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Abstract: This paper presents a semi-systolic Montgomery multiplier

based on the redundant basis representation of the finite field elements.

The proposed multiplier has less hardware and time complexities compared

to related multipliers. We also propose a serial systolic Montgomery multi-

plier that can be applied well in space-limited hardware. Furthermore, a

simple inversion based on the proposed scheme is presented.
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1 Introduction

In finite field arithmetic, addition is trivial but multiplication is time-consuming.

Other operations such as exponentiation and inversion can be performed using

repeated multiplication. As a result, efficient multiplier architectures are important

from a system performance point of view. Another crucial factor affecting field

arithmetic efficiency is the choice of the basis. Wu et al. [1] proposed a redundant

basis (RB) to embed a finite field into a minimal cyclotomic ring with the elegant

multiplicative structure of a cyclic group. A number of systolic multipliers over

GFð2mÞ have been introduced [2, 3, 4, 5]. Recently, Huang et al. [5] proposed a

semi-systolic multiplier to reduce both time and space complexities. Chiou et al. [4]
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proposed a semi-systolic Montgomery multiplier (MM) with concurrent error

detection capability. However, most existing semi-systolic multipliers suffer from

several shortcomings, including large time and/or hardware overhead.

In this letter, we propose a low-complexity multiplication algorithm based on

the RB and two systolic multipliers over GFð2mÞ. The proposed scheme can be

used as a kernel circuit for multiplication and exponentiation (inversion).

2 MM for finite field

2.1 Bit-parallel (semi) systolic MM

Let β be a primitive nth root of unity in some extension of GFð2Þ. The nth

cyclotomic field GFð2nÞ over GFð2Þ is defined to be the splitting field of xn � 1

over GFð2Þ. Then, GFð2nÞ is generated by β over GFð2Þ and any element A of

GFð2nÞ can be represented as A ¼ a0 þ a1� þ a2�
2 þ . . . þ an�1�n�1, where ai 2

GFð2Þ. Let GFð2mÞ be a field that can be embedded in GFð2nÞ. It has been shown

that GFð2mÞ is contained in GFð2nÞ iff n is odd and m divides the multiplicative

order of 2mod n [1]. Note that the representation of A is not unique, since

1 þ � þ �2 þ . . . þ �n�1 ¼ 0. By slightly abusing the terminology, f1; �; �2; . . . ;
�n�1g is denoted as a RB for any subfield of GFð2nÞ containing GFð2mÞ and it

forms a cyclic group of order n (i.e., �n ¼ 1). Consider the RB for GFð2mÞ over
GFð2Þ. Let field elements A, B 2 GFð2mÞ be represented with respect to the RB

f1; �; �2; . . . ; �n�1g as A ¼ Pn�1
i¼0 ai�

i and B ¼ Pn�1
i¼0 bi�

i, where ai, bi 2 GFð2Þ.
Then, the product T ¼ AB is obtained as T ¼ Pn�1

j¼0 tj�
j, where tj ¼

Pn�1
i¼0 aibhj�ii.

Note that hj � ii denotes that j � i is to be reduced modulo n.

MM was proposed originally for efficient integer modular multiplication. Later,

it was shown that MM is also applicable to GFð2mÞ. Instead of computing

ABmod G in GFð2mÞ, it computes ABR�1 mod G in GFð2mÞ, where G is an

irreducible polynomial of degree m, R ¼ �m is a special fixed element of GFð2mÞ
and gcdðR;GÞ ¼ 1. Consider MM for GFð2mÞ using the RB. Let A and B be two

elements in GFð2mÞ, T be the result of the product AB and these elements are

represented in the RB as follows: A ¼ Pn�1
i¼0 ai�

i, B ¼ Pn�1
i¼0 bi�

i, and

T ¼ Pn�1
i¼0 ti�

i, where ai, bi and ti 2 GFð2Þ. Modular reduction and squaring are

more efficient over the RB than in other bases. For multiplying A ¼ a0 þ a1� þ
a2�

