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Introduction

Histamine H1–receptor antagonists / inverse agonists 
(antihistamines) are well known to have side effects such 
as sedation, hypnosis, and cognitive impairment, which 
are associated with the blockade of H1 receptors in the 
central nervous system (CNS). On the basis of these 
clinical side effects, antihistamines are generally divided 
into two groups, i.e., sedative and non-sedative (or less 
sedative) antihistamines. Non-sedative antihistamines 
have fewer side effects on the CNS as a result of less 
blockade of H1 receptors in the CNS, although they 
might induce sedation at higher doses. It is yet still  
inconclusive, however, about whether non-sedative 
properties of antihistamines are determined by their  

active extrusion from the brain via P-glycoprotein (1 – 3) 
or their restricted penetration through the blood–brain 
barrier (4 – 7).

Receptor internalization, movement of the receptor 
from the cell surface to intracellular compartments, is 
known to affect the binding properties of receptor ligands 
in intact cells, depending on their ability to penetrate the 
biomembrane (8, 9). We therefore tested how receptor 
internalization influenced the binding properties of a 
variety of antihistamines under ice-cold conditions where 
a P-glycoprotein–mediated extrusion pump might not 
work (10). Our finding is that there are clear differences 
between the effect of H1-receptor internalization on the 
binding of sedative and non-sedative antihistamines to 
intact cells, which provide strong evidence that simple 
diffusion through the plasma membrane predominantly 
determines their sedative and non-sedative properties. 
However, the variety of chemical structures and physico-
chemical properties of antihistamines makes it difficult 
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to accurately predict membrane-penetrating ability for 
their sedative and non-sedative properties.

Quantitative analyses of the chemical structures of 
compounds can be useful to explain and predict their 
effects on physiological functions (11): many studies on 
quantitative structure–activity relationships (QSAR) 
have been successful in the analyses and prediction of 
pharmacological effects (12), enzymatic activities (13), 
affinities for receptor proteins (14), pharmacokinetic 
parameters (15), and drug metabolism (16). However, 
there is no report concerning a QSAR model specifically 
designated for the membrane-penetrating ability of  
antihistamines; therefore, we tried to establish a QSAR 
model to explain and predict membrane-penetrating abil-
ity of antihistamines for their sedative and non-sedative 
properties on the basis of our previous report (10).

Here we show that sedative and non-sedative pro
perties of antihistamines can be predicted with extremely 
high accuracy by the QSAR model constructed on the 
basis of their membrane-penetrating ability alone. To our 

knowledge, we succeeded for the first time in construct-
ing a QSAR model to explain and predict sedative and 
non-sedative properties of antihistamines, and the con-
structed QSAR model may also contribute to optimizing 
the development of novel antihistamines with respect  
to their side effects on the central nervous system.

Materials and Methods

Training and external validation set of antihistamines 
assessed

Nineteen antihistamines, for which the internalization-
mediated changes in their binding to intact cells are  
already known (10), were assessed as a training set of 
antihistamines (Fig. 1): sedative antihistamines were 
chlorpheniramine, clemastine, cyproheptadine, diphen-
hydramine, mepyramine, promethazine, azelastine, keto-
tifen oxatomide, ebastine, loratadine, and terfenadine (12 
compounds) and non-sedative antihistamines were 
mequitazine, epinastine, bepotastine, carebastine, fexof-

Fig. 1.  Chemical structures of antihista-
mines assessed as a training set. Chemical 
structures of 19 antihistamines are shown. 
The training set of antihistamines consisted 
of 12 sedative and 7 non-sedative (in italics) 
compounds.
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enadine, desloratadine, and olopatadine (7 compounds). 
The non-sedative behavior of ebastine, loratadine, and 
terfenadine is considered to be due to their corresponding 
active metabolites, carebastine, desloratadine, and fexof-
enadine, respectively (10).

Sixteen antihistamines, for which the internalization-
mediated changes in their binding to intact cells are  
unknown, were assessed as an external validation set of 
antihistamines (Fig. 2): sedative antihistamines were  
alimemazine, azatadine, dimetindene, diphenylpyraline, 
homochlorcyclizine, hydroxyzine, imipramine, isothip-
endyl, and triprolidine (9 compounds) and non-sedative 
antihistamines were acrivastine, astemizole, cetirizine, 
emedastine, levocabastine, mizolastine, and temelastine 
(7 compounds).

