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ABSTRACT. Skeletal-type neuroendocrine-specific protein like 1 (sk-NSPL1) has been demonstrated to be physiologically important in reg-
ulating the membrane translocation of glucose transporter 4 (GLUT4) in skeletal muscles.  We investigated the levels of phosphorylation
in proteins that are thought to be involved in exercise in wild-type and sk-NSPL1-deficient muscles with specific antibodies and phos-
phate-metal affinity chromatography resin (p-resin).  In both normal skeletal muscle and sk-NSPL1-deficient muscle, adenosine mono-
phosphate (AMP)-dependent kinase (AMPK) and acetyl-CoA carboxylase (ACC) were phosphorylated and adsorbed onto p-resin at high
levels after exercise.  On the other hand, the effect of 5-aminoimidazole-4-carboxyamide ribonucleoside (AICAR), which is an activator
of AMPK, in blood glucose was greatly diminished in mutant mice.  P-resin adsorbed sk-NSPL1 in the membrane fraction from wild-
type muscle after exercise and AICAR administration.  Isolated sk-NSPL1 from wild-type also had increased adsorption onto p-resin after
treatment with Ca2+ and adenosine triphosphate (ATP).  After long-term incubation of sk-NSPL1-containing membrane without ATP,
sk-NSPL1 adsorption onto anion-exchange resin was drastically reduced.  These results suggest that the function of sk-NSPL1 is regu-
lated by a [Ca2+]i- and AMPK-mediated pathway under exercise, and support the hypothesis that sk-NSPL1 is an important factor in the
downstream of the exercise-dependent pathway in GLUT4 translocation.
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Glucose uptake in skeletal muscles, which is regulated by
membrane translocation of glucose transporter 4 (GLUT4)
from internal stores to the cell membrane, can change blood
glucose levels in the whole body [7, 14].  Therefore, resolv-
ing the molecular mechanisms that underlie this function is
important.  We previously reported that skeletal-type neu-
roendocrine-specific protein-like 1 (sk-NSPL1) plays an
important role in GLUT4 translocation induced by contrac-
tion/exercise in skeletal muscles [9].  However, the precise
mechanism by which sk-NSPL1 works has not been eluci-
dated.

In the present study, we examined the level of phosphory-
lation of adenosine monophosphate (AMP)-dependent
kinase (AMPK) in sk-NSPL1-deficient muscle, which is
affected by changes in AMP/adenosine triphosphate (ATP)
in cells under muscle contraction, and the effect of 5-ami-
noimidazole-4-carboxyamide ribonucleoside (AICAR) on
blood glucose, which can activate AMPK [12, 17].  Our
results suggest that sk-NSPL1 might be involved down-
stream of the AMPK-mediated pathway in GLUT4 translo-
cation.  We also investigated whether isolated sk-NSPL1
adsorbed on to phosphate-metal affinity chromatography
resin (p-resin) in response to contraction or by elevation of
[Ca2+]i within physiological levels.  Our data suggest that a
phosphorylation-mediated change in function of sk-NSPL1
may be involved in the regulation of exercise-induced

GLUT4 translocation in skeletal muscles.

MATERIALS AND METHODS

Mice lacking sk-NSPL1:  Sk-NSPL1-deificient mice were
obtained from Lexicon Pharmaceuticals, Inc. (Wood Lands,
TX, U.S.A.). PCR genotyping was used to distinguish the
wild-type and targeted alleles as in a previous report [9].  All
experiments used 8- to 12-week-old male mice after fasting
for 15–17 hr.  Animal experiments and care proceeded with
the approval of our institutional Animal Care and Use Com-
mittee (Permission #MAH18-04-6).

