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INTRODUCTION

The ocean absorbs about 30% of the emitted
anthropogenic CO2, causing significant changes in

the marine carbon cycle and carbonate system.
These changes include an increase in the concentra-
tion of dissolved CO2, a smaller proportional increase
of bicarbonate ions (HCO3

−), a decrease of carbonate
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ABSTRACT: Previous studies of the impact of increased CO2 on macroalgae have mainly been done
in laboratories or mesocosm systems, placing organisms under both artificial light and seawater
conditions. In this study, macroalgae were incubated in situ in UV-transparent cylinders under con-
ditions similar to the external environment. This system was tested in a short-term study (5.5 h incu-
bation) on the effect of 2 partial pressures of CO2 (pCO2): air (ambient CO2) and the pCO2 predicted
by the end of the 21st century (700 µatm, high CO2), on photosynthesis, photosynthetic  pigments
and photoprotection in calcifying (Ellisolandia elongata and Padina pavonica) and non-calcifying
(Cystoseira tamariscifolia) macroalgae. The calcifying P. pavonica showed higher net photosynthesis
under high CO2 than under ambient CO2 conditions, whereas the opposite occurred in C. tamarisci-
folia. Both brown algae (P. pavonica and C. tamariscifolia) showed activation of non-photochemical
quenching mechanisms under high CO2 conditions. However, in P. pavonica the phenol content
was reduced after CO2 enrichment. In contrast to phenols, in E. elongata other photoprotectors such
as zeaxanthin and palythine (mycosporine-like amino acid) tended to increase in the high CO2

treatment. The different responses of these species to elevated pCO2 may be due to anatomical and
physiological differences and could represent a shift in their relative dominance as key species in
the face of ocean acidification (OA). More in situ studies could be carried out to evaluate how
macroalgae will respond to increases in pCO2 in a future OA scenario. The in situ incubator  system
proposed in this work may contribute towards increasing this knowledge.

KEY WORDS:  Macroalgae · Non-photochemical quenching · Ocean acidification · Photoprotection ·
Photosynthesis
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ions (CO3
2−) and changes in the saturation state of

calcium carbonate (CaCO3) (Caldeira & Wickett 2005,
Orr et al. 2005). The predicted changes in dissolved
inorganic carbon distri bution and abundance will re -
sult in an increase in hydrogen ion (H+) concentration
and, consequently, a decrease in seawater pH. These
interrelated chemical changes in the inorganic car-
bon system are referred as ‘ocean acidification (OA)’
(Zeebe et al. 2008, Shi et al. 2009). The pH of ocean
surface waters has decreased by 0.1 units since the
beginning of the industrial era to its current mean
value of 8.2 (Caldeira & Wickett 2003), correspon-
ding to a 26% increase in H+ concentration. The most
recent models project a global increase in OA, with a
corresponding decrease in surface ocean pH by the
end of 21st century in the range of 0.06−0.07, up to
0.30−0.32, depending on the case scenarios of CO2

atmospheric concentration (Representative Concen-
tration Pathways, RCP) (IPCC 2013).

While the chemistry of carbonate systems has been
well studied (Zeebe 2012), the impacts of OA on mar-
ine organisms and ecosystems remain poorly under-
stood (Gattuso et al. 2010). While many studies have
pointed out that OA may have negative effects on
macroalgae (Mercado et al. 1999, Riebesell et al.
2000, Zondervan et al. 2001, Hall-Spencer et al. 2008,
Kuffner et al. 2008, Gao & Zheng 2010, Sinutok et al.
2011, Johnson et al. 2012), a few found no effects
(Israel & Hophy 2002, Egilsdottir et al. 2013) and
 others even found in creases in photosynthesis, growth
and calcification rates (Gao et al. 1993, Kübler et al.
1999, Zou 2005, Iglesias-Rodríguez et al. 2008, Zou &
Gao 2009, Roleda et al. 2012). Many factors may be
involved in the discrepancies among results, such
as morpho-functional traits, the form of C acquisi-
tion, species adaptation/ acclimation to environmen-
tal con ditions, pre-experimental conditions and other
methodological aspects (Ries et al. 2009, Olabarria et
al. 2013). In addition, most of these studies have been
carried out under laboratory conditions and in differ-
ent temporal scales (see Hurd et al. 2009 and Raven
2011 for a review), impeding an appropriate com -
parison among the results. Although mesocosm ex -
periments have improved our understanding of how
submerged macro phytes will respond to future OA,
information from in situ experiments is scarce. To
date, in situ responses of marine organism to dis-
solved CO2 increase are based on observations made
near volcanic vents (Hall-Spencer et al. 2008, Martin
et al. 2008, Porzio et al. 2011, Johnson et al. 2012).
Recently, different techniques of in situ CO2 mani -
pulation, such as the Coral−Proto Free Ocean Car-
bon Enrichment System (Kline et al. 2012), the

Free Ocean Carbon Enrichment System (Arnold et
al. 2012), and the Carbon-Enriched Open Chamber
System (Campbell & Fourqurean 2011, 2013) have
been proposed. The development of new CO2 in
situ experiments can provide new insights and give
straightforward answers or at least provide a piece
of the puzzle about the effect of OA on macroalgae.

The objective of this study was to present a novel
and simple experimental design to incubate macro-
algae in situ under different partial pressures of CO2

(pCO2). Our design was tested in the lower intertidal
environment of Cabo de Gata National Park (Spain),
by comparing the responses of non-calcifying (Cysto-
seira tamariscifolia) vs. calcifying (Padina pavonica
and Ellisolandia elongata) macroalgal species to
changes in pCO2. The studied calcifying species
are lightly calcified with aragonite (P. pavonica) and
heavily calcified with magnesium calcite (E. elongata).
We analyzed the short-term effects of in creased pCO2

in photosynthetic parameters (both O2 evolution- and
chlorophyll fluorescence-based para meters), as well
as pigment and photoprotector concentrations (my-
cosporine-like aminoacids [MAAs] and phenolic com-
pounds); all of which are good indicators of physiolog-
ical status (Figueroa & Korbee 2010).

MATERIALS AND METHODS

Studied site and species

The macroalgae were collected from the intertidal
rocky shores of the Cabo de Gata-Níjar Natural
Park (Southern Iberian Peninsula, 36° 52’ N, 2° 12’ W).
 Cystoseira tamariscifolia (Hudson) Papenfuss (Phaeo -
phyceae), Padina pavonica (Linnaeus) Thivy (Phaeo-
phyceae) and Ellisolandia elongata (J Ellis & Solan-
der) KR Hind & GW Saunders (Florideophyceae,
Corallinales) were selected for study in the present
work. The species were chosen on the basis of their
key ecological role in rocky photophilous habitats.