Objective variables for assessment of sedative and non-
sedative properties of antihistamines

As an objective variable to assess the sedative and 
non-sedative properties of antihistamines, the extent of 
changes in the binding of a training set of 19 anti
histamines by internalization of H1 receptors was ex-
pressed as the difference in area under the curve (AUC) 
between the displacement curves obtained with hista-
mine-pretreated (i.e., internalization-induced) and hista-
mine–non-pretreated control cells (DAUC, Fig. 3).

Fig. 2.  Chemical structures of antihista-
mines assessed as an external validation 
set. Chemical structures of 16 antihista-
mines are shown. The external validation 
set of antihistamines consisted of 9 sedative 
and 7 non-sedative (in italics) compounds.

Fig. 3.  DAUC as an objective parameter to quantitatively assess in-
ternalization-mediated changes in displacement curves for antihista-
mines against [3H]mepyramine binding to H1 receptors. The figure 
shows displacement curves for a non-sedative H1-receptor antagonist, 
epinastine, against [3H]mepyramine binding to intact U373 MG astro-
cytoma cells (taken from our previous paper, ref. 10, with permis-
sion). DAUC was expressed as the difference in AUC between the 
displacement curves obtained with histamine-pretreated [i.e., inter-
nalization-induced (closed circle) and histamine–non-pretreated con-
trol cells (open circle)].
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Briefly, cells were pretreated with or without 0.1 mM 
histamine for 30 min at 37°C in HEPES buffer (120 mM 
NaCl, 5.4 mM KCl, 1.6 mM MgCl2, 1.8 mM CaCl2,  
11 mM d-glucose, and 25 mM HEPES, pH 7.4 at 37°C) 
to induce the internalization of H1 receptors. Sub
sequently, the cells were washed with ice-cold HEPES 
buffer and intact cell binding was performed at 4°C as 
described in our previous paper (9, 10). The displace-
ment curves were fitted to either a one- or two-site  
model as follows (KaleidaGraph; Synergy Software, 
Reading, PA, USA);

One-site model in the experiment without histamine 
pretreatment: B1cont = 100 − (P × C) / (ICcont + C)

One-site model in the experiment with histamine pre-
treatment: B1his = 100 − (P × C) / (IChis + C)

Two-site model in the experiment without histamine 
pretreatment: B2cont = 100 − (PH × C) / (ICcontH + C) −  
(PL × C) / (ICcontL + C)

Two-site model in the experiment with histamine  
pretreatment: B2his = 100 − (PH × C) / (IChisH + C) −  
(PL × C) / (IChisL + C)

, where B1cont, B1his, B2cont, and B2his are the amounts of 
bound [3H]mepyramine (taking radioactivity in the ab-
sence of antihistamines as 100% in each set of experi-
ments); P is the percentage of the binding of antihista-
mines; C is the concentration of antihistamines used; 
IChis and ICcont are the IC50 values for antihistamines in 
cells with or without histamine pretreatment, respec-
tively; PH and PL are percentages of high and low affinity 
sites for antihistamines, respectively; ICcontH and ICcontL 
are ICcont values for antihistamines at high and low  
affinity sites, respectively; IChisH and IChisL are IChis  
values for antihistamines at high and low affinity sites, 
respectively. DAUC for each antihistamine in the train-
ing set was calculated as follows:
DAUC1 = ∫ B1hisdx − ∫ B1contdx
DAUC2 = ∫ B2hisdx − ∫ B2contdx

, where DAUC1 was defined as DAUC introduced from 
B1cont and B1his in the one-site model; DAUC2 was  
defined as DAUC introduced from B2cont and B2his in  
the two-site model.

