetic orders ( jig ,  and jih , ) whose absolute 
values are less than a given threshold sδ . Structure skeletalizing effectively reduces the 
computational cost, because the exponential calculation of the equation (4) is omissible when the 
kinetic orders are zero. In this paper, we used the threshold 3

s 100.1 −×=δ . 
As this network model contains 5 genes, we have to estimate 60)15(52 =+××  S-system 

parameters in order to infer the network. In addition, we have to estimate all of the initial levels of 
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the gene expression, which total 75155 =× . Therefore, 60 + 75 = 135 parameters must be 
estimated in this problem. 

5.1.2 Results 

The S-system parameters and the initial gene expression levels estimated by the proposed 
method are listed in Tables 3 and 4, respectively. As can be seen from the tables, our method was 
unable to estimate the parameter values with perfect precision. However, they were precise enough 
to biologically interpret the network. 

Our method running on a single-CPU personal computer (Pentium III 1GHz) required about 
58.8 minutes to optimize each subproblem. This is far less computing time, from a comparison with 
the method earlier (PEACE1; Predictor by Evolutionary Algorithms and Canonical Equations 1) [9]. 
PEACE1 running on a PC cluster (Pentium III 933MHz×1040CPUs) reportedly took more than 10 
hours to estimate the S-system parameters. 

In this experiment, the effectiveness of the proposed method was confirmed by estimating both 
the S-system parameters and the initial gene expression levels. In practical, however, it is not 
necessary to estimate the initial gene expression levels when the observed data seem to contain no 
measurement error. When the initial gene expression levels do not need to be estimated, the 
estimated parameters are more precise since the problem contains fewer unknown parameters. 

5.2 Experiment 2: large-scale network inference with noisy data 

Next, we test the performance of our method in a noisy real-world setting by conducting the 
experiment with the sets of noisy time-series data. 

5.2.1 Experimental setup 

The larger-scale S-system model containing 30 genes (N=30) was used as a target model here. 
The network structure and the S-system parameters of the model are given in Figure 2 and Table 5, 
respectively [3]. This model is referred to as the target model B in this paper. The problem 
decomposition strategy divided the original inference problem into 30 subproblems. 

The observed gene expression data included 20 sets of time-series data, each covering all 30 
genes. The sets of time-series data began from randomly generated initial values in [0.0,2.0], and 
were obtained by solving the set of differential equations (1) on the target model B. We added 10% 
Gaussian noise to the time-series data in order to simulate the measurement noise that often 
corrupts the observed data obtained from actual measurements of gene expression patterns. 11 
sampling points for the time-series data were assigned on each gene in each set. Local linear 
regression [14] was used to obtain jX̂ ’s. Figure 3 shows an example of the estimated gene 

expression curve jX̂  used in this experiment. 
Five runs were carried out for each subproblem. Each run was continued until the number of 

fitness evaluations reached 7100.4 × . The search regions were [0.0, 3.0] for iα  and iβ , [-3.0, 
3.0] for jig ,  and jih , , and ]3.1,7.0[ 0,exp,0,exp, ii XX  for the initial gene expression levels. All of the 
other experimental conditions were the same as those in the previous subsection. 

In this experiment, 1860)130(302 =+××  S-system parameters and 6002030 =×  levels of 
initial gene expression should be estimated. 
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Figure 2. Network structure of the target model B 
 

Table 5. S-system parameters of the target model B 
iα  1.0 

iβ  1.0 

jig ,  

1.014,1 −=g , 0.11,5 =g , 0.11,6 =g , 5.027 =,g , 4.03,7 =g , 2.04,8 =g , 
2.017,8 −=g , 0.15,9 =g , 1.06,9 −=g , 3.07,10 =g , 4.04,11 =g , 2.07,11 −=g , 

4.022,11 =g , 1.023,12 =g , 6.08,13 =g , 0.19,14 =g , 2.010,15 =g , 5.011,16 =g , 
2.012,16 −=g , 5.013,17 =g , 1.014,19 =g , 7.015,20 =g , 3.026,20 =g , 6.016,21 =g , 

5.016,22 =g , 2.017,23 =g , 2.015,24 −=g , 1.018,24 −=g , 3.019,24 =g , 4.020,25 =g ,
2.021,26 −=g , 1.028,26 =g , 6.024,27 =g , 3.025,27 =g , 2.030,27 −=g , 5.025,28 =g ,

