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Abstract: Phase change memory (PCM) is regarded as a powerful com-

petitor for future non-volatile memory applications. However, a key draw-

back is its limited write endurance. This paper proposes a flexible block

management method with data migration wear-leveling algorithm (FBDM).

The proposed method divides blocks into two halves meanwhile blocks can

be split and merged flexibly. Data migration wear-leveling algorithm has

been presented to extend the life of PCM. We simulated our method using

different traces and compare it with previous methods. Simulation results

show that the proposed method outperforms comparison methods in terms of

wear evenness and overhead reduction.
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1 Introduction

In the past few decades, energy efficiency has become a critical design issue for

storage systems as well as for servers [1]. Many low power memory systems have

been proposed to reduce energy consumption, such as Storage Class Memory

(SCM). SCM is a new class of memory replacing rotating mechanical storage with

solid-state, nonvolatile RAM [2]. Using SCM as a disk drive replacement blurs the

distinction between memory and storage, giving us new possibilities to save energy

and simplify system configurations [3]. Various RAMs have been developed as

potential candidates for SCM, such as phase change memory (PCM). PCM is a type

of resistive memory that uses Ge, Sb, Te and other materials to produce phase

change in atomic structures resulting in changes in resistivity [4]. Many studies

have shown that PCM can give benefits due to its low energy, good read perform-

ance, non-volatility and bit addressability [5]. However, PCM suffers from a

limited number of writes to each cell. PCM devices are expected to last for about

107–108 write cycles per cell [6, 7]. Although the endurance of a PCM cell is higher

than a Flash memory cell, wear-leveling technology is still needed.

Wear-leveling is an effective way to distributes writes evenly throughout the

whole memory space and improve the lifetime of storage systems. In recent years, a

number of promising wear-leveling mechanisms have been proposed to improve

the endurance of PCM. Segment swapping searches for the most frequently written
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segment periodically and swaps them [8]. Start-gap method moves one line from its

location to a neighboring location every η writes to main memory [9]. Bucket-based

wear-leveling uses a number of buckets linked in a circular format to implement

different distances so that a young page can be acquired immediately without

searching pages. Array-based wear-leveling reduces the overheads involved in

maintaining sophisticated data structures at the cost of a limited search overhead

[10]. Bloom filter-based wear-leveling reduces the area overhead of write count

information by utilizing the Bloom filter and the runtime overhead of sorting to find

the hot address by utilizing an efficient hot-cold list management [11]. However,

most of them are based on Flash. The storage space of Flash consists of physical

blocks, and each block contains certain number of sectors. Before rewriting a block

with new data, the entire block needs to be erased. When upper layers sending a

request to write one sector belonging to a block, the block write cycle will increase

even though other sectors in the same block haven’t been written. Thus the entire

block may be marked as worn out even though only few bytes may actually be

worn out [12]. This leads to unnecessary statistic waste. Unlike Flash, memory cells

in PCM can be modified one cell at a time and there is no need to erase a block

before rewriting it. In order to manage PCM easily, most existing wear-leveling

algorithms are block-level wear-leveling. They equally divide the memory space

into blocks and record the write cycle of each block, there by failing to exploit the

full lifetime potential of PCM, making block level wear-leveling a sub-optimal

solution. Managing PCM on the unit of sector can address this problem. However,

it is unsuitable for large sized PCM due to the large address mapping table [13].

In this paper, we propose a low statistic waste solution by applying the flexible

block management. The basic idea is to split and merge blocks when satisfying a

certain condition. Split operations help to separate regions which have large write

cycles from regions with small write cycles in one block. To avoid producing too

many memory fragments, adjacent blocks can be merged into one unity. A novel

PCM Translation Layer (PTL) dynamically translates logical address to physical

address or vice versa with line as units. Based on the flexible block management,

data migration wear-leveling algorithm is presented to protect blocks with high

write frequency. We compare the proposed approaches with swap-based WL, start-

gap WL and also estimate two baseline schemes, no wear-leveling and an ideal

case. The results of experiments demonstrate that the proposed approaches are very

effective in improving the endurance of PCM.

