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ABSTRACT

Supply chain optimization plays a critical role in many business enterprises. In a data driven en-
vironment, rather than pre-specifying the underlying demand distribution and then optimizing the
system’s objective, it is much more robust to have a nonparametric approach directly leveraging
the past observed data. In the supply chain context, we propose and design online learning al-

gorithms that make adaptive decisions based on historical sales (a.k.a. censored demand). We
measure the performance of an online learning algorithm by cumulative regret or simply regret,
which is defined as the cost difference between the proposed algorithm and the clairvoyant optimal
one.

In the presence of inventory constraints and censored demand information, the data driven sup-
ply chain optimization falls into the broad domain of reinforcement learning. To design learning
algorithms with theoretical performance guarantees, in Chapter 1, we first discuss a general frame-
work that uses the so-called cycling-trick to transform the reinforcement learning problem into a
variant of the multi-armed bandit problem (MAB), which we refer to as cyclic online learning, and
design an upper confidence bound (UCB) type algorithm that achieves the optimal regret rate.

In the online learning literature, the most popular algorithms are stochastic gradient descent

(SGD) based, which leverages the convexity properties in the objective functions. In Chapter 2, we
use the newsvendor problem with fixed cost as an example to demonstrate that some new online
learning methods can be applied when the objective is not convex and the naive SGD algorithm
fails. In one method, we consider the bandits on convex function problem, and design an algorithm
that combines both the first order method (i.e., stochastic gradient descent) and the zeroth order
method (i.e., multi-armed bandits control). In another method, we design a pure zeroth order
method, termed “Shrinking Active Set (SAS) algorithm”, that exploits the “one-side information”
revealed by past sales. We show that both algorithms achieve provably optimal regret rate. In
Chapter 3, we further extend the SAS algorithm to a Markovian environment. More specifically,
we consider the lost-sales inventory control problem with positive lead time, and show that if the
system dynamics under a fixed policy has the uniform ergodic property, then the SAS algorithm
can be applied to achieve the optimal regret rate.
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In Chapter 4, we consider the multi-product inventory control problem, where the regret rate
achieved by a stochastic gradient type algorithm is optimal with respect to the time horizon T but
sub-optimal with respect to the number of products J. With a new space transformation, we design
a mirror decent type algorithm that improves the known regret rate by a factor of

√
J/ log(J).

In Chapter 5, we consider the periodic-review inventory control problem with fixed cost. To
achieve the optimal regret rate, we combine many techniques developed above: cyclic online learn-
ing, stochastic gradient descent, bandits on convex function and shrinking active set algorithm.

In the supply chain context, to design efficient learning algorithms, we typically face two major
challenges. First, we need to identify a suitable recurrent state that decouples system dynamics into
cycles with good properties: (1) smoothness and rich feedback information necessary to apply the
zeroth order optimization method effectively; (2) convexity and gradient information essential for
the first order methods. Second, we require the learning algorithms to be adaptive to the physical

constraints, e.g., positive inventory carry-over, warehouse capacity constraint, ordering/production
capacity constraint, and these constraints limit the policy search space in a dynamic fashion. To
design efficient and provably-good data driven supply chain algorithms, we zoom into the detailed
structure of each system, and carefully trade off between exploration and exploitation.
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CHAPTER 1

Cyclic Online Learning

1.1 Introduction

A supply chain optimization problem can often be seen as a Markov decision process with inven-
tory level as states, ordering quantities as decisions, and inventory cost as cost. The uncertainty
in the demand results in random state transitions. We study data driven models where the demand
distribution is unknown, and design reinforcement learning algorithms to learn demand and opti-
mize ordering decisions. We measure the performance of learning algorithms by regret: the cost
difference between its derived policy and optimal policy.

In recent works (Chen et al. (2018c); Zhang et al. (2018, 2019)), a popular approach is to use
a so-called cycling trick that groups periods into cycles so that we evaluate a policy according to
its cycle performance. On a high level, the cycling trick transforms the data driven supply chain
optimization problem from a reinforcement learning problem into an online learning problem,
where, to achieve a theoretical regret bound, people usually apply two families of online learning
methods: multi-armed bandits control and online convex optimization.

More concretely, consider a supply chain policy πmapping inventory level to ordering decision.
The inventory levels over time forms a Markov chain. Under mild regularity conditions, this
Markov chain contains a recurrent state r and a cycle as a group of periods from one hitting period
of r to the next. We can prove that the long run average cost is equal to the cycle average cost:

limsup
T→∞

1
T
E

 T∑
t=1

Cπ
t

 =
E [Gπ]
E [Lπ]

(1.1)

where LHS is the long run average cost with Cπ
t denoting the inventory cost at period t for policy

π, and RHS is the cycle average cost with Gπ and Lπ denoting random cycle cost and cycle length
for a policy π, respectively.

When demand distribution is unknown, a learning algorithm provides a sequence of policy
{πt}
∞
t=1 where πt depends on observed information prior to period t. The performance is measured
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by regret formulated as

RT = E

 T∑
t=1

Cπt
t − v∗

 (1.2)

where

v∗ = min
π

limsup
T→∞

1
T
E

 T∑
t=1

Cπ
t




is the minimum long run average cost. This form of RT is hard to analyze because Cπt
t is not a

good evaluation of policy πt. It has so-called delayed cost issue: A policy πt that gives a good
immediate cost Cπt

t may lead to a bad next-period state xt+1 that compromises future cost. On the
other hand, if πt is updated cycle by cycle, the standard regret can be transformed into a cycle

regret as follows:

RN = E

 T∑
t=1

(
Cπt

t − v∗
)

= E

 N∑
n=1

(
Gπn

n −Lπn
n v∗

)
where T is the number of periods in N cycles. Note that the beginning state of each cycle is the
same state r. This helps avoid the delayed cost issue. The problem then becomes an online learning
problem: We update policy πn cycle by cycle with previous cycles’ information. Unlike traditional
period-by-period online learning where we only consider the cost, here we account for both cycle
cost Gπn′

n′ and cycle length Lπn′

n′ for all n′ < n. We call this cycle-by-cycle online learning approach
the cyclic online learning.

It is worth mentioning that, in previous cyclic online learning problems motivated in supply
chain optimization (see Shi et al. (2016); Zhang et al. (2018, 2019)), their policies are independent
to the random cycle length, i.e., E [Lπ] =E [L] for all policy π. In this case, by defining ṽ :=E [L]v∗,

the cycle regret can be transformed into

RN = E

 N∑
n=1

(
Gπn

n − ṽ∗
) . (1.3)

where we only need to find policy that minimizes cycle cost Gπ, making it the same form of classic
online learning where cycle length plays no role. In supply chain optimization problems, cycle
length Lπ indeed depends on policy π. Well-known examples are the s-S policy with recurrent
state r = S (Scarf (1960)) and the single index policy with recurrent state with r as regular order-
up-to parameter (Scheller-Wolf et al. (2007)). In this work, we present a formulation of the cyclic
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online learning problem and propose a learning algorithm that achieves optimal regret rate.

1.2 Cyclic Online Learning and CLCB Algorithm

1.2.1 Model

We model the cyclic online learning as a variation of the discrete online learning problems (aka
multi-armed bandit problems): In each cycle n = 1,2 . . . , there are random cycle cost function
Gn : [J]→ R+ and random cycle length function Ln : [J]→ Z+, where J is the total number of
actions. Note that Ln takes a positive integer value, since it refers to the number of periods in a
cycle.

We assume Gn and Ln are possibly dependent, but, across each cycle, the sequence {(Gn,Ln)}∞n=1

are i.i.d. random variables. We use (G,L) to denote the time generic random functions (Gn,Ln)

for n = 1,2 . . . i.e., (G,L) = (Gn,Ln) in distribution. The distribution of (G,L) are unknown to us.
At each cycle n = 1,2, . . . , we select a policy jn ∈ [J], and observe the cycle cost G jn

n and cycle

length L jn
n . To lighten notation, we use v j :=

E
[
G j

]
E[L j] to denote the cycle average cost for policy j.

The optimal policy j∗ minimizes the cycle average cost. i.e., j∗ = argmin
j∈[J]

v j. We denote v∗ := v j∗ .

The goal is to minimize the cyclic regret:

RN := E

 N∑
n=1

(
G jn

n −L jn
n v∗

) , (1.4)

Within N cycles, E
[∑N

n=1 G jn
n

]
is the expected total cost given the sequence of policies j1, j2, . . . , jN ,

and E
[∑N

n=1 L jn
n v∗

]
is the expected total cost assuming we suffer the optimal cost v∗ in every period.

By the definition of v∗, it is evident that E
[
G jn

n −L jn
n v∗

]
≥ 0 for any jn, so RN is a growing function

N. We use big-O notation to measure its growing rate, and want to design learning algorithm with
optimal rate.

Traditional works assume cycle length is independent of policies and the regret can be written
as (1.3). Moreover, for distribution regularity condition, the vast majority of authors assume that,
for each policy j, the unknown cost distributions are sub-gaussian, that is, the moment generating
function of each G j is such that then for all λ ∈ R,

Eeλ(G j−EG j) ≤ eσ
2λ2/2,

where σ > 0, the sub-gaussian parameter that is usually assumed to be known. In particular, if
rewards take values in [0, 1], then by Hoeffding’s lemma, one may take σ = 1/4. One can show
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that the UCB strategy (Auer et al. (2002)) has the following distribution independent regret rate:

RN = O
(√

log(N) NJ
)
.

We refer the reader to (Bubeck and Cesa-Bianchi (2012)) for a survey of the extensive literature in
this area.

In cyclic online learning, cycle length L j depends on policy j, and we make the following
assumptions.

Assumption 1. We assume:

1. For each policy j, G j and L j satisfy G j/L j < γ, for some known positive constant γ.

2. Marginally, both distribution of G j and distribution of L j are sub-exponential with parame-

ters (ν,b) .

In supply chain optimization problems, a cycle extends the concept of period with one cycle
consists of random number of periods. The first assumption holds if the cost in every period is
bounded by γ, which, given a bounded inventory capacity constrain, is almost always the case.
The second sub-exponential assumption is weaker than the traditional sub-gaussian assumption,
which makes our estimation harder. But, this assumption is necessary: In most cases, the cycle
length counts the number of periods until demand in the cycle accumulates to be above some
positive threshold, which is usually sub-exponential but not sub-gaussian. For a simple example,
consider D is the Bernoulli distribution (P [D = 1] = P [D = 0] = 1/2), then the hitting time of a
positive level is geometric distribution (which is sub-exponential but not sub-gaussian).

If cycle length is independent of policy, the best policy has minimum expected cycle cost:
j∗ = argmin

j
E

[
G j

]
. The key step for a learning algorithm is to estimate mean cycle cost EG j for

j ∈ [J]. In traditional UCB algorithm (Bubeck and Cesa-Bianchi (2012)), with n samples of G j,{
G j

s

}n

s=1
, the empirical average 1

n
∑n

s=1 G j
s is an unbiased estimation of EG j, so we only need to

calculate estimation error due to variance. On the other hand, in cyclic online learning, the cycle

length L j depends on j. The best policy minimizes cycle average cost: j∗ = argmin
j

E
[
G j

]
E[L j] . A good

learning algorithm has to estimate
E
[
G j

]
E[L j] . Compared with EG j, our objective

E
[
G j

]
E[L j] is a nonlinear

function of expectations. With n data
{
G j

s

}n

s=1
drawn i.i.d. according to distribution of G j and{

L j
s

}n

s=1
drawn i.i.d. according to distribution of L j. The nonlinear version of empirical estimator

V̂ j
n :=

∑n
s=1 G j

s∑n
s=1 L j

s

(1.5)
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is indeed biased: E
[
V̂ j

n

]
6= v j. We call V̂ j

n the cycle empirical estimator. In this paper, we design
data driven policy that computes confidence interval for biased estimator V̂ j

n, which handles error
due to both bias and variance. We call it Cycle Lower Confidence Bound (CLCB) algorithm, and
prove that it has regret rate

RN = O
(
log N

√
JN

)
.

1.2.2 Cycle Lower Confidence Bound Policy

The idea behind lower confidence bound (lcb) strategies (see Lai and Robbins (1985), Agrawal
(1995) and Auer et al. (2002)) is that one should choose an arm for which the sum of its estimated
mean and a confidence interval is lowest. When the cost distributions all satisfy the sub-Gaussian
condition for a parameter σ, then such a confidence interval is easy to obtain. Suppose that at a
certain time instance arm j has been sampled n times and the observed costs are G j

1, ...,G
j
n. Then

the G j
1, ...,G

j
n are i.i.d. random variables with mean EG j and by a simple Chernoff bound, for any

δ ∈ (0,1), the empirical mean 1
n
∑n

i=1 G j
i satisfies, with probability at least 1−δ,

1
n

n∑
s=1

G j
s ≥ EG j−

√
2σ2 log(1/δ)

n
. (1.6)

This property of the empirical mean turns out to be crucial in order to achieve a regret of optimal
order.

The key of handling cyclic online learning is to replace the empirical mean with the so-called
cycle empirical estimator V̂ j

n defined in (1.5). We need a similar performance guarantee like the
one shown above for the empirical mean as in (1.6). More precisely, we want our cycle empirical
estimator have the following property.

Proposition 1.1. For any j ∈ [J] and n = 1,2, . . . , we have, with probability at least 1−δ,

V̂ j
n ≥ v j− θ

log(4/δ)
√

n

where

θ := (2γ+ 2)max(v,b) . (1.7)

Proof. From the definition 1.5, V̂ j
n is computed based on n samples of G j and n samples of L j. Let

Ĝ j
n and L̂ j

n denote empirical mean of these samples:

Ĝ j
n =

1
n

n∑
s=1

G j
s and L̂ j

n =
1
n

n∑
s=1

L j
s.
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Consider

∣∣∣∣V̂ j
n − v j

∣∣∣∣ =

∣∣∣∣∣∣∣Ĝ
j
n

L̂ j
n

−
EG j

EL j

∣∣∣∣∣∣∣ =

∣∣∣∣∣∣∣Ĝ
j
n

L̂ j
n

−
Ĝ j

n

EL j +
Ĝ j

n

EL j −
EG j

EL j

∣∣∣∣∣∣∣
=

Ĝ j
n

L̂ j
nEL j

∣∣∣∣EL j− L̂ j
n

∣∣∣∣+ 1
EL j

∣∣∣∣Ĝ j
n−EG

∣∣∣∣ ≤ γ ∣∣∣∣EL j− L̂ j
n

∣∣∣∣+ ∣∣∣∣Ĝ j
n−EG j

∣∣∣∣ (1.8)

where the inequality is due to G j/L j ≤ γ and EL j ≥ 1. Because G j and L j are (ν,b) sub-exponential,
with probability at least 1−δ/2, we have

∣∣∣∣Ĝ j
n−EG j

∣∣∣∣ < max


√

2ν2 log(4/δ)
n

,
2b log(4/δ)

n

 ,
and, with probability at least 1−δ/2, we have

∣∣∣∣L̂ j
n−EL j

∣∣∣∣ < max


√

2ν2 log(4/δ)
n

,
2b log(4/δ)

n

 .
Plugging these two sub-exponential concentration inequalities into (1.8), we get, with proba-

bility at least 1−δ,

∣∣∣∣V̂ j
n − v j

∣∣∣∣ ≤ γmax


√

2ν2 log(4/δ)
n

,
2b log(4/δ)

n

+ max


√

2ν2 log(4/δ)
n

,
2b log(4/δ)

n


≤ (2γ+ 2)max(v,b)

log(4/δ)
√

n

This gives us the desired result.

Now, we describe our cycle lower confidence bound algorithm (CLCB) as in Algorithm 1.1.
We denote by T j

n the (random) number of times policy j is selected up to cycle n.
The following proposition gives a regret bound for the CLCB algorithm.

Proposition 1.2. The regret of the CLCB policy satisfies

RN = O
(
log N

√
NJ

)
. (1.9)

Proof. Let ∆ j denote the sub-optimality gap of playing policy j. i.e.,

∆ j := v j− v∗.

Regret is the sum of loss due to playing suboptimal policies. We first bound the expected number

6



Algorithm 1.1 Cycle lower confidence bound algorithm(CLCB)

For each policy j, define cycle empirical estimator V̂ j
i as in (1.1) based on the first i observed cycle

cost/length pairs (G1,L1) , . . . , (Gi,Li) for policy j. Define the lower bound

B j
n,i =

V̂ j
n −

θ log(4n4)
√

i
for n ≥ 1

−∞ for n = 0,

where θ is defined in (1.7).

At cycle n, draw the arm minimizing B j

n,T j
n−1

.

of pulls for a suboptimal arms. More precisely, in the first two steps of the proof we prove that, for
any j such that ∆ j > 0,

E
[
T j

N

]
≤

4θ2(
∆ j)2

(
log

(
4N4

))2
+ 5 (1.10)

First step.
Let cycle n, jn denotes the policy we played at cycle n. We show that if jn = j, then one of the
following three inequalities is true:

B j∗

n,T j∗
n−1

≥ v∗, (1.11)

V̂ j

T j
n−1

< v j−
θ log

(
4n4

)
√

T j
n−1

, (1.12)

T j
n−1 <

4θ2(
∆ j)2

(
log

(
4N4

))2
. (1.13)

Indeed, assume that all three inequalities are false. Then we have

B j∗

n,T j∗
n−1

< v∗ = v j−∆ j ≤ v j−
2θ log

(
4N4

)
√

T j
n−1

≤ V̂ j

T j
n−1

−
θ log

(
4n4

)
√

T j
n−1

= B j

n,T j
n−1

which implies, in particular, that jn 6= j.
Second step.

Here we first bound the probability that (1.11) or (1.12) hold. By preposition 1.1 as well as an
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union bound over the value of T j∗

n−1 and T j
n−1 we obtain

P [(1.11) or (1.12) is true] ≤ 2
n∑

s=1

1
s4 ≤

2
n3 .

Now, let

u :=
 4θ2(

∆ j)2

(
log

(
4N4

))2
 .

Using the first step, we obtain

E
[
T j

N

]
= E

N∑
n=1

1{ jn= j} ≤ u +E
N∑

n=u+1

1{ jn= j and (1.13) is false}

≤ u +E
N∑

n=u+1

1{ jn= j and (1.11 or 1.12) is true} ≤ u +

N∑
n=u+1

2
n3 ≤ u + 4

This concludes the proof of (1.10).
Third Step.

Definition of cyclic regret (1.4) implies RN =
∑J

j=1 ∆ jE
[
T j

N

]
. By (1.10), we immediately obtain

RN ≤
∑

j:∆ j>0

(
4θ2

∆ j

(
log

(
4N4

))2
+ 5∆ j

)
.

Then to obtain (1.9), we use Hölder’s inequality. For N ≥ n0 with some n0 such that min j
4θ2

(∆ j)2

(
log

(
4N4

))2
≥

5,

RN =
∑

j:∆ j>0

∆ j
√
ET j

N

√
ET j

N ≤
∑

j:∆ j>0

∆ j
√
ET j

N

√
4θ2(
∆ j)2

(
log

(
4N4))2

+ 5

≤
∑

j:∆ j>0

∆ j
√
ET j

N

√
8θ2(
∆ j)2

(
log

(
4N4))2

≤ 2
√

2θ log
(
4N4

) ∑
j:∆ j>0

√
ET j

N

≤ 2
√

2θ log
(
4N4

)√ ∑
j:∆ j>0

ET j
N

√ ∑
j:∆ j>0

1 = 2
√

2θ log
(
4N4

)√
NJ = O

(
log N

√
NJ

)
.

where the second inequality is due to N ≥ n0 and the last inequality is by applying Hölder’s in-
equality.
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CHAPTER 2

New Online Learning Methods for Newsvendor
Problem with Fixed Cost

In the majority of data driven supply chain optimization problems (Chen et al. (2018c); Shi et al.
(2016); Zhang et al. (2018, 2019)), the solo unknown information is the demand distribution. If
demand is uncensored which means, however making the ordering decisions, we always observe
the realized demands Dt for t = 1,2 . . . , the most popular learning algorithm is the so-called sampled
average approximation algorithm (SAA) (Levi et al. (2007)): At period t, we approximate the true
demand distribution with empirical distribution F̂t and apply optimal policy with respect F̂t, where
, with respect to some suitable norm, this approximation has 1/

√
t convergence rate,∥∥∥F̂t −F

∥∥∥ = O
(
1/
√

t
)
.

Under mild regularity condition, SAA leads to regret at t of order O
(
1/
√

t
)
, and, therefore, its total

regret is O
(√

T
)
.

SAA gives a universal solution for the data driven supply chain optimization with uncensored
demand information. For the problem with censored demands, the algorithm design is more chal-
lenging. The dominating approaches are based on stochastic gradient descend (SGD) (see Chen
et al. (2018c); Huh and Rusmevichientong (2009); Shi et al. (2016)), the standard online con-
vex optimization theory (see Hazan et al. (2016)) implies the regret is also O

(√
T
)
. But, for many

problems, due to the lack of either convexity of objective or the stochastic gradient information, the
SGD approaches are hard to apply. In this paper, we seek for alternative approaches for handling
the problems with censored demands, which maintain almost the same regret rate: O

(√
log(T )T

)
.

As a concrete example, we consider the repeated newsvendor problem. With notation c: unit
ordering cost, p : selling price, qt : ordering quantity at period t, and Dt : random demands at period
t for t = 1,2, . . . , the Newsvendor’s cost is given by ordering cost minus sales revenue:

Ct := cqt − pmin(qt,Dt) .

9



We assume {Dt}
∞
t=1 are i.i.d. random variables, and use D to denote a time generic demand. We

note that
∇Ct = c− p1{qt<Dt},

so
∇E [Ct] = c− pP

[
qt < Dt

]
The optimal ordering quantity is q∗ = F−1

(
1− c

p

)
, where F denotes the cdf of demand D. But,

in practice, F is unknown. With a learning algorithm, at period t, we choose ordering quantity qt

according to previous information to minimize regret

RT = E
[
Ct (qt)−Ct

(
q∗

)]
.

With standard assumptions, we put an ordering capacity constrain qt ≤ β for some positive constant
β, and let c < p (otherwise, ordering noting is obviously optimal).

The SAA approach is to order qt := F̂t
(
1− c

p

)
, where F̂t is the empirical distribution formed by

previous demands d1 . . . ,dt−1, which achieves O
(√

T
)

regret. But, in practice, we only observe the
sales data min

(
qt,Dt

)
, which leads on demand censoring and make the SAA approach invalid. To

overcome this, the SGD approach updates qt+1 = Proj[0,β]

(
qt −ηt∇̃t

)
where

∇̃t := ∇Ct = c− p1{qt<Dt}

is an stochastic gradient for the expected cost E [Ct] , which can be computed using sales informa-
tion only. Since E

[
Ct (qt)

]
is a convex function of qt, standard online convex optimization theory

implies O
(√

T
)

regret with suitable choice of step size ηt (see Hazan et al. (2016)).
Now, We consider a modification of the Newsvendor problem. If qt ≥ Q for some positive Q,

the newsvendor has to pay a fixed cost K for renting a car for picking up his orders, which leads to
extra fixed cost K1{qt≥Q} on our cost. i.e., the new cost

C̃t := K1{qt≥Q}+ cqt − pmin(qt,Dt) . (2.1)

We call this problem the News-vendor problem with Fixed Cost. Note that

∇̃t := c−q1{qt<Dt} (2.2)

is still a stochastic gradient of E
[
C̃t

]
, but the standard SGD algorithm cannot achieve O

(√
T
)
, since

the objective E [Ct] is no longer convex. For general non-convex function, the first order methods,
updating each step with gradient information, has no performance guarantee. Instead, we seek
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solutions from zeroth order methods: estimating objective directly from noisy evaluations.
Note that optimizing E

[
Ct (qt)

]
with zeroth order information (its noisy evaluations) is an one

dimensional continuous bandit problem (see Bubeck et al. (2009); Kleinberg (2005)). Standard
bandit control methods with suitable discretization achieves regret O

(
T

2
3
)
. In the next two sections,

we describe two variations of bandit problems and their corresponding learning algorithms. In the
last section, we go back to the newsvendor problem with setup cost, applying our either of new
learn algorithms to achieve the almost optimal regret rate — O

(√
log(T )T

)
.

2.1 Online Learning with One-Side Zeroth Ordering Informa-
tion and SAS Algorithm

In this section, we consider a discrete bandits control problem with so-called one-side feedback
information. At each period t, an agent facing J actions (or bandit arms) selects one arm at every
time step. With each arm j ∈ [J].

