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ABSTRACT

Mixing a loose clean sand with random discrete ‰exible ˆbres has been found beneˆcial in decreasing the susceptibil-
ity to the phenomenon of liquefaction under monotonic loading. The addition of ˆbres can convert the strain softening
response, typical of a loose unreinforced sand, into a strain hardening response by aŠecting the pore pressure genera-
tion and the eŠective stress path response. A new constitutive model based on the rule of mixtures has been used to
simulate the undrained response of ˆbre reinforced sands. The model superimposes the individual contributions of the
sand and the ˆbres according to their volumetric fraction. An apparent densiˆcation of the sand matrix induced by the
presence of the ˆbres is accounted for in the model by assigning some of the void space to the ˆbres. This apparent den-
siˆcation is considered responsible for the observed strain hardening behaviour of reinforced sands. The proposed
model is able to accommodate any distribution of ˆbre orientation: the orientation of ˆbres plays a key role in explain-
ing the experimentally observed eŠective stress paths.
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INTRODUCTION

Reinforcement of soils by mixing with discrete ‰exible
ˆbres is a relatively new technology with unique beneˆts
that have not yet been widely exploited in industry. The
ˆbre reinforcement is known to increase the strength of
the soils and, if used carefully, the mixed soil can reduce
lateral earth pressures acting on retaining structures, aid
the repair of unstable slopes, and increase the ultimate
bearing capacities of shallow foundations. However, a
recent experimental investigation (Ibraim et al., 2010)—
the ˆrst published attempt to study the eŠect of ˆbre in-
clusions on the undrained response of sand under mono-
tonic loading—has also demonstrated the beneˆt of ˆbre
reinforcement for reducing the liquefaction potential of
loose clean sands under monotonic loading. These ex-
perimental ˆndings are considered of particular sig-
niˆcance for the future applicability of ˆbre reinforce-
ment to the prevention of failures caused by static liq-
uefaction of soils. However, they also revealed some sur-
prising aspects of the behaviour of the composite materi-
al.

None of the constitutive models published so far has
yet succeeded to reproduce the undrained behaviour of
ˆbre reinforced sands. Most of the proposed modelling
approaches have concentrated on the prediction of the
contribution of the ˆbres to the increase in shear strength

(Waldron, 1977; Gray and Ohashi, 1983; Gray and Al-
Refeai, 1986; Micha owski, 1997; Micha owski and
½Cerm áak, 2002; Zornberg, 2002) and only a few authors
have tried to propose a general constitutive law for rein-
forced soils (Villard et al., 1990; di Prisco and Nova,
1993; Ding and Hargrove, 2006; Li and Ding, 2002).
However, the ˆbre orientation has often not been consi-
dered when modelling the behaviour of reinforced soils
whereas the importance of the actual orientation of ˆbres
in the analysis of real geotechnical systems has been
demonstrated by Micha owski (2008).

A complete constitutive model for reinforced soils
which can take account of any distribution of ˆbre orien-
tation has been proposed by Diambra et al. (2010). This
model has been further extended here to simulate the un-
drained features of the behaviour of ˆbre reinforced
sands. As suggested in Diambra (2010), a more advanced
model for the sand matrix has been considered and the
apparent densiˆcation eŠect induced by the presence of
the ˆbres has been accounted for, based on the ex-
perimental data by Ibraim et al. (2010).

NOTATION

The notation for the stress and strain variables adopted
in this study mainly uses the conventional deˆnitions for
axisymmetric triaxial conditions. Thus, p and q are re-



626

Fig. 1. Phase diagram for (a) unreinforced specimen, (b) reinforced specimen without partition of volume of voids and (c) reinforced specimen
with partition of volume of voids
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spectively the total mean stress and deviatoric stress act-
ing on the composite, and p* is the eŠective mean stress
deˆned as p*＝p-u where u is the pore water pressure.
Although the deviator stress is unaŠected by pore water
pressure, for uniformity of notation, the deviator stress
on the composite will be denoted as q*. The strain varia-
bles of the composite are the volumetric strain, ey, and
shear strain, eq. These stress and strain quantities are
related to axial and radial stresses and strains according
to:

p＝
sa＋2sr

3
q＝sa－sr (1)

ey＝ea＋2er eq＝
2
3

(ea－er) (2)

where subscripts `a' and `r' denote the axial and radial
components respectively.

The stress and strain variables can also be related to the
two phases, sand matrix and ˆbres. In this case the eŠec-
tive stress state of the sand matrix is denoted by the dash
(s?＝[p?, q?]T) and the strain state with the subscript `m'
(em＝[emy, emq]T). The stress and strain states of the ˆbres
phase are denoted with the subscript `f', (sf＝[pf, qf]T)
and (ef＝efy, efq]T) respectively. Bold symbols indicate
vector or matrix quantities.