Samples from skeletal muscle:  Three types of samples
were used.  First, whole skeletal muscle samples were
freeze-dried and solubilized with 1% Triton X-100 in accor-
dance with previous reports [11].  Second, F2 membrane
fractions [3], which are abundant in sk-NSPL1 and GLUT4
as described previously [9], were prepared from the hind-
limbs of mice after electrical stimulation, insulin injection,
or AICAR administration.  Third, we also used the mem-
brane fraction, which was recovered at the 25/46% inter-
faces of discontinuous sucrose gradients (25/46%
membrane fraction), since sk-NSPL1 is also present in frac-
tions other than the F2 membrane [9], without any stimula-
tion.

Measurement of phosphate-metal affinity chromatogra-
phy resin adsorbed protein: Whole skeletal muscle samples
and F2 membrane fractions were solubilized or diluted with
buffer A (Clontech, Mountain View, CA, U.S.A.), then
incubated with phosphate-metal affinity chromatography
resin (p-resin, Clontech).  P-resin (50 μl) was washed with
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distilled water and then washed by buffer A twice. Triton X-
100-solubilized whole skeletal muscle (6–10 mg/ml) with or
without electrical stimulation was diluted with buffer A (1
mg/ml, 100 μl) before mixing with p-resin.  The F2 mem-
brane fraction suspended in the final buffer [10–20 mg/ml;
0.3 M sucrose, 0.1 M KCl, 20 mM PIPES/Tris, pH 7.0, pro-
tease inhibitor (Roche, Basel, Switzerland)] was also solubi-
lized with buffer A (1 mg/ml, 100 μl).  The 25/46%
membrane fraction was used to examine the change in sk-
NSPL1 absorption with p-resin.  The 25/46% membrane
fraction was incubated in a test solution [6.67 mg/ml, 0.2 M
NaCl, 20 mM PIPES/Tris, pH 7.0, 100 nM thapsigargin, 2.5
μM calmodulin (CaM)] various concentrations of Ca2+ buff-
ered with 1 mM EGTA in the presence or absence of ATP
for 2 min to 18 hr at 37°C.  Calculated total amounts Ca2+

added in test solution to make 0.1–10 μM free Ca2+ with or
without 3.14 mM total ATP and 2.5 mM total Mg2+

(MgATP–=2.0 mM and free Mg2+=0.5 mM) are as follows:
0.1 μM Ca2+, 0.204; 1 μM Ca2+, 0.720; 10 μM Ca2+, 0.972
(in mM).  At 100 μM Ca2+, EGTA was omitted from the test
solution and 0.1 mM CaCl2 was added.  After treatment with
test solution, proteins from membrane fraction were solubi-
lized with buffer A (1 mg/ml).

P-resin-adsorbed proteins after 30-min incubation of sol-
ubilized or diluted samples were washed 4 times with repet-
itive centrifugation and then eluted with SDS-sample buffer.
Proteins eluted from p-resin were estimated by western blot-
ting analysis using specific antibodies, and a repeat of the
experiment was conducted without p-resin to analyze the
total amount of each protein in the sample.

Antibodies: We obtained polyclonal antibodies from rab-
bit against synthetic peptides derived from the C-terminus
of mouse NSPL1 or from the N-terminus of mouse Nogo-C,
which is a member of the reticulon family originated by
Nogo gene [8].  Antibodies other than those for NSPL1 and
Nogo-C were purchased from Cell Signaling Technology,
Inc. (Danvers, MA, U.S.A.) or Affinity BioReagents (Rock-
ford, IL, U.S.A.).

Separation of sk-NSPL1 with ion exchange resin: The 25/
46% membrane fraction (300 μg, 10 mg/ml) was incubation
for 2 min to 18 hr in 100 μM Ca2+ at 37C without ATP for
protein dephosphorylation.  Then, the sample was solubi-
lized and diluted to a protein concentration of 1.0 mg/ml
with 1% Triton X-100 in 20 mM PIPES/Tris, pH 7.0.  After
centrifugation, the sample was loaded into 100 μl of macro-
prep high S resin, and the unadsorbed flow-through was
reloaded into the same volume of macro-prep high Q resin
(Bio-rad, Hercules, CA, U.S.A.), which was pre-equili-
brated with a solution 0.2% Triton X-100.  Protein in the
resin was eluted with 100 μl of 1.25 M NaCl.  Eluted sample
(10 μl) was analyzed by western blotting.