4.026,29 =g , 6.027,30 =g , other 0.0, =jig  

jih ,  1.0, if i=j,  0.0, otherwise 
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Figure 3. Example of the estimated gene expression curve 
The figure shows a gene expression curve estimated by the local linear regression (dotted line), a 
noise-free curve calculated on the target model B (solid line), and given noisy data. 
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Table 6. Estimated S-system parameters for the target model B 

h    = 0.000i,j

β   = 0.437,1 h        = 2.552,1,1 h        = 0.315,1,2 h        = 0.675,1,25 h        = 0.2111,25h        = 0.686,1,16

β   = 0.492,2 h        = 1.486,2,2 h        = -0.177,2,3 h        = 0.225,2,16 h        = 0.3202,19h        = 0.351,2,6

β   = 0.529,3 h        = 1.252,3,3 h        = -0.117,3,6 h        = -0.058,3,14 h        = 0.2003,25h        = 0.347,3,13

β   = 0.362,4 h        = 2.401,4,4 h        = -0.289,4,15 h        = 0.491,4,27 h        = 0.2794,30h        = -0.276,4,19

β   = 0.493,5 h        = -0.526,5,1 h        = 1.525,5,5 h        = 0.271,5,16 h        = 0.2125,29h        = -0.242,5,11

β   = 0.490,6 h        = -0.559,6,1 h        = -0.074,6,4 h        = -0.185,6,13 h        = -0.3156,30h        = 1.475,6,6

β   = 0.850,7 h        = -0.297,7,3 h        = 1.173,7,7 h        = 0.179,7,13 h        = 0.1207,30h        = 0.092,7,10

β   = 0.345,8 h        = 0.413,8,2 h        = 2.164,8,8 h        = 0.329,8,18 h        = 0.1638,27h        = -0.230,8,16

β   = 0.578,9 h        = -0.238,9,5 h        = 1.468,9,9 h        = -0.151,9,23 h        = 0.2069,27h        = 0.243,9,22

β   = 0.408,10 h        = 0.500,10,2 h        = -0.386,10,4 h        = 0.972,10,25 h        = 0.58310,27h        = 1.796,10,10

β   = 0.261,11 h        = -0.759,11,4 h        = 0.115,11,8 h        = -0.366,11,22 h        = 0.42611,27h        = 1.888,11,11

β   = 0.525,12 h        = 1.610,12,12 h        = 0.161,12,14 h        = 0.063,12,18 h        = -0.25112,26h        = 0.194,12,16

β   = 0.374,13 h        = 2.639,13,13 h        = -0.513,13,17 h        = 0.327,13,23 h        = 0.29013,28h        = 0.695,13,18

β   = 0.379,14 h        = -0.610,14,9 h        = 1.914,14,14 h        = 0.239,14,18 h        = 0.31214,29h        = 0.496,14,17

β   = 0.362,15 h        = 0.379,15,4 h        = 0.390,15,5 h        = 2.559,15,15 h        = 0.54315,29h        = -0.125,15,10

β   = 0.373,16 h        = -0.264,16,8 h        = -0.506,16,11 h        = -0.137,16,20 h        = 0.25816,27h        = 1.960,16,16

β   = 0.363,17 h        = 0.399,17,9 h        = 0.641,17,15 h        = 0.914,17,22 h        = 0.59417,24h        = 2.715,17,17

β   = 0.445,18 h        = 0.870,18,3 h        = 0.563,18,16 h        = 0.569,18,24 h        = -0.18818,30h        = 2.278,18,18

β   = 0.391,19 h        = -0.571,19,2 h        = 0.567,19,14 h        = 2.510,19,19 h        = -0.21519,29h        = 0.477,19,15

β   = 0.552,20 h        = 0.127,20,2 h        = -0.389,20,4 h        = -0.234,20,17 h        = 1.35820,20h        = -0.229,20,7

β   = 0.630,21 h        = 0.211,21,3 h        = -0.114,21,10 h        = -0.472,21,23 h        = 0.28021,29h        = 1.728,21,21

β   = 0.624,22 h        = 0.480,22,11 h        = -0.914,22,16 h        = 1.124,22,22 h        = 0.39322,23h        = 0.915,22,20

β   = 0.424,23 h        = 0.102,23,4 h        = 0.282,23,18 h        = 1.963,23,23 h        = 0.10523,26h        = 0.148,23,20

