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Introduction

Alcohol abuse is a contributing factor to almost 4%  
of worldwide deaths and 4.5% of the global burden of 
disease (1). In recent years, the consumption of alcohol 
has increased, particularly in developing countries (1), 
prompting research in to the creation of new medications 
to effectively treat alcohol use disorders. Accumulating 
evidence has emerged to indicate that galanin, a neuro-
peptide, plays a role in promoting alcohol intake (2 – 4) 
and may therefore be a suitable target for new pharmaco-
therapies in the treatment of alcoholism (reviewed by 5).

Galanin is synthesised at high levels in the locus  
coeruleus and dorsal raphe nucleus (6), where galaninergic 
neurons project to regions of the forebrain to mediate a 
variety of physiological functions via binding to three 
identified receptor-subtypes (GALR1, GALR2, and GALR3) 
(7). Numerous experiments with rodents have confirmed 
a role for galanin in learning and memory (8), alcohol 
consumption, and general feeding behavior (9) as well as 
affective disorders (for reviews see 10, 11). The exact 
receptor subtype(s) mediating these behaviors is yet to be 
elucidated, but the literature to date suggests GALR3 to be 
the most relevant in the context of alcohol consumption.

GALR3 are anatomically located in brain regions 
known to regulate feeding and addictive behaviors.  
Expression of GALR3 is reported to be particularly high 
in the hypothalamus (12, 13), with moderate levels found 
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in other brain regions including the hippocampus (13), 
nucleus accumbens (NAc), amygdala (AMG) (14), bed 
nucleus of the stria terminalis (BNST), and the dorsal 
raphe nucleus (12).

Many reviews have highlighted a possible functional 
role for GALR3 in addiction and drug-seeking behavior, 
but to date, experimental evidence to support these sug-
gestions is somewhat limited. Our laboratory was the first 
to report a direct association between GALR3 and altered 
alcohol-seeking behavior. We reported that SNAP 37889 
(30 mg/kg, i.p.), reduced self-administration of ethanol 
by alcohol-preferring (iP) rats, independent of a sedative 
effect (15). In our previous study, operant self-adminis-
tration was assessed under a fixed-ratio (FR) response 
schedule, which did not provide a quantitative indication 
of the level to which SNAP 37889 reduced the motiva-
tion to work for ethanol. The first experiment described 
in the current study therefore aimed to investigate the 
effect of GALR3 antagonism with SNAP 37889 (30 mg/
kg; i.p.) on the reinforcing efficacy of alcohol using a 
progressive-ratio (PR) response schedule.

A major hurdle in overcoming alcohol addiction is the 
need to treat ongoing cravings for alcohol and vulnerabil-
ity to relapse, as well as short-term symptoms associated 
with alcohol withdrawal. A second experiment in this 
study therefore aimed to investigate the potential of 
SNAP 37889 to reduce the rate of relapse in response to 
exposure to conditioned cues.

Materials and Methods

Animals
All experiments were performed in accordance with 

the Prevention of Cruelty to Animals Act, 1986, under 
the guidelines of the National Health and Medical  
Research Council code of Practice for the Care and Use 
of Animals for Experimental Purposes in Australia.  
Male iP rats were obtained from a breeding colony at  
the Florey Institute of Neuroscience and Mental Health, 
University of Melbourne, Australia. Rats were main-
tained on a 12-h light-dark cycle with ad libitum access 
to food and water.

Drugs
SNAP 37889 was synthesised as described (16). Di-

methyl sulfoxide (DMSO) and hydroxypropyl-methyl 
cellulose (HMC) were purchased from Sigma Pharma-
ceuticals (Castle Hill, NSW, Australia). SNAP 37889 
was administered at a dose of 30 mg/kg via intraperitone-
ally (i.p.), in accordance with data previously obtained 
from a pilot study indicating 30 mg/kg to be the most 
effective in altering alcohol-seeking in this species (17). 
SNAP 37889 (30 mg/kg) and vehicle (5% DMSO and 

1% HMC in saline, 1 ml/kg) were administered via i.p. 
injection.

Progressive-ratio responding for alcohol
Adult age matched iP rats were trained to administer 

10% (v/v) ethanol in sound attenuated operant chambers 
(Med Associates, Fairfax, VT, USA). Chambers were 
fitted with two levers calibrated to dispense 100 ml of 
fluid as a reward when a required number of lever presses 
was completed by the rat. One lever was paired with the 
delivery of 10% (v/v) alcohol, while the other lever was 
paired with the delivery of water. Lever pressing was 
conditioned in the presence of an olfactory cue (a single 
drop of vanilla essence placed below the ethanol lever) 
and a light stimulus cue (adjacent to the lever), which 
would illuminate upon completion of the required  
response. Chambers were linked to a computer with 
Med-PC IV software which recorded lever pressing  
activity during each session.

