
693

i) Senior Researcher, Center for Advanced Engineering Structural Assessment and Research, Public Works Research Institute, Ibaraki, Japan
(shirato＠pwri.go.jp).

ii) Associate Professor, Dipartimento di Ingegneria Strutturale, Politecnico di Milano, Italy.
iii) Researcher, Center for Advanced Engineering Structural Assessment and Research, Public Works Research Institute, Japan.
iv) Chief Researcher for Management System and Substructures, Center for Advanced Engineering Structural Assessment and Research, Public

Works Research Institute, Japan.
v) Advanced Construction Technology Center, Tokyo, Japan.
vi) Professor, Dipartimento di Ingegneria Strutturale, Politecnico di Milano, Italy.

The manuscript for this paper was received for review on November 21, 2007; approved on July 16, 2008.
Written discussions on this paper should be submitted before May 1, 2009 to the Japanese Geotechnical Society, 4-38-2, Sengoku, Bunkyo-ku,
Tokyo 112-0011, Japan. Upon request the closing date may be extended one month.

693

SOILS AND FOUNDATIONS Vol. 48, No. 5, 693–711, Oct. 2008
Japanese Geotechnical Society

NUMERICAL SIMULATION OF MODEL TESTS OF PIER-SHALLOW
FOUNDATION SYSTEMS SUBJECTED TO EARTHQUAKE LOADS

USING AN ELASTO-UPLIFT-PLASTIC MACRO ELEMENT

MASAHIRO SHIRATOi), ROBERTO PAOLUCCIii), TETSUYA KOUNOiii), SHOICHI NAKATANIiv),
JIRO FUKUIv), ROBERTO NOVAvi) and CLAUDIO DI PRISCOvi)

ABSTRACT

A dynamic analysis model for the nonlinear behavior of a shallow foundation subjected to seismic loads is devel-
oped. A macro-element approach is revised assuming elasto-uplift-plastic behavior, in which uplifting and coupling
eŠects of vertical, horizontal, and moment loads are taken into account. Large-scale shake table experiments of model
pier footings are also conducted and simulated using the revised macro-element model. The numerical result reveals
that the shape of the hysteresis loops for coupled load-displacement relationships is predicted very well, including the
eŠects of uplift. In addition, the revised model can account for settlement with some inclination that has accumulated
during the excitation.
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INTRODUCTION

Previous large earthquakes in Japan have shown no
harmful damage to highway bridge shallow foundations
such as settlements or rotations. Experimental evidence
has also shown that, even though the factor of safety in
terms of bearing capacity reaches unity several times dur-
ing seismic excitations, failure is not necessarily indicated
(Shirato et al., 2008). Rather, experimental results indi-
cate that the accumulation of permanent displacement
during earthquakes should be considered when the seis-
mic performance of a shallow foundation is assessed.
Therefore, a method by which to estimate permanent dis-
placements is needed.

To develop such a numerical model for shallow foun-
dations, there are two crucial points to be taken into ac-
count. First, during large earthquakes, typical highway
bridge shallow foundations are likely to be partially up-
lifted as the rocking increases. This induces, for example,
the initiation of large rotations, the occurrence of hyste-
resis between combined loads and displacements, and the
elongation of vibration characteristics. A survey of
twenty design case histories of highway bridge shallow
foundations in Japan has revealed that the ratios of the

bearing capacities to the dead loads ranges from 9.0 to
24.0. Furthermore, a technical report by the Public
Works Research Institute, Tsukuba, Japan (PWRI) has
indicated that, in early design case histories, the lateral
seismic intensity coe‹cients at which highway bridge
shallow foundations initiate the rocking-induced uplift
ranged from 0.07 to 0.25 (Fukui et al., 1999). The reason
for this is that the Speciˆcations for Highway Bridges
(Japan Road Association, 2002), which describes the
highway bridge design norm in Japan, have required fur-
ther empirical regulations for normal and small-to-mid
scale earthquake designs, in addition to principle checks
for the bearing capacity, sliding, and tilting/overturning.
For example, the choice of bearing layer, the maximum
soil reaction stress intensity, and the maximum degree of
partial uplift are limited to prevent excessive settlement
of the foundations.

Furthermore, irreversible settlements are not only
caused by vertical forces but also by rocking. Large verti-
cal stresses due to the rocking behavior of shallow foun-
dations are likely to be transferred to the soil beneath the
footing, especially at the corners of the footing. There-
fore, the coupling eŠects of vertical forces and moments
must be taken into account in order to estimate the ir-
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Fig. 1. Load and displacement vectors of footing
Fig. 2. Moment-rotation (M-u ) curve of shallow foundation consider-

ing uplift
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reversible settlement of the footing, even though, in prac-
tice, the footing-soil interaction is assumed to be linear
elastic and the rocking-induced settlement is assumed to
be negligible as long as the footing meets other design
norms.

Accordingly, the present study scrutinizes the eŠective-
ness of the macro element approach to predict the seismic
behavior of shallow foundations during large earth-
quakes. In particular, the present study implements a
model of the uplift behavior of shallow foundation into a
typical elasto-plastic macro element. The modeling of the
uplift behavior is performed using a model described in
the Japanese Speciˆcations for Highway Bridges (Japan
Road Association, 2002) and experimental observations
of a pier-shallow foundation systems subjected to cyclic
lateral loads that is examined in a companion paper
(Shirato et al., 2008).

Note that the FORTRAN source code used for the cal-
culations in the present paper are described in a report by
the Public Works Research Institute, Tsukuba, Japan
(PWRI) (Nakatani et al., 2008).

THEORETICAL BACKGROUND

Hereinafter, the behavior of the footing is expressed as
shown in Fig. 1, where V, H, and M are the vertical
force, horizontal force, and moment at the base center of
the footing, [, u, and u are the corresponding vertical dis-
placement, horizontal displacement, and rotation at the
same position, and B is the footing length. The forces and
displacements in Fig. 1 are in the positive directions,
where the positive direction of rotation, u, is clockwise.

Uplift on an Elastic Medium
As described above, the partial uplift of the footing is

expected to occur easily during earthquakes. During the
uplift, a progressive reduction in the contact area of the
footing with the soil can be expected, which results in a
nonlinear relationship between the moment and rotation
of the footing. Experimental results (Shirato et al., 2008)
also reveal that the uplift behavior in‰uences the founda-
tion response during large earthquakes, including the
shape of hysteresis loops between loads and displace-

ments.
The advent of the seismic design of highway bridge

shallow foundations that positively considers the reduc-
tion in the seismic force to the footing arising from the
uplift of footing was ˆrst applied in the Honshu-Shikoku
Bridges project, the world longest bridges connecting the
main Honshu island and the Shikoku island in Japan,
(e.g., Honshu-Shikoku Bridge Authority, 1990). Then, in
1996, the Japanese Speciˆcations for Highway Bridges
(Japan Road Association, 2002) also introduced such a
reduction in the seismic force to the footing in the struc-
tural design of shallow foundations for large earth-
quakes.

