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ABSTRACT

In this paper, a new thermo-elasto-viscoplastic model is proposed, which can characterize thermodynamic behav-
iours of soft sedimentary rocks. Firstly, as in the Cam-clay model, plastic volumetric strain which consists of two
parts, stress-induced part and thermodynamic part, is used as hardening parameter. Both parts of the plastic volumet-
ric strain can be derived from an extended e-ln p relation in which the thermodynamic part is deduced based on a con-
cept of `equivalent stress'. Secondly, regarding soft sedimentary rocks as a heavily overconsolidated soil in the same
way as the model proposed by Zhang et al. (2005), an extended subloading yield surface (Hashiguchi and Ueno, 1977;
Hashiguchi, 1980; Hashiguchi and Chen, 1998) and an extended void ratio diŠerence are proposed based on the con-
cept of the equivalent stress. Furthermore, a time-dependent evolution equation for the extended void ratio diŠerence
is formularized, which considers both the in‰uences of temperature and stresses. Finally, it is proved that the proposed
model satisˆes thermodynamic theorems in the framework of non-equilibrium thermodynamics.
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INTRODUCTION

Nuclear electricity power generation has drawn again a
worldwide attention and may become much more im-
portant energy in the future. There always, however, ex-
ist some crucial problems in treating nuclear waste dis-
posal. Deep burying of the nuclear waste in intact rock
ground is considered to be a practical way. The heat emis-
sion due to the radioactivity of the nuclear waste dis-
posal, however, will increase the temperature of sur-
rounding ground and endanger the surrounding rock
structures. It is known that for some geomaterials, e.g.,
soft sedimentary rock, temperature and its change may
aŠect the mechanical behaviours of the rock, especially
the long-term stability. Therefore, it is necessary to evalu-
ate long-term stabilities of the ground subjected to heat-
ing process due to radioactivity of the nuclear waste dis-
posal. In the analysis, a key important factor is to estab-
lish a simple and reasonable thermo-elasto-viscoplastic
constitutive model to characterize the thermo-dynamic
behaviour of soft rocks. Some experimental results can
be found in literature, e.g., Okada (2005, 2006); Fujinu-
ma et al. (2003). The in‰uences on the behaviour of soft
rocks induced by temperature and its change can be sim-
ply summarized as follows:
(1) The temperature and its change aŠect the stress-strain

relation of soft rocks in a way that as the temperature
decreases, the peak value of stress diŠerence in-
creases; meanwhile, the stress-strain relation changes

from ductility to brittle, as shown in Fig. 1.
(2) The temperature and its change aŠect the creep be-

haviour of soft rocks greatly in a way that as tempera-
ture increases about 40 degrees, the creep failure time
may decrease with 2¿4 orders, as is shown in Fig. 2.

In order to simulate thermodynamic behaviour of geo-
materials, some thermo-elasto- viscoplastic models have
been proposed, most of which are deduced using the ther-
modynamic theorems to establish a series of restricted re-
lations for the variables involved in the models, e.g. stress
tensor, strain tensor, hardening parameters and entropy
at ˆrst, and then deduced the models using common con-
cepts such as ‰ow rule, yielding function, plastic poten-
tial, normality rule and etc. Detailed discussion on this is-
sue can be found in the review by Kitagawa (1972), the
work by Rojas et al. (2000) and the book by Lebon et al.
(2008). In proposing a thermodynamic model, the most
important but very di‹cult step is to formulize the ther-
modynamic functions, which satisˆes the above-men-
tioned restricted relations for the variables, which always
makes the model too complicated and di‹cult to under-
stand.

A reversed research approach has been used in this
paper. Unlike most of the models in literature that ther-
modynamic theorems are always used as restricted condi-
tions in reasoning the formulation of the models, the
thermodynamic theorems are only used to verify the logi-
cality of the new model in thermodynamic meaning after
the model is established. Therefore, in establishing the
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Fig. 1. Test results of various sedimentary rocks under triaxial com-
pression loading at normal and high constant temperatures (Oka-
da, 2005)
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model, the ‰ow rule, yielding function, plastic potential,
evolution equation for subloading surface are chosen
without considering the restrictions controlled by the
thermodynamic theorems at the very beginning. It is
therefore possible for us to choose reasonable formula-
tions based on very simple physical meanings and practi-
cal equations in soil mechanics such as the e-ln p relation
in consolidation tests, so that the establishment of the
new model becomes much easier.

Generally speaking, within the framework of continu-
um mechanics, it is very di‹cult to formulize a constitu-
tive model for rock due to discontinuous structures exist-
ing inside the rock mass. Some soft sedimentary soft
rocks, however, can be considered as continuous media,
and its mechanical behaviours can be described with
elastoplastic/elasto-viscoplastic model. Based on the En-
dochronic theory (Valanis, 1971), Oka and Adachi (1985)
proposed an elastoplastic model with strain softening for
soft rock, which can describe not only the bifurcation
problem of element tests but also has a feature of less de-
pendency on mesh size in ˆnite element analysis com-
pared to the other models at that time. The model then
was developed to an elasto-viscoplastic model for frozen
sand by Adachi et al. (1994), which can describe both the
strain softening and the time dependent behaviour of
geomaterials, which consists of three aspects, namely,
creep, strain rate eŠect and stress relaxation. By introduc-
ing the in‰uence of intermediate stress with tij concept
(Nakai and Mihara, 1984), Zhang et al. (2003a) proposed
an elasto-viscoplastic model of soft rocks based on which
a boundary value problem related to evaluation of
remedial works for cracked tunnels in creep-behaved
ground was analyzed (Zhang et al., 2003b).

Regarding soft rock as a heavily overconsolidated soil,
Zhang et al. (2005) proposed a simple elasto-viscoplastic
model of soft rocks based on Cam-Clay model, using the
concept of subloading yield surface (Hashiguchi and
Ueno, 1977) and the tij concept (Nakai and Mihara,
1984). This model can not only describe the time depend-
ent behaviours of soft rocks, but also can take into con-
sideration the in‰uence of intermediate stress properly.

