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Abstract 

Among samples analyzed for gene expression, samples incorrectly labeled or identified as 
likely contaminated are those whose expression patterns are markedly different. Such 
samples should be designated outliers, since they can exert a negative effect on the selection of 
informative genes for sample classification. We developed a method based on Akaike’s 
Information Criterion (AIC) to detect such outliers. Our method is advantageous because it is 
free from a significance level and it facilitates objective decision-making. We applied our 
method to analyze the public microarray data of Alon et al. (1999) and found that some of the 
detected outlying samples coincided with samples considered as likely contaminated. 
Application of our method produced a higher discrimination level for informative genes in 
tumor- and normal tissues and, upon exclusion of the outliers, yielded higher classification 
accuracy. The detection of outlying samples prior to sample classification is essential, and the 
method described here serves as a valuable check. 
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1. Introduction 

Sample classification by using microarray data is attracting much interest; its aim is to assign 
tissue samples to phenotypically characterized categories [1]. Feasible classification methods 
include the weighted-voting algorithm (WVA) [2], support vector machines (SVM) [3], clustering 
[4][5], and k-nearest neighbors (kNN) [6][7]. Hierarchical clustering has been widely used to 
analyze or group samples based on similarities in their expression patterns. However, this method 
may not fully extract the information required for sample classification based on gene expression 
data corrupted by high-dimensional noise [6]. Therefore, perfect classification accuracy remains a 
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goal to be attained, even when a sophisticated algorithm such as SVM is employed. 
While some misclassified samples resulting from incorrect labeling, possible contamination, or 

heterogeneity [3][6][7][8] may be clearly recognized as outliers [9], recourse to statistical tests 
remains necessary because of the importance of determining the number of outliers prior to analysis 
[10]. 

Statistical means to detect outliers have been proposed [9][10][11][12][13]. The procedure of 
Kitagawa [13] is based on Akaike’s Information Criterion (AIC), means for identifying an optimal 
model (in this case, a subset of tissues) from among a class of competing models [14]. Its most 
significant merits are that (i) it allows the simultaneous determination of the number of outliers and 
testing by comparing the results with AIC values, and (ii) it is independent of a significance level 
and permits objective decision-making [13]. Ueda’s simplification of the method [15] did not alter 
its performance. 

We now describe the application of our simple method for detecting outlying samples from gene 
expression data. The data used are publicly available colon microarray data obtained from 40 
tumor- and 22 normal tissue samples [5]. We focused on the differences in a subset of genes whose 
expression profiles are significantly different in normal and tumor tissues. We demonstrate the 
difference in sample classification performance obtained upon comparison of the initial gene 
expression matrix (in which some samples were identified as likely contaminated and thus termed 
the 62-heterogeneous-matrix) comprised of 40 tumor- and 22 normal tissue samples, with the 
“55-homogeneous-matrix,” in which no outlying samples were identified.  

We document here that our simple method, termed the AIC procedure for detecting Outlying 
Samples (AICOUS), is able to detect outliers; and we demonstrate the importance of identifying 
outliers and of excluding them from subsequent sample classification procedures. Our 3 major 
findings are: (i) some of the 7 outlying samples we detected were identical to those considered 
contaminated, and/or located in another tissue cluster, or misclassified by other classification 
methods [3][5][6][7]. (ii) The distinction level of a subset of genes selected from the 
55-homogeneous-matrix without outliers was consistently higher than the level in the 
62-heterogeneous-matrix and the average levels in 1,000 randomly-selected 
55-heterogeneous-matrices. (iii) Cross-validation with WVA and kNN showed that the classification 
accuracy with the genes from the 55-homogeneous-matrix was consistently higher than that for the 
62-heterogeneous-matrix and the average of 1,000 55-heterogeneous-matrices. 

 

2. Materials and Methods 

2.1 Dataset 

Publicly available colon microarray data were used. The data are taken from 40 tumor- and 22 
normal samples, each of which contains expression values for 2,000 genes with the highest minimal 
intensity across the 62 samples (obtained from http://www.molbio.princeton.edu/colondata) [5]. 
The expression values were subjected to logarithmic transformation (base 10). Some groups have 
reported sample classification results by using the dataset [3][6][7][16]; some of the samples in the 
dataset may have been contaminated [6]. Our intent was to document the importance of detecting 
outlying samples (not misclassified samples) before proceeding to the next step. Hence, only 
intensively investigated datasets were considered suitable for this study. 
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2.2 Outlier detection method 

A simple method described by Ueda [15] was used to detect outliers in samples from both normal 
and tumor tissues. The method is a simplified version of the method developed by Kitagawa [13]. 
Since both methods are based on the AIC, they have several important characteristics: (i) they allow 
simultaneous determination of the number of outliers and testing, (ii) they do not require selection 
of a significance level, and (iii) they facilitate objective decision-making [13]. 

Akaike [14] proposed an information criterion, the AIC, for the identification of an optimal 
model from a class of competing models. It is approximated as AIC = -2 (maximum log likelihood 
for n regular observations) + 2(number of independently adjusted parameters). Then, the major part 
in the probabilistic model of observations can be represented by 

∏ =

n

j jxfn
1

)(! , 

where n denotes the number of regular (not outlying) samples in each tissue state (tumor and 
normal) and )( jxf  the probability density function of observations jx  from the normal 
distribution. Accordingly, the AIC is reflected in the following equations [15]: 

)!logˆlog(2 snnAIC +−= σ ,    (1) 
where (n+s) denotes the total number of samples in each state (tumor and normal), s the number of 
outlier candidates, and σ̂  the standard deviation of scores assigned to each of n samples, 
excluding outlier candidates. 