In the following, for example, the structural design of
the footings of a rectangular shallow foundation for lar-
ge-scale earthquake design in the Japanese Speciˆcations
for Highway Bridges will be summarized. A nonlinear
rocking moment-rotation curve is calculated using a
Beam-on-Winkler Foundation model that considers the
partial uplift of the footing. Figure 2 shows a typical
moment-rotation curve, where M0 and u0 are the moment
(kN･m) and rotation angle (rad) at the initiation of up-
lift, respectively:

M0＝(BV )/6, u0＝(12M0)/(B3･D･kv) (1)

where V is the vertical force (kN), B is the footing length
in the direction of the considered seismic excitation (m),
D is the footing width (m), and kv is the vertical subgrade
reaction coe‹cient (kN/m3). Design calculations general-
ly assume that the vertical force, V, remains constant and
equal to the dead load, V0, as the ˆrst approximation,
although, in reality, the vertical inertial force can be
generated by the rocking-induced up-and-down move-
ment at the center of gravity of the footing. The M-u
relationship is linear in the range MÃM0, and becomes
nonlinear in the range MÀM0:

M＝M0(u/u0) if MÃM0, (2)

M＝M0 (3－2 u0/u) if MÀM0 (3)



695

Fig. 3. Schematic diagram of bearing capacity surface
Fig. 4. Cross-sections of bearing capacity surface at M＝0 and H＝0
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The energy conservation rule is then used to estimate the
applied moment to the footing, so that the intensity and
position of the reaction force normal to the footing base
can be obtained. The bending moment and shear capaci-
ties of the cross-section of the footing are then checked.

Bearing Capacity Surface
Recent experimental results have shown that the bear-

ing capacity of a footing with respect to combined loads
can be approximated with a function in the V-H-M/B
space, as shown in Fig. 3, where V is the vertical force at
the base center of the footing, H is the horizontal force at
the base center of the footing, and M/B is the rotational
moment around the base center of the footing, normal-
ized by the footing length B. The bearing capacity surface
can usually be approximated by a rugby ball shaped func-
tion in the V-H-M/B space. For example, Nova and
Montrasio (1991) expressed the bearing capacity surface
for sand as follows:

fcr＝h2＋m2－j2(1－j)2z＝0 (4)

where h＝H/(mVm), m＝M/(cBVm), j＝V/Vm, and Vm is
the bearing capacity in terms of centered vertical loading.
Figure 4 illustrates the cross-sections on the M＝0 and
H＝0 planes and a physical understanding of parameters,
m and c. Parameters m and c are the tangents at the ori-
gin on the V-H and V-M planes, respectively. When M＝
0, H＝mV holds at the origin, i.e., sliding resistance. Ac-
cordingly, m＝tan q or other values given in design codes
can be employed, where q is the shear resistant angle of
the soil. c is associated with the bearing capacity under
eccentric loading and is considered to take values of
0.33–0.48 (Nova and Montrasio, 1991): 0.33 is selected
for Meyerhof's bearing capacity theory (1953) and 0.48 is
selected for Vesic's correction (1991). z is also a
parameter specifying the shape of the failure surface, for
which Nova and Montrasio (1991) recommended z＝
0.95.

At present, it is suggested that the diŠerence in the
shapes of the bearing capacity surface is small (Shibata
and Sekiguchi, 1995; Okamura et al., 2002). Accord-
ingly, Eq. (4) accounts for a ˆrst approximation of the ul-
timate load combinations for any footing shape,
although it was originally proposed for strip footings.

Macro Element Theory
Although the bearing capacity surface reveals the ulti-

mate force equilibrium of a footing, it is not related to the
mobilized inelastic displacement. The macro element
theory has been established to express the evolution of
plastic ‰ow of inelastic displacement (Nova and Montra-
sio, 1991; Motrasio and Nova, 1997; Gottardi and But-
terˆeld, 1995; Houlsby and Martin, 1993; Okamura and
Matsuo, 2002; Paolucci, 1997).

The macro-element theory models the footing-under-
lying soil system as a unique element and describes its be-
havior within the context of work-hardening plasticity.
Let us simply consider isotropic hardening. As the com-
bined loads increase, the yield surface, which is
homothetic in terms of the deˆned bearing capacity sur-
face, expands inside the bearing capacity surface in the V-
H-M/B space, and the corresponding combined irreversi-
ble displacements, [, u, and Bu, evolve. Ultimately, the
yield surface reaches the bearing capacity surface and the
macro element becomes perfectly plastic. Since the un-
derlying soil is not elastic even at small displacement lev-
els and the elastic deformation may be negligible com-
pared to the plastic deformation as the ˆrst approxima-
tion, this theory is considered to work well. Many case
studies have proven that the macro-element theory works
well for monotonic loading cases (Nova and Montrasio,
1991; Motrasio and Nova, 1997; Gottardi and Butter-
ˆeld, 1995).

The application of an elasto-perfectly plastic macro
element to seismic problems was pioneered by Paolucci
(1997). Cremer et al. (2001, 2002) revised a macro ele-
ment for a footing on a cohesive soil and showed an ex-
ample of the computation of the seismic behavior of a
bridge pier having a shallow foundation. The model of
Cremer et al. is very sophisticated with respect to
kinematic hardening and uplift behavior, but is some-
what cumbersome with respect to computer-coding.
However, the most salient problem is that, with the ex-
ception of a study by Okamura and Matsuo (2002), who
compared a centrifuge shake-table experimental result
for a retaining wall supported by a shallow foundation
with a numerical simulation using their elasto-perfectly
plastic macro element, little experimental calibration has
been conducted. However, in the experiment of Okamura
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Fig. 5. Decomposition of displacement
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and Matsuo, the eŠect of horizontal load on the footing
response overwhelmed the eŠects of the other load com-
ponents, resulting in the predominance of one-sided slid-
ing.

SUMMARY OF THE PROPOSED
ELASTO-UPLIFT-PLASTIC MACRO ELEMENT

In this section, the key ideas to assemble the above
theories as a new macro element will be summarized. As
shown in Fig. 1, the vectors of the combined loads trans-
mitted from the superstructure to the base center of the
footing, F, and the displacements at the base center of the
footing, x, are expressed by

F＝(V H M )T, x＝([u u)T (5)

where the superscript T stands for transposition. Again,
the loads and displacements in Fig. 1 are in the positive
directions.

The present paper follows a typical macro element
theory, describing the behavior of a footing-soil system
within the context of strain hardening plasticity theory.
The total incremental displacement of the footing, dx, is
decomposed into two parts, elastic and plastic parts, dx el

and dx pl, respectively.

dx＝dx el＋dx pl (6)

The incremental displacement (dx) and force (dF )
relationship for each displacement component can be ex-
pressed using compliances Del and Dpl as follows:

dx el＝DeldF (7)
dxpl＝DpldF (8)

where each compliance consists of 3×3 components. Fi-
nally, the total incremental displacement-force relation-
ship is derived as:

dx＝(Del＋Dpl)dF (9)

The inverse of this equation gives the stiŠness matrix for
the macro element, C.

dF＝C dx, (10)
C＝(Del＋Dpl)－1 (11)

This matrix is hereinafter referred to as the elasto-plastic
macro element. One of the advantages of the use of mac-
ro element is that the dimension of the stiŠness matrix is
very small, 3×3, so that macro elements will not become
a large burden on the overall structural model.

However, as described above, even though the under-
lying soil is a linear elastic medium and no irreversible
deformation is accumulated during earthquakes, the
rigidity in the moment-rotation relationship decreases
and becomes nonlinear with respect to the moment be-
cause of the gradual uplift. In addition, the moment-ver-
tical displacement relationship must vary with the uplift.
Therefore, an apparent elastic rigidity associated with the
rocking-induced uplift is introduced and incorporated
into a typical elasto-plastic macro element theory.