In each period t = 1,2 . . . , there is an associated random cost function Ct : [J]→ R mapping a
set of J actions to its associated cost. For notational convenience, we place argument as sup-script:
C j

t := Ct ( j). We assume that Ct are i.i.d. across each period. We use C to denote the time generic
random functions Ct for t = 1,2 . . . , i.e., C = Ct in distribution, and define the mean cost µ := E [C] .
For each j ∈ [J], we assume C j if sub-gaussian with parameter σ:

Eeλ(C j−µ j) ≤
σ2λ2

2
for all λ ≥ 0.

By Hoeffding bound, with probability as least 1−δ, we have

∣∣∣∣µ̂ j
t −µ

j
∣∣∣∣ ≤√

2σ2 log(2/δ)
t

(2.3)

where µ̂ j
t := 1

t
∑

C j
t .

The distribution of Ct are unknown to the firm. At each period t, the firm chooses an action
jt ∈ [J], and observe the one-side feedback

{
C j

t : for j =
[
jt
]}
. The goal is to minimize the regret:

RT := E

 N∑
t=1

(
C jt

t −C j∗
t

) , (2.4)

where j∗ := argmin
j∈[J]

µ j.
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Algorithm 2.1 Shrinking Active Set algorithm (SAS)
Parameters: confidence levels {∆t}

T
t=1

Initialize active set A1 = {1, . . . , J}
For t = 1,2, . . . , play maximum active action jt = max {At} and update active set

At+1 =

{
j ∈At : µ̂ j

t −min
k∈At

µ̂k
t ≤ ∆t

}
. (2.5)

Theorem 2.1. Playing SAS algorithm with parameters ∆t = 2
√

2σ2 log(2JT 2)
t ., we achieve regret

RT = O
(√

log(JT )T
)
.

Proof. Define events

A :=
{

For all t ∈ [T ] , j ∈ [J] we have
∣∣∣∣µ̂ j

t −µ
j
∣∣∣∣ ≤ ∆t/2

}
.

Ac :=
{

There exsits t ∈ [T ] , j ∈ [J] such that
∣∣∣∣µ̂ j

t −µ
j
∣∣∣∣ > ∆t/2

}
.

By Hoeffding bound (2.3) and union bound, we have

P
[
Ac] ≤ T J

1
JT 2 =

1
T
.

Given event A holds, for any j ∈ [J] and t ∈ [T ], we have

µ̂
j∗
t − µ̂

j
t ≤ µ̂

j∗
t −µ

j∗ +µ j− µ̂
j
t ≤ ∆t,

which implies
µ̂

j∗
t −min

j
µ̂

j
t ≤ ∆t.

Then comparing with the updating rule (2.5) on our active set in algorithm 2.1, we conclude that j∗

will always remain in the active set of every iteration and never leave. Since jt ∈ At, which implies
jt is not “removed” from the active set in the (n−1)th iteration, we have

µ̂
jt
t−1− µ̂

j∗

t−1 ≤ µ̂
jt
t−1− min

j∈At−1
µ̂

j
t−1 ≤ ∆t−1,

where the second inequality follows from our rule (2.5). Therefore, conditional on the event A,

µ jt −µ∗ = µ jt − µ̂
jt
t−1 + µ̂

jt
t−1− µ̂

j∗

t−1 + µ̂
j∗

t−1−µ
∗ ≤ ∆t−1/2 +∆t−1 +∆t−1/2 = 2∆t−1
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with ∆0 := 1.
Thus we have,

RT = P [A]E

 T∑
t=1

(
µ jt −µ j∗

)
|A

+P
[
Ac]E  T∑

t=1

(
µ jt −µ j∗

)
|Ac


≤

T∑
t=1

∆t−1 + 1 = O
(√

log(JT )T
)

where the last equality holds by plugging in ∆t = 2
√

2σ2 log(2JT 2)
t .

In one related work (Alon et al. (2015)), the authors consider a more general setting with
information feedback modeled by a graph. Their more general EXP3.G algorithm can be applied
here. An obvious advantage of SAS algorithm is the better regret rate O

(√
log(JT )T

)
compared

with their O
(
log(JT )

√
T
)
. More importantly, in supply chain optimization, policy transitions is

key issue for achieve optimal regret (Chen et al. (2018c); Shi et al. (2016)). Consider the applying
rule jt = max {At} and updating rule (2.5), we have at most J policy transitions. In practice J << T ,
which makes SAS algorithm easy to be adapted into a supply chain optimization problem (ref. my
paper).

One disadvantage of above SAS algorithm is that, to achieve O
(√

log(JT )T
)

regret rate, we
need to tune hyper-parameters {∆t}

T
t=1 according to time horizon T. But, practically, T is rarely

known in advance by the agent. In the following theorem, we apply the so-called “doubling trick”
to remove our policy’s dependence on knowing time horizon T in advance.

Theorem 2.2. (Doubling trick) We divide time periods into groups; For m = 0,1, . . . , the mth group

contains 2m periods:
{
2m, . . . ,2m+1−1

}
. For each group m, we start a new SAS policy with param-

eters {∆t}
2m+1−1
t=2m such that ∆2m+s−1 = 2

√
2σ2 log(2J2m+1)

s . Then

RT = O
(
log(JT )

√
T
)
.

Proof. By Theorem 2.1, given time horizon T, the SAS algorithm achieves regret O
(√

log(JT )T
)
.

More precisely, there exist some positive constant α1 and α2 such that

RT ≤ α1
√

log(JT )T +α2.

Now, suppose T is unknown. Consider the first M + 1 groups (m = 0, . . . ,M) contains 1 + 2 +
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22 + · · ·+ 2M = 2M+1−1 periods in total. Let M = min
{
m : 2m+1−1 ≥ T

}
, and then

RT ≤

M∑
m=0


2m+1−1∑

t=2m

(
µIt −µ

∗) ≤
M∑

m=0

α1
√

log(J2m)2m +α2

≤ α1

√√√ M∑
m=0

log(J2m)2m ·
√

M + 1 +α2 (M + 1) (2.6)

where the second inequality is because, in group m, we applied SAS policy with horizon length
2m, and the last inequality is from Holder’s inequality.

Consider

M∑
m=0

log
(
J2m)

2m ≤

∫ M+1

0
log

(
J2m)

2m

=
2M+1 (

(M + 1) log2 + log J−1
)
− log J + 1

log2
= O

((
M + log J

)
2M+1

)
Plugging into (2.6), we have

RT = O
(√

M
(
M + log J

)
2M+1

)
= O

(√
logT log(JT )T

)
where the last equality is due to log2 T ≥ M (by definition of M).

2.2 Bandits on Convex Functions

2.2.1 Introduction

In this section we consider a variation of multi-armed bandit problem where each arm corresponds
to a function. We consider J sequences of i.i.d. random convex cost functions

{
C j

t

}∞
t=1

for j ∈ [J] .

We use time generic notation C j to denote C j
t , and µ j := E

[
C j

]
. For each t = 1,2, . . . , the agent

faces a two step decision: choose a function index jt , and, then choose an action xt ∈ K jt , which
leads to the cost C jt (xt) . .

Assumption 2. We make the following assumptions:

1. We assume each realization of C j is convex with a bounded domain K j has diameter at most

β. i.e.,

sup
x1,x2∈K j

‖x1− x2‖ ≤ β.
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2. For each j ∈ [J], and x ∈K j, for random cost C j (x) is subgaussian with parameter σ:

E
[
eλC(a)

]
≤ e

σ2λ2
2 for all λ > 0,

and, the random gradient has bounded second moment: E
[∥∥∥∇C j (x)

∥∥∥2
]
≤ ξ2.

We consider the distribution of C j for j ∈ [J] is unknown to the agent, but, at each period, he
can observe cost C jt (xt) and ∇C jt (xt) . At period t, the agent selected jt, xt based on previously
observed information

{
C jt′ (xt′) ,∇C jt′ (xt′) for t′ < t

}
to minimize regret:

RT =

T∑
t=1

E
[
C jt (xt)−C∗

(
x∗

)]
where

C∗
(
x∗

)
:= min

j∈[J],x∈K j
E

[
C j (x)

]
.

2.2.2 SGD Lower Confidence Bound Algorithm

Note that the best function j∗ minimizes function minimum value: j∗ = argmin
j

(
minx∈K j µ j (x)

)
.

The key to choose best function is to estimate function minimum values. We use the running
average along the stochastic gradient path as the estimator:

µ̂
j
t :=

1
t

t∑
s=1

C j
s (xs) .

In the following proposition , we derive a high probability bound for the lower confidence bound.

Proposition 2.1. Fix index j. Choosing steps size ηt =
β

ξ
√

t
, we have, with probability at least 1−δ

µ
j
∗ ≥ µ̂

j
t −

√
2σ2 log(1/δ) + 1.5ξβ

√
t

where µ j
∗ := minx∈K j µ j (x).

Proof. Introducing a bridging term E
[
µ̂

j
t

]
, we have

µ̂
j
t −µ

j
∗ =

(
µ̂

j
t −E

[
µ̂

j
t

])
+

(
E

[
µ̂

j
t

]
−µ

j
∗

)
.
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By Theorem 3.4 in (Hazan et al. (2016)), we have

E
[
µ̂

j
t

]
−µ

j
∗ ≤

1.5ξβ
√

t
.

By Azuma’s inequality,

µ̂
j
t −E

[
µ̂

j
t

]
≤

√
2σ2 log(1/δ)

t

with probability 1−δ.

We denote by T j
t the (random) number of times function j is selected up to period t.

Algorithm 2.2 SGD lower confidence bound algorithm (SLCB)
Parameters:
For each arm j ∈ [J] , define µ̂ j

i as the running average of i observed costs for function j. Define
the index

B j
t,i =

µ̂
j
i −

√
2σ2 log(t4)+1.5ξβ

√
i

for s ≥ 1;

−∞ for s = 0.

At time t, select function jt that minimizing B j
t,T j(t−1), play xt = x j

T j
t −1

. Observe C (xt) and ∇C (xt) .

Update
x j

T j
t

= ProjK j (xt −∇C (xt))

Proposition 2.2. The regret of the MLCB policy satisfies

RT = O
(√

log(T ) JT
)
.

Proof. We first bound the expected numb of pulls for a suboptimal arms. More precisely, in the
first two steps of the proof we prove that, for any j such that ∆ j > 0,

E
[
T j (T )

]
≤

2
√

2σ2 log
(
T 4)+ 3ξβ

∆ j

2

+ 5. (2.7)

First step.
We show that if jt = j, then one of the following three inequalities is true:

B j∗

t,T j∗
t−1

≥ µ∗∗ (2.8)
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µ̂
j

T j
t−1

< µ
j
∗−

√
2σ2 log

(
t4
)
+ 1.5ξβ√

T j
t−1

(2.9)

T j
t−1 <

2
√

2σ2 logT 4 + 3ξβ
∆ j

2

. (2.10)

Indeed, assume that all three inequalities are false. Then we have

B j∗,T j∗ (i−1),t < µ
∗
∗ = µ

j
∗−∆ j ≤ µ

j
∗−

2
√

2σ2 log t4 + 3ξβ√
T j

t−1

≤ µ̂
j

T j
t−1

−

√
2σ2 log t4 + 1.5ξβ√

T j
t−1

= BT j(i−1),i
j

which implies, in particular, that jt 6= j.
Second step.

Here we bound the probability that (2.8) or (2.9) hold.

P [(2.8) or (2.9) is true] ≤ 2
t∑

s=1

1
s4 ≤

2
t3
.

Now, let

u =


2

√
2σ2 logT 4 + 3ξβ

∆ j

2 .
Using the first step, we have

E
[
T j (T )

]
= E

T∑
t=1

1 jt= j ≤ u +E
T∑

t=u+1

1{ jt= j and (2.10) is false }

≤ u +E
T∑

t=u+1

1{ jt= j and (2.8 or 2.9) is true } ≤ u +

T∑
t=u+1

2
t3
≤ u + 4

This concludes the proof of (2.7).
Third Step.

We consider a bridging algorithm, which, at period t, selects the same function jt and play the
optimal action x j

∗ for function µ j.
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We see that

RT = E

 T∑
t=1

(
µ jt (xt)−µ∗∗

)
= E

 T∑
t=1

(
µ jt (xt)−µ jt (x∗)

)+E

 T∑
t=1

(
µ jt (x∗)−µ∗∗

) (2.11)

Consider the first term,

E

 T∑
t=1

(
µ jt (xt)−µ jt (x∗)

) = E


J∑

j=1

T j
T∑

t=1

(
µ j (xt)−µ jt (x∗)

)
≤ E

 J∑
j=1

1.5ξβ
√

T j
T

 ≤ 1.5ξβ

√√√ J∑
j=1

E
[
T j

T

]√√√ J∑
j=1

1 = 1.5ξβ
√

T J (2.12)

where the first inequality is due to online convex optimization theory (ref), and the second inequal-
ity is by applying Holder’s inequality.

For the second term, we consider

E

 T∑
t=1

(
µ jt (x∗)−µ∗∗

) =

J∑
j=1

∆ jE
[
T j (T )

]
≤

∑
j:∆ j>0


√2σ2 logT 4 + 3ξβ

∆ j

2

+ 5∆ j


where we plug in (2.7) for the second inequality. For T ≥ t0 with some n0 such that

min
j:∆ j>0

2v
√

4logn0 + 3ξ
√

d
∆ j

2

≥ 5

and 2v
√

4logn0 ≥ 3ξ
√

d, we have

E

 T∑
t=1

(
µ jt (x∗)−µ∗∗

) =
∑

j:∆ j>0

∆ jE
[
T j

T

]
=

∑
j:∆ j>0

∆ j
√
ET j

T

√
ET j

T

≤
∑

j:∆ j>0

∆ j
√
ET j

T

√√√√2σ2 logT 4 + 3ξβ
∆ j

2

+ 5∆ j

≤
∑

j:∆ j>0

∆ j
√
ET j

T

√√√
2

2
√

2σ2 logT 4

∆ j

2

= 4
∑

j:∆ j>0

√
ET j

T

√
2σ2 logT 4
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≤ 4
√

2σ2 logT 4
√ ∑

j:∆ j>0

ET j (n)
√ ∑

j:∆ j>0

1 = 4
√

2σ2 logT 4
√

T J

= O
(√

log(T ) JT
)
. (2.13)

where the first inequality is due to (2.7), the second inequality is due to T ≥ n0 and the last inequal-
ity is due to Holder’s inequality. Thus, combining (2.11) (2.12) and (2.13), we have finished the
proof.

2.3 Application with Newsvendor Problem with Fixed Cost

2.3.1 One Side Information Approach

Recall the Newsvendor with Fixed cost problem. With ordering quantity qt, we suffer cost

C̃t (qt) := K1{qt≥Q}+ cqt − pmin(qt,Dt) .

and observe sale information min
(
qt,Dt

)
. Note this observation gives us so-called side zeroth order

information: We can evaluation C̃t (q) for all q ≤ qt. To apply the Shrinking Active Set algorithm
(algorithm 2.1), we first choose a discrete grid J :=

{
q j := jβ

J : j = 0,1,2, . . . , J
}

of the ordering
domain

[
0,β

]
. Then, the regret

RT = E

 T∑
t=1

(
C̃t (qt)− C̃t

(
q j∗

))+E

 T∑
t=1

(
C̃t

(
q j∗

)
− C̃t

(
q∗

))
= E

 T∑
t=1

(
C̃t (qt)− C̃t

(
q j∗

))+ TE
[
C̃

(
q j∗

)
− C̃

(
q∗

)]
where j∗ is the best on-grid ordering quantity: j∗ := argmin

j∈J
E

[
C̃

(
q j

)]
. The first term is regret if we

restrict to on-grid ordering, and the second term is the discretization loss.

Theorem 2.3. Assume C̃t (qt) is sub-gaussian with parameter σ. Choose J ≤
⌈√

N
⌉
, and apply SAS

algorithm on ordering
{
q0, . . . ,qJ

}
with confidence level ∆t = 2

√
2σ2 log(2JT 2)

t , we have

RT = O
(√

log(T )T
)
.

Proof. To bound the discretization loss, we note that, although E
[
C̃ (q)

]
is not a Lipschitz function

for q ∈
[
0,β

]
(it is discontinuous at q = Q), it is piece-wise Lipschitz with Lipschitz constant p on

piece of domain [0,Q) and
[
Q,β

]
.
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Case 1: q∗ ∈ [0,Q)
Define q̃ := argmin

q j∈J∩[0,Q)

∣∣∣q j−q∗
∣∣∣. i.e., q̃ is the closest on-grid point in [0,Q]. By the definition of grid

J , |q̃−q| ≤ β
J , and, since on [0,Q), E

[
C̃ (q)

]
is p-Lipschitz,

E
[
C̃ (q̃)

]
−E

[
C̃

(
q∗

)]
≤

pβ
J
.

Therefore, the discretization loss

E
[
C̃

(
q j∗

)
− C̃

(
q∗

)]
≤ E

[
C̃ (q̃)

]
−E

[
C̃

(
q∗

)]
≤

pβ
J
≤

pβ
√

T + 1
. (2.14)

Case 2: q∗ ∈
[
Q,β

]
Apply the same argument, with q̃ := argmin

q j∈J∩[Q,β]

∣∣∣q j−q∗
∣∣∣ .

On the other hand, following from Theorem 2.1 the on-grid regret is

E

 T∑
t=1

(
C̃t (qt)− C̃t

(
q j∗

)) = O
(√

log(JT )T
)

= O
(√

log(T )T
)

(2.15)

since J =
⌈√

N
⌉
.

Combining (2.14) and (2.15), we have RT = O
(√

log(T )T
)
.

2.3.2 Bandits on Convex Functions Approach

To apply SGD lower confidence bound algorithm, we make our choice of qt with two-step decision:
We first decide whether to order above Q, and, then, decide how much to order. By (2.1), C̃ (q) is
convex on either domain [0,Q) or domain

[
Q,β

]
, and, in both domains, a stochastic ∇̃ is given by

(2.2).
Assume both ∇̃ (q) and C̃ (q) are sub-gaussian with parameter σ and ξ2 bounds the second

moments of ∇̃, we apply SGD lower confidence bound algorithm on the decision whether to order
above Q, which achieves regret O

(√
log(T )T

)
.

2.4 Appendix

Definition 1. A random variable X with mean µ is sub-exponential if there are non-negative

parameters (ν,b) such that

Eeλ(X−µ)
≤ e

ν2λ2
2 for all |λ| <

1
b
.
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Proposition 2.3. For zero-mean random variable X, the following statements are equivalent:

1. E
[
eλ(X−µ)

]
≤ e

v2λ2
2 for all |λ| ≤ 1/b

2. There are positive constants c1 and c2 such that P [|X| > t] ≤ c1e−c2t for all t > 0.

Proposition 2.4. Suppose X1, . . . ,Xn are centered (v,b) sub-exponential random variables. Then,
1
n
∑n

i=1 Xi is
(

v√
n
,b

)
sub-exponential. Consequently, for all t ≥ 0,

P


∣∣∣∣∣∣∣1n

n∑
i=1

Xi−EX

∣∣∣∣∣∣∣ ≥ t

 ≤ 2e
−min

(
t2n
2v2 ,

t
2b

)
.

Equivalently,

P


∣∣∣∣∣∣∣1n

n∑
i=1

Xi

∣∣∣∣∣∣∣ ≥max


√

2v2 log(2/δ)
n

,
2b log(2/δ)

n


 ≤ δ.
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t period index
J action domain
T period horizon
J |J |
j j ∈ J

C j C
(
a j

)
at action at period t
T period horizon
Ct random cost function at time t, iid across t.
∇t gradient of Ct
n cycle index

Gn cycle cost
Gπ

n cycle cost with policy π
Lπn cycle length with policy π
G time generic Gn
L time generic Ln

Ĝ j
n E [G]

πn policy at cycle n
L̄ E [L]
v Ĝ j

n
N cycle horizon
σ sub-gaussian parameters

(ν,b) sub-exponential parameters
RT T period regret
RN N cycle regret

Table 2.1: Notations 1

22



CHAPTER 3

Data Driven Inventory Control with Lead Time

For any x ∈ R, x+ = max(x,0) and x− = max(−x,0) .

3.1 Inventory Control with Lead Time

Consider a periodic-review inventory system with lost-sales, positive ordering lead times and cen-
sored demand. The demand over periods {Dt,D2, . . . } are i.i.d. random variables. Let t denote the
period, t = 1,2, ..., and let D denote a generic one-period demand. D is non-negative with E[D]≥ 0.
The ordering lead time is a fixed integer L ≥ 0. Contrary to the classical formulation, the firm has
no access to the true demand distribution a priori. The firm can only observe the past censored
demand data and adjust ordering decisions on the fly.

In the considered setting, any new order will stay in the pipeline for L periods before arrival.
We thus use an L-dimensional vector to track inventory. In each period t, the starting inventory, or
state of the system, is

xt =
[
It,qt−L+1, . . . ,qt−1

]
where It is the on-hand inventory at the beginning of period t, and, for t′ = t−L + 1, . . . , t−1, qt′ is
the order placed in period t′. Clearly, all the entries of xt are non-negative. For simplicity, let qt =
0 for all t ≤ 0.

In each period t, the sequence of events is as follows:

1. At the beginning of each period t, the firm observes the starting inventory xt, and makes an
ordering decision qt ≥ 0.

2. The demand Dt is realized. It is satisfied to the maximum extent by on-hand inventory It.
Since demand is censored, the firm only observes sales quantity min(Dt, It). Thus, if Dt ≥ It,
the firm does not know the exact demand.
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3. At the end of the period, each remaining on-hand inventory unit incurs a holding cost h, and
each unsatisfied demand unit incurs a penalty cost p. As a result, the cost in period t, denoted
by Ct, is

Ct = h (It −Dt)+ + p (It −Dt)− . (3.1)

4. At last, the system proceeds to period t + 1 with a system state xt+1 as

xt+1 =
[
It+1,qt−L+2, . . . ,qt

]
where the on-hand inventory is

It+1 = qt−L+1 + (It −Dt)+ . (3.2)

3.1.1 Objective and Assumptions

Let Ft denote the historical sales information collected up to the beginning of period t, i.e.,

Ft = σ
(
min(Dt′ , It′) for t′ = 1, . . . , t−1

)
(3.3)

and F0 := {R,∅}. Let X ⊆ RL denote the space of state, i.e. xt ∈ X for each t.

Definition 2. A policy π : X → R is a mapping from state x to ordering decision q. A learning
algorithm is a sequence of random polices {πt}

∞
t=1 such that πt is Ft-measurable.

Note that states xt and decisions qt depend on π, but we make the dependency implicit for
notation simplicity. Only when necessary, we use xπt and qπt to represent state and ordering decision
of policy π in period t. Our goal is to find a policy π that minimizes the long-run average expected

cost

νπ := limsup
T→∞

1
T
E

 T∑
t=1

Cπ
t

 (3.4)

where Cπ
t is the cost at time t if we apply policy π. However, even when the demand distribution is

known, finding the optimal policy is intractable due to the curse of dimensionality. In this paper,
we follow Huh et al. (2009) to use the best base-stock policy as the benchmark. The class of
base-stock policies is parameterized by a single parameter S , and the ordering quantity in period t

is
qt = (S −‖x‖1)+ .

Note that

‖xt‖1 = It +

t−1∑
t′=t−L+1

qi
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is the inventory position at the beginning of period t. Thus, the base-stock policy orders to raise
the inventory position to S if the starting inventory position is less than S , and orders nothing
otherwise. We call S the inventory target, and the corresponding base-stock policy the S -base-
stock policy . We refer to Huh et al. (2009) for the asymptotic optimality and the effectiveness of
base-stock policies. We measure the performance of a learning algorithm {πt}

∞
t=1 by its regret

RT := E

 T∑
t=1

(
Cπt

t − ν
∗
) ,

where ν∗ = minπ∈{base-stock polies} ν
π is the optimal long-run average expected cost among all base-

stock policies.
For a fixed base-stock policy π, the states

{
xπt

}∞
t=1

form a Markov chain. Let Pπ,m (x, ·) denote
the m-step transition probability given starting with x. i.e.,

Pπ,m (x,A) = P [xt+m ∈ A|xt = x]

for any t = 1,2, . . . and any measurable event A ⊆ X .

Assumption 3. Throughout this paper, we make the following assumptions.

1. (Bounded range) The manager has an a priori knowledge of an upper bound S̄ on S ∗, i.e.,

0 ≤ S ∗ ≤ S̄ .

2. (Lost-sales time) Let L (x,S ) denote the first lost-sales period, given starting state x and

base-stock target S . We assume

E [L (x,S )] ≤ M

for any x ∈ X and S ≤ S̄ .