The initial training of the rats consisted of a single 
overnight session, followed by a standard “sucrose fade” 
protocol conducted over a period of nine days as pre
viously described (15). Following the training, rewards 
were dispensed on an FR3 schedule (fixed ratio of 3  
lever presses for 1 reward) for both the ethanol solution 
and the water. Twenty-minute sessions were conducted 
5 days a week for 5 weeks until a stable baseline response 
was achieved across FR3 sessions.

Three 90-min PR sessions were then conducted on 
non-consecutive days (Mon, Wed, and Fri) to assess the 
viability of repeated sessions and also to determine a 
baseline figure for the breakpoint. Breakpoint was  
defined as the last successfully completed ratio within 
the session. The PR response requirement was increased 
on a linear scale by adding one additional lever press for 
each subsequent reward, as previously described (18). 
FR3 sessions were conducted in between PR sessions on 
alternate days (Tue, Thu). Treatment commenced the 
following week and to account for a possible alcohol 
deprivation effect over the weekend, the PR treatment 
session was conducted on the Wednesday. Rats were 
divided into 2 treatment groups (n = 9), using a counter-
balanced design according to the average number of  
FR3 rewards recorded from the previous 10 sessions. 
One group was treated with vehicle (1 ml/kg, i.p.) and 
the other, with SNAP 37889 (30 mg/kg, i.p.). Rats were 
then returned to their home cage for 60 min prior to being 
placed in the operant chambers for the 90-min session.

Cue-induced alcohol reinstatement
Following the PR treatment sessions, the same cohorts 

of rats were used to investigate the effect of SNAP 37889 
administration on cue-induced alcohol reinstatement. Rats 
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were subjected to another 2 weeks of FR3 responding to 
re-establish a base level of responding, after which their 
lever pressing behavior was extinguished. During extinc-
tion, the conditioned cues (light and vanilla essence), 
which had previously been associated with the delivery 
of ethanol were removed from the chamber, along with 
the 10% (v/v) ethanol solution and water so that lever 
pressing activity resulted in no reward. Extinction  
sessions were conducted daily (Mon – Fri) for 20 min 
and the number of lever presses was recorded for each 
session. Following extinction, rats were divided in to 3 
treatment groups: extinction only (n = 5), vehicle treat-
ment (n = 6), and SNAP 37889 treatment (n = 7). The 
non-treatment group were culled following their final 
extinction session and their brains were retained for use 
in a future study. Rats were treated with vehicle (1 ml/kg, 
i.p.) or SNAP 37889 (30 mg/kg, i.p.) 60 min prior to 
being placed in to the operant chamber for the reinstate-
ment session. Reinstatement was triggered by replacing 
the olfactory cue under the “active” lever and repro
gramming the software such that the stimulus light was 
activated (1 s) after every FR3 equivalent, although there 
was no delivery of ethanol into the receptacle (19, 20).

Statistical analyses
Baseline PR response was determined by calculating 

the average response across the 3 pre-treatment sessions. 
The variance across pre-treatment sessions was com-
pared with a one-way analysis of variance (ANOVA) 
with repeated measures (RM). A one way ANOVA with 
RM was used to analyze the breakpoint, total number of 
responses, and the latency to first response on both the 
ethanol and water levers. A two-way ANOVA with RM 
was used to analyze lever pressing subtotals at time  
intervals within the session. Bonferroni’s post-hoc test 
was applied to identify significant interactions, with 
planned comparisons conducted between vehicle and 
SNAP 37889–treatment groups and also for water and 
ethanol lever pressing activity. Ethanol intake (g/kg) was 
calculated from the body weight (g) of the animal and  
the number of ethanol reinforcers delivered during the 
session. Graph Pad Prism 5.00 was used to perform all 
analyses and a result of P ≤ 0.05 was considered to be  
of statistical significance.

Results

Effect of SNAP 37889 on progressive-ratio responding 
for alcohol

Rats responded on a FR3 schedule (3 lever presses = 1 
reward) for a period of 29 days until a stable number  
of responses was achieved across sessions. The average 
number of rewards made on the ethanol lever was 32 ± 2 

and 2 ± 0.2 on the water lever per 20 minute session, 
equating to an average ethanol consumption of 1.32 ±  
0.07 g/kg per session.