Measurement of blood glucose in the whole mouse: The
blood glucose level of anesthetized mice was measured with
Glucocard-Diameter α (GT-1661; Arkray, Kyoto, Japan) as
detailed in a previous report [9].

Data analysis: The data are presented as means ± stan-
dard error of the mean (SEM).  Paired data sets were tested

using Student’s paired t-test.  Multiple comparisons were
analyzed using one-way analysis of variance (ANOVA) for
repeated measurements followed by Fisher’s PLSD post hoc
test.  P<0.05 was considered statistically significant.

RESULTS

In sk-NSPL1-deficient muscles, exercise-induced glu-
cose uptake is totally abolished with no change in insulin-
induced glucose uptake [9].  There are many reports show-
ing that AMPK is activated and phosphorylated in relation
with membrane translocation of GLUT4 under exercise [5,
13, 16].  In the present study, phosphorylated AMPK
(pAMPK) was higher in muscle samples electrically stimu-
lated (Fig. 1A).  The increase of phosphorylated acetyl-CoA
carboxylase (pACC) is consistent with the activation of
AMPK under exercise (Fig. 1A) [5, 11].  However, the
effect of AICAR on blood glucose levels was greatly dimin-
ished in sk-NSPL1-deficient mice (Fig. 1B vs. 1C), as was
the case with electrical stimulation [9].  Thus, our results
indicate that sk-NSPL1 could be involved downstream of
the AMPK-mediated pathway in exercise-induced GLUT4
translocation.

Consistent with the results from phospho-protein specific
antibodies, the amounts of eluted AMPK and ACC from p-
resin were much larger in electrically stimulated samples
(Fig. 2A, 2E-S).  Moreover, a large amount of proline-rich
Akt substrate of 40 kDa protein (PRAS40), which is a pro-
tein related to the mammalian target of rapamycin (mTOR)
signaling pathway [4], was eluted from p-resin in insulin-
stimulated muscle, which was consistent with detection by
phospho-PRAS40 antibody (Fig. 2A, pPRAS40).  There-
fore, we concluded that p-resin can recognize the phospho-
rylated protein.  We subsequently attempted to examine
whether sk-NSPL1 itself was trapped by p-resin in response
to electrical or insulin stimuli.  When samples from whole
skeletal muscle were loaded onto p-resin, sk-NSPL1 was
not recognized in the elution (data not shown); however, the
amount of sk-NSPL1 adsorbed by p-resin from the F2 mem-
brane fraction from electrically stimulated muscle was
greater than that from insulin stimulation or from resting
muscle (Fig. 2B and 2D).  In addition, AICAR administra-
tion also significantly enhanced both sk-NSPL1 and AMPK
adsorption (Fig. 2C and 2D).

Next, we examined whether sk-NSPL1 in the isolated
membrane fraction from resting muscle changed its adsorp-
tion onto p-resin in response to exogenous ATP.  At 1 μM
Ca2+, the presence of ATP slightly enhanced sk-NSPL1
adsorption (Fig. 3A).  Calmodulin (CaM), which regulates a
multitude of enzymes in a Ca2+-dependent manner [1], fur-
ther increased sk-NSPL1 adsorption (Fig. 3A, CaM).  In the
absence of ATP, sk-NSPL1 adsorption was gradually
reduced as the Ca2+ in the test solution increased (Fig. 3B,
–, and 3C, closed circle).  On the other hand, adsorbed sk-
NSPL1 in the presence of ATP and CaM was potentiated in
a Ca2+-dependent manner (Fig. 3B, +, and 3D, closed cir-
cle).  For sk-NSPL1-deficient muscles, we found retention
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in p-resin of Nogo-C, which is a member of the reticulon
family with the same molecular weight as sk-NSPL1 and is
expressed in skeletal muscle [8].  However, no Ca2+-depen-
dent change of Nogo-C was observed in the absence or pres-
ence of ATP (Fig. 3B–D).  In addition to Nogo-C, no
significant degradations were observed in a selection of pro-
teins [calsequestrin (CSQ), PRAS40, sk-NSPL1] from nor-
mal muscles after a 2-min incubation in test solution (Fig.
3E).  The data in Fig. 3B show that the amount of loaded sk-
NSPL1 onto p-resin was not changed in the test solution.
Therefore, these data suggest that trapped sk-NSPL1 in p-
resin is reduced in the absence of ATP and increased in the
presence of ATP.