In this paper, based on the works by Zhang et al.
(2005), a new thermo-elasto-viscoplastic model is
proposed to describe the thermodynamic behaviours of
soft sedimentary rocks, in which, the plastic volumetric
strain is adopted as the hardening parameter, as is the
same as normal elastoplastic model like Cam-clay model.
The plastic volumetric strain, however, consists of two
parts, one is stress-induced and another is thermodynam-
ic. The elastic volumetric strain is simply evaluated with
thermo-elasticity, while the plastic volumetric strain is
derived from an extended e-ln p relation commonly used
in consolidation test, based on a new concept of `equiva-
lent stress', by which the plastic volumetric strain caused
by the thermodynamic part can be properly evaluated.
The aim of the present research is to propose a model
which has the features as:
(1) It should be simple and reasonable. Not only the ther-

modynamic characteristics, but also the normal
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Fig. 2. Tests results of creep rates history of marlstone at diŠerence constant temperatures (Okada, 2006)
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mechanical behaviours of soft rocks that have al-
ready been clariˆed in experiments and been
modelled in the previous researches, can be described
properly. The proposed model therefore, should be
reasonable, sophisticated but comprehensive.

(2) The material parameters involved in the model can be
determined deˆnitely by conventional triaxial tests
considering temperature eŠects.

(3) It should satisfy the thermodynamic theorems in spite
of the fact that the theorems are not directly used for
establishing the model itself.

CONCEPT OF EQUIVALENT STRESS

One of the important characteristics of the Cam-clay
model is that the plastic volumetric strain is used as a
hardening parameter for the elastoplastic model of soils.

Furthermore, it is also shown in the work by Zhang et al.
(2005) that the plastic volumetric strain can also be used
as a hardening parameter in a constitutive model for soft
rocks. Therefore, the plastic volumetric strain is also as-
sumed as the hardening parameter in the newly proposed
model.

Change of temperature may generate both elastic and
plastic volumetric strains. It is reasonable to assume that
the plastic volumetric strain of geomaterials is made up
from two independent parts, that is, thermodynamic and
stress-induced, and can be expressed as:

ep
v＝eps

v ＋epu
v or dep

v＝deps
v ＋depu

v (1)

where, ep
v is the total plastic volumetric strain. eps

v is the
stress-induced plastic volumetric strain and epu

v is the ther-
modynamic plastic volumetric strain. The second part of
Eq. (1) expresses the incremental relation of the plastic
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Fig. 3. Similarity of volumetric strains caused by real mean stress sm

and equivalent stress ãsm due to change of temperature

Fig. 4. Illustration of the relation between equivalent stress and void
ratio diŠerence
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volumetric strains.
Firstly, it is assumed that the relation between the

stress and the stress-induced plastic volumetric strain still
can be expressed by the Cam-clay model as:

f1(s, eps
v )＝ln

sm

sm0
＋

3 J2

Msm
－

1
Cp

eps
v ＝0 (2)

where, sm0 is a reference pressure and equals to 98 kPa,
which is the standard atmospheric pressure. M is the ratio
of shearing stress at critical state. Cp＝Ep/(1＋e0), where,
e0 is the reference void ratio at sm0; Ep is a plastic modulus
and physically it equals to the value of l-k, where, l is
compression index and k is swelling index.

In order to consider the eŠect of temperature and its
change, it is necessary to formulize the relation between
the temperature and the thermodynamic plastic volumet-
ric strain, based on the concept of equivalent stress. It is
known that under the condition of constant-stress state,
change of temperature may also generate thermodynamic
volumetric strain, including elastic volumetric strain eeu

v

and plastic volumetric strain epu
v , as were the material sub-

jected to a real mean stresses. Accordingly, it is assumed
that thermodynamic volumetric strain is induced by an
imaginary stress ãsm, namely, the equivalent stress. The
similarity of volumetric strains caused by real mean stress
and the incremental equivalent stress d ãsm due to change
of temperature is shown in Fig. 3.

In evaluating the stress-induced volumetric strain, it is
necessary to deˆne a reference pressure sm0 at a reference
temperature u0, which represents the global average abso-
lute temperature and is assumed here to be 288 K. Con-
sidering the limitation of the variation range for tempera-
ture and the fact that u should be larger or equal to 273 K,
a linear relation between the change of temperature u－u0

and the thermodynamic elastic volumetric strain eeu
v is as-

sumed as:

eeu
v ＝3a(u－u0) (3)

where, a is linear thermo-expansion coe‹cient, and takes
a negative value because a compressive volumetric strain
is assumed as positive in geomechanics.

Based on the concept of equivalent stress, the relation
between equivalent stress and thermo-dynamic elastic
volumetric strain can then be evaluated with Hooke's
law. Considering Eq. (3), this relation can be expressed
as:

ãsm＝sm0＋d ãsm＝sm0＋Keeu
v

＝sm0＋3Ka(u－u0) (4)

where, K is volume elastic modulus, and is equal to
E/3/(1–2n), in which E is the Young's modulus and n is
the Poisson's ratio.