2 Flexible block management

Conventional block management divides storage space into blocks with equal size,

and each block consists of a fixed number of sectors [14]. A block is the smallest

unit involved in erase operations while read and write operations are done in

sectors. Considering the random read and write property of PCM, dividing PCM

into blocks may decrease the system flexibility and cause statistic waste of write

cycles. However, if we manage PCM storage space in sectors, the system overhead

will increase by a large amount. To strike a balance between performance and

system overhead, we adopt flexible block management.
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Flexible block management initially divides PCM using the same method as

conventional block management. The difference is that in our proposal, each block

is divided into two halves called sub-block and each sub-block has a counter to

record its write cycles. Sub-blocks are used to evaluate the imbalance within a

block. Block write cycles is defined as the larger one of the two sub-block write

cycles and split/merge thresholds are set to determine when the split/merge

operations should be triggered. We measure the imbalance-in-block by the absolute

difference of two sub-blocks’ write cycles. Great imbalance-in-block means the

uneven distribution of write operations within block. On the arrival of a write

request with a logical address, its corresponding physical block will be checked. If

the imbalance-in-block of this block is greater than the split threshold, the block

will be split and each of its sub-blocks will become an independent block.

Similarly, the imbalance-between-block can be calculated by the absolute differ-

ence of two neighboring blocks’ write cycle. Small imbalance-between-block

indicates that the two neighboring blocks have approximate write cycles and they

can be merged as a whole block to prevent excess memory fragments. Flexible

block management checks the imbalance-between-block periodically and compares

it with the merge threshold. If the imbalance-between-block is smaller than merge

threshold, the two blocks will be merged together as a whole block. The flow charts

of merge and split operations are shown as Fig. 1.

3 Line-level mapping

Mapping resolutions have direct impact on system performance [15]. Block-level

mapping requires only small mapping structures. However, it is not applicable for

flexible block management since the sizes of blocks change along with split/merge

operations. Sector-level mapping better handles random requests and applies to our

Fig. 1. Flow chart of merge operation (a) and split operation (b).
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method, but requires large mapping structures. In this paper, we use line-level

mapping as the address translation scheme of PTL in PCM. Line-level mapping

groups 32 consecutive logical sectors as logical lines as large as physical lines and a

block contains 8 lines at the beginning. It maps logical lines to physical lines on a

one-to-one basis using a line-level mapping table. In line-level mapping, a logical

sector number (LSN) is divided by the number of sectors in a line to obtain its

logical line number (LLN) and line offset, where the LLN is the quotient and the

line offset is the remainder of the division. A line-level mapping table redirects the

write operations on logical line (LLN) to a physical line (PLN). When a logical

address is mapped to a new line, the offset is fixed and only the line number is

changed. On the arrival of a write request with a logical address, the line-level

mapping table will be checked. If the LLN does not exist, an entry will be created

and the mapping table is set up accordingly. Fig. 2 shows how to translate LSN to

PSN in the line-level mapping scheme. When a request for a logical sector 548

comes to the PCM, it first calculates its logical line 17 and line offset 4. Then, the

logical line 17 accesses the mapping table to translate it to the physical line 43.

Note that the size of a line is adjustable and mapping resolution can be easily

controlled to reach a tradeoff between mapping structure and space overhead.

4 Wear-leveling

Flexible block management provides a good fundamental architecture for PCM

wear-leveling. On the basis of flexible block management, our wear-leveling

algorithms include three portions: free-line-allocation, data migration and protect

queue.

4.1 Free-line-allocation

Algorithm 1: Free Line Allocation

Input: A free line allocation request arrives, and the

free_line_allocation is invoked.

Output: PLN, allocated free line number

1 while free_queue[ free_queue_index] ≠ NULL

2 if free_queue[ free_queue_index].is_free=1 then

3 PLN←free_queue[ free_queue_index].pln

4 if free_queue_index<k then

5 free_queue_index++
6 else

Fig. 2. The line-level mapping scheme.