3. (Uniform ergodic) There exits a probability measure ϕ on X , λ > 0, and an integer m ≥ 1
such that for any base-stock policy π, we have

Pπ,m (x, ·) ≥ λϕ (·)

for each x ∈ X .

These assumptions are mild. A base-stock policy without any lost-sales is clearly sub-optimal.
To exclude the case explicitly, we assume a constant M bounding the expected first lost-sales
time for all considered policies. For the uniform ergodic assumption, according to Huh and Rus-
mevichientong (2009), P

[
D ≤ S

L+1

]
> 0 is its sufficient condition. By Theorem 3.2 in Appendix, the
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uniform ergodic condition is equivalent to supx

∥∥∥Pπ,t (x, ·)− ν
∥∥∥

1 ≤ γα
t for some γ > 0 and α ∈ (0,1) .

In this paper, we treat S̄ , M, m, λ, γ, α as constants.
Our problem has the same setting as the problem considered in Huh et al. (2009); Zhang et al.

(2019). In their papers, stochastic gradient descent (SGD) plays the core role in their algorithm.
However, SGD is generally not suitable for discrete product. In paper Huh and Rusmevichientong
(2009), to apply SGD, the authors assume a so-called “lost-sale indicator condition”, which cannot
be used in practice. In this paper, we indeed allow both continuous (Dt,qt ∈ R+) and discrete
setting (Dt,qt ∈ Z+), and we design a learning algorithm that achieves almost optimal regret rate
O

(√
log(T )T

)
. Even if restricted to continuous setting, the algorithm proposed in Zhang et al.

(2019) achieves O
(√

T
)

regret, which is just asymptotically better than our O
(√

log(T )T
)

regret
by a

√
log(T ) factor. However, their regret depends on L exponentially. Our constant depends on

L linearly, which makes our learning algorithm more appealing when L is large.

3.2 Parallel Evaluation Algorithm

3.2.1 Pseudo-Cost

Instead of using first order method (e.g. SGD), we design an algorithm that uses zeroth order
method: In each period, we select a policy based on its empirical performance. However, as in
(3.1), due to the censored demand, when lost sales occur at a period t, the cost Ct is not fully
observable. We seek an alternative measurement of that cost that is observable to the firm. Note
that the censored part of the cost Ct is p (It −Dt)−, which is not observable whenever a lost sale
occurs. Nevertheless, we can decompose it as

p (It −Dt)− = pDt − pmin(It,Dt) .

The simple transformation above is crucial for our analysis because (a) the first term pDt is in-
dependent of any feasible policy, and (b) the second term pmin(It,Dt) is policy dependent but
observable. Thus, we define what-we-call inventory pseudo cost by dropping the first term

C̃t := Ct − pDt = h (It −Dt)+− pmin(It,Dt) . (3.5)

By the definition of long-run average cost in (3.4), we see

νπ = µπ+ pE [D] .
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where µπ := limsup
T→∞

1
T E

[∑T
t=1 C̃π

t

]
. Regret can be formulated using pseudo cost as below.

RT = E

 T∑
t=1

(
C̃πt

t − µ̃
∗
) .

3.2.2 Parallel Evaluation Algorithm

The notion of pseudo cost C̃t enables us to evaluate a policy. To make the evaluation more efficient,
we design an algorithm that parallelizes the process, which is based on the following proposition.

Proposition 3.1. Given two sequences of inventory targets S 1 and S 2, let x1
t (or x2

t ) denote the

inventory state at period t for applying base-stock policy with inventory target S 1 (or S 2). Then,

we have x1
t ≥ x2

t componentwise for all t.

Proof. Since state xt consists of on-hand inventory It and undelivered orders
[
qt−L+1, . . . ,qt−1

]
. To

show x1
t ≥ x2

t , it suffices to show I1
t ≥ I2

t and q1
t ≥ q2

t .Also, since we are running a base-stock policy,
except for the first period, we have qt = min(Dt−1, It−1). i.e., the order quantity is equal to the sales
quantity of the previous period. Thus, we only need to show I1

t ≥ I2
t .

We prove by induction on t. For t = 1, . . . ,L, I1
t = I2

t = 0. Suppose at periods t = 1, . . . , t′ for
some t′ > L, we have I1

t ≥ I2
t . At period t + 1, by (3.2), we have

It+1 = qt−L+1 + (It −dt)+ .

Note that since we are running base-stock policy, qt−L+1 = min(Dt−L, It−L) . By induction, I1
t−L ≥

I2
t−L, so we q1

t−L+1 ≥ q2
t−L+1. Then, I1

t+1 ≥ I2
t+1.

Thus, given two base-stock policies π1 with targets S 1 and π2 with target S 2, if S 1 ≥ S 2, we
can use the sales information min

(
I1
t ,Dt

)
collected from applying policy π1 to evaluate the sales

min
(
I2
t ,Dt

)
from applying policy π2. Let Ĉπ

t denote the empirical average cost up to period t by
applying policy π. i.e.,

Ĉπ
t :=

1
t

t∑
t′=1

C̃π
t′ .

Based on an ergodic theory argument, we see that Ĉπ
t is a good approximation of µπ.

Proposition 3.2. With probability at least 1−δ, we have

∣∣∣Ĉπ
t −µ

π
∣∣∣ ≤ mmax(h, p)S

λ

2
t

+

√
2log(2/δ)
√

t


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Proof. By (3.5),
∣∣∣C̃t

∣∣∣ ≤ max(h, p)S . By the uniform ergodic in Assumption 3, Theorem 3.3 in
appendix implies that

P
[∣∣∣Ĉπ

t −µ
π
∣∣∣ ≥ ε] ≤ 2exp

(
−

(αεt−2)2

2t

)
.

where α = λ

mmax(h,p)S
.

i.e., with probability at least 1−δ, we have

∣∣∣Ĉπ
t −µ

π
∣∣∣ ≤ mmax(h, p)S

λ

2
t

+

√
2log(2/δ)
√

t

 .
With this we are able to design a parallel evaluation algorithm as follows.

Parameters. Let S = {S 1, . . . ,S J} be the set of increasing ordering targets, and ∆t be the so-
called confidence bound of the tth period. We will specify how to choose the optimal values of
these parameters later in our algorithm analysis.

Initialization.

1. The algorithm maintains a active set At that contains the favorable candidates of optimal
solution after the t − 1 periods. We initialize A1 = {1, . . . , J}. As the learning algorithm
proceeds and t increases, the set At decreases. (We are removing the unlikely candidates
gradually when information is sufficient.)

2. For each j ∈At, we keep track of the so-called virtual state x j
t , which is equal to the state at

period t assuming we run base-stock policy with inventory target S j from the beginning. We
initialize x j

1 as L dimensional zero vector for each j ∈A1.

3. For each j ∈At, we also keep track of the average pseudo cost Ĉ j
t . We initialize Ĉ j

0 = 0 for
each j ∈A1.

Main Loop.

1. At each period t, we first find out the maximum active index jt. i.e., jt ∈max(At) . We apply
base-stock policy with target S t = S jt with respect to virtual state x jt

t . i.e., we order

qt = S jt
t −

∥∥∥∥x jt
t

∥∥∥∥
1
.

With this, we achieve two benefits.

(a) (Information collection) By ordering with respect to the maximum inventory target S jt

with respect to virtual state x jt
t , we can collect enough information to simulate all the
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other active policies. We are able to evaluate all active policies in parallel, and update
the corresponding virtual states, which speed up our learning process.

(b) (Fast state transition) The real inventory state xt is affected by all pervious inventory
target S t′ for t′ < t, which make it hard to be analyzed. On the other hand, x jt

t is
the state assuming we keep applying S jt as inventory from the very begin, and we
have a good understanding of it due to ergodic theory. By ordering with respect to
the virtual inventory x jt

t , we force xt to become x jt
t fast: If the inventory target keeps

unchanged, after L period xt+L and x jt
t+L has the same undelivered orders, and to make

them equal, we only need to wait for a lost-sale period, which according to Assumption
3, is bounded by M in expectation.

2. Since xt is great than each visual state x j
t for j ∈ At. We can compute the virtual sale

min
(
I j
t ,Dt

)
for each active j. Then, for each j ∈At we update the virtual state

x j
t+1 =

[
I j
t+1,q

j
t−L+2, . . . ,q

j
t

]
where I j

t+1 := I j
t −min

(
I j
t ,Dt

)
+ q j

t−L+1, and update the empirical average cost

Ĉ j
t =

(t−1)Ĉ j
t + C̃ j

t

t
,

where C̃ j
t := h

(
I j
t −Dt

)+
− pmin

(
I j
t ,Dt

)
is the jth virtual pseudo cost.

3. Based on the empirical performance measured by Ĉ j
t , we prune actives as follows

At+1 =

{
j ∈At : Ĉ j

t −min
j′

Ĉ j′
t ≤ ∆t

}
.

i.e., we remove all polices who empirical average cost is great than the optimal empirical
average cost by more that the confidence bound ∆t.

This concludes the description of our parallel evaluation algorithm learning algorithm. For the
convenience of practical implementation, we also provide a detailed pseudo code in Algorithm
3.1.

A pivotal step in the algorithm is the to simulate all the active policies. We shall discuss why the
above specified rules can indeed collect sufficient demand information. Note to simulate a base-
stock policy j, we need its sales information min

(
I j
t ,Dt

)
. What we can observe is the real sales

data min(It,Dt) . Thus, to make the simulate, it suffices to have It ≥ I j
t for each active j ∈At in each

period. Let τk be the be starting period of the kth unique policy. Let’s induction on k. In periods
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[τ1, τ2), we use S J as target, and xt = xJ
t . By Proposition 3.1, xt ≥ x j

t for any j ∈ [J]. Suppose up to
period τk we have xt ≥ x j

t for all j ∈At. During periods [τk, τk+1), we apply base-stock policy with
target S jτk using virtual state x

jτk
t , which makes qt = q jt

t and implies xt ≥ x jt
t for t = τk +1, . . . , τk+1.

Since x jt
t is the state with respect to the highest active target at period t. Again, by Proposition 3.1,

x jt
t ≥ x j

t for j ∈At for t = τk + 1, . . . , τk+1. This completes the induction reasoning. In each period,
we have x jt

t ≥ x j
t for j ∈At. In particular, It ≥ I j

t for each active j ∈At, and this simulation step is
indeed valid. Since our algorithm focuses on a set of policy candidates S, we first analyze that the

Algorithm 3.1 Parallel evaluation algorithm

1. Parameters: A set of candidate orders target S =
{
S 1, . . . ,S J

}
, and confident bounds {∆t}

T
t=1.

2. Initialize active set A1 = {1, . . . , J}. For each j ∈A1, define jth virtual state x j
1 = 0 ∈ RL, and

empirical average cost Ĉ j
0 = 0.

3. At time t, select jt = max(At) , make order qt = S jt −
∥∥∥∥x jt

t

∥∥∥∥ (apply base-stock policy with

target S t = S jt with virtual state x jt
t )

• Use the observed sales min(It,Dt) to simulate all the policies in At: For all j ∈ At,
compute

C̃ j
t = h

(
I j
t −Dt

)+
− pmin

(
I j
t ,Dt

)
,

q j
t = S j−

∥∥∥∥x j
t

∥∥∥∥
1

and update

Ĉ j
t =

(t−1)Ĉ j
t−1 + C̃ j

t

t
,

x j
t+1 =

[
I j
t −min

(
I j
t ,Dt

)
+ q j

t−L+1,q
j
t−L+2, . . . ,q

j
t

]
.

• Update active set

At+1 =

{
j ∈At : Ĉ j

t −min
j′

Ĉ j′
t ≤ ∆t

}
.

regret with respect the base policy in S . More precisely, for an learning algorithm π, we define

RST = E

 T∑
t=1

(
Cπ

t −µ
j∗
)

where µ j denote the long-run average cost for running base-stock policy with target S j and j∗ :=
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argmin
j

µ j.

Theorem 3.1. Applying the parallel evaluation algorithm above with ∆t = 2mmax(h,p)S
λ

(
2
t +

√
2log(2JT 3/2)
√

t

)
,

we have

RST = O
(√

log(JT )T + J
)
.

Proof. Consider

RST = E

 T∑
t=1

(
C̃t −µ

j∗
)

= E

 T∑
t=1

(
C̃t − C̃ jt

t

)+E

 T∑
t=1

(
C̃ jt

t −µ
jt
)+E

 T∑
t=1

(
µ jt −µ j∗

)
Step 1. We will show E

[∑T
t=1

(
C̃t − C̃ jt

t

)]
= O (J) .

Let K denote the total number of unique policies apply for t = 1,2, . . . ,T. Note K ≤ J. For
k = 1, . . . ,K, let jk denote the kth unique policy we applied and τk denote this first time we apply
policy jk. Consider

E

 T∑
t=1

(
C̃t − C̃ jt

t

) = E

 K∑
k=1

τk+1−1∑
t=τk

(
C̃t − C̃ jt

t

)
=

J∑
k=1

E

τk+1−1∑
t=τk

(
C̃t − C̃ jt

t

)
where τk := T + 1 for k > K.
During periods [τk, τk+1), we apply base-stock policy with inventory target S jk with respect to

inventory state x j
t . If we keep S fixed, after L periods, xt and x jk

t have the same the undelivered
orders. Then, To make xt = x jk

t , we only need wait until the first lost-sales, which, because of the
lost-sale time assumption in Assumption 3, happens within M periods in expectation. Thus, we
have

E

τk+1−1∑
t=τk

(
C̃t − C̃ jk

t

) ≤max(h, p) S̄E

τk+1−1∑
t=τk

1{
xt 6=x

jk
t

} ≤max(h, p) S̄ (L + M) ,

where the first inequality is due to the one period pseudo cost is bounded by max(h, p) S̄ .

Step 2. We shall show E
[∑T

t=1

(
C̃ jt

t −µ
jt
)]

= O (1) .
Consider

E
[
C̃ jt

t+1−µ
jt
]

=

∫ (
P j,t (x1, x)− ν j (x)

)
C̃ (x)dx
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≤
∥∥∥P j,t (x1, x)− ν j

∥∥∥
1

∥∥∥C̃
∥∥∥
∞

≤max(p,h) S̄ γαt

where the last inequality is dual to uniform ergodic assumption. Then,

E

 T∑
t=1

(
C̃ jt

t −µ
jt
) ≤max(p,h) S̄ γ

T∑
t=1

αt−1 ≤
max(p,h) S̄ γ

α
.

Step 3. We will show E
[∑T

t=1

(
µ jt −µ j∗

)]
= O

(√
log(T )T

)
Define events

A :=
{

For all t ∈ [T ] , j ∈ [J] we have
∣∣∣Ĉπ

t −µ
π
∣∣∣ ≤ ∆t/2

}
.

Ac :=
{

There exsits t ∈ [T ] , j ∈ [J] such that
∣∣∣Ĉπ

t −µ
π
∣∣∣ > ∆t/2

}
.

By Proposition 3.2 and union bound, we have

P
[
Ac] ≤ T J

1
JT 3/2 ≤

1
√

T
.

Given event A holds, for any j ∈ [J] and t ∈ [T ], we have

Ĉ j∗
t − Ĉ j

t ≤ Ĉ j∗
t −µ

j∗ +µ j− Ĉ j
t ≤ ∆t,

which implies
Ĉ j∗

t −min
j

Ĉ j
t ≤ ∆t.

Then compared with the active set updating rule in algorithm 3.1, we conclude that j∗ will always
remain in the active set of every iteration and never leave. Since jt ∈ At, which implies jt is not
“removed” from the active set in the (n−1)th iteration, we have

Ĉ jt
t−1− Ĉ j∗

t−1 ≤ Ĉ jt
t−1− min

j∈At−1
Ĉ j

t−1 ≤ ∆t−1,

where the second inequality follows from our active set updating rule. Therefore, conditional on
the event A,

µ jt −µ∗ = µ jt − Ĉ jt
t−1 + Ĉ jt

t−1− Ĉ j∗

t−1 + Ĉ j∗

t−1−µ
∗ ≤ ∆t−1/2 +∆t−1 +∆t−1/2 = 2∆t−1

with ∆0 := 1.
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Thus we have,

E

 T∑
t=1

(
µ jt −µ j∗

) = P [A]E

 T∑
t=1

(
µ jt −µ j∗

)
|A

+P
[
Ac]E  T∑

t=1

(
µ jt −µ j∗

)
|Ac


≤

T∑
t=1

∆t−1 + 1 = O
(√

log(JT )T
)

where the last equality holds by plugging in ∆t = 2mmax(h,p)S
λ

(
2
t +

√
2log(2JT 3/2)
√

t

)
.

To bound regret RT , we need to choose the good candidate set S. By the ergodic assumption,
we have, for a fixed based-stock policy, the Markov chain {xt}

∞
t=1 converges to a limiting random

vector x∞. Let I∞ denote the first component of x∞, which is the limiting random on-hand inven-
tory. Then long-run average pseudo cost can be written as

µ = E
[
h (I∞−D)+− pmin(I∞,D)

]
. (3.6)

(see Huh and Rusmevichientong (2009)for detailed arguments.)
In continuous setting, since change target S by ε can at most change I∞ by ε, (3.6) implies µ is

max(h, p) Lipschitz. Thus, if we choose

S =

{
S j :=

j
J

S for J = 1, . . . , dT e
}
.

Let S ∗ be the optimal ordering target. By the definition of S, we have
∣∣∣S j0 −S ∗

∣∣∣ ≤ S̄√
T

, where

j0 := argmin
j∈[J]

∣∣∣S j−S ∗
∣∣∣. Therefore,

µ j∗ −µ∗ ≤ µ j0 −µ∗ ≤ S̄ max(h, p)
∣∣∣S j0 −S ∗

∣∣∣ ≤ S̄ max(h, p)/
√

T .

and

RT = RST + T
(
µ j∗ −µ∗

)
= O

(√
log(T )T +

√
T
)
+ T

(
S̄ max(h, p)/

√
T
)

= O
(√

log(T )T
)
.

In discrete cast, we choose

S =

{
S j :=

⌈ j
J

S̄
⌉

for J = 1, . . . , dT e
}
.
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If S̄ ≤
√

T , we simply let S =
{
1,2, . . . S̄

}
, then

RT = RST = O
(√

log(T )T +
√

T
)

= O
(√

log(T )T
)

If S̄ >
√

T , define
S =

{
S j :=

⌈ j
J

S
⌉

for J = 1, . . . , dT e
}

As in the continuous case define j0 = argmin
j∈[J]

∣∣∣S j−S ∗
∣∣∣, then

∣∣∣S j0 −S ∗
∣∣∣ ≤ S̄√

T
+1, where the “add 1”

is due to rounding error. Since S̄ >
√

T , we have
∣∣∣S j0 −S ∗

∣∣∣ ≤ 2 S̄√
T
. Therefore,

µ j∗ −µ∗ ≤ µ j0 −µ∗ ≤ S̄ max(h, p)
∣∣∣S j0 −S ∗

∣∣∣ ≤ S̄ max(h, p)/
√

T .

and

RT = RST + T
(
µ j∗ −µ∗

)
= O

(√
log(T )T +

√
T
)
+ T

(
2S̄ max(h, p)/

√
T
)

= O
(√

log(T )T
)
.

Thus, we have produce a learning algorithm that achieves O
(√

log(T )T
)

regret rate in both con-
tinuous and discrete settings.

3.3 Conclusion

In this paper, we have proposed the a nonparametric learning algorithm for managing stochastic
inventory systems with lead time under censored demand information, and showed that the regret
is O(

√
log(T )T ), which is provably optimal up to a square root of a logarithmic factor. Compared

with previous works, our algorithm can handle both discrete and continuous setting. Moreover,
our regret bound depends linearly on lead time L. Even if restricted to continuous setting, when
L is large, our learning policy is more appealing than previous algorithms whose regret depends
exponentially on L.

3.4 Appendix

Theorem 3.2. Let Pt (x, ·) denote the The following are equivalent.

1. supx

∥∥∥Pt (x, ·)− ν
∥∥∥

1→ 0.
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2. supx

∥∥∥Pt (x, ·)− ν
∥∥∥

1 ≤ γα
t for some γ > 0 and α ∈ (0,1) .

3. There exists a probability measure ϕ on state space X , λ > 0 and an integer m ≥ 1 such that

Pm (x, ·) ≥ λϕ (·) for all x ∈ X .

Theorem 3.3. (Hoeffding’s inequality on Markov chain) Let X1,X2 . . . be a Markov chain. Suppose

there exists a probability measure ϕ on state space X , λ > 0 and an integer m ≥ 1 such that

Pm (x, ·) ≥ λϕ (·) .

Then

P
[∣∣∣∣∣∣
∑n

t=1 f (Xt)
n

− Ẽ
[
f (X)

]∣∣∣∣∣∣ ≥ ε
]
≤ 2exp

(
(αεn−2)2

2n

)
where Ẽ takes expectation with respect to the limiting distribution of the Markov chain and constant

α = λ
m‖ f ‖∞

.
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t period index
S base-stock ordering target
T time horizon
Dt demand at period t
qt ordering quantity at period t
It on-hand inventory at beginning of period t
xt inventory state at beginning of period t
yt inventory state after ordering at period t
h unit holding cost
p unit lost-sales penalty cost

Ct cost at period period t
C̃t pseudo-cost at period t
νπ expected long-run average cost of policy π
ν∗ optimal νπ among all base-stock polices
µπ expected long-run average pseudo cost of policy π
µ∗ optimal µπ among all base-stock polices
RT cumulative regret
S set of inventory target candidates
J size of S

C̃ j
t virtual pseudo-cost at period t of jth policy

Ĉ j
t t-period empirical average cost of jth policy

j∗ index of optimal policy is S
At active set at period t
S̄ upper bound of inventory target
M upper bound of expected lost-sale time

m,λ,γ,α constants related to uniform ergodic condition

Table 3.1: Notations 2
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CHAPTER 4

Multi-Product Base Stock Inventory Control

Notation: For a,b ∈Rn, a ·b ∈R: inner production; max(a,b) ,min(a,b) ,ab,a/b,exp(a) ∈Rn com-
ponentwise max min, product, division and exponential; [a]+ = max(a,0) and [a]− = max(−a,0) .

4.1 Multi-Product Stochastic Inventory System

We consider a stochastic T -period n-product inventory system under a warehouse-capacity con-
straint M. The firm has no knowledge of the true underlying demand distribution a priori, but can
observe past sales data (i.e., censored demand data), and make adaptive inventory decisions based
on the available information.

For each period t = 1, ...,T and each product j = 1, ...J, we denote the demand of product j in
period t by a random variable D j

t . For notation simplicity, we use Dt = (D1
t , ...,D

J
t ) to denote the

random demand vector in period t.

Assumption 4. We assume the following regularity conditions on demand.

1. The demand vector Dt = (D1
t , . . . ,D

J
t ) is i.i.d. over time t = 1,2, . . . .

2. For each product j and for each period t, D j
t is a continuous random variable defined on a

finite support [0,β], and E[D j
t ] ≥ α for some real number α > 0.

Let Ft denote the information collected up to the beginning of period t, which includes all re-
alized demand and past decisions. A data-driven policy π is a sequence of functions yt = πt(xt,Ft),
t = 1, ...,T , mapping beginning inventory xt and Ft (state) into ending inventory yt (decision) while
satisfying yt ≥ xt and the warehouse-capacity constraint. Note that when the demand distribution is
known a prior, it suffices to consider policies of the form yt = πt(xt), due to the assumed cross-time
independence of demands. Given a data-driven policy π, we describe the sequence of events below.

1. At the beginning of period t, the firm observes the starting inventory xt = (x1
t , ..., x

J
t ).
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2. The firm decides to order qt = (q1
t , ...,q

J
t )≥ 0, and the ending inventory yt = xt +qt , where yt =

(y1
t , ...,y

J
t ). We assume instantaneous replenishment. The total inventory level is restricted

by warehouse capacity, i.e.,

yt ∈ Γ :=
{
y ∈ RJ

+ : ‖y‖1 ≤ M
}
.

3. The demand Dt is realized, which is satisfied to the maximum extent with on-hand inventory.
Unsatisfied demand units are lost, and the firm only observes the sales quantity (or censored
demand), i.e., min(DJ

t ,y
J
t ) for each product J in period t. The state transition is

xt+1 = (xt + qt −Dt)+ = (yt −Dt))+.

4. The total cost of production, overage and underage at the end of period t is thus c ·qt +h · (yt−

Dt)+ + p ·(yt−Dt)−,where c = (c1, ...,cJ),h = (h1, ...,hJ) and p = (p1, ..., pJ) are the unit cost of
purchasing, holding and lost-sales penalty, respectively. We note that the cost minimization
model with lost-sales assumes that p ≥ c.

