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ABSTRACT: In the context of growing anthropogenic disturbances that deeply alter marine
coastal ecosystems, various management tools are used to protect biodiversity, such as fishing
gear limitations, fishing quotas, protected areas or the creation of artificial reefs (ARs). In contrast
to the other management tools, ARs require a modification of natural habitats. We used under-
water visual censuses to investigate the effect of habitat modification on the structure of fish com-
munities by comparing a natural reef (NR) to ARs with different habitat complexity. Different fish
assemblage descriptors were used to assess species- and functional- and community-level aspects
of the assemblages. ARs were rapidly colonized by adult fishes and presented community compo-
sitions different from that of the NR. Fish densities and functional richness were higher in the ARs
than in the NR. Small isolated artificial structures, such as culverts and box-culverts, had different
fish community compositions than more extended and complex structures, demonstrating the
effect of structural habitat complexity on fish assemblages. Fish density was higher in small struc-
tures, most likely due to habitat isolation and patchiness. This study indicates that ARs which are
located along sandy coastal areas with few rocky habitats and under high river nutrient influence
are a suitable habitat for rocky coastal fish communities. Nevertheless, due to higher habitat
complexity and lower fishing pressure on ARs, fish communities of an AR functionally differ from
those of a NR. Further research is necessary to understand how these differences act on the
properties of the ecosystem as well as on local fisheries.
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INTRODUCTION that have deeply altered ecosystems (Curran et al.

2002, Worm et al. 2006), notably marine ecosystems

World population growth and consumption habits (Cole 2005), through pollution, habitat destruction,
have produced growing anthropogenic disturbances introduction of species, climate change and resource
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overexploitation. These disturbances are particularly
concentrated along coastal areas, where more than
50 % of the world's population lived at the turn of the
century and more than 75% are expected to live by
2020 (Burke et al. 2001). Coastal areas provide many
ecosystem goods and services, e.g. provisioning, reg-
ulating, cultural and supporting services (UNEP
2006). Despite previous efforts, coastal ecosystems
are still considered threatened (Jackson 2008), and
scientists and stakeholders are looking for effective
management strategies. Artificial reefs (ARs) are one
of the management tools currently employed, mainly
(1) to offset marine resource declines and enhance
fishing yields (Grossman et al. 1997, Jensen et al.
2000, Seaman & Jensen 2000, Relini et al. 2008), par-
ticularly in the Mediterranean Sea (Baine & Side
2003), but also (2) to restore damaged habitats (Pick-
ering et al. 1999, Abelson 2006, Reed et al. 2006) and
(3) mitigate the impact of wastewater (Antsulevich
1994, Leihonen et al. 1996) and aquaculture (Angel &
Spanier 2002, Tsemel et al. 2006, Gao et al. 2008).
ARs modify the natural habitat and can directly
impact coastal ecosystem processes.

ARs are widely used across the world's oceans
(Brickhill et al. 2005) and have been studied for sev-
eral decades, notably in temperate waters (Russell
1975, Burchmore et al. 1985, Anderson et al. 1989). In
the Mediterranean Sea, the invertebrate and fish
communities of some ARs have been monitored for
up to 10 yr (Relini et al. 2002, Nicoletti et al. 2007,
Santos & Monteiro 2007). Most of these studies have
focused on the analysis of species diversity, density,
abundance, biomass, catch per unit effort (CPUE),
relative size and community composition to compare
fish or invertebrate communities between artificial
and natural habitats (Santos & Monteiro 1998, Arena
et al. 2007, Dupont 2008). Only some of these studies
have included the functional attributes (e.g. vertical
distribution) of fishes when comparing fish communi-
ties between ARs and natural habitats (e.g. Santos &
Monteiro 2007).

According to Hooper et al. (2005), the functional
characteristics of species are an important compo-
nent of biodiversity and ecosystem properties. Com-
plementing traditional species diversity measures,
functional diversity (FD) measures allow researchers
to account for functional differences and niche com-
plementarity among the species of a community
(Tilman 2004), thus better reflecting the ecosystem
properties. As the role occupied by many species
within an ecosystem is rarely known, FD indices
computed from the biological traits of species can be
used as a proxy for how species interact with each

other and their environment. Compared with the
single investigation of taxonomic diversity, the study
of functional trait-based metrics is particularly suited
to the study of community responses to disturbances
(Mouillot et al. 2013b). FD provides new insights into
ecosystem functioning and has already been used
to investigate communities in highly diverse eco-
systems, such as coral reef fishes, alpine plants and
tropical trees (Mouillot et al. 2013a).

The aim of this study was to determine if ARs func-
tion as a surrogate for natural reefs (NRs) We (1) com-
pared fish assemblages of ARs with those of a natural
rocky reef; (2) investigated interannual variability of
fish assemblages during the first years of immersion
of the monitored ARs; and (3) evaluated the effect of
the complexity of AR habitat structures by comparing
fish assemblages associated with 3 different AR
types. As fish assemblage descriptors, we considered
species diversity, FD, total density (ind. m™2) and rel-
ative community size structure and composition
(weighted by density) to account for species-, func-
tional- and community-level properties of fish assem-
blages. By investigating different levels of communi-
ties we aimed to improve our understanding of the
ecological processes related to habitat modification
and complexity which may assist in future manage-
ment and conservation strategies.