2 þ . . . þ an�1�n�1 by β, A� ¼ a0� þ a1�
2 þ a2�

3 þ . . . þ an�1�n. Since �n ¼ 1,

A� ¼ an�1 þ a0� þ a1�
2 þ a2�

3 þ . . . þ an�2�n�1. Thus, the multiplication A by β

can be obtained using one right cyclic shift of A as A� ¼ Pn�1
i¼0 ai�

hiþ1i.
The multiplicative inverse of β is can be performed as ��1 ¼ �n�1. Multiplying

A by ��1, we obtain that A��1 ¼ ��1ða0 þ a1� þ a2�
2 þ . . . þ an�1�n�1Þ ¼ a1 þ

a2� þ a3�
2 þ . . . þ a0�

n�1. Thus, A��1 is obtained by one left cyclic shift of A as

A��1 ¼ Pn�1
i¼0 ai�

hi�1i. On the other hand, the squaring of an element A can be

optimized owing to the fact that cross terms disappear because they come in pairs

and the underlying field is GFð2Þ. Since n is odd and �n ¼ 1, A2 ¼ a0 þ a1�
2 þ

a2�
4 þ . . . þ an�2�2ðn�2Þ þ an�1�2ðn�1Þ ¼ a0 þ a1�

2 þ . . . þ ahðn�1Þðnþ1Þ=2i�n�1 þ
ahðnþ1Þ=2i� þ ah3ðnþ1Þ=2i�3 þ . . . þ ahðn�2Þðnþ1Þ=2i�n�2. Thus, the squaring of A is

obtained simply by using the subscript operation of the coefficient ai as

A2 ¼ Pn�1
i¼0 ahiðnþ1Þ=2i�i. Furthermore, A2k can be obtained easily as A2k ¼
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Pn�1
i¼0 ahiððnþ1Þ=2Þki�

i. Note that these properties are useful for constructing efficient

low-complexity field arithmetic architectures for GFð2mÞ defined by the RB.

A new algorithm to compute the Montgomery product T ¼ ABR�1 over the RB
can be obtained by T ¼ AB��n ¼ Aðbn�1�n�1 þ bn�2�n�2 þ . . . þ b1� þ b0Þ��n ¼
bn�1A��1 þ bn�2A��2 þ . . . þ b1A�

�nþ1 þ b0A�
�n. From this, an iterative proce-

dure for computing ABR�1 can be formulated as follows.

T�1 ¼ 0

Ti ¼ Ti�1 þ bn�i�1A��i�1

T ¼ Tn�1;

ð1Þ

for i ¼ 0; 1; . . . ; n � 1. After n iterations, T is obtained, where Ti ¼ ti;n�1�n�1 þ
ti;n�2�n�2 þ . . . þ ti;1� þ ti;0. Assuming that Ai ¼

Pn�1
j¼0 ai;j�

j is the ith intermediate

value, Equation (1) can be reformulated as the following recursive equations.

Ai ¼ Ai�1��1 ð2Þ
Ti ¼ Ti�1 þ bn�i�1Ai�1; ð3Þ

where Ti ¼
Pi

k¼0 bn�i�1A�
�i�1, A�1 ¼ A��1, T�1 ¼ 0 and 0 � i � n � 1. Note that

from (2) and (3) it is evident that degðTn�1Þ � n � 1. To reduce the critical path

delay, the operation of Ti ¼ Ti�1 þ bn�i�1Ai�1 in (3) can be reorganized as follows:

Ci ¼ bn�i�1Ai�1 and Ti ¼ Ti�1 þ Ci�1 and thus the final result T ¼ Tn�1 þ Cn�1,
where C�1 ¼ 0 and Ci ¼

Pn�1
j¼0 ci;j�

j.

For simplicity, the binary field GFð24Þ is used to illustrate the systolic multiplier

architecture over the RB, where GFð24Þ can be embedded in the minimal cyclo-

tomic field GFð25Þ. Based on the proposed algorithm, the hardware architecture of

the semi-systolic multiplier is shown in Fig. 1(a), where ðn � 1Þ � n basic cells, n

AND gates and n XOR gates are used and “•” denotes a 1-bit latch. In Fig. 1(b), the

basic cell at position (i; j) performs the following logic operations (1 � i � n � 1

and 0 � j � n � 1): ai;j ¼ ai�1;jþ1; ci;j ¼ bn�i�1 � ai�1;jþ1; ti;j ¼ ti�1;j � ci�1;j. In
Fig. 1(a), the cell at position (i; j) receives ai�1;jþ1 from the cell at position

(i � 1; j þ 1) of the previous row and computes ci;j and ti;j, respectively.