During the development of a simple method for the detection of outliers, Ueda [15] recognized 
that !log n  could roughly be approximated by .nx ×  (e.g., x=1 for n=5~9, x=2 for n=10~28). 
Then, !log ns −  in equation (1) could also be approximated by .2 consts −  for n=5~9, 

.3 consts −  for n=10~28, and so on. Variation of the approximated terms (2s, 3s, …), which are 
discrete and different from n, is less useful in the actual application, because the total number of 

samples (n+s) is constant. Therefore, Ueda [15] developed a substitute, 
n

ns !log2 ×× , for the 

terms. The value of the substitute is continuous as it depends on n. Hence, a statistic, U, to identify 
the outliers is defined as  

n
nsnU !log2ˆlog ××+= σ ,    (2) 

The statistic U has a clear interpretation in outlier detection. A low value for the first term in 
equation (2) indicates that we can predict true outlier(s) from within a combination of outlier 
candidate(s); this cannot be done in the presence of a high value. The second term in eq. (2) 
indicates increased unreliability owing to an increased number of parameters. For example, if all 
observations are derived from the normal distribution, the lowest value for U is the case of s=0 
because 1ˆ ≈σ  for any number of s. Also, if there are s outliers (s>0) in a set of observations, the 
value of σ̂log  in the first term becomes the lower value, steering U into the minimum. The best 
approximating combination is one that achieves the lowest value for U and is termed the Minimum 
AIC Estimate (MAICE). The procedure aimed at obtaining the MAICE for the models is called the 
minimum AIC procedure. We identified outlying samples corresponding to s by using eq. (2), 
because Ueda [15] demonstrated the utility of the statistic for the detection of outliers.  

Since the statistic was originally developed for one-dimensional observations (scalar data), we 
expanded it for a two-dimensional array of numbers placed in rows and columns (vector data). This 
expanded method is termed AICOUS. Consider the following expression vector ,( 1

ii EE = iE2 , 

…, i
jE ) for i = 1, 2, …, n+s, where j indicates the number of genes. A distance score Di (=1-ri

average ) 
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for a sample i is assigned, where ri
average  is an average of the Pearson correlation coefficients 

between the expression vectors of all but i samples in the same state versus the expression vector of 
sample i, 
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where kE  is an average expression value for a sample k (i.e., jEE j

l l
k

� =
=

1
).  

Next, according to the original methods [13][15], the scores are normalized by subtracting the 
mean and dividing the result by the standard deviation. The samples are then sorted in order of 
increasing magnitude of their Z scores, such as ≤≤ 21 ZZ  … snZ +≤ . As Ueda did in eq. (2), we 
assume a normal distribution for sample scores, including those with average scores. It would be 
ideal if MAICE were decided by considering various combinations of outlier candidates starting 
from both sides of the Z scores. In practice, however, we regard the samples with high scores (i.e., 

snZ + , 1−+snZ ,…) as outlier candidates, because such samples have different expression profiles 
from the others. Accordingly, we search for the number of outlying samples by starting only from 
the high side of the Z scores in descending order (for example, case 1: snZ +  as outlier, case 2: 

snZ +  and 1−+snZ , etc) and set the maximum number of the outlier candidates to be half of the (n+s) 
samples. 

Although we assume that Di is the realization of a random variable, some high D values may 
have an unknown and/or independent distribution. Moreover, the expression vectors of outlying 
samples can result in an unfavorable assignment of all D values, suggesting that D cannot be used 
directly. Therefore, we adopt the order of samples, but not their values, in searching for the best 
approximating combination (MAICE). Specifically, in combinations of s outlier candidates whose 
respective values of Ds are snD + , 1−+snD ,…, and 1+nD , the other D values are calculated by not 
including the corresponding expression vectors, indicating that the Z scores for a sample vary 
among the combinations. The procedure of recalculating each of the possible combinations can 
reduce the disadvantageous effect of the expression vectors of outlier candidates without producing 
artifacts. 

2.3 Feature selection and calculation of the distinction level 

While many measures have been reported for scoring genes, we used the neighborhood analysis 
method proposed by Golub et al. [2]. We focused on differences in a selected subset of genes and 
differences in classification accuracy using the subset rather than relevance measures. The measure, 
P(j) for a gene j is calculated by  

)()(

)()(
)(

jj

jj
jP

tumornormal

tumornormal

σσ
µµ

+

−
= ,     (4) 

where [ )( j
normalµ , )( jnormalσ ] and [ )( j

tumorµ , )( jtumorσ ] denote the mean and standard 

deviation of log-transformed expression values of gene j for samples of normal and tumor tissue, 
respectively. To evaluate the effects of outliers detected in 40 tumor and 22 normal samples, we 
compared the following evaluation score S(m) between a matrix (row: 2,000 genes, column: 62 
samples, called 62-heterogeneous-matrix) and a homogeneous-matrix without outliers: 
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where m indicates the number of genes that are well distinguishable between samples of different 
states (called informative genes); and Pnormal(j) and Ptumor(j) denote the highest measures of the 
absolute values of )( jP  in normal and tumor samples, respectively. The informative genes consist 
of m/2 genes with the highest Pnormal and of m/2 genes with the highest Ptumor. The higher S(m) 
value indicates that the set of normal and tumor samples has a higher normal-tumor distinction 
level for the m informative genes, with m set at 50, 100, 150, …, 2000. We also compared the 
values of S(m) calculated for a homogeneous-matrix with those calculated for 1,000 randomly 
selected sub-heterogeneous-matrices, to determine whether the observed values correlated more 
highly with the normal tumor distinction than would be expected by chance. 