The brown macroalgae C. tamariscifolia is an At -
lantic species that occurs from Scotland and Ireland
to Mauritania and Cape Verde Islands. The species
is present in Mediterranean waters of Atlantic in -
fluence, occurring across Iberian Coast as far as the
province of Almería (Gómez-Garreta et al. 1994). It
presents blue-green iridescence, can reach up to 1 m
height and is fixed to the substrate by a thick disk
(Gómez-Garreta et al. 2001). The brown macroalgae
P. pavonica is a highly spread tropical/subtropical
species, common in the Mediterranean coastal waters
(www.algaebase.org). The thallus is brown to tan
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in colour, forming fan-shaped clusters. The blades
are calcifying, heavier above and lighter below, and
curl inward near the edges. Both the upper and lower
blade surfaces bear minute surface hairs arranged in
a series of bands approximately 1.5 to 6 mm apart
(Taylor 1979, Littler & Littler 2000, Littler et al. 2008).
The blades attach to the substratum via a holdfast,
which is often matted. The red E. elongata is an artic-
ulated calcareous species, whitish-pink to reddish-
lilac, calcified, up to 50 mm high. The species is pres-
ent in Medi ter ranean and Eastern Atlantic waters
(www. algaebase. org).

Incubation and experimental design

The studied macroalgae were collected at 0.5 m
depth and immediately incubated in 6 transparent
UV cy linders (0.8 l; 33 × 7 cm) in a sheltered bay. The
cylinders were fixed perpendicularly to the sun and
not deeper than 0.5 m using a wooden frame and sev-
eral buoys and weights (Fig. 1). Two pCO2 conditions
were applied in triplicate cylinders: (1) bubbling air
(control, ambient CO2) and (2) a commercial mix
(Praxair España) of CO2 and air with a final concen-
tration of 700 ppm (high CO2). The air pump and the
bottle with 700 ppm CO2 were maintained on the
beach edge. Aeration was provided from the bottom
of the cylinders at a rate of 0.5 l min−1. Before algal
incubation, the water was aerated for 30 min in both
pCO2 treatments. In a previous experiment it was
determined that this time was enough to equilibrate
the carbonate system in side the cylinders. Each cy -
linder received 20 g fresh weight (FW) of algae. The
incubation experiments were performed over 3 d in
September 2012, with 1 d for each species.

After bubbling for 30 min, aeration was stopped in
the 6 experimental cylinders in order to avoid extra
oxygenation, and 1 h incubation allowed for net
 photosynthesis determination. This time is optimal
for the incubations in function of the high volume:
biomass incubation ratio inside the cylinders. At the
end of this time, water samples were collected for the
final oxygen concentration. After that, the cylinders
were closed and were continuously aerated for 5.5 h.

Photosynthetic parameters including maximal quan -
tum yield (Fv/Fm), electron transport rate (ETR) and
non-photochemical quenching (NPQ) were meas-
ured by in vivo chlorophyll a (chl a) fluorescence
associated to Photosystem II at the beginning and at
the end of the incubation period of 5.5 h.  Samples for
absorptance, chlorophylls, carotenoids, photo protec -
tive compounds (phenols and myco spo rine-like amino
acids) as well as antioxidant capacity were also de -
termined at both periods.

To analyse phenolic compounds, DPPH and photo-
synthetic pigments, samples were collected, immedi-
ately frozen in liquid nitrogen and stored at −80°C
until analyses. Samples for MAAs were kept desic-
cated until analysis. Water samples for pH measure-
ment and alkalinity analysis were obtained at the
end of the 5.5 h of incubation; the samples for alka -
linity were poisoned with a small amount of saturated
mercury chloride solution until analysis. The water
chemistry for incubation without algae was also de -
termined.

Measurement of solar radiation, temperature and
nutrients

The irradiance of solar radiation was determined
at 3 wavelength bands (PAR = 400 to 700 nm, UVA =
315 to 400 nm and UVB = 280 to 315 nm) using 2
Hyperspectral Irradiance Sensors for UV and PAR
(Ramses, TrioS). Due to the sensor size, irradiances
were measured outside the cylinders.

Temperature was measured during the incubation
periods inside the cylinders. The concentration of
nitrate and phosphate was measured in the seawater,
and after the incubation it was also determined inside
of the cylinders.

Measurement of pH and salinity

The pH within the incubation cylinders was meas-
ured using a pH meter (Crison Basic 20, Crison
Instruments). The pH electrode was calibrated regu-
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Fig. 1. Experimental design: cylinders were fixed using a 
wooden frame
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larly with standard National Bureau of Standards
(NBS) buffer solutions (Oakton) to ensure a stable
response. Salinity was estimated using a conductivity
meter (Crison CM35, Crison Instruments).

Total alkalinity

Total alkalinity was measured by titrating (step-
wise addition of reagent) the water sample with HCl
to a final pHNBS of 3. Once the water sample reached
a pH of 3, all the bicarbonate, carbonate and hydrox-
ide were neutralized. An automated titration system
(877 Titrino plus, Metrohm) was used selecting the
option of monotonic titrations with automatic equiva-
lence point finding (MET).

The HCl solution nominal molarity used was
0.97 M at 20°C. This molarity was verified titrating 80
ml of NaHCO3. The total inorganic carbon was deter-
mined using continuous and in situ measurements
or pH and temperature and determina tions of total
alkalinity and salinity. The total alkalinity was deter-
mined by the Gran (1952) titration method. Total
inorganic carbon concentration was calculated using
the program CO2sys (v.2.1, Pierrot et al. 2006) using
dissociation constants for car bonic and boric acids
determined on the NBS scale. To calculate the speci-
ation of total inorganic carbon into carbonate, bicar-
bonate and dissolved CO2 forms, the CO2 seawater
solubility coefficient proposed by Weiss (1974) was
used. The first and second dissociation constants of
carbonic acid in sea water by Mehrbach et al. (1973),
refit by Dick son & Millero (1987), and the first disso-
ciation constant of boric acid in seawater by Lyman
(1956) were used.

Photosynthetic measurements as oxygen evolution

Net photosynthesis was estimated as photosyn-
thetic oxygen evolution under in situ incubation by
the difference between the oxygen concentrations
after (final) and before (initial) 1 h incubation under
the 2 pCO2 treatments. The Spectrophotometric
 Winkler method was used to estimate the concentra-
tion of dissolved oxygen (Labasque et al. 2004). In
each case, after fixing the soluble oxygen with R1
and R2 Winkler reagents, samples were kept in dark-
ness and at 4°C. Within 24 h of collection, R3 was
added and absorbance was measured at 466 nm,
using a Genesis 10S Vis Thermo Scientific (Thermo
Fisher Scientific). Standardization relied on the
preparation of I2+I3 solutions by oxidation of iodide

with iodate. A standard solution KIO3 (0.01M) was
used to obtain the standard curve.

