
3DFTL: a three-level demand-
based translation strategy for
flash device

Peera Thontirawong1a), Chundong Wang2, Weng-Fai Wong3,
Mongkol Ekpanyapong4, and Prabhas Chongstitvatana1b)
1 Faculty of Engineering, Chulalongkorn University,

Phaya Thai Road, Wangmai, Pathumwan, Bangkok 10330, Thailand
2 Data Storage Institute, Agency for Science, Technology and Research,

5 Engineering Drive 1, Singapore 117608, Singapore
3 School of Computing, National University of Singapore,

13 Computing Drive, Singapore 117417, Singapore
4 School of Engineering and Technology, Asian Institute of Technology,

Km. 42, Paholyothin Highway, Klong Luang, Pathumthani 12120, Thailand

a) peera.t@student.chula.ac.th

b) prabhas@chula.ac.th

Abstract: 3DFTL is a demand-based flash translation layer (demand-based

FTL) that can withstand caching data loss due to unexpected events such

as power-loss. Its mapping table in the flash memory is designed with

the capabilities of being instantaneously updated with zero additional write

operations. Moreover, the average cache miss penalty of 3DFTL is also

lower than previous demand-based FTLs. As a result, not only the mapping

table of 3DFTL guarantees data consistency, but 3DFTL also shows 16.42%

decrease in terms of the average system response time comparing with the

DFTL.

Keywords: flash memory, MLC, FTL, cache, three-level, compression

Classification: Storage technology

References

[1] D. Ma, J. Feng and G. Li: ACM Comput. Surv. 46 (2014) 36. DOI:10.1145/
2512961

[2] A. Gupta, Y. Kim and B. Urgaonkar: ASPLOS (2009) 229. DOI:10.1145/
1508244.1508271

[3] Micron Technology: MT29F64G08CBAA datasheet (2009) http://www.micron.
com.

[4] Storage Performance Council: Traces (2007) http://www.storageperformance.
org.

[5] D. Narayanan, A. Donnelly and A. Rowstron: Trans. Storage 4 (2008) 10.
DOI:10.1145/1416944.1416949

[6] Z. Qin, Y. Wang, D. Liu and Z. Shao: RTAS (2011) 157. DOI:10.1109/RTAS.
2011.23

[7] P. Thontirawong, M. Ekpanyapong and P. Chongstitvatana: ICSEC (2014) 421.
DOI:10.1109/ICSEC.2014.6978234

© IEICE 2015
DOI: 10.1587/elex.12.20150211
Received February 23, 2015
Accepted March 11, 2015
Publicized March 30, 2015
Copyedited April 25, 2015

1

LETTER IEICE Electronics Express, Vol.12, No.8, 1–8

http://dx.doi.org/10.1145/2512961
http://dx.doi.org/10.1145/2512961
http://dx.doi.org/10.1145/2512961
http://dx.doi.org/10.1145/1508244.1508271
http://dx.doi.org/10.1145/1508244.1508271
http://dx.doi.org/10.1145/1508244.1508271
http://dx.doi.org/10.1145/1508244.1508271
http://www.micron.com
http://www.micron.com
http://www.micron.com
http://www.storageperformance.org
http://www.storageperformance.org
http://www.storageperformance.org
http://dx.doi.org/10.1145/1416944.1416949
http://dx.doi.org/10.1145/1416944.1416949
http://dx.doi.org/10.1145/1416944.1416949
http://dx.doi.org/10.1109/RTAS.2011.23
http://dx.doi.org/10.1109/RTAS.2011.23
http://dx.doi.org/10.1109/RTAS.2011.23
http://dx.doi.org/10.1109/RTAS.2011.23
http://dx.doi.org/10.1109/ICSEC.2014.6978234
http://dx.doi.org/10.1109/ICSEC.2014.6978234
http://dx.doi.org/10.1109/ICSEC.2014.6978234
http://dx.doi.org/10.1109/ICSEC.2014.6978234


1 Introduction

As flash memory outperforms ferromagnetic materials on access latency, shock

resistance, and power consumption, it is more preferred for data storage of

computer systems. It can be utilized in many devices, for instance, USB drives,

solid-state drives, or even the embedded storage of smartphones. However,

the NAND flash memory has several limitations [1]. For example, a page— the

smallest operable unit— has to be erased before reprograming. Since the smallest

erasable unit is a block of pages, an out-of-place update is more feasible than an in-

place update. Moreover, the lifespan of a flash memory is limited by program/erase

(P/E) cycles, and this limit is lowered with the MLC technique or a smaller

fabrication process. As a consequence, a flash translation layer (FTL) is required for

handling these limitations. An FTL enables out-of-place update by deploying

address translation. It converts a logical page number (LPN), which is referred to

by the file system, to a physical page number (PPN) of a flash memory. Since a

page is hundreds times smaller than a block, performing address translation at the

page-level is necessary for lowering P/E cycles.

