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Abstract: In this paper, we propose efficient designs of residue
number system (RNS) to binary converter for the balanced moduli set
{2n, 2n+1 − 1, 2n − 1, 2n−1 − 1} where n has even values. This new
moduli set is completely free from modulo-(2k + 1)-type which results
in high-speed modulo arithmetic channels for RNS. Also, mixed-radix
conversion (MRC) algorithm is used to achieve both an arithmetic-
based and reduced-complexity two-level RNS to binary converter ar-
chitectures. The proposed moduli set provides fast arithmetic opera-
tion with higher speed of the reverse converter comparing to other five
moduli set which is found in literature.
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1 Introduction

The Residue number system (RNS) is an alternative number system in the
applications such as Image processing, Digital Signal Processing (DSP), FIR
Filters, low power applications, cryptography and other similar applications
that require operations like addition, subtraction and multiplication [1, 2].
The RNS mainly consists of three main parts that includes binary to RNS
(forward) converter, arithmetic operation and RNS to binary (reverse) con-
verter [1]. Within these three parts, RNS to binary conversion is a difficult
process which attracts a lot of attention from researchers. Efficiency of the
RNS to binary converter is largely dependent on the form of the moduli
set and also the chosen algorithm. The most prominent moduli set was
{2n − 1, 2n, 2n + 1} [1]. Operations in moduli 2n + 1 is a time consum-
ing process compared to 2n and 2n − 1. Therefore, the total speed of RNS
arithmetic unit is restricted to this modulo. In order to eliminate mod-
ulo 2n + 1, other three moduli sets such as {2n, 2n+1 − 1, 2n − 1} [3] and
{22n, 2n − 1, 2n±1 − 1} [4] have been introduced. The provided dynamic
range by these moduli set as well as their degree of parallelism is not suf-
ficient for modern applications. Hence, balanced four moduli sets such as
{2n−1, 2n, 2n +1, 2n+1±1}, {2n−3, 2n−1, 2n +1, 2n +3} [5, 6] have been in-
troduced. These moduli sets included moduli in form of 2k +1 or 2k +3 which
cause to inefficient arithmetic operation. In this paper, we introduce the new
4-moduli set {2n, 2n+1 − 1, 2n − 1, 2n−1 − 1} for even n. This moduli set is
free from modulo (2k + 1)-type and also includes balanced moduli, resulting
in fast internal modulo arithmetic circuits for RNS. Moreover, an efficient
two-level design of RNS to binary converter for this new set is presented.

2 Related background

An integer number X in the range [0, M ] in residue number system can be
represented as X = (x1, x2, . . . , xn), defined over relatively prime moduli set
{P1, P2, . . . , Pn} where xi = X mod Pi, 0 ≤ x < Pi, and M = P1P2 . . . Pn is
called dynamic range of the RNS system [1].c© IEICE 2012
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By using a two-channel version of MRC and 2-moduli set {P1, P2}, the
weighed number X can be calculated from residues (x1, x2) by using

X = v1 + v2P1 (1)

Where
v1 = x1 (2)

v2 =
∣∣∣(x2 − v1)|P1

−1|P2

∣∣∣
P2

(3)

Note that, |P−1
1 |P2 shows the multiplicative inverse of P1 in modulo P2 [1].

3 The proposed RNS to binary converter

This section describes the proposed RNS to binary converters for the moduli
set {2n, 2n+1−1, 2n −1, 2n−1−1}. The converters have a two-level hardware
architectures. The first level of each one considers the subset {2n, 2n+1 −
1, 2n − 1} and is based on the efficient implementation of the work reported
in [3]. Also, the second level uses the superset {2n(2n+1−1)(2n−1), 2n−1−1}
to achieve final converter.

3.1 The converter design-1
Consider the subset {2n, 2n+1 − 1, 2n − 1} with corresponding weighted num-
ber Z = (x1, x2, x3). The process to calculate Z with its hardware imple-
mentation is described in [3]. Next, on the second level and based on MRC
Eqs. (1)–(3), we have the following conversion equations for the composite
set {2n(2n+1 − 1)(2n − 1), 2n−1 − 1} with corresponding weighted number
X = (Z, x4):

X = Z + 2n(2n+1 − 1)(2n − 1)v2 (4)

Where
v2 =

∣∣∣(x4 − Z)|P123
−1|P4

∣∣∣
2n−1−1

(5)