Since CaM enhanced the effect of Ca2+ on sk-NSPL1
adsorption to p-resin, we suspected that Ca2+-CaM depen-
dent protein kinase was involved.  We thus tested the effect
of KN-62 [16] and ML-7 [2], inhibitors of Ca2+-CaM depen-
dent protein kinase.  KN-62, but not ML-7 inhibited the
increase of sk-NSPL1 adsorption (Fig. 4A).  We also tested
the effect of phosphatase inhibitors.  A phosphatase inhibi-
tor cocktail (dephostatin, cypermethrin, and Okadaic Acid;
Merck, Darmstadt, Land Hessen, Germany) inhibited the
decrease of sk-NSPL1 adsorption in the absence of ATP
(Fig. 4B).

Dantrolene (Dan) is an inhibitor of exercise-induced
GLUT4 translocation, and sk-NSPL1 is a dantrolene recep-
tor [9].  However, Dan showed no effect on sk-NSPL1
adsorption (Fig. 4A).

Finally, we examined the difference in charge of the pro-
tein between p-resin adsorbed and unabsorbed sk-NSPL1
using ion-exchange resin, since phosphorylation may impart

Fig. 1. Activation of AMPK and blood glucose levels in sk-NSPL1-deficient mice. A, Comparison of phosphoryla-
tion in AMPK and ACC. Solubilized protein (45 μg) from freeze-dried skeletal muscle for 30–45 min without any
stimulation (Rest, R) and with electrical stimulation for 15 min (E-S) in wild-type and sk-NSPL1-deficient skeletal
muscles were separated with SDS-PAGE and transferred onto PVDF membranes. Phospho-AMPK (p-AMPK),
AMPK, phospho-ACC (p-ACC), and ACC were recognized by specific antibodies and AP-conjugated secondary
antibodies. B and C,  Changes in blood glucose concentrations were measured in wild-type (B) and sk-NSPL1-
deficient (C) mice under anesthesia. After measuring the fasting level of blood glucose concentrations at time=0,
AICAR was instantly injected (s.c., bold arrow). After 10 min, a high concentration of glucose was injected (s.c.,
dashed arrow). Control (open circles and open squares, high glucose injection alone), and AICAR (filled circles
and filled squares). n=5 in each experiment. **P<0.02, *** P<0.01 (against control values). N.S, not significant.