On the other side, the relation between the equivalent
stress and the thermodynamic plastic volumetric strain epu

v

is evaluated by e-ln p relations in both compression and
swelling processes based on the equivalent stress. De-
tailed process to evaluate the relation between the plastic
thermodynamic void ratio Depu and the equivalent stress
under the condition of constant-stress state is shown in
Fig. 4. Considering Eq. (4), this relation can be expressed
as:

epu
v ＝Cp ln

ãsm

ãsm0
＝Cp ln

ãsm

sm0＋3Ka(u0－u0)

＝Cp ln
sm0＋3Ka(u0－u0)

sm0
(5)

Similar to the Cam-clay model, the plastic potential
function related to temperature is assumed in the follow-
ing way based on Eq. (5):

f2(u, epu
v )＝ln

sm0＋3Ka(u－u0)
sm0

－
1
Cp

epu
v ＝0 (6)

Considering both the eŠects of temperature and stress,
the total plastic volumetric strain is made up from ther-
modynamic and stress-induced, and substituting Eqs. (5)
and (6) into Eq. (1), a new thermoplastic potential func-
tion can be obtained as follows:

f(s, eps
v , u, epu

v )＝f1(s, eps
v )＋f2(u, epu

v )

＝Ø ln sm

sm0
＋

3 J2

Msm
－

1
Cp

eps
v »

＋Ø ln sm0＋3Ka(u－u0)
sm0

－
1
Cp

epu
v »＝0 (7)

or
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f(s, u, ep
v)＝ln

sm

sm0
＋

3 J2

Msm

＋ln
sm0＋3Ka(u－u0)

sm0
－

1
Cp

ep
v＝0 (8)

Because associated ‰ow rule is adopted, the proposed
thermoplastic potential is also the yield function. Con-
sistency equation can then be obtained as:

df＝0⇒
&f
&sij

dsij＋
&f
&u

du＋
&f
&ep

v
(depu

v ＋deps
v )＝0 (9)

Considering the independency of thermodynamic plastic
volumetric strain and stress-induced plastic volumetric
strain, the following equation can be obtained:

&f
&s

＝
&f1

&s
,

&f
&eps

v
＝

&f1

&eps
v

,
&f
&u

＝
&f2

&u
,

&f
&epu

v
＝

&f2

&epu
v

(10)

By which, the stress-induced plastic volumetric strain in-
crement can be easily calculated as:

deps
ij ＝L

&f
&sij

and deps
v ＝L

&f
&sii

(11)

Considering the factor that the change of temperature
can only generate volumetric strain, the stress increment
can be calculated by the Hooke's law as:

dsij＝Eijkldees
kl＝Eijkl(dekl－dep

kl－deeu
kl)

＝EijklØdekl－deps
kl －

depu
v dkl

3
－

deeu
v dkl

3 » (12)

where, eeu
kl is the thermoelastic strain tensor. Substituting

Eqs. (3) and (11) into Eq. (12), it can be rewritten as:

dsij＝Eijkldekl－Eijkl
&f

&skl
L－Eijkldkl

depu
v

3
－Eijkladkldu

or

dsij＝Eijkldekl－Eijkl
&f

&skl
L－Kdijdepu

v －3Kadijdu (13)

where, dij is the Kronecker tensor. From Eqs. (2) and (6),
it is easy to obtain the following equations:

&f
&ep

v
＝－

1
Cp

, depu
v ＝Cp

3Ka
sm0＋3Ka(u－u0)

du

&f
&u

＝
&f2

&u
＝

3Ka
sm0＋3Ka(u－u0)

(14)

Furthermore, by substituting Eqs. (13), (14) and (11) into
Eq. (9), L can be obtained:

L＝

&f
&sij

Eijkldekl

&f
&sij

Eijkl
&f

&skl
＋

1
Cp

&f
&sii

－

&f
&sij

Kdij ØCp
3Ka

sm0＋3Ka(u－u0)
＋3a»du

&f
&sij

Eijkl
&f

&skl
＋

1
Cp

&f
&sii

(15)

By substituting the above equation into Eq. (13), in-
cremental stress tensor can be obtained:

dsij＝(Eijkl－E ps
ijkl)dekl－(3K－3Khu)dkladu (16)

dsij＝(Eijkl－E ps
ijkl)dekl－(Eijkl－E pu

ijkl)dkladu (17)

dsij＝(Eijkl－E ps
ijkl)dekl－(Eijkl－E pu

ijkl)deeu
kl

＝(Eijkl－E ps
ijkl)dekl－(Eijkl－E pu

ijkl)
deeu

v

3
dkl (18)

Where,

hp＝
1
Cp

&f
&smm

＋
&f

&smn
Emnpq

&f
&spq

(19)

hu＝ØEijmn
&f

&smn

&f
&sij

1
hp
－1» Cp･K

sm0＋3Ka(u－u0)

＋Eijmn
&f

&smn

&f
&sij

1
hp

(20)

E pu
ijkl＝huEijkl (21)

E ps
ijkl＝Emnkl

&f
&spq

&f
&smn

Eijpq
1
hp

(22)

The above deduced thermo-elastoplastic model can
only be applied to normally- consolidated geomaterials
and not for overconsolidated soil which will be discussed
in the next section.

THERMO-ELASTOPLASTIC MODEL OF SOFT
ROCKS BASED ON THE EXTENDED SUBLOADING
YIELD SURFACE

In the works by Zhang et al. (2005), one important fea-
ture of the model is that soft sedimentary rock can be re-
garded as a heavily overconsolidated soil. Based on this
assumption, the concept of subloading yield surface
proposed by Hashiguchi and Ueno (1977) is introduced
into the constitutive model for soft rocks.