Assuming the salvage value of any left-over product at the end of planning horizon equals its
production cost, the total expected cost incurred by π can be written as

C (π) = E

 T∑
t=1

c · (yt − xt) + h · (yt−Dt)+ + p · (yt −Dt)−
−E [c. · x]

= −c · x1 +E

 T∑
t=1

c · yt + h · (yt−Dt)+ + p · (yt −Dt)−
 .

If the underlying distribution Dt is given a priori, the stochastic inventory control problem specified
above can be formulated using dynamic programming (see Beyer et al. (2001)) with state variables
xt, control variables yt (with xt ≤ y ∈ Γ ), random disturbances Dt , and state transition xt+1 =

(yt − dt)+. It turns out that this problem is in fact “myopically” solvable, which will be discussed
next.

Clairvoyant optimal policy. We first characterize the clairvoyant optimal policy where the
distribution of Dt is known a priori. We define

C (a) = Ct (a) = c ·a + h · (a−Dt)+ + p · (a−Dt)−. (4.1)

Let y∗ = argmin
a∈Γ

E [C (a)] .

Theorem 4.1. Under Assumption 4, when the demand distribution is known a priori, ordering up
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to y∗ in each period is optimal, with expected per-period cost E
[
C(y∗)

]
.

The proof of this theorem relies on verifying a sufficient condition known as substitute property
provided by Ignall and Veinott Jr (1969).

We measures the performance of a data-driven policy π by comparing its expected T period
total cost with the cost given by clairvoyant optimal policy. We refer to their delta as difference
regret and formulate it as

RT = E

 T∑
t=1

(
Ct (yt)−Ct

(
y∗

)) .
This problem has exactly the same setup as Shi et al. (2016). They apply a stochastic gradient
algorithm to achieve O

(√
T
)

regret rate. i.e.RT = O
(√

T
)
. It is a provably optimal regret rate with

respect to scale of T. However, in this duct inventory problem, the number of product types n also
affects regret rate significantly. A closer examination of the algorithm in Shi et al. (2016) shows
that their algorithm indeed has regret rate O

(√
JT

)
, in which the

√
J factor is attributed to the

variance of is stochastic gradient which scale linearly with respect to J. In this paper, we propose
an algorithm that achieves regret rate O

(
log(J)

√
T
)
, thereby performing better when J is large.

Moreover, each iteration (period) also becomes more expensive when J is large. In the policy
proposed by Shi et al. (2016), each iteration requires projecting some J-dimensional vector ỹ onto
Γ with respect to Euclidean distance. Recall that Γ =

{
y ∈ RJ

+ :
∑J

j=1 y j ≤ M
}
. So the projection

operation is equivalent to solving a convex program:

min‖y− ỹ‖2

s.t. y ≥ 0
J∑

j=1

y j ≤ M,

which takes super-linear computational cost, whereas our policy requires only O (J) operations in
each iteration.

4.2 Mirror Descent Inventory Control Policy

When the firm has no knowledge of the true underlying distribution of Dt a priori, the goal is to
find a provably good adaptive data-driven inventory control policy that yields a total cost closest to
the optimal strategy.

We group periods into cycles, and our proposed policy proceeds cycle by cycle. In each cycle
n, y[n] is the inventory target. To facilitate our analysis, we introduce a slack variable y0

[n] = M −
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∑J
j=1 y j

[n], and define ỹ[n] :=
[
y0

t ,y
1
t , . . . ,y

J
t

]
∈RJ+1

+ . Note that ‖ỹt‖1 = M. In other words, ỹt ∈M∆J+1,
which ∆J+1 denotes the (J + 1)-simplex.

We present our multi-product mirror descent algorithm (MMD) as follows.

1. We set the first cycle starting period τ1 = 1, and let the initial inventory levels y[1] =
[

M
n+1 , . . . ,

M
n+1

]
∈

Rn
+ , i.e., ỹ[1] =

[
M

n+1 , . . . ,
M

n+1

]
∈ M∆n+1.

2. For cycle n = 1, ...,N:

(a) At the first period of the cycle, we order up to yτn = y[n] and observe sales information
min

(
y[n],Dτn

)
.

i. We compute the gradient g̃[n] as follows: g̃0
[n] = 0 and for j = 1, . . . ,n,

g̃ j
[n] :=

h j + c j for ỹ[n] ≥ Dτn .

−p j + c j else.
(4.2)

ii. We do a “mirror update” as follows:

ỹ[n+1] :=
ỹ[n] exp

(
−ηg̃[n]

)
Z[n]

(4.3)

where the normalizer

Z[n] :=

∥∥∥ỹ[n] exp
(
−ηg̃[n]

)∥∥∥
1

M
.

(b) In the next period τn +1, ideally, we would like to order up to y[n+1] as our next ordering
target, i.e.,

yτn+1 = max
(
xτn+1 ,y[n+1]

)
.

However, due to inventory carry-over issue and inventory capacity constrain, y[n+1]

may not be feasible: When y j
[n+1] < x j

τn+1 for some product j, if we order up to y j
[n+1],

then the ending inventory will exceed the capacity M. Thus, in the rest of the cycle,
we instead order up to min

(
ỹ[n], ỹ[n+1]

)
until after some ln period the on-hand inventory

xτn+ln ≤ ỹ[n+1]. We go into the next cycle which starts at period τn+1 := τn + ln.

In short, the MMD policy runs cycle by cycle. In the nth cycle, it first orders up to ỹ[n] and computes
ỹ[n+1]. Then in the rest of the cycle it orders up to min

(
ỹ[n], ỹ[n+1]

)
. By (4.1), the g̃ j

[n] is indeed the
gradient of Cτn as in (4.2). In each cycle we update the ordering target once, and thus cycle length
will effect our updating frequency with respect to periods.

Note that in the nth cycle, after the first period, we order up to min
(
ỹ[n], ỹ[n+1]

)
repeatedly until
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xτn+ln ≤ ỹ[n+1]. Define the duration before x j
τn+ln

≤ ỹ j
[n+1] as ι j. i.e.,

ι j := min

s :
s∑

t=1

D j
τn+t ≥ ỹ j

[n+1]− x j
τn+1

 .
Lemma 1. There exits positve numbers (ν,b) such that for each j, ι j is sub-exponential with pa-

rameter (ν,b) . That is

E
[
eλ

(
ι j−E

[
ι j
])]
≤ e

ν2λ2
2 for all |λ| ≤

1
b
.

Proof. For any fixed j, consider the worst case that ι j := min
{
s :

∑s
t=1 D j

t ≥ M
}
. Note that E

[
D j

t

]
≥

α and D j
t ≤ β. We have

α ≤ E
[
D j

t

]
= P

[
D j

t ≤ γ
]
E

[
D j

t |D
j
t ≤ γ

]
+P

[
D j

t > γ
]
E

[
D j

t |D
j
t > γ

]
≤ P

[
D j

t ≤ γ
]
γ+P

[
D j

t > γ
]
β.

If we choose γ = α
2 , we have shown that P

[
D j

t ≥
α
2

]
≥ α

2β−α . Thus,

P [ι > s] = P

 s∑
t=1

D j
t ≤ M

 ≤ P
 s∑

t=1

Xt ≤ M


where {Xt}t are i.i.d. random variables with distribution Xt =

0 with probability 2β−2α
2β−α

α/2 with probability α
2β−α

. Note

∑s
t=1 Xt
α/2 follows Binormial distribution. By Heoffding’s inequality, we have

P

 s∑
t=1

Xt ≤ M

 ≤ exp

−2

(
s 2α

2β−α −
M
α/2

)2

s

 ≤ exp
(
−
−8α

2β−α

)
exp

(
−

8α2

(2β−α)2 s
)
.

Thus, ι is sub-exponential i.e. there exist (ν,b) such that

E
[
eλ

(
ι j−E

[
ι j
])]
≤ e

ν2λ2
2 for all |λ| ≤

1
b
.

From the proof, we see that (ν,b) only depend on α,β, and M. In the following analysis, we treat
them as constants. Upon this lemma, the next proposition shows that the expected cycle length is
of order log J.

Proposition 4.1. E [ln] ≤ b
(
log J +

M+β
α

)
+ v2

2b2 i.e., the expected cycle length is O
(
log J

)
.
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Proof. Note that ln = max j∈[J]
(
ι j
)
.By Wald’s identity, E

[∑ιi

t=1 Dt
]
=E

[
ιi
]
E [Dt] .Note that

∑ιi

t=1 Dt ≤

M +β, and E [Dt] ≥ α. We have

E
[
ιi
]
≤

M +β

α
.

To bound ln, choose λ = 1/b, we have

E
[
max
i∈[n]

ιi
]

= bE
[
loge

1
b maxi∈[n] ι

i
]
≤ b logE

[
e

1
b maxi∈[n] ι

i
]

≤ b log
∑
i∈[n]

E
[
e

1
b ι

i
]
≤ b log

∑
i∈[n]

e
ν2

2b2 +E
[
ιi
]

≤ b log
∑
i∈[n]

e

(
ν2

2b2 +
M+β
α

)
= b

(
logn +

M +β

α

)
+

v2

2b2

To prove RT = O
((

log J
)1.5 T 0.5

)
, we introduce a bridging policy π̃ which applies yt = ỹ[n] for

all periods t in the nth cycle. Note that due to the inventory carry-over, π̃ is not a feasible policy,
but used for facilitating the analysis. With π̃, we decompose the regret as below.

RN = E

 T∑
t=1

Ct (yt)−Ct
(
y∗

)
= E

 N∑
n=1

ln−1∑
s=0

(
Cτn+s

(
yτn+s

)
−Cτn+s

(
y∗

))
= E

 N∑
n=1

ln−1∑
s=0

(
Cτn+s

(
yτn+s

)
−Cτn+s

(
y[n]

)
+Cτn+s

(
y[n]

)
−Cτn+s

(
y∗

))
=

N∑
n=1

E

ln−1∑
s=0

(
Cτn+s

(
yτn+s

)
−Cτn+s

(
y[n]

))+

N∑
n=1

E

ln−1∑
s=0

(
Cτn+s

(
y[n]

)
−Cτn+s

(
y∗

))
To bound the second term, we rely on a Mirror descent argument.

Proposition 4.2. Choose η=

√
2log(J+1)

(p+c)
√

N
,we have

∑N
n=1E

[∑ln−1
s=0

(
Cτn+s

(
y[n]

)
−Cτn+s (y∗)

)]
= O

((
log J

)1.5 T 0.5
)
.

Proof. By Wald’s equality and Proposition 4.1, we have

N∑
n=1

E

ln−1∑
s=0

(
Cτn+s

(
y[n]

)
−Cτn+s

(
y∗

)) =

N∑
n=1

E [ln]E
[
Cτn

(
y[n]

)
−Cτn

(
y∗

)]
≤ O

(
log J

) N∑
n=1

E
[
Cτn

(
y[n]

)
−Cτn

(
y∗

)]
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Consider Ct (y) = c · y + h · (y−Dt)+ + p · (y−Dt)− is (p + c)-Lipschitz convex function on M∆n+1

with respect to ‖·‖∞ . For φ (y) :=
∑n

i=0 yi log(yi) , ỹ[1] =
[

M
n+1 , . . . ,

M
n+1

]
= argmin

y∈M∆n+1

φ (y) and we have

R2 := supy,y′∈M·n+1
φ (y)− φ (y′) ≤ M log(n + 1). We can verify (see Hazan et al. (2016)) φ is M-

strong convex with respect to ‖·‖1 in ∆n+1. Therefore, if we take η =

√
2log(J+1)

(p+c)
√

N

N∑
n=1

E
[
Cτn

(
y[n]

)
−Cτn

(
y∗

)]
≤ (p + c)

√
2log(J + 1) N. (4.4)

To control the first term, we rely on the Lipschitz condition of Ct.

Proposition 4.3. Choose η =

√
2log(J+1)

(p+c)
√

N
, we have

∑N
n=1E

[∑ln−1
s=0

(
Cτn+s

(
yτn+s

)
−Cτn+s

(
y[n]

))]
=

O
((

log J
)1.5 T 0.5

)
.

Proof. Consider

Cτn+s
(
yτn+s

)
−Cτn+s

(
y[n]

)
≤ (c + p)1 ·

(
y[n]− yτn+s

)
≤ (c + p)1 ·

(
y[n]− y[n]e−2η(p+c)

)
≤ (c + p)1 ·2η (p + c)y[n]

= 2η (p + c)2 M.

The second inequality is because the normalizer Z[n] ≤ eη(p+c) and y j
[n+1] ≥ y j

[n]e
−η(p+c) for all j ∈ [J]

and the third inequality is due to e−x ≥ 1− x.

Thus, the first term

N∑
n=1

E

ln−1∑
s=0

(
Cτn+s

(
yτn+s

)
−Cτn+s

(
y[n]

)) ≤ N2η (p + c)2 ME [ln]

≤ N2η (p + c)2 MO
(
log J

)
= O

((
log J

)1.5 N0.5
)

4.3 Simulation

In the left plot, we fix a small N, and we see that our mirror descent based algorithm has slightly
better performance than the stochastic gradient based algorithm. In the right plot, we fix T , let N

grow, and we see that our policy has much better performance.
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(a) Fix N (b) Fix T

Figure 4.1: SGD(Green) v.s. Mirror Descent(Blue)

4.4 Appendix

Theorem 4.2. Let { ft}Tt=1 be a sequence of G-Lipschitz convex function on some norm space D
with norm ‖·‖. Let φ be a ρ-strong convex function on D with respect duel norm ‖·‖∗ with diameter

square R2 := supx,x′∈D φ (x)− φ (x′). If x1 = argmin
x∈D

φ (x) and for t = 1, . . . ,T − 1, xt+1 follows the

mirror descent update

xt+1 = argmin
x∈D

Dφ

(
x;∇−1φ (∇φ (xt)−η∇ ft (xt))

)
,

where Dφ is the Bergman divergence. Then

T∑
t=1

[
ft (xt)− ft (x)

]
≤

R2

η
+
η

2ρ
G2T

for any x ∈D.

For detailed proof, see Lee and Vempala (2019).
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CHAPTER 5

Marrying Stochastic Gradient Descent with Bandits:
Learning Algorithms for Inventory Systems

with Fixed Costs

5.1 Introduction

The periodic-review stochastic inventory control problem with fixed cost is perhaps the most fun-
damental problem in the theory and practice of inventory management (cf. Zipkin (2000) and
Simchi-Levi et al. (2014)). A firm needs to make sequential inventory replenishment decisions
over the planning horizon under stochastic demand, with the objective to minimize the total or-
dering, holding, and lost-sales penalty costs. The ordering cost in each period typically consists
of two components, namely, the variable cost and the fixed cost. The variable cost is the ordering
quantity times the per-unit ordering cost, whereas the fixed cost is a constant K > 0 whenever a
positive order is placed. Undoubtedly, fixed costs arise in many real-life scenarios, and reflect the
fact that ordering, production, and transportation in large quantities lead to economies of scales.

It is well-known in the literature that the problems with fixed cost are much harder to analyze
than those without, because the newsvendor cost (including the holding and lost-sales penalty
costs) is convex in the decision space while the ordering cost is effectively concave in the presence
of fixed cost. The celebrated paper by Scarf (1960) proved that a so-called (s,S ) policy is optimal
for such a problem over a finite horizon via the elegant notion of K-convexity. Subsequently,
Iglehart (1963) and Zheng (1991) established the optimality of the (s,S ) policy for the infinite
horizon counterpart problem. The (s,S ) policy admits a very simple structure, i.e., the firm should
place an order to bring the inventory position back to the order-up-to level S whenever the on-hand
inventory drops below the triggering level s. Efficient searching heuristics for the optimal policy
have also been proposed by Veinott Jr and Wagner (1965) and Zheng and Federgruen (1991).

To this date, almost all the papers on this fundamental topic assume that the stochastic demand
processes are given as input to the models, and the inventory replenishment decisions are made

45



with full knowledge of the demand distribution. However, in practice, the underlying demand
distribution may not be available to the firm a priori. The firm may collect past sales over time to
estimate the demand distribution. However, since the realized sales in a period are the minimum of
the actual demand and the on-hand inventory level, this demand information is censored (cf. Huh
and Rusmevichientong (2009)). This raises a natural and important research question as to how to
devise an efficient and effective learning algorithm that only uses the sales data collected over time
to minimize the cumulative expected newsvendor cost.

5.1.1 Main Results and Contributions

We propose the first nonparametric learning algorithm, termed the (δ,S ) policy, for the periodic-
review stochastic inventory system with fixed cost under censored demand, where δ := S − s is
defined as the inventory gap between the order-up-to level S and the triggering level s. The perfor-
mance is measured using the notion of cumulative regret (or simply regret), which is the difference
between the expected cost of our proposed policy and that of the clairvoyant optimal policy over
T ≥ 1 periods. We show that under mild assumptions, the regret of the (δ,S ) policy is O(logT

√
T ),

which is provably optimal up to some logarithmic factor.
Our result significantly contributes to the growing nonparametric inventory learning literature,

first initiated by the renowned result by Huh and Rusmevichientong (2009) for the classical inven-
tory systems and followed up by many other results surveyed in §5.1.2. However, there are very
few results thus far on the simplest setting with fixed cost, despite its clear importance and practical
relevance. Perhaps the main reason that hinders such a progress is that the objective function is not
jointly convex in S and s (or S and δ) with the fixed cost K > 0, rendering the direct adaptation of
the online Stochastic Gradient Descent (SGD) method (Shalev-Shwartz et al. (2012)) prohibitive.

We shall summarize our high-level approaches and major contributions below.

1. Merging the first-order and zeroth-order optimizations. Although the objective func-
tion is not jointly convex in S and δ, for any fixed inventory gap δ, the objective function
(in terms of the so-called “cycle cost” defined as the cost between successive attaining of
the target level S ) is convex in S . This motivates us to design a (δ,S ) learning algorithm
that searches for the optimal policy by integrating a first-order optimization method (run-
ning a sub-exponential SGD on S ) with a zeroth-order optimization method (running bandit
controls on δ).

The high-level idea is as follows. We discretize the space of inventory gap δ, and maintain
a what-we-call active set that adaptively keeps track of all favorable candidate policies. At
each iteration, for each fixed inventory gap δ within the active set, we perform a SGD step
on the order-up-to level S and complete a cycle (i.e., waiting for all active policies to hit S
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again). We then utilize the collected censored demands to simulate the performance of all
other candidate policies within the active set. Finally, we prune the active set by eliminating
the “unfavorable” candidate policies by examining their hitherto empirical performance and
carefully controlling the confidence bound. Our aim is to retain the optimal policy with
an overwhelmingly high probability, while gradually shrinking the active set. The regret
analysis needs to bound the SGD sub-optimality loss and the pruning loss simultaneously.

We note that the previous approaches used in Huh et al. (2009); Huh and Rusmevichientong
(2009); Zhang et al. (2018, 2019) rely heavily on the convexity of the objectives, and there-
fore need not maintain and adaptively prune an active set of all favorable policies. Taking
into account of fixed cost, just as every other paper in inventory theory (be it learning or not),
changes the landscape of the problem and spurs a new methodological development.

2. Simulation of all active policies (SAAP). To achieve a tight regret bound and speed up the
computation, one can hope to use the censored demand information collected by running
one particular (δ,S ) policy to simulate the performance of other policies. The difficulty lies
in the fact that, due to demand censoring, a randomly chosen policy may not grant sufficient
demand information to simulate all the feasible policies within the active set. By judiciously
choosing the “information maximizing” policy at the beginning of each cycle and adhering
to this policy sufficiently long, we ensure that the collected demand information is sufficient
for simulating all active policies. This idea is central to our algorithmic design and regret
analysis because of the special structure of the problem.

3. Bounding the regret loss through multiple bridging policies. Bounding the cumulative
regret of the (δ,S ) learning algorithm would necessitate the following bridging policies.

(a) Optimal policy on the grid. We equally discretize the domain of the inventory gap
δ to initialize our bandit-control-based algorithm. By proving the smoothness of the
transformed objective function, we are able to control the discretization loss.

(b) Optimal policy on {δn}. Our algorithm suggests a sequence of δn decisions based on
their hitherto empirical performance. We show that {δn} converges to the optimal δ∗

and bound the loss between the optimal policy on {δn} and the optimal policy on the
grid.

(c) SGD policy. For each fixed δ, its corresponding target level S is calculated via SGD. We
prove that the sequence of S converges to the δ-specific optimal S ∗ uniformly across δ.

(d) Implemented learning policy. Due to positive inventory carryover, the above SGD pol-
icy may not be implementable, e.g., when the updated target level S is below the cur-
rent inventory position. We develop a queueing system argument to bound the loss due
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to this discrepancy between the suggested SGD policy and the implemented learning
policy.

4. Technical results of independent interest. As a by-product of our regret analysis, we
develop two useful technical results that are of independent interest. First, we show the
Lipschitz continuity of the hitting time of an ascending random walk. Second, we develop a
new high probability bound for sub-exponential SGD that could be applied in more general
settings.

5. Connection with the general Lipschitz bandits. By treating cycle costs as period costs
and ignoring the inventory carryover constraints, our (δ,S ) policy could be regarded as a
two-dimensional continuum-armed bandit problem in which Bubeck et al. (2011) and Klein-
berg et al. (2008) proposed policies that achieve the optimal regret O(T

d+1
d+2 ) where d is the

dimension of the decision variable space by only assuming Lipschitz continuity on the objec-
tive function. Our (δ,S ) control is also two-dimensional, and hence the bulk of this work is
to utilize the partial convexity structure to lower the regret from O(T 3/4) to O(logT

√
T ). To

achieve this, we need to analyze the empirical estimator of the objective value, develop a new
high probability bound for sub-exponential SGD, and also carefully choose the confidence
size to prune our active set in each iteration of the learning algorithm.

In summary, our (δ,S ) learning algorithm and performance analysis involve several innovative
ideas that ultimately enable the integration of SGD and bandit controls, achieving the best of both
worlds. Going forward, we believe that our framework opens up many doors for multi-dimensional
decision making in which the objective function has only some partial convexity or concavity
structures, as it draws the strength of both SGD and bandit controls in a non-trivial fashion.

5.1.2 Literature Review

Our work is closely related to two streams of literature discussed below.

Inventory systems with fixed costs. Given the complete information on demand distribution,
there has been a large body of literature on inventory systems with fixed costs. The seminal papers
Scarf (1960) and Veinott Jr (1966) characterized the optimal ordering decision as a state-dependent
(s,S ) policy. Iglehart (1963) and Zheng (1991) established the optimality of the stationary (s,S )
policy for the infinite horizon counterpart problem. Sethi and Cheng (1997) and Gallego and Özer
(2001) showed that the structural result continues to hold under the model with Markov-modulated
demand and the model with advance demand information, respectively.

Besides the structure of optimal policies, substantial efforts have also been spent on design-
ing efficient heuristics. With i.i.d. demands, Federgruen and Zipkin (1984) presented an iterative
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algorithm that converges to the optimal stationary policy over an infinite horizon. Zheng and
Federgruen (1991) computed the optimal policy for a continuous-reviewed system with a renewal
demand process. Gallego and Özer (2001) and Özer and Wei (2004) developed efficient algorithms
for models with advance demand information. Gavirneni (2001) proposed a heuristic for finding
the supplier’s non-stationary capacitated inventory control policy given the retailer had adopted an
(s,S ) policy. Guan and Miller (2008) and Huang and KüçüKyavuz (2008) gave polynomial-time
exact algorithms for the uncapacitated lot-sizing problem given that the stochastic programming
scenario tree is polynomially representable. Levi and Shi (2013) and Shi et al. (2014) gave approx-
imation algorithms with worst-case performance guarantees under general demand models.

Beyond the basic model with fixed costs, there have been streams of research focusing on
incorporating other factors (together with fixed cost), including, but not limited to, capacitated
problems (e.g., Chen (2004); Chen and Lambrecht (1996); Gallego and Scheller-Wolf (2000)),
joint pricing and inventory control problems (e.g., Chen and Simchi-Levi (2004a,b); Chen et al.
(2006); Feng (2010); Hu et al. (2018); Huh and Janakiraman (2008); Pang et al. (2012)), quantity
dependent fixed costs (e.g., Caliskan-Demirag et al. (2012); Chao and Zipkin (2008), and joint
replenishment problems (e.g., Cheung et al. (2016); Khouja and Goyal (2008); Nagarajan and Shi
(2016)).

