
Online Learning Algorithms for Stochastic
Inventory and Queueing Systems

by

Weidong Chen

A dissertation submitted in partial fulfillment
of the requirements for the degree of

Doctor of Philosophy
(Industrial and Operations Engineering)

in The University of Michigan
2019

Doctoral Committee:

Professor Izak Duenyas, Co-Chair
Assistant Professor Cong Shi, Co-Chair
Associate Professor Stefanus Jasin
Assistant Professor Viswanath Nagarajan

Weidong Chen

aschenwd@umich.edu

ORCID iD: 0000-0001-5633-7970

c© Weidong Chen 2019

All Rights Reserved

I would like to dedicate my Ph.D. thesis to my beloved parents, my father who

always shares his wisdom, and my mother who always takes great care of me.

ii

ACKNOWLEDGEMENTS

First of all, I would like to thank my advisors Professor Cong Shi and Professor

Izak Duenyas. I started working with them during my master’s program; the work was

very interesting, but I had never thought about becoming a Ph.D. student. Professor

Shi and Professor Duenyas encouraged me to pursue a Ph.D. degree by sharing lots

of their thoughts and experiences and would not hesitate to clear my doubt and raise

my confidence level. During my Ph.D. journey, they were my mentors not only on

research but also on career and life. Without their help and support, this dissertation

would not have been possible. They together combined a perfect mix of working

styles and personalities that I genuinely appreciate.

I would also like to thank Professor Viswanath Nagarajan and Professor Stefanus

Jasin to be on my Ph.D. committee, and I really appreciate their advice and opinions.

My gratitude also goes to Professor Katta Murty, and other professors who shared

their wisdom with me, and the wonderful staff members in the department for their

assistance and help.

I appreciate the friendship with my office mates Amirhossein Meisami, Nima Salehi

Sadghiani, Abdullah Alshelahi (who as well brought plenty of Middle East culture into

the office), my colleagues Sentao Miao, Qiyun Pan, Qi He for their help with courses

and research, and also Professor Shi’s research group members Huanan Zhang, Yuchen

Jiang, Hao Yuan for sharing research and career advice.

Finally, I would like to thank my friends, who brought so much joy into my

life, especially my roommates Chencheng Zhou, Xinyi Ge, Hao Wu, and my working

friends Kaixin Wang, Boyang Wang, Duyi Li, Li Ding.

iii

TABLE OF CONTENTS

DEDICATION . ii

ACKNOWLEDGEMENTS . iii

LIST OF FIGURES . vii

LIST OF TABLES . viii

ABSTRACT . ix

CHAPTER

I. Introduction . 1

1.1 Contributions of the Thesis 3

II. Nonparametric Algorithms for Multiproduct Inventory Sys-
tems . 5

2.1 Introduction . 5
2.2 Multi-Product Stochastic Inventory Systems 10
2.3 Nonparametric Data-Driven Inventory Control Policies 20

2.3.1 Algorithm Overview of DDM and Properties 22
2.4 Performance Analysis of DDM 25

2.4.1 Bound on ∆1 - Online Convex Optimization (Proof
of Lemma 2.11) . 26

2.4.2 Bound on ∆2 - Stochastic Dominance and a GI/G/1
Queue (Proof of Lemma 2.12) 29

2.5 Extensions . 41
2.5.1 Improving the convergence rate 41
2.5.2 Different Product Dimensions or Sizes 41
2.5.3 Discrete Demand and Ordering Quantities 42

2.6 Numerical Experiments . 45
2.6.1 Experimental Setup 45

iv

2.6.2 Benchmarks and Numerical Results 46
2.7 Concluding Remark . 50

III. Nonparametric Algorithms for Stochastic Inventory Systems
with Random Capacity . 52

3.1 Introduction . 52
3.1.1 Main Result and Contributions 54
3.1.2 Relevant Literature 57
3.1.3 Organization and General Notation 60

3.2 Stochastic Inventory Control with Uncertain Capacity 60
3.3 Clairvoyant Optimal Policy 62

3.3.1 Optimal Policy for the Single Period Problem with
Salvaging Decisions 64

3.3.2 Optimal Policy for the Multi-Period Problem with
Salvaging Decisions 69

3.4 Nonparametric Learning Algorithms 74
3.4.1 The Notion of Production Cycles 74
3.4.2 The Data-Driven Random Capacity Algorithm (DRC) 76
3.4.3 Overview of the DRC Algorithm 81

3.5 Performance Analysis of the DRC Algorithm 84
3.5.1 Several Key Building Blocks for the Proof of Theo-

rem 3.6 . 88
3.5.2 Proof of Proposition 3.9 91
3.5.3 Proof of Proposition 3.10 92
3.5.4 Proof of Proposition 3.11 98

3.6 Numerical Experiments . 100
3.6.1 Design of Experiments 100
3.6.2 Numerical Results and Findings 102

3.7 Concluding Remark . 104

IV. Optimal Learning Algorithms for Make-To-Stock Queueing
Systems . 105

4.1 Introduction . 105
4.1.1 Main result and our contribution 106
4.1.2 Relevant literature 106
4.1.3 Organization . 108

4.2 Model, System Dynamics, and Costs 108
4.3 An Adaptive Learning Algorithm 111

4.3.1 Algorithm Description 112
4.4 Performance Analysis of the DMTS Algorithm 120
4.5 Numerical Experiments . 136

4.5.1 Design of Experiments 136
4.5.2 Numerical Results and Findings 137

v

4.6 Concluding Remark . 139

V. Conclusion . 140

BIBLIOGRAPHY . 141

vi

LIST OF FIGURES

Figure

2.1 Comparison with parametric approaches. 48

2.2 Comparison with nonparametric approaches. 49

2.3 Extreme cases with uneven lost-sales penalty costs. 50

3.1 Illustration of a target interval policy 65

3.2 An illustration of a production cycle 77

3.3 An illustration of the algorithmic design 77

3.4 A schematic illustration of all possible scenarios 84

3.5 Computational performance of the DRC algorithm 103

4.1 Illustration of the production cycles and dynamics of different policies 113

4.2 Illustration of the dynamics of our policy 119

vii

LIST OF TABLES

Table

3.1 Summary of Major Notation . 64

4.1 Summary of Major Notation . 110

4.2 Summary of Computational Results 138

viii

ABSTRACT

The management of inventory and queueing systems lies in the heart of operations

research and plays a vital role in many business enterprises. To this date, the majority

of work in the literature has been done under complete distributional information

about the uncertainties inherent in the system. However, in practice, the decision

maker may not know the exact distributions of these uncertainties (such as demand,

capacity, lead time) at the beginning of the planning horizon, but can only rely on

realized observations collected over time. This thesis focuses on the interplay between

learning and optimization of three canonical inventory and queueing systems, and

proposes a series of first online learning algorithms.

The first system studied in Chapter II is the periodic-review multiproduct in-

ventory system with a warehouse-capacity constraint. The second system studied

in Chapter III is the periodic-review inventory system with random capacities. The

third system studied in Chapter IV is the continuous-review make-to-stock M/G/1

queueing system. We take a nonparametric approach that directly works with data

and needs not to specify any (parametric) form of the uncertainties. The proposed

online learning algorithms are stochastic gradient descent type, leveraging the (some-

times non-obvious) convexity properties in the objective functions. The performance

measure used is the notion of cumulative regret or simply regret, which is defined

as the cost difference between the proposed learning algorithm and the clairvoyant

optimal algorithm (had all the distributional information about uncertainties been

ix

given). Our main theoretical results are to establish the square-root regret rate for

each proposed algorithm, which is known to be tight. Our numerical results also

confirm the efficacy of the proposed learning algorithms.

The major challenges in designing effective learning algorithms for such systems

and analyzing them are as follows. First, in most retail settings, customers typically

walk away in the face of stock-out, and therefore the system is unable to keep track of

these lost-sales. Thus, the observable demand data is, in fact, the sales data, which

is also known as the censored demand data. Second, the inventory decisions may

impact the cost function over extended periods, due to complex state transitions in

the underlying stochastic inventory system. Third, the stochastic inventory system

has hard physical constraints, e.g., positive inventory carry-over, warehouse capacity

constraint, ordering/production capacity constraint, and these constraints limit the

search space in a dynamic way.

We believe this line of research is well aligned with the important opportunity

that now exists to advance data-driven algorithmic decision-making under uncer-

tainty. Moreover, it adds an important dimension to the general theory of online

learning and reinforcement learning, since firms often face a realistic stochastic sup-

ply chain system where system dynamics are complex, constraints are abundant, and

information about uncertainties in the system is typically censored. It is, therefore,

important to analyze the structure of the underlying system more closely and devise

an efficient and effective learning algorithm that can generate better data, which is

then feedback to the algorithm to make better decisions. This forms a virtuous cycle.

x

CHAPTER I

Introduction

Supply chain management concerns the efficient allocation and control of raw ma-

terials, finished products, and customer services. It plays a vital role in any successful

business enterprise. The 2017 Annual State of Logistics Report shows that the total

U.S. business logistics cost is 1.48 trillion, accounting for more than 7.7% of the U.S.

gross domestic product (GDP). Among the decisions in supply chain management,

inventory control is the first of mind and often the most critical component for any

wholesale business. Indeed, the idea of inventory control not only applies to prod-

ucts in the warehouse but also to seats on airplanes, beds in hospitals, drivers for

ride-sharing companies, and so on. The goal for inventory control is to strike an

optimal balance between under-stocking and over-stocking, i.e., maintaining a suffi-

cient amount of inventory to fulfill customer demand while avoiding excess inventory

taking up space in case of expiration, damage, or fund flow related problems. The

key challenge lies in how to buffer the uncertainty of future evolution appropriately.

Often firms find it hard to forecast the future demand, the unexpected interruption

in the production phase, as well as the order or shipping lead time. Moreover, given

nowadays complex business environment, firms often need to consider other impor-

tant factors such as product correlations, strategic customers, and financial risks,

when seeking the optimal policy.

1

Many of the theoretical optimization models in inventory and queueing control

aim to capture the complexity of making decisions under uncertainty. In conventional

models, the uncertainty about future evolution is usually defined through explicitly

specified probability distributions or stochastic processes, which are treated as input

data to respective optimization models. However, in most real-life applications, the

true underlying distributions are not available or they are too complex to work with.

Often, our knowledge is restricted to historical data, simulated data, or information

from forecasting and market analysis. The objective of this thesis is to develop efficient

and effective algorithms for sequential decision-making problems arising in the context

of inventory and queueing control where the input data of the problems are unknown

or uncertain at the beginning of the decision period. We aim to provide decision

tools for decision-makers to better cope with uncertainty in these stochastic systems

by absorbing, analyzing and utilizing data in an online fashion, which can be viewed

as a substantial step to meet the challenges presented by the era of Big Data.

To achieve our goals, we will develop efficient and effective nonparametric learning

algorithms that can simultaneously learn the input uncertainty in the underlying

optimization problems as well as optimize the system-wide objective value on the

fly. The algorithms compute policies based only on past observable data in an online

manner. One major challenge in constructing such algorithms is that, in practice,

the data or samples collected are often censored or inaccurate. For example, firms

cannot typically observe their lost-sales since customers simply walk away when they

find their desired items out of stock. As a result, the sales data collected are not

true samples of demand, and the algorithmic design needs to correct such estimation

biases in the long run. In our algorithmic framework, we take a non-parametric

approach by not enforcing any parametric assumption on the underlying distributions.