β   = 0.359,24 h        = 1.279,24,15 h        = 1.423,24,17 h        = 2.609,24,24 h        = 0.43524,29h        = -0.490,24,19

β   = 0.938,25 h        = 0.208,25,7 h        = 0.065,25,12 h        = -0.131,25,28 h        = 0.18825,30h        = 1.303,25,25

β   = 0.518,26 h        = -0.176,26,1 h        = 0.247,26,3 h        = 1.840,26,26 h        = 0.23226,27h        = -0.214,26,19

β   = 0.545,27 h        = 0.374,27,10 h        = -0.182,27,11 h        = 1.089,27,27 h        = 0.18327,30h        = -0.295,27,24

β   = 0.692,28 h        = 0.210,28,2 h        = 0.131,28,6 h        = 0.177,28,24 h        = 1.44328,28h        = 0.052,28,17

β   = 0.260,29 h        = 0.559,29,2 h        = 0.931,29,13 h        = 0.796,29,18 h        = 2.83129,29h        = -0.279,29,14

β   = 0.682,30 h        = -0.066,30,14 h        = 0.040,30,23 h        = -0.213,30,25 h        = 1.51530,30h        = 0.125,30,24

g    = 0.000,i,jother

α   = 0.484,1 g        = -0.916,1,1 g        = 0.571,1,16 g        = 0.479,1,23 g        = 0.396,1,25g        = 0.367,1,20

α   = 0.510,2 g        = -0.465,2,2 g        = 0.131,2,16 g        = 0.215,2,20 g        = 0.153,2,23g        = 0.235,2,19

α   = 0.527,3 g        = 0.322,3,1 g        = -0.461,3,3 g        = 0.069,3,20 g        = -0.089,3,27g        = 0.216,3,13

α   = 0.360,4 g        = 0.247,4,2 g        = -0.629,4,4 g        = 0.153,4,14 g        = 0.369,4,30g        = 0.231,4,10

α   = 0.492,5 g        = 1.785,5,1 g        = -0.300,5,2 g        = 0.103,5,12 g        = 0.129,5,15g        = -0.448,5,5

α   = 0.490,6 g        = 1.118,6,1 g        = -0.353,6,6 g        = 0.378,6,17 g        = -0.172,6,30g        = -0.157,6,14

α   = 0.798,7 g        = 0.663,7,2 g        = 0.187,7,3 g        = -0.090,7,7 g        = -0.117,7,9g        = -0.112,7,4

α   = 0.374,8 g        = 0.540,8,4 g        = -0.684,8,8 g        = 0.393,8,15 g        = 0.331,8,30g        = 0.390,8,13

α   = 0.536,9 g        = 1.490,9,5 g        = -0.475,9,9 g        = 0.279,9,21 g        = 0.223,9,28g        = 0.140,9,10

α   = 0.386,10 g        = 0.688,10,7 g        = -0.959,10,10 g        = 0.280,10,25 g        = 0.589,10,27g        = -0.246,10,11

α   = 0.261,11 g        = 0.710,11,4 g        = -0.553,11,7 g        = 0.206,11,19 g        = 0.420,11,22g        = -0.842,11,11

α   = 0.549,12 g        = 0.146,12,4 g        = -0.352,12,12 g        = 0.107,12,23 g        = 0.209,12,27g        = 0.160,12,16

α   = 0.406,13 g        = 1.316,13,8 g        = 0.120,13,11 g        = 0.241,13,19 g        = 0.187,13,22g        = -0.505,13,13

α   = 0.346,14 g        = 0.473,14,3 g        = 0.253,14,6 g        = -0.904,14,14 g        = 0.400,14,28g        = 2.205,14,9

α   = 0.350,15 g        = 0.627,15,1 g        = -0.621,15,15 g        = 0.314,15,20 g        = 0.051,15,25g        = -0.149,15,18

α   = 0.373,16 g        = 0.235,16,1 g        = 0.162,16,7 g        = -0.310,16,12 g        = -0.555,16,16g        = 0.730,16,11

α   = 0.303,17 g        = 0.254,17,2 g        = -0.534,17,6 g        = -0.957,17,17 g        = 0.587,17,22g        = 1.276,17,13