An FTL that offers the page-level address translation is called a page-level FTL

[1]. A page-level FTL is found on a page-level mapping table (PMT). However,

PMT is huge and takes spacious SRAM capacity. In order to save the SRAM space,

a demand-based FTL was proposed [2]. A demand-based FTL offloads PMT

contents from SRAM to flash pages. These pages are called translation pages

and can be located by the smaller mapping table that resides in SRAM. Therefore,

the data structure of PMT becomes two-dimensional array-like, and an address

translation is done by a two-level process. The first level is to get the address of the

corresponding translation page from the small table in SRAM, and the second level

is to retrieve the PPN from the translation page. The retrieved PPN is cached in

SRAM for quick reference. The cache is managed by the write-back policy in order

to lower the number of program operations; however, it also stalls the update of

translation pages. As a result, the whole operation becomes non-atomic, and an

inconsistency problem between data pages and translation pages is arisen. This

problem is very important for an FTL because the flash memory is vastly employed

in mobile devices that have to confront many unexpected events, for example,

power-loss. The FTL has to tolerate such and ensures correctness of data locations.

In this paper, we propose a novel demand-based FTL named 3DFTL. Without

translation pages, updating data does not require additional page programing;

hence, it is inconsistency-free. The cache miss ratio of 3DFTL is kept low by

spatial locality exploitation. In addition, omitting translation page programing also

decreases the maximum cache miss penalty, which in turn improves the average

system response time.

2 Demand-based three-level address translation

3DFTL is an FTL with a cache for the page-level mapping table (PMT). Typical

demand-based FTLs reduce the spatial requirement of SRAM by moving PMT

entries to data areas of flash memory pages, which in turn causes the inconsistency

problem. To overcome this obstacle, 3DFTL places a PMT entry in the spare area of

© IEICE 2015
DOI: 10.1587/elex.12.20150211
Received February 23, 2015
Accepted March 11, 2015
Publicized March 30, 2015
Copyedited April 25, 2015

2

IEICE Electronics Express, Vol.12, No.8, 1–8



the page that stores the corresponding data instead. As both data and mapping

information are stored in the same page, updating is considered as an atomic

operation.

Since a spare area is much smaller than a data area, PMT demands more pages

for storing its entries. In order to maintain the reasonable SRAM size, 3DFTL

employs a three-dimensional array structure for PMT as illustrated in Fig. 1.

The first-dimension array is kept in SRAM, and their contents are PPNs of

pages that have the up-to-date second-dimension arrays stored in the spare areas.

Likewise, the contents of the second-dimension array are PPNs of pages that have

the up-to-date third-dimension arrays. Since each page contains data, the corre-

sponding second-dimension array, and the related third-dimension array, the

inconsistency problem is ceased to exist.

However, the address translation has to be done by a three-level process. For

example, supposing that the translated PPN was stored in PMTxyz where x, y, and z

are the head, middle, and tail bits of LPN, respectively. PMTx and PMTxy have to

be respectively retrieved in order to access PMTxyz. Thus, we call the accessing to

PMTx, PMTxy, and PMTxyz as the first-, second-, and third-level address trans-

lation, respectively.

In addition, 3DFTL has a cache for the second level PMT entries and the third

level PMT entries. Each cache entry is organized by the first index of PMT. For

instance, Cachex, a cache entry, can contain PMTxj and PMTxjk for all possible j

and k. As a result, re-reference is faster due to the exploitation of temporal locality

and spatial locality. The address translation of 3DFTL is described by pseudocode

in Fig. 2.

Although each address translation can trigger two flash memory read oper-

ations, the second read operation can be omitted if the required third level PMT

entry is in the same page as the retrieved second level PMT entry. In other words,

packing more third level PMT entries in one page can decrease the number of read

operations.

Due to the spatial locality of data write requests, the most significant bits

(MSBs) of PPNs of nearby LPNs are having high likelihood of repetition. 3DFTL

takes advantage of this property by employing a compression technique in order to

Fig. 1. The example of three-dimensional array for 3DFTL PMT.