Descriptors as explanatory variables for DAUC
Chemical structures of antihistamines were collected 

in the “SMILES” format from the NCBI PubChem 
compound database. Three-dimensional structures were 
constructed by “clean 3D function, process for energy 
optimization of 3D structures” in Marvin View ver. 5.3.2 
(ChemAxon, Ltd., Budapest, Hungary) from the SMILES 
files. Geometries of the 3D structures were refined  
and optimized by MMFFaq force field in Spartan 08  
ver. 1.1.1. (Wavefunction, Inc., Irvine, CA, USA).  
Molecular descriptors of antihistamines were calculated 

from their optimized 3D structures by Dragon software 
ver. 5.5 (Talete srl, Milano, Italy). The Dragon descrip-
tors of 1593 types were used in the present study.  
Lipophilicity of the compounds at pH 7.5 (logD) was 
calculated by a tautomer-considered KLOP method in 
arvinView.

Construction and application of simple and multiple  
regression models

The Dragon descriptors and logD values were used to 
construct simple and multiple regression models in the 
training set. The best model was explored by genetic  
algorithms (17) with the leave-one-out cross validation 
(18) as a selection pressure of the model using MobyDigs 
ver 1.1 (Talete srl); that is, the determination coefficient 
in the leave-one-out method (Q2loo) was used as an index 
of predictive performance in the model. The predictive 
performance in the model was validated by the predic-
tion of bootstrapping samples of compounds in the train-
ing set. Finally, the constructed model was applied to 
predict sedative and non-sedative antihistamines in the 
external validation set.

Regression diagnosis
Regression diagnosis and other statistical analyses of 

the prediction models were performed by JMP ver. 8.0.2 
(SAS Institute, Inc., Cary, NC, USA).

Results

DAUC as an objective variable for assessment of seda-
tive and non-sedative properties of antihistamines

In the training set, sedative and non-sedative antihista-
mines were successfully discriminated using experi
mentally-obtained DAUC values with a value of approxi-
mately 20 arbitrary units (Table 1 and Fig. 4).

Simple regression analyses
Simple regression analyses (SRA) showed that logD 

had the most significant correlation with DAUC values 
for antihistamines in the training set and DAUC values 
predicted by logD were as follows (Table 1): 

SRA-predicted DAUC = 
  -(9.87 ± 2.02)logD + (44.2 ± 6.1)
A significant relationship between DAUC values  

obtained experimentally and predicted by the above 
equation was also confirmed (Fig. 5a; n = 19, r2 = 0.584).

Using this equation, sedative and non-sedative anti
histamines in the external validation set were discrimi-
nated with 75% accuracy at the value of 20 arbitrary 
units of SRA-predicted DAUC (Fig. 6a; 12 of 16 
antihistamines).
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Multiple regression analyses
In multiple regression analyses (MRA), combinatorial 

optimization of the descriptors was performed to explain 
the variance of DAUC by a genetic algorithm with an 
adequate number of trials. As a result, a regression  
formula with the maximal determination coefficient in 
the leave-one-out cross-validation (Q2loo) was con-
structed as below, and a more significant relationship 
was observed between DAUC values obtained experi-
mentally and predicted in MRA than in SRA (n = 19, 

r2 = 0.742, Q2loo = 63.8, Q2boot = 65.5, P < 0.0001, 
F = 23.0, s = 12.7) (Table 1 and Fig. 5b): 

MRA-predicted DAUC = −(9.90 ± 1.64)logD +  
(23.0 ± 7.3)IDDE − (46.6 ± 29.4)

, where IDDE indicates the mean information content on 
distance degree equality. Bootstrap validation also con-
firmed the above equation with the maximal determina-
tion coefficient (Q2boot). Standardized partial regression 
coefficients of logD and IDDE in the regression equation 
were −0.768 and 0.398, respectively. On the other hand, 