Our performance measure is regret-based, which quantifies the difference in objective

values between our nonparametric sampling-based policy and the clairvoyant optimal

2

policy that has access to the true underlying distribution a priori. We will derive both

theoretical performance guarantees as well as practical implementation strategies in

this thesis. From the methodological point of view, the study of the algorithms

will advance the understanding of the tradeoffs between learning and earning in the

context of inventory and queueing systems, and the analysis will establish important

connections with the general theory of online learning (which typically does not deal

with inventory constraints and complex system dynamics).

1.1 Contributions of the Thesis

We study three different stochastic systems. We assume that the firm has no prior

distributional information about the uncertainty, and must learn from past data. Our

objective is to propose learning algorithms that admit provably tight regret.

In Chapter 2, we propose a nonparametric data-driven algorithm called DDM for

the management of stochastic periodic-review multi-product inventory systems with a

warehouse-capacity constraint. The demand distribution is not known a priori and the

firm only has access to censored demand data. We measure the performance of DDM

through regret, the difference between the total expected cost of DDM and that of an

oracle with access to the true demand distribution acting optimally. We characterize

the rate of convergence guarantee of DDM. More specifically, we show that the average

expected T -period cost incurred under DDM converges to the optimal cost at the rate

of O(1/
√
T). We also discuss several extensions and conduct numerical experiments

to demonstrate the effectiveness of our proposed algorithm.

In Chapter 3, we propose the first nonparametric learning algorithm for single-

product, periodic-review, backlogging inventory systems with random production ca-

pacity. Different than the current literature on this class of problems, we assume that

the firm has neither prior information about the demand distribution nor the capac-

ity distribution and only has access to past demand and supply data (which can be

3

referred to as censored capacity information). If both the demand and capacity dis-

tributions are known at the beginning of the planning horizon, it is well-known that

modified base-stock policies are optimal. When such distributional information is not

available a priori to the firm, we propose a cyclic gradient-descent type of algorithm

whose running average cost asymptotically converges to the clairvoyant optimal cost,

where the clairvoyant optimal cost corresponds to the case where the firm knows the

demand and capacity distributions and applies the optimal policy. We prove that the

rate of convergence guarantee of our algorithm is O(1/
√
T), which is theoretically the

best possible for this class of problems. We also conduct numerical experiments to

demonstrate the effectiveness of our proposed algorithms.

In Chapter 4, we consider a canonical M/G/1 make-to-stock queueing system that

arises in many practical settings. The decision maker has no prior knowledge about

the rate of the Poisson arrival process and the distribution of the production/service

time, which must be learned over time from past observations. We propose a stochas-

tic gradient descent algorithm and prove that its average expected cost converges to

the clairvoyant optimal cost (had the arrival and service distributions been given) at

a square-root convergence rate, which is provably tight for this class of problems. We

also conduct numerical experiments to demonstrate the effectiveness of our proposed

algorithms.

4

CHAPTER II

Nonparametric Algorithms for Multiproduct

Inventory Systems

2.1 Introduction

The study of stochastic multi-product inventory systems dates back to Veinott

(1965). Most, if not all, of the papers on stochastic multi-product inventory systems

assume that the stochastic future demand is given by a specific exogeneous random

variable, and the inventory decisions are made with full knowledge of the future

demand distribution. However, in practice, the demand distribution is usually not

known a priori. Even with past demand data (often censored) collected, the selection

of the most appropriate distribution and its parameters remains difficult (see Huh

and Rusmevichientong (2009), Huh et al. (2011), Besbes and Muharremoglu (2013)

for more discussions on censored demand in inventory systems).

Model overview and research issue. In our periodic-review multi-product lost-

sales inventory system over a finite horizon of T periods, the demands across periods

t = 1, . . . T are (i.i.d.) random vectors Dt (with each component representing a

different product), respectively. There is a joint warehouse-capacity constraint M

imposed on the total number of products that can be held in inventory. The firm has

no access to the true underlying demand distribution a priori, and can only observe

5

sales data (i.e., censored demand) over time. We develop a nonparametric data-driven

adaptive inventory control policy π = (yt | t ≥ 1) where the decision yt represents

the order-up-to level in period t. We measure performance of our proposed policy

π through regret denoted by RT , C(π) − C(π∗), where C(π) is the total expected

cost of π and C(π∗) is the total expected cost of a clairvoyant optimal policy π∗ with

access to the true underlying demand distribution a priori. The research question

is to devise an effective nonparametric data-driven policy π that drives the average

regret RT/T to zero with a fast convergence rate.

Main results and contributions. We propose a nonparametric data-driven algo-

rithm called DDM for stochastic multi-product inventory systems with a warehouse-

capacity constraint. We characterize the rate of convergence guarantee of DDM.

More specifically, we show that the average regret RT converges to zero at the rate

of O(1/
√
T). Our algorithm DDM is a stochastic gradient descent type of algorithm,

similar in spirit to Burnetas and Smith (2000), Kunnumkal and Topaloglu (2008)

and Huh and Rusmevichientong (2009). The work closest to ours is Huh and Rus-

mevichientong (2009) who studied an uncapacitated inventory system with a single

product. The novelty of our work lies in both algorithmic design and performance

analysis of DDM. First, unlike the uncapacitated single-product case, the gradient

estimator in DDM could be sometimes indeterminable in the presence of a warehouse-

capacity constraint on multiple products. Second, the projection step in DDM has to

factor in both positive inventory carry-over of all products and the warehouse-capacity

constraint. To maintain feasibility of the solution in each step, we solve two addi-

tional optimization problems. The optimization problems can be efficiently solved

by greedy algorithms, but the solution structure makes the asymptotic performance

analysis invariably harder than that in the uncapacitated single-product case (where

no optimization procedures are needed). The key technical challenge in our analysis

is to derive an upper bound of the distance between the target order-up-to level and

6

the actual implemented order-up-to level (due to the warehouse-capacity constraint

and positive inventory carry-over from previous periods). Note that the upper bound

on this distance function is almost immediate in the uncapacitated single-product

case while the development of an upper bound is significantly more complex in our

multi-product setting. Third, we relate the inventory process to a GI/G/1 queue.

We then develop a stochastic dominance argument and invoke a classical result on

the expected busy period in GI/G/1 queue due to Loulou (1978).

We compare the computational performance of DDM with several existing para-

metric and nonparametric approaches in the literature. Our results show that DDM

outperforms these benchmark algorithms in terms of both consistency and conver-

gence rate. We also consider two interesting extensions, one with a more general

warehouse-capacity constraint where different products may have different dimension

or sizes, and the other one with discrete demand and order quantities.

Our work is relevant to the following research streams.

Multi-product stochastic inventory systems. There is a large body of litera-

ture devoted to various classes of such problems. In this chapter, we focus our atten-

tion on the classical stochastic multi-product inventory systems under a warehouse-

capacity constraint, first studied by Veinott (1965). He provided conditions that

ensure that the base-stock ordering policy is optimal in a periodic-review inventory

system with a finite horizon. Subsequently, Ignall and Veinott (1969) showed that in

the stationary demand case, a myopic ordering policy is optimal under certain mild

conditions. Beyer et al. (2001, 2002) established the optimality of myopic policies

in backlogged systems with separable costs by appealing to the sufficient condition

provided by Ignall and Veinott (1969), which was further extended by Choi et al.

(2005) under a relaxed demand assumption. Our work focuses on a nonparametric

variant in which the demand distribution is not known a priori.

7

Nonparametric inventory systems. Burnetas and Smith (2000) developed a gra-

dient descent type algorithm for ordering and pricing when inventory is perishable;

they showed that the average profit converges to the optimal but did not establish

the rate of convergence. Huh and Rusmevichientong (2009) proposed gradient de-

scent based algorithms for lost-sales systems with censored demand. Subsequently,

Huh et al. (2009) proposed algorithms for finding the optimal base-stock policy in

lost-sales inventory systems with positive lead time. Huh et al. (2011) applied the

concept of Kaplan-Meier estimator to devise another data-driven algorithm for cen-

sored demand. Other nonparametric approaches in the inventory literature include

sample average approximation (SAA) (e.g., Kleywegt et al. (2002), Levi et al. (2007),

Levi et al. (2015)) which uses the empirical distribution formed by uncensored samples

drawn from the true distribution. Concave adaptive value estimation (e.g., Godfrey

and Powell (2001), Powell et al. (2004)) successively approximates the objective cost

function with a sequence of piecewise linear functions. The bootstrap method (e.g.,

Bookbinder and Lordahl (1989)) estimates the newsvendor quantile of the demand dis-

tribution. The infinitesimal perturbation approach (IPA) is a sampling-based stochas-

tic gradient estimation technique that has been used to solve stochastic supply chain

models (see, e.g., Glasserman (1991)). Maglaras and Eren (2015) employed maximum

entropy distributions to solve a stochastic capacity control problem. For parametric

approaches, such as Bayesian learning (see, e.g., Lariviere and Porteus (1999), Chen

and Plambeck (2008)) or operational statistics (see, e.g., Liyanage and Shanthikumar

(2005), Chu et al. (2008)) in stochastic inventory systems, we refer readers to Huh and

Rusmevichientong (2009) for an excellent discussion of the key differences between

nonparametric and parametric approaches. This chapter contributes to the literature

by studying multi-product inventory systems under a warehouse-capacity constraint,

which is significantly more complex to analyze.

8

Online convex optimization. The aim of online convex optimization is to min-

imize the cumulative loss function defined over a convex compact set with online

learning process since the optimizer does not know the (convex) objective function a

priori (see Hazan (2016), Shalev-Shwartz (2012) for an overview). Zinkevich (2003)

has shown that the average T -period cost using a gradient descent based algorithm

converges to the optimal cost at the rate of O(1/
√
T). This result was further ex-

tended by Flaxman et al. (2005) in a bandit setting. Under additional technical

assumptions, a modified algorithm by Hazan et al. (2006) achieves a faster conver-

gence rate O(log T/T). Our problem differs from the conventional online convex

optimization problems in that the target levels (or the iterates) may not be achieved

due to policy-dependent dynamic inventory constraints.

Stochastic approximation. The proposed gradient descent type of algorithm also

resembles the ones used in the Stochastic Approximation (SA) literature (see Ne-

mirovski et al. (2009) and references therein), which should be carefully contrasted

with ours. First, SA algorithms aim to solve a single-stage stochastic optimiza-

tion problem by making successive experiments while the cost of experiments is

ignored. On the other hand, our algorithm aims to minimize the cumulative loss

suffered along the learning progress for a multi-stage closed-loop stochastic optimiza-

tion problem. Putting into context, SA focuses on measuring the terminal regret

E[Π(yT) − Π(y∗)], whereas our algorithm focuses on measuring the cumulative loss

over time E
[∑T

t=1 (Π(yt)− Π(y∗))
]
. Second, in the analysis of robust SA algorithms

with general convex costs, the step size is chosen to be O(1/
√
t) to obtain a conver-

gence rate of O(1/
√
t) in the terminal regret criterion by appropriately averaging the

iterate solutions. The standard robust SA approaches cannot be adapted to our set-

ting where the iterates cannot move “freely” due to policy-driven dynamic inventory

constraints.