MATERIALS AND METHODS
Study site

The AR system of Leucate-Le Barcares was im-
mersed in 2004 along the French Mediterranean
coast in the Gulf of Lion, close to the Spanish border
(42°51'N, 3°03'E; Fig. 1). Although the Mediter-
ranean region is generally oligotrophic, the Gulf of
Lion is a mesotrophic area due to nutrient inputs from
the Rhoéne river (Bosc et al. 2004). The studied AR
system consists of 6 reef groups located between the
15 and 30 m isobaths along a sandy coast (Fig. 1).
Each of these reef groups consists of 28 reef sets of 3
different types (Fig. 2): isolated concrete boxes (B),
isolated concrete culverts (C) and chaotic heap-type
reefs (H). The latter are composed of concrete slabs,
beams and culverts as well as smaller elements such
as shuttering blocks. The reef sets are 50 m apart,
with a group occupying a total area of 400 x 300 m
(0.012 ha) (Koeck et al. 2011). The ARs are mainly
surrounded by soft sediment bottoms. Cape Leucate,
ca. 8 km north from the center of the studied AR sys-
tem (Fig. 1), extends over 3 km of coastline and is
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Fig. 1. Study area and sampling sites. Sampling was per-

formed at the natural reef at Cape Leucate (CL) and at 2 arti-

ficial reef (AR) sites (AR-Near and AR-Far), named accord-
ing to their distance from the natural reef

composed of rocky boulders and a rocky plateau
reaching a maximum depth of 20 m. Otherwise, the
next closest extended rocky areas are located
approximately 35 km south (Cbéte Vermeille) and
approximately 55 km north (Cape Agde).

Data sampling
Underwater visual census

Sampling was conducted by SCUBA diving in the
summer of 2006, 2007 and 2009 at 2 of the 6 AR
groups and at Cape Leucate, the closest NR. These 3
locations presented similar depths of approximately
17 m, with the nearest AR group (AR-Near) at a dis-
tance of 8 km from Cape Leucate and the farthest
(AR-Far) located 11 km from Cape Leucate and 3 km
from AR-Near (Fig. 1). The 3 different types of AR

2 — Box culvert (B)

1 - Culvert (C)

12m

Fig. 2. Three-dimensional sketches and dimensions of the 3

different artificial reef (AR) habitat types comprising the

Leucate-Le Barcares ARs. The figure of the chaotic heap-

type reef is taken from an image-based 3D reconstruction;

the reef is composed of various elements of different sizes

such as concrete slabs, beams and box culverts as well as
smaller elements, such as shuttering blocks

sets were sampled from each AR group to account for
the effect of habitat complexity on the fish communi-
ties. Sampling was skipped in 2008 due to bad
weather conditions and low horizontal visibility close
to the bottom, which introduced a bias in fish counts
(Bozec et al. 2011). An underwater visual census
(UVC) is a non-destructive monitoring technique that
allows repeated observations of fish assemblages,
and is thus a particularly well-suited method for
monitoring fish colonization of ARs.

During the UVC, fish species were identified and
counted, and individual relative size was estimated
according to the following categories (Harmelin-
Vivien & Harmelin 1975): juvenile (young of the
year), Al small adults (<1/3 of maximum total length;
MTL), A2 medium adults (1/3 to 2/3 of MTL) and A3
large adults (>2/3 of MTL). At the NR, 3 randomly
selected transects of 40 x 2 m (80 m?) were created
according to the census methods described in
Harmelin-Vivien et al. (1985). In 2009, only 2 repli-
cates were performed on the NR due to high water
turbidity. For the ARs, the visual census method was
the same, except that, given the specific design of the
AR structures, a complete inventory of the different
AR types was performed. Thus, a visual census was
performed on 3 randomly selected reef sets of each
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AR habitat type (B, C and H) and for each location
(AR-Near and AR-Far). The census surfaces and
sampling efforts for the NRs and ARs are presented
in Table 1. The census length of the NR was chosen
to have approximately the same sampling surface as
that of the largest AR type (H), with a standardized
census time of 35 min.

Species functional groups

An a priori selection of functional traits was made
based on the literature for the FD calculation. When
data were missing, information was completed with
FishBase (Froese & Pauly 2012). Fish species were
categorized according to 4 qualitative functional
traits based on the literature (Tables 2 & 3). Feeding
habits, vertical distribution and substrate prefer-
ences were chosen as they are functionally relevant
and used in most FD analyses of marine fishes
(Brind'Amour et al. 2009, Vinagre et al. 2011). Daily
movement range was added to the species—trait
matrix because it is a relevant trait in the context of
the colonization of ARs and NRs of different architec-
tural complexity. The attributes of a given trait were
considered to be exclusive (i.e. for a given trait, only
1 attribute is possible per species).

Data analysis
Species diversity indices

To account for the bias induced by notoriously
cryptic fish species (Willis 2001), Blennidae and
Gobidae were removed from the analyses. Although
cryptic species represent an important component of
reef food webs, and occasionally of local fish diver-
sity and reef productivity (Ackerman & Bellwood
2002, Depczynski & Bellwood 2003), UVC counts
underestimate the diversity and density of cryptic
species by up to 91% (Willis 2001). To account for
cryptic species diversity and density, a high replicate
survey (MacNeil et al. 2008) and extra transects
solely dedicated to counting these species would
have been necessary. Margalef's species diversity
index dy; (Margalef 1958) and Pielou's evenness
index J’ (Pielou 1966) were calculated for each sam-
ple. Margalef's index was chosen because it attempts
to compensate for unequal sample size (i.e. the differ-
ent sampling surfaces of the different ARs and the
NR). Nevertheless, direct comparisons of species
diversity must be made with caution due to the asym-

Table 1. Sampling design. The number of samples corres-

ponds to the 3 sampled years (2006, 2007 and 2009) com-

bined with 3 samples per year, except for the natural reef
where only 2 samples were made in 2009