2.4 Classification methods 

We used two traditional classification methods to determine the feasibility of our strategy: WVA 
proposed by Golub et al. [2] and kNN proposed by Massart et al. [17]. WVA employs a voting 
procedure for classification of a new sample X with m-gene predictors (m = 50, 100, …, 2000) 
selected by eq. (4). The vote for gene j is performed by  
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where )( jx  denotes an expression value for gene j in sample X. The total vote Vnormal for the 
normal state is obtained by summing the positive votes over the m informative genes. The total vote 
Vtumor for the tumor state is obtained by summing the absolute values of the negative votes. Since 
we performed leave-one-out cross-validation (LOOCV) tests to distinguish between tumor and 
normal samples in the dataset, we regarded a positive value of (Vtumor – Vnormal)/(Vtumor + Vnormal) as 
a correct prediction, if the unknown sample to be predicted was indeed a tumor sample, and 
considered the negative value with the unknown normal sample as correct. The other cases were 
regarded as incorrect. 

Since it only considers the neighborhoods of an unknown sample to be predicted, kNN is a local 
method. While there are many variants of the kNN algorithm, we used the following conditions: the 
Pearson correlation coefficient to identify the nearest neighbors of k (arbitrarily set to 3), weight = 1, 
and the majority vote of the 3-nearest neighbors. Accordingly, for example, an unknown sample X 
was predicted as being a tumor in a case where two samples of the tumor state and one of the 
normal state existed among the 3 nearest neighbors of X (and vice versa). The feasibility of our 
strategy is demonstrated by applying these two algorithms to 3 cases: (i) the 
62-heterogeneous-matrix, (ii) a homogeneous-matrix without outliers, and (iii) 1,000 
sub-heterogeneous-matrices, whose numbers correspond to those of the homogeneous matrix. 

3. Results 

Outlying samples have a negative impact on sample classification and present one of the main 
issues confronting microarray analysis. To resolve this issue, we introduced our AICOUS method 
for detecting outliers from a gene expression matrix (62-heterogeneous-matrix) that consists of the 
measurement of 2,000 genes in 22 normal- and 40 tumor samples. We evaluated the irrelevant 
effects of outlying samples in light of a distinction level for subsets of predictor genes and of 
classification accuracy. 
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3.1 Detection of outlying samples 
using AICOUS 

Our method for detecting outliers 
is based on AIC [14] and was 
developed for one-dimensional data 
[13][15]. The most outstanding 
characteristic of our method is that it 
allows the output of an objective 
decision since the procedure is free 
from the significance level [13]. To 
deal with two-dimensional 
microarray data, we performed a 
modification. To detect outlying 
samples, we applied our method to 
two gene expression matrices 
consisting of 22 normal- and 40 
tumor samples. 

Table 1 shows the distance scores 
(D) calculated by using eq. (3) for 
normal and tumor samples. The 

lower Di in sample i is in higher 
harmony with the other samples of 
the same state, indicating that it is 
not an outlier. Samples with a high 
D value have a high potential to be 
outliers. Hence, we considered samples 
with distance scores higher than the mean to 
be outlier candidates (i.e., 11 combinations 
for the normal samples and 20 combinations 
for the tumor samples, Table 1).  

Table 2 presents the results of our search. 
Outliers are detected by searching for a 
combination of the lowest U [15]. 
Accordingly, we detected 7 outlying 
samples: N36, N8, N34, N2, T2, T37, and 
T6; 5 of the 7 samples coincided with 
samples reported as misclassified outlying 
samples, and are likely to have been 
contaminated [3][5][6][7]. For example, 
Alon et al. [5], who used a clustering 
method, detected 8 samples as outliers: 3 
were normal samples in the created cluster 
comprised mostly of tumor samples and 5 
were tumor samples in the cluster 
comprised primarily of the normal samples. 
Of their 8 outlying samples, 4 (N8, N34, T2, 

Scores in normal and tumor samples were calculated by using equation 
3. Samples are sorted in order of the score magnitude. High-scoring 
samples, such as N36 and T2, can be considered outlier candidates. 
Shaded samples are regarded as outlier candidates.  

Serial Name D Serial Name D Serial Name D
1 N36 0.311 1 T2 0.396 21 T38 0.233
2 N8 0.292 2 T37 0.361 22 T10 0.233
3 N34 0.290 3 T6 0.329 23 T1 0.232
4 N2 0.274 4 T5 0.305 24 T4 0.232
5 N9 0.262 5 T25 0.296 25 T34 0.228
6 N10 0.261 6 T33 0.287 26 T8 0.224
7 N4 0.256 7 T12 0.281 27 T27 0.222
8 N39 0.245 8 T36 0.276 28 T21 0.221
9 N32 0.242 9 T20 0.271 29 T39 0.220
10 N12 0.240 10 T29 0.267 30 T35 0.220
11 N3 0.237 11 T32 0.250 31 T24 0.219
12 N35 0.236 12 T9 0.249 32 T3 0.217
13 N29 0.235 13 T17 0.246 33 T18 0.213
14 N27 0.226 14 T26 0.241 34 T14 0.209
15 N33 0.224 15 T28 0.239 35 T7 0.207
16 N28 0.216 16 T31 0.237 36 T13 0.203
17 N11 0.215 17 T30 0.236 37 T16 0.200
18 N1 0.214 18 T19 0.234 38 T15 0.195
19 N40 0.214 19 T11 0.234 39 T23 0.187
20 N5 0.213 20 T40 0.234 40 T22 0.185
21 N6 0.208
22 N7 0.201

Normal samples Tumor samples

Table 1. Distance scores for each sample.  

The statistic U for detecting outliers was calculated by using 
equation 2. Numbers in the “Combination” column 
correspond to those in the “Serial” column in Table 1. A 
combination “-“ indicates that nothing is regarded as an 
outlier. We searched outlying samples from 11 combinations 
for normal samples and 20 combinations for tumor samples 
as practically considerable. A combination with the lowest 
statistic is the solution. Hence, we detected 7 samples in the 
combination with an asterisk (N36, N8, N34, and N2 in 
normal samples and T2, T37, and T6 in tumor samples) as 
outliers.  

Table 2. Search results of outliers in normal and 
tumor samples.