MODELLING FRAMEWORK

Rule of Mixtures
The modelling framework proposed by Diambra et al.

(2010) is summarised and amended here. The constitutive
model is developed using the rule of mixtures for compo-
site materials which is based on the following assump-
tions:

each component of a composite satisˆes its own con-
stitutive law,

each component is homogeneously distributed
throughout the composite,

the contribution of each component to the overall
composite behaviour is scaled according to its in-
dividual volumetric fraction.

The total volume of an unreinforced specimen (V ) is
made up of a sand matrix (Vs) and voids (Vv) and its
phase diagram is schematically shown in Fig. 1(a). A
similar phase diagram can be proposed for a ˆbre rein-
forced soil, Fig. 1(b), where Vf is the volume of ˆbres.
However, based on recent experimental ˆndings by Di-
ambra (2010) and Ibraim et al. (2010), it is suggested that
the volume of voids should be divided into two parts `at-
tached' respectively to the sand matrix (Vvs) and to the
ˆbres (Vvf), Fig. 1(c). In these experimental studies, the
volumetric response of the composite has seemed to imp-
ly an apparent densiˆcation mechanism of the sand
matrix resulting from the presence of the ˆbres in the
voids. Although the global void ratio of the composite
was not changed signiˆcantly by the volume of the inclu-
sions themselves, the ˆbres had `stolen' additional
voids—hence the additional matrix densiˆcation.

The speciˆc volumes for a ˆbre reinforced specimen
(y), sand matrix (ym) and ˆbres (yf) can be deˆned as fol-
lows:

y＝
V

Vs＋Vf
ym＝

Vvs＋Vs

Vs
yf＝

Vvf＋Vf

Vf
(3)

and they are linked by the relationship:

y＝Øym＋yf
Gswf

Gf
» Gf

Gf＋Gswf
(4)

where Gs and Gf are the speciˆc gravities of the sand
grains and ˆbres respectively, and wf is the average con-
centration of ˆbres included in a composite deˆned as a
proportion of dry weight of sand:

wf＝
Wf

Ws
(5)

where Wf is the weight of ˆbres and Ws is the dry weight
of sand.

The relationship between the incremental speciˆc
volume of the composite and its volumetric strain is:

·ey＝－
·y
y

(6)
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Fig. 2. Spherical coordinates used for the deˆnition of the ˆbre orien-
tation distribution
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and this can be applied equally to the sand and ˆbre
phases of the composite material:

·emy＝－
·ym

ym
·efy＝－

·yf

yf
(7)

By manipulating Eqs. (4), (6) and (7), the relationship be-
tween the incremental volumetric strains of the composite
( ·ey) and its constituents ( ·emy, ·efy) can be determined:

·ey＝ ·emymm＋ ·efymf (8)

where

mm＝
(Vs＋Vvs)

V
and mf＝

(Vf＋Vvf)
V

(9)

are the volume fractions of sand and ˆbres with their
speciˆc `attached' voids.

Maintaining consistency with Eq. (8) and the rule of
mixtures, it is assumed that the distortional strains of the
phases can be directly summed to determine the distor-
tional strain of the composite material. It follows that the
relationship between the incremental vector of strains of
the composite and its constituents can be deˆned as:

·e＝ ·emmm＋ ·efmf (10)

and no compatibility between the incremental strains of
the ˆbres and sand is imposed at this stage.

The application of the rule of mixtures for the compo-
site stresses can be derived from the equilibrium of forces
acting on the composite material and on its constituents.
It is assumed here that the constituent phases are
homogeneously distributed throughout the sample and
the area ratio of ˆbres in any cross-section is the same as
the volume ratio. Therefore, the stress state of the com-
posite, s*, can be expressed in terms of the stress states of
the soil matrix s?＝[p?, q?]T and ˆbres sf＝[pf, qf]T ac-
cording to:

s*＝s?mm＋sfmf (11)

and its incremental form is:

·s*＝mm ·s?＋ ·mms?＋mf ·sf＋ ·mfsf (12)

The constitutive relationship for the composite results is
obtained by solving simultaneously Eqs. (10) and (12)
and it will be completely deˆned from the constitutive
relationships of the individual constituents.