Learning algorithms for inventory systems. We can roughly divide learning algorithms into
two categories, namely, parametric algorithms and nonparametric algorithms, depending on the
firm’s information structure. In the former category, the firm forms a prior belief about the demand
distribution, and repeatedly update the parameters of the distribution with new demand informa-
tion. This type of Bayesian approach was first adopted by Iglehart (1964); Murray and Silver
(1966); Scarf (1959) and Azoury (1985). With demand censoring where the firm can only observe
realized sales, the easier case to handle is the perishable inventory (with product lifetime being
one) where the excess inventory in the current period does not carry over to the next. Lu et al.
(2005, 2008) established that the optimal stocking quantity is higher than the myopic solution.
The intuition is that by stocking higher, it is more likely that we can obtain more accurate, uncen-
sored demand information, which is useful for future decisions. Unfortunately, this upper bound
result does not hold for nonperishable inventory in general (see Chen and Plambeck (2008)). In
a separate vein, Liyanage and Shanthikumar (2005) and Chu et al. (2008) developed an approach
called operational statistics to find a decision rule that maximizes the performance uniformly for
all possible values of the unknown demand parameters.

In contrast to the parametric approaches, this paper belongs to the growing body of nonpara-
metric learning literature. Burnetas and Smith (2000) developed a learning algorithm for the re-
peated newsvendor problem with pricing. With demand censoring, Huh and Rusmevichientong
(2009) proposed a gradient descent based algorithm for the classical multiperiod inventory system
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with censored demand. Besbes and Muharremoglu (2013) examined the discrete demand case and
showed that active exploration is needed. Huh et al. (2011) proposed another adaptive algorithm
based on Kaplan-Meier estimator. Subsequently, there has been an active stream of research de-
vising learning algorithms for various models, namely, capacitated inventory systems (Chen et al.
(2018d); Shi et al. (2016)), perishable inventory systems (Zhang et al. (2018)), lost-sales inventory
systems with lead times (Huh et al. (2009); Zhang et al. (2019)), and joint pricing and inven-
tory control (Chen et al. (2018a,b)). Another popular nonparametric approach in the inventory
literature is sample average approximation (SAA) (e.g., Kleywegt et al. (2002); Levi et al. (2015,
2007)) which uses the empirical distribution formed by uncensored samples drawn from the true
distribution. Concave adaptive value estimation (e.g., Godfrey and Powell (2001); Powell et al.
(2004)) successively approximates the objective cost function with a sequence of piecewise linear
functions.

All the learning algorithms surveyed above did not model fixed cost, mainly due to the loss of
convexity structure. Existing methods cannot be readily employed or adapted to this setting.

5.1.3 Paper Organization and General Notation

The remainder of this paper is organized as follows. We formulate our problem in §5.2. We de-
scribe the (δ,S ) learning algorithm in §5.3. We carry out the regret analysis in §5.4. We show some
computational performance in §5.5. Finally, we conclude and point out several future directions in
§5.6.

For any x ∈ R, x+ = max{x,0}, x− = max{−x,0}. The indicator function 1(A) takes value 1 if A

is true and 0 otherwise. The notation “:=” stands for “defined as”. For any integer C ≥ 1, the vector
[C] = {1,2, . . .C}. The projection operator Proj[a,b](x) = max{a,min{x,b}}. We use LHS and RHS
as abbreviations for the “left-hand side” and the “right-hand side” of an equation, respectively,
and pdf and cdf as abbreviations for the “probability distribution function” and the “cumulative
distribution function”, respectively.

5.2 The Periodic-Review Stochastic Inventory System with Fixed
Cost

We formally describe the periodic-review stochastic inventory system with fixed costs under lost

sales and censored demand. Let t ∈ {1,2, . . .} represent the time period, which is indexed forward.
We denote the demand in period t by Dt, and assume that Dt, t = 1, . . . ,T , are independent and
identically distributed (i.i.d.) continuous random variables across periods. In each period t =

1, . . . ,T , four types of incurred costs include (1) a per-unit ordering cost c for ordering product at
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the beginning of period t, (2) a fixed ordering cost K that is incurred when the ordering quantity
in period t is positive, (3) a per-unit holding cost h for holding excess inventory from period t to
t + 1, (4) a per-unit lost-sales penalty p that is incurred when the demand at the end of period t is
unsatisfied. Unsatisfied demand units are lost and unobserved due to demand censoring. The order
lead time is assumed to be zero. We remark here that even for the “non-learning” problem (where
the exact demand distribution is available), adding a positive order lead time to a lost-sales model
with no fixed cost makes the characterization of optimal policies intractable (see Zipkin (2008)),
let alone with fixed costs.

5.2.1 System Dynamics

In each period of time t, the sequence of events is as follows:

1. At the beginning of each period t, the firm observes the beginning on-hand inventory level
xt.

2. The firm makes an ordering decision qt ≥ 0. The ending on-hand inventory level (after
receiving the order qt) becomes yt = xt + qt.

3. Then the demand Dt is realized to be dt.

4. If the firm places a positive order quantity, i.e., qt > 0, it incurs a fixed ordering cost K and
a variable ordering cost cqt. All the outstanding inventories incur a per-unit holding cost h,
and all the unsatisfied demand units are lost with a per-unit lost-sales penalty cost p. Note
that p > c in the lost-sales model (see Zipkin (2000)). Hence, the total cost for period t is
given by

Ct(xt,qt,dt) = K1(qt > 0) + cqt + h(xt + qt −dt)+ + p(xt + qt −dt)−. (5.1)

5. Then, the inventory carried over to the next period t + 1 is given by xt+1 = [xt + qt −dt]+.

Note that all xt,yt,qt,Ct are policy-dependent and should be written as xπt ,y
π
t ,q

π
t ,C

π
t for a feasible

policy π. For brevity, we will make the dependency on π implicit whenever there is no ambiguity.

5.2.2 Objective and Assumptions

Let Ft denote the set of all historical information collected up to the beginning of period t, which
includes the past censored demand observations and the past ordering decisions.
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Definition 3. A feasible learning policy π is a sequence of functions {πt}
∞
t=1 such that yt = πt(xt,Ft)

mapping the state, the beginning inventory xt and Ft, to a decision, the ending inventory yt that

satisfies yt ≥ xt (i.e., the ordering decision qt = yt − xt ≥ 0).

Our objective is to find a policy π that minimizes the long-run average expected cost

limsup
T→∞

1
T
E

 T∑
t=1

Cπ
t

 , (5.2)

where Cπ
t is the period-t cost by running π. In this paper, we assume that the demand distribution is

unknown to the firm a priori, and the firm can only make adaptive decisions based on the censored
demands observed over time. Thus, the notion of regret (or cumulative regret) from online learning
(see Shalev-Shwartz et al. (2012)) is a sound performance measure of π, which is defined to be the
difference in total cost between π (that only makes use of censored demands collected over time)
and a clairvoyant optimal policy (that knows the actual demand distribution a priori).

Definition 4. For a feasible learning policy π, the T-period regret of π is

RT := E

 T∑
t=1

Cπ
t

−E
 T∑

t=1

Cπ∗

t

 ,
where π∗ is the optimal policy that minimizes the long-run average expected cost (5.2).

Assumption 5. Throughout this paper, we make the following mild assumptions.

1. Demands {Dt}
∞
t=1 are i.i.d. across all time period t. We use a time-generic symbol D to denote

the distribution, i.e., Dt
d
= D.

2. The probability density function f (·) of demand D is bounded, i.e., f (d) ≤ ρ for all d ≥ 0 for

some constant ρ > 0.

3. The warehouse storage capacity is β (and hence the clairvoyant optimal target level S ∗ ≤ β).

We remark that all the above assumptions are very mild in the inventory learning literature (see,
e.g., Huh et al. (2009); Huh and Rusmevichientong (2009); Zhang et al. (2018, 2019)).

5.2.3 Clairvoyant Optimal Policy – A (δ,S ) Policy

To set the baseline for seeking a good π, we first characterize the clairvoyant optimal policy when
the demand distribution D are given a priori. For ease of the description and analysis of our
learning algorithm later, we slightly transform the conventional (s,S ) policy to an equivalent (δ,S )
policy where δ := S − s is what-we-term inventory gap, which is formalized below.
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Definition 5. We call an inventory control policy π an (s,S ) policy, if the order-up-to level

yt = πt(xt) =

S if xt ≤ s,

xt if xt > S .

Equivalently, by setting δ := S − s, we call an inventory control policy π a (δ,S ) policy, if

yt = πt(xt) =

S if xt ≤ S −δ,

xt if xt > S .

That is, whenever the on-hand inventory xt falls below the triggering level S −δ, the firm places
an order of qt = S − xt to bring the inventory up to S . Note that qt ≥ δ whenever qt > 0, and that is
the reason we term δ the“inventory gap”. The next result re-emphasizes that such a simple structure
is optimal for the clairvoyant problem, and a very concise proof was given by Zheng (1991).

Theorem 5.1 (Zheng (1991)). When the demand distribution is known a priori, there exists a pair

of inventory gap δ∗ ∈ R and order-up-to level S ∗ ∈ R such that the (δ∗,S ∗) policy is optimal, i.e.,

the (δ∗,S ∗) policy minimizes the long-run average expected cost (5.2).

5.3 A (δ,S ) Learning Algorithm

For a fixed (δ,S ) policy, we record the time periods in which the after-ordering inventory yt hits
the inventory target S , i.e., we use {τi}

∞
i=1 to denote these reordering time periods, i.e.,

τ1 = inf {t ≥ 1 : yt = S } , τi+1 = inf {t > τi : yt = S } , for i = 1,2, . . . (5.3)

We call the time interval [τi, τi+1) the ith cycle of the system. Let L(δ,S )
i and H(δ,S )

i denote the length
and the cost of the ith cycle, respectively, i.e.,

L(δ,S )
i := τi+1−τi, H(δ,S )

i := c
(
xτi − xτi+1

)
+

τi+1−1∑
t=τi

Ct. (5.4)

Note that H(δ,S )
i includes the newsvendor cost over [τi, τi+1) and the ordering cost at τi+1. For

notational convenience, we use L(δ,S ) and H(δ,S ) to denote the (time-generic) length and cost of
a random cycle, respectively. Note that L(δ,S ) is, in fact, independent of S , and therefore we shall
use L(δ) for L(δ,S ) interchangeably in the remainder of this paper.

Figure 5.1 illustrates a random cycle of a fixed (δ,S ) policy. It is evident that the inventory
level process regenerates at each τi (i = 1,2, . . .) when the after-ordering inventory level increases
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Figure 5.1: A random cycle with respect to a fixed (δ,S ) policy

to S (see Zheng and Federgruen (1991)). By Assumption 5, we know that E|H(δ,S )| <∞, and then
by applying the Renewal Reward Theorem (see Ross (1996)), we have

lim
T→∞

1
T
E

 T∑
t=1

C(δ,S )
t

 =
E [H(δ,S )]
E [L(δ,S )]

. (5.5)

In essence, (5.5) says that the long-run average expected cost of a fixed (δ,S ) policy equals the
expected cycle cost divided by the expected cycle length. Hence, for the clairvoyant problem, it
follows that the optimal policy π∗ is given by

π∗ = (δ∗,S ∗) ∈ argmin
(δ,S )

E [H(δ,S )]
E [L(δ,S )]

. (5.6)

5.3.1 Transforming the Objective

Following the discussion above, H(δ,S ) and L(δ,S ) are the key variables used to evaluate the per-
formance of a fixed (δ,S ) policy. However, due to the censored demand, when a lost sale occurs
during a cycle, the cycle cost H(δ,S ) is not fully observable. Then we seek an alternative measure-
ment of that cost that is observable to the firm. Note that the censored part of the cost Ct(xt,qt,dt)
in (5.1) is p(xt + qt − dt)−, which is not observable whenever a lost sale occurs. Nevertheless, we
can decompose it as

p(xt + qt −dt)− = pdt − pmin(xt + qt,dt).

The above simple transformation is crucial for our analysis by observing that (a) the first term pdt is
independent of any feasible policy π, and (b) the second term pmin{xt +qt,dt} is policy-dependent
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but observable. Thus, we define what-we-call pseudo cost by dropping the first term

C̃t(xt,qt,dt) := Ct(xt,qt,dt)− pdt = K1[qt > 0] + cqt + h(xt + qt −dt)+− pmin(xt + qt,dt). (5.7)

For a fixed (δ,S ) policy, we define the cycle pseudo cost to include all the newsvendor cost over
the interval [τi, τi+1) and the ordering cost at τi+1, i.e.,

G(δ,S )
i := c(xτi − xτi+1) +

τi+1−1∑
t=τi

C̃t.

Again, for notational convenience, we use G(δ,S ) to denote the (time-generic) cycle pseudo cost
of a random cycle. The same renewal argument for deriving (5.5) implies that

lim
T→∞

1
T
E

 T∑
t=1

C̃(δ,S )
t

 =
E [G(δ,S )]
E [L(δ,S )]

. (5.8)

Also, we note that

lim
T→∞

1
T
E

 T∑
t=1

C(δ,S )
t

− lim
T→∞

1
T
E

 T∑
t=1

C̃(δ,S )
t

 = pE [D] .

The difference between the long-run average cost and pseudo cost is pE [D], which is independent
of any chosen feasible policy, and therefore an equivalent objective to (5.6) is given by

π∗ = (δ∗,S ∗) ∈ argmin
(δ,S )

E [G(δ,S )]
E [L(δ,S )]

. (5.9)

For notational convenience, we let V(δ,S ) := E [G(δ,S )]/E [L(δ,S )], and the optimal value under
the optimal policy is V∗ := V(δ∗,S ∗).

5.3.2 Properties of the Transformed Objective

We shall establish some desirable properties of V(δ,S ), such as convexity and smoothness, in
Theorem 5.2. For better flow of the paper, the proofs for this section are deferred to the Appendix.

Lemma 2. Let γ := K + (h + c + p)β. Then the pseudo cost |C̃t| ≤ γ for all t ≥ 1.

Because G(δ,S ) is cycle pseudo cost and L(δ,S ) is cycle length, following Lemma 2, we im-
mediately have |G(δ,S )/L(δ,S )| ≤ γ. To establish the smoothness of V(δ,S ), we prove a non-trivial
technical result, which asserts that the hitting time of an ascending random walk is Lipschitz in the
hitting target level. The proof is of independent interest.
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Lemma 3 (Lipschitz Hitting Time of Ascending Random Walk). Suppose {Dt}
∞
t=1 is a sequence of

i.i.d. positive random variables with densities bounded by constant ρ. Define an ascending random

walk W0 = 0, Wt =
∑t

i=1 Di. For any δ > 0, let L(δ) be the hitting time to the interval [δ,∞), i.e.,

L(δ) = min{t : Wt ≥ δ}. Then, E [L(δ)] is Lipschitz in δ with Lipschitz constant 6ρ.

With the aid of the above two lemmas, we shall show that V(δ,S ) has convexity and smoothness

properties that are essential for building our (δ,S ) learning algorithm.

Theorem 5.2 (Stucture of the Objective Function V(δ,S )). When 0 ≤ δ ≤ S ≤ β, our objective

function V(δ,S ) has the following properties.

1. For any fixed δ, V(δ,S ) is Lipschitz and convex in S . Moreover, the Lipschitz constant can

be chosen independent of δ.

2. For any fixed δ, given a cycle with length L and an ending inventory level xL+1, we have

∇̃ :=

hL, if xL+1 > 0

h(L−1)− p + c, if xL+1 = 0
(5.10)

is an unbiased stochastic (S -partial) gradient for E [G(δ,S )], i.e., ∇SE [G(δ,S )] = E
[
∇̃
]
.

3. Define the objective function in δ with the optimized S for each δ by

V∗(δ) := min
S∈[δ,β]

V(δ,S ). (5.11)

Then V∗(δ) is Lipschitz in δ.

5.3.3 Description of the (δ,S ) Learning Algorithm

The proposed learning (δ,S ) algorithm is the first nonparametric learning algorithm for stochastic
inventory system with fixed costs. This algorithm integrates the zeroth- and first-order optimization
and simulation techniques. Leveraging on this innovative framework, our algorithm can achieve
provably optimal regret rate up to a logarithmic factor (see the performance analysis in §5.4).

Parameters. Let J be the number of discrete inventory gaps, ηn be the stochastic gradient descent
step size of the nth iteration, ∆n be the so-called confidence size of the nth iteration. We will specify
how to choose the optimal values of these parameters later in our main analysis.

Initialization.

(0a) We discretize the feasible region of inventory gap δ, namely, [0,β], into an equal spacing set
of J number of inventory gaps {δ1, . . . , δJ} where δ j = jβ/J.
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(0b) For inventory gap δ j, we initialize the target inventory level S 1
j ∈ [δ j,β] arbitrarily.

(0c) The algorithm maintains a what-we-call active set An that contains the favorable candidates
of optimal solution after the nth iteration. We initialize A1 = {1, . . . , J}. As the learning
algorithm proceeds and n increases, the set An decreases. (We are removing the unlikely
candidates gradually when information is sufficient.)

(0d) For each j ∈ An, we also keep track of the cumulative cycle pseudo cost Ĝn−1
j and the cu-

mulative cycle length L̂n−1
j over the last n−1 iterations. We initialize Ĝ0

j = 0 and L̂0
j = 0 for

j = 1,2, . . . , J.

Main Loop. The algorithm proceeds in epochs where each epoch consists of one or more complete
cycles. We index the epochs by n = 1,2, . . . , and each epoch corresponds to an exact iteration of
the algorithm below. The main idea of the algorithm proceeding in epochs is to ensure that the
collected (censored) demand information within each epoch n is sufficient for simulating all the
candidate policies in the active set An in parallel.

At the beginning of each epoch n, we observe the on-hand inventory, denoted by xn. We
perform the following crucial operation termed Simulation of All Active Policies (SAAP).

(1a) Find the maximum target level S n
j among policies j ∈An and record its index

jn := argmax
j∈An

S n
j . (5.12)

In other words, the policy (δ jn ,S n
jn) has the highest target order-up-to level among all “favor-

able candidates” within the active set An.

(1b) Compare S jn with the epoch beginning inventory level xn to decide whether S jn is feasible.
If S jn > xn, we choose to implement the policy (δ jn ,S jn); otherwise, we choose to implement
the policy (δ jn , xn). In other words, for the nth epoch, we choose to implement the policy

(δn,S n) := (δ jn ,max(xn,S n
jn)). (5.13)

(1c) Find the maximum inventory gap, denoted by δ̄n, among the active set An. That is,

δ̄n := max
j∈An

δ j. (5.14)

We run the policy (δn,S n) in (5.13) for some complete cycles until the cumulative demand
for the nth epoch exceeds the maximum inventory gap δ̄n. We then go to the next epoch.
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(1d) Leverage the (censored) demand collected within the nth epoch to simulate all the candidate
policies j ∈ An in parallel, and collect their respective simulated cycle pseudo cost Gn

j and
cycle length Ln

j and stochastic gradient ∇̃n
j defined in (5.10). We will discuss how and why

such a simulation operation works in the next subsection.

With the simulated information gathered above by SAAP, we carry out the following updates.

(2a) Update S n
j for each j ∈An by a stochastic gradient step (the first-order optimization):

S n+1
j = Proj[δ j,β]

(
S n

j −ηn∇̃
n
j

)
,

where the stochastic gradient ∇̃n
j defined in (5.10).

(2b) Update the cumulative cycle pseudo cost and cycle length for each j ∈An:

Ĝn
j = Ĝn−1

j +Gn
j , L̂n

j = L̂n−1
j + Ln

j . (5.15)

(2c) Update the active set An by a bandit-like step (the zeroth-order optimization):

An+1 =

 j ∈An :
Ĝn

j

L̂n
j

−min
j′

Ĝn
j′

L̂n
j′
≤ ∆n

 . (5.16)

The main idea is to prune and refine the active set An based on their empirical performances
gauged by a confidence metric ∆n. That is, with very high probability, suboptimal policies
will be gradually removed from this active set. We go to the (n + 1)th epoch, and repeat.

This concludes the description of our (δ,S ) learning algorithm. For the convenience of practical
implementation, we also provide a detailed pseudo code in Algorithm 5.1.

5.3.4 Main Ideas of SAAP

A pivotal step in the algorithm is the Simulation of All Active Policies (SAAP). We shall discuss
why the above specified rules can indeed collect sufficient demand information from applying one
particular “information maximizing” policy to simulate all the rest within an active set.

Consider two policies (δ1,S 1) and (δ2,S 2) with δ1 ≥ δ2 and S 1 ≥ S 2. It is clear that the demands
collected from a cycle of the policy (δ1,S 1) can be used to simulate a cycle of policy (δ2,S 2). An
example is shown in Figure 5.2. We simply re-use and “shift down” the sample path obtained
from running (δ1,S 1) to simulate (δ2,S 2) and apply early stopping when the cumulative demand
exceeds δ2, which is always feasible. Thus, following the above logic, in the nth epoch if we could
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Algorithm 5.1 A (δ,S ) Learning Algorithm
1: Let J = # discrete δ’s, and ηn = step size, and ∆n = confidence size. . Parameters
2: Initialize the active set A1 = {1, . . . , J}; . Initialization
3: For j ∈A1, define δ j =

j
Jβ and assign S 1

j ∈ [δ j,β] arbitrarily; set the cumulative cycle pseudo
cost Ĝ0

j = 0 and the cumulative cycle length L̂0
j = 0.

4: for n = 1,2, . . . do . Main Loop
5: Let xn be the epoch beginning inventory.
6: Let the index jn = argmax j∈An S n

j (with the maximum target level).
7: Let the maximum inventory gap δ̄n = max j∈An δ j.
8: Let the demand set Dn = ∅.
9: while

∑
d∈Dn d ≤ δ̄n do . while the cumulative demand has not exceeded δ̄n

10: Apply the policy (δn,S n) := (δ jn ,max(xn,S n
jn)).

11: Append the realized sales into the demand set Dn.
12: end while
13: Complete the current cycle: keep running (δn,S n) policy until inventory drops below S n−

δn.
14: for j ∈An do . SAAP and SGD
15: Simulate the (S j, δ j) policy for one cycle using the collected demands in Dn.
16: Compute the simulated cycle pseudo cost Gn

j , cycle length Ln
j and stochastic gradient

∇̃n
j .

17: Update the target inventory level . Running the first-order optimization

S n+1
j = Proj[δ j,β]

(
S n

j −ηn∇̃
n
j

)
, Ĝn

j = Ĝn−1
j +Gn

j , L̂n
j = L̂n−1

j + Ln
j .

18: end for
19: Update and prune the active set . Running the zeroth-order optimization

An+1 =

 j ∈An :
Ĝn

j

L̂n
j

− min
j′∈An

Ĝn
j′

L̂n
j′
≤ ∆n

 .
20: end for

implement the policy (
max
j∈An

δ j,max
j∈An

S n
j

)
=

(
δ̄n,S n

jn
)

where jn and δ̄n are given in (5.12) and (5.14), respectively, we would be able to simulate all other
active policies. However, the problem is that the policy (δ̄n,S n

jn) itself may not be in the active set
An. In fact, we could implement (δ jn ,S n

jn) at best (as it belongs to An). Comparing the two policies
(δ jn ,S n

jn) and (δ̄n,S n
jn), there is a gap δ̄n−δ jn that requires additional demand information.

Our solution is to extend the implementation of (δ jn ,S n
jn) for potentially more than one com-

plete cycles until the cumulative demand exceeds δ̄n, so that the cumulative demand information
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Figure 5.2: Simulation of another policy by “shifting down” the demands

Figure 5.3: Simulation of another policy by “gluing” the Demands

(“glued” across cycles) becomes sufficient to simulate all the policies within the active set. Fig-
ure 5.3 gives an example that “glues” two cycles of demands obtained from running the policy
(δ jn ,S n

jn) so that the cumulative demand exceeds the maximum inventory gap δ̄n, thereby being
able to simulate the policy (δ̄n,S n

jn) and, hence, all policies within the active set.
It is also worth noting that the size of the active set An plays a key role in balancing the trade-off

between exploration and exploitation. A larger active set An enables the decision maker to collect
more information across more policies, whereas a smaller active set An focuses on the policies
with sound hitherto empirical performance. In our performance analysis, we shall prove that our
algorithm can achieve the optimal trade-off, by carefully choosing an adaptive confidence size ∆n.
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5.4 Performance Analysis of the (δ,S ) Learning Algorithm

For ease of notation, we use the number of epochs N instead of the number of periods T to mea-
sure the regret, and we shall show that our (δ,S ) algorithm achieves O

(
log N

√
N
)

regret, which
clearly implies O

(
logT

√
T
)
, since N ≤ T . Note that Zhang et al. (2019) has established a lower

bound Ω(
√

T ) for the repeated newsvendor problem (with no fixed cost and inventory carryover).
Therefore, our regret bound is tight, up to a logarithmic factor.