9

General notation. For any real vectors x,y ∈ Rn, y ≥ x means component-

wise greater or equal to; x+ = (max{xi, 0})ni=1; |x| = (|xi|)ni=1; the join operator

x∨y = (max{xi, yi})ni=1; the meet operator x∧y = (min{xi, yi})ni=1; for any integers

t and s with t ≤ s, x[t,s] =
∑s

j=t xj and x[t,s) =
∑s−1

j=t xj; || · || or || · ||2 means 2-norm;

|| · ||1 means 1-norm. The notation , means “is defined as”.

2.2 Multi-Product Stochastic Inventory Systems

We consider a stochastic T -period n-product inventory system under a warehouse-

capacity constraint M (e.g., Ignall and Veinott (1969), Beyer et al. (2001)). The firm

has no knowledge of the true underlying demand distribution a priori, but can observe

past sales data (i.e., censored demand data), and make adaptive inventory decisions

based on the available information.

Random demand and regularity assumptions. For each period t = 1, . . . , T and

each product i = 1, . . . n, we denote the demand of product i in period t by a random

variable Di
t. For notational convenience, we use Dt = (D1

t , . . . , D
n
t) to denote the

random demand vector in period t, and dt = (d1
t , . . . , d

n
t) to denote their realizations.

Assumption 2.1. We make the following assumptions and regularity conditions on

demand.

(i). For each product i, Di
t is i.i.d. across time period t.

(ii). For each product i and for each period t, Di
t is independent (but not necessarily

identically distributed) of Dj
s for all j 6= i and s = 1, . . . , T .

(iii). For each product i and for each period t, Di
t is a continuous random variable

defined on a finite support [0,M], whose CDF FDi(·) is differentiable and density

F ′Di(x) > 0 for all x ∈ [0,M].

(iv). For each product i and for each period t, E[Di
t] ≥ l for some real number l > 0.

10

Assumptions 2.1(a) and 2.1(b) assume some form of stationarity of demand, which

is predominant in the nonparametric learning literature (see, e.g., Levi et al. (2007),

Huh et al. (2009, 2011), Huh and Rusmevichientong (2009), Besbes and Muharremoglu

(2013)). Assumption 2.1(c) ensures the per-period cost function defined in (2.3) is

differentiable, finite-valued and strictly (jointly) convex, which guarantees a unique

minimizer. Assumption 2.1(d) rules out degenerate demands.

System dynamics and objectives. Let ft denote the information collected up to

the beginning of period t, which includes all the realized demands and past decisions.

A feasible closed-loop policy π is a sequence of functions yt = πt(xt, ft), t = 1, . . . , T ,

mapping beginning inventory xt and ft (state) into ending inventory yt (decision)

while satisfying yt ≥ xt and the warehouse-capacity constraint (see Bertsekas (2000)

for discussions on closed-loop optimization problems). Note that when the demand

distribution is known a prior, it suffices to consider policies of the form yt = πt(xt),

due to the assumed across-time independence of demands (see Bertsekas and Shreve

(2007)).

Given a feasible policy π, we describe the sequence of events below. (Note that

xπt , yπt and qπt ’s are functions of π; for ease of presentation, we make their dependence

on π implicit.)

(i). At the beginning of period t, the firm observes the starting inventory xt =

(x1
t , . . . , x

n
t).

(ii). The firm decides to order qt = (q1
t , . . . , q

n
t) ≥ 0, and the ending inventory

yt = xt + qt, where yt = (y1
t , . . . , y

n
t). We assume instantaneous replenishment.

The total inventory level is restricted by a warehouse-capacity constraint (see

Ignall and Veinott (1969)), i.e.,

yt ∈ Γ ,

{
yt ∈ Rn+ :

n∑
i=1

yit ≤M

}
. (2.1)

11

(iii). The demand Dt is realized, denoted by dt, which is satisfied to the maximum

extent using on-hand inventory. Unsatisfied demand units are lost, and the

firm only observes the sales quantity (or censored demand), i.e., min(dit, y
i
t)

for each product i in period t. The state transition can be written as xt+1 =

(xt + qt − dt)
+ = (yt − dt)

+.

(iv). The production, overage and underage costs at the end of period t is then

c ·qt+h · (yt−dt)
+ +p · (dt−yt)

+, where c = (c1, . . . , cn), h = (h1, . . . , hn) and

p = (p1, . . . , pn) are the per-unit purchasing, holding and lost-sales penalty cost

vectors, respectively. We note that the cost minimization model with lost-sales

assumes that p ≥ c (see Zipkin (2000)) since the firm loses revenue and goodwill

from the sale and the revenue has to be greater than the production cost. (Our

approach also works for time-invariant random purchasing cost vector.)

Assuming the salvage value of any left-over product at the end of planning horizon

equals its production cost, the total expected cost incurred by π can be written as

C(π) = E

[
T∑
t=1

c · (yt − xt) + h · (yt −Dt)
+ + p · (Dt − yt)

+

]
− E[c · xT+1],

= −c · x1 +
T∑
t=1

E
[
c · yt + (h− c) · (yt −Dt)

+ + p · (Dt − yt)
+
]
, (2.2)

where the second equality follows from xt+1 = (yt − dt)
+ and some simple algebra.

If the underlying distribution Dt is given a priori, the stochastic inventory control

problem specified above can be formulated using dynamic programming (see Beyer

et al. (2001)) with state variables xt, control variables yt (with xt ≤ yt ∈ Γ), random

disturbances Dt, and state transition xt+1 = (yt−dt)
+. It turns out that this problem

is in fact “myopically” solvable, which is discussed next.

Clairvoyant optimal policy. We first characterize the clairvoyant optimal policy

where the distribution of Dt is known a priori. We define Π(·) to be the per-period

12

expected cost function,

Π(a) = Πt(a) , E
[
c · a + (h− c) · (a−Dt)

+ + p · (Dt − a)+
]
. (2.3)

Let y∗ be a unique critical (deterministic) vector defined by

y∗ , arg min
a∈Γ:a≥0

Π(a). (2.4)

Theorem 2.2. Under Assumption 2.1, when the demand distribution is known a

priori, ordering up to y∗ defined in (2.4) in each period is optimal, with expected

per-period cost Π(y∗).

Proof. Based on (2.3), we define a myopic feasible (closed-loop) policy π̄ as a sequence

of functions ȳt = π̄t(xt), t = 1, . . . , T , mapping beginning inventory (state) xt into

ending inventory (decision) ȳt, which also “myopically” minimizes per-period cost

Πt(·) with beginning inventory xt, i.e.,

ȳt(xt) , arg min
a∈Γ:a≥xt

Πt(a). (2.5)

The above feasible policy π̄ is myopic, because it only optimizes per-period cost in

each period (the immediate reward). This is in contrast with standard dynamic

programming or approximate dynamic programming approaches. To ease the presen-

tation of establishing optimality of π̄, following Ignall and Veinott (1969), we keep

xt, ȳt, Πt time-generic, i.e.,

ȳ(x) , arg min
a∈Γ:a≥x

Π(a). (2.6)

It is important to see that ȳ(x) is the unique minimizer of (2.6), due to Assumption

2.1 ensuring strict (joint) convexity of Π(y) over the feasible region, and the fact that

13

the constraint set is affine (see Boyd and Vandenberghe (2004)).

Lemma 2.3. The optimization problem defined in (2.6) has a unique minimizer ȳ(x).

Proof. Due to Assumption 2.1, the cost function Π(·) is differentiable and finite-

valued. The derivatives inside expectation are bounded, and also the expectation

is a multiple integration over finite ranges. Hence this guarantees the validity of

interchange between differentiation and expectation.

Next we argue that Π(·) are strictly (jointly) convex over the feasible region. For

all i and j,

∂2Π(a)

∂(ai)2
= (hi + pi − ci)F ′Di(ai) > 0;

∂2Π(a)

∂ai∂aj
= 0,

where Assumption 1(c) ensures F ′Di(a
i) > 0 for all ai ∈ [0,M]. Hence, the Hessian

matrix is positive definte (with all strictly positive eigenvalues) over the entire feasible

region, ensuring Π to be strictly (jointly) convex.

Now consider the optimization problem (with a given starting inventory x) defined

in (2.6). Since Π(y) is strictly (jointly) convex and the constraint set is affine, ȳ(x) is

the unique minimizer. (See Boyd and Vandenberghe (2004) for discussions of unique

minimizer in convex optimization problems and also Example 5.4.).

Next we shall show that the myopic policy π̄ defined above is optimal. Ignall and

Veinott (1969) provided a sufficient condition called substitute property (together with

two mild regularity assumptions) under which the myopic policy is optimal.

Definition 2.4 (Substitute property). For any inventory levels x, x̃ ∈ Γ,

if x ≥ x̃, then ȳ(x)− x ≤ ȳ(x̃)− x̃.

Definition 2.5 (Regularity conditions in Ignall and Veinott (1969)). The two reg-

ularity conditions in Ignall and Veinott (1969) are: (a) x ≤ x′ ≤ ȳ(x) implies

14

ȳ(x) = ȳ(x′) for x,x′ ∈ Γ; (b) The state transition permits either pure, partial,

or no backlogging (lost-sales).

The regularity condition (a) is satisfied by ȳ(x) being the unique minimizer of

(2.6) by Lemma 2.3, and the regularity condition (b) is immediate since we consider

a standard lost-sales model.

We can now proceed to establish the optimality of myopic policies for the multi-

product lost-sales system by showing that the sufficient condition (substitute prop-

erty) given above holds for our system.

Proposition 2.6. Under Assumption 2.1, when the demand distribution is known

a priori, the myopic ordering policy defined in (2.5) is optimal for the multi-product

lost-sales inventory systems.

To prove Proposition 2.6, we need to derive several important properties of the

myopic policy. Now consider the two possible starting inventory levels x and x̃, with

x ≥ x̃. For notational (superscript) convenience, we use θ instead of y∗ to be the

global minimizer of Π(·) over Γ. Recall that θ = y∗ , arg mina∈Γ Π(a), and also the

myopic order-to-up level ȳ(x) , arg mina∈Γ:a≥x Π(a). For simplicity, we define the

boundary of our warehouse storage constraint,

∂Γ ,

{
y ∈ Rn+ :

n∑
i=1

yi = M

}
.

Note that y ∈ ∂Γ means that the total order-up-to levels have reached the total

storage limit M . If y /∈ ∂Γ, then the warehouse storage constraint is not tight.

Now denote the jth partial derivative of Π(·) by Π′j(·). We then develop some

useful properties of the myopic order-up-to levels ȳ(·).

Lemma 2.7. Let x ∈ Γ and θ be the global minimizer of Π(·) over Γ,

(i). xj ≥ θj ⇒ ȳj(x) = xj.

15

(ii). xj ≤ θj ⇒ ȳj(x) ≤ θj.