Constitutive Model for Fibres
For ˆbre orientation distributions which are symmetri-

cal with respect to the vertical axis, Diambra et al. (2010)
proposed the following incremental stress-strain relation-
ship for ˆbres (the full derivation is detailed in the
APPENDIX):

« ·saf

·srf $＝





Ef

mf

l2

f
l1

r(u) cos (u) sin4 (u)du
Ef

mf

l2

f
l1

r(u) cos3 (u) sin2 (u)du

Ef

mf

1
2

l2

f
l1

r(u) cos3 (u) sin2 (u)du
Ef

mf

1
2

l2

f
l1

r(u) cos5 (u)du






fb« ·ea

·er $ (13)

This particular formulation considers each ˆbre behaving
as a linear elastic material described by the Young's
modulus of the ˆbres (Ef), taking into account any par-
ticular distribution of ˆbre orientation (r(u)) and allow-
ing for imperfect bonding (or partial sliding) between the
ˆbres and the sand matrix through a dimensionless ˆbre
sliding function, fb, ( fb＝1 for perfect bonding between
ˆbres and sand grains and fb＝0 for full sliding).

The ˆbre orientation distribution function, r(u), is de-
ˆned in spherical coordinates and represents the volumet-
ric concentration of ˆbres in an inˆnitesimal volume dV
(Fig. 2) having an orientation u to the horizontal
(Micha owski and ½Cerm áak, 2002; Diambra et al., 2007).
The normalised integral of the ˆbre orientation distribu-
tion function over the generic reference spherical volume
Vref gives the average ˆbre concentration r̃:

r̃＝
1

Vreff
Vref

r(u)dV (14)

The average ˆbre concentration, r̃, is also deˆned by:

r̃＝Vf/V (15)

where V is the total volume of the composite.

It is assumed that the ˆbres have no resistance to either
compression or bending: they only contribute to the stiŠ-
ness and strength of the composite when they are in ten-
sion. For this reason the integrals in Eq. (13) have the
limits l1＝0 and l2＝u0 for triaxial compression and l1＝u0

and l2＝p/2 for triaxial extension (Fig. 3). u0 is the direc-
tion of zero incremental strains which, according to
Mohr's circle for strain increment, is:
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Fig. 3. Domains of tensile strain orientations for (a) compression and (b) extension loading

Fig. 4. Schematic view of the strength surface and elastic region for
the Severn-Trent model (Gajo and Muir Wood, 1999)
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u0＝arctan －
·er

·ea
(16)

Using conventional triaxial pf-qf notation, and when the
distribution of ˆbre orientations is symmetrical with
respect to the vertical axis, Eq. (13) becomes:

« ·pf

·qf$＝«M11 M12

M21 M22$ fb « ·ey

·eq$ (17)

where:

M11＝
1
9

(F11＋F12＋2F21＋2F22)

M12＝
1
3 ØF11－

F12

2
＋2F21－F22»

M21＝
1
3

(F11＋F12－F21－F22)

M22＝
1
2

(2F11－F12－2F21＋2F22)









(18)

and the Fij terms represent the components of the matrix
in Eq. (13) with the ˆrst subscript being the column num-
ber and the second subscript being the row number.

Constitutive Model for Sand Matrix
The present modelling framework based on the rule of

mixtures provides complete freedom in selecting the con-
stitutive relationships for its constituents. The Severn-
Trent sand model (Gajo and Muir Wood, 1999) success-
fully simulates the behaviour of sands and it has already
been applied to Hostun RF sand (employed in this ex-
perimental investigation of ˆbre reinforced sand). There-
fore this model is used here for the sand matrix.

Severn-Trent sand is a bounding surface, kinematic
hardening soil model. The strength surface represents the
bounding surface and always encloses the yield surface
(Fig. 4). Both the strength and yield surfaces are wedges
in the q?-p? plane with their apexes coincident with the
origin of the plane. The size of the strength surface de-

pends on the current value of state parameter j (Been and
JeŠeries, 1985) which describes the volumetric distance
from the locus of ultimate critical states. The model is
formulated in a ``normalised'' stress space ( šs?＝[ šp?,
šq?]T) where the deviatoric stress is divided by r＝1－krj
with kr being a constitutive parameter:

šq?＝
q?
r

and šp?＝p? (19)

In the ``normalised'' stress space, the size of the strength
surface F( šs) remains constant and it is deˆned as:

F( šs)＝t( šq?－Mp?) (20)

where M is the stress ratio at critical state and t＝＋1 or t
＝－1 distinguishes between a compression or extension
approach to failure, respectively.