As indicated in Fig. 5, suppose the footing is loaded

from point A to point B with an incremental load, dF,
each displacement component contained in the loading
path A-B can be interpreted by the subsequent unloading
process from point B to point C. The plastic component
is the residual displacement after the unloading, dxpl.
Then, except for the plastic part, the incremental dis-
placement is no longer simply regarded as the purely elas-
tic part, dx el, but also contains the uplift-induced compo-
nent, dx up, resulting in the degradation in the apparent
elastic rigidity. The incremental displacement except for
the plastic part is denoted as dx el-up. Eventually, the total
displacement increment, dx, is expressed by substituting
dx el-up into Eq. (6) instead of dx el:

dx＝dx el-up＋dxpl (12)

When a constitutive equation for the apparent elastic
component is assumed as

dx el-up＝Del-updF, (13)

the stiŠness matrix of macro element, C, of Eq. (11) can
be rewritten as

C＝(Del-up＋D pl)－1 (14)

This matrix is hereinafter referred to as the elasto-uplift-
plastic macro element. Equation (13) is assumed to basi-
cally follow the Speciˆcations for Highway Bridges,
namely, the Beam-on-Winker foundation theory that
considers the rocking-induced uplift eŠects, as described
in the previous section. Therefore, no residual displace-
ment is involved in the apparent elastic displacement
component, whereas any residual displacement is at-
tributed to the plastic component.

For Eq. (13), experimental ˆndings (Shirato et al.,
2008; Gajan et al., 2005; Haya and Nishimura, 1998)
have indicated that the uplift makes the unloading and
reloading paths of the moment-rotation and moment-ver-
tical displacement curves depart from their monotonic
backbone curves. Based on experimental results, Shirato
et al. (2008) have suggested that the hysteresis rule of
moment-rotation and moment-vertical displacement
curves can be modeled as a peak and origin oriented rule
with a function of both positive and negative maximum
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moments. This matches the assumption that the apparent
elastic component of rotation and vertical displacement
will not leave any residual displacement at M＝0 after un-
loading. Therefore, the present paper will follow such
phenomenological hysteresis rules for u el-up-M and [el-up-M
relationships.

The detailed formulation of Eq. (13) follows the proce-
dure of Cremer et al. (2002) for facilitating the determi-
nation of the contribution of the uplift to the apparent
elastic displacement. dx el-up is decomposed into a purely
elastic part, dx el, and an uplift-induced elastic part, dx up,
as follows:

dx el-up＝dx el＋dxup (15)

As indicated in Fig. 5, the purely elastic component, dx el,
is calculated by multiplying the initial rigidity by the in-
cremental force, dF, and the uplift component, dxel-up, is
derived by subtracting dx el from the apparent elastic dis-
placement increment, dx el-up. Accordingly, the compli-
ance, D el-up, in Eqs. (13) and (14) is rewritten as

Del-up＝D el＋D up (16)

and D up is the compliance for the uplift displacement
component.

Note that an alternative approach to consider the
rocking-induced apparent elastic behavior is described in
a companion paper (Paolucci et al., 2008), in which a
degradation rule for the elastic rotation rigidity is
proposed to take into account that an arch-like shape on
the soil surface underneath the footing is formed as the
cycles of rocking increase (Shirato et al., 2008; Gajan et
al., 2005). The companion paper gave the degradation in
the elastic rotation rigidity as a function of plastic rota-
tion. Although the results showed that such a degrada-
tion rule noticeably improved the predicted overall
response, especially the vibration frequency characteristic
during the most severe excitation phases, the degradation
function was determined by trial and error. The present
paper will explore a general approach, setting the appar-
ent elastic rigidity in both vertical-rocking and moment-
rocking responses as a function of uplift.

PURELY ELASTIC COMPONENT

The present paper assumes the following elastic com-
pliance:

D el
11＝1/Kv, D el

22＝1/Kh, D el
33＝1/Kr,

and (OŠ diagonal terms)＝0 (17)

Kv, Kh, and Kr are the equivalent elastic spring coe‹cients
of the soil-footing system corresponding to the vertical,
translational, and rocking modes of vibration, respec-
tively. Because of the relatively smooth change of dynam-
ic impedances with frequency, the static parts, i.e., the
real parts at zero frequency, are chosen. For a square
footing,

Kv＝
4.54G(B/2)

1－n
, Kh＝

9G(B/2)
2－n

,

and Kr＝
3.6G(B/2)3

1－n
(18)

where G and n are the shear modulus and Poisson's ratio
of the underlying soil and B is the footing length (Gaze-
tas, 1991).

APPARENT ELASTIC COMPONENT

The formulation of the apparent elastic component is
based on the nonlinear moment-rotation relationship de-
scribed in the Speciˆcations for Highway Bridges (Japan
Road Association, 2002) and reviewed above. In addi-
tion, the Speciˆcations for Highway Bridges assume that,
with a particular vibration mode, the vertical force is
almost constant and is equal to the dead load, V0, during
an earthquake. The present paper will integrate these no-
tions with a strain hardening macro-element theory. The
reduction in the apparent elastic rigidity is taken into ac-
count in the moment-rotation (M-u) and moment-vertical
displacement (M-[) relationships. In addition, origin-
oriented hysteresis rules that conˆrm no residual dis-
placement at M＝0 will be formulated based on the ex-
perimental observation (Shirato et al., 2008) for the ap-
parent elastic components of the M-u and M-[relation-
ships.

Backbone Curve of Moment-Rotation Relationship
First, the rotation, u, in Eqs. (2) and (3) is decomposed

into a purely elastic component and an uplift component:

u＝u el-up＝u el＋u up (19)

Equations (2) and (3) are rewritten as:

M＝M0×(u el-up/u 0
el-up) if MÃM0, (20)

M＝M0×(3－2 u 0
el-up/u el-up) if MÀM0 (21)

where M0 and u 0
el-up are the moment and apparent elastic

rotation angle at which the uplift initiates and an edge of
the footing starts to separate from the underlying soil.

The mobilized moment should be smaller when the un-
derlying soil becomes plastic than when it is assumed to
remain elastic. Therefore, the moment, M, in Eqs. (20)
and (21), is rewritten using the following procedure. Cal-
culate a critical moment, Mcr, by substituting H＝0 and
V＝V0 into Eq. (4) and another critical moment, M/, by
taking u el-upª/ in Eq. (21). Take the ratio of these two
moments as:

a＝Mcr/M/ (22)

where M/＝3M0. a is a reduction factor in the moment
and is applied to the terms of M0 in Eqs. (20) and (21).

M＝Ma×(u el-up/u 0
el-up) if MÃMa, (23)

M＝Ma×(3－2 u 0
el-up/u el-up) if MÀMa (24)

where the moment and rotation at which the uplift initi-
ates are redeˆned as:
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Fig. 6. Geometrical relationship between rotation u and vertical dis-
placement \at the base center of the footing while the footing is up-
lifted by the moment due to the positive rotation of u

Fig. 7. Soil reaction stress distribution at the base of the footing from
an underlying elastic medium
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Ma＝aM0＝aBV0/6, u 0
el-up＝Ma/Kr (25)

For simplicity, the crude assumption that H＝0 is used in
the estimation of Mcr and this assumption should be con-
ˆrmed via future numerical calibration processes. Note
that, if a becomes larger than 1 in Eq. (22), it should be
replaced with 1, because it indicates that uplift is the
dominant factor in the nonlinearity of footing-soil inter-
action.