Combination U Combination U Combination U
- -0.51 - -0.51 1-12 9.29
1 -1.47 1 -3.98 1-13 12.40

1-2 -0.59 1-2 -6.86 1-14 15.45
1-3 -1.99 1-3* -7.03 1-15 20.67
1-4* -2.14 1-4 -6.29 1-16 22.88
1-5 0.43 1-5 -5.55 1-17 24.84
1-6 3.64 1-6 -4.12 1-18 26.59
1-7 0.07 1-7 -1.49 1-19 31.08
1-8 3.56 1-8 0.51 1-20 32.10
1-9 8.70 1-9 2.46
1-10 10.17 1-10 4.23
1-11 10.02 1-11 7.75

Normal samples Tumor samples
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and T37) coincided with ours; 6 samples (N8, N34, N36, T30, T33, and T36) were misclassified by 
the SVM method [3]. Li et al. [6] reported that 5 identified samples (N34, N36, T30, T33, and T36) 
were likely contaminated. Li et al. [7] also reported that when these 5 questionable samples were 
excluded, all but one (N8) of the remaining 57 samples were correctly classified. Three of our 
samples (N8, N34, and N36) were identical to samples reported by Li et al. [6][7]. The overall 
relationships are shown in Table 3. Our results document that our method can detect some true 
outliers. 

3.2 Differences between informative genes with and without outliers 

To investigate the unfavorable/negative effects of the 7 outliers we detected, we scored each of 
the genes selected from the 62-heterogeneous-matrix and the 55-homogeneous-matrix without the 
outliers by neighborhood analysis 
[2]. We then evaluated the 
distinction level between the 
different states on m-gene subsets 
(m = 50, 100, …, 2000) selected 
from the following three matrices: 
(i) the 62-heterogeneous-matrix, (ii) 
the 55-homogeneous-matrix, and 
(iii) 1,000 
55-heterogeneous-matrices 
consisting of 18 samples randomly 

selected from among 22 normal 
samples and 37 samples randomly 
selected from among 40 tumor 
samples. We used an evaluation 
score S(m) to determine the 
distinctness of an m-gene subset 
(see Methods). High evaluation 
scores indicate a strong correlation 
between the gene expression 
profile and the distinction level. 

As shown in Figure 1, the 
scores for m-gene subsets (m = 50, 
100, …, 1400) from the 
55-homogeneous-matrix were 
above the 1% significance level 
(broken line) from 1,000 
randomly selected 
55-heterogeneous-matrices. The 
scores were also higher than those 
from the 62-heterogeneous-matrix, 
suggesting that we could correctly 
detect outlying samples. 

Table 4 shows the 50 
top-ranking genes from the 
62-heterogeneous- and the 

tumor samples normal samples
Alon et al. 1999 T2,        T30, T33, T36, T37        N8, N12, N34
Furey et al. 2000              T30, T33, T36        N8,          N34, N36
Li et al. 2001a              T30, T33, T36                        N34, N36
Li et al. 2001b                N8
Our result T2, T6,                          T37 N2, N8,          N34, N36

Outliers

Table 3. Comparison of outliers detected by other reports.

Five of seven detected outliers coincided with samples reported as
being unfavorable by at least one of four other reports.  

Figure 1. Plot of evaluation 
62-heterogeneous-ma
and 55-heterogeneou
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55-homogeneous-matrix. P(j) values were clearly higher in the genes from the 
55-homogeneous-matrix and 13 genes differed between the two matrices. For example, 
cyclin-dependent kinase is up-regulated in tumor samples in the 62-heterogeneous-matrix but not in 
the 55-homogeneous-matrix. This is reasonable because the gene is known to be a negative 
prognostic marker in colorectal tumors [18]. 

3.3 Prediction accuracy 

The validity of the 7 samples detected as outliers by our method and the potentiality of m-gene 
predictors from the 55-homogeneous-matrix can also be explained by the prediction accuracy. We 
employed two supervised learning methods, WVA and kNN, and evaluated prediction accuracy by 
using the LOOCV test. In LOOCV, one constructs m-gene predictors only with training (n-1) 
samples using eq. (4), and then applies the m-gene predictors to assign the remaining sample to one 
of the states (normal or tumor). We preset m at values ranging from 50 to 2,000 for the most 
differentially expressed genes and another parameter, n, as 62 or 55 (after eliminating the 7 detected 
outliers). We compared the classification accuracy for 3 cases: (i) 62-heterogeneous-matrix, (ii) 
55-homogeneous-matrix, and (iii) 1,000 55-heterogeneous-matrices. 

The results of the LOOCV test calculated by WVA and kNN are shown in Figures 2a and 2b. The 
prediction accuracies of the 55-homogeneous-matrix were clearly higher than those of the 

Table 4. Comparison of 50 high-ranking genes in 55-homogeneous-matrix and 
62-heterogeneous-matrix.  

rank gene j P (j ) gene j P (j ) rank gene j P (j ) gene j P (j )
1 1042 -0.740 513 -0.907 1 493 0.834 493 0.996
2 1772 -0.727 1042 -0.818 2 249 0.711 249 0.971
3 1671 -0.722 780 -0.802 3 1423 0.688 765 0.931
4 625 -0.696 1671 -0.798 4 377 0.681 245 0.890
5 513 -0.688 625 -0.768 5 897 0.656 267 0.863
6 1771 -0.668 1772 -0.760 6 765 0.639 1423 0.852
7 1582 -0.666 365 -0.732 7 1635 0.635 66 0.836
8 780 -0.620 1060 -0.731 8 245 0.613 377 0.832
9 1060 -0.620 241 -0.725 27 9 66 0.589 1635 0.810