Table 1.  Obtained parameters for antihistamines

DAUC

Antihistamines logD IDDE Experimentally-obtained SRA-predicted MRA-predicted

Training set Azelastine 2.64 4.31 14.76 18.13 26.28
Chlorpheniramine 1.65 3.43 17.36 27.93 15.95
Clemastine 3.42 4.25 11.77 10.41 17.18
Cyproheptadine 3.19 3.64 1.82 12.75 5.48
Diphenhydramine 2.49 2.95 0.88 19.66 −3.57
Ketotifen 2.87 3.75 −8.53 15.90 11.16
Mepyramine 1.76 3.52 8.15 26.80 16.89
Oxatomide 3.36 3.83 −0.70 11.05 8.08
Promethazine 2.92 3.52 5.23 15.40 5.42
Ebastine 6.21 4.19 −2.11 −17.09 −11.82
Loratadine 4.13 4.61 10.46 3.41 18.31
Terfenadine 5.27 4.19 10.53 −7.80 −2.49
Bepotastine 0.16 4.13 34.88 42.59 46.82
Carebastine 1.99 4.27 28.85 24.60 31.86
Desloratadine 1.59 4.15 39.02 28.53 33.09
Epinastine 0.58 4.14 75.43 38.48 42.89
Fexofenadine 1.06 4.27 35.26 33.69 40.99
Mequitazine 3.14 3.74 23.23 13.20 8.24
Olopatadine −1.93 4.24 74.61 63.26 70.13

External validation set Alimemazine 2.64 3.33 — 18.19 3.85
Azatadine 2.87 3.64 — 15.87 8.62
Dimetindene 1.20 4.01 — 32.40 33.61
Diphenylpyraline 2.40 3.25 — 20.47 4.24
Homochlorcyclizine 2.82 4.10 — 16.40 19.62
Hydroxyzine 3.14 4.16 — 13.21 17.92
Imipramine 2.83 3.63 — 16.32 8.82
Isothipendyl 2.39 3.52 — 20.65 10.69
Triprolidine 2.69 3.73 — 17.71 12.42
Acrivastine −0.57 4.16 — 49.79 54.70
Astemizole 2.00 4.62 — 24.45 39.68
Cetirizine 0.27 4.13 — 41.54 45.76
Emedastine 1.31 4.46 — 31.28 42.92
Levocabastine 2.19 4.44 — 22.57 33.68
Mizolastine 2.95 4.56 — 15.10 29.05
Temelastine 2.38 4.25 — 20.70 27.55

Values of DAUC, logD, and IDDE for antihistamines were obtained as described in Materials and Methods. AUC, area under the curve; logD,  
lipophilicity of the compounds at pH 7.5; IDDE, the mean information content on distance degree equality; SRA, simple regression analyses; 
MRA, multiple regression analyses.
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no correlation between logD and IDDE was observed 
(VIF = 1). Regression diagnosis with the residual plot, 
plotting for the predicted DAUC value and the residual in 
the prediction of each antihistamine, revealed no specific 
abnormalities in the present model. More specifically, 
the residuals were almost normally distributed, and no 
skewness was found in the plot.

Using the above equation with a combination of logD 
and IDDE, sedative and non-sedative antihistamines in 
the external validation set were discriminated with 94% 
accuracy at the value of 20 arbitrary units of MRA- 
predicted DAUC (Fig. 6b, 15 of 16 antihistamines).

Discussion

Discrimination between sedative and non-sedative anti-
histamines by DAUC
DAUC values were evaluated as quantitative para

meters to represent changes in the binding of antihista-
mines to H1 receptors upon receptor internalization, 
which were considered to simply represent their mem-
brane-penetrating ability (10). In the training set of  
antihistamines, sedative and non-sedative antihistamines 
were clearly discriminated by DAUC at the arbitrary  
unit of 20. Thus, DAUC appeared to be a very promising 
objective criterion for constructing a QSAR model to 
predict sedative and non-sedative properties of anti
histamines.

Simple regression analyses
It is known that logD is one of the physicochemical 

descriptors related with the biomembrane permeability 

of drugs (19). Accordingly, of the various types of  
explanatory descriptors, the logD value was best  
correlated with DAUC; however, logD alone did not 
fully discriminate between sedative and non-sedative 
antihistamines in our assessment, as reported by others 
(20). This suggests that logD is important, but not  
adequate, for determination of the sedative and non-
sedative properties of antihistamines; therefore, multiple 
regression models with plural descriptors were required 
to improve the predictability of the sedative effects of 
antihistamines.