Theorem 5.3 below states the main result of this paper.

Theorem 5.3 (Regret Bound). For any given integer N ≥ 1, if we set the parameters J = b
√

Nc, ηn =
β

ξ
√

n
, and ∆n =

2θ log(8N2)
√

n
, where the constants ξ and θ are given in (5.28) and (5.32), respectively,

then our (δ,S ) learning algorithm has regret RN = O
(
log N

√
N
)
.

Note that Theorem 5.3 requires the prior knowledge of N, which may not be always avail-
able. However, we can readily apply the so-called doubling trick from online learning literature to
remove this prior dependence on N to achieve an “anytime” algorithm. The idea is as follows.

1. We partition epochs into groups of exponentially increasing lengths.

2. We apply our algorithm for each group with parameters chosen according to the group
length.

Then the new regret obtained for the anytime algorithm remains the same.

Theorem 5.4 (Regret Bound for Anytime Algorithm). We divide epochs into groups where the mth

(m = 0,1,2, . . .) group contains epochs {2m, . . . ,2m+1 − 1}. For the mth group, we apply the (δ,S )
learning algorithm with parameters J = b

√
2mc, η2m+n−1 =

β

ξ
√

n
and ∆2m+n−1 =

2θ log(2m+3)
√

n
, where

1 ≤ n ≤ 2m and the constants ξ and θ are given in (5.28) and (5.32), respectively. Then our (δ,S )
learning algorithm has regret RN = O

(
log N

√
N
)
.

Proof. Proof of Theorem 5.4. By Theorem 5.3, given the total number of epochs N, our (δ,S )
learning algorithm achieves O

(
log N

√
N
)

regret. More explicitly, there exist some constants α1,α2 ≥

0,
RN ≤ α1 log N

√
N +α2. (5.17)

Now, suppose the number of epoch N is unknown. Considering the first m + 1 groups (where
m = 0,1,2 . . .) contain 1+2+22 + · · ·+2m = 2m+1−1 periods in total, if M := min

{
m : 2m+1−1 ≥ N

}
,

then we have

RN ≤

M∑
m=0

(
α1(log2)m

√
2m +α2

)
, (5.18)

61



where the inequality is because, for the mth group, we apply our algorithm with known epoch
length 2m, and therefore, following (5.17), the regret is less than α1(log2)m

√
2m +α2. Since

M∑
m=0

m
√

2m ≤

∫ M+1

0
m
√

2mdm =
4 + 2

[
(M + 1) log2−2

]√
2(M+1)

(log2)2

and N ≥ 2M (by the definition of M), then (5.18) implies RN = O
(
log N

√
N
)
.

5.4.1 Proof of Theorem 5.3

The remainder of this section is to establish our main result, i.e., Theorem 5.3.
We first formally define the epoch length and epoch pseudo cost with respect to a (δ,S ) policy

and a maximum inventory gap δ̄ as follows. Recall that {τi}
∞
i=1 are reorder periods defined in (5.3),

which divides the planning horizon into cycles. We can group cycles into epochs such that the
cumulative demand within an epoch exceeds δ̄. More precisely, the nth epoch consists of the set of
periods {τin , τin + 1, . . . , τin+1 −1} where

τi1 = τ1, and τin+1 = min

τi : i > in and
τi−1∑
t=τin

Dt ≥ δ̄

 , for n = 2,3, . . .

Extending the notation of the cycle pseudo cost and cycle length defined in (5.4) with an addi-
tional argument δ̄, we use L̃(δ,S ,δ̄)

n and G̃(δ,S ,δ̄)
n to denote the length and pseudo cost of the nth epoch,

respectively, where G̃(δ,S ,δ̄)
n includes the newsvendor cost over [τin , . . . , τin+1) and the ordering cost

at τin+1 . For notational convenience, we use L̃(δ,S , δ̄) and G̃(δ,S , δ̄) to denote the (time-generic)
epoch length and epoch pseudo cost, respectively.

It is evident that the inventory level process regenerates at the beginning of each epoch τin

(n = 1,2, . . .). By Assumption 5, we know that E
[
G̃(δ,S , δ̄)

]
<∞, and then by apply the Renewal

Reward Theorem (see Ross (1996)) and (5.8), we have

lim
T→∞

1
T
E

 T∑
t=1

C̃(δ,S )
t

 =
G̃(δ,S , δ̄)
L̃(δ,S , δ̄)

=
G(δ,S )
L(δ,S )

= V(δ,S ). (5.19)

We remark here that G̃(δn,S n, δ̄n) is not exactly describing the total cost occurred in the nth epoch of
our learning algorithm, because at the end of the nth epoch, for making the transition to next epoch,
we shall order up to S n+1 rather than S n, which leads to a cost difference of size c(S n+1−S n).

Without loss of generality, we assume x0 = 0 and we order S 1 at the first period, which leads
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to an ordering cost K + cS 1 that is not included in any epoch. We can write the regret as follows.

RN = E

K + cS 1 +

N∑
n=1

(
G̃(δn,S n, δ̄n) + c(S n+1−S n)

)
−TV∗


=

N∑
n=1

E
[
G̃(δn,S n, δ̄n)

]
−E [T ]V∗+ cS N+1 + K

=

N∑
n=1

E
[
G̃(δn,S n, δ̄n)

]
E

[
L̃(δn,S n, δ̄n)

] ·E [
L̃(δn,S n, δ̄n)

]
−E

 N∑
n=1

L̃(δn,S n, δ̄n)

V∗+ cS N+1 + K

= E
[
L̃(S n, δn, δ̄n)

]
E

 N∑
n=1

E
[
G̃(δn,S n, δ̄n)

]
E

[
L̃(δn,S n, δ̄n)

] −V∗

+ cS N+1 + K

≤ 2E
[
L̄
]
·E

 N∑
n=1

(V(δn,S n)−V∗)

+ cβ+ K, (5.20)

where the last inequality follows from that S N+1 ≤ β and (5.19) and

E
[
L̃
(
δn,S n, δ̄n

)]
≤ E

[
2L̄

]
for n = 1,2, . . . ,N. (5.21)

Note that (5.21) holds true because, in the nth epoch, we first wait until the cumulative demand ex-
ceed δ̄n, and then complete the potentially incomplete cycle, i.e., E

[
L̃
(
δn,S n, δ̄n

)]
≤E

[
L(δ̄n) + L(δn)

]
.

To obtain the regret bound, by (5.20), it suffices to bound the difference between V(δn,S n) and
V∗. To this end, we consider three intermediate policies bridging the original learning policy with
the clairvoyant optimal policy, as shown in Figure 5.4.

1. Learning Policy: Apply the policy (δn,S n) where S n = max(xn,S n
jn) as in Algorithm 5.1.

2. Bridging Policy I: Apply the policy (δn,S n
jn) whose long-run average pseudo cost is V(δn,S n

jn).

3. Bridging Policy II: Apply the policy (δn,S ∗(δn)) whose long-run average pseudo cost is

V∗jn := V(δn,S ∗(δn)), where S ∗(δn) = arg min
s∈[δn,β]

V(δn,S ).

That is, given any fixed δn, we apply the optimal order-up-to level S ∗(δn).

4. Bridging Policy III: Apply the policy (δ j∗ ,S ∗(δ j∗)) whose long-run average pseudo cost is
V∗j∗ where j∗ = argmin j∈{1,...,J}V∗j . That is, we apply the optimal discrete inventory gap δ j∗

and the corresponding optimal order-up-to level S ∗(δ j∗).

5. Clairvoyant Optimal Policy: Apply the policy (δ∗,S ∗).
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Figure 5.4: A series of bridging policies for the performance analysis

Given the above bridging policies, we decompose E
[∑N

n=1(V(δn,S n)−V∗)
]

in (5.20) as follows.

E

 N∑
n=1

(V(δn,S n)−V∗)

 =E

 N∑
n=1

(V(δn,S n)−V(δn,S n
jn))

+E

 N∑
n=1

(V(δn,S n
jn)−V∗jn)


+E

 N∑
n=1

(
V∗jn −V∗j∗

)+ N(V∗j∗ −V∗). (5.22)

Thus, to show Theorem 5.3, it suffices to show the following propositions.

Proposition 5.1 (Discretization Loss Bound).

N(V∗j∗ −V∗) ≤ O(
√

N). (5.23)

Proposition 5.2 (Pruning Loss Bound).

E

 N∑
n=1

(
V∗jn −V∗j∗

) = O
(
log N

√
N
)
. (5.24)

Proposition 5.3 (Inventory-Carryover Loss Bound).

E

 N∑
n=1

(V(δn,S n)−V(δn,S n
jn))

 = O(
√

N). (5.25)
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Proposition 5.4 (SGD Loss Bound).

E

 N∑
n=1

(V(δn,S n
jn)−V∗jn)

 = O
(√

N
)
. (5.26)

Proof. Proof of Theorem 5.3. The result is an immediate consequence of Propositions 5.1–5.4.

High-Level Intuitions: Let us provide high-level intuitions, before delving into the analysis.

1. Proposition 5.1 concerns the fourth term on the RHS of (5.22), which links the clairvoyant
optimal policy with the bridging policy III. Since the bridging policy III is the optimal policy
on the discrete grid {δ j} j∈[J], the loss of regret is due to the so-called discretization loss. Such
a loss can be bounded by carefully choosing the grid size for discretization and also relying
on the Lipschitz continuity of the objective function.

2. Proposition 5.2, which contains the major innovation of this paper, concerns the third term
on the RHS of (5.22), which links the bridging policy III with the bridging policy II. Note that
the bridging policy III gives us V∗j∗ which is the optimal policy using the best δ j∗ on the grid
{δ j} j∈[J], and the bridging policy II gives us V∗jn which is the optimal policy using δ jn where
jn ∈ An is prescribed by our algorithm. Note that A1 = [J] at the start, and the algorithm
gradually removes candidate policies (based on their hitherto empirical performances) from
the active set An. It is critical that we ensure that the best δ j∗ is not being removed from
the active set with an overwhelmingly high probability. To achieve this, we need to analyze
the empirical estimator of the objective value, develop a new high probability bound for
sub-exponential stochastic gradient descent (SGD), and also carefully choose the confidence
size to update our active set in each iteration. Bounding such a loss is central to our regret
analysis, and integrates the powers of SGD and bandit controls in a seamless and non-trivial
fashion.

3. Proposition 5.3 concerns the first term on the RHS of (5.22), which links the bridging policy
I with the original learning policy. The original learning policy sometimes cannot attain the
desired target inventory level if the ending inventory carried over from the previous period
is higher. Such a difference between the target level and the actual implemented level in-
troduces an additional loss. We develop a new queueing system argument (that differs from
existing ones) to bound the loss of not being able to immediately adjust to the desired target
level.

4. Proposition 5.4 concerns the second term on the RHS of (5.22), which links the bridging
policy II with the bridging policy I. The high-level idea is to ensure the prescribed target

65



level S n
jn is approaching the optimal target level S ∗jn uniformly fast for all δn = δ jn , which

can be achieved using our SAAP approach. The key is to be able to simulate all candidate
policies within the active set An at each iteration, and therefore we can run SGD on all of
them in a synchronized manner. Building upon the algorithmic construction, the analysis of
this loss is standard.

We reiterate here that the previous approaches used in Huh et al. (2009); Huh and Rusmevichien-
tong (2009); Zhang et al. (2018, 2019) rely heavily on the convexity of the objectives, and therefore
need not maintain and adaptively prune an active set of all favorable policies. Taking into account
of fixed cost, just as every other paper in inventory theory (be it learning or not), changes the
landscape of the problem and spurs a new methodological development.

5.4.2 Proof of Proposition 5.1 – Bounding the Discretization Loss

We first bound the last term on the RHS of (5.22). The intuition is simple. That is, this term
captures the difference between the “discrete” optimal long-run average pseudo cost on the grid
{δ j} j∈[J] and the true optimal long-run average pseudo cost, which can be bounded by choosing the
grid size J = b

√
Nc and using the Lipschitz continuity of V∗(δ) in (5.11).

Proof. Proof of Proposition 5.1. Note that we initialize the active set A1 with size J = b
√

Nc. This
implies that if we choose δk on the grid {δ j} j∈[J] that is closest to the clairvoyant optimal δ∗, i.e.,

k = arg min
j∈[J]
|δ∗−δ j|,

then |δ∗ − δk| ≤ β/b
√

Nc. Furthermore, by the Lipschitz continuity of V∗(δ) in Theorem 5.2, we
have

V∗j∗ −V∗ = V∗(δ j∗)−V∗(δ∗) ≤ V∗(δk)−V∗(δ∗) ≤ O(1/
√

N),

which leads the desired result.

5.4.3 Proof of Proposition 5.2 – Bounding the Pruning Loss

For each epoch n, the active set An contains the indices of polices with high hitherto empirical
performances. Recall the cumulative empirical Ĝn

j and L̂n
j defined in (5.15). Let

V̂n
j := V̂n

(
δ j

)
:=

Ĝn
j

L̂n
j

(5.27)
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denote our n-step estimator for the optimal long-run average pseudo cost with the inventory gap δ j

in the nth epoch. First, we shall argue that this empirical estimator V̂n
j is a good approximation for

V∗j := V∗
(
δ j

)
. To achieve that, we will need the following results.

Lemma 4 (Sub-Exponentials). There exist positive constants ν,b and ξ such that, for any feasible

(δ,S ) policy, the following statements hold.

1. The corresponding cycle length L, cycle cost G and stochastic gradient ∇̃ defined in (5.10)
are sub-exponential with parameters (ν,b) (see Definition 7).

2. The second moment of the stochastic gradient ∇̃ is bounded by ξ2, i.e.,

E
[
∇̃2

]
≤ ξ2, where ξ := max(p,c,h)

√
E

[
L̄2

]
. (5.28)

Proof. Step I. We shall show L̄ = L(β) is sub-exponential by arguing that P
[
L(β) > t

]
decays sub-

exponentially as t increases. Let F be the cdf of demand Dt. Define Ut := F (Dt), so Ut follows the
uniform distribution on [0,1] . Since D is positive and ρ bounds the pdf of Dt, we have F(0) = 0
and ‖F′‖∞ ≤ ρ, which implies, for any x ≥ 0, we have F (x) ≤ ρx. Hence, from the definition of U,
Ut ≤ ρDt. Without loss of generality, let t be an even positive integer. Consider

P
[
L(β) ≥ t

]
= P

 t∑
i=1

Di < β

 ≤ P
 t∑

i=1

Ut < βρ

 =
1
t!

bβρc∑
k=0

(−1)k
(
t
k

)
(βρ− k)t

=
1
t!

bβρc∑
k=0

(−1)k t!
k!(t− k)!

(βρ− k)t ≤
1

( t
2 !)2

bβρc∑
k=0

(βρ− k)t

≤
1

( t
2 !)2

(βρ+ 1)(βρ)t ≤ e4(βρ+ 1)
(

e
βρ

)−t

where the second equality holds because the sum of uniform random variables
∑t

i=1 Ut follows the
Irwin-Hall distribution with parameter t, and the last inequality is because 1/( t

2 !)2 ≤ e4−t for all
t ≥ 0. Thus, we conclude that L̄ is sub-exponential.

Step II. We shall show that there exists (ν1,b1) such that, for any policy (δ,S ), its cycle length L is
(ν1,b1) sub-exponential. Since L̄ is sub-exponential, by the equivalent characterization in Theorem
5.7, there is a positive constant b such that E

[
exp

(
λ
(
L̄ +E

[
L̄
]))]

<∞ for any λ ≤ 1/b. By Taylor’s
expansion,

E
[
exp

(
λ
(
L̄ +E

[
L̄
]))]

= 1 +λE
[(

L̄ +E
[
L̄
])]

+

λ2E
[(

L̄ +E
[
L̄
])2

]
2

+

∞∑
k=3

λkE
[(

L̄ +E
[
L̄
])k

]
k!

,
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which implies that

∑∞
k=3

λkE
[
(L̄+E[L̄])k]

k!

λ2 =
E

[
exp

(
λ
(
L̄ +E

[
L̄
]))]
−1−λE

[(
L̄−E

[
L̄
])]

+
λ2E

[
(L̄+E[L̄])2]

2

λ2 . (5.29)

By L’Hôspital’s rule, we have that (5.29) converges to 0 as λ→ 0, which implies that

∑∞
k=3

λkE
[
(L̄+E[L̄])k]

k!

λ2 = o
(
λ2

)
. (5.30)

Now, consider

E
[
exp(λ (L−EL))

]
= 1 +

λ2E
[
(L−EL)2

]
2

+

∞∑
k=3

λkE
[
(L−EL)k

]
k!

≤ 1 +
λ2E

[
L2

]
2

+

∞∑
k=3

λkE
[
(L +E [L])k

]
k!

≤ 1 +
λ2E

[
L̄2

]
2

+

∞∑
k=3

λkE
[(

L̄ +E
[
L̄
])k

]
k!

≤ 1 +
λ2E

[
L̄2

]
2

+ o
(
λ2

)
,

where the last inequality follows from (5.30).
On the other hand, for all ν > 0, we have

exp
(
λ2ν2

2

)
= 1 +

λ2ν2

2
+ o

(
λ2

)
.

Note, since L̄ is sub-exponential, its second moment E
[
L̄2

]
<∞. If we choose ν1 such that ν2

1 >

E
[
L̄2

]
, there exists b1 > 0 such that

E
[
exp(λ (L−EL))

]
≤ exp

λ2ν2
1

2

 , for all |λ| ≤
1
b1
,

which shows that L is (ν1,b1)-sub-exponential.

Step III. We shall apply similar arguments to show that there exists (ν2,b2) such that, for any
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policy (δ,S ), its cycle cost G is (ν2,b2) sub-exponential.

E
[
exp(λ (G−EG))

]
= 1 +

λ2E
[
(G−EG)2

]
2

+

∞∑
k=3

λkE
[
(G−EG)k

]
k!

= 1 +
λ2E

[
G2

]
2

+

∞∑
k=3

λkE
[
(γL +γEL)k

]
k!

≤ 1 +λ
γ2E

[
L2

]
2

+

∞∑
k=3

λkE
[(
γL̄ +γEL̄

)k
]

k!

≤ 1 +λ
γ2E

[
L̄2

]
2

+ o
(
λ2

)
.

Therefore, if we choose ν2 such that ν2
2 > γ

2E
[
L̄2

]
, there exists b2 > 0 such that

E
[
exp(λ (G−EG))

]
≤ exp

λ2ν2
2

2

 , for all |λ| ≤
1
b2
,

which shows that G is also (ν2,b2)-sub-exponential.

Step IV. We shall show that there exists (ν3,b3) such that, for any policy (δ,S ), the stochastic
gradient ∇̃ defined in (5.10) is (v3,b3) sub-exponential, and, consequently, has a bounded second
moment. By the definition ∇̃ in (5.10), we have |∇̃| ≤ max(c,h, p) L. Again, by applying similar
arguments, we have

E
[
exp

(
λ
(
∇̃−E∇̃

))]
= 1 +

λ2E
[(
∇̃−E

[
∇̃
])2

]
2

+

∞∑
k=3

λkE
[(
∇̃−E

[
∇̃
])k

]
k!

≤ 1 +
λ2E

[
∇̃2

]
2

+

∞∑
k=3

λkE
[(

max(c,h, p) L +E
[
max(c,h, p) L

])k
]

k!

≤ 1 +
λ2 (max(c,h, p))2E

[
L̄2

]
2

+

∞∑
k=3

λk (max(c,h, p))kE
[(

L̄ +E
[
L̄
])k

]
k!

≤ 1 +
λ2 (max(c,h, p))2E

[
L̄2

]
2

+ o
(
λ2

)
.

Therefore, if we choose ν3 such that ν2
3 > max(h, p,c)2E

[
L̄2

]
, there exists b3 > 0 such that

E
[
exp

(
λ
(
∇̃−E∇̃

))]
≤ exp

λ2ν2
3

2

 , for all |λ| ≤
1
b3
,
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which shows that ∇̃ is (ν3,b3) sub-exponential. Since |∇̃| ≤ max(p,c,h) L̄, we have (5.28). To
complete the proof, we choose ν = max(ν1, ν2, ν3) and b = max(b1,b2,b3).

At the nth epoch, for each index j of inventory gap δ j that remains in the active set An, we want
to bound the sub-optimality gap between the empirical estimator V̂n

j and the estimand V∗j with a
high probability, which is formally stated in Lemma 5 below.

However, to achieve the desired results in Lemma 5, we shall develop a new high probability
regret bound for the general sub-exponential SGD algorithm in Theorem 5.5 below. Since Theorem
5.5 is very useful and of independent interest outside the context of this paper, we state and prove
the results with a general convex function f with argument z.

Theorem 5.5 (High Probability Regret Bound for Sub-Exponential SGD). Let {zi}
n
i=1 be a sequence

generated by the projected stochastic gradient descent algorithm with respect to a convex function

f (·) with a domain K, i.e.,

z1 ∈K and zi+1 = ProjK
[
zi−ηi∇̃i

]
for i = 1, . . . ,n−1,

where ∇̃i is a stochastic gradient of f at xi and ηi is the step size in the ith iteration.

We make the following assumptions:

1. The diameter of function domain K is bounded by β. i.e., supz1,z2∈K ‖z1− z2‖ ≤ β.

2. For i = 1,2, . . . ,n− 1, conditional on zi, the stochastic gradient ∇̃i is (ν,b)-sub-exponential

random vector (see Definition 8) with the second moment bounded by a positive constant ξ2

.

Then, if choosing the step size ηi =
β

ξ
√

i
, we have, with probability at least 1−δ,

1
n

n∑
i=1

[
f (zi)− f

(
z∗

)]
≤max


√

2β2ν2 log(1/δ)
n

,
2b log(1/δ)

n

+
3βξ
2
√

n
,

where z∗ = argminz∈K f (z) .

Proof. Proof. Since f is convex, we have

1
n

n∑
i=1

[ f (zi)− f
(
z∗

)
] ≤

1
n

n∑
i=1

〈
∇ f (zi) ,zi− z∗

〉
=

1
n

n∑
i=1

〈
∇ f (zi)−∇̃i,zi− z∗

〉
+

1
n

n∑
i=1

〈
∇̃i,zi− z∗

〉
. (5.31)
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Step I: We shall show that the second term on the RHS of (5.31)

1
n

n∑
i=1

〈
∇̃i,zi− z∗

〉
≤

3ξβ
2
√

n
almost surely.

Note that ∥∥∥zi+1− z∗
∥∥∥2

=
∥∥∥∥ProjK

(
zi−ηi∇̃i

)
− z∗

∥∥∥∥2
≤

∥∥∥zi−ηi∇̃i− z∗
∥∥∥2
.

Hence, ∥∥∥zi+1− z∗
∥∥∥2
≤

∥∥∥zi− z∗
∥∥∥2

+η2
i

∥∥∥∇̃i
∥∥∥2
−2ηi

〈
∇̃i,zi− z∗

〉
,

which implies that

2
〈
∇̃i,zi− z∗

〉
≤
‖zi− z∗‖2−‖zi+1− z∗‖2

ηi
+ηi

∥∥∥∇̃i
∥∥∥2
.

Therefore,

2
n∑

i=1

〈
∇̃i,zi− z∗

〉
≤

n∑
i=1

(
‖zi− z∗‖2−‖zi+1− z∗‖2

ηi
+ηi

∥∥∥∇̃i
∥∥∥2

)

≤

n∑
i=1

(∥∥∥zi− z∗
∥∥∥2

(
1
ηi
−

1
ηi−1

)
+ηiξ

2
)

≤ β2 1
ηn

+

n∑
i=1

ηiξ
2

≤ 3βξ
√

n,

where 1
η0

:= 0, and the last inequality follows from that ηi =
β

ξ
√

i
and

∑n
i=1 1/

√
i ≤ 2
√

n.

Step II: We shall show that the first term on the RHS of (5.31)

1
n

n∑
i=1

〈
∇ f (zi)−∇̃i,zi− z∗

〉
≤max


√

2β2ν2 log(1/δ)
n

,
2b log(1/δ)

n

 .
with probability at least 1−δ. Define the filtration Fi = σ

(
∇̃1, . . . , ∇̃i

)
. Then we have

E
[〈
∇ f (zi)−∇̃i,zi− z∗

〉
|Fi−1

]
= E

[〈
∇ f (zi)−∇̃i,zi− z∗

〉
|zi

]
= 0,

which shows that {〈∇ f (zi)− ∇̃i,zi − z∗〉,Fi}i is a martingale difference sequence (see Definition
6). Since ∇̃i is (ν,b)-sub-exponential, we have that 〈∇ f (zi)− ∇̃i,zi− z∗〉 is (βν,b)-sub-exponential.
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Thus, by Azuma’s inequality stated in Theorem 5.8, we have

P

1
n

n∑
i=1

〈
∇ f (zi)−∇̃i,zi− z∗

〉
≥ t

 ≤
e
− nt2

2β2ν2 for 0 ≤ t ≤ β2ν2

b

e−
nt
2b for t > β2ν2

b

≤max
{

e−
nt
2b ,e

− nt2

2β2ν2

}

which implies that

1
n

n∑
i=1

〈
∇ f (zi)−∇̃i,zi− z∗

〉
≤max


√

2β2ν2 log(1/δ)
n

,
2b log(1/δ)

n


with probability at least 1−δ.