Then, Eqs. (23) and (24) are solved in terms of u el-up

and the purely elastic component, u el, is subtracted from
u el-up. Finally, the u up-M relationship is derived as follows:

uup＝0 if MÃMa, (26)

uup＝{
4

(3－M/Ma)2－
M
Ma} u0 if MÀMa (27)

Backbone Curve of the [up-M Relationship
When the footing is partially uplifted, the geometry of

the footing is modeled as shown in Fig. 6. The length of
the uplifted area of footing is deˆned as rB and that of
the contact area that meets the underlying soil is derived
as r(1－B ). r can be derived as a function of the moment
M. Figure 7 shows the soil reaction stresses when one part
of the footing is uplifted, while the other part meets the
underlying soil. First, for simplicity, the underlying soil is
assumed to be elastic, resulting in the soil resistance stress
being distributed in a triangular shape. As shown in Fig.

7, since the subgrade reaction stress distribution has a
triangular shape, the moment, M, at the base center of
the footing is derived as:

M＝V Ø B
2
－

(1－r)B
3 » (28)

Substituting the ˆrst equation of Eq. (1) into BV of Eq.
(28) yields the following equation:

r＝
1
2 Ø M

M0
－1» (29)

Then, r is redeˆned as follows, by replacing M0 with Ma

in Eq. (29),

r＝
1
2 Ø M

Ma
－1» (30)

Based on the geometry shown in Fig. 6, the vertical dis-
placement at the base center of the footing, [, is obtained
as

[＝－ØrB－B
2 »u (31)

where the vertical displacement, [, is positive while the
center of the footing is in contact with the underlying soil.
[and u are equivalent to [el-up and u el-up, respectively. Ac-
cordingly, Eq. (31) is rewritten as:

[el-up＝－ØrB－B
2 »u el-up (32)

The uplift component in the vertical displacement, [up, is
obtained by subtracting [0 from [el-up, where [0 is the ver-
tical displacement at the time when the footing starts to
partially uplift and the edge of the footing starts to
separate from the underlying soil:

[up＝Ø B
2
－rB»u el-up－[0 (33)

[0＝
B
2

u 0
el-up (34)

Finally, the [up-M relationship after the footing starts to
partially uplift can be derived using Eqs. (24), (30), (33),
and (34) as follows:

[up＝0 if MÃMa, (35)

[up＝－
B
2







4

Ø3－M
Ma

»
2－

4

Ø3－M
Ma

»
＋1







if MÀMa, (36)

Equation (35) indicates that [up equals zero until the mo-
ment, M, reaches the uplift threshold moment, Ma.

Phenomenological Hysteresis Rules for u up-M and [up-M
Relationships

As noted above, Shirato et al. (2008) experimentally
observed that the hysteresis rules of moment-rotation and
moment-vertical displacement curves can be modeled as a
peak and origin oriented rule with a function of both
positive and negative maximum moments. Figure 8 illus-
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Fig. 8. Hysteresis behavior of the uplift components due to rotation
and vertical displacement, uup and \up, due to moment M
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trates the hysteresis rule proposed in the present paper.
Mp

－ and Mp
＋ are the largest moments on the negative and

positive sides, respectively, until time t＝t. The corre-
sponding rotations are deˆned as u up－ and uup＋, respec-
tively, and the corresponding vertical displacements are
deˆned as [up－ and [up＋, respectively. The unloading or
reloading path follows a straight line connecting the lar-
gest moment points on the monotonic loading curve to
the origin.

uup＝
u up－

Mp
－ M if Mº0 uup＝

uup＋

Mp
＋ M if MÀ0 (37)

[up＝
[up－

Mp
－ M if Mº0 [up＝

[up＋

Mp
＋ M if MÀ0 (38)

For the uup-M and [up-M relationships, the term `unload-
ing' refers to the case in which the increment of moment
`M` is negative, and the term reloading denotes a path
that moves towards the previous unloading point on the
monotonic loading curve, followed by unloading. When
a reloading path reaches the point Mp

－ or the point Mp
＋ on

the monotonic loading curve and the absolute value of
the moment continues to increase, the path follows the
monotonic loading curve.

Incremental Apparent Elastic Compliance
Finally, the uplift compliance, D up, can be obtained by

diŠerentiating the above hysteresis rules in terms of mo-
ment M. In addition, a mode shift is taken into account,
as proposed by Cremer et al. (2002). The plastic deforma-
tion of the soil is considered to become predominant in
the total deformation as the dead load increases, while
the uplift component becomes predominant as the dead
load decreases. Accordingly, a weight function of (1－
V0/Vm) will be applied to the compliance, where V0 is the
dead load and Vm is the ultimate bearing capacity for the
centered vertical loading. Finally, the uplift compliance,
Dup, can be expressed as follows:

D up
13＝Ø1－V0

Vm
»×Ø&[

up

&M », (39)

D up
33＝Ø1－V0

Vm
»×Ø&uup

&M », (40)

(Others)＝0 (41)

Uplift will not occur when V0/Vm＝1.
Finally, an apparent elastic compliance considering up-

lift, D el-up, is obtained via Eq. (16) as:

D el-up＝






D el
11

0
0

0
D el

22

0

D up
13

0
D el

33＋D up
33






(42)

Note that, as a numerical technique, the points (Mp
－,

u up－) and (Mp
＋, u up＋) on the monotonic uup-M curve

should be calculated based on the history of the accumu-
lated value of du up, where du up is calculated with du up＝
D up dF once the moment exceeds the threshold uplift mo-
ment, Ma. The same method is also used for the [up-M
relationship. This method is used in order to avoid
di‹culty in calculating accuracy. As shown in Fig. 8, in
the backbone curve of the u up-M relationship, dM/du up

approaches zero as M increases. This means that a minor
numerical error in moment, M, can cause a large varia-
tion in rotation uup, as the moment increases, and the er-
ror in the unloading-reloading gradients of uup－/Mp

－ and
u up＋/Mp

＋ may become signiˆcant.

PLASTIC COMPONENT

The Nova and Montrasio model (1991) is used to
describe plastic deformations. The yield function, fy, is
deˆned as follows:

fy＝h2＋m2－j 2(1－j/rc)2z＝0 (43)

where rc is the hidden parameter that speciˆes the instan-
taneous size of the yield surface and translates the instan-
taneous combined loads into the norm of an equivalent
vertical force. rc is obtained by substituting the instan-
taneous combined loads, V, H, and M, into Eq. (44) of
the Nova-Montrasio paper (Nova and Montrasio, 1991)
shown below:

rc＝
j

1－Øh
2＋m2

j 2 »
1/(2j) (44)

When rc evolves and ˆnally reaches 1, the yield surface
coincides with the bearing capacity surface, fcr, deˆned in
Eq. (4). After that, the yield surface will not evolve or
penetrate the bearing capacity surface for any loading.
When a combined load point, F(t), is located on the sur-
face of Eq. (43) in the V-H-M/B space at time t＝t and an
incremental combined load vector, dF(t), is directed out-
ward, the surface expands during the subsequent time
step so that F(t＋dt )＝F(t)＋dF(t) can be included on the
renewed surface of Eq. (43) again.

A non-associated ‰ow rule is adopted.
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dxpl＝L
&g
&F

(45)

where L is a scalar parameter and g is the plastic potential
function deˆned as follows:

g＝l2h2＋x2m2－j 2(1－j/rg)2z＝0 (46)

where l＝m/mgº1, x＝q/qgº1, and mg and qg are the
parameters that specify the shape of the plastic potential
surface in the V-H-M/B space.

The hardening function is given based on the response
of a footing to centered vertical loading. The relationship
between vertical force, V, and vertical displacement of
the plastic component, [pl, can be approximated with an
exponential function (Nova and Montrasio, 1991; Got-
tardi and Butterˆeld, 1995).