Proof. The proof is straightforward. Statement (i) holds because xj ≥ θj (the starting

inventory is higher than the global minimizer) for product j, it is sub-optimal to order

any more product j. Statement (ii) holds because if xj ≤ θj (the starting inventory

is lower than the global minimizer), it is sub-optimal to raise the inventory above the

global minimizer.

Lemma 2.8. Let x ∈ Γ and θ be the global minimizer of Π(·) over Γ,

(i). θ ∈ ∂Γ⇒ ȳ(x) ∈ ∂Γ;

(ii). ȳ(x) /∈ ∂Γ, xj ≤ θj ⇒ ȳj(x) = θj.

In Lemma 2.8, statement (i) states that if the global minimizer occupies the entire

storage space, then the myopic order-up-to levels will also occupy the entire storage

space. This is because our myopic policy will always order as much as possible to

approach the global minimizer. Statement (ii) states that if the total myopic order-

up-to level has not reached the storage limit M , then if xj ≤ θj, the myopic policy

will raise inventory level for product j to the global minimizer θj.

Proof. We prove (i) by contradiction. Suppose that θ ∈ ∂Γ and ȳ(x) /∈ ∂Γ, then

n∑
i=1

θi = M and
n∑
i=1

ȳi(x) < M.

It is obvious that there exists at least one j such that ȳj(x) < θj. Since θ minimizes

Π(·) over Γ, it is clear that θ either reaches the global minimizer of Π(·) over the

entire real line R or is smaller than it due to the storage constraint, so the derivative

Π′j(θ) ≤ 0. Therefore, since Π(·) is strictly convex,

Π′j(ȳ(x)) < Π′j(θ) ≤ 0.

16

On the other hand, since ȳ(x) /∈ ∂Γ and ȳ(x) is a minimizer of Π(·) over set {y | y ≥

x,y ∈ Γ}, it is clear that ȳ(x) either reaches θ or is greater than it because of the

initial on-hand inventory, so Π′j(ȳ(x)) ≥ 0, which results in a contradiction, thereby

proving (i).

To prove (ii), we observe from the contraposition of (i), i.e., ȳ(x) /∈ ∂Γ⇒ θ /∈ ∂Γ.

Then for any product j, ȳj(x) is not restricted by the storage constraint, and thus

if θj ≥ xj, then θj can always be reached, implying that ȳj(x) = θj. This completes

the proof.

Lemma 2.9. ȳj(x) > xj ⇒ Π′j(ȳ(x)) = mini Π
′
i(ȳ(x))

Lemma 2.9 states that if a product is ordered, then the marginal cost of any

additional ordering must be equal across the products. Intuitively, if the marginal

cost of ordering this product is higher than others, we can always reduce the quantity

of this product and order more of the other products. The rigorous proof is as follows.

Proof. We prove this result by contradiction. Suppose that there exists an i, 1 ≤

i ≤ n, such that Π′i(ȳ(x)) < Π′j(ȳ(x)). Then, for a sufficiently small ε > 0,

(ȳ1(x), ...ȳj(x)− ε, ..., ȳi(x) + ε, ..., ȳn(x)) ∈ Γ, and we have

Π(ȳ(x))− Π(ȳ1(x), ...ȳj(x)− ε, ..., ȳi(x) + ε, ..., ȳn(x))

= ε(Π′j(ȳ(x))− Π′i(ȳ(x))) + o(ε2) > 0,

which contradicts to the fact that ȳ(x) minimizes Π(·) over set {y | y ≥ x,y ∈ Γ}.

Now, we are ready to prove Proposition 2.6.

Proof. To establish the optimality of myopic policies for the multi-product lost-sales

system, it suffices to verify that the substitute property (2.4) holds, i.e., for any

inventory levels x, x̃ ∈ Γ, if x ≥ x̃, then ȳ(x)− x ≤ ȳ(x̃)− x̃.

17

We know that the myopic order-up-to levels ȳj(x) ≥ xj for any product j if x ∈ Γ.

Similarly, ȳj(x̃) ≥ x̃j for any product j if x̃ ∈ Γ. Now if ȳj(x) = xj, then we have

0 = ȳj(x)− xj ≤ ȳj(x̃)− x̃j.

Thus, it suffices to prove that ȳj(x) ≤ ȳj(x̃), whenever ȳj(x) > xj. We have to

consider three cases as follows.

Case (a). First, if both ȳ(x) /∈ ∂Γ and ȳj(x̃) /∈ ∂Γ, then it follows from Lemma

2.7 and Lemma 2.8 that

ȳj(x) = max{θj, xj}, ȳj(x̃) = max{θj, x̃j}, ∀ j.

Then ȳj(x) = ȳj(x̃) and the result follows immediately.

Case (b). Second, if ȳ(x) ∈ ∂Γ but ȳj(x̃) /∈ ∂Γ, then by Lemma 2.7 (ii) and

Lemma 2.8 (ii), we have ȳj(x) ≤ θj = ȳj(x̃), and the result also follows immediately.

It is impossible for the case where ȳ(x) /∈ ∂Γ and ȳj(x̃) ∈ ∂Γ to happen. To see this, if

such case exists, then we can always find some j such that for xj > x̃j, ȳj(x̃) > ȳj(x).

However, by Lemma 2.7 (ii) and Lemma 2.8 (ii), we know that ȳj(x) ≤ θj = ȳj(x̃),

which results in a contradiction.

Case (c). Third, we need to analyze the remaining case where ȳ(x) ∈ ∂Γ and

ȳj(x̃) ∈ ∂Γ, i.e.,
n∑
j=1

ȳj(x) =
n∑
j=1

ȳj(x̃) = M. (2.7)

We partition all the products into three sets as follows,

Ia = {k : ȳk(x) > xk}, Ib = {k : ȳk(x) = xk∩Π′k(ȳ
k(x) ≤ 0}, Ic = {k : Π′k(ȳ

k(x) > 0}.

Note that these three sets are disjoint and the union of them is exhaustive.

Now we focus on the set Ic first and let j ∈ Ic. Then we have ȳj(x) ≥ max{x̃j, θj}.

18

By Lemma 2.7, it is clear that ȳj(x̃) ≤ max{x̃j, θj}. Hence, ȳj(x̃)− ȳj(x) ≤ 0 for all

j ∈ Ic. Together with (2.7), we know that

n∑
j∈Ia∪Ib

(
ȳj(x̃)− ȳj(x)

)
≥ 0.

If ȳm(x̃) = ȳm(x) for allm ∈ Ia∪Ib, then the result follows immediately. Now consider

the case where there exists a product m ∈ Ia ∪ Ib such that ȳm(x̃) > ȳm(x). This

implies that ȳm(x̃) > ȳm(x) ≥ xm ≥ x̃m ≥ 0. By Lemma 2.9, we have Π′m(ȳ(x̃)) =

mini Π
′
i(ȳ(x̃)). Moreover, due to the strict convexity of Π(·), then we have

min
i

Π′i(ȳ(x̃)) = Π′m(ȳ(x̃)) > Π′m(ȳ(x)). (2.8)

To complete the proof, it suffices to show that for any product j ∈ Ia, ȳj(x̃) ≥

ȳj(x). Now suppose there exists a product n ∈ Ia such that ȳn(x̃) < ȳn(x). It is

clear that ȳn(x) > ȳn(x̃) ≥ 0. By Lemma 2.9, we have Π′n(ȳ(x)) = mini Π
′
i(ȳ(x)).

Moreover, due to the strict convexity of Π(·), then we have

min
i

Π′i(ȳ(x)) = Π′n(ȳ(x)) > Π′n(ȳ(x̃)). (2.9)

Note that (2.8) implies that Π′n(ȳ(x̃)) > Π′m(ȳ(x)) but (2.9) implies that Π′m(ȳ(x)) >

Π′n(ȳ(x̃)), which results in a contradiction. This completes the proof.

Equipped with Proposition 2.6, we are ready to prove Theorem 2.2.

Proof. Proposition 2.6 fully characterizes the structural properties of optimal policies

as follows. Let y∗ be a unique critical (deterministic) vector defined by in (2.4). Then

a clairvoyant optimal policy π∗ is characterized as follows:

(i). If the beginning inventory level of product i is above its individual base-stock

level (i.e., the ith component of y∗), then this product is not ordered in the

19

period.

(ii). If this product i is ordered in the period, the ending inventory level (after

ordering) does not exceed its individual base-stock level (i.e., the ith component

of y∗).

(iii). If there is enough storage space to bring all products (whose inventory levels

are below their individual base-stock levels) up to their base-stock levels, then

such an order is optimal. Otherwise, the ending inventory levels takes up all

the available storage space.

Thus, the stationary multi-period inventory problem is analytically equivalent to the

single-period problem, and ordering up to y∗ in each period is also optimal for this

problem. Clearly, once we start below y∗, and order up to y∗, we remain at or below

y∗ thereafter; in such a case, the expected cost incurred in each period is Π(y∗).

2.3 Nonparametric Data-Driven Inventory Control Policies

When the firm has no knowledge of the true underlying distribution of Dt a priori,

we aim to find a provably good adaptive data-driven inventory control policy that

makes the total expected system costs close to the optimal strategy. The proposed

data-driven algorithm DDM maintains a vector triplet of sequences (zt, ŷt,yt)t≥0. The

first sequence (zt)t≥0 represents the constraint-free target inventory levels where the

warehouse storage constraint is waived. The second sequence (ŷt)t≥0 represents the

target inventory levels when the warehouse storage constraint is taken into account.

However, the target inventory levels (ŷt)t≥0 may not be always feasible due to ware-

house capacity constraint and positive inventory carry-over. Thus, we use the third

sequence (yt)t≥0 to represent the actual implemented inventory levels after ordering.

We first present a compact description of our data-driven multi-product algorithm

(DDM).

20

Data-Driven Multi-product Algorithm (DDM).

Step 0. (Initialization.) Set the initial inventory levels y0 = ŷ0 = z0 to be any values

within Γ and then set the initial values t = 0, τ0 = 0 and k = 0.

For each period t = 0, . . . , T − 1, repeat the following steps:

Step 1. (Setting the constraint-free and constrained target inventory levels.)

Case 1: If yt ≥ ŷt (i.e., yit ≥ ŷit for all i = 1, . . . , n), the algorithm updates the

constraint-free target inventory levels zt+1 by

zt+1 = ŷt − ηtGt(ŷt), (2.10)

where ηt =

(
γM√

n ·maxi{pi − ci, hi}

)
1√
t

for some γ > 0

for each product i = 1, . . . , n, and the ith component of Gt is defined as

Gi
t(ŷt) =


hi, if ŷit > dit,

−(pi − ci), if ŷit ≤ dit.

(2.11)

Note that γ = 1 for achieving the tightest theoretical bound.

Then the algorithm sets the constrained target inventory levels ŷt+1 by solving

ŷt+1 = arg min
w∈Γ
||w − zt+1||2. (2.12)

Record the break point τk := t and increase the value k by 1.

Case 2: Else if yt � ŷt (i.e., there exists an i such that yit < ŷit), the algorithm

keeps both the constraint-free and constrained target inventory levels unchanged, i.e.,

zt+1 = zt and ŷt+1 = ŷt.