The subloading yield surface is also introduced in this
paper. A brief introduction to the subloading yield sur-
face is given in Fig. 5, in which void ratio diŠerence rs

due to stress and overconsolidated ratio OCRs can be ex-
pressed as:

rs＝Cp(1＋e0) ln
sN1e

sN1
＝Cp(1＋e0) ln OCRs,

OCRs＝
sN1e

sN1
(23)

In Fig. 5, the point P s represents the present stress state
and sN1 is the value of cross point of sm axis with the sub-
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Fig. 5. Normal yield surface and subloading failure surface formed
due to the change of stress state

Fig. 6. Equivalent normal yield surface and equivalent subloading
failure surface formed due to the change of equivalent stress state
correspond to temperatures
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loading yield surface that passes through the present
stress state, while sN1e is the value of cross point of sm

axis with the normal yield surface.
The expression of the subloading yield surface passing

through the present stress state Ps is:

fss＝Cp ln
sm

sN1
＋Cp

3 J2

Msm
＝0 (24)

Using the concept of equivalent stress, it is easy to de-
ˆne an equivalent void ratio diŠerence ru and an equiva-
lent overconsolidated ratio OCRu, taking after those in-
duced by real stresses shown in Eq. (23). Both ru and
OCRu are caused by the change of equivalent stress due to
change of temperature and can be expressed as:

ru＝Cp(1＋e0) ln
ãsN1e

ãsN1

＝Cp(1＋e0) ln
sm0＋3Ka(uN1e－u0)
sm0＋3Ka(uN1－u0)

(25)

and

OCRu＝
ãsN1e

ãsN1
＝

sm0＋3Ka(uN1e－u0)
sm0＋3Ka(uN1－u0)

(26)

where, the point P u represents the present equivalent
stress state and ãsN1 is the value of cross point of ãsm axis
with the subloading yield surface that passes through the
present equivalent stress state, while ãsN1e is the value of
cross point of ãsm axis with the normal yield surface, as
shown in Fig. 6 ãsN1 and ãsN1e correspond to temperatures
of uN1 and uN1e respectively.

Accordingly, both the extended void ratio diŠerence r
and the extended overconsolidated ratio OCR include the
thermodynamic and the stress-induced parts and can be
expressed as:

r＝rs＋ru＝Cp(1＋e0) ln
sN1e

sN1

＋Cp(1＋e0) ln
sm0＋3Ka(uN1e－u0)
sm0＋3Ka(uN1－u0)

＝Cp(1＋e0)(ln OCRs＋ln OCRu)

＝Cp(1＋e0) ln OCR (27)

where

OCR＝OCRsOCRu

In fact, the equivalent stress is a stress state that in-
cludes the in‰uence of temperature. Therefore, in
representing a real present stress state in stress space (sm,
J2), both present stress state and present temperature

state are considered simultaneously. That is, point P s and
point P u is the same in stress state but diŠerent in temper-
ature. Therefore, in Fig. 7, point P at present state in-
cludes three independent state variables: u, sm, J2. The
expression for the extended subloading yield surface
passing through the present stress and temperature state
P can then be given by the following:

fs＝Cp ln
sm

sN1
＋Cp ln

sm0＋3Ka(u－u0)
sm0＋3Ka(uN1－u0)

＋Cp
3 J2

Msm
＝0 (28)

as shown in Fig. 7. Equation (28) can also be written as:
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Fig. 7. Extended normal yield surface and extended subloading yield
surface
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fs＝Cp « ln sm

sm0
－Ø ln sN1e

sm0
－ln

sN1e

sN1
»$

＋Cp ln
sm0＋3Ka(u－u0)
sm0＋3Ka(u0－u0)

－Cp ln
sm0＋3Ka(uN1e－u0)
sm0＋3Ka(u0－u0)

＋Cp ln
sm0＋3Ka(uN1e－u0)
sm0＋3Ka(uN1－u0)

＋Cp
3 J2

M*sm
＝0 (29)

The stress-induced plastic volumetric strain due to the
change of stress from sm0 to sN1e can be evaluated as:

eps
v ＝Cp ln

sN1e

sm0
(30)

Meanwhile, the thermodynamic plastic volumetric strain
due to the change of temperature from u0 to uN1e can be
evaluated as:

epu
v ＝Cp ln

sm0＋3Ka(uN1e－u0)
sm0＋3Ka(u0－u0)

＝Cp ln
sm0＋3Ka(uN1e－u0)

sm0
(31)

By substituting Eqs. (27) and (30), (31) into Eq. (29), the
extended subloading yield surface can be written as:

fs(s, u, eps
v , epu

v )＝ln
sm

sm0
＋ln

sm0＋3Ka(u－u0)
sm0

－
1
Cp

(eps
v ＋epu

v )＋
1
Cp

rs＋ru

1＋e0
＋

3 J2

Msm
＝0 (32)

or

f(s, u, ep
v)＝fs(s, u, ep

v)＝ln
sm

sm0
＋

3 J2

Msm

＋ln
sm0＋3Ka(u－u0)

sm0
－

1
Cp

Øep
v－

r
1＋e0

»＝0 (33)

In a constitutive model, consistency equation must be
obeyed, by which the value of L can be determined:

df＝0⇒df＝
&f
&sij

dsij＋
&f
&u

du－
1
Cp

Ødep
v－

dr
1＋e0

»＝0 (34)

In the works by Zhang et al. (2005), it is assumed that
the evolution equation of the stress-induced rs is depend-
ent on the present state variables rs and sm, and is
proportional to the positive variable L in such a way that:

－
1

1＋e0
drs＝

ars2

sm
L (35)

where, a is a material parameter which controls the evolu-
tion rate of the stress-induced rs. Therefore, similar to
Eq. (35), the evolution equation for the extended void ra-
tio diŠerence r can be expressed by the sum of actual
stress sm and the equivalent stress increment ( ãsm－sm0) in
the following way:

－
1

1＋e0
dr＝

ar2

sm＋( ãsm－sm0)
L＝

ar2

sm＋3Ka(u－u0)
L (36)

By substituting this evolution equation into Eq. (34), it is
easy to obtain the relation:

L＝
&f
&sij

dsij/Øhpsub

Cp
», hpsub＝

&f
&sii

＋
ar2

sm＋3Ka(u－u0)
(37)

Based on the Hooke's law, the variable L also can be ob-
tained as:

L＝

&f
&sij

Eijkldekl

&f
&sij

Eijkl
&f

&skl
＋

hpsub

Cp

－

&f
&sij

Kdij ØCp
3Ka

sm0＋3Ka(u－u0)
＋3a»du

&f
&sij

Eijkl
&f

&skl
＋

hpsub

Cp

(38)

The loading criteria are given in the same way as in the
previous work by Zhang et al. (2005) as:

¿deps
ij ¿À0 if LÀ0 and







&f
&sij

dsijÀ0 hardening

&f
&sij

dsijº0 softening

¿deps
ij ¿＝0 if LÃ0 elastic (39)

THERMO-ELASTO-VISCOPLASTIC MODEL OF
SOFT ROCKS

In establishing a thermo-elasto-viscoplastic model of
soft rocks, it is necessary to add an ability of describing
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time dependent behaviours of materials into the above
deduced thermo-elastoplastic model. The main work is to
formulize the time dependent evolution equation for the
extended void ratio diŠerence r due to the state valuables
of stress and temperature.

