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INTRODUCTION

A planktonic larval phase is instrumental in disper-
sal of most subtidal and intertidal species (e.g.
Cowen & Sponaugle 2009). The spatial distribution of
settlement in larvae released from a given source is
known as the ‘dispersal kernel’ (e.g. Aiken et al.
2007), or ‘spatial kernel’ (to distinguish it from the
temporal kernel, i.e. the age distribution of settling
larvae; e.g. Chiswell 2011). Knowledge of the spatial
kernel is critical for the design of marine protected
areas (e.g. Shanks et al. 2003) or in developing a
response to harmful invasive species (e.g. Trakhten-
brot et al. 2005).

It is often assumed that ocean currents have a
Gaussian distribution; in that case, for a single value
of the larval period, solutions for the spatial kernel
are well known, analytic, and also Gaussian (e.g.
Largier 2003, Kinlan et al. 2005). Therefore, some
authors fit Gaussian distributions to unresolved
numerically simulated kernels (e.g. Mitarai et al.
2008). In reality, however, the larval period does not
have a single value; instead, there is a competency
period during which larvae can settle. The com -
petency period can range from minutes to >1 yr,
depending on species and envi ronmental conditions
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Late-stage phylosoma of spiny lobster Jasus sp. Larvae of
this genus have the longest known competency period
among invertebrate  larvae (12 to 24 mo), leading to con -
siderable variability in spatial scales of settlement.
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such as temperature, food or  substrate availability
(e.g. O’Connor et al. 2007). For example, larvae of the
bryozoan Bugula neritina can settle from 5 min to
30 h after spawning (Shanks et al. 2003), whereas the
competency period is from 30 to 60 d in sea urchins
Evechinus chloroticus (Walker 1984), and 12 to 24 mo
in rock lobsters Jasus edwardsii (Booth 2002).

The present analysis shows that if there is a
range in the duration of the larval period, the dis-
tribution of the spatial kernel is non-Gaussian,
even when the distribution of ocean currents is
Gaussian. When the range in larval period is short,
a Gaussian approximation for the kernel may be
adequate, but if the range is long or currents are
strong, the kernel can become significantly non-
Gaussian.

MODEL

The solutions presented here are for one-dimen-
sional flow, and consider the spatial distribution of
settlement for larvae released from a point source
into a Gaussian-distributed velocity field. Following
Chiswell (2011), the ocean velocity field is described
as containing a mean flow plus variability associated
with an eddy field. This variability is parameterised
in terms of an ocean eddy diffusivity, K.

The one-dimensional Lagrangian velocity, u (i.e.
the velocity seen by an individual larva), can be de-
scribed as a function of time, t, as a Markov 1 random
walk (e.g. Rupolo 2007) in the presence of a mean flow:

(1)

where u0 is the mean velocity, and u’ is the random-
walk eddy variability. This eddy variability is assumed
to be Gaussian-distributed, has a standard deviation
u1, and a Lagrangian decorrelation timescale TL (a
measure of the spectrum of the eddy processes which
lead to dispersal), so that K is the product of this
timescale multiplied by the variance of velocity (e.g.
Rupolo 2007):

(2)

The ocean can thus be described to first order by its
mean velocity and eddy diffusivity.

For a single value of larval period, τ, the distribu-
tion of displacement at settlement, i.e. the spatial ker-
nel S(x) �τ is expected to be Gaussian (Largier 2003,
and references therein):

(3)

where x is displacement, and x and σx are the mean
and SD of displacement, respectively. The integral of
the spatial kernel is 1, so that it can be regarded as a
probability density function of larval settlement.

The mean displacement is the product of mean
velocity and larval period:

(4)

The variance in the distribution increases linearly
in time, proportional to eddy diffusivity and larval
period:

(5)

Eqs. (3 to 5) thus describe the spatial kernel for a
larval period τ in an ocean defined by u0 and K.

When the larval period ranges from T1 (earliest set-
tlement) to T2 (latest settlement), the dispersal kernel
is the sum of kernels over the range T1 to T2. By sub-
stituting Eq. (5) into Eq. (3) and integrating, the un -
normalised dispersal kernel can be written as

(6)

where the settling rate γ(τ) takes into account both
the natural distribution in larval periods and mortality.