Reef Location Habitat type Samples Surface
type (m?)
Artificial AR-Near Box culvert (B) 9 9.44
Culvert (C) 9 4.56
Chaotic heap (H) 9 84.00
Artificial AR-Far Box culvert (B) 9 9.44
Culvert (C) 9 4.56
Chaotic heap (H) 9 84.00
Natural CL Rocky boulders (NR) 8 80.00

Table 2. Categories for the 4 selected functional guilds

Functional Code Definition
trait
Feeding H  Herbivorous fish
Ov  Omnivores with a preference
for vegetable material
Oa Omnivores with a preference
for animal material
Cd Carnivores with a preference
for decapodes and fish
Cf  Carnivores with a preference for
fish and cephalopods
Vertical B Benthic fish, living in or on
distribution the substratum
D Demersal fish, living in the water
column near the bottom
P Pelagic fish, living in the water
column
Substratum R Rocky substratum / coralligenous
preference substratum
V  Vegetated substrate (seaweeds)
S Soft substrate (mud, sand, pebble)
N  No substrate preference
Daily move- F Fine scale (<1 m)
mentrange L  Local scale (<100 m)
R Regional (<1 km)
B  Broad scale (>1 km)

metrical sampling design. Sample- and individual-
based species accumulation curves (Chao 1 esti-
mates) were computed using EstimateS software
(Colwell 2006).

Functional diversity indices
Two aspects of FD, functional richness and even-

ness, were assessed to study the functional differ-
ences of fish communities. These 2 indices were com-
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Table 3. Species-traits matrix of fishes present at the artificial (AR-Near, AR-
Far) and natural reef (NR) locations. AR corresponds to AR-Near and AR-Far
pooled together. Fee = feeding habits; VertD = vertical distribution; SubP =
substrate preference; DMR = daily movement range. Missing data was com-
pleted with FishBase (Froese & Pauly 2012). See Table 2 for functional codes

Species NR AR AR- AR- Fee VertD SubP DMR Source
Near Far
Boops boops x x x Ov D N R abe
Chromis chromis X x o 0x Oa D R L abc
Conger conger x x x x Cf B R L acd
Coris julis X X x Oa D R L bee
Ctenolabrus rupestris x X x x Oa D R L ¢
Dicentrarchus labrax x x x Cd D N B '
Diplodus annularis x x x Oa D vV L cghb
Diplodus cervinus x Oa D R R M
Diplodus sargus x x x x Oa D R R beikl
Diplodus vulgaris X X X x Oa D R R  beim
Mullus barbatus x x x x Oa B S R aben
Oblada melanura x x x Oa D R R abc
Pagellus acarne X % Oa D S R Pe
Pagellus erythrinus X x Oa D S R ¢
Phycis phycis X X X Cf B R L oac
Pomadasys incisus X x x Oa D R R P4
Sarpa salpa X % H D V. R brost
Sciaena umbra x x Cd D R L abecuv
Scorpaena notata X X x Oa B R F &
Scorpaena porcus X X x x Cd B R F abex
Serranus cabrilla x X X x Oa D R F  bey
Serranus hepatus X X x Oa D S |
Sparus aurata x X Oa D N R otF
Spicara maena X x Oa D \% R &
Spicara smaris x x Oa D v R act
Spondyliosoma X x x Oa D N R ¢
cantharus
Symphodus x Oa D R L abe
mediterraneus
Symphodus X Oa D \ L @
melanocercus

Trachurus trachurus
Trisopterus capelanus

¢Harmelin (1987),

b Garcia-Charton & Pérez-Ruzafa

(2001),

¢ Stergiou & Karpouzi (2001),

dPita & Freire (2011),
¢Palmer et al. (2011),
fRogdakis et al. (2010),
9Tzanatos et al. (2008),
"March et al. (2011),
'Derbal & Kara (2006),
J Abecasis et al. (2009),
k¥D'Anna et al. (2011),
'Koeck et al. (2013),
m Al6s et al. (2012),
"Machias et al. (1998),
°Markle (1982),

x Cd P N B b
x Oa D N R i

P Chakroun-Marzouk & Ktari (2006),
9Fehri-Bedoui & Gharbi (2008),
"Méndez-Villamil et al. (2001),
*Jadot et al. (2006),

! Abecasis et al. (2012),

“La Mesa et al. (2008),

v Alés & Cabanellas-Reboredo (2012),
W Scarcella et al. (2011b),

*Scarcella et al. (2011a),

Y Al6s et al. (2011),

*Labropoulou et al. (1998),

¥ Chaoui et al. (2006),

¥ Abecasis & Erzini (2008),

$ Cetinic et al. (2011),
** Alonso-Fernandez et al. (2008),
¥ Reubens et al. (2011),

puted using the same method. From the qualitative
species-trait matrix, a Gower distance matrix was
computed, which was then analyzed through a prin-

cipal coordinate analysis (PCoA). The
axes resulting from this PCoA were
used as the new traits to compute the
above-mentioned FD indices. From a
geometrical point of view, the func-
tional community trait space can be
represented by ‘a multidimensional
space where the axes are functional
traits along which species are placed
according to their functional trait
values' (Mouillot et al. 2013b, p. 167).
Here, species and FD indices were
chosen to be mathematically inde-
pendent, and provide complementary
information on the biodiversity of fish
assemblages (Lyashevska & Farns-
worth 2012). Functional richness was
assessed through the functional dis-
persion index (FDis) (Laliberté & Le-
gendre 2010), which corresponds to
the mean distance of a ‘species’ to the
centroid of the community in the com-
munity trait space. FDis accounts for
not only the trait space filled by a
community (convex hull volume), but
also dispersion and species relative
abundance. Functional evenness was
assessed by FEve (Villéger et al. 2008),
which calculates the number of spe-
cies possessing a similar combination
of functional traits weighted for abun-
dance. In other words, FEve increases
if abundance or functional distance
(i.e. the distance between species
inside the functional community trait
space) is more evenly distributed
among species. These multidimen-
sional FD indices were calculated for
each sample of the dataset using
the GPL software R (R Development
Core Team 2012) and the FD package
(Laliberté & Legendre 2010).