α   = 0.420,18 g        = -1.266,18,18 g        = 0.276,18,19 g        = -0.433,18,25 g        = 0.449,18,27g        = 0.707,18,22

α   = 0.361,19 g        = 0.460,19,6 g        = 0.745,19,14 g        = -1.082,19,19 g        = 0.380,19,30g        = 0.384,19,16

α   = 0.576,20 g        = 0.99120,15 g        = 0.179,20,17 g        = 0.389,20,26 g        = -0.171,20,28g        = -0.246,20,20

α   = 0.590,21 g        = 0.300,21,8 g        = 1.279,21,16 g        = -0.642,21,21 g        = 0.262,21,22g        = 0.231,21,20

α   = 0.586,22 g        = 0.872,22,16 g        = 0.314,22,20 g        = 0.103,22,25 g        = 0.165,22,29g        = -0.752,22,22

α   = 0.375,23 g        = 0.201,23,7 g        = -0.417,23,8 g        = -0.598,23,23 g        = -0.325,23,24g        = 0.409,23,17

α   = 0.336,24 g        = -0.214,24,10 g        = -0.379,24,18 g        = 0.489,24,27 g        = 0.187,24,28g        = -0.696,24,24

α   = 0.912,25 g        = 0.289,25,7 g        = -0.109,25,10 g        = -0.047,25,25 g        = 0.190,25,30g        = 0.407,25,20

α   = 0.490,26 g        = 0.288,26,4 g        = -0.084,26,11 g        = -0.430,26,21 g        = -0.201,26,26g        = 0.238,26,17

α   = 0.565,27 g        = -0.158,27,3 g        = 0.342,27,10 g        = 0.284,27,25 g        = -0.452,27,27g        = 0.698,27,24

α   = 0.652,28 g        = -0.096,28,1 g        = 0.076,28,10 g        = 0.093,28,26 g        = -0.194,28,28g        = 0.647,28,25

α   = 0.281,29 g        = -0.337,29,9 g        = 0.455,29,11 g        = 1.447,29,26 g        = -1.312,29,29g        = 0.285,29,13

α   = 0.656,30 g        = 0.386,30,3 g        = -0.252,30,5 g        = 0.884,30,27 g        = -0.325,30,30g        = -0.044,30,23

 
 

5.2.2 Results 

When inferring the whole model structure, the proposed method inferred an average of 60.0±  
1.9 true-positive interactions and 240.0± 1.9 false-positive interactions. The number of the false- 
negative interactions was 8.0± 1.9. Table 6 shows an example of the estimated S-system parameters. 
As shown in the table, many interactions were inferred. The number of the inferred interactions 
corresponded to the maximum indegree I mentioned in the section 2.3. In this experiment, many 
false-positive interactions with absolute parameter values too large to disregard were inferred. We 
suggest, however, that in cases with a few number of the false-negative interactions, the inference 
of false-positive interactions may not constitute a serious impediment, given that the inferred model 
is intended mainly for the use of biologists as a tool for generating hypotheses and facilitating 
experimental designs. The necessary interactions that were not correctly inferred should be added, 
and the wrong interactions should be removed in either of two ways, by using more sets of 
time-series data obtained from additional biological experiments, or by using further a priori 
knowledge about the genetic network. The computational time required for solving each 
decomposed subproblem averaged about 73.8 hours on a singe-CPU personal computer (Pentium 
III 1GHz), and the subproblems were solved simultaneously on parallel computers. 

In order to show the effectiveness of the method for estimating the initial levels of the gene 
expression, we also performed an experiment without the estimation of them. We used the values 
obtained directly from the given time-series data as the initial expression levels, and then estimated 
only the S-system parameters. In the experiment without the estimation of the initial gene 
expression levels, the number of true-positive, false-positive and false-negative interactions 
averaged about 58.0± 0.7, 242.0± 0.7 and 10.0± 0.7, respectively. According to this result, the 
estimation of the initial gene expression levels slightly increased our chances of finding the correct 
interactions. 
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Table 7. Estimated S-system parameters in the experiment where noise-free data are given 

h    = 0.000i,j

β   = 0.975,1 h        = 1.017,1,1 h        = 0.002,1,8 h        = -0.006,1,22 h        = -0.0041,24h        = -0.002,1,11

β   = 0.835,2 h        = 0.010,2,1 h        = 1.115,2,2 h        = -0.004,2,16 h        = 0.0072,21h        = 0.005,2,11