V
Vm

＝1－exp Ø－R0[pl

Vm
» (47)

where R0 is the initial gradient of the V-[pl curve. To app-
ly Eq. (47) to combined loading, the term, V/Vm, in the
left-hand side is replaced by the size of the yield surface,
rc, of Eq. (44), and [pl in the right-hand side is replaced
with xc, the geometric mean of plastic components of [,
u, and u, that is deˆned by the following equation:

xc＝s([pl)2＋(aMu pl)2＋(gMBu pl)2t0.5 (48)

where aM and gM are the non-dimensional parameters that
incorporate the contribution of horizontal displacement
and rotation into hardening. Eventually, the hardening
function for combined loading can be obtained as:

rc＝1－exp Ø－R0xc

Vm
» (49)

Since the compliance is formulated in a rate form in this
paper, a rate-form of the hardening function is esti-
mated, using the Taylor expansion and taking the ˆrst-
order terms.

drc＝(1－rc)
R0

Vm
(`d[pl`＋aM`du pl`＋gMB`du pl`) (50)

Finally, the plastic compliance is obtained as follows:

D pl＝
1
K

&g
&F

&fy

&FT (51)

where K is the hardening coe‹cient and is deˆned as:

K＝－
&fy

&Vc

&Vc

&(xpl)T
&g
&F

(52)

In addition, the compliance for the condition of H＝M
＝0 is separately calculated, because the yield surface and
the plastic potential surface in the V-H-M/B space have
an apex on the V-axis. The compliance for the case of H
＝M＝0 is given as the inverse of the tangent gradient of
Eq. (47):

D pl
11(t)＝1/(1－rc)/R0, (Others)＝0 (53)

Finally, when the apparent elastic behavior due to up-
lift is taken into account, V is ˆxed as the dead load, V0,

during earthquakes or eccentric loading processes to
agree with the assumption in the formulation of the ap-
parent elastic constitutive equation.

Plastic deformation occurs when an instantaneous in-
cremental load moves along the perimeter of the current
yield surface or moves outward from the current yield
surface. However, when an instantaneous load increment
lies inside the current yield surface, no plastic compliance
is included in the incremental compliance given by Eq. (9)
or (14), and the footing responds elastically or apparent-
elastically.

NUMERICAL TECHNIQUES

The present study deals with superstructure-single pier-
footing-soil systems. The mass and rotation inertia of the
superstructure are modeled with a lumped mass. The pier
is assumed to respond linearly and is modeled with Ber-
noulli-Euler beam elements. The P-Delta eŠect is consi-
dered with a geometric stiŠness matrix of the beam-
column theory, and the axial force in the geometric
matrix will not change from the initial state during a nu-
merical simulation. Accordingly, an element stiŠness
matrix for the pier is expressed as the superposition of the
Bernoulli-Euler beam element matrix and the geometric
stiŠness matrix. An element lumped mass matrix is also
assigned to each pier beam element. The footing is also
modeled with a lumped mass, taking the mass and rota-
tion inertia into account. The soil-footing interaction is
modeled with the macro element.

In static analyses, a simple incremental calculation is
conducted without any iteration process. For dynamic
analyses, the equation of motion is given as follows:

M äx(t)＋H ·x(t)＋K Sx(t)＋F(t)＝p(t) (54)

where M is the mass matrix, H is the damping matrix, K S

is the stiŠness matrix for the pier, F is the soil reaction
force matrix from the macro element, and p is the exter-
nal force matrix. The Newmark-b scheme is used for the
integration with regard to time. The soil resistance forces
are functions of the loads, and strictly speaking, they
continue to change during a time step from t＝t to t＝t＋
dt. However, the macro-element is formulated in a rate
form. Therefore, for simplicity, the soil reaction forces
are solved explicitly. The soil reaction forces and dis-
placements of the macro element at t＝t＋dt are obtained
as:

F(t＋dt)＝F(t)＋dF(t)＝F(t)＋C(t)(x(t＋dt)－x(t)) (55)

where C is calculated with Eq. (11) or (14). The stiŠness
matrix of the macro element is set using the load at t＝t,
F(t), and it is assumed to be unchanged during the time
step from t＝t to t＝t＋dt. Instead of accepting these ap-
proximations, an incremental time step, dt, was taken to
be su‹ciently small. The common values of parameters,
g and b, in the Newmark-b method are set as 0.5 and
0.25, respectively.

To calculate the plastic components of displacement,
the following method is adopted in order to judge
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Fig. 9. Model set-up of the monotonic loading experiment
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whether the loading condition is satisˆed during the
generic time step. First, a trial calculation from t＝t to t＝
t＋dt is executed with the apparent elastic stiŠness matrix
employed in the previous time step, and an incremental
load, dF(t), is obtained. The summation of F(t)＋dF(t) is
substituted into Eq. (44), and the temporary size of the
yield surface, rc(t＋dt), is calculated. If the temporary
size of the yield surface, rc(t＋dt), is smaller than rc(t),
then it is speciˆed that the macro element responds within
the yield surface during the time step, i.e., the macro ele-
ment responds in an elastic or apparently elastic manner.
If the temporary size of the yield surface, rc(t＋dt), is
larger than rc(t), then, as assumed, the macro element
responds elasto-plastically. If necessary, the uplift com-
pliance is also redeˆned. When the trial calculation above
gives a smaller negative moment or a larger positive mo-
ment than the macro element has experienced, Mp

－ or
Mp

＋, the u up-M and uplift-related [up-M relationships fol-
low their backbone curves. Finally, the recalculation
starts over for the current time step considering the rede-
ˆned compliances based on the preceding trial calculation
result.

When the plastic deformation of the macro element is
considered in a time step from t＝t to t＝t＋dt, the value
of rc in Eq. (43) is also updated at t＝t＋dt. Mp

－, Mp
＋,

uup－, and u up＋ are renewed if necessary. Note that, if the
temporal value of rc(t＋dt) numerically becomes larger
than 1, then rc(t＋dt) is set to be 1, because, theoretically,
rc cannot exceed 1.

MODEL EXPERIMENTS OF PIER FOOTING
SYSTEMS

Two types of model experiments of pier-footing sys-
tems on dry sand will be simulated: model pier-footing
systems subjected to monotonic lateral loading on the top
of the pier and a model pier-footing systems subjected to
shake table loading. Detailed results for both experiments
are examined in a companion paper (Shirato et al., 2008),
and the in-depth experimental reports are available as
Technical Memorandums of Public Works Research In-
stitute, Nos. 4027 and 4028 (2007) with CD-ROMs that
include measured raw data.

Monotonic Lateral Loading Experiment
The experiments were conducted at the Foundation

Engineering Laboratory in the Public Works Research
Institute, Tsukuba, Japan.

Figure 9 shows a schematic diagram and a photograph
of the model setup. In a deep test pit of 4 m in length and
4 m in width, a dry Toyoura sand deposit having a thick-
ness of 2 m and an average relative soil density of Dr＝
80z (soil density r＝1.60×103 kg/m3) was made. The
deposit was compacted in layers so that homogeneous
soil conditions were achieved. CD triaxial compression
tests revealed that the internal friction angle q＝42.19at
Dr＝80z.