In vivo chl a fluorescence

In vivo chl a fluorescence associated to Photosys-
tem II was determined by using a portable pulse
modulated fluorometer (Diving-PAM, Walz). Algal
samples were collected from each treatment at the
initial time, and after 5.5 h incubation were put into
10 ml incubation chambers to conduct rapid light
curves (RLCs). For these incubations, the medium
was taken directly from each of the cylinders. Mini-
mum (Fo), maximum (Fm) and maximum variable
 fluorescence (Fv = Fm − Fo) were determined after
15 min in darkness to obtain Fv/Fm (Schreiber et
al. 1995, Figueroa et al. 2003).

RLCs were obtained in order to determine the
ETRs. After 15 min in the darkness for Fv/Fm determi-
nation, the algae were exposed for 20 s to 8 incre-
mental irradiances (9.3, 33.8, 76, 145, 217, 301, 452,
629 and 947 µmol photons m2 s−1) of white light
(internal Diving-PAM halogen lamp).

The ETR (µmol electrons m−2 s−1) was calculated
according to Schreiber et al. (1995) as follows:

ETR = ΔF / Fm’ × E × A × FII (1)

where E is the incident irradiance. ΔF = Fm’ − Ft and
is the variable fluorescence in light, Fm’ is the maxi-
mum fluorescence in light and Ft is the intrinsic fluo-
rescence under a specific irradiance. Absorptance,
A = 1 − (Et/Eo), was calculated from the light trans-
mitted through a piece of each species (Et) placed on
a cosine-corrected PAR sensor (Licor 192 SB, Li-Cor)
connected to a data-logger (Licor-1000), and Eo is the
incident irradiance in the absence of the algal piece.
The measured absorptances were 0.91 ± 0.02 for C.
tamariscifolia, 0.79 ± 0.03 for P. pavonica and 0.69 ±
0.04 for E. elongata. FII is the fraction of chlorophyll
related to PSII (400 to 700 nm), being 0.8 in the brown
macroalgae and 0.15 in the red algae (Grzymski et al.
1997). A tangential function was applied to the ETR
versus irradiance curves (Eilers & Peeters 1988), and
the photosynthetic parameters maximum ETR (ETR-

max) and the initial slope of the curve (αETR, as estima-
tor of photosynthetic efficiency) were determined.
The irradiance of ETR saturation (EkETR) was calcu-
lated from the intercept between ETRmax and αETR.

NPQ was calculated according to Schreiber et
al. (1995) as:

NPQ = (Fm − Fm’) / Fm’ (2)
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Maximal NPQ (NPQmax) and the initial slope of
NPQ versus light curve (αNPQ) were obtained from
the tangential function according to Eilers & Peeters
(1988). Finally, the saturation light for NPQ (EkNPQ)
was calculated from the intercept between NPQmax

and αNPQ.

Photosynthetic pigments

Photosynthetic pigments were measured for each
species and cylinder in duplicate. Results were
expressed as mg g −1 DW (dry weight). The FW:DW
ratios were calculated from 10 thalli of each species.
FW was determined after blotting off surface water
with absorbent paper. Afterwards, the thalli were
oven-dried for 2 d at 60°C to obtain the DW. The
ratios were 4.3 ± 0.08 for C. tamariscifolia, 3.1 ±
0.04 for P. pavonica and 1.5 ± 0.01 for E. elongata.

Chl a content was determined spectrophotometri-
cally (Shimadzu UVmini 1240, Shimadzu Scientific
Instruments), while chl c and carotenoids were iden-
tified and quantified by high-performance liquid
chromatography (HPLC, Waters 600 HPLC system,
Waters Cromatografía). Both analyses were made
from the same extract using 15 mg FW in 1 ml of N,N-
dimethylformamide (DMF) and maintained in dark-
ness at 4°C for 12 h. The chl a concentration was
 calculated using Wellburn (1994) equations. The caro -
tenoid composition and concentration were deter-
mined by HPLC according to García-Sánchez et al.
(2012). Chl c, fucoxanthin, violaxanthin, antheraxan-
thin, zeaxanthin and β-carotene were identified using
commercial standards (DHI LAB Products).

Phycobiliproteins for E. elongata were extracted
in 0.1 M phosphate buffer (pH 6.5), centrifuged at
2253 × g for 30 min. Phycoerythrin and phycocyanin
concentrations were calculated following Sampath-
Wiley & Neefus (2007) equations.

Phenolic compounds

The phenol concentration was determined using
0.25 g FW. Samples were pulverized in a mortar and
pestle with sea-sand using 2.5 ml of 80% methanol.
After being maintained overnight, the mixture was
centrifuged at 2253 × g for 15 min at 4°C and the su-
pernatant was collected. These supernatants were
used for phenol determination and to determine
the anti oxidant activity. Total phenolic compounds
were estimated colourimetrically using Folin-Ciocal-
teu  assay (Folin & Ciocalteu 1927). Phloro glucinol

 (1,3,5-trihydroxybenzene, Sigma P-3502) was used as
standard. Finally, the absorbance of 760 nm was de-
termined in a UVmini-1240 spectro photometer (Shi-
madzu Scientific Instruments) (Abdala-Díaz et
al. 2006).

Antioxidant activity

Antioxidant activity of the algal extracts of C.
tamariscifolia and P. pavonica was determined by
DPPH (2,2-diphenyl-1-picrylhydrazyl) free radical
assay (Blois 1958). A volume of 150 µl of DPPH solu-
tion (diluted in 90% methanol) was added to each
algal extract, obtained as previously explained above
for phenols. The samples were reacted with the sta-
ble DPPH solution during 30 min in the dark at room
temperature (~20°C). The absorbance of the solu-
tions was read at 517 nm in a UVmini-1240 spec-
trophotometer. A calibration curve made for a set
of DPPH con centrations was used to calculate the
remaining con centration of DPPH in the reaction
mixture after incubation. Concentrations of DPPH
(mM) were plotted against plant extract concentra-
tion (mg ml−1 DW) in order to obtain the EC50 value
(oxidation index), which represents the concentration
of the extract (mg ml−1) required to scavenge 50% of
the DPPH in the reaction mixture. Ascorbic acid was
used as positive control (Connan et al. 2006).

MAAs

Samples (10 to 20 mg DW) of E. elongata were
extracted for 2 h in screw-capped centrifuge vials
filled with 1 ml 20% aqueous methanol (v/v) at 45°C.
The concentration and composition of different MAAs
were analysed by HPLC (Waters 600 HPLC system,
Waters Cromatografía) according to Korbee-Peinado
et al. (2004).