Next, Lemma-1 calculates the needed multiplicative inverse.
Lemma-1 : The multiplicative inverse of 2n(2n+1 − 1)(2n − 1) in modulo
2n−1 − 1 is as below

|P123
−1|P4 =

∣∣∣∣∣
2n−2

3

∣∣∣∣∣
2n−1−1

(6)

Where |P123
−1|P4 is the multiplicative inverses of 2n(2n+1 − 1)(2n − 1) in

modulo 2n−1 − 1.
Proof:

|P123
−1 × 2n(2n+1 − 1)(2n − 1)|2n−1−1 =

∣∣∣∣∣
2n−2

3
× 2(3)(1)

∣∣∣∣∣
2n−1−1

= |2n−1|2n−1−1 = 1

Therefore, by substituting the value of multiplicative inverse in Eq. (5), we
have

v2 =

∣∣∣∣∣(x4 − Z)
2n−2

3

∣∣∣∣∣
2n−1−1

(7)

Division by 3 in Eq. (7), can be eliminated by considering the following
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equation:
∣∣∣∣
1
3

∣∣∣∣
2n−1−1

=
2n − 1

3
=

(n/2)−1∑

i=0

22i (8)

Thus, v2 can be calculated by expanding Eq. (8) in (7):

v2 = |(x4 − Z) × 2n−2(20 + 22 + · · · + 2n−2)|2n−1−1 (9)

Since, Z is a (3n + 1)-bit number, it should be partitioned into (n − 1)-bit
blocks as follows

v2 =

∣∣∣∣∣∣∣
(x4 −

K︷ ︸︸ ︷
00 · · · 0︸ ︷︷ ︸
n−5 bits

Z) × (2n−2 + 2n + · · · + 22n−4)

∣∣∣∣∣∣∣
2n−1−1

=
∣∣(x4 + K̄1 + K̄2 + K̄3 + K̄4) × (2n−2 + 2n + · · · + 22n−4)

∣∣
2n−1−1

(10)

Where
K1 = Zn−2 · · ·Z0

K2 = Z2n−3 · · ·Zn−1

K3 = Z3n−4 · · ·Z2n−2

K4 = 0 · · · 0︸ ︷︷ ︸
n−5 bit

Z3n · · ·Z3n−3

To achieve an efficient hardware implementation for Eq. (10), first we add
the four parts of the inversion of K together with x4 by using three (n − 1)-
bit carry-save adders (CSAs) with end-around carries (EACs) as shown in
Fig. 1-a.

Next, the result of the carry-save addition can be substituted in Eq. (10)
as below

v2 = |(S1 + C1) × (2n−2 + 2n + · · · + 22n−4)|2n−1−1 (11)

The multiplications required by Eq. (11) can be simply realized using circular
left shifting (Property 2). So,

v2 =

∣∣∣∣∣∣
CLS (S1, n − 2) + · · · + CLS (S1, 2n − 4)

+CLS (C1, n − 2) + · · · + CLS (C1, 2n − 4)

∣∣∣∣∣∣
2n−1−1

(12)

Where CLS(Y, k) denotes k-bit circular left shifting of Y . For an instance

Fig. 1. Hardware schema. (a) calculation of S1 and C1,
(b) calculation of S2 and C2.
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CLS(S1, 2n − 4) denotes (2n − 4)-bit circular left shift of S1.
Now, since Z has (3n + 1) bits and v2 has (n − 1) bits, we can simplify

Eq. (4) as follows

X = Z + (23n+1 − 22n+1 − 22n + 2n)v2

= Z + 23n+1v2 − 22n+1v2 − 22nv2 + 2nv2

= Z + 2n(22n+1v2 + v2) − 0v2 00 · · · 0︸ ︷︷ ︸
2n+1

− 00v2 00 · · · 0︸ ︷︷ ︸
2n

= Z + v2 00 · · · 0︸ ︷︷ ︸
n+2

v2 00 · · · 0︸ ︷︷ ︸
n

+ (1v̄2 11 · · · 1︸ ︷︷ ︸
2n+1

+1) + (11v̄2 11 · · · 1︸ ︷︷ ︸
2n

+1)

= v2 00 · · · 0︸ ︷︷ ︸
n+2

v2 00 · · · 0︸ ︷︷ ︸
n

+ Z + 1v̄2 11 · · · 1︸ ︷︷ ︸
2n+1

+11v̄2 11 · · · 1︸ ︷︷ ︸
2n

+ 00 · · · 0︸ ︷︷ ︸
3n−1 bits

10

= v2 00 · · · 0︸ ︷︷ ︸
n+2

v2 00 · · · 0︸ ︷︷ ︸
n−2

10 + Z + 1v̄2 11 · · · 1︸ ︷︷ ︸
2n+1

+ 11v̄2 11 · · · 1︸ ︷︷ ︸
2n

= Z + Z1 + Z2 + Z3

(13)