Figure 10 shows a schematic diagram of the model pier
footings. A model pier footing was located on the center

of the sand deposit surface. The models comprise of three
structural components: a top steel rack, a steel I-beam
column, and a footing. Every structural component was
stiŠ enough to consider the model to be rigid, and the
structural components were rigidly connected to each
other. The footing shape was a 0.5 m square block of
0.25 m in depth. Eleven bi-directional load cells were at-
tached at the base of the footing along the loaded direc-
tion, so that the distribution of normal and shear reac-
tions to the base of the footing was captured. The long
side of the load cell had the same length as the foundation
side and the short side of the load cell was in the loaded
direction. Sandpaper was attached at the contact surface
where the load cells met the soil, so that the boundary
condition was rough. The universal joint was attached to
the model pier footing to connect the footing to the actu-
ator system. At the universal joint, the model was free to
rotate and move up and down.

The combined slow monotonic V-H-M loadings with a
dead load, V0, i.e., the dead weight of the model pier
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Fig. 10. Schematic diagram of pier-footing models in the monotonic
loading experiment

Table 1. Simulated cases of monotonic loading experiment

Cases Soil relative density Dr Column

80T 80z Tall
80S 80z Short
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footing, were achieved by gradually applying a horizontal
North-South displacement at a ˆxed height via a com-
puter-controlled servo actuator. During the loading
phase, displacement was controlled and increased up to
the nominal jack stroke capacity (10 mm), and the load
was then released to zero during the unloading phase. The
behavior for diŠerent V-H-M combinations was exam-
ined at various heights of the loading point and the soil
densities. The height of the loading point was varied us-
ing two columns of diŠerent heights but the same I cross-
section. These columns are referred to as short and tall
columns. The non-dimensional ratios of applied mo-
ment, M, to horizontal force, H, at the base center point
of the footing, M/H/(B/2), were 3.6 and 5.2 for the short
and tall columns, respectively.

Figure 10 also shows the mass, mG, the structural mo-
ment of inertia about the center of gravity, JG, and the
height from the footing base to the center of gravity, hG,
for each structural component. The model pier footings
have mechanical properties similar to those of typical
highway bridge pier footings in terms of the value of hG

/B and the static safety factors (Shirato et al., 2008). The
initial safety factor was 28, where the bearing capacity
was estimated via the centered vertical loading experi-
ment described below.

The cases for the simulation with regard to the mono-
tonic loading experiment are listed in Table 1. The ˆrst
two digits in the case numbers indicate soil relative den-
sity, and the ˆnal letter indicates the column type.

Shake Table Experiment
Shake table experiments were conducted at the Large-

scale Shake Table Facility at the Public Works Research
Institute, Tsukuba, Japan. Figures 11 and 12 show the
model set-up. For the simulation below, two cases are
chosen from all of the excitation cases in the experiment,
and they are listed in Table 2.

The size of the shake table was 8 m×8 m, as viewed
from above. The shake table was rocked in the North-
South direction, and the positive direction of X in Fig. 11
and the North direction in Fig. 12 were coincident. Two
diŠerent types of seismic acceleration records that were
observed on sturdy ground were input to the shake table.
The input wave forms are shown in Fig. 13. Since the
mass of the shake table and the soil deposit was huge, the
earthquake motions were not perfectly reproduced by the
shake table. Accordingly, both the original records and
the measured motions on the shake table were plotted in
Fig. 13. The Type I motion represents interplate-type
earthquakes and contains a much larger number of cycles
than the Type II motion, while the Type II motion
represents inland-strike-type earthquakes. The Type I
motion used in the experiment was recorded during the
1993 Kushiro-Oki earthquake in Japan. The Type II mo-
tion used in the experiment was recorded during the 1995
Kobe earthquake in Japan, while a 20z reduction in the
acceleration of the second wave form was applied to
avoid excessive earthquake loading to complete the ob-
servation of the nonlinear behavior of the model. The
horizontal motions at the ground surface are shown in
Fig. 14 along with their acceleration response spectrum
(ARS) curves at a damping factor of 5z.

A laminar shear box of 4 m internal length, 4 m inter-
nal width, and 2.1 m internal depth was placed on the
shake table. The box is comprised of 10 layered frames.
The dry Toyoura sand deposit used in the monotonic
loading experiment was also used in this experiment. The
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Fig. 11. Model set-up of shaking table experiment

Fig. 12. Schematic diagram of pier-footing model in the shaking table
experiment

Table 2. Simulated cases of shake table experiment

Case Earthquake
Type

Maximum acceleration
on the table (Gal)

Case 1 Type I 601

Case 2 Type II 557

Fig. 13. Earthquake waves input onto the shaking table: Type I wave
＝1993 Kushiro-oki Earthquake record, Type II wave＝1995 Kobe
Earthquake record

Fig. 14. Base input accelerations to the footing (or horizontal acceler-
ation at ground level) and their ARS curves
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sand deposit was constructed up to a height of 2 m in the
laminar shear box and was compacted in layers so that a
satisfactory homogeneous soil condition was obtained.
The soil relative density, Dr, of 80z was also the same.

Basically, the model pier footing was the same as that
used in the monotonic loading experiment, while only the
short column model was used. Since the universal joint
was removed, the mass of the model pier footing was
slightly diŠerent from that in the monotonic loading ex-
periment. Figure 12 also shows the mass, the moment of
inertia, and the height of the center of gravity from the
footing base in terms of each structural component: a
steel rack, an I-beam column, and a footing.

The model pier footing was placed at the center of the
soil surface. Some test runs were performed separately
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Fig. 15. States of the model pier footing at the excitation ends

Table 3. Parameters for macro element

Elastic parameters
Kv (kN/m) 89179
Kh (kN/m) 72794
Kr (kN･m/rad) 4420

Hardening parameters

R0 (kN/m) 48946
Vm (kN) 244.8
aM 2.8
gM 1.7

Yield function
z 0.95
m 0.9
c 0.48

Plastic potential
l 0.45
x 0.45

Fig. 16. Observed vertical load-settlement (V-\) curves in the centered
vertical push test (left: experimental result, right: enlarged view of a
part including the unloading-reloading process)
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from the experiments of the present paper, and these tests
revealed that the original Kobe motion (Type II motion)
was too strong to observe the foundation response until
the end of the excitation. Therefore, for Case 2, in addi-
tion to the reduction in acceleration, a 10-mm embed-
ment (4z of the footing depth and 2z of the footing
length) was added as a failsafe to prevent the toppling of
the model pier footing, while it is thought that the embed-
ment eŠect on the overall footing response can be disre-
garded.

Figure 15 shows the states of the model pier footing at
the end of the excitations. The model pier footing was not
toppled in either case, although irreversible displacement
did occur.

PARAMETER SETTING FOR THE MACRO
ELEMENT

Numerical parameters for the macro element are esti-
mated below. Table 3 shows lists of the associated
parameters. The parameters can basically be estimated
via soil investigation, such as in-situ plate loading tests
and soil element tests. However, the present study took
advantage of the results of a centered vertical push test
for the footing.

The vertical push test was conducted in the test pit at
the Foundation Engineering Laboratory, as in the mono-
tonic lateral loading experiment. The soil condition was
the same as that used in the monotonic lateral loading ex-
periment and shake table experiment. A stiŠ steel box
ˆlled with concrete and having a square base of 0.5 m was
used as footing and was placed at the center of the soil
surface. The stiŠ box dimension, as viewed from above,
was the same as that used in the monotonic loading and
shake table experiments. The entire footing base was co-
vered with pieces of the sandpaper described above. A

manually operated hydraulic jack was used. At an early
stage of loading, a partial unloading and reloading was
applied to estimate the elastic (unloading) rigidity of the
soil.