Lemma 5 below quantifies the estimation error between the empirical estimator V̂n
j and the

estimand V∗j by running the stochastic gradient descent on S for the inventory gap δ j.

Lemma 5 (Estimation Confidence Bound). For any κ ∈ (0,1), we have, with probability at least

1− κ, ∣∣∣∣V̂n
j −V∗j

∣∣∣∣ ≤ θ log(8/κ)
√

n
,

where

θ := (2γ+ 4)max(ν,b) + 1.5βξ. (5.32)

Proof. Proof. Recall that the estimand and the empirical estimator are given by

V∗j = V(δ j,S ∗j) =
minS E

[
G

(
δ j,S

)]
E

[
L
(
δ j

)] , and V̂n
j = V̂n(δ j) =

Ĝn
j

L̂n
j

.

Note that E
[
G

(
δ j,S

)]
is convex with respect to S for each j ∈ [J].

Step I: Bound the approximation error of the average cycle length
∣∣∣∣∣ L̂n

j
n −E

[
L j

]∣∣∣∣∣ . By Lemma 4, we
have that L j is (ν,b)-sub-exponential. Then by Corollary 5.9 of Azuma’s inequality, we have with
probability of at least 1− κ,∣∣∣∣∣∣∣ L̂

n
j

n
−E

[
L
(
δ j

)]∣∣∣∣∣∣∣ ≤max


√

2ν2 log(2/κ)
n

,
2b log(2/κ)

n

 . (5.33)
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Step II: Bound the approximation error of the average cycle pseudo cost
∣∣∣∣∣ Ĝn

j
n −minS E

[
G

(
δ j,S

)]∣∣∣∣∣.
∣∣∣∣∣∣∣Ĝ

n
j

n
−min

S
E

[
G

(
δ j,S

)]∣∣∣∣∣∣∣ =

∣∣∣∣∣∣∣∣
G

(
δ j,S 1

j

)
+ · · ·+G

(
δ j,S n

j

)
n

−min
S

E
[
G

(
δ j,S

)]∣∣∣∣∣∣∣∣
≤

∣∣∣∣∣∣∣∣
G

(
δ j,S 1

j

)
+ · · ·+G

(
δ j,S n

j

)
n

−
E

[
G

(
δ j,S 1

j

)]
+ · · ·+E

[
G

(
δ j,S n

j

)]
n

∣∣∣∣∣∣∣∣
+

∣∣∣∣∣∣∣∣
E

[
G

(
δ j,S 1

j

)]
+ · · ·+E

[
G

(
δ j,S n

j

)]
n

−min
S

E
[
G

(
δ j,S

)]∣∣∣∣∣∣∣∣ . (5.34)

To bound the second term on the RHS of (5.34), we have the following observations.

1. E[G(δ j, ·)] is convex by Theorem 5.2.

2. The sequence {S k
j}

n
k=1 is generated by running stochastic gradient descent on E[G(δ j, ·)].

3. The diameter of E[G(δ j, ·)]’s domain is bounded by β by Assumption 5.

4. The second moment of the stochastic gradient ∇̃ is bounded by ξ2 by Lemma 4.

5. The stochastic gradient ∇̃ is (ν,b)-sub-exponential by Lemma 4.

Therefore, by Theorem 5.5, we have with probability of at least 1− κ,∣∣∣∣∣∣∣∣
E

[
G

(
δ j,S 1

j

)]
+ · · ·+E

[
G

(
δ j,S n

j

)]
n

−min
S

E
[
G

(
δ j,S

)]∣∣∣∣∣∣∣∣
≤max


√

2β2ν2 log(1/κ)
n

,
2b log(1/κ)

n

+
3βξ
2
√

n
.

To bound the first term on the RHS of (5.34), we note that{
G

(
δ j,S k

j

)
−E

[
G

(
δ j,S k

j

)]}n

k=1

is a martingale difference sequence and, by Lemma 4, each term in the sequence is (ν,b)-sub-
exponential. Then, by Azuma’s inequality in Theorem 5.8, we have with probability at least 1− κ,∣∣∣∣∣∣∣∣

G
(
δ j,S 1

)
+ · · ·+G

(
δ j,S n

)
n

−
E

[
G

(
δ j,S 1

)]
+ · · ·+E

[
G

(
δ j,S n

)]
n

∣∣∣∣∣∣∣∣
≤max


√

2ν2 log(2/κ)
n

,
2b log(2/κ)

n

 .
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Combining the above two bounds for the RHS of (5.34), we have with probability at least 1−κ,∣∣∣∣∣∣∣Ĝ
n
j

n
−min

S
E

[
G

(
δ j,S

)]∣∣∣∣∣∣∣ ≤max


√

2ν2 log(4/κ)
n

,
2b log(4/κ)

n


+ max


√

2β2ν2 log(2/κ)
n

,
2b log(2/κ)

n

+
3βξ
2
√

n

≤2max


√

2β2ν2 log(4/κ)
n

,
2b log(4/κ)

n

+
3βξ
2
√

n
. (5.35)

Step III. Bound the estimation error
∣∣∣∣V̂n

j −V∗j
∣∣∣∣. For better readability, we slight abuse the notation

to define

G1 :=
Ĝn

j

n
, L1 :=

L̂n
j

n
, G2 := min

S
E

[
G

(
δ j,S

)]
, L2 := E

[
L
(
δ j

)]
.∣∣∣∣V̂n

j −V∗j
∣∣∣∣ can be decomposed as follows.

∣∣∣∣V̂n
j −V∗j

∣∣∣∣ =

∣∣∣∣∣G1

L1
−

G2

L2

∣∣∣∣∣ =

∣∣∣∣∣G1

L1
−

G1

L2
+

G1

L2
−

G2

L2

∣∣∣∣∣ ≤ 1
L1
|G1−G2|+

∣∣∣∣∣ G2

L1L2
(L1−L2)

∣∣∣∣∣ .
Considering L1 ≥ 1 and |G2/L2| ≤ γ, we have

∣∣∣∣V̂n
j −V∗j

∣∣∣∣ ≤
∣∣∣∣∣∣∣Ĝ

n
j

n
−min

S
E

[
G

(
δ j,S

)]∣∣∣∣∣∣∣+γ
∣∣∣∣∣∣∣ L̂

n
j

n
−E

[
L
(
δ j

)]∣∣∣∣∣∣∣ .
Then, by (5.33) and (5.35), we have with probability at least 1− κ,

∣∣∣∣V̂n
j −V∗j

∣∣∣∣ ≤2max


√

2ν2 log(8/κ)
n

,
2b log(8/κ)

n

+
3βξ
2
√

n
+γmax


√

2ν2 log(4/κ)
n

,
2b log(4/κ)

n


≤
θ log(8/κ)
√

n
,

where θ is defined in (5.32). This completes the proof.

Now, we are ready to prove Proposition 5.2. This proof spells out one “major backbone” of this
paper that simultaneously bound the sub-optimality loss from running a sub-exponential SGD and
the bandit loss from pruning the active set. One pivotal step is to ensure that conditioning on some
overwhelming high probability event, the optimal policy on the grid does not get “removed” while
updating the active set in each iteration. This guarantees our pruning accuracy. Moreover, via our
developed high probability sub-exponential SGD bound, the probability of the complement event
can also be bounded, resulting in a controlled loss on the complement event.
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Proof. Proof of Proposition 5.2. Recall that the choice of ∆n from Theorem 5.3 is given by

∆n =
2θ log(8N2)
√

n
, where θ is given in (5.32).

By Lemma 5, we have

P
[∣∣∣∣V̂n

j −V∗j
∣∣∣∣ ≥ ∆n/2

]
≤

1
N2 .

Define the event A and its complement Ac by

A =

{
for all j ∈ [J],n ∈ [N] we have

∣∣∣∣V̂n
j −V∗j

∣∣∣∣ < ∆n/2
}
.

Ac =

{
there exists some j ∈ [J],n ∈ [N] such that

∣∣∣∣V̂n
j −V∗j

∣∣∣∣ ≥ ∆n/2
}
.

Since J = b
√

Nc and applying the union bound, we have

P
[
Ac] ≤ JN

(
1

N2

)
≤

1
√

N
and P [A] ≥ 1−

1
√

N
.

Define j∗ = argmin j V∗j , i.e., the optimal index on the grid.
Now we condition on the event A. Then for any j ∈ [J] and n ∈ [N], we have

V̂n
j∗ − V̂n

j ≤ V̂n
j∗ −V∗j∗ + V∗j − V̂n

j ≤ ∆n,

which implies that
V̂n

j∗ −min
j

V̂n
j ≤ ∆n.

Then comparing with the updating rule on our active set (5.16), we conclude that j∗ will always
remain in the active set of every iteration and never leave. Since jn ∈ An which implies jn is not
“removed” from the active set in the (n−1)th iteration, we have

V̂n−1
jn − V̂n−1

j∗ ≤ V̂n−1
jn − min

j∈An−1
V̂n−1

j ≤ ∆n−1,

where the second inequality follows from our rule (5.16). Therefore, conditional on the event A,

V∗jn −V∗j∗ =
(
V∗jn − V̂n−1

jn
)
+

(
V̂n−1

jn − V̂n−1
j∗

)
+

(
V̂n−1

j∗ −V∗j∗
)

≤
1
2

∆n−1 +∆n−1 +
1
2

∆n−1 = 2∆n−1,

where ∆0 := γ.
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Thus, we have

E

 N∑
n=1

(
V∗jn −V∗j∗

) = E

 N∑
n=1

(
V∗jn −V∗j∗

)
|A

P [A] +E

 N∑
n=1

(
V∗jn −V∗j∗

)
|Ac

P [
Ac]

≤ E

 N∑
n=1

(
V∗jn −V∗j∗

)
|A

+γ
√

N ≤
N∑

n=1

2∆n−1 +γ
√

N = O(log N
√

N),

where the last equality holds by plugging in ∆n =
2θ log(8N2)
√

n
.

5.4.4 Proof of Proposition 5.3 – Bounding the Inventory-Carryover Loss

Consider the case that the implemented policy in the current epoch n is (δn
i ,S

n
i ) and in the next

epoch n + 1 is (δn+1
j ,S n+1

j ). If S n
i − δ

n
i > S n+1

j , it is possible that the beginning epoch inventory
level xn+1 > S n+1

j . Then the algorithm cannot immediately adjust to the target level S n+1
j , and is

therefore forced to take xn+1 instead, which introduces a loss in (5.24).
To bound the loss due to such a positive inventory carryover, we model the inventory process as

a G/G/1 queue. We first consider a queueing system where in period n, Zn is the queueing length,
An is the inter-arrival time, and Bn is the service time. In our application, the queueing length
corresponds to the inventory level, the inter-arrival time An corresponds to the adjustment due to
a fixed inventory control policy, and the service time Dn corresponds to the random demand. We
have the following lemma to bound the total waiting time.

Lemma 6 (Bound on Total Waiting Time). Given a queueing system, Z1 = 0, and, for n = 1, . . . ,N−
1,

Zn+1 = Proj[0,β](Zn + An−Dn),

where β is the upper bound on the queueing length, the inter-arrival times {An}n satisfies
∑N

n=1 An =

O(
√

N), and service times {Dn}n are i.i.d. positive random variables, then we have

E

 N∑
n=1

Zn

 = O(
√

N).

Proof. Proof. Note that
∑N

n=1 Zn is the total waiting time for all customers in the queueing system.
Let Wi be the customer i’s waiting time. Another way to compute the total waiting time is to sum
over each customer’s waiting time, i.e.,

E

 N∑
n=1

Zn

 = E

 B∑
i=1

Wi

 , (5.36)
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where B =
∑N

n=1 An is the total number of arrivals. Since the queue length is bounded by β, so

E [Wi] ≤ E
[
ζ
]
, where ζ = min

n′ :
n′∑

i=1

Di ≥ β

. (5.37)

Combining (5.36) and (5.37), we have

E

 N∑
n=1

Zn

 ≤ E [
ζ
] B∑

i=1

1 = O
(√

N
)
,

since the total number of customers B =
∑n

n=1 An = O
(√

N
)
.

Now, we bound the regret loss between our implemented policy and S -partial-SGD policy.

Proof. Proof of Proposition 5.3 By Theorem 5.2, V(δ,S ) is Lipschitz in S with Lipschitz constant
independent of δ. It follows that to show Proposition 5.3, it suffices to show

E

 N∑
n=1

(
S n−S n

jn
) = O(

√
N).

Let Dn denotes the first demand that occurs in the nth epoch for n = 1,2, . . . ,N. Consider

S n+1−S n+1
jn+1 = max

(
S n+1

jn+1 , x
n+1

)
−S n+1

jn+1 =

[
xn+1−S n+1

jn+1

]+
≤

[
S n−Dn−S n+1

jn+1

]+
= min

j∈An+1

[
S n−Dn−S n+1

j

]+
= min

j∈An+1

[
S n−Dn−Proj[0,β]

(
S n

j −ηn∇̃
n
j

)]+
≤ min

j∈An+1

[
S n−Dn−

(
S n

j −ηn

∣∣∣∣∇̃n
j

∣∣∣∣)]+ = min
j∈An+1

[
S n−S n

j −

(
Dn +ηn

∣∣∣∣∇̃n
j

∣∣∣∣)]+ .
where the third equality is because S n+1

jn+1 = max j∈An+1 S n+1
j .

Case 1: If jn ∈An+1, we have

S n+1−S n+1
jn+1 ≤

[
S n−S n

jn −

(
Dn +ηn

∣∣∣∣∇̃n
jn

∣∣∣∣)]+ .
By the definition of the stochastic gradient ∇̃n

jn in (5.10), we see that
∣∣∣∣∇̃n

jn

∣∣∣∣ ≤max(c,h)Ln where Ln

is the length of the nth epoch. That is

S n+1−S n+1
jn+1 ≤

[
S n−S n +ηn max(c,h)Ln−Dn]+ .
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Case 2: If jn /∈An+1, we have

S n+1−S n+1
jn+1 ≤

[
S n−Dn−S n+1

jn+1

]+
=

[
S n−S n

jn + (S n
jn −S n+1

jn+1)−Dn
]+
≤

[
S n−S n

jn +β−Dn
]+
,

where the last inequality is because both S n
jn and S n+1

jn+1 are bounded in
[
0,β

]
.

Combing both cases, we have

S n+1−S n+1
jn+1 ≤

[
S n−S n

jn + max(c,h)Ln +β1
{
jn /∈An+1

}
−Dn

]+
.

Note x1 = 0 implies S 1 − S 1
j1

= 0, and S n − S n
jn ∈ [0,β] for all n = 1, . . . ,N. We can construct a

queueing system that follows the structure of Lemma 6,

Zn+1 = Proj[0,β]

(
Zn +ηn max(h,c)Ln +β1{ jn /∈An+1}−Dn

)
,

and we have Zn ≥ S n−S n
jn .

We note that the cycle length Ln and the first demand Dn in the nth epoch are dependent. To
simplify our analysis, we first decouple them as the follows. Let Ln

c be an independent copy of Ln.
Then we claim that ηn max(h,c)Ln +β1{ jn /∈An+1} −Dn is less than ηn max(h,c)(Ln

c + 1) +β1{ jn /∈

An+1}−Dn in distribution, i.e., for any α ∈ R, we have

P[ηn max(h,c)Ln +β1{ jn /∈An+1}−Dn ≤ α]

≤P[ηn max(h,c)(Ln
c + 1) +β1{ jn /∈An+1}−Dn ≤ α]. (5.38)

This is because given any realization of Dn = dn, the epoch length can be written as Ln = 1 + τn,
where τn is the hitting time for δn−dn. Apparently, τn is less than Ln

c in distribution, which implies
that for any α,

P[ηn max(h,c)Ln +β1{ jn /∈An+1}−Dn ≤ α|Dn = dn]

≤P[ηn max(h,c)(Ln
c + 1) +β1{ jn /∈An+1}−Dn ≤ α|Dn = dn]. (5.39)

Then (5.38) follows from (5.39) by unconditioning on Dn. Consider Z̃n+1 defined by a queueing
system

Z̃n+1 = Proj[0,β]

(
Z̃n +ηn max(h,c)(Ln

c + 1) +β1{ jn /∈An+1}−Dn
)
,

and we obtain E[
∑

n Z̃n] ≥ E[
∑

n Zn].
Note that by Lemma 4, we have that Ln

c is (ν,b) sub-exponential, so by Corollary 5.9 of Azuma’s

inequality,
∑N

n=1 ηn max(h,c)(Ln
c + 1) is (max(h,c)

√∑N
n=1 η

2
nν, b)-sub-exponential. For notational
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convenience, let U =
∑N

n=1 ηn max(h,c)(Ln
c + 1). Therefore,

P [U ≥ t +E [U]] ≤max
{

e−
t2

2ν′2 ,e−
t

2b

}
,

where ν′ = max(h,c)
√∑N

n=1 η
2
nν. Equivalently, if we choose t0 = max

{
ν′
√

2log N, 2b log N
}
, then

P [U ≥ E [U] + t0] ≤
1
N
.

Therefore, define the event A = {U ≥ t0 +E [U]} and its complement Ac, then

E

 N∑
n=1

Z̃n

 = P[A]E

 N∑
n=1

Z̃n|A

+P[Ac]E

 N∑
n=1

Z̃n|Ac

 ≤ β+E

 N∑
n=1

Z̃n|Ac

 . (5.40)

Note that conditioning on Ac, we have

U ≤ t0 +E [U] = max
{
ν′
√

2log N,2b log N
}
+E [U]

= max

max(h,c)

√√√ N∑
n=1

η2
nν

√
2log N,2b log N

+E [U] = O
(√

N
)
,

where the last equality follows from plugging in the step size ηn and noticing E
[
Ln

c
]
≤ E

[
L̄
]
.

On the other hand,
∑N

n=1 β1{k
n /∈An+1} = O(

√
N) because (a) the initial size of active set A1 =

b
√

Nc; (b) for any n, we have An+1 ⊆An. Thus, conditioning on Ac, U +β1{kn /∈An+1} = O(
√

N).
Note that Dn and Ln

c are independent, so conditioning on Ac, {Dn} is still an i.i.d. sequence of
random variables. By Lemma 6, we have E

[∑N
n=1 Z̃n|Ac

]
= O(
√

N). Plugging into (5.40) yields that
E[

∑N
n=1 Z̃n] = O(

√
N), which then implies the desired result.

This queueing system argument differs significantly from previous approaches (e.g., Huh and
Rusmevichientong (2009); Shi et al. (2016)). To control the total amount of inventory deviation
due to policy updates, they make stronger assumptions: Instead of assuming an upper bound on
total inter-arrival times, i.e.,

∑N
n=1 An = O(

√
N), they assume {An}

N
n=1 are independent to each other,

and, for each n = 1,2 . . . ,N, they bound the inter-arrival time as An = O(1/
√

n). In our setting,
to bound the loss due to policy updates between epochs, we consider policy updates due to both
running the stochastic gradient descent on S and running the bandit control on δ. Although the step
size for SGD on S decays as O(1/

√
n), the bandit selection on δ has no such guarantees. Hence,

we have to rely on bounding the total waiting time as in Lemma 6.
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5.4.5 Proof of Proposition 5.4 – Bounding the SGD Loss

Via the crucial SAAP step, our algorithm keeps the number of SGD updates in a synchronized

manner across all feasible policies within the active set. This enables us to bound the loss

E

 N∑
n=1

(V(δn,S n
jn)−V∗jn)

 .
We remark that if δn is kept constant for each epoch, then this term is the regret for applying
the stochastic gradient algorithm to minimize some convex function, and, by the online convex
optimization theory (Hazan et al. (2016)), it has regret O(

√
N). The subtle difference in our proof

is to show that we can vary δn across epochs, and still maintain the same regret O(
√

N).

Proof. Proof of Proposition 5.4. Since E [L(δn)] ≥ 1, we have

E

 N∑
n=1

(V(δn,S n
jn)−V∗jn)

 ≤ E
 N∑

n=1

(E
[
G(δn,S n

jn
]
−min

S
E

[
G(δn,S )

]
)

 .
It suffices to show

E

 N∑
n=1

(E
[
G(δn,S n

jn)
]
−min

S
E

[
G(δn,S )

]
)

 = O(
√

N).

For notational convenience, we define the function f n
j (·) := E

[
G(δ j, ·)

]
. Consider

2E

 N∑
n=1

(
f jn

(
S n

jn
)
− f jn

(
S ∗jn

)) ≤ E
 N∑

n=1

2
〈
∇ f jn

(
S n

jn
)
,S n

jn −S ∗jn
〉

= E

 N∑
n=1

2
〈
∇̃n

j ,S
n
jn −S ∗jn

〉 . (5.41)

By Pythagorean theorem,∥∥∥∥S n+1
j −S ∗j

∥∥∥∥2
=

∥∥∥∥Proj[δ j,β]

(
S n

j −ηn∇̃
n
j

)
−S ∗j

∥∥∥∥2
≤

∥∥∥∥S n
j −ηn∇̃

n
j −S ∗j

∥∥∥∥2
.

Hence, we have ∥∥∥∥S n+1
j −S ∗j

∥∥∥∥2
≤

∥∥∥∥S n
j −S ∗j

∥∥∥∥2
−2ηn

〈
∇̃n

j ,S
n
j −S ∗j

〉
+ (ηn)2

∥∥∥∥∇̃n
j

∥∥∥∥2

2
〈
∇̃n

j ,S
n
j −S ∗j

〉
≤

∥∥∥∥S n
j −S ∗j

∥∥∥∥2
−

∥∥∥∥S n+1
j −S ∗j

∥∥∥∥2

ηn
+ηn

∥∥∥∥∇̃n
j

∥∥∥∥2
. (5.42)
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Then by plugging (5.42) into (5.41) and setting 1/η0 := 0, we have

2E

 N∑
n=1

(
f n

jn
(
S n

jn
)
− f n

jn
(
S ∗jn

)) ≤ E


N∑
n=1

∥∥∥∥S n
jn −S ∗jn

∥∥∥∥2
−

∥∥∥∥S n+1
jn −S ∗jn

∥∥∥∥2

ηn
+ηn

∥∥∥∥∇̃n
j

∥∥∥∥2


≤ E

 N∑
n=1

∥∥∥∥S n
jn −S ∗jn

∥∥∥∥2
(

1
ηn
−

1
ηn−1

)+ ξ2
N∑

n=1

ηn

≤ β2
N∑

n=1

(
1
ηn
−

1
ηn−1

)
+ ξ2

N∑
n=1

ηn

≤ 3βξ
√

N,

where the last inequality follows from that ηn =
β

ξ
√

n
and

∑N
n=1 1/

√
n ≤ 2

√
N.

5.5 Numerical Simulation

We conduct numerical experiments to study on the empirical performance of the proposed (δ,S )
algorithm. The performance is evaluated by the percentage of increase in total cost of our algorithm
π (over the planning horizon) compared with that of the clairvoyant optimal π∗ = (s∗,S ∗) policy.
That is, we measure the relative regret in terms of % as

rT =

E
 T∑

t=1

Cπ
t

−E
 T∑

t=1

Cπ∗

t


/E

 T∑
t=1

Cπ∗

t

×100%.

Design of experiments. We first present the design of our numerical experiments, following Huh
et al. (2009). The following parameters are common to all instances.

For the cost structure, we set the per-unit holding cost h = 0.1 and the per-unit ordering cost
c = 10 and keep them unchanged. However, we vary the fixed cost K = {50,100,150} and the
per-unit lost-sales penalty cost p = {15,25,40}.

For the demand structure, we consider four commonly used demand distributions: (a) uniform,
(b) gamma, (c) exponential, and (d) lognormal, with their respective parameters specified in Tables
5.1 and 5.2. The mean of all demand distributions is normalized to be 100 and the warehouse
capacity is set to be β = 1000.

We run the (δ,S ) learning algorithm over the planning horizons with number of periods T ∈

{100,250,500,1000}. All systems start empty. For each testing instance, we generate 5000 sample
paths of the random demand process, and use that to compute the average cost.

