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Abstract: This letter presents a mathematical formulation that
clearly explains the result that was heuristically introduced by Leeson
for the oscillator noise spectrum. We consider the voltage and current
in a simple equivalent circuit consisting of only linear components. To
analyze both the oscillation and noise behaviors simultaneously with-
out resort to frequency-domain transfer functions, we introduce dual
coordinates in the time domain. Equivalent device temperature and Q
factor are appropriately defined to support Leeson’s result. It is suc-
cessfully clarified, without taking any nonlinear effects into account,
that the noise from a white source is converted up into a sharp spec-
trum around the oscillation frequency.
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1 Introduction

In oscillators, noise behaves in a totally different manner from that in other
active or passive circuits. It has a relatively sharp spectrum in the vicinity of
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the oscillation frequency. The fractional bandwidth of the noise was formu-
lated in general by Edson in 1960 [1]. For further detail, the noise spectrum
density was introduced by Leeson in 1966 [2]. His formula describes the noise
distribution, which agrees well with the practically observed spectrum as a
function of the frequency offset from the carrier. It is also worth noting that
his derivation was heuristic without formal proofs. Later in 1990’s, the noise
formula was described for LC-tank oscillators by Craninckx and Steyaert [3],
and for CMOS oscillators by Razavi [4]. It was then generalized to include
the nonlinear and long-delay effects by Hajimiri and Lee [5]. Their stud-
ies effectively covered Leeson’s model, relying on an open- and closed-loop
transfer function technique in the frequency domain. Mathematical proof
still remains therefore expected to provide a persuading explanation of noise
behavior in the time domain even for a simple oscillator. This letter as-
sumes a linear model of a simple oscillator and affords a clear and rigorous
mathematical proof for Leeson’s noise spectrum by exploiting a perturbation
procedure and a multiple-time-domain technique.

2 Simple Oscillator Formulation

An oscillator circuit generally has an active device, a resonator, and an output
port as its minimum required components. Figure 1 shows the simplest equiv-
alent scheme, where the active device is represented by a negative resistor
and an inherent series noise source. The resonator is also simply represented
by series of an inductor and a capacitor. The output port is terminated with
a resistive load. Consider the problem to deduce

i(t): current along the circuit, and
v(t): voltage on the capacitor

as functions of time t for given
−r: negative resistance from the active device,
C: series capacitance,
L: series inductance,
RL: load resistance, and
n(t): noise source voltage.

Let us begin with Kirchhoff’s equations

i = C
dv

dt
and v + L

di

dt
+ (RL − r) i = n.

We assume r = RL for steady-state oscillation. If r < RL, the power dissi-
pated in the load exceeds the power generated in the active device, i.e., the
current is not steady but declines. If r < RL, it is not steady either but
grows until the active device’s gain balances the load’s loss, i.e., r = RL.

Based on this steady state assumption, we eliminate i(t) from the above
equations, then obtain the single linear second-order ordinary differential
equation

v + LC
d2v

dt2
= n (1)

for v(t). This is an inhomogeneous equation whose general solution cannot
be found directly. However, once you find a particular solution for Eq. (1),
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its general solution is expressed as a linear combination of the particular one
and the general solution of the associated homogeneous or noise-free equation

v + LC
d2v

dt2
= 0.

Its general solution is well known as the simple harmonic function

v (t) = v (0) ejωt, ω = 1/
√

LC.

As the first step to find a particular solution for Eq. (1), we apply a
perturbation technique to this equation by employing multiple time scales [6]
as described in the following chapter.

Fig. 1. Simple oscillator equivalent circuit topology

3 Dual Time Scales

The phenomenon of oscillation is regarded as a high-speed rotation of the
phase, while the phase noise is its time undulation, which is much slower
than its original rotation. We introduce dual time scales t0 = t and t1 = δt

to analyze those two phenomena simultaneously. δ designates a perturbation
index implying that the associated term is a small quantity. We map every
time-variant quantity upon the plane spanned by two-dimensional coordinate
(t0, t1). For example, the capacitor voltage is observed as v(t) = v(t0, t1). We
do the same for derivative quantities. The voltage deviation is expressed as
the sum of its two partial differentiations

dv (t) = dv (t0, t1) =
∂v

∂t0
dt0 +

∂v

∂t1
dt1.

In addition to those quantities, the chain rule on differentiation leads us to
expanding time-derivative operators as

d

dt
=

dt0
dt

∂

∂t0
+

dt1
dt

∂

∂t1
=

∂

∂t0
+ δ

∂

∂t1

d2

dt2
=
(

∂

∂t0
+ δ

∂

∂t1

)2

=
∂2

∂t20
+ 2δ

∂2

∂t0∂t1
.