Following 29 days of FR3 responding, 3 PR sessions 
were conducted to establish a breakpoint baseline of 
16.7 ± 1.2, with a one-way ANOVA confirming that 
variation across all 3 sessions was not significant 
(P = 0.94, data not shown). Treatment with SNAP 37889 
60 min prior to the PR session significantly reduced  
the breakpoint for ethanol, when compared with both  
the vehicle-treated group and the average breakpoint  
of pre-treatment sessions [treatment, F(35,2) = 5.943, 
P < 0.01, Fig. 1: A and B]. Vehicle treatment did not alter 
the breakpoint for ethanol and there was no statistical 
difference in responses for water between the treatment 
groups (Fig. 1: A and B).

Analyses of the cumulative lever presses for ethanol  
at each 10-min time point revealed that responses made 
by the SNAP 37889–treated group were significantly 
reduced from 20 min through to the end of the session 
[treatment × time, F(8,128) = 2.733, P < 0.05 (20 – 60 min); 
P < 0.01 (70 – 90 min); Fig. 1C]. At the 10-min, mark 
lever pressing activity by the SNAP 37889–treated group 
was significantly lower than that in the vehicle-treated 
group [treatment × time, F(8,128) = 5.375, P < 0.001, 
Fig. 1D]. When ethanol lever pressing activity was ex-
amined across the time course of the session, the majority 
of lever presses were made within the first 10 min, with 
little activity after 20 min, indicating that breakpoint  
was achieved very early in the 90-min session. This was 
apparent in both the vehicle and SNAP 37889–treated 
groups, indicating that regardless of treatment type, the 
breakpoint was quickly reached (Fig. 1D).

Effect of SNAP 37889 on cue-induced alcohol reinstatement
At extinction, rats made an average of 2.4 ± 0.3 presses 

on the lever, which had previously delivered water  
and an average of 4.9 ± 0.7 presses on the lever, which 
had previously delivered alcohol. Re-presentation of 
cues paired with alcohol availability resulted in reinstate-
ment of lever pressing activity directed towards the  
“active” lever that had previously delivered alcohol.  
Active lever presses made by the SNAP 37889–treated 
group were significantly lower [treatment, F(2,30) = 101.3, 
P < 0.0001, Fig. 2A] than those in the vehicle-treated 
rats, indicating that SNAP 37889 successfully attenuated 
cue-induced reinstatement. Analyses of the “inactive” 
lever, which had previously delivered water, revealed no 
significant differences between the 3 groups (Fig. 2A). 
The latency to the first right lever press was compared 
between the vehicle- and drug-treated groups, but no 
significant difference was found (P = 0.48, data not 
shown). Analyses of the lever pressing sub-totals at  
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Fig. 1.  Effect of SNAP 37889 treatment on PR responding and breakpoint for 10% (v/v) ethanol. SNAP 37889 caused a signifi-
cant reduction in lever presses (*P < 0.01, A) and breakpoint (*P < 0.01, B) for ethanol but not water on a PR reinforcement 
schedule. The cumulative responses made for ethanol were significantly reduced by SNAP 37889 (*P < 0.05, **P < 0.01; D) in 
comparison to vehicle treatment from 20 – 90 min, while the most significant reduction in responding for ethanol occurred within 
the first 10 min of the session (*P < 0.001, D).

Fig. 2.  Effect of SNAP 37889 treatment on cue-induced alcohol reinstatement. SNAP 37889, when compared with vehicle  
treatment significantly reduced the total responses made on the ethanol lever (with cues present but no ethanol delivery) and 
without a change in responses made on the water lever (¥P < 0.0001, A). Responses on the ethanol lever were significantly reduced 
by SNAP 37889 5 min into the 20-min session (§P < 0.001, B).
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each 5-min time interval within the session revealed that 
5 min into the 20-min session, SNAP 37889 treatment had 
significantly reduced the number of active lever presses 
[treatment × time, F(3,33) = 4.226, P < 0.001, Fig. 2B].