The yield surface f( šs) bounds a purely elastic region
and it is expressed by:

f( šs)＝ šq?(ap－tnyaq)－p?(aq－tnyap) (21)



629

Table 1. Values of soil parameters for Hostun sand

Parameter Description Value

k Slope of the elastic loading–unloading line on the ym-ln p? plane 0.01

n Poisson' s ratio 0.1

f? Critical-state friction angle 359

G Intercept for critical-state line on ym-ln p? plane at p?＝1 kPa 2.08

l Slope of the critical-state line on ym-ln p? plane 0.031

kr Link between changes in state parameter and current strength 1.5

B Parameter controlling hyperbolic stiŠness relationship 0.0025

R Ratio of size of yield and strength surfaces 0.1

A Multiplier in ‰ow rule 0.75

kd State parameter contribution in ‰ow rule 1.5
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where ap and aq are the components of the vector a which
deˆnes the direction of the central axis of the surface. The
parameter ny is the stress ratio deˆned from the friction
angle q?y of the yield surface which is in turn related to the
critical state friction angle q? by the relationship:

sin q?y＝R sin q? (22)

where R is a constitutive parameter which links the size of
the yield surface to the size of the strength surface at criti-
cal state conditions. The components of the unit normal
vector n＝[np, nq]T to the yield surface are:

np＝
－h̃
1＋h̃2 nq＝

1
1＋h̃2 with h̃＝

šq?
p?

(23)

The model assumes a non associative ‰ow rule which is a
modiˆcation of the original Cam-Clay ‰ow rule (Roscoe
and Schoˆeld, 1963). The ratio between the plastic volu-
metric and deviatoric strain increments is:

d＝
·emy

·emq
＝A[M(1＋kdj)－h] (24)

where A and kd are two constitutive parameters. The ‰ow
rule ensures that shearing at stress ratios below or above
the critical state stress ratio produces plastic volumetric
compression (densiˆcation) or expansion (dilation) so
that shearing automatically steers the sand towards the
critical state—though this ultimate strength can only be
reached after inˆnite shear strain. The components of the
unit normal vector of the plastic ‰ow m＝[mp, mq]T are:

mp＝
d

1＋d 2 mq＝
1

1＋d 2 (25)

The hardening parameter H, which controls the magni-
tude of the plastic strains, is:

H＝
b2

Bbmax
(26)

where B is a constitutive parameter, b depends on the dis-
tance between the actual stress state ( šq?) and its image on
the bounding ( šq?c) surface deˆned in the normalised space:

b＝nq( šq?c－ šq?) (27)

and bmax is the maximum possible value of b in the nor-
malised stress space.

In the normalised stress space the constitutive relation-
ship takes the following form:

_s̃?＝«D̃e－
D̃em*nTD̃e

H＋nTD̃em*$ ·em (28)

where D̃e is the elastic stiŠness matrix in the normalised
stress space and m* represents the unit normal vector of
the plastic ‰ow in the normalised stress space and is relat-
ed to m by:

m*＝m＋D̃e －1«00 kq y/(1－kj)2

0 $m (29)

A full description of the model is given in Gajo and Muir
Wood (1999).

CALIBRATION AND SIMULATION

Calibration
The present modelling approach requires the separate

calibration of the parameters governing the behaviour of
each constituent. The input parameters for the sand
matrix are calibrated to obtain a good ˆt with the ex-
perimental results of unreinforced specimens, while the
parameters for the ˆbres are calibrated considering both
the ˆbre properties (like elastic Young's modulus) and the
estimated contribution of ˆbres to the response of the
composite.

Input Parameters for Sand Matrix
The Severn-Trent sand model requires two elastic and

eight plastic parameters. The values selected in this study
are summarised in Table 1: the calibration procedure is
described by Diambra (2010) using data from drained
and undrained tests on unreinforced specimens.

Input Parameters for Fibres
The description of the behaviour of the ˆbres requires
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Fig. 5. Representation on a vertical plane of the ˆbre orientation dis-
tribution function according to Eq. (31) with a＝1.095 and b＝
0.449

Fig. 6. Procedure for determination of the sliding function fb
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the calibration of three diŠerent quantities ( see Eq. (13)):
– the elastic modulus of the ˆbres, Ef;
– the orientation distribution of the ˆbres, r(u);
– the sliding function, fb, which deˆnes the imperfect

bonding between the ˆbres and the sand matrix.
However, in order to completely deˆne the composite
relationship shown in Eq. (13), the speciˆc volume of the
ˆbres yf, which deˆnes the voids `attached' to the ˆbres,
Vvf, and therefore the partition of the volume of voids be-
tween ˆbres and sand matrix must also be chosen. Thus,
yf is considered here as an additional model parameter.

Diambra (2010) determined the elastic modulus Ef＝
900 MPa from a series of tensile tests on single ˆbres.