RESULTS

Eq. (6) cannot be solved analytically, but can be
integrated numerically, and Fig. 1 illustrates the so -
lution for hypothetical larval periods that span 2 to
12 d in an ocean where u0 = 0.1 m s−1, u1 = 0.03 m
s−1, and TL = 4 d. These values are realistic for many
parts of the continental shelf (e.g. the Southland
 Current, New Zealand; Chiswell 1996) and corre-
spond to an ocean having K~ 300 m2 s−1. Spatial
kernels S(x) �2 and S(x) �12 were calculated for the
minimum and maximum of the larval period, respec-
tively, along with 2 estimates of the kernel calcu-
lated over the full period, S(x) �2:12. The estimates of
S(x) �2:12 were calculated for both uniform settling
rate (γ (t) = γ0) and for a rate largely determined by
exponential  mor tality (γ (t) = γ0exp(–t 2/m)), where
the last arri vals  settle at 10% of the rate of the first
arrivals (i.e. m = (T2 – T1) / ln(10)). Fig. 1 illustrates
that later settlers contribute proportionately more
settlement at both tails of the kernel than do early
settlers. The net effect is that S(x)�2:12 is positively
skewed. Ad ding mortality skews the kernel further
toward  earlier arrivals, but even with the severe
mortality illustrated here, the kernels are signifi-
cantly non-Gaussian.

u t u u t( ) ’( )= +0

K u T= 1
2

L

S x
x

x x

x( )

( )

τ πσ
σ=

⎛

⎝
⎜

⎞

⎠
⎟

− −
1

2

2

22

σ τx K2 2=

S x
K

x u

KT T

T

T
( ) exp( )

( )
:1 2 1

2 1

4 4
0

2

=
− −

γ τ
π τ

τ

τ
τd∫∫

x u= 0τ

204



Chiswell: Non-Gaussian larval dispersal

Fig. 2 shows spatial kernels calculated for the same
ocean conditions for 3 benthic species: red snapping
shrimp Alpheus immaculatus (larval period of 7 to
14 d; Shanks et al. 2003), grapsid crab Hemigrapsus
penicillatus (15 to 55 d; Shanks et al. 2003) and red
rock lobster Jasus edwardsii (12 to 24 mo; Booth

1994). As in Fig. 1, kernels are shown for uniform
 settling and for high mortality over the larval period.
Also shown are Gaussian spatial kernels, S(x)–

T, com-
puted using the mean larval period. Coefficients of
fit, cof, are given for each spatial kernel S(x) �T1:T2
where cof is defined by the normalised SD of the
 difference from the ‘mean’ kernel: 

cof = SD(S(x) �T1:T2
– S(x)~

T )/SD(S(x) �T1:T2
) (7)

Fig. 2 illustrates that there is a wide range in how
well a Gaussian distribution approximates the spatial
 kernels. Spatial kernels for Alpheus immaculatus are
similar to the estimate made using the mean period
(10.5 d), regardless of mortality, with coefficients of
fit of ~0.3 to 0.5. Kernels for Hemigrapsus penicillatus
and Jasus edwardsii have coefficients of fit of 1.4 and
2.7, respectively, and illustrate that a Gaussian ker-
nel is inadequate for these species. For a large range
in larval period, the kernel approaches a uniform
 distribution.

I investigated how the kernel distribution varies
with larval period and ocean parameters, assuming
uniform settling (γ = γ0 in Eq. 6) for a wide range of
ocean conditions (u0 ranging from 0 to 0.2 m s−1, u1

ranging from 0.05 to 0.2 m s−1) and mean larval peri-
ods from 1 to 100 d, with competency periods of 1 to
100 d. Fig. 3 shows cof plotted as a function of
non-dimensional competency period, Δ~

T = (T2 – T1)/
[(T2 + T1)/2], and the ratio of mean to eddy ocean
speed, u0/u1, for 2 values of T1 (1 and 10 d). The sur-
faces of cof are discrete, and functions of T1. Fig. 4
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Fig. 1. Dispersal kernels (settlement locations for larvae
 released at x = 0) for an ocean with mean velocity u0 = 0.1 m
s−1, SD u1 = 0.03 m s−1, and Lagrangian timescale TL = 4 d.
Kernels S(x) �2 and S(x) �12 (dashed lines) for larvae having
larval periods of 2 and 12 d, respectively. Kernels S(x) �2:12

(see Eq. 6) for larvae having a competency period of 2 to
12 d. Estimates of S(x) �2:12 calculated for uniform settling rate
(black line), and for a rate largely determined by exponen-
tial mortality (gray line). Kernels are normalised to unit area
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Fig. 2. Larval dispersal kernels S(x) �T1:T2
, calculated for an ocean with mean velocity u0 = 0.1 m s−1, SD u1 = 0.03 m s−1, and La-

grangian timescale TL = 4 d, for (A) red snapping shrimp Alpheus immaculatus (larval competency period T1 = 7 to T2 = 14 d),
(B) grapsid crab Hemigrapsus penicillatus (15 to 55 d); and (C) red rock lobster Jasus edwardsii (12 to 24 mo). The 2 estimates
of S(x) �T1:T2

for each species were calculated for no larval mortality (black line) and exponential mortality (gray line). Dashed
lines are  kernels, S(x)–

T, based on the mean larval period. Coefficients of fit, cof, are the normalised SD of difference between 
S(x) �T1:T2

and S(x)–
T, where m denotes kernels calculated assuming larval mortality
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shows cof in more detail for T1 = 10 d, contoured as a
function of the competency period (T2 – T1) and the
ratio u0/u1. The kernels become less Gaussian as the
minimum larval period, T1, or the range, Δ~

T, increase.