Multiple regression analyses
The number of subjects is one of the most important 

factors to regulate the attribute number in multiple  
regression models because excess attribute numbers will 
likely result in a chance correlation. The number of  
attributes chosen in the construction process should be  
as small as possible in order to prevent a chance correla-
tion. A systematic study suggested that the number of 
available descriptors in a multiple regression equation  
to maintain the predicting performance is 2, when the 
number of subjects is less than 20 compounds (21).  
Since the number of antihistamines in the training set 
was 19, the number of descriptors was restricted to 2  
in this model. Variable selection was performed using 
the genetic algorithm approach, and the leave-one-out 
method was adopted as a validation system for the  
generalization capability of the model constructed (18). 
As a result, IDDE as well as logD were selected in the 
QSAR model. IDDE is a descriptor related to molecular 
shape, which is based on atomic networks in a molecule 

Fig. 4.  Discrimination between sedative and 
non-sedative antihistamines in the training set 
by experimentally-obtained DAUC values. 
Sedative (left side) and non-sedative (right 
side) antihistamines were clearly distinguished 
by experimentally-obtained DAUC at an arbi-
trary value of 20.
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as one of the 2-dimensional descriptors calculated  
by Dragon (22): 

IDDE =  2
1

log
G

g g

g

n n
A A=

− ⋅∑  

, where ng is the cardinality of the gth set of vertices, G is 
the number of equivalence classes, and A the number of 
graph vertices. Although a simple regression equation 
between IDDE and DAUC was not statistically signifi-

cant, the multiple regression equation with IDDE and 
logD indicated significance with a good determination 
coefficient (r2) of 0.74. This finding of apparent improve-
ment in the statistical property compared to the case of 
simple regression with logD or IDDE alone suggests  
that IDDE is an important parameter that enhances the 
prediction accuracy with logD. More specifically, it is 
presumed that spurious decorrelation between IDDE and 
DAUC was found by statistical adjustment of logD as a 
confounder.

Thus, the constructed multiple regression model 
achieved a high level of prediction performance for  
the external validation set of antihistamines. It is noted 
that the constructed model indicated non-sedative  
properties of dimetindene, although dimetindene is  
classified as a first-generation of antihistamine. In good 
accordance with this, there are evidences that dimetin-
dene is as non-sedative as loratadine (23, 24). Further-
more, the constructed model well predicted non-sedative 
properties of bilastine (25), a newly-developed antihista-
mine, with a predicted DAUC value of 45.7 arbitrary 
units. Thus, the model is expected to have good general-
ization capability to predict sedative effects on a variety 
of seed compounds for antihistamines.

Simple diffusion as determinant of sedative and non-
sedative properties of antihistamines

Since the model constructed is mainly based on  
extrapolations from in vitro studies on cells, there is a 
possibility that the predictability can be affected by  
factors such as transporters to regulate absorption, distri-
bution, metabolism, and excretion of antihistamines in 
vivo. Actually, the rank order of sedative and non- 
sedative properties of antihistamines, which was evalu-
ated by positron emission tomography (PET) by use of 
[11C]doxepin in vivo (26), was not entirely identical but 
mostly compatible with our results: some discrepancies 
observed might be explained, at least in part, by the fact 
that the receptor occupancy by antihistamines in the 
brain varied according to their doses administrated  
(27), which resulted in changes in the rank order of  
their sedative and non-sedative properties in vivo (26). 
Thus, the assertion that sedative and non-sedative pro
perties of antihistamines can be predominantly deter-
mined by their membrane-penetrating ability rather than 
their extrusion from the brain via P-glycoproteins is 
strengthened by the results that the QSAR model con-
structed on the basis of their membrane penetrating 
ability alone discriminated almost perfectly between 
sedative and non-sedative antihistamines. Furthermore, 
it is revealed that the two descriptors concerning their 
lipophilicity and molecular shapes, logD and IDDE,  
respectively, are involved in physicochemical properties 

Fig. 5.  Relationship between experimentally-obtained DAUC values 
and those predicted by the QSAR model constructed with simple (a) 
and multiple (b) regression analyses in the training set. Predicted DAUC 
were expressed as values obtained by the following equations:
  Simple regression model: DAUC = −9.87 logD + 44.2
  Multiple regression model: DAUC = −9.90 logD + 23.0 IDDE − 46.6
In each plot, the solid line shows a linear least-squares fit and the 
dotted lines, the 95% confidence interval of the fit. Significant rela-
tionship was observed between DAUC values obtained experimentally 
and predicted by simple and multiple regression models with r2 values 
of 0.584 and 0.742, respectively.
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of antihistamines to determine their membrane-penetrat-
ing ability for their side effects on the CNS.