Statistical analysis

The effects of the treatments (ambient CO2 and
high CO2) on the photosynthetic parameters were
ana lysed using ANOVAs (α = 0.05) (Underwood
1997). One test was performed including CO2 treat-
ment as fixed factor with 2 levels, and cylinder as a
random factor nested within CO2 treatment. Homo-
geneity of variance was tested using Cochran’s tests
and by visual inspection of the residuals (Under-
wood 1997). Photosynthetic parameters, phenolic
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compounds, antioxidant capacity and photosynthetic
pigments were measured from 2 replicates in each
cylinder (n = 12). For oxygen evolution, 4 measure-
ments were done in each cylinder (n = 24); for the
other variables (alkalinity, pH, temperature and
 carbonate chemistry) 1 measurement was done per
cylinder (n = 6). Therefore, this source of variation
(i.e. cylinder), is not included in the latest analysis.
Analyses were done with SPSS v.21 (IBM). All results
are expressed as mean ± SE.

RESULTS

Physical and chemical variables

Irradiance and temperature within the cylinders
showed little variation during each species’ incuba-
tion period, but changed along the 3 experimen tal
days on which each species was incubated (Table 1).
Daily integrated irradiance was higher during the
Cystoseira tamariscifolia experiment, com pared to
Padina pavonica and Ellisolandia elongata. Water
temperature was lower during the E. elongata experi-
ment than on the other 2 experimental days (Table 1).

After 30 min of pumping high (700 ppm) and am -
bient CO2 inside the cylinders without algae, values
of DIC were significantly higher in high CO2 (2.2 ±
0.01 mM) compared to ambient CO2 (2.0 ± 0.003 mM)
(F = 135.42, df = 1, n = 6, p = 0.00031). Values of pH
were lower in high CO2 (8.0 ± 0.01) compared to am-
bient CO2 (8.3 ± 0.01) (F = 539.35, df = 1, n = 6, p =
0.00002), while the total alkalinity did not show dif-
ferences between treatments (2424 ± 10 and 2450 ±

10 µM, for high and ambient CO2, respectively; F =
4.49, df = 1, n = 6, p = 0.101). After algae  incubation,
the carbonate chemistry changed with respect to the
above-reported values (Table 1). No differences in
pH were found anymore between ambient and high
CO2 treatments in E. elongata and P. pavonica
whereas the difference in pH in C. tamariscifolia was
still evident after incubation (Tables 1 & 2). The pH
increased with respect to the value found without al-
gae, except for E. elongata at ambient CO2 (Table 1).

During incubation, nutrient concentrations in the
seawater were 1.4 µM nitrate and 0.1 µM phosphate.
After incubation, the concentration of phosphate
slightly decreased inside the cylinders, while nitrate
decreased to values in the range of 0.2 to 0.4 µM in
all species and both pCO2 treatments.

Photosynthetic parameters

The results of net photosynthesis (determined by
oxygen evolution) showed that, under ambient CO2

conditions, net productivity rates of C. tamariscifolia
(0.54 ± 0.02 mg O2 g−1 DW h−1) were twice as high as
values found for P. pavonica (0.23 ± 0.01 mg O2 g−1

DW h−1), and 10 times higher than values for E. elon-
gata (0.02 ± 0.003 mg O2 g−1 DW h−1). When the dif-
ferent species were incubated in high CO2 conditions,
C. tamariscifolia showed a significant reduction in
net photosynthesis, while P. pavonica showed a sig-
nificant increase in this parameter (Fig. 2, Table 3). E.
elongata showed a slight increase in photosynthetic
rates under high CO2, but differences between the
treatments were not significant (Fig. 2, Table 3).

Cystoseira tamariscifolia Padina pavonica Ellisolandia elongata
High CO2 Ambient CO2 High CO2 Ambient CO2 High CO2 Ambient CO2

PAR (KJ m−2) 7662 4790 4416
UVA (KJ m−2) 900.2 585.7 542.3
UVB (KJ m−2) 37.0 24.2 21.9
Temperature (°C) 26.1 ± 0.2 26.3 ± 0.2 25.8 ± 0.1 25.5 ± 0.2 22.5 ± 0.2 22.6 ± 0.2
pH 8.53 ± 0.03b 8.70 ± 0.02a 8.66 ± 0.02 8.57 ± 0.07 8.28 ± 0.04 8.27 ± 0.03
Salinity 37.0 ± 0.06 37.2 ± 0.06 37.0 ± 0.05 37.0 ± 0.02 37.0 ± 0.04 37.1 ± 0.08
TA (µmol kg−1 SW) 2289 ± 28 2323 ± 36 2300 ± 38 2344 ± 26 2497 ± 65 2394 ± 30
pCO2 (µatm) 142 ± 13 79 ± 67 92 ± 34 132 ± 35 327 ± 29 319 ± 27
HCO3

− (µmol kg−1SW) 1360 ± 16 1120 ± 43 1202 ± 7 1317 ± 105 1847 ±36 1751 ±46
CO3

−2 (µmol kg−1 SW) 389 ± 22 471.8 ± 6.5 458.1 ± 18 401.9 ± 34 265.9 ± 21 245.0 ± 10
DIC (µmol kg−1 SW) 1753 ± 6 1594 ± 38 1663 ± 24 1723 ± 71 2123 ± 45 2006 ± 39

Table 1. Daily integrated irradiance PAR (400 to 700 nm), UVA (315 to 400 nm) and UVB (280 to 315 nm) radiation, determined
by integrating the instantaneous irradiances from dawn to dusk, tem perature, pH, salinity, total alkalinity and seawater (SW)
carbonate chemistry in cylinders with Cystoseira tamariscifolia,  Padina  pavonica and Ellisolandia elongata after 5.5 h in situ
 incubation under high CO2 and ambient CO2 conditions. Values reported are mean ± SE (n = 6). TA: total alkalinity; pCO2:
partial pressure of CO2; DIC: dissolved inorganic carbon. Lower-case letters denote significant differences (ANOVA, p < 0.05)
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No significant differences were found between
field samples (initial values) and those for the control
treatment (ambient CO2) in any of the photosynthetic
or biochemical variables, so initial values are not
shown. In the ambient CO2 treatment, values of Fv/Fm

registered for C. tamariscifolia, P. pavonica and E.
elongata were 0.64 ± 0.02, 0.61 ± 0.03 and 0.58 ± 0.02,
respectively (Table 4). The analysis of the RLCs
showed that, under ambient CO2 conditions, C.
tamariscifolia and P. pavonica had higher values of
ETRmax, αETR and EkETR compared to the calcareous
red alga E. elongata. Values of ETRmax for C. tama -
riscifolia and P. pavonica were 18 and 16 times
higher than for E. elongata. The latter also showed a
fall in photosynthetic rates under irradiances above
500 µmol m−2 s−1 (Fig. 3). NPQ parameters were also
higher for the brown algae than for the red calcare-
ous alga. An exception was found for αNPQ, where in
E. elongata it showed higher  values than that in the

other 2 species. When the  seaweeds were incubated
in high CO2, increases of Fv/Fm and NPQmax in
C. tamariscifolia and of αNPQ in P. pavonica were
observed compared to the control (Fig. 3, Table 4).
Nevertheless, the tendency towards higher values for
NPQmax and/or αNPQ under high CO2 was found for
all 3  species.

