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ABSTRACT 

The holistic approach is applied to several examples from the field of physics, engineering and 
systems engineering and its benefits are demonstrated. In all examples a holistic picture is used and 
studied while ignoring the various details of the discussed problems. Optimal control and optimal 
estimation approachs are used in the engineering examples. The results show that the holistic approach 
provides a deeper insight into the main phenomena while requiring much fewer computational 
resources  Moreover, in all cases the details may significantly be changed yet leading to similar 
observed phenomena. Whenever applicable, the holistic approach is highly recommended. 
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1. INTRODUCTION 

 A definition to systems engineering contributed by 
Simon Ramo is as follows: 
 

“Systems engineering is a discipline that 
concentrates on the design and application of 
the whole (system) as distinct from the parts. 
It involves looking at a problem with its 
entirety, taking into account all the facts and 
all the variables and relating the social to the 
technical aspects” (Haskins, 2007). 

 
 The holistic approach had been recognized in the 
physical sciences and in the various fields of 
engineering for many years, long before the birth of 
systems engineering. Although in all other fields it 
seems to be consequential-in systems engineering it is 
an essential property (hence it becomes part of its 
definition). One may say that the essence of systems 
engineering is its being holistic. The top-down 
approach also stems from viewing the system as a 
whole (Blanchard and Fabrycky, 1998). 
 What exactly is the meaning of the holistic 
approach regarding systems? One way to express it is 
that “the whole is not just the sum of its parts” 

(attributed to Aristotle) in the sense that emergent 
properties of a complex system cannot be 
reconstructed from its simplest components. This 
again is taken from the natural sciences as eloquently 
expressed by Anderson (1972). 
 “The ability to reduce everything to simple 
fundamental laws does not imply the ability to start 
from those laws and reconstruct the universe. The 
constructionist hypothesis breaks down when 
confronted with the twin difficulties of scale and 
complexity. At each level of complexity entirely new 
properties appear. Psychology is not applied biology, 
nor is biology applied chemistry. We can now see that 
the whole becomes not merely more, but very 
different from the sum of its parts”(Anderson, 1972). 
 Another way of interpreting the holistic approach 
is somewhat less drastic and associates it to the human 
cognitive capacities rather than to the objective world. 
In this sense we do not claim that emergent properties 
cannot be reconstructed from lower level properties 
but rather that it is much simpler for the human mind 
to understand a system by overlooking the various 
details and by concentrating on the holistic properties 
themselves. It also deepens the understanding in the 
sense of discriminating between the essential and the 
accidental. 
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 This study adopts the softer version of the two 
interpretations when dealing with systems engineering 
issues. Note that no claim is made regarding the other 
view (i.e., the view that emergent properties are not 
possessed by any one of the parts) with respect to 
natural sciences in general and this problem is beyond 
the scope of this study (e.g., see the discussion in 
(Hofstadter, 1999). 
 The purpose of the study is to demonstrate the 
holistic approach and its great benefits by several 
examples from physics, engineering and finally from 
system engineering. For the latter a systems 
engineering case study will be given for a multi sensor 
system and data fusion. 

2. CONSERVATION LAWS IN PHYSICS 
AND ENGINEERING 

 We begin this section by a very simple puzzle 
example: Suppose that you have two identical cups: one 
with a certain amount of liquid A, say coffee and the 
other with identical amount of liquid B, say milk. 
Assume equal specific density for A and B. Take one tea 
spoon of coffee and pour it into the milk cup. Then, after 
well stirring, take one tea spoon from the mixture and 
return it to the coffee cup. Repeat this process three 
times (same order of cups-do not switch). 
 Question: By the end of the process which cup has 
more foreign liquid Cup A (originally with coffee), or 
Cup B (originally with milk)?  
 There are two ways to approach the problem. The 
first (what most people follow-especially engineers) is to 
calculate at each step the various amounts in the cups 
using all the mixture rules. The other one is holistic and, 
as a matter of fact, is process independent. At the end of 
the process consider the two cups as in Fig. 1. Clearly the 
total liquids are of the same height h (equal amounts of 
total liquid; equal densities) because of the principle of 
mass conservation. Now if Cup A has x of the new liquid 
there must be (h-x) of the original one in this cup. Hence 
the amount that has been removed to Cup B must be x as 
well. One can appreciate the simplicity and clarity of the 
holistic approach. Not only it renders the solution simple, 
but it also provides an important insight into the results, 
enabling a generalization of the problem in hand. One is 
losing the picture when dwelling into the details even 
when the correct answer is obtained. 
 The second problem is taken from mechanics 
(Feynman et al., 1963). Consider a mass of 1 lb sitting in 
equilibrium on the inclined plane with a pulley which has 
a weight W on the other hand. Assume, for simplicity, that 
the inclined plane is a 3-4-5 Pythagorean triangle (Fig. 2). 