Based on the works by Nakai and Hinokio (2004),
Zhang et al. (2005) proposed an elasto-viscoplastic model
for soft rocks, in which, the time dependent evolution
equation for the void ratio diŠerence rs is written as:

·rs

1＋e0
＝－L

Gs(rs, t)
sm

＋hs(t) (40)

where,

{
hs(t)＝ ·es

v0 (1＋t/t1)－ ša

Gs(rs, t)＝ars1＋Cn ln (1＋t/t1)
(41)

·es
v0 is an initial volumetric strain rate at the time t＝0

which represents the time when shearing begins. t1 is a
unit time used to standardize the time and always takes
the value of 1.0. ša is a time dependent parameter that
controls the gradient of strain rate vs. time in logarithmic
axes during a creep test. Cn controls the strain rate depen-
dency of soft rocks. It should be pointed out that the
values of the time dependent parameters Cn and ã are not
objective and are dependent on the unit of time. In its ap-
plication to boundary value problem, however, if the unit
of time used in numerical analysis is the same as the one
used in determining the parameters based on laboratory
tests, then there is no problem in using the model.

Similar to Eqs. (40) and (41), the time dependent evolu-
tion equation for the extended void ratio diŠerence r,
which includes the thermodynamic part and stress-in-
duced part, can be given as:

·r
1＋e0

＝－L
G(r, t)

sm＋( ãsm－sm0)
＋h(t)

＝－L
G(r, t)

sm＋3Ka(u－u0)
＋h(t) (42)

where,

{h(t)＝ ·e0
v[1＋t/t1]－ ša＝( ·eu

v0＋ ·es
v0)[1＋t/t1]－ ša

G(r, t)＝ar1＋Cn ln (1＋t/t1)＝a(ru＋rs)1＋Cn ln (1＋t/t1)
(43)

where, ·e0
v is the total volumetric strain rate, which in-

cludes the thermodynamic part and the stress-induced
part, in the same way as the extended void ratio diŠerence
r.

Total plastic volumetric strain rate is expressed as:

·ep
v＝ ·eps

v ＋ ·epu
v (44)

Associated ‰ow rule is adopted and therefore the vis-
coplastic potential is expressed as:

·eps
ij ＝L

&f
&sij

and ·eps
v ＝L

&f
&skk

(45)

Based on Eq. (6), thermodynamic plastic strain rate
can then be expressed as:

·epu
ij ＝Cp

3Ka
sm0＋3Ka(u－u0)

_u
sij

3
,

·epu
v ＝Cp

3Ka
sm0＋3Ka(u－u0)

_u (46)

The consistency equation can be written as:

_f＝
&f
&sij

·sij＋
&f
&u

_u－
1
Cp

Ø ·ep
v－

·r
1＋e0

»＝0 (47)

Substituting Eqs. (42)¿(46) into the consistency Eq. (47),
the variable L can be obtained as:

L＝Ø _fs＋
h(t)
Cp

»/hp
sib

Cp
(48)

where,

_fs＝
&f
&sij

·sij, hp
sub＝

&f
&skk

＋
G(r, t)

sm＋3Ka(u－u0)
(49)

The stress rate can be calculated by Hooke's law as:

·sij＝Eijkl ·ees
kl＝Eijkl( ·ekl－ ·ep

kl－ ·eeu
kl)

＝EijklØ ·ekl－ ·eps
kl － ·epu

v
dkl

3
－ ·eeu

v
dkl

3 » (50)

where ·eeu
v ＝3a _u (51)

Substituting Eqs. (42), (45), (46), (50), (51) into the
consistency Eq. (47), the variable L can also be obtained
as:

L＝

&f
&sij

Eijkl ·ekl＋
h(t)
Cp

&f
&sij

Eijkl
&f

&skl
＋

hp
sub

Cp

－

&f
&sij

Kdij ØCp
3Ka

sm0＋3Ka(u－u0)
＋3a» _u

&f
&sij

Eijkl
&f

&skl
＋

hp
sub

Cp

(52)

Substituting Eqs. (45), (46), (48) into Eq. (44), it is easy to
obtain the following equations:









·ep
v＝

_fs＋h(t)/Cp

hp
sub/Cp

&f
&skk

＋Cp
3Ka

sm0＋3Ka(u－u0)
_u

·ep
ij＝

_fs＋h(t)/Cp

hp
sub/Cp

&f
&sij

＋Cp
3Ka

sm0＋3Ka(u－u0)
_u
dij

3
(53)

The loading criteria are given as:

¿deps
ij ¿À0 if LÀ0 and







_fsÀ0 hardening

_fsº0 softening

_fs＝0 pure creep

(54)

¿deps
ij ¿＝0 if LÃ0 elastic

As is the same as the model proposed by Zhang et al.
(2005), it is necessary to deˆne a pure creep state when _fs

＝0. The plastic strain rate in the pure creep state can then
be evaluated as:
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







·ep
v＝

h(t)
hp

sub

&f
&skk

＋Cp
3Ka

sm0＋3Ka(u－u0)
_u

·ep
ij＝

h(t)
hp

sub

&f
&sij

＋Cp
3Ka

sm0＋3Ka(u－u0)
_u
dij

3
(55)

Compared with the model proposed by Zhang et al.
(2005), the newly proposed model only adds one
parameter, the linear thermo-expansion coe‹cient a,
which can be deˆnitely determined with clear physical
meanings. All other parameters are determined in the
same way as in the previous model. A detailed discussion
on this issue can be found in the corresponding reference
(Zhang et al., 2005).