Where
Z1 = 1v̄2 11 · · · 1︸ ︷︷ ︸

2n+1 bits

, Z2 = 11v̄2 11 · · · 1︸ ︷︷ ︸
2n bits

,

Z3 = v2 00 · · · 0︸ ︷︷ ︸
n+2

v2 00 · · · 0︸ ︷︷ ︸
n−2

10.
(14)

To implement Eq. (13), first, three (3n + 1)-bit CSAs are used as shown in
Fig. 1-b. Finally, by considering the result of carry-save addition (S2 and
C2), Eq. (13) can be computed using this equation:

X = 23n+1v2 + C2 + S2 (15)

Total Hardware architecture of the proposed RNS to binary converter is
shown in Fig. 2-a. The block Operand Preparation Unit 1 (OPU1) performs
the negation required in Eq. (10). The structures of the first and second
stages are shown in Figure 1. The OPU2 performs circular left shifting
operations required by Eq. (12). After that, Modulo (2n−1 − 1) adder with
End around Carry (MA(2n−1 − 1) with EAC) is used to calculate v2. The
OPU3 includes some wire and NOT gates to perform the required operations
in Eq. (14). In the last step, a (3n+1)-bit adder is employed to calculated the
(3n + 1)-bit Least Significant Bits (LSBs) of the weighted number X. With
concatenation of this result at the end of the v2 the final weighted number
X will be achieved.

3.2 The converter design-2
In order to decrease the number of CSAs with EAC which are needed in
Eq. (12), a MA(2n−1 − 1) can be employed to calculate the summation of S1

and C1. Therefore, Eq. (11) can be rewritten as

v2 = |R × (2n−2 + 2n + 2n+2 + · · · + 22n−4)|2n−1−1

= |CLS (R, n − 2) + · · · + CLS (R, 2n − 4)|2n−1−1

(16)

Where
R = |S1 + C1|2n−1−1 (17)

Applying this change in hardware architecture, the number of CSA-tree in-
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Fig. 2. Hardware schema. (a) calculation of S1 and C1,
(b) calculation of S2 and C2.

puts reduces to (n/2) with delay of only one MA(2n−1 − 1). Hardware archi-
tecture of the design taking this change into account is shown in Fig. 2-b.

4 Performance comparison

This section compares the performance of the proposed RNS to binary con-
verter architectures for the proposed moduli set with the performance of
latest RNS to binary converters for other 4-moduli sets with the same dy-
namic range class reported in [5, 6]. The comparisons are done in terms of
speed of the arithmetic operation, delay and area of the RNS to binary con-
version. The assumption for the calculation of the hardware requirements are
the same as in [7]. Also, in [3], three different design of the RNS to binary
converter for moduli set {2n, 2n+1−1, 2n−1} are presented which are named
C-I, C-II and C-III. Therefore, with use of each of these converters on the
first level of the proposed designs, different versions can be achieved. Table I
shows the conversion delays and hardware requirements of the proposed con-
verters and other designs. The results show the noticeable improvement in
terms of speed of the RNS to binary converter compared to other designs.

Note that, in [6], HS versions of the RNS to binary converters are pre-
sented. This high-speed method can be used in any RNS to binary converter
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Table I. Delay and hardware requirement for the different
reverse converters.

which includes modulo (2k − 1) adders. Therefore for ease of comparison,
these HS versions are not listed in the Table I. In some cases the pro-
posed designs rely on more hardware. But, as described in introduction, the
frequency of performing arithmetic operations in RNS is much more than
RNS to binary conversion. Hence, speed of modulo arithmetic operations
is very important parameter in RNS. As mentioned before modulo of the
kind (2k +1) can reduce the total efficiency of the RNS arithmetic unit. The
proposed moduli set is free from this type of modulo. Therefore our moduli
set can lead to efficient arithmetic operations for RNS and also provides high
dynamic range for application like cryptography and DSP [1, 2] with more
efficient arithmetic operation comparing to other moduli sets.

5 Conclusion

We have designed efficient RNS to binary converters for the new moduli set
{2n, 2n+1 −1, 2n −1, 2n−1 −1}. This moduli set is free from modulo (2k +1)-
type and can provide fast RNS arithmetic unit, due to its balanced moduli.
The proposed converters have a two-level structure and has improved the
conversion delay with full adder-based implementations.
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