Biochemical analysis

The analysis of photosynthetic and photoprotective
pigments showed that C. tamariscifolia presented the
highest concentrations of analysed pigments (chlo -
rophylls, fucoxanthin, violaxanthin, antheraxanthin
and β-carotene) (Table 5). Among the brown algae,
concentrations of chl a, chl c and fucoxanthin were
about twice as high in C. tamariscifolia compared to P.
pavonica. The red alga E. elongata showed the lowest
concentration of chlorophylls and carotenoids among
the 3 species, particularly for fucoxanthin and viola -
xanthin (Table 5). In addition, a higher proportion of
antheraxanthin+zeaxanthin to violaxanthin con tent
were found in E. elongata compared to the 2 brown
algae (Table 5). After the incubation period, the con-
centration of some photosynthetic pigments (chl a,
chl c and/or phycobiliproteins) did not change signifi-
cantly between ambient and high CO2 treatments
(Table 3). A significant difference between treat ments
was found for E. elongata, in which the zea xanthin
content was significantly higher under high CO2 than
under ambient CO2 conditions (Tables 3 & 5).

Among the brown algae, C. tamariscifolia showed
higher phenol content (25 mg g−1 DW) and antioxi-
dant capacity than P. pavonica (20 mg g−1 DW) (Fig. 4).
Significant differences in phenols and antioxidant
capacity between treatments were only found for
P. pavonica, in which a decrease in phenolic
 compounds was observed under high CO2 (Fig. 4,
Table 3). A negative correlation was found between
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Fig. 2. Net photosynthesis in Cystoseira tamariscifolia, Pad-
ina pavonica and Ellisolandia elongata after 1.5 h in situ in-
cubation in high CO2 and ambient CO2. Data are expressed
as mean values ± SE (n = 24). Lowercase letters denote 

significant differences (ANOVA, p < 0.05)

Cystoseira tamariscifolia Padina pavonica Ellisolandia elongata
df MS F p MS F p MS F p

Alkalinity Treatment 1 1734 0.55 0.499 643 0.173 0.698 29260 3.880 0.120
Residual 4 3143 3706 7542

Temperature Treatment 1 0.060 0.95 0.386 0.107 1.60 0.275 0.007 0.077 0.795
Residual 4 0.063 0.067 0.087

pH Treatment 1 0.043 19.4 0.012 0.013 1.57 0.278 0.000 0.071 0.803
Residual 4 0.002 0.008 0.003

Table 2. ANOVAs of the effect of CO2 treatments on alkalinity, temperature, and pH for Cystoseira tamariscifolia, Padina 
pavonica and Ellisolandia elongata. Significant results (ANOVA, p < 0.05) indicated in bold
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C. tamariscifolia P. pavonica E. elongata
df MS F p MS F p MS F p

Net photosynth. Treatment 1 0.1 9.518 0.037 0.061 10.172 0.033 0.001 3.475 0.203
Cylinder(treatment) 4 0.011 32.712 <0.001 0.006 52.048 <0.001 0.000 9.51 0.003
Residual 18 0.000 0.000 0.000

Fv/Fm Treatment 1 0.011 25.061 0.007 0.014 1.391 0.304 0.001 0.444 0.542
Cylinder(treatment) 4 0.000 0.169 0.947 0.01 3.026 0.109 0.002 0.839 0.547
Residual 6 0.003 0.003 0.003

ETRmax Treatment 1 2.54 0.09 0.779 6.721 0.297 0.615 0.394 1.609 0.273
Cylinder(treatment) 4 28.156 0.579 0.689 22.643 0.632 0.658 0.245 1.098 0.436
Residual 6 48.604 35.837 0.223

αETR Treatment 1 0.005 2.691 0.176 0.02 2.509 0.188 0.000 0.009 0.927
Cylinder(treatment) 4 0.002 0.16 0.951 0.008 0.683 0.629 0.000 3.716 0.075
Residual 6 0.011 0.011 0.000

EkETR Treatment 1 241 1.772 0.254 1234 1.264 0.324 116 1.609 0.273
Cylinder(treatment) 4 136 0.152 0.955 977 1.359 0.35 72 1.194 0.402
Residual 6 894 719 60

NPQmax Treatment 1 0.318 36.083 0.004 1.155 2.323 0.202 0.009 0.881 0.401
Cylinder(treatment) 4 0.009 0.067 0.99 0.497 14.306 0.003 0.011 0.654 0.646
Residual 6 0.132 0.035 0.016

αNPQ Treatment 1 0.000 3.371 0.14 0.000 9.883 0.035 0.000 3.604 0.13
Cylinder(treatment) 4 0.000 0.371 0.822 0.000 1.668 0.274 0.000 0.493 0.742
Residual 6 0.000 0.000 0.000

EkNPQ Treatment 1 4368 0.701 0.45 49009 4.299 0.107 1036 5.214 0.084
Cylinder(treatment) 4 6234 1.438 0.329 11400 1.443 0.327 199 0.434 0.781
Residual 6 4336 7903 458

Chl a Treatment 1 0.227 0.602 0.481 0.011 0.564 0.494 0.005 0.114 0.753
Cylinder(treatment) 4 0.378 1.792 0.249 0.019 2.168 0.19 0.048 4.411 0.053
Residual 6 0.211 0.009 0.011

Chl c Treatment 1 0.0024 1.729 0.259 0.0002 0.981 0.378
Cylinder(treatment) 4 0.0014 0.979 0.484 0.0002 1.663 0.275 nd
Residual 6 0.0014 0.0001

Fucoxanthin Treatment 1 17085 0.664 0.461 2648 0.896 0.397 12.18 5.442 0.145
Cylinder(treatment) 4 102886 3.328 0.092 2956 8.447 0.012 2.238 0.498 0.641
Residual 6 46372 350 4.493

Violaxanthin Treatment 1 21.35 0.041 0.849 474 1.634 0.27 0.018 0.507 0.55
Cylinder(treatment) 4 2067 7.04 0.019 290 2.844 0.122 0.035 2.545 0.194
Residual 6 440.44 102 0.014

Antheraxanthin Treatment 1 79.24 0.511 0.514 2.177 0.031 0.87 16.545 1.501 0.345
Cylinder(treatment) 4 620.02 2.223 0.182 71.06 3.183 0.1 11.022 1.332 0.36
Residual 6 418.27 22.328 8.277