Diambra et al. (2007) determined that, in samples simi-
lar to those tested in this investigation, the distribution of
ˆbre orientation r(u) can be eŠectively described by:

r(u)＝r̃(A＋B`cosn u`) (30)

where the parameters A, B and n deˆning the orientation
distribution were calibrated to be A＝0, n＝5 and B＝
2.04. However, for the di‹culties encountered in the in-
tegration of the ˆbre stiŠness matrix (Eq. (13)) when Eq.
(30) was implemented, a slightly modiˆed orientation dis-
tribution function r(u) was introduced (as shown by Di-
ambra et al., 2010):

r(u)＝r̃
2ab2`cos (u)`

cos (u)2(b2－a2)＋a2 (31)

where a＝1.095 and b＝0.449 are determined by forcing
equality in Eqs. (30) and (31) at u＝0 and by satisfying
Eq. (14). These two constants deˆne respectively the
horizontal and vertical semi-axes of the ellipses when Eq.
(31) is represented on a vertical plane as shown in Fig. 5.
The assumed orientation is axisymmetric with respect to
the vertical axis and describes an anisotropic distribution
of ˆbres with preferred horizontal bedding.

The sliding function, fb, which indirectly accounts for
the imperfect interfacial bond between ˆbres and sand
grains, has the following form (Diambra, 2010):

fb＝Ke Ø1－exp Ø－cs･
p?
pref

»» (32)

where Ke is a coe‹cient of e‹ciency of the ˆbre-sand
bonding and the bracketed component (which includes
the mean stress of the sand matrix p? normalised with a
reference pressure, pref, of 0.1 MPa and a material con-
stant cs) accounts for a conˆning pressure eŠect. Diambra
(2010) calibrated the sliding function based on a back
analysis of drained triaxial tests. In those tests, the im-
posed total stress path of the composite material is con-
strained to obey ·q/ ·p＝3 (Fig. 6). However, because of
the conˆning stress contribution of the ˆbres, the eŠec-
tive stress path of the sand matrix is expected to follow a
rather non-conventional stress path (Fig. 6) which must,
however, end along the critical state line. The stress con-
tribution from the ˆbres can be computed from the
strains of the specimen (Eq. (17)) and this stress can sub-
sequently be subtracted from the stresses in the composite
(Eq. (11)) to obtain the stresses in the sand matrix. The

resulting stresses in the sand matrix are then adjusted us-
ing the fb function so that they ultimately approach the
critical state failure surface for the unreinforced sand
(Fig. 6). Values of Ke＝0.5 and cs＝0.75 have been deter-
mined.

The concept of voids `attached' to the ˆbres appears to
be necessary to explain the apparent densiˆcation of the
sand matrix induced by the inclusion of ˆbres (Ibraim et
al., 2010; Diambra et al., 2010). While the volume of the
voids `attached' to the ˆbres might be expected to change
during the loading process, the experimental evidence to
reliably support such a variation has not yet been ob-
tained and in the present modelling a constant speciˆc
volume of the ˆbres (yf) is assumed. This constant has
been calibrated by curve ˆtting the undrained response of
a reinforced sample in both compression and extension as
shown in Fig. 7, where the model simulations are
represented by the thick continuous lines and the ex-
perimental data by a thin dashed line. A value of yf equal
to 3.27 has been determined.

A summary of the input parameters for the ˆbres is
presented in Table 2.
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Fig. 7. Calibration of the speciˆc volume of the ˆbres yf

Table 2. Parameters adopted for the ˆbres

Parameter Description Value

Ef Elastic modulus 900 MPa

r(u) Fibre orientation
distribution

r(u)＝ šr
2ab2`cos (u)`

cos (u)2(b2－a2)＋a2

a＝1.095 b＝0.449

fb Sliding function fb＝Ke Ø1－exp Ø－cs･
p?

pref
»»

Ke＝0.5 cs＝0.75

yf
Speciˆc volume

of the ˆbres 3.27
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Simulation of Undrained Tests
This constitutive model has been used to simulate a

series of undrained conventional triaxial tests on unrein-
forced and reinforced specimens. All the specimens were
fabricated in a very loose state (relative density, Dr§0z)
with ˆbre contents wf＝0.3z, 0.6z and 0.9z. Prior to
testing, all the samples were isotropically consolidated to
30, 100 or 200 kPa and then subjected to compression or
extension triaxial loading under constant conˆning pres-
sure. Full details of sample fabrication, and testing
procedures are given by Ibraim et al. (2010).

Figures 8–10 compare model simulations with ex-
perimental test results for both compression and exten-
sion triaxial loading in q*-eq, q*-p* and Du-eq (where Du
is the excess pore pressure) planes for diŠerent isotropic
consolidation pressures. The model simulations are
represented by the thick continuous lines whereas the ex-
perimental data are represented with thin dashed lines.

The initial stage of the model simulations is not notice-
ably aŠected by the presence of ˆbres. The level of strain
is small, so that the ˆbres are not able to elongate and
mobilise signiˆcant tensile forces. This observation that
the initial behaviour of the composite is to a certain ex-
tent solely controlled by the sand matrix is also suggested
by other studies (Heineck et al., 2005; Yetimoglu et al.,
2005; Ibraim and Maeda, 2007).