Fig. 2. Sk-NSPL1 adsorption onto p-resin for skeletal muscles. A,
Usefulness of p-resin to isolate phospho-protein from the solubi-
lized F2 membrane fraction. Proteins eluted from p-resin were
compared for the solubilized F2 membrane fraction without any
stimulation (Rest, R) with electrical stimulation for 15 min (E-S)
and with insulin (Ins, 2U) in wild-type using normal antibodies
(AMPK, ACC PRAS40) and antibodies for their phosphorylated
forms (pAMPK, pACC, pPRAS40). B, Two typical recordings of
sk-NSPL1 in each sample. Sk-NSPL1 adsorption from some sam-
ples was enhanced with insulin, but for others was reduced by it
(Ins). C, AICAR-induced enhancement of AMPK and sk-NSPL1
adsorption.  After administration of AICAR (1 mg/g) for 45 min,
the isolated F2 membrane fraction from muscle was solubilized
and mixed with p-resin. D, Comparison of sk-NSPL1 adsorption
from multiple preparations. Electrical stimulation (n=5) and
AICAR administration (n=3), but without insulin (n=5), signifi-
cantly increased both AMPK and sk-NSPL1 adsorption. * P<0.05.
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a negative charge on the targeted protein.  Long-term incu-
bation in test solution with high Ca2+ (100 μM) fully abol-
ished p-resin adsorption of sk-NSPL1 (Fig. 5A, 2 min vs. 3–
18 hr), although it was not fully digested under the same
conditions (Fig. 5A vs. 5B, 3–6 hr).  After incubation of sk-
NSPL1 in the 25/46% membrane fraction under the same
conditions, anion-exchange resin-trapped sk-NSPL1 was
drastically reduced (Fig. 5C, 3 and 6 hr, Q) compared to cat-
ion-exchange resin-trapped (S) sk-NSPL1.  Thus, a change
in the charge of sk-NSPL1 may be induced by contraction of
skeletal muscle.

DISCUSSION

In this study, we demonstrated that contraction-stimu-
lated pAMPK, pACC, and insulin-stimulated pPRAS40
from skeletal muscles were adsorbed efficiently by PMAC
resin (p-resin).  In addition, p-resin adsorbed sk-NSPL1
from electrically or AICAR-stimulated skeletal muscle to a
greater degree than that from control muscles (Fig. 2).

The amount of sk-NSPL1 adsorption from muscle with-
out stimuli was significantly affected by the presence of
physiological levels of CaM, Ca2+, and ATP, although that
of Nogo-C was unaffected (Fig. 3).  Furthermore, treatment
of the membrane fraction with KN-62 and phosphatase
inhibitors changed sk-NSPL1 adsorption onto p-resin (Fig.
4A and 4B).  These results raise two possibilities: one is that
sk-NSPL1 is directly phosphorylated by a certain kinase(s)
that may cause a functional change in sk-NSPL1 itself, and
the other is that phosphorylation of an sk-NSPL1-associated
protein may cause a change in sk-NSPL1, although neither
phenomenon has been reported yet.  It must be noted that
Nogo-C adsorption was derived from properties other than

Fig. 3. Ca2+-dependent enhancement of isolated sk-NSPL1
adsorption.  A, Increase of sk-NSPL1 adsorption in p-resin after
treatment of ATP with CaM.  At 1 M Ca2+ concentration, the
sk-NSPL1-containing 25/46% membrane fraction was incubated
in the absence (–) or presence of ATP (+) with or without CaM
(2.5 M) for 2 min. B–D, Effect of various concentrations of
Ca2+ on sk-NSPL1 (filled circles) and Nogo-C (open circles)
adsorption.  After treatment with 0.1–100 M Ca2+ in the
absence (B, –; C) or presence of ATP with CaM (B, +; D), each
adsorbed protein in p-resin was normalized to its levels at 0.1
M Ca2+ in the absence of ATP (C), and the ratio of protein
adsorption with ATP or without ATP (D) was plotted against
Ca2+ concentration (n=4–9).  * P<0.05, *** P<0.01 (against
Nogo-C). E, Typical results of protein degradation at 0–100 M
Ca2+. The 25/46% membrane fraction from wild-type muscles
was incubated with test solution with 100 M Ca2+ for 2 min.
Then the samples were solubilized with buffer A and centri-
fuged. Changes of calsequestrin (CSQ), PRAS40, and sk-NSPL1
in the membrane fraction were analyzed by western blotting.

Fig. 4. Effects of phosphorylation related compounds and dant-
rolene on sk-NSPL1 adsorption. After treatment with KN-62 (10
M) or ML-7 (3 M) in a test solution containing 10 or 100 M
Ca2+ with ATP and CaM, sk-NSPL1 adsorption was compared
with that from a control experiment (A, n=4 for kinase inhibitors
and n=5 for Dan, 25 M).  In the absence of ATP and CaM,
phosphatase inhibitors (dephostin, 20 M; okadaic acid, 1 nM;
and cypermethrin, 20 nM; PIs) in test solution at 100 M Ca2+

were compared with control values (B, n=9).