© IEICE 2014
DOI: 10.1587/elex.11.20140924
Received September 26, 2014
Accepted October 17, 2014
Publicized November 7, 2014
Copyedited November 25, 2014

5

IEICE Electronics Express, Vol.11, No.22, 1–11



7 free queue index 0

8 end if

9 break

10 else

11 free_queue[ free_queue_index] point to the next line

12 if free_queue[ free_queue_index].pln = max line number

then

13 free_queue[ free_queue_index].pln 0

14 end if

15 end if

16 end while

17 return PLN

Free-line-allocation always returns a free line when needed during the execu-

tion of a process or when invoked by the OS. Procedure free-line-allocation, as

shown in Algorithm 1, employs a pointer array size of k, an external pointer

pointing to the elements in the array and a free-line queue. After initialization, the

storage space is divided into k equal sections. The k pointers in the pointer array

points to the first line of the corresponding sections. When a free line is needed, the

OS returns a page according to the location of pointers. Once a free line has been

acquired, the pointer will be updated and added to the end of the free-line queue.

Current pointer will move to the next line and the external pointer will point to the

next element in the pointer array. Note that this procedure distributes write

operations evenly throughout the whole storage space.

4.2 Data migration

Data migration focuses on the wear of elder sub-blocks because they retire earlier

than junior sub-blocks. It relocates data in a badly worn sub-block to a less worn

block when splitting and then isolates the worn sub-block by adding it to a protect

queue. If a block with high imbalance-in-block satisfies the split criterion, a split

operation is evoked to separate elder sub-blocks from junior sub-blocks. All valid

data in the worse worn sub-block is copied into free lines acquired from the free-

line-allocation mechanism.

4.3 Protect queue

Protect queue is a First-In-First-Out queue. The design objective of protect queue is

to protect blocks with high write cycles from further aging. In addition, protect

queue also takes efforts to prevent unlimited split operations. The details of protect

queue are described in Fig. 3. On condition that a block reaches the minimum size

we stipulated, valid data in the block needs to be migrated to a less worn block.

When data migration accomplishes, current block becomes a free block and joins

the end of the protect queue. Blocks in the protect queue will stay unusable until the

queue is full and starts to release blocks. The length of protect queue determines

how long a block will be protected.© IEICE 2014
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5 Experimental setup and performance metrics

We evaluate the performance of the proposed FBDM in terms of lifetime and

overhead. The lifetime metric is based on the maximum value and the standard

deviation of write cycles, and the overhead is based on the memory space

occupancy due to wear-leveling. For storage system with write traffic of B MBps,

a PCM of size S MB and a cell endurance of Wmax, the duration of an ideal case is

given by the following equation [16]:

SystemLifetime ¼ Wmax � S
B

Second ð1Þ
Lifetime and overhead have to be assessed together in order to obtain a

qualitative judgment about the efficacy of the algorithms. We compare two latest

wear-leveling schemes: swap-based WL [17] and start-gap WL [18]. Swap-based

WL swaps the page currently being written with a randomly selected page for every

512 writes to PCM pages. Start-gap WL performs wear-leveling by periodically

moving each line to its neighboring location, regardless of the write traffic to the

line. To better identify the motivation for the adoption of wear-leveling, we estimate

two baseline schemes: no wear-leveling and an ideal case when all the writes are

spread evenly over the PCM storage space. Furthermore, swap-based WL based on

flexible block management (FB swap-based WL) is also realized to compare wear-

leveling algorithms.

We extract key parameters from the real PCM chips and build a simulation

system to run the proposed algorithm. Merge_counter, split_threshold, merge_thres-

hold and the length of the protect queue have a great influence on the performance

of FBDM. We experiment with different values of them and select the optimal

results. Our simulation environment is developed on the basis of the DiskSim

simulator from the CMU Parallel Data Lab [19]. Disksim emulates a hierarchy of

storage components such as buses and controllers as well as disks. It does not

specifically support simulation of solid state disks, but its extensibility made it a

good vehicle for customization. We modified DiskSim to support multiple inter-

faces so as to connect different storage devices. The system architecture is shown in

Fig. 4. The wear-leveling and mapping schemes are packaged as PCM translation

layer (PTL) and loaded in the Storage Device (SD) layer.