 
 (A)                                             (B) 

 
Fig. 1. The coffee and milk puzzle 

 

 
 
Fig. 2. Mechanical equilibrium 

 
 Question: What should be the value of W? 
 Here again one can solve the problem using 
equilibrium of forces in all directions. The pulley 
tension is one of the applied forces; the inclined plane 
reactions and gravity are the other applying forces. 
Conservation of energy however provides a much 
simpler approach. Due to equilibrium we can move 
the system up and down without doing any amount of 
work. Consider the situation where the 1 lb mass is at 
the bottom and another situation where this mass is at 
the top. Clearly we have moved the mass by 5 feet and 
at the same time, the mass W losses 5 feet of height-
thus 5W lb-ft is the corresponding loss in its potential 
energy. Our 1 lb mass gained 3 lb-feet of potential 
energy and from the conservation of energy we must 
have W = 3/5 lb.  
 Our third example is a vertical gyro (see a 
detailed description in (Merchav, 1996). A vertical 
gyro is a device used to measure the pitch (ө) and roll 
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angles (φ) of a vehicle (usually-an aircraft). This quite 
complicated device is depicted in Fig. 3. The spin of 
the heavy mass is rotating in the vertical direction. 
The potentiometer reading of inner gimbal provides 
the pitch angle measurement and that of the outer 
gimbal-the roll measurement. 
 In order to keep the spin in its vertical position, 
an erection mechanism is employed by which two 
small pendulums, attached to the inner gimbal, sense 
the spin deviation (caused by drift) and close circuits 
which activate two small electrical motors (T1 and T2) 
to correct the vertical drift at a certain precession rate 
say PR. When the mother vehicle is accelerating this 
erection mechanism is cut-off to avoid aligning the 
spin axis with the total instantaneous acceleration 
vector. 
 Evidently the whole gyro is quite a complex 
electro-mechanical system. In a specific project it was 
required to evaluate PR by a laboratory test. Since 
acceleration values higher than 1g (gravity) were 
needed it was proposed to use a centrifugal table as 
shown in Fig. 4. It was supposed that the spin-under 
the operation of the erection circuits-would align itself 
with the total acceleration namely the vector sum of 
gravity and Ω2 R. 
 The test was performed in the laboratory but the 
observed phenomenon was a perfect alignment with 
the vertical (or very nearly to it). The next trial was to 
cut-off the erection circuits and to re-run the test 
(spinning the table by Ω): The result was virtually the 
same-a perfect (or nearly perfect) alignment with the 
vertical direction. 
 Question: What was going on? 
 Once again there could be two ways to address 
this question. The first one is to write down the 
dynamic equations (non-linear differential equations), 
to analyze them (especially is steady state) and from 
this analysis to get the explanation. The second one is 
holistic and immediate. Notice that for the spin to 
align itself with the instantaneous acceleration vector 
it must change its direction continuously due to the 
table rotation Ω. But conversation of angular 
momentum prohibits it-unless some appropriate 
external moments are applied which is clearly not the 
case here (albeit some small moments are obtained 
from the erection motors). 
 So we should not have expected the alignment 
with the acceleration vector. But the question remains 
why (in both cases of erection on and erection off) the 
almost perfect alignment with the vertical? To answer 
simply that it aligns itself with the table rotation 

vector is not enough-Earth rotates the Sun while 
keeping its spin axis in a fixed direction. The answer 
is again quite simple. Due to friction (and maybe 
mass-imbalance) we get the effect of gyro 
compassing. In a nut-shell gyro-compassing is 
obtained whenever there are external moments which 
disappear at a certain equilibrium point. When the 
spin axis of the table and the gyro spins axis are 
aligned, there is no relative movement of the gimbals, 
the moments then vanish and we have equilibrium. 
 Notice again how the holistic approach provides 
answers and insights for some very complicated 
problems. 