Uni- and multivariate analyses

The variability in total density, spe-
cies diversity and evenness, func-
tional dispersion and evenness and
relative community size structure

were formally examined across years, reef types (AR
vs. NR), locations (AR-Near, AR-Far, CL: Cap Leu-
cate) and habitat type (ARs: B, C and H reefs; NR)
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with univariate PERMANOVA. An asymmetrical
design was used, with all factors considered fixed.
The 'Location’ factor was considered nested in reef
type (‘Reef’), and the ‘Habitat’ factor nested in 'Loca-
tion'. A similarity matrix based on the Euclidean dis-
tance of untransformed species and FD indices and
the square-root transformed total density were gen-
erated for the analyses. For each term of the model,
p-values were obtained with 9999 permutations of
residuals under a reduced model and Type III sums
of squares. Pair-wise tests were performed for the
terms of the model where significant differences
were revealed. When only a small number of permu-
tations was possible, a Monte Carlo asymptotic p-
value was used instead of a permutation p-value
(Anderson & Robinson 2003).

Variability in the fish community composition
(weighted by density) was also examined across
years, locations and habitat type by a PERMANOVA
performed on a Bray-Curtis similarity matrix, using
the same design as for the univariate analysis. Den-
sities were square-root transformed prior to data
analysis. A significance threshold of 0.05 was used
in both univariate and multivariate analyses. A sim-
ilarity percentage analysis (SIMPER) was conducted
to identify the contribution of each species to the
community composition dissimilarities among reef-
type and habitat type. For visualization of the multi-
variate patterns among habitat types, MDS plots
based on the Bray-Curtis similarity matrix were
generated. PERMANOVA, SIMPER analyses and
MDS plots were conducted with the Primer software
and the PERMANOVA add-on (Clarke & Warwick
2001).

RESULTS
Species diversity

None of the species accumulation curves reached
asymptotic levels of species richness in any of the
habitat types (Fig. 3). A large variation in sampled
individuals was noted among habitats, varying
from 226 fishes for the NR to 3912 fishes for H at
AR-Near (Fig. 3). On the sample-based species
accumulation curves, the accumulation curves from
the NR and different ARs were all grouped, and
showed no differences in species richness among
the natural and different AR habitats (Fig. 3).
Species diversity was significantly different only
among the artificial habitat types (Table 4) due
to higher diversity at H than at B for AR-Near

40
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Fig. 3. Sample- and individual-based species accumulation

curves (Chao 1 estimate) of the natural reef (NR) and the 3

different habitat structures (chaotic heaps H, culvert reefs C,

box-culvert reefs B) of the 2 artificial reef locations (near and

far). Dots represent the mean species richness and the error-
bars the standard deviation

(Fig. 4). There were no differences in species
diversity between the ARs and the NR (Table 4).
Species evenness was significantly higher at the
ARs (0.21 + 0.19) than the NR (0.03 + 0.03), and
significantly higher at AR-Near than at AR-Far.
Significant differences were also noted between
the different artificial habitat types and locations
in different years (Table 4). Pair-wise tests showed
that evenness was significantly higher on C than
on H for the AR-Near location, and that evenness
was significantly higher in 2009 than in 2006 for
the same location. For AR-Far, evenness was sig-
nificantly higher in 2006 than in 2007 and 2009.
No differences in evenness were observed between
years for the NR location (Fig. 4).
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Table 4. Univariate 3-way PERMANOVA results for (a) Margalef's species
diversity, (b) Pielou's species evenness, (c) functional dispersion, (d) functional
evenness data and (e) density of fish communities. *p < 0.1, **p < 0.01, ***p <

0.001
Source df MS F P
(a) Species diversity
Year 2 0.3643 2.3967 0.0993
Reef 1 0.0007 0.0046 0.939
Location (Reef) 1 0.5529 3.6373 0.0617
Year x Reef 2 0.295 1.9405 0.1634
Habitat (Location [Reef]) 4 0.457 3.0068 0.0322°*
Year x Location (Reef) 2 0.2049 1.348 0.2776
Year x Habitat (Location [Reef]) 8 0.2772 1.8237 0.0971
Residuals 41 0.152
(b) Species evenness
Year 2 0.0008 0.0424 0.9564
Reef 1 0.2196  11.15 0.0013 **
Location (Reef) 1 0.1443 7.324 0.0082 **
Year x Reef 2 0.0049 0.2469 0.7744
Habitat (Location [Reef]) 4 0.0671 3.4052 0.0189 *
Year x Location (Reef) 2 0.2517 12.778 0.0001 ***
Year x Habitat (Location [Reef]) 8 0.0154 0.7807 0.6249
Residuals 41 0.0197
(c) Functional dispersion
Year 2 0.0002 0.0207 0.9788
Reef 1 0.1512  15.645 0.0004 ***
Location (Reef) 1 0.0534 5.5223 0.0247 *
Year x Reef 2 0.0057 0.5919 0.5621
Habitat (Location [Reef]) 4 0.0058 0.6027 0.6729
Year x Location (Reef) 2 0.005 0.514 0.5917
Year x Habitat (Location [Reef]) 8 0.0045 0.4694 0.8726
Residuals 41 0.0097
(d) Functional evenness
Year 2 0.029 2.6341 0.0801
Reef 1 0.0435 3.9576 0.0543
Location (Reef) 1 0.0174 1.5854 0.2154
Year x Reef 2 0.0441 4.0146 0.028 *
Habitat (Location [Reef]) 4 0.0078 0.7113 0.594
Year x Location (Reef) 2 0.0228 2.0747 0.1359
Year x Habitat (Location [Reef]) 8 0.0456 4.1473 0.001 **
Residuals 41 0.011
(e) Density (ind. m™?)
Year 2 0.318 0.219 0.8064
Reef 1 44.046 30.328 0.0001 ***
Location (Reef) 1 4.6147 3.1775 0.0839
Year x Reef 2 0.0549 0.0378 0.9632
Habitat (Location [Reef]) 4 13.095 9.0166 0.0002 ***
Year x Location (Reef) 2 1.7094 1.177 0.3226
Year x Habitat (Location [Reef]) 8 2.7552 1.8972 0.0906
Residuals 41 1.4523