Step 2. (Solving for the actual implemented target inventory levels.)

21

Define the set J and its complement as

J ,
{
i : xit+1 > ŷit+1

}
, J̄ ,

{
i : xit+1 ≤ ŷit+1

}
. (2.13)

For each product i ∈ J , we set the actual implemented levels

yit+1 = xit+1, if xit+1 > ŷit+1. (2.14)

If J̄ 6= ∅, then we set the actual implemented levels yt+1 by solving

min
∑
i∈J̄

(ŷit+1 − yit+1)2 s.t.
∑
i∈J̄

yit+1 ≤M −
∑
j∈J

xjt+1, yit+1 ≥ xit+1, ∀ i ∈ J̄ .(2.15)

This concludes the description of the algorithm.

2.3.1 Algorithm Overview of DDM and Properties

Step 1: (Stochastic Gradient Descent). Let T = {τ0, τ1, . . . , τm} with τm ≤ T ,

which is the set of break points of DDM. In each period τk + 1 (k = 1, . . . ,m), we

update the constraint-free target levels zt+1 by a stochastic gradient descent step.

Conceptually, we update the minimizer along the negative direction of the true gradi-

ent of Π(·). However, since the true cost function Π(·) is not available to us (without

knowing the underlying demand distribution), we can only rely on the observed sales

data dt to provide us an estimator of the true gradient of Π(ŷt) at the points ŷt.

The estimator Gi
t(ŷt) defined in (2.10) can be computed using the sales (censored

demand) data observed by the firm in period t ∈ T . When t ∈ T , we have yit ≥ ŷit

for all i = 1, . . . , n. Hence, the event {ŷit ≤ dit} is equivalent to the case where the

ending inventory in period t is at most yit− ŷit, which is an observable event; the event

{ŷit > dit} is equivalent to the case where the ending inventory in period t is strictly

greater than yit − ŷit, which is also observable. In this case, Gt defined in (2.11) is

22

an unbiased estimator of the true gradient ∇Π(ŷt) at ŷt, i.e., E[Gt(ŷt)] = ∇Π(ŷt),

where the expectation is taken over the demand in period t. On the other hand, when

t /∈ T , Gi
t(ŷt) may be indeterminable because the actual implemented inventory levels

could fall below the target order-up-to levels. To be more specific, when yit < ŷit and

yit ≤ dt, the firm only observes the stockout but not the lost-sales quantity. Therefore,

the firm cannot distinguish between yit ≤ dt < ŷit and yit < ŷit ≤ dt, and hence cannot

determine the value of Gi
t(ŷt). In periods when t /∈ T , we keep the target order-up-to

levels unchanged.

We then carry out a greedy projection of the constraint-free target inventory levels

zt+1 onto the warehouse storage constraint set Γ via (2.12), more specifically,

min
n∑
i=1

(ŷit+1 − zit+1)2 s.t.
n∑
i=1

ŷit+1 ≤M, ŷit+1 ≥ 0, ∀ i. (2.16)

We also make two simple observations that will be useful in Section 2.4. (a) A

simple observation leads to the lower and upper bounds of zit+1 for each product

i, i.e., ŷit − ηth
i ≤ zit+1 ≤ ŷit + ηt(p

i − ci). In fact, zit+1 has to hit one of the two

boundaries. (b) Another important observation is that when the product i in the

first step updates its constraint-free target level zit+1 through a positive direction, i.e.,

zit+1 = ŷit + ηt(p
i − ci) ≥ ŷit ≥ 0, we must have ŷit+1 ≤ zit+1. To see this, suppose

otherwise ŷit+1 > zit+1, we can decrease ŷit+1 to zit+1, thereby strictly improving the

objective value of (2.16) while maintaining feasibility. On the other hand, when

the product i in the first step updates its constraint-free target level zit+1 through a

negative direction, we have zit+1 = ŷit − ηthi ≤ ŷit, Thus, this leads to the following

property that will be useful in the performance analysis,

ŷit+1 ≤ ŷit + ηt(p
i − ci), ∀ i = 1, . . . , n. (2.17)

Step 2: (Maintaining Feasibility). The target inventory levels ŷt+1 derived

23

in the second step may not be achievable or implementable, due to the physical

inventory carry-over and the warehouse capacity constraint. We then need to carry

out an additional optimization procedure as follows. This step tries to order as many

products as possible to reach the target level, and it is easy to solve quantitatively

but hard to analyze. First we divide all the products into two groups, namely, the

set J and its complement as defined in (2.13). We then have the following two cases.

Case 1. For each product i ∈ J , i.e., the beginning inventory level of product i

is already greater than its target level. It is natural to not order any more product i

and hence we follow (2.14).

Case 2. Now we focus on the set J̄ 6= ∅. Since the remaining inventory space now

becomes M −
∑

j∈J x
j
t+1, we solve the optimization problem (2.15) to determine the

actual implemented levels yt+1. Note that the optimization problem is well-defined

since

M −
∑
j∈J

xjt+1 = M −
∑
j∈J

(yjt − d
j
t)

+ ≥M −
∑
j∈J

yjt ≥ 0,

where the inequality follows from the fact that the algorithm keeps yt ∈ Γ.

The optimization (2.15) attempts to raise our inventory level as close as possible

to the target inventory level ŷit+1 for each product i ∈ J̄ ; however, it is possible that

some of the products in J̄ cannot hit the target level due to inventory constraints.

Since we minimize the 2-norm type of objective function, it can be readily verified

that the optimization (2.15) makes the shortfalls defined as ŷit+1 − yit+1 as even as

possible across the products in the set J̄ .

Note that if the optimal objective value of (2.15) is equal to 0, then the algorithm

goes to Case 1 in the next period and updates the target inventory levels. Otherwise

it goes to Case 2 and maintains the target inventory levels; while maintaining these

target levels, the inventory levels within J are decreasing and more inventory space

is freed over time, and the shortfalls will decrease to zero.

24

2.4 Performance Analysis of DDM

The regret of our data-driven algorithm, denoted byRT , is defined as the difference

between the optimal clairvoyant cost (given the demand distribution a priori) and the

cost incurred by our data-driven algorithm (which learns the demand distribution over

time). That is, for any T ≥ 1,

RT , E

[
T∑
t=1

Π(yt)

]
−

T∑
t=1

Π(y∗),

where yt are the actual implemented order-up-to levels of our nonparametric (closed-

loop) algorithm DDM, and y∗ is the clairvoyant optimal solution in (2.4).

Theorem 2.10 below states the main result in this chapter.

Theorem 2.10. Under Assumption 2.1, the average regret RT/T of our data-driven

algorithm DDM approaches 0 at the rate of 1/
√
T . That is, there exists some constant

K, such that for any T ≥ 1,

1

T
RT ,

1

T
E

[
T∑
t=1

Π(yt)

]
− Π(y∗) ≤ K√

T
,

where yt are actual implemented order-up-to levels of our nonparametric (closed-loop)

algorithm DDM, and y∗ is the clairvoyant optimal solution in (2.4).

It is known that in the general convex case (without assuming smoothness and

strong convexity), this rate of O(1/
√
T) is unimprovable (see, e.g., Theorem 3.2. of

Hazan (2016)). Our key contribution here is to establish this best possible rate even

with inventory and capacity constraints (i.e., the iterates cannot move “freely” due

to policy-driven dynamic inventory constraints).

Then the proof of Theorem 2.10 is the direct consequence of the following two key

lemmas.

25

Lemma 2.11. For any T ≥ 1, there exists a constant K1 ∈ R such that

∆1(T) = E

[
T∑
t=1

Π(ŷt)−
T∑
t=1

Π(y∗)

]
≤ K1

√
T ,

where ŷt are target order-up-to levels of DDM, and y∗ is the clairvoyant optimal

solution in (2.4).

Lemma 2.12. For any T ≥ 1, there exists some constant K2 ∈ R such that

∆2(T) = E

[
T∑
t=1

Π(yt)−
T∑
t=1

Π(ŷt)

]
≤ K2

√
T ,

where yt and ŷt are actual implemented and target order-up-to levels of DDM, respec-

tively.

2.4.1 Bound on ∆1 - Online Convex Optimization (Proof of Lemma 2.11)

The proof of Lemma 2.11 builds upon the ideas and techniques used in online

convex optimization (see, e.g., Zinkevich (2003) and Flaxman et al. (2005)). It is

shown the cost function Π(·) is jointly convex, and G(·) is an unbiased estimator of the

true expected gradient of Π(·) under censored demand within the set of breakpoints.

In addition, this gradient estimator is bounded, i.e., ||G(·)||22 ≤ n(maxi{pi− ci, hi})2.

Proof. Due to convexity of the cost function Π(y), we have

E [Π(ŷt)− Π(y∗)] ≤ E [∇Π(ŷt)(ŷt − y∗)] . (2.18)

Note that the subgradient∇Π(ŷt) defines the supporting hyperplane of Π at the point

ŷt.

For any period t ∈ T , i.e., in the set of break points, we can obtain the upper

bound of the second moment difference between our target inventory level and the

26

optimal target inventory level.

E||ŷt+1 − y∗||2 ≤ E||zt+1 − y∗||2 (2.19)

= E||ŷt − ηtGt(ŷt)− y∗||2

= E||ŷt − y∗||2 + η2
tE||Gt(ŷt)||2 − 2ηtE[Gtn(ŷt)(ŷt − y∗)],

where the first inequality follows the optimization (2.12) and the Pythagorean The-

orem since

||zt+1 − y∗||2 = ||ŷt+1 − y∗||2 + ||zt+1 − ŷt+1||2

by property of the 2-norm projection; the first equality follows from the definition of

zt+1; the second equality follows from a simple binomial expansion.

We can also re-write E[Gt(ŷt)(ŷt − y∗)] by taking conditional expectation on the

value of ŷt,

E [Gt(ŷt)(ŷt − y∗)] = E [E [Gt(ŷt)(ŷt − y∗)|ŷt]] (2.20)

= E [E [Gt(ŷt)|ŷt] (ŷt − y∗)]

= E [∇Π(ŷt)(ŷt − y∗)] ,

where the first equality holds because y∗ does not relate with ŷt; the last equality

follows from the fact that Gt is an unbiased estimator of the true gradient ∇Π.

Combining (2.19) and (2.20), it is clear that

E[∇Π(ŷt)(ŷt − y∗)] ≤ 1

2ηt

(
E||ŷt − y∗||2 − E||ŷt+1 − y∗||2

)
+
ηt
2
E||Gt(ŷt)||2. (2.21)

Without loss of generality, let T = {τ0, . . . , τk} with τ0 = 0 and τk = T . By the

27

construction of DDM,

E

[
T∑
t=1

Π(ŷt)−
T∑
t=1

Π(y∗)

]
= E

[
k−1∑
s=0

τs+1∑
t=τs+1

(Π(ŷt)− Π(y∗))

]

≤ M

l
· E

[
k∑
s=1

(Π(ŷτs)− Π(y∗))

]
,

where the inequality follows from the fact that the time between any two consecu-

tive break points cannot exceed the time for a “fictitious” system with M inventory

units for each product i = 1, . . . , n to become empty along every sample path. The

expectation of the latter (which is independent of ŷt) is upper bounded by M/l.