 

 
 
Fig. 3. Vertical gyroscope 

 

 
 
Fig. 4. Centrifugal table 



Joseph Z. Ben-Asher / American Journal of Engineering and Applied Sciences 6 (3): 274-281, 2013 

 
277 Science Publications

 
AJEAS 

3. SYMMETRY IN PHYSICS AND 
ENGINEERING 

 The last section dealt with holistic approach based 
on conservation laws (mass, energy and momentum). 
Another road for holistic interpretation and problem 
solving in sciences and Engineering is via symmetric 
properties of space and time. The following case 
study-taken from the author’s Ph.D. dissertation (Ben-
Asher, 1988)-exploits both symmetries. 
 Over the past two decades, time optimal attitude 
maneuvers for flexible spacecraft have become a topic 
of great interest. In particular, a system consisting of a 
rigid hub controlled by a single actuator, with one or 
more elastic appendages attached to the hub, was 
studied by several researchers who investigated the 
properties of minimum-time rest-to-rest rotational 
maneuvers (as well as other maneuvers). Minimum 
maneuvers have a bang-bang solution-the control is 
alternating between maximal and minimal value 
(maximal negative). This system represents, under 
certain assumptions, a satellite with a rigid hub and 
flexible solar panels modeled as Euler-Bernoulli 
beams (Fig. 5). Minimum time rotational maneuvers 
of satellites have important scientific and strategic 
applications. The dynamic equations can be shown to 
have the following form: 

 
2

2
12

2
n

(t) (t) Gu(t)

0

η + Ω η =

 
 ω Ω =
 
 ω 

&&

O

 (1) 

 
 Here η = [η0, η1, η2,.. η3]

T is a vector of generalized 
coordinates and ωi is the ith natural frequency. Notice 
that the first equation corresponds to the rigid mode 
motion (ω0 = 0) whereas the rest are equations for the 
first n flexible modes. The scalar u(t) is an external 
moment exerted on the rigid hub. 
 We pose the following optimal control problem: 
Find the time optimal control u(t); 0 ≤ t ≤ T and the 
corresponding state trajectories (t)η that the system is 
driven from the initial conditions: 

 
(0) [ ,0..0]

(0) [0,0..0]

η = −Θ

η =&
 (2) 

 
 To the final conditions at the origin: 

(T) [0,0..0]

(T) [0,0..0]

η =

η =&
 (3) 

 
 These boundary conditions express a rest-to-rest 
maneuver whereby the spacecraft is rotated by a 
positive angle Θ.  
 The problem was solved numerically for various 
degrees of freedom (Fig. 6-8). The solution is bang-bang 
with an increasing number of switching points (as 
function of the degree of freedom). 
 It was observed that a certain and very useful 
symmetric property is always valid, namely: 

 
u(t) u(T t)= − −  (4) 

 

 
 
Fig. 5. Flexible spacecraft 

 

 
 
Fig. 6. Rigid body 
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Fig. 7. One flexible mode 

 

 
 
Fig. 8. Two flexible modes 

 
 Moreover, if we change the cost from minimum 
time to minimum control effort i.e.: 

 
T

2

0

J u (t)dt= ∫  

 
 Then Equation 4 still holds (albeit the bang-bang 
structure is no longer the solution). 
 Question: why? 
 To answer this curious question one can use the 
detailed formulation of the Minimum Principle and 
workout through the resulting two-point boundary-
value problem (Singh et al., 1989). The computational 
effort is high and is dependent on the particular cost 

function. A different holistic approach was proposed 
in (Ben-Asher et al., 1992). This approach exploits the 
observation that this problem has both time and space 
symmetries. 
 First notice that if we rotate the spacecraft in the 
opposite direction, e.g., from: 

 
(0) [0,0..0]

(0) [0,0..0]

η =

η =&
 (5) 

 

 To: 

 
(T) [ ,0..0]

(T) [0,0..0]

η = −Θ

η =&
 (6) 

 
 We must obtain the same minimum time T by 
exerting the opposite control function: 