10 964 -0.607 1730 -0.715 10 267 0.575 897 0.807
11 365 -0.606 1771 -0.714 11 1843 0.567 1494 0.760
12 138 -0.600 1153 -0.707 12 1494 0.544 1411 0.654
13 399 -0.599 26 -0.704 13 822 0.539 1843 0.635
14 1730 -0.580 964 -0.702 14 1668 0.480 33 822 0.631
15 1153 -0.578 1002 -0.695 31 15 1967 0.453 27 1387 0.611
16 75 -0.557 1582 -0.690 16 1411 0.449 1892 0.580
17 515 -0.556 44 75 -0.669 17 415 0.441 31 1943 0.576 49
18 1325 -0.554 27 1414 -0.666 52 18 1884 0.437 1884 0.567
19 26 -0.548 1770 -0.665 29 19 1674 0.433 32 1897 0.554 26
20 1900 -0.547 138 -0.664 20 739 0.420 824 0.549 30
21 1406 -0.547 39 495 -0.662 42 21 1387 0.417 1258 0.548 27
22 1648 -0.545 36 1900 -0.661 22 286 0.409 739 0.547
23 43 -0.543 26 992 -0.660 28 23 67 0.401 28 286 0.544
24 1346 -0.542 62 31 -0.659 38 24 143 0.401 29 1058 0.523 38
25 391 -0.541 30 399 -0.650 25 1892 0.395 1111 0.523 36

Genes highy expressed in normal samplesGenes highly expressed in tumor samples
with outliers without outlierswith outliers without outliers

Numbers in the “gene” column indicate the serial numbers of the genes. Genes that are shaded indicate they had
disappeared or were newly emerged among the top-ranking genes in the 55-homogeneous-matrix. Numbers to the 
right of the shading for a case indicate the rank of the gene in another case.  
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62-heterogeneous-mat
rix for all m (50, 100, 
…, 2000). The average 
accuracy difference 
between the two 
matrices with WVA 
and kNN was 9.43% 
and 6.88%, 
respectively. 
Additionally, the 
accuracy of the 
62-heterogeneous-mat
rix was close to the 
average of the 
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Figure 2. Classification accuracies of two methods: (a) WVA, (b) 
kNN.  
(a) Weighted-voting algorithm (WVA). (b) k-nearest neighbor method 
(kNN, k = 3). Abbreviations are the same as those in Figure 1. In 
addition, thin lines represent the 5% significance level in the 
accuracies with m-gene predictors in the 1,000 
55-heterogeneous-matrices.
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Figure 3. Misclassification rates for 62 samples. 
Misclassification rates were calculated by two methods: (a) WVA and (b) kNN (k = 3). The numbers 
above the graphs indicate the counts of a sample that emerged in the 1,000 
55-heterogeneous-matrices. A black circle denotes the misclassification rate for a sample using a 
50-gene predictor, while an almost white circle denotes that using a 2000-gene predictor. The 
intermediate colored circles (such as gray) represent those using an intermediate number of predictor 
genes.  
39

alidate each of the outlying samples detected, we investigated the misclassification rate of 
 of the 62 samples by using m-gene predictors (m = 50, 100, …, 2000). We performed the 
stigation based on the results of the LOOCV test on 1,000 55-heterogeneous-matrices. 
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Figure 3 shows the misclassification rates for each of the samples on m-gene predictors ranging 
from m = 50 (black circles) to m = 2,000 (almost white circles). We employed WVA (Figure 3a) and 
kNN (Figure 3b) in the validation. The numbers above the graphs represent the number of sets of 
samples. For example, a normal sample “N1” was included in 822 matrices of 1,000 possible 
matrices and the misclassification rate was 0% (none of the 822 tests assigned N1 as tumor) when 
using a 50-gene predictor, whereas the rate was 74.1% (609 of 822 tests assigned N1 as tumor) 
when a 2000-gene predictor was used. 

Again, we detected 7 samples as outliers (T2, T6, T37, N2, N8, N34, and N36). Of these, T6 and 
N2 showed low misclassification rates. Furthermore, the distance scores for samples T6 and N2 
were the lowest scores in both tumors and normal tissue samples (see Table 1). These results 
suggest potential false-positive errors for T6 and N2; that is, they may in fact not be outliers. 

4. Discussion 

We used our AICOUS method to detect outlying samples whose aberrant expression profiles 
could exert deleterious effects on gene expression analyses (especially sample classification). We 
focused on the importance of detecting/checking outlying samples in advance of sample 
classification and demonstrated a higher classification accuracy when we used the remaining 
homogeneous samples. Our method and the importance of method validation and of increasing the 
degree of homogeneity in samples to be analyzed are discussed. 

4.1 Performance of AICOUS 

AICOUS is based on the AIC whose information criterion has been used for modeling in various 
fields of statistics, engineering and numerical analysis [19][20][21]. AICOUS is an improved 
version of methods previously proposed [13][15] for the detection of outlying samples in 
two-dimensional microarray data. The main advantage of our method is its ability to output an 
objective decision about outlying samples (i.e., significance level independence; Table 2).  

We demonstrated the feasibility of our method on colon microarray data consisting of 62 samples 
from 2 states: normal and tumor [5]. A total of 7 samples, 4 of the 22 normal- and 3 of the 40 tumor 
samples, were detected as outliers (Tables 2 and 3) and 5 of the 7 outlying samples detected by 
AICOUS coincided with samples misclassified and/or regarded as unfavorable in previous reports 
(Table 3) [3][5][6][7]. We suspect that the remaining 2 samples (T6 and N2) may not be outliers. 
AICOUS can be improved, however, by the inclusion of additional term(s) in equation (1). With the 
improvements, we should be able to detect outliers confidently in other microarray data. 

4.2 Comparison of subsets of genes for distinguishing the 2 states of the samples 

The clustering technique is an accepted method for microarray analysis. However, it is not 
sufficiently sensitive for the type of study we performed, because it focuses on group similarities, 
not differences, within individual genes [22]. To identify such a subset of genes, Golub et al [2] 
proposed selecting m genes that individually are highly correlated with the known classification 
(called neighborhood analysis) and then using a voting procedure for the classification of new 
samples based on the m-gene predictors (called WVA). 