Vertical, horizontal, and rotational elastic springs, Kv,
Kh, and Kr, are given based on the unloading gradient ob-
served in the centered vertical push test. The observed
vertical load-settlement curve is shown in Fig. 16. The
value of Kv is approximated as a gradient of the unload-
ing path via a typical least-mean square method, as
delineated in Fig. 17. The shear modulus can be derived
from the ˆrst equation of Eq. (18), assuming Poisson's
ratio, n, to be 0.3, and the shear modulus is used to esti-
mate the values of the translational and rotational spr-
ings, Kh and Kr, with the second and third equations of
Eq. (18).

The essential parameters to set the evolution of the
yield locus, Vm and R0, are also deduced from the cen-
tered vertical push test result. The maximum load is given
as the ultimate bearing capacity, Vm. A V-[pl curve is esti-
mated based on the measured V-[curve. [pl can be de-
rived by subtracting a calculated elastic component, [el＝
V/Kv, from the corresponding vertical displacement at
every loading step. Then, the V-[pl curve is ˆt with Eq.
(47). Figure 18 shows the experimental V-[pl curve (solid
line) and ˆtted curve (dashed line).
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Fig. 17. Least mean square ap-
proximation as a function of
unloading gradient, Kv

Fig. 18. Observed and ˆtted V-\pl

curves for centered vertical
push test; solid line: observed
curve, dash line: ˆtted curve

Fig. 19. Projection of measured and calculated forces and theoretical
failure locus in H-M plane; Case 80T

Fig. 20. Observed and calculated horizontal load-displacement (P-u1)
curves at the loading point; Case 80S
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Other parameter values are selected following the typi-
cal values that have been suggested by Nova and Montra-
sio (1991) and Montrasio and Nova (1997) based on theo-
retical considerations and some experimental facts.

SIMULATION OF MONOTONIC LOADING
EXPERIMENT

The initial conditions in the numerical simulation are V
＝V0, H＝0, M＝0, and rc＝V0/Vm, and the corre-
sponding initial settlement of the macro-element is calcu-
lated preliminarily. The initial settlement of the macro
element is also applied to all beam element nodes. In the
numerical simulation, the displacement at the loading
point is increased to the maximum displacement of the
experiment and is then decreased. Figure 19 plots the
trajectory of the observed and calculated forces in the
H-M plane for Case 80T and the projection of the bearing
capacity locus, Eq. (4), in which V＝V0, i.e., the weight
of the model pier footing, and the parameters used in the
simulation are taken into account. In both experiment
and calculation, the soil-footing system reaches the ulti-
mate loads, and a similar result is obtained for Case 80S.

Figure 20 shows the observed and calculated horizon-
tal loads, P, and the horizontal displacements, u1, for
Caser 80S, where the calculation is conducted with the
elasto-uplift-plastic (EUP) macro element. The calculat-
ed hysteresis loop shape agrees very well with the ex-
perimental results. While the short column was involved,
the post-peak behavior in the load P is caused by the P-
Delta eŠect. Although the calculation slightly underesti-
mates the load, the parameter values used in the present
study seem to work eŠectively. Therefore, the calculated
results suggest that the theoretical and empirical
parameter values calibrated in the past should be widely
applicable.

Figure 21 shows the observed and calculated hysteresis
curves of moment-settlement (M-[), moment-rotation
(M-u), and horizontal force-horizontal displacement
(H-u) with the elasto-plastic (EP) macro element and the
elasto-uplift-plastic (EUP) macro element (both ex-

perimental cases). In Fig. 21, settlement is positive and
downward and uplift is negative and upward. The hyste-
resis curves calculated with the EUP macro element agree
with the experimental curves. In terms of moment-settle-
ment (M-[) curves, both the EP and the EUP macro ele-
ments take the accumulation of irreversible settlement at
M＝0 into account. However, the M-[curves obtained
with the EP macro element remain under the [＝0 axis.
On the other hand, the EUP macro element predicts the
threshold moment values at which the vertical displace-
ment becomes negative (i.e., the base center of the foot-
ing was uplifted) very well, approximately 1.6–1.8 kN･m
for the calculation and 1.4–1.8 kN･m for the experiment.
Namely, the EUP macro element is capable of accounting
for both the rocking-induced settlement and the uplift-in-
duced horn-shaped hysteresis loop in the moment-settle-
ment curve. In terms of the moment-rotation (M-u)
curves, the observed and calculated upper limits of the
moment agree very well. The unloading gradients calcu-
lated with the EP macro element are much larger than
those calculated with the EUP macro element and ob-
served in the experiment. Therefore, it is conˆrmed that
the introduction of the uplift considerably improves the
numerical results, both in terms of foundation stiŠness
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Fig. 21. Observed and calculated hysteresis curves at the base center
of the footing for monotonic loading experiments

Fig. 22. In‰uence of the diŠerence in the plastic potential parameters,
l and x, on the variation in the calculated residual vertical displace-
ment \, horizontal displacement u, and rotation u at the base center
of the footing at P＝0 after unloading (EUP macro element)

706 SHIRATO ET AL.

and the shape of the hysteresis loops. In terms of horizon-
tal force-horizontal displacement (H-u) curves, the calcu-
lation predicts the tendency that the sliding displacement
abruptly increased when the horizontal load reached the
upper limit value. For both the experiment and the calcu-
lation, the sliding of the footing is much smaller com-
pared to the peak horizontal displacement at the loading
point, u1. (See the peak horizontal displacement at the
loading point, u1, for Case 80S in Fig. 20.) This conˆrms
that the rocking is the prevailing response mode of the
model pier footing.

Figure 22 compares the calculated residual settlements,
horizontal displacements, and rotations, at the base cen-
ter of the footing, [r, ur, and ur, after the load of the load-
ing point is unloaded to zero. The experimental results
are indicated by the dotted lines in Fig. 22. The calcula-
tion uses the EUP macro element considering the diŠer-
ent values of the plastic potential parameters, l and x, in
which Nova and Montrasio (1991) have suggested that
the ranges of the values of l and x are smaller than 0.5.
As conˆrmed in Fig. 22, the parameter x is crucial be-
cause the rocking is signiˆcant in the present study. A
value of 0.4–0.5 seems appropriate for x. The calculated
residual horizontal displacements are not sensitive to the
diŠerence in the parameters of l and x, indicating that a
parameter of m that speciˆes the shapes of the yield and
bearing capacity surface of the macro element in terms of
irreversible sliding resistance may be smaller than that

considered in the present calculation.

SIMULATION OF THE SHAKE TABLE
EXPERIMENT

This section will examine the capability of the macro
element for estimating the dynamic response to shallow
foundations via the simulation of the shake table experi-
ment.

The damping conditions are given below and do not
vary throughout the calculation. The dashpot coe‹cients
of the beam elements are assumed to be proportional to
the element stiŠness matrix and 2z of the dashpot
coe‹cient is taken into account. The damping of the
macro element includes the radiation damping factors for
an inˆnite elastic soil medium. Basically, the imaginary
values of the dynamic impedance function (Gazetas,
1991) around resonance are chosen. Since the rocking
motion is likely to be prominent, the resonance rocking
frequency is approximated as 23.2 Hz via Kr/J/(2p),
where J is the moment of inertia of the model pier foot-
ing.