737PHOSPHORYLATION IN NSP-LIKE-1
phosphorylation, since its adsorption in p-resin was not
affected by the presence or absence of ATP (Fig. 3B–D).

In test solution, 1–100 μM Ca2+, which is comparable to
[Ca2+]i for activating the contractile system of skeletal mus-
cle, increased sk-NSPL1 adsorption, suggesting that sk-
NSPL1 might function in the elevation of [Ca]i under exer-
cise (Fig. 3).

Ca2+-CaM dependent kinase II, which is activated in
exercise-induced GLUT4 translocation [15, 16], might
phosphorylate sk-NSPL1 or an associated protein judging
from the inhibitory effect of KN-62 on sk-NSPL1 adsorp-
tion in p-resin (Fig. 4A), although other types of kinase
might be involved.  In particular, it must be determined
whether AMPK can modulate the adsorption of isolated sk-
NSPL1, as was the case with in situ sk-NSPL1 (Fig. 2).

Both pAMPK and pACC were increased by exercise in
sk-NSPL1-deficient muscles; however, glucose metabolism
in the whole mouse body was significantly changed (Fig. 1).
This indicates that sk-NSPL1 regulated the exercise-
induced GLUT4 translocation further downstream of
AMPK-mediated signal transduction.  Although there is no
doubt that AMP is a major regulating factor in GLUT4
translocation in skeletal muscles, the current focus is on
determining the target protein(s) for AMPK [5] and contrac-
tion-related kinase, for example CaMKII [15].  The results
in this report suggest that sk-NSPL1 may be a candidate.

The most important result of this study was a change in
charge of sk-NSPL1 under dephosphorylating conditions,

which may be a quite different from that under phosphory-
lating conditions (Fig. 5A and 5B).  The isoelectric point of
sk-NSPL1 is calculated to be about 10 from its primary
amino acid sequence [6].  This means that sk-NSPL1 is a
basic protein and that a cation exchanger might strongly
capture it at neutral pH.  However, a large amount of solubi-
lized sk-NSPL1 was adsorbed on an anion exchanger (High
Q) without adsorption on a cation exchanger (High S).  This
reaction was promoted after incubation of sk-NSPL1 with
ATP (Fig. 5A).  On the other hand, long-term incubation in
the absence of ATP revealed sk-NSPL1 adsorption only on
the cationic exchanger (Fig. 5C).  This suggests that a phos-
phorylation-mediated pathway may cause a drastic change
in the function of sk-NSPL1.

Dan did not inhibit sk-NSPL1 adsorption (Fig. 4A).
Thus, Dan influences the function of sk-NSPL1 after the
change in phosphorylation; for example, inhibition of bind-
ing activity with another factor that might be a key protein
in GLUT4 translocation.  To fully understand exercise-
induced GLUT 4 translocation, it is necessary to discover
the targeted or associated protein(s) of sk-NSPL1 after
phosphorylation or dephosphorylation in skeletal muscle.
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Fig. 5. Conditions on sk-NSPL1 adsorption with p-resin. A and B, After long-term
incubation in test solution with (+) or without ATP and CaM at 100 M Ca2+, sk-
NSPL1 adsorption from the 25/46% membrane fraction (100 g) with p-resin (A) was
compared with the degree of degradation in sk-NSPL1 in the membrane fraction (1
g) without p-resin (B, normal WB).  C, Larger amounts of sample (300 g) were
incubated in the same test solution, and then after solubilization and dilution ( 10) to
reduce the ionic concentration, samples were loaded onto high S-resin twice.  Flow-
through from high S resin was reloaded onto the high Q resin. Protein adsorbed to the
resin was eluted by 1.25 M NaCl and analyzed by western blotting.
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