(a) (b)

Fig. 1. (a) Proposed multiplier in GFð24Þ (b) Circuit of the (i; j) cell
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The initial positions and index points of each inputs are as follows: bi (0 �
i � n � 2) enters index ½n � i � 1; 0�T from the left side and flows in the direction

½0; 1�T , where T denotes the transpose operator. ahj�3i (0 � j � n � 1) enters index

½1; j�T from the top and flows in the direction ½1;�1�T , where a0;jþ1 ¼ ahj�3i. aj
(2 � j � n � 1) also enters index ½j; n � 1�T from the right side and flows in the

direction ½1;�1�T , where aj�1;n ¼ aj. The values tj and cj (0 � j � n � 1) enter

index ½1; j�T from the top, respectively and are computed with the partial products

generated by the previous row to give new partial products that are passed on to the

next row, and then flow in the direction ½1; 0�T , where t0;j ¼ tj ¼ 0 and c0;j ¼
cj ¼ ahjþ1i � bn�1. The result T is obtained from the bottom row of the array after

n � 1 iterations.

It can be seen from Fig. 1(a) that ai;0 generated on the left side of the ith row

enters the right side cell of the (i þ 1)th row (i.e., one left cyclic shift). In Fig. 1(b),

the basic cell consists of one 2-input AND gate and one 2-input XOR gate, and the

cell at position (i; j) receives ai�1;jþ1 as its input from the (i � 1; j þ 1)th cell, ti�1;j
and ci�1;j from (i � 1; j)th cell, and bi from (i; j � 1)th cell, respectively. In

Fig. 1(a), the left side input bi (resp., the right side input ajþ1) is staggered by

one clock cycle relative to biþ1 (resp., aj), where n � 3 � i � 0 and 1 � j � n � 2.

2.2 Bit-serial systolic MM

By projecting Fig. 1(a) in the east direction (projection vector ½0; 1�T and schedule

vector ½2; 1�T ) and retiming by the cut-set systolization techniques [6], a new

one-dimensional serial systolic multiplier can be derived. The result is shown in

Fig. 2(a), where “•” denotes a 1-bit latch. This multiplier consists of n � 1 identical

basic cells, one 2-input AND gate and one 2-input XOR gate, where the functions

of the basic cell are depicted in Fig. 2(b).

Note that according to the projection, the input values other than B enter the left

side of the array in a serial form, while the coefficients of B should stay inside the

array, i.e., bn�i�2 (0 � i � n � 2) should remain at ith cell to be ready for the

execution. It is possible to incorporate an additional one 2-to-1 MUX and one 1-bit

latch into each cell in Fig. 2(a), so that bi may also enter the array serially with the

most significant bit first at the same time as the control sequence ctr. The multiplier

of Fig. 2 is controlled by a control sequence ctr ¼ 011 . . . 1 of length n. When

ctr ¼ 0 enters the ith cell, bn�i�1 also enters that cell, and then its loading operation

occurs, for 1 � i � n � 1. The basic cell of Fig. 2(b) consists of one 2-input AND

(a) (b)

Fig. 2. (a) Proposed multiplier in GFð24Þ (b) Circuit of the basic cell
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gate, one 2-input XOR gate, one 2-to-1 MUX, and nine 1-bit latches, and its critical

path delay is one 2-input AND gate and one 2-to-1 MUX delays. If the input data

come in continuously, this multiplier produces output results at a rate of one per

m þ 1 clock cycles with a latency of 3m þ 1 clock cycles. The result tj (0 �
j � n � 1) emerges from the right side of the array in serial form with the least

significant bit first.