 
(t) (t)µ = −µ  (7) 

 
 Moreover, because Equation 1 is symmetric with 
time, we may reformulate our original problem using the 
reversed time: 

 
T tτ ≡ −  (8) 

 
 The dynamics equation then becomes: 

 
2

2
2

d ( )
( ) Gu( )

d

η τ + Ω η τ = τ
τ

 (9) 

 
 The boundary conditions are in reversed time 
Equation 5 and 6 (instead of Equation 2 and 3), hence, 
Equation 7 is our optimal control function: 

 
u( (t) u( (t))τ = − τ  (10) 

 
 Recalling that since we are still dealing with the 
original problem the value of the control at t must be 
u(t) (the control has the same value at time t, 
regardless of the way it has been obtained). 
Hence: 

 
u( (t)) u(t)τ =  (11) 

 
 From  Equation 8, 10 and 11 we arrive at: 
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u(T t) u(t)− − =  (12) 

 
 Notice that the observation in Equation 12 is for 
both costs. Notice also that had damping been included 
in Equation 1 and 9 is no longer valid as time symmetry 
is broken. 

4. A CASE STUDY IN SYSTEMS 
ENGINEERING USING THE HOLISTIC 

APPROACH 

 The common thread of the above case studies is 
the observation that working out the problem details-
even though may eventually lead to the problem 
solution-is a tedious process which can become 
redundant when the holistic view is adopted. 
Moreover, the latter provides a deeper insight into the 
physical phenomena rendering its use 
indispensible.The next case study demonstrates the 
same trends in a systems engineering problem 
regarding data fusion in ballistic missile and rocket 
defense systems. 
 This kind of defense systems uses phased array radars 
for various missions such as search, tracking, 
discrimination (i.e., target identification in cluster). 
(Naveh and Lorber, 2001). Missions “compete” over the 
same finite stockpile of sensor resources and have to be 
performed within certain time intervals. Mission 
performance level depends on the amount of sensor 
resources allocated to it and therefore can be optimized by 
specific allocations. 
 An interim problem of the general resource 
optimization is the radar tracking beam allocation 
problem. Classically, the objective of the sensor 
allocation process in tracking has been to minimize 
the uncertainty in the tracking estimation error of all 
relevant targets, using a given amount of radar 
resources. This problem has been addressed by  
(Israeli et al., 2009) where open-loop optimal 
strategies were obtained using direct optimization. 
The essentially bang-zero-bang structure of the 
solutions was investigated by extensive numerical 
solutions and the main features of the optimal 
strategies were characterized. Introducing Electro-
Optical Sensor (EOS) to the defense system calls for 
data fusion of the optical and radar sensors. The 
angular accuracy of the optical sensor is superior to 
the radar’s thus data fusion obtained by a common 
filter using both measurements should have superior 
performance relative to the radar in stand alone 
operation. A study similar to (Israeli et al., 2009) of 

finding optimal tracking policies in order to obtain a 
required accuracy with minimum amount of resources 
has been recently conducted. 
 One of the questions involved in this kind of research 
is where should be the best location for the EOS. 
 For a stand-alone EOS (i.e., target tracking is 
based on angular measurements as provided by this 
sensor-bearing only estimation) the answer had been 
known before. Figure 9 presents the time history for 
the obtained accuracy (in terms of the variance of the 
radial uncertainty as computed by an Extended 
Kalman Filter -EKF) for two representative cases 
(identical ballistic missile trajectory). The accuracy is 
given using certain distance units (DU) and as a function 
of time measured by certain Time Units (TU). Case A is 
for the EOS located on the ballistic plane at the impact 
point whereas Case B is with the EOS location shifted by 
250 DU off the ballistic plane (transversal). Case B 
provides much better results and so locating the EOS off 
the ballistic place is superior in this case. 
 Under data fusion a combined Extended Kalman 
Filter (EKF) was investigated for tracking the target 
(Bar-Shalom et al., 2001; Bryson and Ho, 1975). The 
covariance is propagated as given in Appendix A. 
Fixing the radar resources to its minimum values (u1)-
required for continuous tracking-we search for the 
minimum required EOS total resources (u2) to achieve 
a required accuracy at a certain time. 
 Several locations were considered as depicted in 
Fig. 10. The optimal tracking resources measured in time 
units of occupation needed for a given accuracy are 
given in Table 1. 
 As shown the effect of the EOS location is highly 
significant. Consider first the case Y = 0 where the two 
sensors (radar and EOS) are located in the ballistic 
plane. Decreasing the range from EOS to target along 
the same direction improves the data-fusion predicted 
accuracy thus decreases the EOS load. This 
phenomenon is well understood as the position errors 
grow with range. When we locate the EOS near the 
ballistic plane at Y = 100 DU this is still the case. 
However this phenomenon is reversed when we are 
way off the ballistic plane (last row). Moreover, the 
behavior along the columns is also surprising. Based on 
the EOS stand-alone performance of we might expect 
less resources when moving away from the ballistic 
plane, but this is clearly not the case here. For example 
the last column tells us that the resources are three 
folded when we move 250 DU away from the origin 
(co-location of sensors) in the Y direction and it gets 
even worse when we move forward. 
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 (A) (B) 