Functional diversity

FDis was significantly different between reef types
(Table 4), with higher values for the ARs (0.29 + 0.09)
than the NR (0.14 + 0.05). FDis was also significantly
different among the AR locations, with higher values
at AR-Far (0.33 + 0.08) than at AR-Near (0.26 + 0.11).

FEve was significantly different be-
tween reef types across years, and
among habitat types across years
(Table 4). Pair-wise tests showed that
FEve was higher in 2006 (0.57 + 0.13)
than in 2007 (0.48 + 0.08) and 2009
(0.44 + 0.15) for the ARs only (Fig. 4).
No differences were observed in
FEve across years for the NR. Signifi-
cant differences in FEve were ob-
served for the B reefs of AR-Near
(2006-2007: t = 4.9, p = 0.00; 2007—
2009: t = 3.0, p = 0.03) and for the C
reefs of AR-Far (2006-2007: t = 4.9,
p = 0.00; 2007-2009: t= 3.8, p = 0.01).
In both cases, FEve was the highest in
2006 (AR-Near: 0.62 + 0.07; AR-Far:
0.68 = 0.10), followed by a sharp drop
in 2007 (AR-Near: 0.38 + 0.05; AR-
Far: 0.21 + 0.13) and slight increase in
2009 (AR-Near: 0.49 + 0.04; AR-Far:
0.53 = 0.06).

Total density

The PERMANOVA main tests sho-
wed that fish density was signifi-
cantly different between reef types
(Table 4), with higher densities at the
ARs (12.58 + 1.60 ind. m~?) than at the
NR (0.35 + 0.05 ind. m~?). Significant
differences were also observed among
the AR types, with lower fish densities
at the H reefs than the B and C
reefs (Fig. 4). No significant differ-
ences were observed among years,
between locations (AR-Near, AR-Far
and CL) or for the interaction terms of
the tested model (Table 4, Fig. 4).

Relative fish size structure and
community composition

There were no differences in the

relative size class ratios of the fish communities for
any of the tested factors (Fig. 5, Table 5a). For all
habitat types, medium-sized adults were predomi-
nant, except for the AR B reefs in 2006 and 2007, and
the NR in 2009 (Fig. 5). The PERMANOVA main tests
showed that fish community composition was signifi-
cantly different among years, reef types and habitats
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and for reef types among years (Table 5b). Commu-
nity composition was different among all 3 years and
between the ARs and the NR (Fig. 6). Pair-wise
analysis of the effect of the interaction between years
and reef type showed that community composition
was different among the 3 years of the survey, but
only for the ARs and not the NR. Pair-wise analysis of
the effect of habitat highlighted that communities
associated with B and C reefs were different from
those associated with H reefs for both AR locations
(AR-Near and AR-Far) (Fig. 6). SIMPER analysis indi-
cated that bogue Boops boops Linnaeus, 1758, red
mullet and surmullet Mullus sp. Linnaeus, 1758,

horse mackerel Trachurus trachurus Linnaeus, 1758,
white seabream Diplodus sargus Linnaeus, 1758, and
common two-banded seabream Diplodus vulgaris
Geoffroy Saint-Hilaire, 1817, were the primary con-
tributors to the observed dissimilarity between reef
types (80.19%) and years (2006 vs. 2007: 69.53 %;
2006 vs. 2009: 67 %; 2007 vs. 2009: 60.62 %), account-
ing for nearly 60 % of the observed dissimilarity. The
dissimilarity of fish communities among habitat types
was mainly explained by these same fish species.
Comber Serranus cabrilla Linnaeus, 1758, and Medi-
terranean rainbow wrasse Coris julis Linnaeus, 1758,
also accounted for the dissimilarity of fish communi-
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Table 5. (a) Univariate 3-way PERMANOVA for relative community size struc-
ture of total fish community and (b) multivariate 3-way PERMANOVA results
for community composition. ***p < 0.001

Source df MS F p

(a) Community relative size structure

Year 2 1078.5 1.8257 0.1297
Reef 1 571.63 0.96767  0.3938
Location (Reef) 1 131.05 0.22184  0.8117
Year x Reef 2 630.5 1.0673 0.3675
Habitat (Location [Reef]) 4 794.57 1.3451 0.2382
Year x Location (Reef) 2 655.73 1.11 0.3729
Year x Habitat (Location [Reef]) 8 735.47 1.245 0.2565
Residuals 41 590.73