The kernels also become progressively less Gaussian
as the ratio of mean to eddy flow (u0/u1) in creases.
Since the eddy diffusivity depends on the strength
of the eddy field (Eq. 2), this demonstrates that the
 kernels become less Gaussian as K de creases.

In principle, one could use some a priori criterion to
choose a critical value of cof and determine whether
estimating the spatial kernel from the mean larval
period is acceptable. Based on Fig. 2, this critical
value of cof is about 0.2, and Fig. 4 shows that for T1 =
10 d, when the mean flow is small compared to the
eddy variability, the esti mate of the kernel using the
mean larval period is acceptable for a wide range of
larval periods. However, when the eddy variability in
the ocean is small, compared to the mean flow, the
kernel becomes significantly non-Gaussian even for
short competency periods.

DISCUSSION

Many common species have larval competency
periods in the 1 to 60 d range (Shanks et al. 2003),
and Fig. 2 illustrates that for some realistic ocean
conditions and competency periods, the spatial ker-
nel is likely to be sufficiently non-Gaussian to war-
rant explicitly calculating it over the range of larval
 periods. As an example, the SD of the kernel for
Hemigrapsus penicillatus is 108 km when calculated

by integrating over the entire compe-
tency period, compared to 43 km when
calculated using the mean period. 

Sensitivity analysis as illustrated in
Figs. 3 & 4 can determine whether a
Gaussian approximation is adequate for
any given problem. However, Eq. (6)
is easy to compute, and in general it is
not necessary to map cof in parameter
space. The sensitivity analysis has been
done here mainly to show that kernels
become less Gaussian as either the
mean larval period or the range in peri-
ods increase, or if the eddy variability
decreases. This last point is perhaps
counter-intuitive because one might
expect kernels to become more non-
Gaussian as the ocean becomes more
dispersive (in fact, when all other vari-
ables are held constant, as K increases,
the spread in S(x) �T1:T2

increases, but the
kernel becomes more Gaussian).

Figs. 3 & 4 show that in some cases,
particularly when eddy variability is
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small compared to mean current velocity, there
needs only to be a few days range in the competency
period before the spatial kernel becomes signifi-
cantly non-Gaussian.

The present study has treated age distribution in
larval settlement (γ in Eq. 6) with 2 simple functions
because of the difficulty of describing a general func-
tion for mortality and age-dependent metamorpho-
sis. In some cases, it may be that larval mortality is so
high that there are very few late settlers and one can
reasonably compute spatial kernels using only the
earliest settlers. But in other cases, seasonality in
metamorphosis from the larval to post-larval stages
may well outweigh mortality in the later settlers. For
example, Booth (2002) shows that New Zealand-
wide settlement of Jasus edwardsii occurs steadily
over several months in autumn and early winter, but
then peaks during the following 3 months.

This study has treated the ocean with a simple
1-dimensional model having homogeneous statistics.
In particular, the eddy diffusivity has been assumed
to be constant. In reality, both the Eulerian mean flow
and eddy variability will be spatially variable, so that
the Lagrangian velocity statistics are heterogeneous.
The net result is that eddy diffusivity becomes scale
dependent, and this is reflected in observations of K
that vary from 10−1 m2 s−1 for scales of about 10 m
(e.g. Bogucki et al. 2005) to 104 m2 s−1 for the tropical
open ocean (e.g. Bauer et al. 2002). The value of K
used here (300 m2 s−1) is typical for the continental
shelf (e.g. Li & Cai 2011, Stachelhaus et al. 2012).
From a larval dispersal perspective, if the diffu -
sivity increases significantly during larval compe-
tency, kernels are likely to be slightly more Gaussian
than shown here.

Non-Gaussian kernels may have causes other
than a long competency period. For example, in a
study of dispersal along the Chilean coast using
realistic coastline and numerical models and a sin-
gle 30 d  larval period, Aiken et al. (2007) found
considerable departure from the expected Gaussian
dispersal kernels leading to ‘significant variation
in the spatial pattern of connectivity among local
sites, with some acting as net sources and some as
net sinks’. The likely causes of these non-Gaussian
distributions are spatial variations in the Eulerian
flows (both mean and eddy variability). The results
presented here show that the locations of sources
and sinks determined by Aiken et al. (2007) could
well depend on the larval period; if that is so,
interpretations of  connectivity that are based on
a single value for the larval period will be mis -
leading.