 
Fig. 9. EOS Stand-Alone Prediction Accuracy (A) EOS location [0,0] (B) EOS location [0,250 DU] 

 

 
 
Fig. 10. EOS Locations 

 
Table 1. EOS resources (occupation time) Vs. EOS location 
 X = 250 DU  X = 0 
Y = 0 2 TU 4 TU 
Y = 100 DU 2 TU 5 TU 
Y = 250 DU 25 TU 12 TU 

 
 Question: why?  
 Here again there could be two ways to approach 
the question. The first is a tedious study of all the 
details involved in the data fusion process. We may 
investigate the observability measures of the 
combined EKF and the influence of the location on its 
properties. We may go into an even lower level and 
ask the question of what the value of a single EOS 
measurement (1 TU) is and how it depends on the 
EOS location.  
 The other approach is holistic. We investigate the 
question of what is the best EOS location for a system 
working as a whole. Recall that the EOS provides 
angular measurement to the target with very high 
accuracy. The radar (as all tracking radars) is 
extremely accurate in range measurement but has 
relatively poor angular measurements. Thus, the best 
location for the EOS must be on the line-of-sight 
between the radar and the target where it optimally 
complements the radar at its weakest point. In our 
example it should be on the ballistic plane. Moreover, 
if the EOS is in the transverse point-such as X = 250 

DU, Y = 250 DU-then the joint performance is the 
poorest. The azimuth measurements of the EOS at this 
location are in fact redundant due to the excellent 
range measurements of the radar and all the benefits 
we get stem from the EOS elevation measurements-
hence the large amount of resources needed for the 
required performance. 
 We observe here an interesting property that the 
optimal setting of a subsystem if different when in stand-
alone position and in joint operation with another sub-
system. In particular, the property of “being in the best 
location” as part of the whole is very different than the 
same property in a stand-alone operation. 

5. CONCLUSION 

 Several case studies from physics, engineering 
and systems engineering have been presented. The 
main lessons learned is that working out the problem 
details may be a tedious process that can become 
superfluous if the holistic view is adopted. The deeper 
insight into the physical phenomena obtained by the 
holistic view renders its use indispensible. Moreover 
in many cases the details may significantly be 
changed yet leaving the main phenomena intact. 
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APPENDIX A: 

 In this appendix we will briefly present the 
Extended Kalman Filter used for data fusion in the 
fourth section (based on (Bar-Shalom et al., 2001; 
Bryson and Ho, 1975). 
 The point mass model of a ballistic target can be 
written as: 

1 D
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Where: 
x = Down range 
y = Cross range 
yD = Cross range rate 
h = Altitude 
v = Velocity 
γ = Dive angle 
m = Mass 
CD = Drag coefficient 
S = Reference area 
ρ = Density 
w1,w2 = Perturbation forces 
 
 The radar measures range, elevation and azimuth {Ψ 
Θ R} to the target and the EOS measures elevation and 
azimuth to the target {Ψ1 Θ1}. Denote g as the 
measurment vector [Ψ Θ R Ψ1 Θ1]. The following is the 
propagation of covariance matrix P: 
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 Note that here we are approximating the optimal  
allocations by using u1-radar partial allocation-and u2-EOS 
partial allocation-that are being kept constant for 1 TU. 