(b) Community composition

Year 2 4225.7 3.2320 0.0004 ***
Reef 1 22717.0 17.3750 0.0001 ***
Location (Reef) 1 1305.5 0.9985 0.4149
Year x Reef 2 3639.0 2.7832 0.0009 ***
Habitat (Location [Reef]) 4 5163.7 3.9494 0.0001 ***
Year x Location (Reef) 2 1357.1 1.0379 0.4063
Year x Habitat (Location [Reef]) 8 1460.9 1.1174 0.2767
Residuals 41 1307.5

ties among habitat types, but to a
smaller extent. The dissimilarity in
fish community composition was
58.61% between C and B, 65.56%
between C and H, 62.84 % between
B and H, 83.88% between C and
NR, 85.28% between B and NR and
71.52% between H and NR. To en-
sure that the high contribution of the
shoaling species B. boops did not
mask any other pattern, univariate
and multivariate multifactorial ana-
lyses were conducted again after the
removal of this species from the
communities (data not shown). The
results confirmed the previously pre-
sented results obtained with the fish
community including B. boops (same
trends and magnitude).

DISCUSSION

Contrasting fish communities
between the ARs and the NR

Fish assemblages of the Leucate-Le
Barcares ARs differed from those of
the NR in density (AR > NR), species
evenness (AR > NR), FDis (AR > NR)
and community composition. Species
diversity and FEve remained unaf-
fected by reef type. Compared with
the NR, nearly twice as many species
were encountered on ARs. Despite
this difference, there were no differ-
ences in species diversity between
the 2 reef types. A wider sampling of
the NR would be necessary for a bet-
ter investigation of species richness in
this area to verify whether the low
number of species encountered was
due to the low fish density of the NR
or due to the habitat characteristics.
The species accounting for the great-
est dissimilarity between the ARs and
the NR were either species present in
both community types but at a much
lower density at the NR (Mullus sp.,
Diplodus sargus, D. vulgaris), or spe-
cies uniquely present at the ARs, such
as the pelagic Trachurus trachurus
and Boops boops. The high contribu-
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tion of B. boops to the dissimilarity between fish com-
munities can be explained by the shoaling behavior
of this species (Harmelin 1987), since it was either
present in large numbers or absent.

Differences in FD between the ARs and the NR
appeared only through FDis. The higher functional
dispersion of the ARs conveys a higher functional
richness. Differences in FD can be explained by dif-
ferences in functional trait combinations of less abun-
dant species that are exclusively present at one of the
reef types (AR or NR). Three species were exclusively
present at the NR: zebra seabream Diplodus cervinus
Lowe, 1838, blacktailed wrasse Symphodus melano-
cercus Risso, 1810, and axillary wrasse S. mediterra-
neus Linnaeus, 1758. The absence of the 2 Symphodus
species at the ARs could be due to lower larval dis-
persal as a result of their benthic egg phase, or to their
territorial behavior and very small daily movement
ranges. Furthermore, both species lay their eggs on
either algae or seaweed, which were uncommon on
the studied ARs. Their absence could also be due to
higher predation pressure at the ARs (Leitao et al.
2008, Ryan et al. 2012) acting on fish assemblages. In
fact, out of the 11 species exclusively present at the
ARs, some were carnivores or omnivores with diets
that include small fishes, such as European seabass
Dicentrarchus labrax Linnaeus, 1758, brown meagre
Trachurus trachurus, Sciaena umbra Linnaeus, 1758,
and forkbeard Phycis phycis Linnaeus, 1766. Euro-
pean conger Conger conger Linnaeus, 1758, was also
present in very high densities at the ARs compared
with the NR. Fishes only present at the ARs were gen-
erally demersal species with high daily movement

ranges, such as Dicentrarchus labrax, gilthead sea-
bream Sparus aurata Linnaeus, 1758, common pan-
dora Pagellus erythrinus Linnaeus, 1758, axillary sea-
bream Pagellus acarne Risso, 1827, which are likely
transient species at the AR. These higher trophic level
fishes may be attracted by the high food concentration
at the ARs due to mussel cover and the aggregation of
small foaging species such as Boops boops (B. Koeck
& P. Lenfant pers. obs.).

Differences between the fish communities of the
ARs and the NR could also be due to different fishing
pressures at these 2 locations. A survey of artisanal
fishery landings conducted in 2012 along the French
Catalan coast estimated the fishing effort at 6410 m
of fishernet km=2 at Cape Leucate, and 1827 m of
fishernet km2 at the ARs of Leucate-Le Barcarés (A.
Caro, R. Neveu, P. Lenfant unpubl. data). The high
fishing pressure at Cape Leucate can be explained
by the fact that it is the only rocky reef in the area,
concentrating the fishing pressure. In contrast, the
ARs from Leucate-Le Barcares were only recently
immersed, and their exact position was not dissemi-
nated —thereby reducing fishing pressure at these
newly created habitats. Furthermore, as mentioned
by local artisanal fishermen, the high structural com-
plexity and short distances between the AR subsets
prevents professional fishermen from deploying nets
and long-lines too close to the reefs (i.e. inside the 6
reef groups), because doing so would place them at
risk of losing their fishing gear (E. Berton pers.
comm.). As fishing pressure can affect the species—
area relationship (Tittensor et al. 2007), fish commu-
nities at Cape Leucate are most likely the result of
decades of selective fishing pressure, which could
explain the low densities and functional richness of
the NR compared with the AR locations. For instance,
Micheli & Halpern (2005) observed that due to se-
lective fishing in temperate reefs, fishes of higher
trophic levels (such as carnivores) are under-
represented in fished areas compared with protected
areas. The hypothesis that fishing pressure affects
fish assemblages is also supported by our results. In
fact, the primary contributing species to the observed
dissimilarity of fish assemblages between reef types
(i.e. Mullus sp., Trachurus trachurus, Diplodus sar-
gus and D. vulgaris) are also species targeted by arti-
sanal fisheries (Forcada et al. 2010). Moreover, fishes
of higher trophic levels also targeted by artisanal
fisheries (Griffiths et al. 2007) were encountered on
the ARs (e.qg. Dicentrarchus labrax, Phycis phycis,
Sparus aurata, Sciaena umbra, and Pagellus acarne)
but absent on the NR during our censuses (see
Table 3 for species list).
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Rapid AR colonization