At larger strains, the undrained behaviour of the rein-
forced specimens clearly diverges from that of the unrein-
forced specimens and the diŠerences become appreciable
especially after the characteristic state, the point of verti-
cal tangency, dp*/dq*＝0 (Ishihara et al., 1975). The
model simulations predict very satisfactorily the observed
change from the strain softening (liqueˆable) behaviour
of the unreinforced samples to the strain hardening be-
haviour of the reinforced samples for both compression
and extension. In the q*-eq plane (Figs. 8(a), 9(a), 10(a)),
the model reproduces the observed increase in deviatoric
strength associated with the ˆbre inclusions. However, it
is clear that the deviatoric strength is much larger in com-
pression than in extension for the same ˆbres content and
this is also captured by the model.

The experimental undrained stress paths for reinforced
specimens in compression and extension loading condi-
tions (Figs. 8(b), 9(b), 10(b)) initially follow closely the
stress paths of the unreinforced ones but at certain points
the stress paths change direction sharply and show rapid
increases in p* and then follow somewhat straight trajec-
tories. The slopes of these trajectories are very diŠerent in
compression and extension but the model simulates the
asymmetry of this behaviour. Ibraim et al. (2010) showed
that for a given ˆbre content and diŠerent conˆning pres-
sures, the linear parts of the eŠective stress paths devel-
oped after the characteristic state run practically parallel
to each other in compression as well as in extension. None
of these lines intersects the origin of the (q*-p*) plane,
but the intercept on the positive p* axis (or lower inter-
cept on the negative q* axis) increases with higher con-
solidation pressure. The simulations generally predict
rather well the linear trend and the parallelism of the
eŠective stress paths, as shown in Fig. 11.

The excess pore pressures of the reinforced specimens
in compression as well as in extension typically show an
initial increase up to a peak level signiˆcantly aŠected by
the presence of ˆbres followed by a decrease which, for
some amounts of ˆbres, can lead to a negative excess pore
pressure. For a given consolidation pressure, the rate at
which the excess pore pressure decreases with continued
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Fig. 8. Experimental results and model simulation for undrained tests at 30 kPa cell conˆning pressure

Fig. 9. Experimental results and model simulation for undrained tests at 100 kPa cell conˆning pressure

Fig. 10. Experimental results and model simulation for undrained tests at 200 kPa cell conˆning pressure
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straining is lower in compression than in extension and
higher for higher ˆbre concentrations. These trends are
also well captured by the model (Figs. 8(c), 9(c), 10(c)).

DISCUSSION

The modelling ingredients which permit the simulation

of particular features of the undrained behaviour of ˆbre
reinforced sands are discussed and analysed in this sec-
tion.

`Stolen' Void Ratio
The conversion from a strain softening to a strain

hardening material when ˆbres are added is mainly relat-
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Fig. 11. Experimental results and model simulation for eŠective stress paths (q*-p*) grouped according to ˆbre content

Fig. 12. In‰uence of accounting of voids repartition mechanism in the model simulations
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ed to the partition of voids between the sand matrix and
the ˆbres. The assignment of some voids to the ˆbres
results in an apparent densiˆcation of the sand matrix
which translates into an increased desire to dilate. Figure
12 shows a comparison between the experimental data
and model simulations when no partition of volume of
voids between sand and ˆbres is applied (yf＝1.0) and
when the partition employed in the model is introduced
(yf＝3.27). The consequence of not including the densiˆ-
cation eŠect is clearly shown and leads to the overestima-
tion of the excess pore pressure build up (Fig. 12(c))
which then leads to inaccurate simulations in the q*-eq

and q*-p*planes (Figs. 12(a) and (b)). However, a reˆne-
ment of the partition of the volume of voids needs to be
further investigated as some evolution of yf might be ex-
pected to occur with change of stress and/or strain levels.
Exploration of the detail of this process, however, would
require a very ˆne and reliable experimental estimation of
the initial sample void ratio. The present procedures in-
evitably introduce some uncertainty at the stage of sam-
ple fabrication and saturation.

It is worth mentioning that in extension, where the
stresses developed in the ˆbres are negligible, the slope of
the linear eŠective stress path in the q*-p* plane is not

aŠected by the value of the speciˆc volume of the ˆbres yf

(Fig. 12(b)). However, the neglect of the `stolen' voids
still leads to incorrect simulation of the excess pore pres-
sures (Fig. 12(c)) and in turn of the deviatoric strength
(Fig. 12(a)). The implied densiˆcation generated by the
mere presence of the ˆbres together with the ``stolen''
voids remains important.