β   = 0.911,3 h        = 1.059,3,3 h        = 0.006,3,8 h        = -0.003,3,25 h        = 0.0133,29h        = -0.005,3,11

β   = 0.934,4 h        = 1.036,4,4 h        = -0.012,4,8 h        = 0.005,4,16 h        = 0.0134,18h        = 0.006,4,13

β   = 0.943,5 h        = -0.029,5,1 h        = 1.030,5,5 h        = 0.006,5,18 h        = -0.0125,22h        = 0.003,5,16

β   = 0.972,6 h        = -0.006,6,1 h        = -0.001,6,5 h        = 0.0086,24h        = 1.014,6,6

β   = 0.909,7 h        = -0.034,7,2 h        = -0.028,7,3 h        = 0.020,7,12 h        = -0.0047,29h        = 1.066,7,7

β   = 0.920,8 h        = -0.010,8,4 h        = 1.048,8,8 h        = -0.0038,22h        = 0.003,8,18

β   = 0.878,9 h        = -0.051,9,5 h        = -0.009,9,6 h        = -0.045,9,16 h        = -0.0179,19h        = 1.062,9,9

β   = 0.855,10 h        = 0.006,10,3 h        = -0.033,10,7 h        = -0.003,10,18 h        = -0.00810,22h        = 1.110,10,10

β   = 0.899,11 h        = 0.005,11,2 h        = -0.035,11,4 h        = 1.065,11,11 h        = -0.01511,22

β   = 0.913,12 h        = 0.005,12,10 h        = 0.013,12,11 h        = 0.003,12,17 h        = -0.00912,29h        = 1.062,12,12

β   = 0.885,13 h        = 0.002,13,4 h        = -0.044,13,8 h        = 0.006,13,26 h        = -0.02413,29h        = 1.078,13,13

β   = 0.966,14 h        = 0.003,14,5 h        = -0.015,14,9 h        = 1.019,14,14 h        = 0.00914,18h        = 0.004,14,10

β   = 0.909,15 h        = -0.016,15,10 h        = 1.060,15,15 h        = -0.005,15,26 h        = -0.00515,29h        = 0.004,15,18

β   = 0.939,16 h        = -0.004,16,9 h        = -0.017,16,11 h        = 1.047,16,16 h        = -0.01816,22h        = 0.013,16,12

β   = 0.913,17 h        = 0.002,17,1 h        = 0.015,17,12 h        = 1.048,17,17 h        = -0.01417,29h        = -0.031,17,13

β   = 0.865,18 h        = 0.016,18,6 h        = 0.002,18,8 h        = 1.074,18,18 h        = 0.00218,26h        = 0.003,18,13

β   = 0.929,19 h        = -0.001,19,9 h        = -0.002,19,10 h        = 0.00119,25h        = 1.043,19,19

β   = 0.940,20 h        = -0.021,20,15 h        = -0.003,20,17 h        = -0.007,20,26 h        = -0.00820,29h        = 1.040,20,20

β   = 0.869,21 h        = 0.009,21,6 h        = -0.045,21,16 h        = 1.091,21,21 h        = -0.00321,29h        = 0.006,21,17

β   = 0.753,22 h        = -0.013,22,11 h        = -0.071,22,16 h        = 0.001,22,25 h        = 0.01022,29h        = 1.188,22,22

β   = 1.005,23 h        = -0.002,23,6 h        = -0.004,23,8 h        = 0.995,23,23 h        = -0.00223,25h        = 0.002,23,22

β   = 0.977,24 h        = 0.002,24,15 h        = -0.001,24,18 h        = 1.010,24,24 h        = -0.00324,30h        = -0.003,24,19

β   = 0.882,25 h        = 0.004,25,1 h        = -0.003,25,13 h        = -0.021,25,20 h        = 1.07625,25h        = -0.001,25,18

β   = 0.860,26 h        = 0.009,26,11 h        = -0.005,26,12 h        = 0.019,26,21 h        = 1.09926,26h        = -0.014,26,18

β   = 0.878,27 h        = -0.028,27,24 h        = -0.014,27,25 h        = -0.005,27,29 h        = 0.01527,30h        = 1.070,27,27

β   = 0.942,28 h        = 0.005,28,18 h        = -0.007,28,22 h        = 1.040,28,28 h        = 0.01628,29h        = -0.013,28,25