THERMODYNAMIC BEHAVIOR OF PROPOSED
MODEL

Unlike most existing thermo-elasto-viscoplastic models
where thermodynamic theorems are used to establish a
series of restricted relations for the variables involved in
the models, these thermodynamic theorems are not dis-
cussed in formulating the newly proposed model at the
beginning. Therefore, it is necessary to verify if the new
model satisˆes the thermodynamic theorems, especially
the 1st and 2nd thermodynamic theorems, so that the ra-
tionality of the new model can be assured.

When ˆeld equations of thermodynamics for a body
are considered, state variables such as stresses, strains
and temperature are in general inhomogeneous and
change constantly. It is necessary to describe properly the
energy exchange that has happened between an arbitrary
element and its `external system'. It is however, very
di‹cult and at times even impossible to deˆne the exter-
nal system. For instance, when we consider the heating
eŠect of nuclear radiation, it is related to mass energy
conversion of the element itself which is not taken into
consideration within the framework of this research. It is
necessary to use non-equilibrium thermodynamics
(Kittel, 2000; Lebon et al., 2008) to describe the ther-
modynamic behaviours of any arbitrary element in the
body.

In the 1st thermodynamic theorem, it is stated that the
total energy ‰owing in/out of the element is equal to the
energy store/lost of the element, namely, internal energy
U. The total energy ‰ow in/out of the element is made up
from two parts: the work W done by external forces and
the heat Q. The heat includes external heat and internal
heat. The former one is the heat ‰ux hi that generates
from external heat source and ‰ows in/out through the
surfaces surrounding the element; while the latter one is
generated from the internal heat source such as radioac-
tivity of nuclear waste disposal within the element. Be-
cause of the conservation of energy in the element, the
following equation can be obtained:

U＝W＋Q (56)

It can also be expressed in rate form as:

_U＝ _W＋ _Q⇔D ·u＝D ·w＋D ·q (57)

where, D is the density of the element, u is the internal
energy per unit mass, w is the work per unit mass and q is
the heat energy per unit mass. The relation between u and
hi obeys the Fourier's law, that is:

hi＝－k &u/&xi (58)

where, k is heat conductivity coe‹cient. Then, _W and _Q
can be expressed as:

_W＝D ·w＝sij ·eij＝sij( ·ee
ij＋ ·ep

ij)

＝sij( ·ees
ij ＋ ·eeu

ij )＋sij( ·eps
ij ＋ ·epu

ij ) (59)

_Q＝D ·q＝－
&hi

&xi
＋rD＝－

&(－k･&u/&xi)
&xi

＋rD

＝k
&2u

&xi&xi
＋rD (60)

where, r is the internal heat supply per unit time per unit
mass.

The changing rate of internal energy _U includes reversi-
ble work rate _W9and the corresponding changing rate of
thermal energy _Q9. In the element, _W9is stored in the
form of elastic potential energy:

_W9＝sij･ ·ee
ij＝sij･( ·ees

ij ＋ ·eeu
ij ) (61)

The changing rate of thermal energy _Q9can then be
evaluated by the following equation:

_Q9＋ _W9＝ _W＋ _Q⇒

_Q9＝sij( ·ee
ij＋ ·ep

ij)＋Øk &2u
&xi&xi

＋rD»－sij ·ee
ij

＝sij( ·eps
ij ＋ ·epu

ij )＋Øk &2u
&xi&xi

＋rD» (62)

The changing rate of thermal energy per unit mass ·q9
can then be expressed as:

·q9＝
sij( ·eps

ij ＋ ·epu
ij )

D
＋Ø k

D
&2u

&xi&xi
＋r» (63)

Based on the deˆnition of entropy, the material time
derivative of the entropy ·h can be calculated:

·h＝
·q9

u
＝Øsij( ·eps

ij ＋ ·epu
ij )

D
＋

k
D

&2u
&xi&xi

＋r» 1
u

(64)

In non-equilibrium thermodynamics, the changing rate
of entropy density is made up from three parts: the ˆrst
part comes from the irreversible course in the element,
the second part comes from the heat ‰ux and the third
part comes from inner heat source such as radioactivity
of nuclear waste disposal within the element. The relation
among them can be shown as:

D ·h＝ ·g＋«－Øhi

u »
,i
＋D

r
u $ or

·g＝D ·h－«－Øhi

u »
,i
＋D

r
u $ (65)

where, ·g is called as entropy production in the irreversible
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Fig. 8. Stress-strain relations at the diŠerent constant temperatures

Fig. 9. Stress-strain relations at the changing temperature during
shearing

Fig. 10. Stress-strain relations at the changing temperature during
shearing
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course of the element and must be greater than or equal
to zero (Clausius-Duhem inequality). Substituting the
Eqs. (58) and (64) into Eq. (65), ·g can be expressed as:

·g＝DØsij( ·eps
ij ＋ ·epu

ij )
D

＋
k
D

&2u
&xi&xi

＋r» 1
u

－k
1
u

&2u
&x2

i
＋k

1
u2 Ø &u

&xi
»Ø &u

&xi
»－D

r
u

＝
1
u

sij( ·eps
ij ＋ ·epu

ij )＋k
1
u2Ø &u

&xi
»Ø &u

&xi
» (66)

It also can be written as:

·g＝
1
u

_W p＋k
1
u2Ø &u

&xi
»Ø &u

&xi
» (67)

where, _W p is the rate of plastic work that can be proved
to be positive. Detail demonstration of this statement is
given in APPENDIX. Because both u and k are positive,
it is therefore easy to conclude that:

·gÆ0 (68)

This inequality states clearly that the irreversible course
in the element can convert work to heat automatically,
but the reverse conversion cannot happen automatically.