We created a measurement, S(m), that shows the distinction level of m genes between two states 
of samples (see Methods). Large values of S(m) indicate that the m-gene signature has a high level. 
Accordingly, S(m) values should be higher in the 55-homogeneous-matrix than in the 
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62-heterogeneous-matrix, provided that we can detect a majority of the outliers. In Figure 1, 
measurements from the 55-homogeneous-matrix were actually higher than those in the 
62-heterogeneous-matrix and the average of those in the 1,000 randomly selected 
55-heterogeneous-matrices. 

4.3 Comparison of classification accuracies 

While various discrimination methods have been applied for the classification of clinical samples 
[2][3][23][24][25], Dudoit et al. [26] found that the traditional linear classifiers and nearest 
neighbors perform remarkably well compared with more sophisticated methods. Also, the focus of 
our study was the detection of outlying samples whose aberrant expression profiles may have 
negative effects on sample classification rather than the detection of misclassified samples. Hence, 
the feasibility of AICOUS was demonstrated by two conventional classification methods (WVA and 
kNN). Our results showed that accuracies in the 55-homogeneous-matrix were clearly higher than 
in the 62-heterogeneous-matrix (see Figure 2) for all selections of m. The values in the 
55-homogeneous-matrix (circles) were also close to the 5% significance level of accuracy in the 
1,000 randomly-selected 55-heterogeneous-matrices. These results indicate that the outlying 
samples detected here have significant effects on sample classification. 

4.4 Validation of outlying samples 

A thorough investigation of accuracies in the 1,000 55-heterogeneous-matrices suggested that 2 
of the 7 outlying samples (N2 and T6) may not be outliers. They were selected 834 and 919 times, 
respectively, in the 1,000 55-heterogeneous-matrices (Figure 3). The misclassification rate for the 
two samples was almost 0%, whereas the rate for the other 5 samples was almost 100%. 

Since samples that are always misclassified are likely to be contaminated or mislabeled [3][6], 5 
of the 7 outlying samples, N8, N34, N36, T2, and T37 must be outliers. Indeed, N34 and N36 were 
verified as outliers in light of the sample composition [5][6]. According to Li et al [7], only N8 was 
misclassified when a 57-homogeneous-matrix was used after elimination of the verified outliers 
N34, N36, T30, T33, and T36 (Table 3) [6]. Sample N8 is also in the cluster containing mostly 
tumor tissues [5]. Furthermore, T2 and T37 detected by AICOUS are among the 5 tumor tissues 
described by Alon et al. as the cluster containing mostly normal tissues, although supervised 
discriminant methods (SVM and kNN) correctly classified them as tumors [5][6][7]. 

We have no evidence that verifies N2 and T6 as outlying samples. These samples had the lowest 
distance scores in each sample state among the 7 outlying samples detected (Table 1), suggesting 
that they may be false-positives rather than outliers. We were also unable to verify 3 samples (T30, 
T33, and T36) as outliers; these samples represent false-negatives. The paucity of combinations 
considered may be the main reason for the false positive/negative errors: to save computation time, 
we only searched for half the number of samples for each state since the numbers of � =

s

k 0 22Ck 

combinations and � =

s

k 0 40Ck combinations (s denotes the number of outliers for the 22 normal- 
and 40 tumor samples) are considerable. 

4.5 Fluctuation of the different distance metric 

In general, the use of a different distance metric yields different results [25]. We used a Pearson 
correlation coefficient as a distance metric, because this was the metric applied in previous analyses 
of the colon dataset. To investigate the fluctuation of the outlying samples, we also used average 
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Euclidean distance as the other distance metric. As a result, 2 samples (N9 and N12) were detected 
(see Supplementary material 1). Sample N9 was detected anew among the samples shown in Table 
3, while N12 was among those samples reported by Alon et al. [5]. Overall, the Euclidean distance 
seems not to be the appropriate metric for this type of analysis, because those 2 samples have not 
been confirmed as outlying samples. Further validations are underway in our laboratory. 

4.6 Selected 50 top-ranking genes 

Compared with 2 sets of the 50 top-ranking genes from the 62-heterogeneous-matrix and the 
55-homogeneous-matrix, the difference in the genes selected has the advantage of eliminating 
outlying samples, although there are a few exceptions (Table 5). Ribosomal proteins (accession: 
T57619, T62947) up-regulated in tumor samples, which disappeared in the 50 top-ranking genes 
selected in the 55-homogeneous-matrix, are an example of the exception [5][27]. While many 
reasonable genes were extracted, cyclin-dependent kinase, which is up-regulated in tumor samples 
and a negative prognostic marker in colorectal cancer, is an example of those genes that 
disappeared from among the 50 top-ranking genes selected in the 55-homogeneous-matrix [18][28]. 
On the other hand, other tumor-related proteins such as laminin and NDP kinase emerged [29][30]. 
Bo and Jonassen [16] stated that a larger difference in the top-ranking genes selected by various 
methods did not necessarily coincide with larger differences in prediction accuracies. We believe 

Table 5. List of genes that appeared or disappeared from the list of the 50 top-ranking genes in the 
55-homogeneous-matrix.  