β   = 0.639,29 h        = -0.004,29,4 h        = 0.011,29,12 h        = -0.107,29,26 h        = 1.25429,29h        = 0.003,29,24

β   = 0.925,30 h        = 0.002,30,13 h        = -0.001,30,22 h        = -0.002,30,28 h        = 1.04730,30h        = -0.017,30,27

g    = 0.000,i,jother

α   = 0.975,1 g        = -0.009,1,1 g        = 0.001,1,8 g        = -0.003,1,24 g        = -0.004,1,29g        = -0.102,1,14

α   = 0.836,2 g        = 0.012,2,1 g        = -0.077,2,2 g        = -0.002,2,17 g        = -0.001,2,26g        = -0.004,2,5

α   = 0.912,3 g        = -0.036,3,3 g        = 0.002,3,7 g        = -0.006,3,11 g        = 0.015,3,29g        = 0.009,3,8

α   = 0.936,4 g        = -0.027,4,4 g        = -0.009,4,8 g        = 0.010,4,18 g        = -0.028,4,29g        = 0.004,4,16

α   = 0.945,5 g        = 1.022,5,1 g        = -0.023,5,5 g        = -0.002,5,24 g        = -0.003,5,25g        = -0.013,5,22

α   = 0.972,6 g        = 1.017,6,1 g        = -0.012,6,6 g        = 0.001,6,17 g        = -0.005,6,24g        = -0.002,6,7

α   = 0.909,7 g        = 0.516,7,2 g        = 0.408,7,3 g        = 0.024,7,12 g        = -0.005,7,29g        = -0.032,7,7

α   = 0.920,8 g        = 0.208,8,4 g        = -0.037,8,8 g        = 0.002,8,18 g        = -0.004,8,29g        = -0.213,8,17

α   = 0.879,9 g        = 1.077,9,5 g        = -0.120,9,6 g        = -0.035,9,16 g        = -0.016,9,19g        = -0.066,9,9

α   = 0.855,10 g        = 0.315,10,7 g        = -0.066,10,10 g        = 0.003,10,23 g        = 0.002,10,25g        = 0.001,10,17

α   = 0.900,11 g        = 0.403,11,4 g        = -0.218,11,7 g        = 0.427,11,22 g        = -0.004,11,29g        = -0.038,11,11

α   = 0.914,12 g        = 0.002,12,8 g        = 0.008,12,11 g        = 0.005,12,19 g        = 0.113,12,23g        = -0.038,12,12

α   = 0.885,13 g        = -0.003,13,4 g        = 0.625,13,8 g        = -0.022,13,29g        = -0.044,13,13

α   = 0.966,14 g        = -0.002,14,3 g        = 0.005,14,5 g        = -0.013,14,14 g        = 0.001,14,24g        = 1.017,14,9

α   = 0.911,15 g        = -0.002,15,7 g        = 0.202,15,10 g        = 0.001,15,17 g        = -0.006,15,26g        = -0.032,15,15

α   = 0.939,16 g        = -0.004,16,9 g        = 0.516,16,11 g        = -0.021,16,16 g        = -0.015,16,22g        = -0.201,16,12

α   = 0.914,17 g        = 0.014,17,12 g        = -0.047,17,17 g        = -0.015,17,29g        = 0.510,17,13

α   = 0.866,18 g        = 0.019,18,6 g        = 0.010,18,8 g        = 0.001,18,24 g        = 0.001,18,29g        = -0.083,18,18

α   = 0.930,19 g        = 0.107,19,14 g        = -0.028,19,19 g        = 0.003,19,29 g        = -0.002,19,30g        = -0.016,19,21

α   = 0.941,20 g        = 0.71720,15 g        = -0.021,20,20 g        = 0.003,20,28 g        = -0.005,20,29g        = 0.307,20,26

α   = 0.870,21 g        = 0.009,21,6 g        = -0.003,21,10 g        = -0.061,21,21 g        = -0.004,21,22g        = 0.645,21,16

α   = 0.731,22 g        = 0.003,22,3 g        = -0.011,22,11 g        = -0.168,22,22 g        = 0.007,22,29g        = 0.607,22,16

α   = 1.006,23 g        = -0.004,23,8 g        = 0.198,23,17 g        = -0.002,23,25g        = 0.002,23,23