Zeaxanthin Treatment 1 12.77 0.061 0.817 1.395 0.02 0.896 5.011 186.2 0.005
Cylinder(treatment) 4 834.27 6.368 0.024 71.333 1.661 0.275 0.027 0.122 0.888
Residual 6 196.51 42.933 0.221

β-carotene Treatment 1 27.94 0.086 0.784 122.119 2.094 0.221 22.144 1.469 0.349
Cylinder(treatment) 4 1304.07 3.523 0.083 58.308 1.882 0.233 15.073 4.441 0.096
Residual 6 555.31 30.978 3.394

Phenols Treatment 1 1.6 0.068 0.808 45.827 9.967 0.034
Cylinder(treatment) 4 23.69 0.882 0.527 4.598 0.516 0.728 nd
Residual 6 26.85 8.909

EC50 Treatment 1 0.002 0.042 0.847 0.017 0.779 0.427
Cylinder(treatment) 4 0.056 4.638 0.048 0.022 2.302 0.173 nd
Residual 6 0.012 0.009

Phycoerythrin Treatment 1 0.079 1.13 0.348
Cylinder(treatment) 4 nd nd 0.07 0.918 0.511
Residual 6 0.076

Phycocyanin Treatment 1 0.001 0.133 0.734
Cylinder(treatment) 4 nd nd 0.005 1.677 0.272
Residual 6 0.003

Total MAAs Treatment 1 0.006 0.216 0.666
Cylinder(treatment) 4 nd nd 0.027 1.199 0.401
Residual 6 0.022

Shinorine Treatment 1 351 1.202 0.334
Cylinder(treatment) 4 nd nd 292 12.085 0.005
Residual 6 24.181

Palythine Treatment 1 224 0.922 0.391
Cylinder(treatment) 4 nd nd 243 13.601 0.004
Residual 6 17.888

Table 3. ANOVAs of the effect of CO2 treatments on the photosynthetic parameters, photoprotective compounds, antioxidant ca-
pacity, photosynthetic pigments and net photosynthesis for Cystoseira tamariscifolia, Padina pavonica and Ellisolandia elongata.
df for E. elongata in net photosynthesis were 1, 2 and 12 for treatment, cylinder(treatment) and residual, respectively, and in the
carotenoids (fucoxanthin, violaxanthin, antheraxanthin, zeaxanthin, β-carotene) 1, 2 and 4, respectively. EC50: oxidation index;
see Table 4 for other abbreviations. For treatment only, significant results (ANOVA, p < 0.05) are indicated in bold; nd: no data
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phenols and EC50, for both species (Figs. 4 & 5; R2 =
0.674, n = 24, p < 0.05).

The content of total MAAs found in the red alga
E. elongata was not sig nificantly different between
either CO2 treatment (0.62 ± 0.06 mg g–1 DW for high
CO2 and 0.66 ± 0.07 mg g–1 DW for ambient CO2, n =
12) (Table 3). The MAA composition was also similar
between treatments as follows: 50 to 60% shinorine,
40% palythine and 5 to 10% asterina-330 (Fig. 6,
Table 3).

DISCUSSION

Most studies on the effects of OA on marine macro-
phytes have been conducted ex situ in laboratories or
mesocosms under controlled conditions. While those
studies are useful to better understand some isolated
effects of increasing dissolved CO2 on algal photo-
synthesis and biochemistry, the results do not reflect
the response of the natural populations. In situ exper-
imental approaches can operate under more realistic
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Fig. 3. Electron transport rate
(ETR) and non-photochemical
quenching (NPQ) versus irradi-
ance curves for (a,b) Cystoseira
tamariscifolia, (c,d) Padina pa -
vonica and (e,f) Ellisolandia
elongata after 5.5 h in situ incu-
bation in high CO2 and ambient
CO2 conditions. Data are mean 

± SE (n = 12)

Cystoseira tamariscifolia Padina pavonica Ellisolandia elongata
High CO2 Ambient CO2 High CO2 Ambient CO2 High CO2 Ambient CO2

Fv/Fm 0.70 ± 0.02a 0.64 ± 0.02b 0.68 ± 0.03 0.61 ± 0.03 0.60 ± 0.02 0.58 ± 0.02
ETRmax 47.23 ± 2.82 48.15 ± 2.35 39.43 ± 2.85 40.94 ± 1.45 2.20 ± 0.19 2.56 ± 0.20
αETR 0.55 ± 0.04 0.51 ± 0.04 0.55 ± 0.04 0.47 ± 0.04 0.07 ± 0.01 0.06 ± 0.01
EkETR 88.48 ± 9.82 97.45 ± 10.03 73.81 ± 6.94 94.09 ± 15.03 34.08 ± 3.03 40.29 ± 3.53
NPQmax 1.09 ± 0.10a 0.76 ± 0.13b 1.39 ± 0.22 0.77 ± 0.16 0.68 ± 0.04 0.63 ± 0.06
αNPQ 0.003 ± 0.0005 0.002 ± 0.0003 0.004 ± 0.0006a 0.002 ± 0.0004b 0.021 ± 0.0036 0.014 ± 0.0029
EkNPQ 394.6 ± 33.1 356.4 ± 24.6 323.7 ± 45.4 451.5 ± 32.2 36.6 ± 4.6 55.1 ± 9.8

Table 4. Maximal quantum yield (Fv/Fm), maximal electron transport rate (ETRmax), photosynthetic efficiency (αETR), saturation
irradiance for ETR (EkETR), maximal non-photochemical quenching (NPQmax), the slope of the NPQ versus irradiance (αNPQ)
and the saturation irradiance for NPQ (EkNPQ) of Cystoseira tamariscifolia, Padina pavonica and Ellisolandia elongata after
5.5 h in situ incubation in high CO2 and ambient CO2 conditions. Values are mean ± SE (n = 12). Lowercase letters denote 

significant differences (ANOVA, p < 0.05)
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environmental conditions and deal with the variation
of the natural populations (Wernberg et al. 2012). In
this study, macroalgae were incubated in situ at 2
 different pCO2 levels, while other para meters remain
relatively unchanged. The experiments were per-
formed in a pristine marine environment, by evaluat-
ing the short-term responses of Cystoseira tama risci -
folia, Padina pavonica and Ellisolandia elongata,
which are dominant macroalgae on the Mediter -
ranean shores.