state expression serial accession sequence description
disappeared up 43 T57619 3' UTR 40S ribosomal protein S6 (Nicotiana tabacum)
disappeared up 391 D31885 gene mRNA (KIAA0069) for ORF (novel proetin), partial cds
disappeared up 515 T56604 3' UTR tubulin beta chain (Haliotis discus)
disappeared up 1325 T47377 3' UTR S-100P protein
disappeared up 1346 T62947 3' UTR 60S ribosomal protein L24 (Arabidopsis thaliana)
disappeared up 1406 U26312 gene heterochromatin protein HP2Hs-gamma mRNA, partial cds
disappeared up 1648 T86749 3' UTR cyclin-dependent protein kinase mRNA, complete cds
disappeared down 67 T51534 3' UTR cystatin C precursor
disappeared down 143 R28373 3' UTR hemoglobin beta chain 
disappeared down 415 T60155 3' UTR actin, aortic smooth muscle
disappeared down 1668 M82919 gene gamma amino butyric acid (GABAA) receptor beta-3 subunit
disappeared down 1674 T67077 3' UTR sodium/potassium-transporting ATPase gamma chain
disappeared down 1967 T60778 3' UTR matrix gla-protein precursor (Rattus norvegicus)

appeared up 31 T61609 3' UTR laminin receptor
appeared up 241 M36981 gene putative NDP kinase (nm23-H3S) mRNA, complete cds
appeared up 495 H20426 3' UTR nucleoside diphosphate kinase (Ginglymostoma cirratum)
appeared up 992 X12466 gene snRNP E protein
appeared up 1002 R08183 3' UTR Q04984 10 kD heat shock protein, mitochondrial
appeared up 1414 R64115 3' UTR adenosylhomocysteinase
appeared up 1770 U17899 gene chloride channel regulatory protein mRNA, complete cds
appeared down 824 Z49269 gene chemokine HCC-1
appeared down 1058 M80815 gene a-L-fucosidase gene, exon 7 and 8, and complete cds
appeared down 1111 D31716 gene GC box bindig protein, complete cds
appeared down 1258 R67358 3' UTR MAP kinase phosphatase-1 (Homo sapiens)
appeared down 1897 U19969 gene two-handed zinc finger protein ZEB mRNA, partial cds
appeared down 1943 D29808 gene T-cell acute lymphoblastic leukemia associated antigen 1
The terms up and down in the “expression” column indicate the respective up- and down-regulated states in tumor 
samples. Numbers in the “serial” column are the same as those in the “gene j” column in Table 4. UTR = 
untranslated region.  
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that there are two reasons for these findings. First, as pointed out by Li et al [6], hundreds of genes 
that discriminate between different sample classes may exist, since typical array data consist of a 
large number of genes and a small number of samples. A second reason is the existence of outlying 
samples. In fact, we have observed significant improvements in analysis attributable to improved 
classification accuracy. 

4.7 Application to another (AML/ALL) dataset 

The purpose of this study was the detection of outlying samples (not of “consistently 
misclassified samples” with some classifiers). We evaluated only a colon dataset, because some of 
the samples in the dataset were reported as being contaminated [6][7]. There is another dataset 
available for evaluation, the acute myeloid leukemia/acute lymphoblastic leukemia (AML/ALL) 
dataset [2]. It has no outlying samples. However, unlike solid tumors such as the colon dataset, we 
can expect greater homogeneity in individual leukemia samples. Not surprisingly, we observed 
fewer outlying samples in the AML/ALL set than in the colon set: 1 of 25 AMLs and 1 of 47 ALLs 
(see Supplementary material 2), suggesting that AICOUS is indeed of potential general 
applicability. 

4.8 Scalability of AICOUS 

AICOUS was designed to detect outlying samples but in principle can also be applied to detect 
genes whose expression patterns are markedly high, or markedly low, in some particular tissues 
compared with the expression level in other tissues or sources. Greller and Tobin [31] proposed a 
method for identifying genes that are markedly down- or up-regulated only in a specific tissue 
compared with other tissues. Nevertheless, genes exist whose expression profiles are clearly 
different depending on the tissue. In fact, clustering results of gene expression data on adult and 
fetal mouse tissues (a total of 49 tissues) revealed the existence of such genes, i.e., genes specific 
for digestive organs (colon, cecum, and stomach), smooth muscle-related genes (tongue, heart, and 
skeletal muscle), etc. [32][33][34]. We believe the high scalability of AICOUS makes our method 
applicable to a wide variety of areas. 

To isolate a particular cell type, micro-dissection techniques are commonly used to prepare 
samples for microarray experiments [35]. Kitahara et al. [36] identified a set of genes involved in 
colorectal carcinogenesis from normal and tumor samples rendered homogeneous by laser-capture 
microdissection. Venet et al. [8] presented an approach that permits the mathematical separation of 
samples consisting of many different cell types into their constituents. AICOUS is not meant to be a 
rival of these methods, but rather an addition to facilitate the evaluation of homogeneity. We 
strongly recommend the use of an AICOUS strategy for detecting outlying entities in expression 
data. 

 
We thank T. Ueda, K. Shimizu, S. Nakamura, K. Tsuda, and L. Li for their helpful comments. 

We also thank M. Sekijima, M. Kadota, and M. Terauchi for their valuable technical assistance. 
This work was partly supported by a Grant-in-Aid for Scientific Research on Priority Areas (C) 
"Genome Information Science" from the Ministry of Education, Culture, Sports, Science and 
Technology of Japan. 

 
 



 

Chem-Bio Informatics Journal, Vol. 3, No. 1, pp.30-45(2003) 

 44 

References 

[1] A. von Heydebreck, W. Huber, A. Poustka and M. Vingron, Bioinformatics, 17, S107-S114, 
(2001). 

[2] T. R. Golub, D. K. Slonim, P. Tamayo, C. Huard, M. Gaasenbeek, J. P. Mesirov, H. Coller, M. 
L. Loh, J. R. Downing, M. A. Caligiuri, C. D. Bloomfield and E. S. Lander, Science, 286, 
531-537, (1999). 

[3] T. S. Furey, N. Cristianini, N. Duffy, D. W. Bednarski, M. Schummer and D. Haussler, 
Bioinformatics, 16, 906-914, (2000). 

[4] M. Eisen, P. Spellman, P. Brown and D. Botstein, Proc. Natl. Acad. Sci. USA, 95, 
14863-14868, (1998). 