As no differences were observed in fish densities
between the 2 AR locations (AR-Near and AR-Far)
and among years, the fish assemblages appear to
have colonized the ARs rapidly after their immersion
(i.e. in less than 2 yr). The predominance of medium-
sized adults across the surveyed years showed that
the ARs were directly colonized by adult fish coming
from other rocky reefs. No effect of distance to the
NR was detected on fish assemblages, which could
either mean that the colonization occurred in the first
year after immersion and the AR fish communities
had already stabilized, or that the colonization of the
Leucate-Le Barcares ARs was not related to the
distance from Cape Leucate, the closest NR to the
studied ARs. This second hypothesis is quite plausi-
ble as colonization is a complex process influenced
by biological and physical factors, such as the disper-
sal of early life stages due to hydrologic conditions,
the orientation mechanisms of larvae (Houde 2008),
the movement capacity of adult fishes (Harmelin
1987, Vega Fernandez et al. 2008) and the interac-
tions among species (Leitao et al. 2008).

Nevertheless, a general decrease of species and
functional evenness was observed between 2006 and
2009 for the AR locations. Inter-annual variations
were also observed in the community composition of
the ARs, whereas no inter-annual fluctuations were
observed at the NRs. This difference could be ex-
plained by the aggregative behavior of particularly
abundant fishes at the ARs such as Boops boops and
Trachurus trachurus, which are notoriously shoaling
species. Other highly abundant species such as
Mullus sp., Diplodus sargus and D. vulgaris can also
occur in some circumstances in wide shoals. Another
explanation for the observed inter-annual fluctua-
tions at the ARs could be that the studied ARs were
only recently immersed, and as a result the fish
assemblages had not yet stabilized. Benthos settle-
ment studies have revealed that newly created hard
substratum can be rapidly colonized, but take several
years before reaching a community structure equili-
brium (Fager 1971), with assemblages changing over
time with increased reef maturity (Russell 1975,
Bohnsack & Sutherland 1985). However, previous
temperate AR studies focusing on the first months of
colonization have shown that fish densities and spe-
cies richness rapidly reach a peak after deployment
within a few months (Bohnsack & Sutherland 1985,
Bayle-Sempere et al. 1994, Bohnsack et al. 1994,
Folpp et al. 2011). Long-term monitoring, such as a
10 yr survey of fish assemblages associated with ARs

in the Ligurian Sea (Italy), has revealed increases
and decreases of some fish species (Relini et al.
2002). Further investigations would thus be neces-
sary to monitor the temporal trends of fish assem-
blages and to study the effect of reef maturation.

Eifect of AR habitat complexity

A higher fish density at ARs compared to NRs is
often reported in the literature (Brickhill et al. 2005,
Arena et al. 2007, Dupont 2008) and can most likely
be explained by higher habitat heterogeneity, isola-
tion and patchiness (Charbonnel et al. 2002, Grat-
wicke & Speight 2005) as well as by increased niche
partitioning at the ARs, which may also be the case in
the present study. Besides the effect of differential
fishing pressure, differences in habitat complexity
and configuration could also have shaped fish assem-
blages and could explain the higher fish densities
and functional diversity on the ARs compared to the
NR. In fact, even if the habitat complexity has not
been quantified in this study, it should be noted that
the NR at Cape Leucate is a discontinuous rocky reef
of nearly 1 km? whereas an AR group covers only
0.012 ha and comprises several small discontinuous
hard substratum reef subsets. Furthermore, several
recognition dives and multi-beam sonar monitoring
of the NR have shown the low complexity of this area
(i.e. comprised of a rocky plateau with few anfractuo-
sities and some rocky boulders of maximum 1 m
height).

Among the ARs, differences in total fish densities
and community composition were observed between
the H reefs and the B and C reefs. No differences
were observed between the C and B reefs. In fact, C
and B reefs are small isolated reefs with relatively
low complexity compared with the H reefs (see
Fig. 2). Differences in the community composition
between complex (H) and less complex (C, B) artifi-
cial habitats can be explained by higher ecological
niche partitioning due to habitat complexity, with the
presence of crevices, caves and overhangs of differ-
ent sizes. The significantly higher species diversity at
the H reefs than the C reefs corroborates this idea.

Willis et al. (2005) showed that greater habitat com-
plexity enhanced fish densities and influenced fish
assemblage structures via increased niche partition-
ing in a neotropical floodplain river. In the Bay of
Golfe Juan (Gulf of Lion, Mediterranean Sea), a sim-
ilar result was reported (Charbonnel et al. 2002). An
increase in the habitat complexity of existing AR
structures induced a 2-fold increase of species rich-
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ness and a 10-fold increase of fish density (Charbon-
nel et al. 2002). According to Charbonnel et al.
(2002), the increased habitat complexity would favor
foraging opportunities and increase shelter availabil-
ity for fishes. In another study, Gratwicke & Speight
(2005) simultaneously examined 5 habitat complexity
variables: substrate rugosity, substrate diversity, vari-
ety of refuge hole size, height of substrate and per-
centage of hard substratum cover. Their results
demonstrated that species diversity was most in-
fluenced by substrate rugosity, and fish density by
hole size and percentage of hard substratum. Habi-
tats with small hole sizes and rugose substrates
would increase shelter and predator-free space, and
thus support more fishes (Gratwicke & Speight 2005).

