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Abstract: An equivalent circuit of a single conductor line (Som-
merfeld wave) is proposed. The circuit is based on physical quantities,
such as the electric current and on the power of the traveling wave,
while the line voltage is only indirectly obtained. The characteristic
impedance and the per-unit-length parameters are calculated in closed
form as functions of the complex wave numbers, which must be de-
termined numerically. The circuit parameters are partly confirmed by
literature results, and they differ only where the literature results have
no physical meaning (e.g. negative conductance). Furthermore, circuit
simulation solutions are used to determine the per-unit-length atten-
uation, and the results are confirmed by the well known analytical
solution. The idea can be extended to other type of single conductor
lines, having a more complex cross-sectional profile and inhomogeneous
media.
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1 Introduction

The first known work on the electromagnetic wave propagation along a single
conductor is due to Sommerfeld [1]. A detailed analytical study of the wave
propagation on a conductor with cylindrical symmetry can be found also
in [2]. As suggested by Sommerfeld himself, the energy confinement of this
type of propagation was too loose for practical applications at that time.
Recently the interest has been renewed for applications in the THz range
(e.g. [3]), where the energy is confined in a region very close to the wire
(e.g. [4]). Present studies include possible applications for THz propagation,
due to the low-dispersion and low-loss properties of the Sommerfeld wave
(e.g. [5]). A slightly different application of interest is EMC (e.g. [6]), where
this type of propagation can be used for analyzing the common mode (CM)
current on cables or cable shields.

Some attempts to extract an equivalent circuit for the propagation along a
single conductor can be found in [6] and [7], but the results are not satisfying.
In [6] an equivalent circuit has been calculated based on a definition of voltage
as the integral of the radial electric field between the conductor and infinite.
The approach followed in [7] is based on the transmitted power and seems
to be more general, but the boundary conditions are based on a loss-less
conductor with corrugated other coated surface.

In the present paper a new approach for the extraction of the equivalent
circuit parameters for the Sommerfeld line is proposed, based on the concept
of traveling waves in [8]. From the current on the wire and the power of the
traveling wave, the characteristic impedance and the per-unit-length circuit
parameters are calculated analytically and compared with literature results.

The present work is important from both the theoretical and practical
points of view. From the theoretical point of view, the new idea of using the
traveling wave concept to extract the equivalent circuit for the Sommerfeld
line paves the way to a more convenient approach to handle all the one
conductor lines, with or without a coating insulator. From the practical
point of view, the analytically calculated equations for the Sommerfeld line
are made available to all the above mentioned applications. Furthermore,
the resulting equations offer a convenient starting point for further research
with the aim of their possible generalization to other single conductor lines.

2 Electromagnetic field distribution

The fundamental TM mode (sometimes called E-mode) for a cylindrical con-
ductor of radius ., finite conductivity o. and magnetic permeability ., has
only three field components, which can be expressed (e.g. [1] and [2]) in terms
of the Bessel function of first kind and order n, J,,, and the Hankel functions
of the first kind and order n, H,, = H,(LI). When the total current along a con-
ductor on the z-axis at the frequency w = 27 f is expressed as I = Iy el @!=h2),
the electromagnetic field inside the conductor (region 1) becomes:

Iy ue Jo(uer) oo
(1) — _£0 e J0\Bel) j(wt—h2)
E; 2rre o J1(uere) © (1)
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Iy Ji(uer) (i
H(l) _ 10 J1\"cl) j(wi—hz)
¢ 2rre Ji(ucere) c
(1) _ Wheh ay _Jh )
R

u? = k2 — h?
and in the dielectric medium outside the conductor (region 2) it becomes:

Iy —ju Ho(ur)
@ _ 1o —ju Ho j(wt—h2)
E; 2Tr, We Hl('wrc)e 2)
@) _ fo H(ur) jwnz
¢ 27re Hy(ure)
o) _wWhoh (2
ﬂtsﬁf%

u2:k2_h2’

where k. ~ \/—jw o, e = (1—7) /0. is the wave number inside the conductor,
0. is the skin depth, pg is the vacuum magnetic permeability, € is the dielectric
constant in the external medium, u. and u are the transverse complex phase
constant inside and outside the conductor, respectively. The complex phase
constant h can be determined by imposing the continuity of the tangential
field components on the surface of the conductor:

Ue e JO(UCTC) _ U o HO(UTC) (3)
k2 Ji(uere) k2 Hi(ure)
Additionally, it is convenient to define a surface impedance Zs, as the
ratio of the longitudinal electric field at the surface of the conductor and the
total current Ij:

_ Ezlr:rc _ —Jju HO(UTC) _ Ue JO(ucrc)
Iy 2nrewe Hy(ure)  2mreoe Ji(uere)

Zs (4)

3 Equivalent circuit

The fundamental idea is to calculate the complex characteristic impedance
based on the complex power and the total current on the conductor Iy. Ac-
cording to [8] this is possible for any uniform waveguide, and therefore also
for a single conductor line. The complex power associated with the travel-
ing wave, P, can be calculated by means of the integral of the longitudinal
component of the complex Poynting vector S on the cross-section S:

_ 1P

1 i 1
P==[5.dS = E, Hirdr==|I)*Z, =
2/38 S 7r/ ordr =21l Zo 5 7y (5)
0

where Zj is the still undefined characteristic impedance of the Sommerfeld
wave, and V is the still undefined line voltage. As observed in [8], the
magnitude of the characteristic impedance depends on the definition (ei-
ther ‘power-current’ or ‘power-voltage’), and on some normalizations, but its
phase is unequivocally associated with the phase of the power, except for the
sign. By combining last equation with Egs. (1), (2) and (4) it is possible to
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define the characteristic impedance in terms of the power and the current
(power-current definition), which after some analytical calculations can be
expressed as follows:

2P 2h 2ih
- S Im[Z,) + —=2
u*

B |I0|2 Uz - U

Zo RelZ,]. (6)

PR

Last equation apparently differs from the expression calculated in [7],
because the author of that paper considered a lossless conductor with a sur-
face impedance different from zero, for example due to a dielectric coating
or a corrugated surface. It must be noticed that in that case also the power
transmitted inside the dielectric material close to the interface should be con-
sidered. More study is necessary in order to verify whether Eq. (6) is valid
in that case as well. Last equation is also different from the expression in [6],
as expected, since a different definition of impedance has been used.

From the characteristic impedance and the propagation constant v = jh
it is possible to calculate the per-unit-length parameters with Eq. (7).

Z=2Zyy=R+ jwL (7)
Y .

Y:—:
7 G+ jwC

According to [8], a second equivalent procedure to calculate the per-unit-
length equivalent circuit parameters is that of integrating the squared com-
ponents of the electromagnetic fields. By combining Egs. (33)—(36) in [§]
with Egs. (1), (2) and (6), and assuming that ¢/ = 0 in the external medium,

€/ = 0./w inside the conductor and u” = 0 everywhere, the per-unit-length
circuit parameters of the Sommerfeld wave can be calculated by integrating
over the cross-sectional surface S = S7 U So, where S7 and Sy are the cross

sections inside and outside the conductor, respectively.

! B2 1 2

C=r || €IE]dS| ~ ~ Re|Z 8

| Zo 1o|? [/se = ] 1ZoR  u? — w2 elZs], (8)

1
L= |To]2 [/N|H¢|2 dS—/e' |E.|? ds]
s s
2j 2j 1 Y
N —[Oc I a— Im|[Z] + 22 (,uweRe[Zs] - = Re[u Zs]) ’

O¢ 2 |h|2 2j
G=_2¢ / E dS]:— 2z,
|%AP{&“* Zo? w2 — w2 U]

Oc 2 25 2
= - FE.|“dS| =———1 Zg| .
f |I0|2 |:/S'1 | Z| S:| ug - Uz2 m[uc S]

4 Comparison with literature results

As it can be observed in Figs 1 and 2 for a copper wire of 1mm radius,
the capacitance and inductance per unit length calculated with Egs. (7) and
(8) are very similar to those in [6]. On the other side, the series resistance
R, according to [6] is negative at low frequencies and very large at high
frequencies, and it is somehow compensated by a large and negative shunt
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Fig. 1. Series parameters with Eq. (7) (calculated 1),
Eq. (8) (calculated 2), and [6] (literature).
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Fig. 2. Shunt parameters with Eq. (7) (calculated 1),
Eq. (8) (calculated 2), and [6] (literature).

conductance Gy, which can be a source of instability in time domain sim-
ulations, as suggested by the authors themselves. On the contrary, Eqgs. (7)
and (8) bring to much more reasonable results for the resistance and the
conductance. At frequencies below 10 Hz Egs. (7) and (8) bring to negative
values of the inductance, but it is not clear whether it corresponds to the
physics of the phenomenon or it is an incorrect numerical solution of Eq. (3).
In any case the practical effect is not significant due the low frequencies.

5 Comparison between simulation and analytical results

In order to verify the correctness of the equivalent circuit some Spice simula-
tions with a wire of 3 different materials (steel, brass and copper) and radii
(0.1mm, 1mm and 10mm) have been conducted. The traditional pseudo-
scattering parameters have been calculated with 50 €) reference impedance
at each port. From the pseudo-scattering parameters, the open-circuit
impedance matrix has been calculated, and from this one the traveling wave
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scattering parameters with complex reference impedance have been calcu-
lated. The transformation formulas can be found in [8].

The complex and frequency dependent impedance of Eq. (6) has been
used as reference impedance. Since this impedance represents a matched
termination, no reflected wave is expected, and the power transmitted from
port 1 to port 2 can be expressed as |So1|? for unitary input power. For a
conductor of 1 m length this power ratio should correspond to the attenuation
per unit length that can be calculated from the attenuation factor in Eq. (1)
(o = Re[y] = —Im]h]). Figure 3 shows a good agreement between theoretical
and simulation results for the attenuation, confirming the correctness of the
equivalent circuit.
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Fig. 3. Attenuation obtained from Spice circuit simula-
tions (|S21]?) and directly from Eq. (1) for differ-
ent radii (copper) and conductors (r. =1 mm).

6 Conclusion

The proposed approach to obtain the equivalent circuit for the propagation
of electromagnetic waves on a single conductor offers a convenient way to
handle such structures based on the physical quantities of current and power
transported by the traveling wave. In the case of the Sommerfeld wave on a
conductor of any radius and finite conductivity the equivalent circuit param-
eters can be analytically obtained from the surface impedance.
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