α   = 0.977,24 g        = 0.001,24,13 g        = -0.202,24,15 g        = 0.300,24,19 g        = -0.008,24,24g        = -0.100,24,18

α   = 0.882,25 g        = 0.006,25,1 g        = 0.428,25,20 g        = 0.004,25,28 g        = 0.004,25,29g        = -0.055,25,25

α   = 0.861,26 g        = 0.003,26,17 g        = -0.009,26,18 g        = -0.060,26,26 g        = 0.119,26,28g        = -0.214,26,21

α   = 0.877,27 g        = 0.002,27,3 g        = 0.649,27,24 g        = -0.066,27,27 g        = -0.215,27,30g        = 0.327,27,25

α   = 0.942,28 g        = 0.005,28,8 g        = 0.003,28,19 g        = -0.021,28,28 g        = 0.016,28,29g        = 0.514,28,25

α   = 0.639,29 g        = 0.001,29,1 g        = 0.012,29,12 g        = 0.509,29,26 g        = -0.298,29,29g        = 0.006,29,24

α   = 0.926,30 g        = -0.001,30,5 g        = -0.002,30,18 g        = 0.625,30,27 g        = -0.032,30,30g        = 0.003,30,24

 
 
When the differential equation (4) was solved, the gene expression curves jX̂  were directly 

estimated in this study. This estimation of the gene expression curves is necessary for the problem 
decomposition strategy mentioned in the section 2.2. However, these estimated curves will cause 
erroneous results if they fail to resemble the true ones. To increase the probability of finding the 
correct interactions, therefore, all subproblems should be executed simultaneously, and the gene 
expression curves should be updated when better ones are obtained as solutions of the differential 
equations (4). Our group has been working to extend our method for these purposes. 

5.3 Experiment 3: large-scale network inference with noise-free data 

In the experiment of the previous subsection, the proposed method failed to infer the correct 
network structure because of noise in the given data. However, the proposed method has an ability 
to infer the target model B correctly when noise-free data are available. 

Table 7 shows the best results in the experiment where 15 sets of the noise-free time-series data, 
began from randomly generated initial values in [0.0, 2.0], were given. In this experiment, the 
estimation of the initial gene expression levels was omitted, since the noise-free data were given. 
Spline interpolation was used to obtain jX̂ ’s, and the rest of the experimental conditions were the 
same as those in the subsection 5.2. As shown in the table, our method was failed to estimate 
precise parameter values. The numbers of the true-positive, false-positive and false-negative 
interactions were 68.0, 225.0 and 0.0, respectively. While all of the interactions existing in the 
target model B were inferred correctly, many false-positive interactions were inferred. However, 
most of the false-positive interactions were omissible, as the absolute parameter values of these 
interactions were much smaller than those of the correct interactions. When we omitted these 
interactions, we obtained the almost correct network structure. 

Even when the noise-free data were given as the observed gene expression patterns and the 
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estimation of the initial gene expression levels were omitted, the proposed method was unable to 
estimate the S-system parameter values with perfect precision. One of the factors compromising the 
precision of our method may have been the implicit noise. In order to calculate the fitness value of 
the i-th subproblem, the gene expression pattern of the i-th gene is acquired by solving the equation 
(4). To solve this equation, we estimate the gene expression curves of the other genes jX̂  directly 
from the observed time-series data, as mentioned in the section 2.2. These directly estimated curves 
may contain implicit noise, as it is difficult to estimate accurate curves from a finite number of 
sampling points even when the sampling points are entirely free of noise. Note that the implicit 
noise is unavoidable for the problem decomposition approach even when the observed data contain 
no measurement error. 

6. Conclusion 

In this paper, we extended the problem decomposition approach to a realistic noisy environment. 
The proposed method employs a technique to decompose the genetic network inference problem 
into several subproblems, and then solves each subproblem using GLSDC. In addition, our method 
estimates the initial levels of the gene expression in order to enhance the probability of finding the 
correct interaction between genes. Our experiments demonstrated that this method slightly 
increased our chances of inferring the correct interactions when the realistic noisy time-series data 
were given. 

Even if the problem decomposition strategy is applied, our method is still incapable of inferring 
real genetic networks containing many hundreds or thousands of genes. When attempting to infer 
these larger-scale genetic networks, we should combine the use of our method based on the 
S-system model with other methods based on other models, as proposed in the paper by Maki and 
colleagues [3]. 
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