© IEICE 2015
DOI: 10.1587/elex.12.20150211
Received February 23, 2015
Accepted March 11, 2015
Publicized March 30, 2015
Copyedited April 25, 2015

3

IEICE Electronics Express, Vol.12, No.8, 1–8



Fig. 2. Pseudocode of three-level address translation

Fig. 3. Pseudocode of compression and decompression procedures
© IEICE 2015
DOI: 10.1587/elex.12.20150211
Received February 23, 2015
Accepted March 11, 2015
Publicized March 30, 2015
Copyedited April 25, 2015

4

IEICE Electronics Express, Vol.12, No.8, 1–8



make room for more PPNs. A PPN, which is the content of PMT entry, is split into

two parts: index (MSBs) and offset. A duplicated index is omitted from the spare

area; hence, extra PPNs can be stored.

In 3DFTL, the cache also serves as scratchpad for compression; each entry has

sufficient information to generate compressed metadata that will be written to spare

area. The pseudocodes of compression and decompression are shown in Fig. 3.

With compression, the metadata are stored as an index dictionary and compressed

PPNs— pairs of index position and offset. In addition, the LPN is also embedded

because it is mandatory for garbage collection. As the size of index dictionary is

limited, the metadata can be stored in uncompressed format in case of very low

compressibility to ensure mapping integrity. However, the entries of the third level

PMT stored in the uncompressed metadata are limited to only those associated with

the same second level PMT entry as the data area. In contrast, every second level

PMT entries that related to the same entry of the first level PMT is kept.

In the example of write request illustrated in Fig. 4, we assume that, firstly, both

LPN and PPN are 8-bit. Secondly, an LPN is broken into 6-bit, 1-bit, and 1-bit

indices of PMT— the 3D array. Thirdly, an LPN is decomposed into two bits

(MSBs) and six bits (LSBs) in compression procedure. On the other hand, a PPN is

decomposed into a 6-bit index (MSBs) and a 2-bit offset (LSBs). Lastly, the

maximum size of index dictionary is two. Every spare area has a compression flag

for indicating the format of its metadata. In this example, PPN9 is uncompressed

while PPN6 and PPN11 are compressed. Each cache entry resembles an extracted

Fig. 4. The example of 3DFTL address translation.

© IEICE 2015
DOI: 10.1587/elex.12.20150211
Received February 23, 2015
Accepted March 11, 2015
Publicized March 30, 2015
Copyedited April 25, 2015

5

IEICE Electronics Express, Vol.12, No.8, 1–8



compressed metadata. Since an entry of the second level PMT is always equal to

one of its third level PMT entries, the cache keeps only a small selector for each.

A request for writing C at LPN145, which means its PPN is held in PMT36;0;1,

begins with fetching the previous PPN into the cache by three-level address

translation in step 1–6. A victim is selected by LRU policy and can be evicted

immediately because of write-through policy. During these steps, the PPNs of

adjacent LPNs, which will be needed for compression, are also cached. As shown

in the example, the previous PPN of LPN145 is PPN2 and two flash memory read

operations were performed.

In step 7, PPN11, a new empty page, is assigned for storing the updated data

and metadata; hence, the first level PMT and the cache entry, which contains the

second level PMT and the third level PMT are updated according to this assign-

ment. After that, 3DFTL tries to compress the cache entry and creates the metadata.

In this example, the cache entry can be compressed; thus, the cache entry is

compressed by the procedure described in Fig. 3. Before PPN11 is replaced by

LPN145, the compressed dictionary (DICT) was ð2; 1Þ and the compressed PPNs

were ð1; 2Þ, ð0; 3Þ, ð1; 1Þ, and ð0; 1Þ, respectively. In order to be embedded into

compressed metadata, LPN145 is decomposed into 2 and 17. As a result, the

dictionary become ð17; 1Þ and CompressedPPN0;1 is changed from ð0; 3Þ to ð0; 2Þ.
Finally, the created metadata are programed to PPN11 along with the data in step 8.

3 Evaluation

The experiments were conducted by simulating an 8GB MLC NAND flash

memory [3] with following parameters. It has 4096 blocks of 256 pages. The data

area of a page is 8192B while the spare area is 448B. However, only 112B are

usable because of ECC. A page read, a page program, and a block erase operations

take 75 µs, 1300µs, and 3800µs, respectively. The data transfer rate is limited to

50MB/s. Benchmarks from SPC [4] and MSRC [5] were used for performance

evaluation.

3DFTL will be compared against DFTL [2], CDFTL [6], and SCFTL [7].