Fibre Orientation
The eŠect of the ˆbre orientation distribution on the

model predictions has been investigated by considering a
preferred horizontal, isotropic and preferred vertical ini-
tial orientation of ˆbres. The distribution of ˆbre orienta-
tion described in Eq. (31) and Table 2 has been selected as
the preferred horizontal ˆbre orientation. Following
Micha owski and ½Cerm áak (2002), the function r(u),
describing the distribution of ˆbre orientations, can be
represented in a vertical plane as shown in Fig. 13. The
preferred vertical orientation of ˆbres is represented by a
vertical ellipse having a major axis with the same length
as the preferred horizontal orientation. The analytical
form of the orientation distribution function for the as-
sumed vertical orientation of ˆbres is then:
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Fig. 13. Representation of the horizontal, vertical and isotropic orien-
tation for ˆbres selected for investigating the in‰uence of ˆbres
orientation on the undrained behaviour

Fig. 14. Comparison between model predictions adopting diŠerent ˆbre orientation distributions
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r(u)＝r̃
2cd 2`sin (u)`

sin (u)2(d 2－c 2)＋c2 (33)

where c＝1.095 and d＝1.00052 are respectively the verti-
cal and horizontal semi-axes of the ellipses with preferred
vertical orientation shown in Fig. 13. The constants c and
d have been determined by forcing equality of the major
semi-axes of the ellipses in Eqs. (31) and (33) and by satis-
fying Eq. (14). The isotropic distribution of ˆbres orien-
tation is represented with a circle in Fig. 13. It should be
remarked that the sizes of the ellipses and circle in Fig. 13
are not related to the amount of the reinforcement: the
same ˆbre content has been assumed for all the assumed
orientation distributions, applying Eq. (14).

Model simulations with the diŠerent distributions of
ˆbre orientation are shown in Fig. 14. For a given load-
ing condition, the orientation of ˆbres does not strongly
aŠect the deviatoric response of the soil in the q*-eq plane
(Fig. 14(a)). However, a clear dependence is noticeable in
the q*-p* plane where the slopes of the stress paths are
consistently in‰uenced by the imposed ˆbre orientation
(Fig. 14(b)). For undrained compression, the slope of the
stress path increases as the ˆbres are more horizontally
oriented, while in extension the slope increases when the
ˆbres become more vertical. It is clear that the more the

ˆbres are oriented along directions subjected to tensile
strains the steeper is the resulting slope of the eŠective
stress path in the q*-p* plane. It should be noticed that
for undrained compression, there is only a small diŠer-
ence in the slope of the eŠective stress path when the
isotropic and preferred vertical ˆbre orientation are as-
sumed. This relates to the assumptions of the vertical axi-
symmetry of the assumed orientation distribution which
results in a consistent proportion of sub-horizontal ˆbres
even if a preferred vertical orientation is imposed as
shown in Fig. 13.

In the Du-eq plane (Fig. 14(c)), the magnitude of the
pore pressure built up is also related to the ˆbre orienta-
tion. It is clear that the more the ˆbres are oriented to
respond to the tensile strain, the bigger is their conˆne-
ment eŠect and in turn the more pronounced is the result-
ing pore pressure built up.

Strain Dependent Mobilisation of Fibre Contribution
A schematic explanation of the behaviour of the sand

matrix and contribution of the ˆbres to the stress state of
the composite is given in Fig. 15, where the stresses for
the composite, sand matrix and ˆbres are presented as
computed by the model. Isotropic (Fig. 15(a)) and
anisotropic horizontally preferred (Fig. 15(b)) orienta-
tion distributions of ˆbres are assumed. Simulations for
the tests on reinforced samples with 0.6z ˆbre content
and consolidation pressures of 100 kPa and 200 kPa are
presented. According to the model, after the characteris-
tic state is reached, the stress path of the sand matrix fol-
lows very closely the critical state line (Figs. 15(a) and
(b)). The divergence of the composite stress path from the
critical state line for the sand is clearly related to the con-
tribution of the ˆbres. For a given axial strain level, it is
clear that the stresses in the sand are largely conˆning
pressure dependent, while the stress contribution of the
ˆbres phase is rather independent of the conˆning pres-
sure but dependent on the level of the strain. In Fig. 15,
for two diŠerent conˆning pressures, the stress contribu-
tions of the ˆbres at axial strains are plotted by vectors
and their lengths appear to be qualitatively similar for a
given strain level. Again, the contribution of ˆbres is
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Fig. 15. Sand matrix and ˆbres contribution to the composite stress state for specimen reinforced with wf＝0.6% and preconsolidated to 100 and
200 kPa. (a) Anisotropic-horizontal ˆbre orientation and (b) isotropic ˆbre orientation
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clearly dependent on ˆbre orientation. It can then be
deduced geometrically that, after the characteristic state
is reached, a unique stress path for the composite cannot
develop for ˆbre reinforced sand. Furthermore, the eŠec-
tive stress paths for the composite appear to develop in a
parallel manner as clearly shown by the experimental evi-
dence (Ibraim et al., 2010).