The results showed that the short-term responses
of the seaweeds to seawater CO2 enrichment varied
according to species and their functional traits. While
the brown algae C. tamariscifolia showed a reduction
in photosynthetic rate (based on O2 evolution), the
calcified brown algae P. pavonica showed an in -
crease under high CO2 conditions. Both algae en -
hanced the NPQ mechanisms, but no changes in pig-
ment composition or concentration were found. The
enhanced production by P. pavonica under high CO2

came with reductions in phenol. The calcareous red

algae E. elongata was not significantly affected by
CO2 enrichment in most of the photosynthetic and
biochemical parameters, but it showed increases in
the concentration of its photoprotective pigment,
zea xanthin. The contrasting results found for the 3
studied species in response to pCO2 enrichment may
be related to the striking differences in the photosyn-
thetic apparatus, including pigment composition and
concentration, and their highly distinct morphologi-
cal traits and growth strategies. Among the brown
algae, C. tamariscifolia has thick blades, with highly
corticated and complex thallus, compared to the
 simpler sheet-like, thinner P. pavonica. The articu-
lated calcareous E. elongata has the lowest ratio of
photosynthetic to  non-photosynthetic (calcified) tissue.

At the end of the incubation period, the effect of
pCO2 on seawater carbonate chemistry and pH was
 different depending on the incubated species. These
may be related to differences in metabolism, since
seawater carbonate chemistry is strongly affected by
biological activity (Feely et al. 2004, Raven 2011).
Although the pH values were significantly lowered
(by 0.3 units) in the cylinders treated with high CO2
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Cystoseira tamariscifolia Padina pavonica Ellisolandia elongata
High CO2 Ambient CO2 High CO2 Ambient CO2 High CO2 Ambient CO2

Chl a 1.97 ± 0.21 2.25 ± 0.23 0.81 ± 0.05 0.75 ± 0.05 0.61 ± 0.07 0.65 ± 0.06
Chl c 0.17 ± 0.014 0.20 ± 0.017 0.07 ± 0.005 0.06 ± 0.005 − −
Phycoerythrin − − − − 2.55 ± 0.08 2.72 ± 0.14
Phycocyanin − − − − 0.49 ± 0.02 0.47 ± 0.03
Fucoxanthin 550.1 ± 50.5 625.6 ± 49.2 308.9 ± 14.3 279.2 ± 16.1 9.74 ± 0.63 7.27 ± 1.22
Violaxanthin 68.3 ± 8.1 65.6 ± 4.2 53.5 ± 3.6 40.9 ± 6.8 0.44 ± 0.04 0.53 ± 0.09
Antheraxanthin 46.7 ± 3.5 51.9 ± 4.8 25.6 ± 1.7 24.7 ± 3.3 19.6 ± 1.5 22.5 ± 1.5
Zeaxanthin 16.7 ± 2.9 18.8 ± 5.1 16.8 ± 2.2 17.51 ± 3.6 3.48 ± 0.25a 1.90 ± 0.12b

β-carotene 61.3 ± 5.0 64.4 ± 6.1 45.9 ± 3.4 39.6 ± 1.5 18.6 ± 1.5 21.9 ± 1.2

Table 5. Pigment concentration of Cystoseira tamariscifolia, Padina pavoniva and Ellisolandia elongata after 5.5 h in situ incuba-
tion in high CO2 and ambient CO2 conditions. Values are mean ± SE (n = 12). Chl a, chl c, phycoerythrin and phycocyanin are in
mg g−1 DW. The other pigments are expressed as µg g−1 DW. Lowercase letters denote significant differences (ANOVA, p < 0.05)

Fig. 4. Phenolic compound tissue concentration in Cysto-
seira tamariscifolia and Padina pavonica after 5.5 h in situ
incubation in high CO2 and ambient CO2. Data are ex-
pressed as mean + SE (n = 12). Lowercase letters denote 

significant differences

Fig. 5. Antioxidant capacity of Cystoseira tamariscifolia and
Padina pavonica after 5.5 h in situ incubation in high CO2

and ambient CO2 conditions. Data are mean + SE (n = 12)
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before algae incubation, the pH tended to increase,
reaching similar values in both pCO2 treatments dur-
ing the experiment. The initial difference after the
incubation was only maintained in C. tamariscifolia.
In general, respiration and dissolution of CO2 into
seawater lowers the pH, while photosynthetic carbon
removal from the medium increases it. Additionally,
calcium carbonate dissolution of macroalgae skele-
tons also affects the seawater carbonate chemistry
speciation and seawater pH (Feely et al. 2004). There -
fore, the pH within incubations mainly depends on
the balance among those processes (Gao et al. 1991).
In our study, E. elongata only raised the pH of the
surrounding seawater at high pCO2, and showed the
lowest increase among species. Cornwall et al. (2012)
also found the lowest increase in pH in a coralline
alga, Corallina officinalis. On the other hand, the
absence of calcium carbonate in the thallus of C.
tamariscifolia could in part explain the maintenance
of the difference between treatments after the incu-
bation (Caldeira & Wickett 2003, Cornwall et al.
2012). These results can have at least 2 implications:
(1) methodological: the results of CO2 experiments
are dependent on container volume, amount of algal
material and air flux rate in each incubation cham-
ber; or (2) ecophysiological: the results draw atten-
tion to the lower capacity of C. tamariscifolia to buffer
its surrounding seawater pH, compared to calcified
algae.

While calcareous algae are known to be vulnerable
to OA, by decreasing their calcium carbonate fixation
and increasing dissolution (Feely et al. 2004), the
non-calcified species are likely to show positive
responses to elevated pCO2, since many macroalgal
species have been shown to be carbon-limited in
nature (Mercado et al. 1999, Koch et al. 2013), in part
due to the inefficacies of Rubisco and inorganic car-
bon uptake mechanisms, as well as boundary layer-

related problems (Raven et al. 2012). However, the
degree of macroalgae photosynthetic responses to
elevated pCO2 is uncertain and variable (Koch et al.
2013). Mercado & Gordillo (2011) re ported that
changes in CO2 concentration by natural processes
or climate change could have a limited impact on pri-
mary production in a variety of aquatic ecosystems
due to the effective acclimation processes (Beardall &
Raven 2004).