Fig. 3. The protect queue scheme.
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To collect the reliable parameter for our simulation system, a test on a 32 kbit

PCM chip has been performed. The 200–500 ns SET and 200 ns RESET resistance

distributions are shown in Fig. 5(a). It can be inferred from the trend of resistance

that the resistance window between the SET and RESET state is wide enough to

distinguish between the two states when SET pulse is wider than 500 ns. Fig. 5(b)

shows the read hit rate increases as the read period increases and it reaches 100%

when read period exceeds 165 ns. According to the test results, a series of operation

parameters are incorporated in our simulation system, as shown in Table I. One

512MB PCM memory is employed with 512 Byte per sector and 106 write cycles.

6 Workloads

We use a mixture of real-world and synthetic traces to study the impact of FBDM

on a wide spectrum of workloads. We experiment using a multimedia trace

extracted from DiskMon developed by Microsoft, running several applications

Fig. 4. PCM simulator system architecture.

Fig. 5. (a) The resistance distribution of PCM cells. (b) The read hit
rate of PCM cells.

Table I. Experiment setup

Memory Unit Size Waveform Setting Operation Pulse

Memory Memory
Size
(MB)

Sect
Write Read SET RESET

type
(Byte) Latency Interval Latency Interval Width Voltage Width Voltage

(ns) (ns) (ns) (ns) (ns) (V) (ns) (V)

PCM 512 512 800 500 200 200 500 3.3 200 3.3
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such as documents editors, music players and games. We also employ a write-

dominant I/O trace from simulation software running at a laptop. Also, we use a

modified Web Search engine trace made available by SPC [20]. Finally, we

generated an attack trace by the TraceGen, a program developed to generate traces

that meet our requirements. The attack trace writes only five thousand sectors in

two million requests, providing an extreme case for testing. The four traces can

basically cover various daily applications and perform a reliable evaluate on the

FBDM algorithm.

7 Experimental results

Fig. 6 are write cycle distributions of four traces and the corresponding distribu-

tions after FBDM. The upper parts shows that write request of the four traces are

uneven distributed and some sectors have been written frequently. The bottom parts

shows that write cycles are more evenly distributed throughout storage space by

applying FBDM. Fig. 7 shows the cumulative probability distribution of different

traces under four algorithms. We see that in flexible block system write cycle

distributions concentrate in a relatively narrow range, which indicates a higher

evenness. The maximum write cycle of FBDM decreases 1–2 orders of magnitude

compared with the NO WL system. Standard deviation of write cycles under

different traces and different wear-leveling algorithms is shown as Fig. 8. The

lower value of standard deviation means the better performance of wear-leveling.

This implies that FBDM achieves better wear evenness than FB swap-based WL

and start-gap WL and flexible block management’s standard deviations are much

smaller than that of traditional block management.

Fig. 6. The distribution of write cycles of No WL system and FBDM
system for (a) Multimedia, (b) Web Search, (c) Simulation and
(d) Attack traces.
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The improvement is remarkable under the attack trace, meaning that extreme

conditions can be well handled by FBDM. We estimate the lifetime in years based

on the maximum write cycle. Fig. 9 shows the lifetime achieved by the invested

approaches under various traces. We observe that the FBDM extends the memory

lifetime by 3–75 times over no wear-leveling system, 1.6 times over swap-based

WL and at least 2 times over start-gap WL. Fig. 10 shows the overhead incurred by

the invested approaches. We can calculate the required space overhead by line

number, block number and mapping table. NO WL system is set as the normalized

reference. Since the start-gap WL requires storage only for two registers, the

overhead can be neglected here. The results show that the overheads of flexible

block management systems are obviously lower than that incurred by swap-based

WL. Reason for the low overhead is that in FB systems neighboring blocks can be

merged as one block so as to maintain the block number a certain amount.

Fig. 7. Cumulative probabilities for (a) Multimedia, (b) Web Search,
(c) Simulation and (d) Attack trace.

Fig. 8. Standard deviation of write cycle.
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8 Conclusion

Phase Change Memory is a promising non-volatile technology. However, one of

the main challenges in a PCM system is the write endurance problem. To address

this problem, we proposed a new wear-leveling method based on flexible block

management in order to reduce the statistic waste. We conduct extensive experi-

ments under popular benchmarks to evaluate the endurance improvement as well as

the extra overhead incurred. The experimental results show that the approaches

could achieve 1.6–75 times improvement while incurring a negligible area over-

head. In the future, we plan to explore experimental configurations to realize

optimal wear-leveling.
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