PERFORMANCE OF THE NEWLY PROPOSED
MODEL

Calculated Results of Proposed Thermo-Elastoplastic
Model

In order to check the performance of the proposed
model, drained conventional triaxial compression tests of
soft rock under constant shear strain but with diŠerent
temperatures during shearing, is simulated. The physical
properties of the soft rock and the material parameters
involved in the model are listed in Table 1. Because vis-
cosity is not considered here, time dependent parameters
Cn and ša take the values of zero.

Figure 8 shows the stress-strain relations of the soft
rocks at diŠerent constant temperatures at which the
shearing is carried. It is seen from the ˆgure that the peak
value of stress diŠerence increases as temperature
decreases in drained conventional triaxial compression
tests at diŠerent constant temperatures. It is also known
that the stress-strain relation changes from ductility to
brittle as temperature decreases, which is coincident with
the experimental results of the thermodynamic behav-
iours of soft rocks obtained from the works by Okada
(2005, 2006).

Figure 9 shows the comparison of the calculated results
at constant temperatures during shearing, and under the
conditions that temperature changes from low to high, or
from high to lower during shearing. Figure 10 shows the
comparison of calculated results between the test with
constant temperature during shearing and the test with
changing temperature during shearing. It is known from
these ˆgures that change of temperature during shear
may aŠect the stress-strain relation a little but is so much
larger as the in‰uence of the initial temperature when the
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Table 1. Physical properties of soft rock and material parameters in-
volved in thermo-elastoplastic model

a(1/K) 8.0×10－6 E (MPa) 900.0
b 1.50 Ep (l-k) 0.005
a 500.0 ša —
v 0.0864 Cn —
Rf 11.0

OCR 16.0 Void ratio at reference state e0 0.72

s?30 (MPa) 0.098 Initial yielding stress of
consolidation p?c (MPa) 15.0

Table 2. Physical properties of soft rock and material parameters in-
volved in thermo-elasto-viscoplastic model

a(1/K) 8.0×10－6 E (MPa) 900.0
b 1.50 Ep (l-k) 0.040
a 500.0 ša 0.70
v 0.0864 Cn 0.025
Rf 11.0

OCR 150.0 Void ratio at reference state e0 0.72

s?30 (MPa) 0.098 Initial yielding stress of
consolidation p?c (MPa) 15.0

Fig. 11. Simulated stress-strain relations at diŠerent constant temper-
atures

Table 3. Creep stress ratio (qcreep/qu) in the creep test under diŠerent
constant temperatures

Temperature (K) qcreep (MPa) qu (MPa) qcreep/qu

273 3.5 5.713 0.6126
288 3.5 5.617 0.6231
303 3.5 5.493 0.6372
318 3.5 5.331 0.6565
333 3.5 5.114 0.6844
348 3.5 4.815 0.7269
363 3.5 4.380 0.7991

Table 4. Physical properties of soft rock and material parameters in
the new model for comparing between theoretical and experimental
results

a(1/K) 6.0×10－6 E (MPa) 1200.0
b 1.50 Ep (l-k) 0.040
a 500.0 ša 0.70
v 0.0864 Cn 0.025
Rf 11.5

OCR 150.0 Void ratio at reference state e0 0.72

s?30 (MPa) 0.098 Initial yielding stress of
consolidation p?c (MPa) 15.0

Fig. 12. Time histories of creep rates at diŠerent constant tempera-
tures
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shearing is started.

Calculated Results of Proposed Thermo-Elasto-Vis-
coplastic Model

In order to check the viscoplastic behaviours of the
proposed model, drained conventional triaxial compres-
sion tests controlled with constant strain rate and conse-
quent drained triaxial pure creep tests, are simulated with
the newly proposed model under the condition that tem-
peratures are kept in constant with diŠerent values during
shearing while the shear rate is ·e＝0.10z/min. Physical
properties of soft rock and material parameters involved
in thermo-elasto-viscoplastic model are listed in Table 2.
Compared to Table 1, the diŠerence between Tables 1
and 2 is that because viscosity is considered here, time de-
pendent parameters Cn and ša are no longer to be zero.

Figure 11 shows the relations between the stress diŠer-
ence and strain of soft rocks in drained conventional
triaxial compression tests under constant strain rate ( ·e＝
0.10z/min) at diŠerent constant temperatures. The cal-
culated results also can describe the thermodynamic char-
acteristics of soft rocks, which are observed in the experi-
ments by Okada (2005, 2006).

In simulating drained creep tests, a shear stress of q＝
3.5 MPa is chosen as the creep stress which is not applied
to the specimen abruptly but loaded with drained shear-
ing at the same strain rate ( ·e＝0.10z/min) as is used in
the simulation of the drained compression tests shown in
Fig. 11. Table 3 lists the creep stress ratio (qcreep/qu) in the
creep test under diŠerent constant temperatures.

Figure 12 shows the simulated time histories of creep
rates of the soft rocks at diŠerent constant temperatures.
It is seen from this ˆgure that the general characteristics
of creep behaviour, such as initial creep rate, steady creep
and creep rupture, can be simulated properly. Moreover,
the calculated results can describe properly the factors
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Fig. 13. Comparison between theoretical and experimental results for
creep stain rates at diŠerent constant temperatures (tests by Okada,
2006)
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that the creep failure time is largely dependent on temper-
ature, and that the higher the temperature is, the faster
the creep rupture will be, which have already been con-
ˆrmed in the experiments by Okada (2005, 2006).