Scope of application of this QSAR model
The prediction model was constructed for antihista-

mines in the training set. Although antihistamines have a 
wide range of diverse structures and physicochemical 
properties, the fundamental structure is to fit the binding 
cavity on H1-receptor proteins. Accordingly, prediction 
for an external validation set of antihistamines with  
different chemical structures resulted in extremely good 

performance with the constructed model. Since it is 
generally considered that the QSAR prediction model 
should not be used for assessment using a deviant  
structure from the structural diversity used in the model 
construction, it appears that this prediction model might 
be restricted in application to compounds fitting the 
binding cavity on H1 receptors.

Conclusion
We constructed a QSAR model to predict the sedative 

and non-sedative properties of antihistamines with high 

Fig. 6.  Prediction of sedative and non-seda-
tive antihistamines in the external validation set 
by the QSAR model constructed with simple 
(a) and multiple (b) regression analyses. a) 
Sedative (left side) and non-sedative (right 
side) antihistamines except diphenylpyraline, 
isothipendyl, dimetindene, and mizolastine 
were distinguished by predicted DAUC at an 
arbitrary value of 20. b) Sedative (left side) 
and non-sedative (right side) antihistamines 
except dimetindene were distinguished by 
predicted DAUC at an arbitrary value of 20.



168 Y Uesawa et al

accuracy, which indicated that molecular parameters 
concerning their lipophilicity and molecular shapes  
determines their membrane-penetrating ability for their 
side effects on the CNS. Although a variety of antihista-
mines have been developed so far, development of  
novel antihistamines such as bilastine is still in progress. 
Together with the recent findings of the crystal structure 
of the human H1 receptor and differential binding sites  
of first and second generations of antihistamines respon-
sible for their H1-receptor specificity (28), the constructed 
QSAR model may contribute to develop novel or even 
further generation of antihistamines with increased 
specificity to H1 receptors and reduced side effects on  
the CNS.

Acknowledgments

This work was partially supported by a Grant-in-Aid for Meiji 
Pharmaceutical University High-Tech Research Center from the 
Ministry of Education, Culture, Sports, Science and Technology of 
Japan (S0801043) and KAKENHI from the Japan Society for the 
Promotion of Science (JSPS) (23590119).

Conflicts of Interest

The authors declare no conflicts of interest.

References

1	 Chishty M, Reichel A, Siva J, Abbott NJ, Begley DJ. Affinity for 
the P-glycoprotein efflux pump at the blood-brain barrier may 
explain the lack of CNS side-effects of modern antihistamines. J 
Drug Target. 2001;9:223–228.

2	 Chen C, Hanson E, Watson JW, Lee JS. P-glycoprotein limits the 
brain penetration of nonsedating but not sedating H1-antagonists. 
Drug Metab Dispos. 2003;31:312–318.

3	 Fromm MF. Importance of P-glycoprotein at blood-tissue  
barriers. Trends Pharmacol Sci. 2004;25:423–429.

4	 Sturman G. Histaminergic drugs as modulators of CNS function. 
Pflugers Arch. 1996;431:R223–R224.

5	 Ballabh P, Braun A, Nedergaard M. The blood-brain barrier: an 
overview: structure, regulation, and clinical implications. Neuro-
biol Dis. 2004;16:1–13.

6	 Holgate ST, Canonica GW, Simons FE, Taglialatela M, Tharp M, 
Timmerman H, et al. Consensus Group on New-Generation  
Antihistamines (CONGA): present status and recommendations. 
Clin Exp Allergy. 2003;33:1305–1324.

7	 Simons FE, Simons KJ. Pharmacokinetic optimisation of hista-
mine H1-receptor antagonist therapy. Clin Pharmacokinet. 1991; 
21:372–393.

8	 Hishinuma S, Young JM. Characteristics of the binding of  
[3H]-mepyramine to intact human U373 MG astrocytoma cells: 
evidence for histamine-induced H1-receptor internalisation. Br J 
Pharmacol. 1995;116:2715–2723.