It then suffices to bound the term E
[∑k

s=1 (Π(ŷτs)− Π(y∗))
]
. Now, by summing

both sides of (2.18) over periods τ1 to τk,

E

[
k∑
s=1

(Π(ŷτs)− Π(y∗))

]
≤

k∑
s=1

E [∇Π(ŷτs)(ŷτs − y∗)] (2.22)

≤
k∑
s=1

(
1

2ητs

(
E||ŷτs − y∗||2 − E||ŷτs+1 − y∗||2

)
+
ητs
2
E||Gτs(ŷτs)||2

)

=
k∑
s=1

(
1

2ητs

(
E||ŷτs − y∗||2 − E||ŷτs+1 − y∗||2

)
+
ητs
2
E||Gτs(ŷτs)||2

)

=
1

2ητ1
E||ŷτ1 − y∗||2 − 1

2ητk
E||ŷτk+1

− y∗||2 +
1

2

k∑
s=2

(
1

ητs
− 1

ητs−1

)
E||ŷτs − y∗||2

+
k∑
s=1

ητs
E||Gτs(ŷτs)||2

2

≤ 2M2

(
1

2ητ1
+

1

2

k∑
s=2

(
1

ητs
− 1

ητs−1

))
+
n(maxi{pi − ci, hi})2

2

k∑
s=1

ητs

=
M2

ητk
+
n(maxi{pi − ci, hi})2

2

k∑
s=1

ητs ,

where the first and second inequalities follows from (2.18) and (2.21), respectively;

the first equality holds since ŷτs+1 = ŷτs+1 by the construction of DDM; the last

28

inequality follows from the fact that for any x,y ∈ Γ,

||x− y||22 ≤ ||x||22 + ||y||22 ≤ ||x||21 + ||y||21 ≤ 2M2.

Putting everything together, we have

E

[
T∑
t=1

Π(ŷt)−
T∑
t=1

Π(y∗)

]

≤ M

l

(
M2

ηT
+
n(maxi{pi − ci, hi})2

2

k∑
s=1

ητs

)
. (2.23)

Note that we have chosen our step size “optimally” as

ηt =

(
γM√

n ·maxi{pi − ci, hi}

)
1√
t

for some γ > 0,

so that

k∑
s=1

ητs ≤
T∑
t=1

ηt =

(
γM√

n ·maxi{pi − ci, hi}

) T∑
t=1

1√
t

≤
(

γM√
n ·maxi{pi − ci, hi}

)
2
√
T . (2.24)

Plugging (2.24) and ηT into (2.23) yields the result with the constant term

K1 = (γ + γ−1)M2l−1
√
n ·max

i
{pi − ci, hi}.

Note that putting γ = 1 gives the tightest bound. This completes the proof.

2.4.2 Bound on ∆2 - Stochastic Dominance and a GI/G/1 Queue (Proof

of Lemma 2.12)

The main focus of this chapter is to establish the result in Lemma 2.12. First

we derive a bound of the gap between the cost functions associated with the actual

29

implemented level yt and the desired target level ŷt, using the distance function

|yt − ŷt|.

Lemma 2.13. The difference in cost functions

E[Π(yt)− Π(ŷt)] ≤ E [(h ∨ (p− c)) · |yt − ŷt|] .

Proof. By the definition of the per-period cost function in (2.3), it follows that

E[Π(yt)− Π(ŷt)] ≤ E [c · (yt − ŷt)] + E
[
(h− c) · (yt − ŷt)

+
]

+ E
[
p · (ŷt − yt)

+
]

= E
[
h · (yt − ŷt)

+
]

+ E
[
(p− c) · (ŷt − yt)

+
]

≤ E [(h ∨ (p− c) · |yt − ŷt|] ,

where the last inequality follows from various operators defined at the end of Section

1.

Given Lemma 2.13, we need to develop an upper bound on the distance function

|yt − ŷt|, which is the crux of our performance analysis. Lemmas 2.14 and 2.15

below play a major role in the development of such an upper bound. Their proof

strategy relies heavily on the construction of DDM and also the structural properties

of optimization problems (2.15) and (2.16), which is quite involved.

Lemma 2.14 below provides an upper bound on the distance function for products

in the set J in which the beginning inventory level already exceeds the target order-

up-to level.

Lemma 2.14. In each period t + 1, we bound the distance function for all i ∈ J ,{
i : xit+1 > ŷit+1

}
.

∑
i∈J

|yit+1 − ŷit+1| ≤
∑
i∈J

∣∣yit − ŷit∣∣+ ηt

∑
i∈J

hi +
∑
j∈J̄

(
pj − cj

)−∑
i∈J

dit.

30

Proof. Case 1. We first consider time period t ∈ T = {τ0, . . . , τk}, which belongs

to the set of break points in DDM. Due to the construction of DDM, we update the

target levels at t+ 1 only if t ∈ T . For each product i ∈ J , i.e., xit+1 > ŷit+1, we have

yit+1 = xit+1 > ŷit+1 ≥ 0 by (2.14). This implies that yit+1 > 0, and by the lost-sales

system dynamics, we have

xit+1 = (yit − dt)+ = yit − dt > 0. (2.25)

The next key step is to compare the target level ŷit+1 with the constraint-free

target level zit+1. First, notice that when yit − dit > 0, the algorithm updates the

constraint-free target level in a negative direction, i.e.,

zit+1 = ŷit − ηthi < ŷit. (2.26)

Second, by the important property (2.17) of our algorithm, we have

ŷjt+1 ≤ ŷjt + ηt
(
pj − cj

)
, ∀ j = 1, . . . , n.

Thus, the maximum positive displacement of ŷt+1 from ŷt (excluding the set J) is

∑
j∈J̄

(
ŷjt+1 − ŷ

j
t

)
≤

∑
j∈J̄

ηt
(
pj − cj

)
. (2.27)

Now, to draw a relation between ŷit+1 and zit+1, there are two cases.

Subcase 1a. In the first case where
∑n

j=1 ŷ
j
t+1 ≥

∑n
j=1 ŷ

j
t , we must have

∑
i∈J

(
zit+1 − ŷit+1

)
<
∑
i∈J

(
ŷit − ŷit+1

)
≤
∑
j∈J̄

(
ŷjt+1 − ŷ

j
t

)
≤

∑
j∈J̄

ηt
(
pj − cj

)
,(2.28)

where the first inequality follows from (2.26); the second inequality follows from

31

∑n
j=1 ŷ

j
t+1 ≥

∑n
j=1 ŷ

j
t ; and the third inequality follows from (2.27).

Subcase 1b. In the second case where
∑n

j=1 ŷ
j
t+1 <

∑n
j=1 ŷ

j
t ≤M , the warehouse

storage constraint is not tight (i.e., the constraint-free target levels are in the interior

of Γ), and by the optimization procedure (2.15), zjt+1 = ŷjt+1 for all j = 1, . . . , n.

Thus, we have

zit+1 − ŷit+1 = ŷit+1 − ŷit+1 = 0, i = 1, . . . , n. (2.29)

Combining the above two cases and using the relations (2.28) and (2.29), we can

then obtain an upper bound for our distance function as follows,

∑
i∈J

|yit+1 − ŷit+1| =
∑
i∈J

(
xit+1 − ŷit+1

)
=
∑
i∈J

(
yit − dit − ŷit+1

)
≤

∑
i∈J

(
yit − dit − zit+1

)
+
∑
j∈J̄

ηt
(
pj − cj

)

=
∑
i∈J

(
yit − ŷit

)
+ ηt

∑
i∈J

hi +
∑
j∈J̄

(
pj − cj

)−∑
i∈J

dit,

≤
∑
i∈J

∣∣yit − ŷit∣∣+ ηt

∑
i∈J

hi +
∑
j∈J̄

(
pj − cj

)−∑
i∈J

dit,

where the first equality follows from the fact that i ∈ J and the construction of our

algorithm (2.14); the second equality is due to (2.25); the first inequality follows from

(2.28) and (2.29), and the third equality follows from (2.26). Now we have completed

the proof for Case 1.

Case 2. We then consider time period t /∈ T , which does not belong to the set of

break points in DDM. According to the construction of DDM, the target order-up-to

levels are kept unchanged, i.e., ŷit+1 = ŷit for all i = 1, . . . , n and for all t /∈ T . we can

32

similarly obtain an upper bound for our distance function as follows,

∑
i∈J

|yit+1 − ŷit+1| =
∑
i∈J

(
xit+1 − ŷit+1

)
=
∑
i∈J

(
yit − dit − ŷit+1

)
=

∑
i∈J

(
yit − dit − ŷit

)
≤
∑
i∈J

∣∣yit − ŷit∣∣−∑
i∈J

dit,

where the first equality follows from the fact that i ∈ J and the construction of our

algorithm (2.14); the second equality is due to (2.25); the third equality follows from

ŷit+1 = ŷit. Now we have completed the proof for Case 2.

Lemma 2.15 below provides an upper bound on the distance function for products

in the complement set J̄ in which the beginning inventory level is below the target

order-up-to level. If this is the case for all products, i.e., all products belong to J̄ ,

then the target levels can always be achieved. If not, we solve (2.15) to re-distribute

our target levels such that the difference between the target level and the actual

implemented level is as even as possible across different products.

Lemma 2.15. In each period t + 1, we bound the distance function for all i ∈ J̄ ,{
i : xit+1 ≤ ŷit+1

}
as follows. If J = ∅, we have

∑
i∈J̄ |ŷit+1 − yit+1| = 0. Otherwise, if

J 6= ∅, we have

∑
i∈J̄

|ŷit+1 − yit+1| ≤
∑
i∈J̄

∣∣ŷit − yit∣∣+ ηt
∑
i∈J̄

(pi − ci)−
∑
j∈J

djt .

Proof. Case 1. We first consider time period t ∈ T = {τ0, . . . , τk}, which belongs

to the set of break points in DDM. Due to the construction of DDM, we update

the target levels at t + 1 only if t ∈ T . For each product i ∈ J̄ , i.e., xit+1 ≤ ŷit+1,

recall that we need to solve the optimization problem (2.15) to determine our actual

implemented levels yt+1. That is,

min
∑
i∈J̄

(ŷit+1 − yit+1)2 s.t.
∑
i∈J̄

yit+1 ≤M −
∑
j∈J

xjt+1, yit+1 ≥ xit+1, ∀ i ∈ J̄ .

33

It is straightforward to see that ŷit+1 ≥ yit+1 for each product j ∈ J̄ . To see this,

suppose otherwise ŷit+1 < yit+1; we can always lower the value of yit+1 to ŷit+1 strictly

improving the objective value while maintaining feasibility.

Now there are three sub-cases.

Subcase 1a. The simplest case is when J = ∅, then (2.15) reduces to

min
n∑
i=1

(ŷit+1 − yit+1)2 s.t.
∑
i∈J̄

yit+1 ≤M, yit+1 ≥ xit+1, ∀ i ∈ J̄ .