For many species, spatial kernels will be different
when calculated using the full competency period
instead of the mean larval period. Prior to numerical
simulations, Eq. (6) can be used to determine whether
using a realistic range in larval periods is necessary.
Lagrangian studies (individual based modelling) are
well suited to such an approach by compiling settle-
ment locations over the range of larval periods.

Acknowledgements. I thank David Bowden for discussions
that inspired this study, and Graham Rickard for critical
comments. This study was funded by the Foundation for
Research, Science and Technology, New Zealand, Contract
Nos. C01X0223 and C01X0501.

LITERATURE CITED

Aiken CM, Navarrete SA, Castillo MI, Castilla JC (2007)
Along-shore larval dispersal kernels in a numerical
ocean model of the central Chilean coast. Mar Ecol Prog
Ser 339: 13−24

Bauer S, Swenson MS, Griffa A (2002) Eddy mean flow
decomposition and eddy diffusivity estimates in the trop-
ical Pacific Ocean. 2. Results. J Geophys Res 107: 3154
doi 10.1029/2000JC000613

Bogucki DJ, Jones BH, Carr ME (2005) Remote measure-
ments of horizontal eddy diffusivity. J Atmos Ocean
Technol 22: 1373−1380

Booth JD (1994) Jasus edwardsii larval recruitment off the
east coast of New Zealand. Crustaceana 66: 295−317

Booth JD (2002) Early life history, recruitment processes and
settlement of spiny lobsters. Fish Sci 68: 384−389

Chiswell SM (1996) Variability in the Southland Current,
New Zealand. NZ J Mar Freshw Res 30: 1−18

Chiswell SM (2011) Temporal kernels of island connectiv-
ity: a generalised approach. Aquat Biol 12: 205−214

Cowen RK, Sponaugle S (2009) Larval dispersal and marine
population connectivity. Annu Rev Mar Sci 1: 443−466

Kinlan BP, Gaines SD, Lester SE (2005) Propagule dispersal
and the scales of marine community process. Divers
 Distrib 11: 139−148

Largier JL (2003) Considerations in estimating larval disper-
sal distances from oceanographic data. Ecol Appl 13: 
71−89

Li C, Cai WJ (2011) On the calculation of eddy diffusivity in
the shelf water from radium isotopes:  high sensitivity to
advection. J Mar Syst 86: 28−33

Mitarai S, Siegel DA, Winters KB (2008) A numerical study
of stochastic larval settlement in the California Current
system. J Mar Syst 69: 295−309

O’Connor MI, Bruno JF, Gaines SD, Halpern BS, Lester SE,
Kinlan BP, Weiss JM (2007) Temperature control of larval
dispersal and the implications for marine ecology, evo -
lution, and conservation. Proc Natl Acad Sci USA 104: 
1266−1271

Rupolo V (2007) Observing turbulence regimes and La -
grangian dispersal properties in the oceans. In:  Griffin
DA, Kirwin AD, Mariano AJ, Ozgokmen TM, Rossby R
(eds) Lagrangian analysis and prediction of coastal and
ocean dynamics. Cambridge University Press, Cambridge,

207



Aquat Biol 16: 203–208, 2012

p 231–274
Shanks AL, Grantham BA, Carr MH (2003) Propagule dis-

persal distance and the size and spacing of marine
reserves. Ecol Appl 13: 159−169

Stachelhaus SL, Moran SB, Ullman DS, Kelly RP (2012)
Cross-shelf mixing and mid-shelf front dynamics in the
mid-Atlantic Bight evaluated using the radium quartet.

J Mar Res 70: 141−172
Trakhtenbrot A, Nathan R, Perry G, Richardson DM (2005)

The importance of long-distance dispersal in biodiversity
conservation. Divers Distrib 11: 173−181

Walker MM (1984) Larval life span, larval settlement, and
early growth of Evechinus chloroticus (Valenciennes).
NZ J Mar Freshw Res 18: 393−397

208

Editorial responsibility: Christine Paetzold, 
Oldendorf/Luhe, Germany

Submitted: January 11, 2012; Accepted: July 30, 2012
Proofs received from author(s): August 26, 2012


	cite2: 
	cite3: 
	cite4: 
	cite5: 
	cite6: 
	cite7: 
	cite8: 
	cite9: 
	cite10: 
	cite11: 
	cite12: 
	cite13: 
	cite14: 
	cite15: 
	cite16: 
	cite17: 
	cite18: 
	cite19: 