Hereafter we omit terms with second- or upper-order power of δ for their
negligible smallness.
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4 Separation of Variables

The next step to find a particular solution for Eq. (1) is the separation of
variables. We try to factorize the capacitance voltage into the form:

v(t) = v(t0, t1) = v0(t0)v1(t1).

This course of process sometimes violates the generality of solutions, and may
unreasonably confine the possible space for searching for them. However, it
suits our case because we only have to find any one of them, as described in
Chapter 2.

Applying this factorization and the above-mentioned second-order time-
derivative operator to the original Eq. (1), we obtain the partial differential
equation

v0(t0)v1(t1) + LC

(
∂2

∂t20
+ 2δ

∂2

∂t0∂t1

)
{v0(t0)v1(t1)} = δn(t0, t1),

where an additional perturbation index δ is placed on the right-hand side
since the noise voltage is assumed to be considerably smaller than the oscil-
lation amplitude. After sorting the terms on the order of δ, the equation is
separated into the unperturbed part

v0(t0) + LC
∂2

∂t20
v0(t0) = 0,

and the perturbed part

2LC
∂

∂t0
v0(t0)

∂

∂t1
v1(t1) = n(t0, t1).

It is straightforward to find that the unperturbed equation yields its general
solution

v0(t0) = v0(0)ejω0t0 , ω0 = 1/
√

LC.

For the perturbed part, on the contrary, we further continue to manipulate
the equation with regard to the noise spectrum as described in the next
chapter.

5 Carrier Noise Spectrum

An active device generally generates random noise over a broad band. At
frequencies as high as the oscillation is considered, the noise is observed as
white or a uniform spectrum. For convenience, we deal with the continuously
distributed spectrum as an integration of narrow-band line components. The
principle of superposition makes it possible to estimate the noise effects on
the oscillation, spectral component by component, thanks to the linearity of
equations. Thus, only one component at the frequency δω1 offset from the
oscillation or carrier ω0

n(t) = n(t0, t1) = n0e
j(ω0+δω1)t = n0e
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is sufficient for consideration. Substituting this noise expression and the
unperturbed voltage into the perturbation equation, we obtain

2j

ω0
v0(0)ejω0t0 ∂

∂t1
v1(t1) = n(0, 0)ejω0t0+jω1t1 .

For this equation, a particular solution

v1(t1) = −ω0n(0, 0)
2ω1v0(0)

ejω1t1

is found with ease. Having hereby both v0(t0) and v1(t1), we multiply them
to deduce

v(t) = v0(t0)v1(t1) = − ω0

2ω1
n0e

jω0t0ejω1t1 .

From this voltage, the current is subsequently deduced as

i = C
dv

dt
= − ω0

2ω1
C

d

dt0

(
n0e

jω0t0ejω1t1
)

= −j
ω2

0

2ω1
Cn0e

jω0t0ejω1t1 .

As we are interested in a practically observable quantity, i.e., the power
spectrum at the output port or on the load RL, we calculate it as

Pn =
1
2
RL|i|2 =

ω4
0

8ω2
1

C2RL|n0|2 =
RL

8ω2
1L

2
|n0|2.

6 Equivalent Device Temperature and Q Factor

The final approach in this work is performed by introducing the equivalent
thermal resistance for the noise source and Q factor of the oscillator. We
replace the noise source by an equivalent noise resistor with its temperature
T via the relation |no|2 = 2kBTBRn, where kB is Boltzman’s constant and B

is the bandwidth to observe the noise. By this replacement, the noise power
output is rewritten as

Pn =
RLRn

4ω2
1L

2
kBTB.

This equation means that a white noise source perturbs the oscillation spec-
trum into a 1/f2 function of the offset frequency. The noise power is usually
normalized by the bandwidth and carrier output power as

Pn

BP0
=

RLRN

4ω2
1L

2

kBT

P0
.

Finally, we introduce the Q factor

Q =
2πf0L√
RnRL

so as to yield our result

N

C

∣∣∣∣
SSB

=
1
2

{
1 +

(
f0

2f1Q

)2
}

kBT

P0

where a unity was added to involve the thermal background noise of the
system. This affords mathematically rigorous proof of the expression heuris-
tically described by Leeson.
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7 Conclusion

A clear explanation has been given for the oscillator noise spectrum formula
that Leeson heuristically introduced. A simple equivalent circuit consisting
of linear components, i.e., a negative resistor, a white noise source, an LC
resonator, and a load, is sufficient for the formulation. As a more infor-
mative and acceptable way than frequency-domain transfer functions, the
dual time coordinates are convenient for analyzing the oscillation and noise
behaviors. Appropriate definitions of equivalent device temperature and Q
factor consequently support Leeson’s result. Even though the circuit model
is a linear system without modulation effects, it successfully deduces that the
noise from a white source is converted up into a sharp spectrum around the
carrier frequency.
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