DFTL is the baseline of demand-based FTLs while CDFTL added the second-level

cache in order to exploit spatial locality. SCFTL is a high performance FTL that

optimized for spatial locality and large page size. The SRAM sizes of 3DFTL,

DFTL, CDFTL, and SCFTL were configured to 96.73KB, 101.00KB, 99.31KB,

and 101.25KB, respectively. The first level PMT of 3DFTL takes 64KB because

few entries can be packed into a spare area; hence, only 32KB are left for the

cache. On the contrary, the cache of other FTLs is about 96KB.

As shown in Fig. 5, the average system response time of 3DFTL is the best

comparing with other techniques even though its cache size is about one third of the

others. The geometric mean of normalized average system response time of 3DFTL

is 16.42%, 30.59%, and 2.45% faster than DFTL, CDFTL, and SCFTL, respec-

tively. According to Fig. 6, besides the low cache miss rate, which is caused by the

spatial locality exploitation, the low cache miss penalty is also a major contributor

for enhancing the performance.© IEICE 2015
DOI: 10.1587/elex.12.20150211
Received February 23, 2015
Accepted March 11, 2015
Publicized March 30, 2015
Copyedited April 25, 2015

6

IEICE Electronics Express, Vol.12, No.8, 1–8



The maximum cache miss penalties of the other FTLs include one or more

program operations due to the update of translation pages. Since a page programing

is over ten times slower than reading, having only one program operation makes the

cache miss penalty considerably high. Furthermore, a page programing may trigger

a garbage collection that requires even longer time. As denoted by solid black

labels in Fig. 6, DFTL, CDFTL, and SCFTL have the average of 0.31%, 3.80%,

and 0.03% cache miss with the penalty of one or more read and program

operations, respectively.

On the contrary, the cache miss penalty of 3DFTL does not contain any

program operations. The cache miss penalty of 3DFTL is only two read operations

in the worst case. Moreover, the worst case rarely occurs owing to the compression.

The average cache miss with the penalty of two read operations is only 3.08% as

shown in Fig. 6. Therefore, the average cache miss penalty of 3DFTL is lower than

other FTLs.

An impact of cache miss penalty is clearly shown in Financial1 benchmark that

contains write-intensive requests but low spatial locality. CDFTL, which has few

large cache lines, exhibits very high overall cache miss penalty since 82.56% of its

cache misses needs to update translation pages. As a result, CDFTL is drastically

slow even though its cache miss ratio is very low. Moreover, DFTL and SCFTL are

also subject to high miss penalty during very stressing cache accesses. However,

our proposed FTL, 3DFTL, maintains low cache miss penalty. Regardless of

Fig. 5. The normalized average system response times.

Fig. 6. The percentage of address translation cost.

© IEICE 2015
DOI: 10.1587/elex.12.20150211
Received February 23, 2015
Accepted March 11, 2015
Publicized March 30, 2015
Copyedited April 25, 2015

7

IEICE Electronics Express, Vol.12, No.8, 1–8



smaller cache size, 3DFTL outperforms other FTLs and even surpasses, the high

performance, SCFTL.

As previously stated, 3DFTL not only solves the inconsistency problem, but

also enhances the performance. In addition, 3DFTL provides better flash space

utilization since it does not occupy special pages for the mapping table. For this

reason, 3DFTL shows slight improvement in terms of P/E cycles, which also

means prolonging flash memory lifetime.

4 Conclusion

In this paper, a novel demand-based FTL named 3DFTL is proposed. It does

address translation at the page-level and employs a cache of the mapping table like

other demand-based FTLs. Differently, 3DFTL gets rid of translation pages by

utilizing the spare areas of flash memory pages. Since the mapping information and

data are simultaneously stored, the inconsistency problem is creased to exist; hence,

fault tolerance is improved. However, keeping the locations of the page-level

mapping table that stored in many little spare areas demands large SRAM. Thus,

the three-level address translation is required for controlling SRAM size. The

compression and caching techniques have been applied in order to exploit the

spatial locality. The average cache miss penalty is very low owing to zero explicit

cache write-back operations. To sum up, 3DFTL is an economical inconsistency-

free high-performance demand-based FTL. 3DFTL is more suitable for managing

the flash memory in a high performance mobile device than other demand-based

FTLs.

Acknowledgments

Peera Thontirawong is financially supported by the Thailand Research Fund

through the Royal Golden Jubilee Ph.D. Program (PHD/0273/2549).

© IEICE 2015
DOI: 10.1587/elex.12.20150211
Received February 23, 2015
Accepted March 11, 2015
Publicized March 30, 2015
Copyedited April 25, 2015

8

IEICE Electronics Express, Vol.12, No.8, 1–8