Since ŷt+1 ∈ Γ, we have yit+1 = ŷit+1 for each product i = 1, . . . , n, and thus the

distance function is zero for each product i = 1, . . . , n.

Subcase 1b. The second case is when upon solving yt+1, the warehouse storage

constraint is not tight, i.e.,

∑
i∈J̄

yit+1 < M −
∑
j∈J

xjt+1. (2.30)

Then we claim that ∑
i∈J̄

ŷit+1 < M −
∑
j∈J

xjt+1, (2.31)

We argue the claim by contradiction. Suppose otherwise that

∑
i∈J̄

ŷit+1 ≥M −
∑
j∈J

xjt+1 >
∑
i∈J̄

yit+1.

Then there must exist a product k such that ykt+1 < ŷkt+1, you can always increase

ykt+1 by

ε ,M −
∑
j∈J

xjt+1 −
∑
i∈J̄

yit+1 > 0

to make the warehouse storage constraint tight, thereby strictly reducing the optimal

objective value. This contradicts the optimality of yt+1 in (2.15).

Thus, by (2.30) and (2.31), we have yit+1 = ŷit+1 for each product i ∈ J̄ , and the

34

distance function is zero for each product i = 1, . . . , n.

Subcase 1c. The third case is much more involved. That is, upon solving yt+1,

the warehouse storage constraint becomes tight, i.e.,

∑
i∈J̄

yit+1 = M −
∑
j∈J

xjt+1,

and the set J 6= ∅. We can then rewrite the optimization problem (2.15) as follows,

min
∑
i∈J̄

(ŷit+1 − yit+1)2

s.t.
∑
i∈J̄

(
ŷit+1 − yit+1

)
=
∑
i∈J̄

ŷit+1 −M +
∑
j∈J

xjt+1, yit+1 ≥ xit+1, ∀ i ∈ J̄ .

We then bound the distance function as follows,

∑
i∈J̄

∣∣ŷit+1 − yit+1

∣∣ =
∑
i∈J̄

ŷit+1 −M +
∑
j∈J

xjt+1 =
∑
i∈J̄

ŷit+1 −M +
∑
j∈J

(yjt − d
j
t)

+

=
∑
i∈J̄

ŷit+1 −M +
∑
j∈J

(yjt − d
j
t)

=
∑
i∈J̄

ŷit+1 −

(
M −

∑
j∈J

yjt

)
−
∑
j∈J

djt

≤
∑
i∈J̄

ŷit+1 −
∑
i∈J̄

yit −
∑
j∈J

djt =
∑
i∈J̄

(
ŷit+1 − yit

)
−
∑
j∈J

djt

≤
∑
i∈J̄

(
ŷit + ηt(p

i − ci)− yit
)
−
∑
j∈J

djt

≤
∑
i∈J̄

(
ŷit − yit

)
+
∑
i∈J̄

ηt(p
i − ci)−

∑
j∈J

djt

≤
∑
i∈J̄

∣∣ŷit − yit∣∣+ ηt
∑
i∈J̄

(pi − ci)−
∑
j∈J

djt ,

where the first equality is because the warehouse storage constraint becomes tight;

the second equality is due to the system dynamics; the third equality is because j ∈ J

implies that xjt+1 > 0, and hence the plus sign can be removed; the first inequality is

35

due to the fact that ∑
j∈J̄

yjt +
∑
j∈J

yjt =
n∑
j=1

yjt ≤M ;

and the second inequality follows from the important property (2.17) of our algorithm.

Now we have completed the proof for Case 1.

Case 2. We then consider time period t /∈ T , which does not belong to the set of

break points in DDM. Due to the construction of DDM, the target order-up-to levels

are kept unchanged, i.e., ŷit+1 = ŷit for all i = 1, . . . , n and for all t /∈ T . Also, if t /∈ T ,

then the optimization problem (2.15) has a nonzero objective value, which suggests

that the warehouse storage constraint has to be tight. We then similarly bound the

distance function as follows,

∑
i∈J̄

∣∣ŷit+1 − yit+1

∣∣ =
∑
i∈J̄

ŷit+1 −M +
∑
j∈J

xjt+1 =
∑
i∈J̄

ŷit+1 −M +
∑
j∈J

(yjt − d
j
t)

+

=
∑
i∈J̄

ŷit+1 −M +
∑
j∈J

(yjt − d
j
t)

=
∑
i∈J̄

ŷit+1 −

(
M −

∑
j∈J

yjt

)
−
∑
j∈J

djt

≤
∑
i∈J̄

ŷit+1 −
∑
i∈J̄

yit −
∑
j∈J

djt =
∑
i∈J̄

(
ŷit+1 − yit

)
−
∑
j∈J

djt

=
∑
i∈J̄

(
ŷit − yit

)
−
∑
j∈J

djt ≤
∑
i∈J̄

∣∣ŷit − yit∣∣−∑
j∈J

djt ,

where we used the same arguments as in Subcase 1c and also the fact that ŷit+1 = ŷit

for all i = 1, . . . , n if t /∈ T . Now we have completed the proof for Case 2.

With the upper bounds on the distance function in two mutually exclusive sets J

and J̄ obtained from Lemmas 2.14 and 2.15, we provide an overarching upper bound

in Lemma 2.16.

36

Lemma 2.16. In each period t+1, we bound the sum of distance functions as follows.

n∑
i=1

|yit+1 − ŷit+1| ≤

(
n∑
i=1

∣∣yit − ŷit∣∣+ ηt

(
n∑
i=1

(
hi + 2

(
pi − ci

)))
− min

j=1,...,n
djt

)+

.

Proof. By Lemma 2.14, we have

∑
i∈J

|yit+1 − ŷit+1| ≤

∑
i∈J

∣∣yit − ŷit∣∣+ ηt

∑
i∈J

hi +
∑
j∈J̄

(
pj − cj

)−∑
i∈J

dit

+

,

and by Lemma 2.15, we have

∑
i∈J̄

|yit+1 − ŷit+1| ≤

(∑
i∈J̄

∣∣yit − ŷit∣∣+ ηt
∑
i∈J̄

(pi − ci)− min
j=1,...,n

djt

)+

.

Combining the above two inequalities yields the result.

Next, we wish to find a stochastic process that can be used to bound the sum of

distance functions. It is now convenient to introduce the notion of stochastic order and

convex order (see Shaked and Shanthikumar (2007)). Consider two random variables

X and Y . X is said to be stochastically smaller than Y (denoted by X ≤st Y) if

P(X > x) ≤ P(Y > x),∀x ∈ R. Also, X is said to be smaller than Y in the convex

order (denoted as X ≤cx Y) if E[φ(X)] ≤ E[φ(Y)] for all convex functions φ : R→ R,

provided the expectations exist. Note that convex order is weaker, i.e., X ≤st Y ⇒

X ≤cx Y .

Next, corresponding to the sum of distance functions, we consider a stochastic

process (Zt | t ≥ 0)

Zt+1 =

[
Zt +

St√
t
− D̃t

]+

, Z0 = 0,

where St ,
∑n

i=1 (hi + 2(pi − ci)) , and D̃t is a random variable satisfying D̃t ≤st

Dj
t , ∀j.

37

Lemma 2.17. The total expected distance function

E

[
T∑
t=1

n∑
i=1

|yit − ŷit|

]
≤ E

[
T∑
t=1

Zt

]
,

where Zi
t+1 is a stochastic process defined above.

Proof. By Lemma 2.16, for each period t+ 1, the sum of distance functions

n∑
i=1

|yit+1 − ŷit+1| ≤

(
n∑
i=1

∣∣yit − ŷit∣∣+ ηt

n∑
i=1

(
hi + 2

(
pi − ci

))
− min

j=1,...,n
djt

)+

.

In addition, we know that
∑n

i=1 |yi0 − ŷi0| = 0 (since the policy starts with zero

inventory). Thus, by the definition of the stochastic process Zt+1, it is clear that∑n
i=1 |yit+1 − ŷit+1| ≤st Zt+1. This implies that

∑n
i=1 |yit+1 − ŷit+1| ≤cx Zt+1, and then

the result follows immediately.

We observe that the stochastic process Zt is very similar to a GI/G/1 queue,

except that the service time is scaled by 1/
√
t in each period t. Now consider a

GI/G/1 queue (Wn | n ≥ 0) defined by the following Lindley’s equation: W0 = 0,

and

Wt+1 = [Wt + St − D̃t]
+, (2.32)

where the sequences St and D̃t consist of independent and identically distributed

random variables. Let τ0 = 0, τ1 = inf{t ≥ 1 : Wt = 0} and for k ≥ 1, τk+1 = inf{t >

τk : Wt = 0}. Let Bk = τk − τk−1. The random variable Wt is the waiting time of the

tth customer in the GI/G/1 queue, where the inter-arrival time between the tth and

t+1th customers is distributed as D̃t, and the service time is distributed as St. Then,

Bk is the length of the kth busy period. Let ρ = E[S1]/E[D̃1] represent the system

utilization. It is well-known that in a GI/G/1 queue, if ρ ≤ 1, then the queue is

stable and the random variable Bk is independent and identically distributed. Note

that this stability condition ρ ≤ 1 can always be satisfied by appropriately scaling

38

the units of cost parameters.

We invoke the following result from Loulou (1978) to bound E[B], the expected

busy period of a GI/G/1 queue with inter-arrival distribution Dn and service distri-

bution Sn.

Theorem 2.18 (Loulou 1978). Let Xn = Sn −Dn, and α = −E[X1]. Let σ2 be the

variance of X1. If E[X3
1] = β <∞, and ρ < 1,

E[B] ≤ σ

α
exp

(
6β

σ3
+
α

σ

)
.

We can now obtain an upper bound on our expected busy period E[B] for the

stochastic process Wt defined in (2.32), by setting X1 =
∑n

i=1 (hi + 2(pi − ci)) − D̃1

(whose expectation is negative since ρ ≤ 1).

With the explicit form of E[B], Lemma 2.19 gives the upper bound of our distance

function below. The idea is to connect the upper-bounding stochastic process (which

evolves as a GI/G/1 queue) with the expected busy period of this queue (where there

exists an explicit upper bound that does not depend on the time horizon T).

Lemma 2.19. The total expected distance function

E

[
T∑
t=1

n∑
i=1

|yit − ŷit|

]
≤ 2E[B]S

√
T ,

where E[B] ≤ σ
α

exp
(

6β
σ3 + α

σ

)
, and S =

∑n
i=1 (hi + 2 (pi − ci)) .

Proof. By Lemma 2.17, it suffices to show that E
[∑T

t=1 Zt

]
≤ 2E[B]S

√
T . Recall

that

Zt+1 =

[
Zt +

St√
t
− D̃t

]+

, Z0 = 0.

Let the random variable l(t) denote the index k in which Bk contains t, and it is clear

39

that

Zt ≤
t∑

s=1

Ss√
s
1
[
s ∈ Bl(t)

]
a.s.

By summing Zt over periods 1 to T and taking expectation, we have

E

[
T∑
t=1

Zt

]
≤ E

[
T∑
t=1

t∑
s=1

Ss√
s
1
[
s ∈ Bl(t)

]]
≤ E

[
T∑
t=1

St√
t

T∑
s=1

1
[
s ∈ Bl(t)

]]

= E

[
T∑
t=1

St√
t
Bl(t)

]
=

T∑
t=1

1√
t
E[B1]S ≤ 2E[B]S

√
T .