In addition, an application of the proposed scheme is to compute the inverse of

any element in GFð2mÞ. Inversion is a special case of exponentiation and it can be

obtained as B�1 ¼ B2m�2, where the exponent E ¼ 2m � 2 can be represented with a

vector representation [em�1em�2 . . . e1e0]. The inversion T ¼ B2m�2 over the RB can

be computed as Tiþ1 ¼ ðTi � TiÞ � B for i ¼ 1 to m � 2 with initially T1 ¼ B. Finally,

the result Tm ¼ ðTm�1 � Tm�1). This method shows that the inversion contains m � 2

multiplications and m � 1 squarings. Note that the squaring can be easily obtained

by the subscript operation. Hence, the inverse element can be calculated using

m � 2 stages of the proposed multiplier.

3 Analysis and conclusion

We obtained the area of the gates, multiplexer and latch along with their worst-case

intrinsic delays pertaining to unit drive-strength from the “SAMSUNG STD 150

0.13 µm 1.2V CMOS Standard Cell Library” databook. Using these data we

estimated the time and area complexities of the proposed structure and the related

structures. The notations TGATEn and AGATEn denote the delay and area of the n-input

cell, respectively. Table I summarizes the time and area requirements for the cells

used in our analysis.

To demonstrate the efficiency of the proposed method, we measure the area-time

(AT) complexity of each work and then calculate the improvement. From Table II,

we can see that the semi-systolic multiplier of Fig. 1 obtains obvious area, time,

and AT advantages over other multipliers.

In detail, the comparison results show that the AT complexity of the proposed semi-

systolic multiplier is improved by approximately 62%, 56%, and 38% compared to

Lee et al., Chiou et al., and Huang et al.’s multipliers, respectively. The proposed

parallel (resp., serial) multiplier produces the results at a rate of one per 1 (resp.,

m þ 1) cycles with a latency of m þ 1 (resp., 3m þ 1) cycles using Oðm2Þ (resp.,
OðmÞ) area complexity. Note that the parallel semi-systolic architectures have better

throughput but much higher hardware cost than the serial systolic architecture of

Fig. 2.

This work presents an efficient multiplication algorithm for computing the

modular multiplication, which is the crucial operation in the finite field arithmetic.

Table I. Cells used for evaluation of time and area

AND2 XOR2 MUX Latch

Time (ns) 0.094 0.167 0.141 0.157

Area (transistor count) 6.68 12.00 12.00 16.00

Note: MUX denotes a 2-to-1 multiplexer.
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The proposed scheme exploits the characteristics of the MM and the RB to

construct a low-complexity systolic multiplication architecture. In particular, the

serial systolic multiplier is attractive for space-constrained applications. The

proposed architectures have the features of regularity, modularity, concurrency,

and unidirectional data flow and thus are well suited for VLSI implementation.

Table II. Complexity comparison of semi-systolic multipliers

Multipliers
Lee Chiou Huang Proposed

et al. [3] et al. [4] et al. [5] Fig. 1 Fig. 2

# cells m2 ðm þ 1Þm m2 mðm þ 1Þ m

Throughput 1 1 1 1 1=ðm þ 1Þ
Latency m m þ 1 m m þ 1 3m þ 1

Area complexity
AND2 2m2 2m2 þ 2m 2m2 m2 þ 2m þ 1 m þ 1

XOR2 2m2 0 2m2 m2 þ 2m þ 1 m þ 1

XOR3 0 m2 þ m 0 0 0
MUX 0 0 0 0 m
Latch 3:5m2 � 0:5m 3:5m2 þ 3:5m 3:5m2 � 0:5m 3:5m2 þ 3:5m þ 2 9m

Total transistors 93:36m2 � 8m 93:36m2 þ 93:36m 93:36m2 � 8m 74:68m2 þ 93:36m þ 3 174:68m þ 2

Time complexity
Cell delay 0.68 0.59 0.42 0.32 0.67
Total delay 0:68m 0:59m þ 0:59 0:42m 0:32m þ 0:32 2:01m þ 0:67

AT complexity
63:48m3�
5:44m2

54:62m3þ
109:24m2 þ 54:62m

39:02m3�
3:34m2

24:20m3 þ 54:44m2þ
31:22m þ 0:97

351:11m2þ
121:06m þ 1:34

Improvement
of Fig. 1

Area 20% 20% 20% - -
Time 53% 46% 24% - -
AT 62% 56% 38% - -
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