Discussion

We have previously demonstrated that administration 
of the GALR3 antagonist SNAP 37889 reduced operant 
self-administration of ethanol on a FR3 schedule (15). 
The FR operant model used in our previous study  
provided valuable preliminary evidence to indicate in-
volvement of GALR3 in self-administration of rewarding 
substances, but FR paradigms are limited in terms of 
detecting whether pre-treatment with a pharmacological 
agent causes an alteration in the reinforcing efficacy of  
a certain drug (21). Data reported in the present study 
indicate that SNAP 37889 (30 mg/kg, i.p.) decreased  
the motivational value of alcohol as a reward under a PR 
schedule, as well as attenuating cue-induced reinstate-
ment of alcohol-seeking after extinction. Together, these 
results provide new evidence of the involvement of 
GALR3 in motivational and reward-seeking processes.

iP rats were obtained from the same breeding colony 
as our previous study and 30 mg/kg was selected as the 
dose for administration to maintain consistency with our 
previous work (15). The breakpoint established prior to 
treatment was compared with that of another recent study 
that also used a PR schedule of responding for 10% (v/v) 
ethanol in iP rats and was found to be equivalent (18). 
More recently, a different study in our laboratory has 
confirmed 30 mg/kg (i.p.) to be the most effective dose of 
SNAP 37889 in reducing-alcohol consumption by C57BL/6J 
mice as part of a binge-drinking model (Scheller, et al. 
2014; unpublished data). SNAP 37889 binds with high se-
lectively to GALR3 (Ki > 17.44 ± 0.01 nM), over the 
GALR1 and GALR2 subtypes (Ki > 10,000 nM) (22). 
Behavioral data reported in the current study are therefore 
almost certainly a result of GALR3 involvement with negli-
gible influence from GALR1 or GALR2 subtypes.

The half-life of SNAP 37889 following systemic  
administration appears to be less than 5 hours following 
i.p. (9 mg/kg) and oral (8.61 mg/kg) administration in 
rats (23). The present data confirm a pharmacological 
effect of SNAP 37889 in iP rats which lasted for at least 
150 min, as indicated by an increasing difference between 
treatment groups in the cumulative number of ethanol 
lever presses over the PR time-course. The usefulness of 
SNAP 37889 for longer term treatment may be limited 
by a relatively short duration of action. Further studies 
may investigate the use of frequent repeated dosing or 
continuous administration to determine its effectiveness 
in reducing drug-seeking behavior in the long-term.

Mapping of GALR3 via in situ hybridization indicates 
the highest levels of GALR3 mRNA within the rodent 
hypothalamus (12 – 14) and hippocampus (13) and 
moderate levels within the NAc, ventral tegmental  
area (14), BNST (12), and AMG (12 – 14). From the 
GALR3 mRNA distribution pattern, it can be inferred 
that GALR3 may be anatomically well-situated to con-
tribute to functions such as feeding, memory, emotion, 
and addiction. Identifying the precise anatomical loca-
tion of GALR3 is challenged by the lack of receptor- 
selective radioligands and antibodies that are for use  
in rodent species (24, 25).

Multiple studies have reported increased c-Fos expres-
sion within sub-regions of the AMG of rats, following 
cue-induced reinstatement for alcohol (19, 26 – 28). 
Galanin is co-localised with the neurotransmitter gamma-
aminobutyric acid (GABA) in the AMG (29), where it  
is well established that GABA plays a role in alcohol 
consumption at the level of the CeA (reviewed by ref. 
30). A functional role for galanin in the CeA has already 
been identified as shown by increased feeding behavior 
when galanin is injected directly into the CeA (31, 32). 
Furthermore, the non-selective galanin-receptor antago-
nists C7 and M40 reversed galanin-induced feeding when 
microinjected intraventricularly in Sprague-Dawley rats 
(33). Experimental data gathered in vitro indicates that 
GALR3 antagonists inhibit the likelihood of firing of  
a sub-population of CeA neurons (34), which supports 
the likelihood of GALR3 as a likely therapeutic target  
in treating alcoholism. Given that galanin is known  
to promote alcohol consumption as well as feeding  
behavior, it is postulated that microinjection of GALR3 
antagonists at the level of the CeA may dampen the usual 
stimulatory effect of GABA on ethanol self-administra-
tion (34). Future studies will undoubtedly seek to identify 
the anatomic loci where GALR3 antagonism acts to  
attenuate cue-induced alcohol-seeking.

In summary, the present study has demonstrated 
SNAP 37889 effectively reduced the motivation to work 
for alcohol as a reinforcer, as well as reducing reinstate-
ment in response to conditioned cues. Evidently, it is 
important to determine the action of GALR3 antagonism 
at a circuit and neurochemical level to gain insight into 
the pathways that are interrupted following SNAP 37889 
administration. Collectively, these findings validate  
further research into the use of SNAP 37889 and other 
GALR3 antagonists as a possible means to treat alcohol 
abuse disorders in humans.
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