CONCLUSIONS

The potential beneˆt of mixing ˆbres with loose clean
sand to reduce the tendency to liquefaction has been
reported by Ibraim et al. (2010) and it was found that the
inclusion of ˆbres greatly aŠects the undrained behaviour
of sands. A new constitutive model has been proposed
and used to simulate the experimentally observed un-
drained behaviour of this ˆbre reinforced material.

The basic assumptions of the constitutive model were
ˆxed by Diambra et al. (2010) but the subsequent reˆne-
ments proposed by Diambra (2010) have been also in-
cluded here. The modelling framework is based on the
rule of mixtures which provides a high degree of freedom
in selecting the appropriate constitutive relationships for
its constituents. In this research, the Severn-Trent sand
model (Gajo and Muir Wood, 1999) has been coupled
with the matrix stiŠness for ˆbres proposed by Diambra
(2010). The resulting model is believed to have a rather
high degree of sophistication and it accounts for the typi-
cal non-linear response of sands as well as any form of
the ˆbre orientation distribution.

The following conclusions can be drawn:
The model simulates very well the particular un-

drained behaviour of ˆbre reinforced sand observed
experimentally in triaxial compression and exten-
sion;

While the strain level appears to be important for the
ˆbre/sand interaction process, the model successful-
ly includes the key eŠects of the ˆbre orientation and
reveals the importance of the apparent densiˆcation
of the sand matrix induced by the presence of ˆbres.

The latter is taken into account by a model
parameter which deˆnes the partition of volume of
voids between the sand matrix and ˆbres. However,
further work may be necessary to investigate the ex-
tent to which this partition of the voids should be
stress or strain dependent.
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APPENDIX: STRESS-STRAN RELATIONSHIP FOR
THE FIBRES PHASE

For triaxial conditions, the incremental relationship
between the single ˆbre strain at any angle u from the
horizontal ( ·eu(sf)) and its axial and radial strains is given by
the relationship:

·eu(sf)＝ ·ea(sf) sin2 (u)＋ ·er(sf) cos2 (u) (A1)

Supposing that the ˆbres are a linear elastic material with
modulus Ef, the stress on the single ˆbres can be comput-
ed as:

·su(sf)＝Ef ·eu(sf) (A2)

and it is possible to decompose this into equivalent stress-
es acting in the directions of the axial and radial stresses,
·sa(sf)(u) and ·sr(sf)(u):

·sa(sf)(u)＝ ·su(sf) sin2 (u) ·sr(sf)(u)＝ ·su(sf) cos2 (u)/2 (A3)

Following the procedures proposed by Zhu et al. (1994),
the overall stress contribution of the ˆbres phase within
the composite in the directions of the axial and radial
stresses (mf ·saf and mf ·srf) has been obtained by integration
of the stresses of the single ˆbres over a representative
composite volume (V ):

mf ·saf＝
1
V f

V

r(u) ·sa(sf)(u)dV

mf ·srf＝
1
V f

V

r(u) ·sr(sf)(u)dV (A4)

where r(u) is the ˆbre orientation distribution function
and represents the concentration of ˆbres in an in-
ˆnitesimal volume dV having an orientation of angle u
above the horizontal plane (Fig. 2).

It is ˆnally assumed an imperfect interfacial bonding
between ˆbres and sand grains and the deformation of
the single ˆbres is deˆned from the strain of the compo-
site material as:

·e(sf)＝fb ·e (A5)

where fb is a dimensionless sliding function, similar to
that used by Machado et al. (2002) and Brighenti (2004).
fb can vary between 0 and 1 with fb＝1 for perfect bond-
ing and fb＝0 for full sliding.

If the orientation distribution is symmetrical with
respect to the horizontal plane, Eqs. (A4) may now be
rearranged and expanded by substituting Eqs. (A3), (A2),
(A1) and (A5) to give:

« ·saf

·srf $＝





Ef

mf

l2

f
l1

r(u) cos (u) sin4 (u)du
Ef

mf

l2

f
l1

r(u) cos3 (u) sin2 (u)du

Ef

mf

1
2

l2

f
l1

r(u) cos3 (u) sin2 (u)du
Ef

mf

1
2

l2

f
l1

r(u) cos5 (u)du






fb« ·ea

·er $ (A6)

where the integration limits are l1＝0 and l2＝u0 (where u0

was deˆned in Eq. (16) for compression loading and l1＝
u0 and l2＝p/2 for extension loading as discussed in

Constitutive Model for Fibres and shown in Fig. 3. More
details are given in Diambra et al. (2010).