Numerical results. Under the four tested demand distributions, Tables 5.1 and 5.2 report the
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average computational performance of the (δ,S ) learning algorithm. In addition, Tables 5.1 and
5.2 also give the sensitivity analysis with respect to the fixed cost K and the lost-sales penalty cost
p, respectively.

Our key observations are summarized as follows. (a) The relative regret rates converge to
zero consistently fast across all the tested demand distributions, which are well aligned with our
analytical regret rate. For demand distributions that skew to the larger side, the algorithm converges
faster. This is because the heavy-tail demand shortens the expected cycle length and thus increases
the learning speed. (b) Our learning algorithm is robust with regard to the cost parameters K and
p across all scenarios. Also, the results are consistent with our theoretical asymptotic regret rate.

distribution
fixed cost

K

optimal policy optimal

average cost

relative regret rT (%)

δ∗ S ∗ 125 250 500 1000

uniform
50 225.73 340.11 1015.76 6.38 5.67 4.97 4.92

100 489.62 547.43 1030.49 4.66 4.25 3.61 3.52

150 917.26 981.60 1036.74 5.17 3.88 2.95 2.86

gamma

(α = 3)

50 384.17 478.08 1015.05 5.08 5.05 4.98 4.65

100 578.73 667.05 1031.77 4.56 3.79 3.64 3.53

150 644.77 734.10 1038.75 4.50 3.74 3.65 3.50

gamma

(α = 5)

50 390.64 472.82 1017.20 5.30 5.20 4.85 4.65

100 338.99 466.06 1029.54 5.80 4.37 3.80 3.22

150 687.52 771.72 1041.12 4.11 3.37 3.28 3.06

gamma

(α = 7)

50 489.09 548.55 1018.23 4.84 4.00 3.99 3.72

100 453.56 554.17 1030.30 5.11 3.87 3.28 2.76

150 730.55 782.93 1043.23 3.85 3.01 2.83 2.81

exponential
50 599.53 648.39 1006.59 8.32 7.18 6.66 6.55

100 703.03 751.85 1011.24 8.51 7.37 7.09 6.49

150 756.28 851.91 1022.77 7.43 6.61 5.92 5.85

lognormal

(σ = 0.1)

50 245.59 310.61 1025.98 4.25 3.07 2.55 2.32

100 347.24 406.68 1040.84 3.14 2.01 1.75 1.65

150 425.54 526.58 1049.70 3.38 2.05 1.43 1.21

Table 5.1: Performance of the (δ,S ) algorithm with varying fixed costs K.

5.6 Conclusion

In this paper, we have proposed the first nonparametric learning algorithm for managing stochastic
inventory systems with fixed costs under censored demand information, and showed that the cumu-
lative regret is O(logT

√
T ), which is provably optimal up to a logarithmic factor. The algorithmic
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distribution
lost-sale

penalty p

optimal policy optimal

average cost

relative regret rT (%)

δ∗ S ∗ 125 250 500 1000

uniform
15 249.60 384.00 1023.95 8.28 5.69 4.76 3.84

25 625.31 787.87 1026.30 13.6 10.37 8.74 5.87

40 687.06 889.28 1030.29 22.55 14.02 10.31 8.07

gamma

(α = 3)

15 413.59 504.41 1025.29 7.72 5.58 4.47 4.01

25 552.07 756.41 1029.21 14.12 9.48 6.78 5.16

40 556.34 764.71 1034.72 25.58 14.49 9.62 6.36

gamma

(α = 5)

15 287.51 458.2 1030.84 4.72 4.30 3.54 3.37

25 481.31 625.7 1038.44 12.58 7.85 5.49 4.14

40 451.96 632.94 1039.67 24.06 13.47 8.85 6.22

gamma

(α = 7)

15 315.98 420.32 1030.83 6.46 5.42 4.22 3.22

25 493.99 641.01 1038.08 12.05 7.41 5.08 3.90

40 570.39 709.08 1042.02 22.32 12.39 8.12 5.58

exponential
15 382.88 578.13 1027.26 9.72 7.37 6.53 6.03

25 551.83 752.92 1038.18 16.83 11.16 7.85 7.21

40 411.83 751.67 1026.86 22.31 14.62 10.76 8.04

lognormal

(σ = 1)

15 438.18 522.72 1041.11 4.38 2.79 2.49 2.02

25 439.5 542.91 1042.28 10.28 5.88 3.52 2.38

40 410.96 519.90 1042.79 21.54 11.56 6.33 3.54

Table 5.2: Performance of the (δ,S ) algorithm with varying lost-sale penalty costs p.

design and regret analysis involve several new and significant ideas that integrate the strength of
stochastic gradient descent and bandit controls in a seamless fashion. The regret analysis con-
sists of several bridging problems, and each pair of bridging problems requires a judiciously tuned
hyper-parameters of the learning algorithm. We also develop several general technical results that
are of independent interest beyond the context of this paper.

To close this paper, we point out two promising future research avenues. First, our framework
allows for fixed costs, and there are many other important inventory systems that involve fixed
cost. Second and more generally, our framework allows for multi-dimensional decision making
and only requires partial convexity or concavity in the subset of decision variables and Lipschitz
continuity in the remaining set. There are many interesting applications arising in the context of
operations management, e.g., dual-sourcing inventory systems, joint inventory and pricing control,
joint inventory and vehicle routing, joint scheduling and medical decision making.
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Appendix.

5.7 A Summary of Major Notation

Table 5.3 summarizes the major mathematical notation used in the manuscript.

t index of periods

i index of cycles

n index of epochs

h unit holding cost

p unit lost-sales penalty cost

K fixed setup cost

c unit ordering cost

Dt,dt demand and realized demand in periods t

xt beginning inventory in period t

qt ordering quantity in period t

yt after ordering inventory in periods t, i.e., yt = xt + qt

Ct cost in period t

C̃t pseudo cost in period t

(δ,S ) policy δ: inventory gap, S : order-up-to level

{δ j}
J
j=1 discrete inventory gaps

j index for discrete inventory gaps

(δn,S n) implemented policy in the nth epoch

L(δ,S ) = L(δ) random cycle length for (δ,S ) policy

L(δ,S , δ̄) random epoch length with parameters (δ,S , δ̄)

H(δ,S ) random cycle cost for (δ,S ) policy

G(δ,S ) random cycle pseudo cost for (δ,S ) policy

G̃(δ,S , δ̄) random epoch pseudo cost with parameters (δ,S , δ̄)

V (δ,S ) long-run average pseudo cost for (δ,S ) policy

V∗ (δ) = minS V (δ,S ) long-run average pseudo cost for δ with optimal S
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V∗ = minδ,S V (δ,S ) optimal long-run average pseudo cost

V̂n (δ) n-step approximation for V∗(δ)

Ĝn (δ) n-step cumulative cycle pseudo cost along SGD path

L̂n (δ) n-step cumulative cycle length

L j(S ) = L(δ j,S ) using sub-script j to represent δ j argument

G j(S ) = G(δ j,S )

V j(S ) = V(δ j,S )

V∗j = V(δ j,S ∗j)

V̂n
j = V̂n

(
δ j

)
Ĝn

j = Ĝn
(
δ j

)
L̂n

j = L̂n
(
δ j

)
∇̃n

j stochastic gradient for inventory gap δ j in the nth epoch

δ̄n largest inventory gap in the nth epoch

jn index of policy with largest S in the nth epoch

ηn SGD step size in the nth epoch

∆n confidence size in the nth epoch

Dn list of censored demand data in the nth epoch

An policy active set in the nth epoch

xn inventory level at the beginning of the nth epoch

β max inventory capacity

γ max per period cost

ξ2 bound second moment for stochastic gradient

(ν,b) universal sub-exponential parameters for cycle length, cost, and
stochastic gradient for all (δ,S ) policy

θ constant for controlling estimation error from V̂n
j to V∗j

L̄ = L(β) cycle length with maximum inventory gap

Table 5.3: Summary of Major Notation
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5.8 Technical Proofs for Results in Section 5.3

Proof. Proof of Lemma 2. By (5.7) and the storage capacity β, it is clear that |C̃t| ≤ K + (h + c +

p)β.

Proof. Proof of Lemma 3. Let f be the pdf of D1. Consider

E [L(δ)] =

∞∑
t=1

P [L(δ) ≥ t] =

∞∑
t=1

P [Wt−1 < δ]

= 1 +

∞∑
t=1

∫ δ

0
fWt(x)dx = 1 +

∫ δ

0

∞∑
t=1

fWt(x)dx = 1 +

∫ δ

0

∞∑
t=1

f ∗t(x)dx, (5.43)

where the pdf of Wt is denoted by fWt and fWt = f ∗ f ∗ · · · ∗ f = f ∗t (i.e., the convolution of f ’s),
and the interchange between summation and integration in the fourth equality is backed by the
monotone convergence theorem.

From (5.43), we see that d
dδE [L(δ)] =

∑∞
t=1 f ∗t(δ). Hence, to show E [L(δ)] is Lipschitz with

Lipschitz constant 6ρ, it suffices to show its derivative
∑∞

t=1 f ∗t(x) ≤ 6ρ for all x ≥ 0.
Let m be the median of D1, and we partition f = f l + f r, where

f l(x) =

 f (x), if x ≤ m,

0, otherwise;
f r(x) =

 f (x), if x > m,

0, otherwise.

Define Fn =
∑n

t=1 f ∗t and Zn = supx Fn(x). We want to show that Zn ≤ 6ρ for all n. We have

Fn ≤ Fn+1 = f + Fn ∗ f = f + Fn ∗ f l + Fn ∗ f r. (5.44)

By using the definition of Zn and the fact that m is the median of D, we have

Fn ∗ f r(x) =

∫ ∞

−∞

Fn(y) f r(x− y)dx ≤ Zn

∫ ∞

m
f r(x− y)dy = Zn/2. (5.45)

for all x ≥ 0. Plugging (5.45) into (5.44), we have that for all n ≥ 1,

Fn ≤ ρ+ Zn/2 + sup
x

Fn ∗ f l(x) ≤ ρ+ Zn/2 + sup
x

( f l + F∞ ∗ f l)(x),

Since Zn is the supreme over Fn, then we have

Zn ≤ ρ+ Zn/2 + sup
x

( f l + F∞ ∗ f l)(x), (5.46)
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which implies that

Zn ≤ 2
(
ρ+ sup

x
( f l + F∞ ∗ f l)(x)

)
. (5.47)

We shall show f l + F∞ ∗ f l < 2ρ uniformly. To prove this, for any fixed small positive constant
ε, we define τ to be the hitting time of target interval [δ,δ+ ε], i.e., τ = min{t : Wt ∈ [δ,δ+ ε]}.
Consider the probability of event that we hit [δ,δ+ ε] from a distance less than m. We have

P [Dτ < m] =

∞∑
i=1

P [τ = i,Di < m] =

∞∑
i=1

P [Wi−1 < δ,Wi ∈ [δ,δ+ ε],Di < m]

≥

∞∑
i=1

P [Wi ∈ [δ,δ+ ε],Di < m]−
∞∑

i=1

P [Wi−1 ∈ [δ,δ+ ε],Wi ∈ [δ,δ+ ε]] . (5.48)

We first focus on the first term on the RHS of (5.48).

∞∑
i=1

P [Wi ∈ [δ,δ+ ε],Di < m] =

∞∑
i=1

∫ δ+ε

δ

(
f ∗(i−1) ∗ f l

)
=

∫ δ+ε

δ

∞∑
i=1

(
f ∗(i−1) ∗ f l

)
=

∫ δ+ε

δ

(
f l + F∞ ∗ f l

)
,

where the interchange between summation and integration is backed by the monotone convergence
theorem. Next, we focus on the second term on the RHS of (5.48).

∞∑
i=1

P [Wi−1 ∈ [δ,δ+ ε],Wi ∈ [δ,δ+ ε]] =

∞∑
i=1

P [Wi−1 ∈ [δ,δ+ ε]]P [Wi ∈ [δ,δ+ ε]|Wi−1 ∈ [δ,δ+ ε]]

≤

∞∑
i=1

P [Wi−1 ∈ [δ,δ+ ε]]P [Di ≤ ε |Wi−1 ∈ [δ,δ+ ε]]

≤

∞∑
i=1

P [Wi−1 ∈ [δ,δ+ ε]]ρε

=ρε

∞∑
i=1

∫ δ+ε

δ
fWi−1 = ρε

∫ δ+ε

δ

∞∑
i=1

fWi−1 = ρε

∫ δ+ε

δ
F∞,

where, again, the interchange between summation and integration is backed by the monotone con-
vergence theorem. Putting the above two terms in (5.48), we have

P [Di < m] ≥
∫ δ+ε

δ

(
f l + F∞ ∗ f l

)
−ρε

∫ δ+ε

δ
F∞. (5.49)

On the other hand, we define τ′ = min{t : Wt > δ−m}, which is the first time that the random walk
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Wt crosses δ−m. Consider

P [Dτ < m|Wτ′] =

∞∑
i=1

P
[
τ = τ′+ i,Dτ < m|Wτ′

]
≤

∞∑
i=1

1
2i−1 ερ = 2ερ, (5.50)

where the last inequality holds due to the following argument. If τ = τ′ + i and Dτ < m, we must
have Dτ′+i′ <m for i′ = 1, . . . , i−1 and Dτ+i must hit a target interval of size ε, which has probability
no more than 1

2i−1ρε (as m is the median, and ρ is an upper bound on densities). Hence,

P [Dτ < m] = E [P [Dτ < m|Wτ′]] ≤ 2ερ. (5.51)

Combining (5.49) and (5.51), we have∫ δ+ε

δ

(
f l + F∞ ∗ f l

)
−ρε

∫ δ+ε

δ
F∞ ≤ 2ερ.

Dividing both sides by ε, and taking ε→ 0, we have

f l + F∞ ∗ f l ≤ 2ρ. (5.52)

Plugging (5.52) into (5.47), we have Zn ≤ 6ρ for all n, which yields the desired result.

Proof. Proof of Theorem 5.2. Recall that V (δ,S ) := E [G (δ,S )]/E [L (δ,S )] , and L (δ,S ) counts
the number of periods until the cumulative demand in the cycle exceeds δ, which is independent
of S . Therefore, to show V (δ,S ) is convex in S , it suffices to show that E [G (δ,S )] is convex in S .
Consider a cycle with demand samples d1, . . . ,dL. The cycle cost can be written as

G (δ,S ) =

L∑
t=1

[
h(xt + qt −dt)+− pmin(xt + qt,dt)

]
+ K + c(S − xL+1)

=


K +

∑L
t=1(hxt+1− pdt) + c(S − xL+1), if xL+1 > 0 and L ≥ 1,

K +
∑L−1

t=1 (hxt+1− pdt)− pxL + cS , if xL+1 = 0 and L > 1,

K − pS + cS , if xL+1 = 0 and L = 1,

(5.53)

where xt+1 = max(S −d1− . . .−dt,0) for t = 1, . . . ,L. Then taking derivative with respect to S ,

∇S G(δ,S ) =

hL, if xL+1 > 0,

h(L−1)− p + c, if xL+1 = 0,
(5.54)

which gives an unbiased stochastic (S -partial) gradient of E [G(δ,S )]. Because |∇S G(δ,S )| is
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clearly bounded almost surely, we also have

∇SE [G(δ,S )] =E
[
hL1(xL+1 > 0) + (h(L−1)− p + c)1(xL+1 = 0)

]
=E

[
hL + (−h− p + c)1(xL+1 = 0)

]
=hE [L]− (h + p− c)P(xL+1 = 0).

Since E [L] is independent of S , p > c in the lost-sales model, and P(xL+1 = 0) is decreasing in S ,
we conclude that ∇SE [G(δ,S )] is increasing in S , which implies that E [G(δ,S )] is convex in S .
Also, by (5.54) and p > c, we have

|E [∇S G(δ,S ))]| ≤ hE
[
L̄
]
+ p, (5.55)

where L̄ denotes the cycle length associated with the maximum δ = β (which is independent of S ).
Then, since E [L(δ)] ≥ 1, we have |∇S V(δ,S )| ≤ hE

[
L̄
]
+ p + c, and therefore V(δ,S ) is Lipschitz in

S , and the Lipschitz constant is independent of S .
Now, we show that V∗ (δ) = minS∈[δ,β] V(δ,S ) is Lipschitz in δ. For any two inventory gaps

δ1 and δ2, without loss of generality, we assume that V∗ (δ1) ≥ V∗ (δ2) . Define the corresponding
minimizers S 1 = argminS∈[δ1,β] V (δ1,S ) and S 2 = argminS∈[δ2,β] V (δ2,S ) . Then, we have

V∗ (δ1)−V∗ (δ2) = V (δ1,S 1)−V (δ2,S 2) ≤ V (δ1,max {S 2, δ1})−V (δ2,S 2) .

For better readability, we slight abuse the notation to define

G1 = E [G (δ1,max {δ1,S 2})] , L1 = E [L (δ1,max {S 2, δ1})] , G2 = E [G (δ2,S 2)] , L2 = E [L (δ2,S 2)] .

Then we have

V (δ1,max {δ1,S 2})−V (δ2,S 2)

=G1/L1−G2/L2 = G1/L1−G2/L1 +G2/L1−G2/L2 =
1
L1

(G1−G2) +
G2

L1L2
(L1−L2) . (5.56)

We first analyze the term G1−G2. If S 2 ≥ δ1, by Lemma 2, since G1 and G2 share the same starting
point S 2, we have G1−G2 ≤ γ |L1−L2| . On the other hand, if S 2 < δ1,

G1−G2 = E [G (δ1, δ1)]−E [G (δ2,S 2)]

= E [G (δ1, δ1)]−E [G (δ2, δ1)] +E [G (δ2, δ1)]−E [G (δ2,S 2)]

≤ γ |L1−L2|+ |δ1−S 2| (hE
[
L̄
]
+ p)
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≤ γ |L1−L2|+ |δ1−δ2| (hE
[
L̄
]
+ p), (5.57)

where the first inequality is due to (5.55), and the last inequality is due to δ2 ≤ S 2 ≤ δ1. So (5.57)
holds true for both cases. Plugging (5.57) into (5.56), we have

V (δ1,S 1)−V (δ2,S 2) ≤
1
L1

(
γ |L1−L2|+ |δ1−δ2| (hE

[
L̄
]
+ p)

)
+

∣∣∣∣∣ G2

L1L2
(L1−L2)

∣∣∣∣∣
≤ (hE

[
L̄
]
+ p) |δ1−δ2|+ 2γ |L1−L2| .

By Lemma 3, we have |L1−L2| ≤ 6ρ |δ1−δ2|. Therefore, we conclude that

V (δ1,S 1)−V (δ2,S 2) ≤
(
hE

[
L̄
]
+ p + 12γρ

)
|δ1−δ2| ,

which shows that V∗ (δ) is Lipschitz in δ.

5.9 Known Results on Sub-Exponential Random Variables

The standard results in this section are stated without proofs, and we refer interested readers to
Wainwright (2019) for their detailed arguments.

Definition 6 (Martingale Difference Sequence). A martingale difference sequence is an adapted

sequence {Xk,Fk}
∞
k=0 such that for all k ≥ 1,

E [|Xk|] <∞, and E [Xk|Fk] = 0.

Definition 7 (Sub-Exponential Random Variable). A random variable X with mean µ = E [X] is

called sub-exponential if there are non-negative parameters (ν,b) such that

E
[
eλ(X−µ)

]
≤ e

ν2λ2
2 for all |λ| < 1/b.

Definition 8 (Sub-Exponential Random Vector). A random vector X ∈ Rd is said to be sub-

exponential with parameters (ν,b) if for any unit vector u ∈Rd, the random variable uT (X−E [X])
is (ν,b) sub-exponential.

Theorem 5.6 (Sub-Exponential Tail Bound). Suppose X is sub-exponential with parameters (ν,b)
and mean µ = E [X]. Then we have

P
[
X ≥ µ+ t

]
≤

e−
t2

2ν2 if 0 ≤ t ≤ ν2

b ,

e−
t

2b if t > ν2

b ,
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and

P
[
|X−µ| ≥ t

]
≤

2e−
t2

2ν2 if 0 ≤ t ≤ ν2

b ,

2e−
t

2b if t > ν2

b .

Theorem 5.7 (Equivalent Characterization of Sub-Exponentials). For a zero-mean random vari-

able X, the following statements are equivalent:

1. There are non-negative numbers (ν,b) such that

E
[
eλX

]
≤ e

ν2λ2
2 for all |λ| < 1/b.

2. There are constants c1,c2 > 0 such that

P [|X| > t] ≤ c1e−c2t for all t > 0.

Theorem 5.8 (Azuma’s Inequality). Suppose {(Xk,Fk)}∞k=1 is a martingale difference sequence,

and for any |λ| < 1/bk,

E
[
eλXk |Fk−1

]
≤ eλ

2ν2
k/2 almost surely.

Then
∑n

k=1 akXk is sub-exponential with parameters (
√∑n

k=1 a2
kν

2
k , maxk∈[n] bk). Consequently, for

all t ≥ 0,

P

 n∑
k=1

akXk ≥ t

 ≤
e
− t2

2
∑n

k=1 a2
kν

2
k if 0 ≤ t ≤

∑n
k=1 a2

kν
2
k

maxk∈[n] bk
,

e
− t

2maxk∈[n] bk if t >
∑n

k=1 a2
kν

2
k

maxk∈[n] bk
,

and

P


∣∣∣∣∣∣∣

n∑
k=1

akXk

∣∣∣∣∣∣∣ ≥ t

 ≤
2e

− t2

2
∑n

k=1 a2
kν

2
k if 0 ≤ t ≤

∑n
k=1 a2

kν
2
k

maxk∈[n] bk
,

2e
− t

2maxk∈[n] bk if t >
∑n

k=1 a2
kν

2
k

maxk∈[n] bk
.

Theorem 5.9 (Corollary of Azuma’s Inequality). Suppose {Xk}
n
k=1 are independent centered ran-

dom variables, and Xk is sub-exponential with parameters (νk,bk). Then
∑n

k=1 akXk is sub-exponential

with parameters (
√∑n

k=1 a2
kν

2
k ,maxk∈[n] bk). Consequently, for all t ≥ 0,

P

 n∑
k=1

akXk ≥ t

 ≤
e
− t2

2
∑n

k=1 a2
kν

2
k if 0 ≤ t ≤

∑n
k=1 a2

kν
2
k

maxk∈[n] bk
,

e
− t

2maxk∈[n] bk if t >
∑n

k=1 a2
kν

2
k

maxk∈[n] bk
,
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and

P


∣∣∣∣∣∣∣

n∑
k=1

akXk

∣∣∣∣∣∣∣ ≥ t

 ≤
2e

− t2

2
∑n

k=1 a2
kν

2
k if 0 ≤ t ≤

∑n
k=1 a2

kν
2
k

maxk∈[n] bk
,

2e
− t

2maxk∈[n] bk if t >
∑n

k=1 a2
kν

2
k

maxk∈[n] bk
.
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CHAPTER 6

Conclusion and Future Work

This dissertation focuses on the design and analysis of data-driven algorithms for stochastic in-
ventory and supply chain systems. To design learning algorithms with theoretical performance
guarantees, we focus on learning simple structured policies. We decouple system dynamics with
cycling trick, and design variations of online learning algorithms. More concretely, we extend the
confidence bound approaches from various perspectives: We develop algorithms of confidence-
bound type which estimate expected cycle average cost in Chapter 1, optimal value for convex
cost function in Chapters 2 and 5, and long-run limiting cost in Markovian setting in Chapter 3.
Moreover, in Chapters 2 and 5, we handle the censored demand issue by developing a shrinking
active set algorithm which leverages the one-side zeroth ordering information. In Chapter 4, we
customize the mirror decent algorithm to improve the high dimensional inventory decisions for
multi-production supply chain system. Besides these learning algorithms, we also develop a new
queuing system theory which helps us design data-driven algorithms adaptive to physical consul-
tations.

To close this Ph.D. thesis, we would like to point out several promising and important future
research avenues. First, one may employ or further innovate the methods developed here to study
more complex systems, e.g., the dual-sourcing inventory control problem, the joint inventory-
location problem, the inventory routing problem, and the joint pricing and inventory control prob-
lem. Second, instead of regret framework, one may re-examine the problems using in the best-arm
identification setting, i.e., figuring out the clairvoyant optimal policies as fast as possible (without
being overly concerned with cumulative regret). Third, one may integrate the theory of Markov
chain mixing time and the theory of high-dimensional statistical learning into our current frame-
work to tackle more difficult but important problems.
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