However, the theoretical damping for rocking is much
smaller than the values engineers typically take into ac-
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Table 4. Dashpot coe‹cients of macro element

Vertical, Cv (kN･s/m) 130
Transitional, Ch (kN･s/m) 90
Rocking, Cr (kN･s･m) 1.0*

*Corresponding to a dashpot coe‹cient of 0.02

Fig. 23. Observed and calculated horizontal acceleration time histories at the top weight; Case 1

Fig. 24. Observed and calculated horizontal acceleration time histories at the top weight; Case 2
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count in seismic design for foundations. The theoretical
damping approximately corresponds to a dashpot
coe‹cient of 0.002, while the dashpot coe‹cient is often
considered to be 0.1–0.3 in practice (Japan Road Associa-
tion, 2002). When simulating the experimental results
with the theoretical rocking dashpot coe‹cient, un-

realistically large amplitudes of acceleration continued to
appear in the calculation until the end of the excitation,
indicating that the damping did not work eŠectively.
Therefore, a rocking dashpot coe‹cient of 0.02 (Cr＝1
kN･s･m) is ˆnally adopted throughout the present paper,
which is made one-order larger than the theoretical value
and is in the range of commonly used values. The values
of the vertical, translational, and rocking dashpot
coe‹cients are listed in Table 4.

The measured horizontal acceleration time histories on
the soil surface were applied to the macro element. No
vertical motion on the soil surface was applied. The ini-
tial conditions are the same as those considered in the
simulation of the monotonic loading experiment. Note
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Fig. 25. Time histories of moment M, vertical load V and normalized
moment M/V/(B/2) at the base center of the footing for Case 1
(t＝41–46 sec)

Fig. 26. Time histories of moment M, vertical load V and normalized
moment M/V/(B/2) at the base center of the footing for Case 2
(t＝7–12 sec)
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that the average residual settlements of the soil deposit at
the end of the excitation were negligible in the experi-
ment.

Figures 23 and 24 show the observed and calculated
horizontal acceleration time histories at the top weight.
In the experiments, acceleration was measured using ac-
celerometers. The overall trends of the observed and cal-
culated time histories are in good agreement. The fact
that the peak acceleration amplitudes are predicted well
indicates that the ultimate bearing capacity of the footing
is satisfactorily predicted in the calculation. The results
calculated with the EP and EUP macro elements are simi-
lar in terms of the prediction of the peak levels. The

diŠerence in the calculated results with the EP and EUP
macro elements is that higher frequency components are
included in the result with the EP macro element, because
the EP macro element cannot give a degradation in the
apparent elastic rigidity for rocking, as shown in the cal-
culated results for the monotonic lateral loading experi-
ment.

Figures 25 and 26 show the observed and calculated
time histories of load eccentricity on the footing,
M/V/(B/2), together with the time histories of M and V,
where the time windows include the times at which
predominant acceleration amplitudes were input to the
shake table in the experiment. Although the vertical
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Fig. 27. Observed and calculated horizontal displacement time histories at the top weight; Case 1

Fig. 28. Observed and calculated horizontal displacement time histories at the top weight; Case 2

709SEISMIC BEHAVIOR OF SHALLOW FOUNDATIONS

force, V, does not vary in the calculation, both EP and
EUP macro elements successfully predict the time histo-
ries of M/V/(B/2) and M. The calculated amplitude at
each peak is in good agreement with the experimental
result, and phase characteristics, such as the timing at
which each wave motion crosses the abscissa and reaches
each peak, are successfully predicted. In particular, when
using the EUP macro element, the calculated vibrations
are as smooth as those observed in the experimental
results.

Figures 27 and 28 show the observed and calculated
time histories of the horizontal displacement at the top
weight, u1, where both EP and EUP macro elements are
tested. Horizontal displacements of the model pier foot-
ing are estimated as the displacement relative to the ob-
served horizontal displacement of the soil surface and ob-
served displacements were captured from the VCR
records. It appears that the EP macro element cannot
respond to the dynamic horizontal vibration, which is a

salient ‰aw of the EP macro element for the use of seis-
mic design for structures. The result calculated with the
EUP macro element agrees well with the experimental
result for Case 1. Even for Case 2, the EUP macro ele-
ment predicts the dynamic vibration of the horizontal dis-
placement, although it underestimates the maximum dis-
placement around an elapsed time of 10.5 s because the
rocking-induced uplift in the experiment was extremely
large.

In summary, as also suggested in a companion paper
(Paolucci et al., 2008), the numerical results conˆrm that
the incorporation of the uplift-induced degradation of
rocking stiŠness signiˆcantly improves the numerical
prediction of the overall dynamic behavior of shallow
foundations during large earthquakes.

Figures 29 and 30 show the observed and calculated
time histories of the settlement at the base center of the
footing, [/B, where the EUP macro element is used in the
calculation. The settlement, [, is normalized by the foot-
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Fig. 29. Observed and calculated time histories of rotation and settlement at the base center of the footing, u and \; Case 1

Fig. 30. Observed and calculated time histories of rotation and settlement at the base center of the footing, u and \; Case 2
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ing length, B. For reference, the time histories of the rota-
tion at the base center of the footing, u, are also plotted.
The calculation predicts that the footing gradually settles
together with the up-and-down motion, as seen in the ex-
perimental results. Corresponding to rotation, the verti-
cal settlement also vibrates up and down. In the experi-
ments, the accumulation of the settlement of the footing
in Case 1 was clearly larger than that in Case 2, and the
calculation can also predict such a tendency. The ob-
served settlements were 10.62 mm (＝2.12z of the foot-
ing length, B) for Case 1 and 1.89 mm (＝0.38z of the
footing length, B) for Case 2, while the calculated settle-
ments were 7.91 mm (＝1.58z of the footing length, B)
for Case 1 and 2.48 mm (＝0.50z of the footing length,
B) for Case 2. The orders of calculated settlements agree
with the experimental results. This indicates that the EUP
macro element is capable of accounting for the seismic
bearing characteristic, which varies with the number of
cycles of the earthquake motions. In addition, when com-
paring the macro element examined in the companion
paper (Paolucci et al., 2008), a clear improvement is
found in the calculating accuracy of the residual rocking-
induced settlement, which is one of the motivations of the
present study.

It seems that there still is a need to improve the hystere-
sis rule for apparent elastic components of the M-u
relationship and work hardening rule. For example, for

Case 1, the calculation cannot predict the irreversible ro-
tation at the end of the excitation.

CONCLUDING REMARKS

The present paper has explored the macro element ap-
proach to simulate the nonlinear response and the ac-
cumulation of irreversible settlement of a shallow foun-
dation subjected to a large earthquake. The present paper
integrated a strain hardening macro element theory with
an apparent degradation in the elastic rigidity of the rock-
ing behavior associated with the footing uplift. The
proposed macro element was then tested via the simula-
tions of the experiments of model pier footings subjected
to static monotonic horizontal-rocking loading and shake
table loading. The results presented herein are summa-
rized below:

1. The EUP macro element is useful for estimating the
overall tendency of the load and displacement time
histories of shallow foundations during earth-
quakes.

2. The prediction of the vibration frequency and hys-
teresis loop shapes in the rocking motion has clearly
been improved when considering the uplift of the
footing.

3. The macro element theory is capable of accounting
for the bearing capacity and rocking-induced settle-
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ments during earthquakes, while the theory was
originally developed based on the results of a mono-
tonic loading experiment.

4. The revised macro element is capable of predicting
the change in accumulated settlements, which de-
pend on the type of earthquake.

As a ˆrst approximation, for the sake of simplicity, we
assumed that the vertical force does not change during
earthquakes. However, it would be better to examine the
appropriateness of this simpliˆcation, because there may
be cases in which the variation in the vertical force ap-
plied to a footing cannot be ignored in the calculation.
This is an area for future study. It is hoped that the
present paper, the FORTRAN source code, and PWRI
experimental results will help to improve the seismic de-
sign for shallow foundations.
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