CONCLUSIONS

In this paper, a thermo-elasto-viscoplastic model for
soft sedimentary rocks is proposed. Concluding remarks
are listed as below:
(1) Based on the fact that the temperature and its change

can generate volumetric strain of geomaterials, like
those generated by hydrostatic pressure acted on the
materials, a concept called as equivalent stress, is
proposed in this paper. Change of the equivalent
stress can not only generate elastic volumetric strain
but also plastic volumetric strain. For elastic thermal
strain, the relationship between the change of the
equivalent stress and the change of temperature is
derived by thermo-elastic theory and Hooke's law.
The relationship between the change of temperature
and the thermo-plastic strain is simply evaluated with
e-ln p relations in both compression and swelling
processes based on the concept of equivalent stress.

(2) By assuming that total plastic volumetric strain is
made up from two independent parts: thermodynam-
ic and stress-induced, a thermo-elastoplastic model
based on Cam-clay model is established at ˆrst, using
an associate ‰ow rule, which considers both the
eŠects of stresses and the change of temperature.
Then, based on the fact that change of void ratio, or
in other words, change of density or change of over-
consolidation ratio, is brought about by changes of
temperature and stresses, a new evolution equation
for the change of total void ratio diŠerence, is
proposed based on subloading concept. Similar to the
evolution equation for the subloading surface related
to real stresses, the evolution equation for the sub-
loading surface related to the equivalent stress due to
the change of temperature is simply formularized, by
which the newly proposed thermo-elastoplastic model

is able to consider properly the thermodynamic be-
haviors of soft rocks in drained conventional triaxial
compression tests under diŠerent constant and chang-
ing temperatures during shearing.

(3) In order to describe the viscoplastic behavior of soft
sedimentary rock based on an elasto-viscoplastic
model proposed by Zhang et al. (2005), a new time-
dependent evolution equation for the total void ratio
diŠerence is formularized, by adding the time eŠect
into the evolution equation adopted for the subload-
ing surface of the newly proposed thermo-elastoplas-
tic model. Based on the evolution equation, a new
thermo-elasto-viscoplastic model is established,
which can describe the thermodynamic behaviors of
soft rocks not only in drained conventional triaxial
compression tests but also drained triaxial creep tests.

(4) Being diŠerent from most existing thermo-elasto-vis-
coplastic models in which the thermodynamic the-
orems were used to establish a series of restricted rela-
tions for the variables involved in the models, the
thermodynamic theorems are not discussed in for-
mulating the new model at the beginning. In order to
verify if the new model satisfies the thermodynamic
theorems, especially the 1st and 2nd thermodynamic
theorems, non-equilibrium thermodynamics is used.
Firstly, it is illustrated that the 1st thermodynamic
theorem can be satisˆed by the model. Secondly, it
was proved that entropy production of the element is
always greater or equal to zero, that is, the second
thermodynamic theorem is satisˆed. The newly
proposed model is developed based on very simple
physical meaning and the requirement for satisfying
thermodynamic theorems is veriˆed after the model is
established, which makes it possible to propose the
model in a reasonable, sophisticated but comprehen-
sive way.
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NOTATION

ep
v: Total plastic volumetric strain

eps
v : Stress-induced plastic volumetric strain
eeu

v : Thermodynamic elastic volumetric strain
epu

v : Thermodynamic plastic volumetric strain
sm0: Reference pressure
M: Ratio of shearing stress at critical state
e0: Reference void ratio at reference pressure sm0

Ep: Plastic modulus
l: Compression index
k: Swelling index
ãsm: Equivalent stress
u: Temperature
u0: Reference temperature
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a: Linear thermo-expansion coe‹cient
K: Elastic volume modulus
E: Young's modulus
n: Poisson's ratio

Eijkl: Fourth order stiŠness tensor
rs: Void ratio diŠerence due to stress
ru: Equivalent void ratio diŠerence

OCRs: Overconsolidated ratio due to stress
OCRu: Equivalent overconsolidated ratio

a: Material parameter controls the evolution rate
of void ratio diŠerence

t1: Unit time
ša: Material parameter controls the gradient of

creep rate vs. time in logarithmic axes
Cn: Material parameter controls the strain rate de-

pendency of soft rocks
U: Internal energy
W: Work done by external forces
_W9: Reversible work rate
Q: Heat energy
_Q9: Changing rate of thermal energy corre-

sponding to _W9
hi: Heat ‰ux
D: Density of element
u: Internal energy per unit mass
w: Work per unit mass
q: Heat energy per unit mass
k: Heat conductivity coe‹cient
r: Internal heat supply per unit time per unit mass
·h: Material time derivative of the entropy
·g: Entropy production
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APPENDIX

Rate of plastic work _W p is made up from ther-
modynamic part and stress-induced part. Therefore, sub-
stituting Eqs. (45) and (53) into _W p, the following equa-
tion can be obtained:

_W p＝sij( ·eps
ij ＋ ·epu

ij )＝L
&f
&sij

sij＋sij ·epu
ij

＝L
&f
&sij

(sij＋sm･dij)

＋sijCp
3Ka

sm0＋3Ka(u－u0)
_u
dij

3
(A–1)

where, sij is deviatory stress tensor.
Furthermore, the following equation can be obtained

as:

&f
&sij

＝Ø 1
sm

－
3

M*
J2

s2
m
» dij

3
＋

3
M

sij

2 J2

1
sm

(A–2)

By substituting Eq. (A–2) into Eq. (A–1), it is easy to ob-
tain the following relation:

_W p＝L＋smCp
3Ka

sm0＋3Ka(u－u0)
_u (A–3)

In the Eq. (A–3), according to the loading criteria, plastic
strain only develops in the case of LÆ0. Therefore, the
ˆrst term in the right side of Eq. (A–3) is positive. For the
second term in the right side of Eq. (A–3), according to
the fact that plastic strain due to the change of tempera-
ture can only develops in the case of _uÃ0, and the fact
that aº0, the second term is always positive, that is,

smCp
3Ka

sm0＋3Ka(u－u0)
_uÆ0 (A–4)

Therefore, _W pÆ0 is always valid.