9	 Hishinuma S, Sato Y, Akatsu C, Shoji M. The affinity of hista-
mine for Gq protein-coupled histamine H1-receptors is pre
dominantly regulated by their internalization in human astro

cytoma cells. J Pharmacol Sci. 2012;119:233–242.
10	 Hishinuma S, Sato Y, Kobayashi Y, Komazaki H, Saito M. Intact 

cell binding for in vitro prediction of sedative and non-sedative 
histamine H1-receptor antagonists based on receptor internaliza-
tion. J Pharmacol Sci. 2008;107:66–79.

11	 Hansch C, Fujita T. Rho-sigma-pi analysis; method for the  
correlation of biological activity and chemical structure. J Am 
Chem Soc. 1964;86:1616–1626.

12	 Trinajstic N. SAR and QSAR of the antioxidant activity of  
flavonoids. Curr Med Chem. 2007;14:827–845.

13	 Loew GH, Villar HO, Alkorta I. Strategies for indirect computer-
aided drug design. Pharm Res. 1993;10:475–486.

14	 Lemmen C, Lengauer T. Computational methods for the struc-
tural alignment of molecules. J Comput Aided Mol Des. 2000; 
14:215–232.

15	 Mayer JM, van de Waterbeemd H. Development of quantitative 
structure-pharmacokinetic relationships. Environ Health Per-
spect. 1985;61:295–306.

16	 Lewis DF, Modi S, Dickins M. Quantitative structure-activity 
relationships (QSARs) within substrates of human cytochromes 
P450 involved in drug metabolism. Drug Metabol Drug Interact. 
2001;18:221–242.

17	 Leardi R, Boggia R, Terrile M. Genetic algorithms as a strategy 
for feature selection. J Chemom. 1992;6:267–281.

18	 Verweij PJ, Van Houwelingen HC. Cross-validation in survival 
analysis. Stat Med. 1993;12:2305–2314.

19	 Tantishaiyakul V. Prediction of Caco-2 cell permeability using 
partial least squares multivariate analysis. Pharmazie. 2001;56: 
407–411.

20	 Ter Laak AM, Tsai RS, Donne-Op den Kelder GM, Carrupt PA, 
Testa B, Timmerman H. Lipophilicity and hydrogen-bonding 
capacity of H1-antihistaminic agents in relation to their central 
sedative side-effects. Eur J Pharm Sci. 1994;2:373–384.

21	 Topliss JG, Edwards RP. Chance factors in studies of quantitative 
structure-activity relationships. J Med Chem. 1979;22:1238–1244.

22	 Todeshini R, Consonni V. Molecular descriptors for chemoinfor-
matics. Method Prin Med Chem. 2009;411–959.

23	 Schaffler K, Wauschkuhn CH, Martinelli M, Rehn D, Brunnauer 
H. Influences of dimethindene maleate in a new formulation on 
oculo and psychomotor performance using the oculodynamic test 
(ODT) in volunteers. Agents Actions. 1994;41:C136–C137.

24	 Englisch W, Rehn D, Schaffler K, Wauschkuhn CH. Effects  
of dimethindene maleate on psychomotor performance in the 
oculodynamic test compared with placebo and loratadine.  
Arzneimittelforschung. 1996;46:887–890.

25	 Scaglione F. Safety profile of bilastine: 2nd generation H1- 
antihistamines. Eur Rev Med Pharmacol Sci. 2012;16:1999–2005.

26	 Yanai K, Zhang D, Tashiro M, Yoshikawa T, Naganuma F, Harada 
R, et al. Positron emission tomography evaluation of sedative 
properties of antihistamines. Expert Opin Drug Saf. 2011;10: 
613–622.

27	 Tashiro M, Kato M, Miyake M, Watanuki S, Funaki Y, Ishikawa 
Y, et al. Dose dependency of brain histamine H1 receptor  
occupancy following oral administration of cetirizine hydro
chloride measured using PET with [11C]doxepin. Hum Psycho-
pharmacol. 2009;24:540–548.

28	 Shimamura T, Shiroishi M, Weyand S, Tsujimoto H, Winter G, 
Katritch V, et al. Structure of the human histamine H1 receptor 
complex with doxepin. Nature. 2011;475:65–70.