In the present study, a reduction in photosynthetic
capacity under the short-term incubation at elevated
pCO2 was observed for C. tamariscifolia, while P.
pavonica increased its net photosynthesis. These
observed changes in net photosynthesis were not
 followed by changes in ETRmax, nor in other chl a
 fluorescence parameters. In fact, an increase in Fv/Fm

was detected under high pCO2 in C. tamariscifolia.
By comparing the results of several studies, one can
say that the effects of OA on photosynthesis of macro -
algae varies according to species and functional
traits, as well as incubation characteristics (time
exposure, light  quality and quantity, type and size of
incubator, etc.) (Martin & Gattuso 2009, Semesi et al.
2009, Gao & Zheng 2010, Sinutok et al. 2011, Zou et
al. 2011). Important physiological aspects to be con-
sidered are the presence of an HCO3

− transport sys-
tem, the type of  carbon-concentrating mechanisms
(CCM) (Mercado et al. 1998, Wu et al. 2008) and
the possible inhibitory effect of CO2 on respiration,
among others. CCMs involve the enzyme external
carbonic anhydrase (exCA). A previous study showed
that exCA was not present in P. pavonica, but it was
detected in C. tamariscifolia, indicating a low affinity
of this latter species for inorganic carbon compared
to other macroalgae (Mercado et al. 1998). An exCA
in P. pavonica could be present, but Mercado et al.
(1998) did not detect it as consequence of the limita-
tion in the methodology used to detect this enzyme.
For another Padina species, P. sanctae-crucis, Enríquez
& Rodríguez-Román (2006) suggested the presence
of an efficient CCM, probably related to HCO3

−

uptake. A CCM requires an energetic investment for
ex pression and operation (Raven et al. 2012). A
 down-regulation of the CCM activity in response to
en riched inorganic carbon has been proposed; there-
fore, the alga has more energy to invest in other pro-
cesses such as growth (Giordano et al. 2005). In spite
of these mechanisms, we did not find any positive
effect of elevated pCO2 on photosynthesis in the non-
calcifying macroalgae C. tamariscifolia.

In this study, E. elongata showed the lowest pigment
concentration among the 3 species (especially fuco-
xanthin and violaxanthin contents which were half
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Fig. 6. Percentage of shinorine and palythine in Ellisolandia
elongata after 5.5 h in situ incubation in high CO2 and 

ambient CO2 conditions. Data are mean + SE (n = 12)
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those in the brown algae), although antheraxanthin
was maintained in the same order of magnitude. To
our knowledge, no short-term study (hours) on the ef-
fect of high CO2 on pigment content exists. In this
study, no significant effect of pCO2 treatments in pig-
ment content was found in the non-calcifying C.
tamariscifolia or in the calcifying P. pavonica. Never-
theless, P. pavonica showed a tendency to have higher
pigment contents under high CO2, especially fuco-
xanthin, which is an accessory photosynthetic pigment
with strong antioxidant properties (Mori et al. 2004,
Fung et al. 2013) and its presence strongly enhanced
cell viability against H2O2 induced oxi dative damage
(Heo et al. 2008). Additionally, both brown algae spe-
cies showed increases in NPQ para meters (NPQmax

and αNPQ, for C. tamariscifolia and P. pavonica, re-
spectively) and decreased EkETR under high CO2. The
lower EkETR indicates a higher rate of reactive oxygen
species (ROS) production at incubation  irradiances
(solar radiation) (Lesser 2006). It is pos sible that the
short-term exposure to high CO2 activated their heat
dissipation mechanisms; hence, these species became
protected against the in creased photo oxidative dam-
age (Demmig-Adams & Adams 2006).

In response to intense solar radiation, algae have
evolved certain photoprotective mechanisms by accu -
mulating a series of photoprotective compounds, such
as carotenoids, phenolic compounds (brown algae)
and MAAs (red algae). Regarding phenolic com-
pounds, a higher content was observed in C. tama -
riscifolia than in P. pavonica. It is possible that the
acidification of the medium drove the phenolic losses
in C. tamariscifolia and P. pavonica by photo degrada -
tion and release, as has been observed in marine
angiosperms along a natural gradient of CO2 (Arnold
et al. 2012). A decrease of phenolic compounds and
the antioxidant activity during a submarine volcanic
eruption, which produced a decrease in seawater
pH level, was also observed (Betancor et al. 2014).
The higher concentration of zeaxanthin observed in
E. elongata under high CO2 treatment could indicate
a higher photoprotection potential under a future
scenario of high pCO2. Hence, a photo protective role
could be argued for zeaxanthin, since it has been
described as a zeaxanthin-dependent amplification
of NPQ exclusively found in thylakoids containing
zeaxanthin (Goss et al. 2006). To our knowledge, this
is the first time that the effect of different pCO2 on
MAAs has been studied. Al though no effect on total
MAA content was found in E. elongata, a tendency to
accumulate relatively more palythine under high
CO2 was ob served. It is known that palythine pos-
sesses a higher antioxidant capacity than the other

MAAs (De la Coba et al. 2009). Thus, even though
this species may show a loss of carbonate skeleton
under OA, it could still maintain high photoprotec-
tive and antioxidant capacities.

The ecophysiological responses of macroalgae to
high CO2 concentrations are variable and complex,
and for calcareous macroalgae, the responses may be
even more complex due to the calcification process.
Some evidences show that certain calcifying Phaeo-
phyceae could be amongst the ecological winners
under OA scenarios (Kübler et al. 1999, Porzio et al.
2011, Raven 2011, Johnson et al. 2012), and that the
function and structure of future ecosystems could be
drifting towards these species. However, the ecologi-
cal impacts on these particular species and further
consequences for the surrounding macroalgal com-
munity are unknown and difficult to predict.

CONCLUSIONS

In this study, we present a novel experimental
design to incubate macroalgae in situ at different
pCO2. Our design tested non-calcifying (Cystoseira
tamariscifolia) versus calcifying (Padina pavo nica
and Ellisolandia elongata) marine macroalgae in a
short-term incubation at 2 different pCO2: air (ambi-
ent CO2) and the pCO2 predicted by the end of the
21st century (700 µatm, high CO2). Slight differences
were detected in the 3 studied  species after the short-
term incubations. Although one would expect an
increase in net photosynthesis under enriched CO2

as the algae would have more substrate for Rubisco,
slight differences were found between CO2 levels
within in vivo chlorophyll fluorescence parameters
and a positive effect of increasing pCO2 on net pho-
tosynthesis was only observed in P. pavonica. On the
other hand, although the activation of the NPQ dissi-
pation mechanism occurred under high CO2 in the
brown algae P. pavonica (indicating a high protection
mechanism), this capacity was counteracted by a loss
of phenols. In E. elongata, the higher zeaxanthin and
palythine contents under high CO2 could indicate a
higher photoprotection capacity. This is one of the
few studies in which the effect of CO2 on macroalgal
photoprotective compounds has been evaluated (but
see Betancor et al. 2014).

Despite the increasing number of studies on the
effect of changes in pCO2 on macroalgae, the eco-
physiological responses of these species to a future
scenario of OA are still unknown. Together with the
other systems proposed for different habitats and
macrophyte species (Campbell & Fourqurean 2011,
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2013, Kline et al. 2012, Arnold et al. 2012), the in situ
incubation system proposed here may contribute to
this knowledge and has the advantage of being sim-
ple, reproducible and cheap. Nevertheless, for the
near future, parameters such as different pCO2 and
gas flux rates, carbonate system parameters, cham-
ber volume and algal  density or biomass (among oth-
ers) should be exhaustively controlled. The develop-
ment of long-term experiments including day−night
cycles and enabling acclimation responses should be
studied for a better understanding of how macro-
algae will respond to a future OA scenario.
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