In our case study, and contrary to the above men-
tioned examples in which higher densities were
observed with increased complexity, total fish densi-
ties were higher at the less complex reefs (B, C). The
high densities at the low-complexity ARs could either
be caused by inter-reef interaction (Bohnsack &
Sutherland 1985, Vega Fernandez et al. 2008) due to
the short distance (50 m) between each reef set with-
in a reef group, or by the higher edge effect on the
small ARs (higher ratio of the perimeter to the reef
area; Bohnsack et al. 1994).

Ecological and management implications for ARs

Contrary to other existing fishing resource man-
agement tools such as fishing gear limitations, fish-
ing quotas or protected areas, ARs induce a modifica-
tion of the habitat, and therefore necessarily impact
natural ecosystems. Depending on the opinions of
the authors of case studies, ARs are either considered
‘habitat alterations’ with a negative connotation
(Polovina 1989, Wilding 2006) or 'habitat enhance-
ments' with a positive connotation (Hunter & Sayer
2009, Santos et al. 2011). In fact, on the one hand the
habitat modification engendered by the immersion of
ARs could positively affect ecosystems by creating
new, more complex habitats, enhancing species rich-
ness and abundance (Petchey 2003) and thus in-
creasing ecosystem resilience and stability in the
face of disturbances that are more and more likely to
occur in today's context of global change (Vitousek et
al. 1997). According to Nystrom et al. (2008), a high
diversity of habitat types ensures the representation
of a wide range of functional traits within coral reef
seascapes. On the other hand, ARs could negatively
impact ecosystems by disturbing the existing equi-
librium or ecological interactions and thus funda-

mental ecological processes (Wilding 2006, Leitao
2013). For example, the replacement of sandy bottom
habitat by hard bottom habitat may destroy essential
juvenile habitat (Polovina 1989). In the context of
coral ecosystems, Nystrom et al. (2008) also highlight
in their review the dual role of increased connectivity
between habitat patches. Increased connectivity
would facilitate the dispersion of contagious distur-
bances such as invasive species or pathogens, which
could also be a potential risk of ARs, as they increase
the connectivity between distant NRs.

The main debate around ARs, however, has long
been whether they act to simply attract and aggregate
fishes by delocalizing them from NRs, or produce ad-
ditional biomass by providing new shelter and food
possibilities for fishes in a resource-limited system
(Pickering & Whitmarsh 1997). The long-term threat
inherent in the attraction hypothesis is that ARs would
concentrate fishes in small areas, enhancing the ac-
cess of fishermen to fishes and thus increasing the
overexploitation of fish stocks (Polovina 1989, Gross-
man et al. 1997). Following Osenberg et al. (2002), fish
assemblages associated with the ARs from Leucate-
Le Barcarées are most likely the result of both mecha-
nisms; i.e. the attraction of adult fishes from other
hard substratum areas (rapid colonization by adult
fishes) and the production of new biomass due to pro-
vision of new shelter and food opportunities (densities
on AR > densities on NR; FD on AR > FD on NR).

Beyond the focused fisheries question (but in the
scope of sustainable fisheries and conservation), it
seems important to understand how ARs and their
assemblages function compared with neighboring
natural habitats, and which ecological roles they play
as part of a coastal seascape via the assessment of the
functional structure of fish communities. Even if pre-
dicting the long-term effects of these newly added
habitats on coastal ecosystem processes is difficult,
the present results indicate that fish assemblages of
Leucate-Le Barcares ARs are functionally different
from those of natural rocky reefs, which could have
potential effects on ecosystem functioning. These dif-
ferences can likely be attributed to a higher habitat
complexity (and niche partitioning; Nystrom et al.
2008) and low fishing pressure (absence of selective
extraction of fishes belonging to some specific func-
tional niches; Mouillot et al. 2013b) at the ARs com-
pared with the NR. These results are contrary to
some previous studies in which no differences were
found in the functional structure of fish assemblages
belonging to ARs and NRs (Recasens et al. 2006, San-
tos & Monteiro 2007), thus concluding that the equi-
librium of fish assemblages was not disturbed by the
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ARs. In contrast to these studies in which the com-
parisons were based either on only one functional
trait (Santos & Monteiro 2007) or on morphological
measurements (expressing morphological diversity;
Recasens et al. 2006), our study included the compar-
ison of different functional traits through multi-
dimensional FD analysis, which could explain these
different results. Furthermore, recent studies have
shown that the investigation of the functional struc-
ture of communities using multidimensional FD in-
dices is a suitable framework to detect different types
of disturbances at an early stage (e.g. human im-
pacts, biotic pressures and environmental changes),
whereas traditional community descriptors (e.g.
abundance and species diversity indices) are often
poor indicators (Mouillot et al. 2013b). In fact, the
analysis of functional groups permits the identifica-
tion of changes in ecosystems before species loss
occurs, and helps researchers to recognize cryptic
losses of resilience (Nystrom 2006, Mouillot et al.
2013b). Thus, given the growing knowledge of fish
biology and ecology and databases such as FishBase
(Froese & Pauly 2012) available today, it is both easy
and appropriate to use FD indices in future AR stud-
ies for the comparison of fish assemblages.
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