[5] U. Alon, N. Barkai, D. A. Notterman, K. Gish, S. Ybarra, D. Mack and A. J. Levine, Proc. 
Natl. Acad. Sci. USA, 96, 6745-6750, (1999). 

[6] L. Li, T. A. Darden, C. R. Weinberg and L. G. Pedersen, Comb. Chem. High Throughput 
Screen., 4, 727-739, (2001). 

[7] L. Li, C. R. Weinberg, T. A. Darden and L. G. Pedersen, Bioinformatics, 17, 1131-1142, 
(2001). 

[8] D. Venet, F. Pecasse, C. Maenhaut and H. Bersini, Bioinformatics, 17, S279-S287, (2001). 
[9] F. E. Grubbs, Technometrics, 11, 1-21, (1969). 
[10] G. L. Tietjen and R. H. Moore, Technometrics, 14, 583-597, (1972). 
[11] W. J. Dixon, Biometrics, 22, 74-89, (1953). 
[12] S. S. Shapiro and M. B. Wilk, Biometrika, 52, 591-611, (1965). 
[13] G. Kitagawa, Technometrics, 21, 193-199, (1979). 
[14] H. Akaike, 2nd International Symposium on Information Theory, 267-281, (1973). 
[15] T. Ueda, Japanese J. Appl. Stat., 25, 17-26, (1996). 
[16] T. H. Bo and I. Jonassen, Genome Biol., 3, research0017.1-11, (2002). 
[17] D. L. Massart, B. G. Vandeginste, S. N. Deming, Y. Michotte and L. A. Kaufman, Textbook 

(Data Handling in Science and Technology, Vol2). Elsevier Science, NY, (1988). 
[18] T. Tsunoda, T. Nakamura, K. Ishimoto, H. Yamaue, H. Tanimura, N. Saijo, K. Nishio, 

Anticancer Res., 21, 137-143, (2001). 
[19] H. Akaike, Ann. Inst. Statist. Math., 22, 203-217, (1970). 
[20] H. Akaike, Ann. Inst. Statist. Math., 30, 9-14, (1978). 
[21] Y. Sakamoto and H. Akaike, Ann. Inst. Statist. Math., 30, 185-197, (1978). 
[22] J. G. Thomas, J. M. Olson, S. J. Tapscott, L. P. Zhao, Genome Res., 11, 1227-1236, (2001). 
[23] T. Hastie, R. Tibshirani, M. B. Eisen, A. Alizadeh, R. Levy, L. Staudt, W. C. Chan, D. Botstein 

and P. O. Brown, Genome Biol., 1, 0002.1, (2000). 
[24] M. Takahashi, D. R. Rhodes, K. A. Furge, H. Kanayaam, S. Kagawa, B. B. Haab and B. T. 

The, Proc. Natl. Acad. Sci. USA, 98, 9754-9759, (2001). 
[25] A. Szabo, K. Boucher, W. L. Carroll, L. B. Klebanov, A. D. Tsodikov, A. Y. Yakovlev, Math. 

Biosci., 176, 71-98, (2002). 
[26] S. Dudoit, J. Friedlyand, T. P. Speed, Tech. Rep. 576, University of California, Berkeley, 

(2000). 
[27] K. Pogue-Geile, J. R. Geiser, M. Shu, C. Miller, I. G. Wool, A. I. Meisler and J. M. Pipas, Mol. 

Cell. Biol., 11, 3842-3849, (1991). 
[28] H. Kawana, J. Tamaru, T. Tanaka, A. Hirai, Y. Saito, M. Kitagawa, A. Mikata, K. Harigaya and 

T. Kuriyama, Am. J. Pathol., 153, 505-513, (1998). 
[29] M. L. Lacombe, X. Sastre-Garau, I. Lascu, A. Vonica, V. Wallet, J. P. Thiery and M. Veron, 

Eur. J. Cancer, 27, 1302-1307, (1991). 



Chem-Bio Informatics Journal, Vol. 3, No. 1, pp.30-45(2003) 

 45

[30] C. Lenander, J. K. Habermann, A. Ost, B. Nilsson, H. Schimmelpenning, K. Tryggvason and 
G. Auer, Anal. Cell. Pathol., 22, 201-209, (2001). 

[31] L. D. Greller and F. L. Tobin, Genome Res., 9, 282-296, (1999). 
[32] K. Kadota, R. Miki, H. Bono, K. Shimizu, Y. Okazaki, Y. Hayashizaki, Physiol. Genomics, 4, 

183-188, (2001). 
[33] R. Miki, K. Kadota, H. Bono, Y. Mizuno, Y. Tomaru, P. Carninci, M. Itoh, K. Shibata, J. 

Kawai, H. Konno, S. Watanabe, K. Sato, Y. Tokusumi, N. Kikuchi, Y. Ishii, Y. Hamaguchi, I. 
Nishizuka, H. Goto, H. Nitanda, S. Satomi, A. Yoshiki, M. Kusakabe, J. L. DeRisi, M. B. 
Eisen, V. R. Iyer, P. O. Brown, M. Muramatsu, H. Shimada, Y. Okazaki and Y. Hayashizaki, 
Proc. Natl. Acad. Sci. USA, 98, 2199-2204, (2001). 

[34] K. Kadota, S.-I. Nishimura, H. Bono, S. Nakamura, Y. Hayashizaki, Y. Okazaki and K. 
Takahashi, Physiol. Genomics, 12, 251-259, (2003). 

[35] M. R. Emmert-Buck, R. F. Bonner, P. D. Smith, R. F. Chuaqui, Z. Zhuang, S. R. Goldstein, R. 
A. Weiss and L. A. Liotta, Science, 274, 998-1001, (1996). 

[36] O. Kitahara, Y. Furukawa, T. Tanaka, C. Kihara, K. Ono, R. Yanagawa, M. E. Nita, T. Takagi, 
Y. Nakamura and T. Tsunoda, Cancer Res., 61, 3544-3549, (2001). 