This completes the proof.

The proof of Lemma 2.12 then follows from Lemma 2.13 and Lemma 2.19.

Proof. Combining Lemma 2.13 and Lemma 2.19, we have

∆2(T) = E

[
T∑
t=1

(Π(yt)− Π(ŷt))

]
≤ E

[
T∑
t=1

(h ∨ (p− c)) · |yt − ŷt|

]

≤ max
i
{pi − ci, hi}E

[
T∑
t=1

|yt − ŷt|

]
= max

i
{pi − ci, hi}E

[
T∑
t=1

n∑
i=1

|yit − ŷit|

]
≤ max

i
{pi − ci, hi}

(
2
√
TE[B]S

)
=
(

2 max
i
{pi − ci, hi}E[B]S

)√
T .

Recall that E[B] ≤ σ
α
e

6β

σ3
+α
σ and S =

∑n
i=1 (hi + 2 (pi − ci)) . Setting the constant

K2 = 2 max
i
{pi − ci, hi}σ

α
e

6β

σ3
+α
σ

{
n∑
i=1

(
hi + 2

(
pi − ci

))}
.

yields the result. This completes the proof.

40

2.5 Extensions

2.5.1 Improving the convergence rate

If we change Assumption 2.1(c) slightly to enforce a uniform lower bound δ > 0

on the density of demand, i.e., F ′Di(x) ≥ δ > 0 for all x ∈ [0,M] and all i = 1, . . . , n,

and also change the step size ηt = O(1/t) in the algorithm, one can readily show that

the cost function is δ-strongly convex, and the rate of convergence of DDM can be

improved to O(log T/T).

2.5.2 Different Product Dimensions or Sizes

Our basic model (defined in Section 2.2) assumes that all products have exactly the

same dimension or sizes. However, in general, different products may have different

dimension or sizes. Let v1, v2, . . . , vn denote the sizes of the different products, and

yt ∈ Γ ,

{
yt ∈ Rn+ :

n∑
i=1

viyit ≤M

}
, (2.33)

By a simple cost transformation, we show in the following that our algorithm DDM

(now defined in terms of transformed variables) and its performance analysis remain

the same.

We define new decision variables as follows,

ỹit = viyit, x̃it = vixit, q̃it = viqit,

for i = 1, . . . , n. In addition, we appropriately scale the demand and cost parameters

as follows,

D̃i
t = viDi

t, c̃i = ci/vi, h̃i = hi/vi, p̃i = pi/vi

41

for i = 1, . . . , n. With the above transformation, the cost of a feasible policy π under

the new warehouse-capacity constraint (2.33) can be transformed as follows,

C(π) = E

[
T∑
t=1

c · (yt − xt) + h · (yt −Dt)
+ + p · (Dt − yt)

+

]
− E[c · xT+1],(2.34)

= E

[
T∑
t=1

c̃ · (ỹt − x̃t) + h̃ · (ỹt − D̃t)
+ + p̃ · (D̃t − ỹt)

+

]
− E[c̃ · x̃T+1].

Moreover, it is clear that the new constraint defined in (2.33) is equivalent to

ỹt ∈ Γ ,

{
ỹt ∈ Rn+ :

n∑
i=1

ỹit ≤M

}
,

which has the same form as in the original constraint defined in (2.1). Hence, this

more general model has been reduced to the basic model. Our data-driven algorithm

(now defined in terms of transformed variables) and its performance analysis remain

the same.

2.5.3 Discrete Demand and Ordering Quantities

In practice, the demand and ordering quantities are often integers. We provide

a modified algorithm (denoted by DDM-Discrete) in the following to handle such

discrete cases, which achieves the same convergence rate O(1/
√
T) with the aid of lost-

sales indicators (i.e., the firm knows whether lost-sales has occurred in each period).

DDM-Discrete

Step 0. (Initialization.) Set the initial inventory levels y0 = ŷ0 = ȳ0 to be any

non-negative integer values within Γ and then set the initial values t = 0, τ0 = 0 and

k = 0.

For each period t = 0, . . . , T − 1, repeat the following steps:

Step 1. (Setting the constraint-free and constrained target inventory levels.)

Case 1: If yt ≥ ŷt, the algorithm updates the constraint-free target inventory

42

levels zt+1 by (2.10); however, for each product i = 1, . . . , n, the ith component of Ĝt

is defined as

Ĝi
t(ŷt) =


−pi + cit + (hi + pi − ci) · 1(dit ≤ ŷit), if ŷit = bȳitc,

−pi + cit + (hi + pi − ci) · 1(dit ≤ ŷit − 1), if ŷit = dȳite,
(2.35)

which is the right derivative of Π at bȳitc, i.e., the slope of Π at ȳit for the piece-wise

linear cost.

Then the algorithm obtains an intermediate (continuous) target level ȳt+1 by

solving ȳt+1 = arg minw∈Γ ||w − zt+1||2. Then set the constrained (discrete) target

inventory levels ŷt+1 by probabilistic rounding. That is, if ȳit+1 is already an integer,

set ŷit+1 = ȳit+1; otherwise, we flip a (biased) coin with probability ŷit+1 − bȳit+1c of

heads. Set ŷit+1 = dȳit+1e if the outcome is head and set ŷit+1 = bȳit+1c if the outcome

is tail.

Record the break point τk := t+ 1 and increase the value k by 1.

Case 2: Else if yt � ŷt, the algorithm keeps both the constraint-free and con-

strained target inventory levels unchanged, i.e., zt+1 = zt and ŷt+1 = ŷt.

Step 2. (Solving for the actual implemented target inventory levels.)

Define the set J as J ,
{
i : xit+1 > ŷit+1

}
. Define set J ’s complement as J̄ ,{

i : xit+1 ≤ ŷit+1

}
. For each product i ∈ J , we set the actual implemented levels

yit+1 = xit+1 if xit+1 > ŷit+1.

If J̄ 6= ∅, then we set the actual implemented levels yt+1 by solving

min
∑
i∈J̄

(ŷit+1 − yit+1)2

s.t.
∑
i∈J̄

yit+1 ≤M −
∑
j∈J

xjt+1, y
i
t+1 ≥ xit+1, y

i
t+1 ∈ Z+, ∀ i ∈ J̄ . (2.36)

This concludes the description of the algorithm.

43

Note that the key differences between DDM-Discrete and DDM are in Step 1 –

defining a modified gradient Ĝt, and probabilistic rounding. In order to establish

our performance guarantee, we need a lost-sales indicator for whether lost-sales has

occurred in each period t, thereby determining the value of 1(ŷit ≤ dit) . Without this

indicator, it is not sufficient to obtain an unbiased estimator for the right derivative of

our cost function Π(·) by observing the past sales quantities. The decision maker no

longer has access to a local (stochastic) direction of cost improvement. For example,

if the computed target inventory level is 15.5 for some product i and we round it down

to 15, even an infinite number of sales observations would not allow the decision maker

to obtain an estimate of the slope of Πi(·) at 15.5. This is because if the demand

turns out to be exactly 15, the unbiased gradient should be hi since our target level

15.5 is higher than 15; however, if the demand turns out to be 16, then the unbiased

gradient should be −pi + ci. In both cases, we observe zero inventory but cannot

determine if the demand is strictly greater than 15 without a lost-sales indicator.

However, with access to this lost-sales indicator, we can construct such an estima-

tor Ĝt defined in (2.35), which is unbiased when t ∈ T . Then the proofs of bounds

∆1 and ∆2 are almost identical to the ones used in DDM as long as the warehouse-

capacity M is also an integer. Hence we are able to extend our results to the discrete

demand and inventory case as stated in the theorem below.

Theorem 2.20. Assume that the clairvoyant optimal solution in (2.6) is unique in the

discrete demand case. With access to the lost-sales indicator, the average regret RT/T

of our data-driven algorithm for discrete demand case (DDM-Discrete) approaches 0

at the rate of 1/
√
T . That is, there exists some constant K, such that for any T ≥ 1,

1

T
RT ,

1

T
E

[
T∑
t=1

Π(yt)

]
− Π(y∗) ≤ K√

T
.

To the best of our knowledge, the availability of the lost-sales indicator has been

44

assumed in all nonparametric studies that analyze newsvendor-type problems with an

unknown discrete demand distribution (see, e.g., Huh and Rusmevichientong (2009)

and Besbes and Muharremoglu (2013)). They showed that active exploration plays a

much stronger role in the discrete case (compared to the continuous case). However,

the need for active exploration disappears as soon as a lost-sales indicator (that

records whether demand was censored or not) becomes available, in addition to the

censored demand samples. The access to this indicator allows the decision maker to

obtain a noisy signal about the potential need for an upward correction.

2.6 Numerical Experiments

We compare the performance of DDM with several existing parametric and non-

parametric approaches in the literature (briefly described below). Our results show

that DDM outperforms these benchmark algorithms in terms of both consistency

and convergence rate. We first explain the detailed experimental setup and then

show numerical results (figures) with benchmarks.

2.6.1 Experimental Setup

For each experiment, we specify a (hindsight) demand distribution with cumula-

tive distribution function F (·). The lost-sales penalty cost pi for each product i is

randomly drawn from the interval [70, 90] and the purchasing cost ci for each prod-

uct i is randomly drawn from the interval [55, 65]. We then set the holding cost

hi = 0.02ci for each product i (see, e.g., Zipkin (2000)). To compare the cost under

each algorithm, we evaluate each algorithm on N = 200 randomly generated prob-

lem instances. Each problem instance consists of independent demand samples and

parameters over a time horizon of 500 periods, unless specified otherwise. For each

45

algorithm π, we compute the average cost till period t, which is given by

1

N

N∑
j=1

1

t

t∑
s=1

Π̃j,s(y
π
j,s),

where the one-period cost Π̃j,s(y) in period s of the problem instance j is given by

Π̃j,s(y) =
n∑
i=1

ciyi,πj,s + (hi − ci)(yi,πj,s − dij,s)+ + pi(dij,s − y
i,π
j,s)+,

where dij,s is the demand realization for product i in period s of the problem instance

j, and yi,πj,s is the corresponding order-up-to level computed by each algorithm π.

2.6.2 Benchmarks and Numerical Results

(i). Algorithm a1 (Known Distribution): Clairvoyant Optimal Policy.

(ii). Algorithm a2 (Uncensored): Uncensored SAA. This is a sample aver-

age approximation (SAA) algorithm with uncensored demand (a hypothetical

situation). The target inventory level is the quantile of the empirical demand

distribution using uncensored demand data.

(iii). Algorithm b1 (Parametric): MLE Censored. Assuming the correct para-

metric form has been pre-specified, this parametric policy uses censored demand

data to construct maximum likelihood estimators (MLE) for the parameters in

the demand distribution.

(iv). Algorithm c1 (Nonparametric): Burnetas-Smith (B-S) Policy. The B-

S policy is a nonparametric policy which was developed by Burnetas and Smith

(2000).

(v). Algorithm c2 (Nonparametric): CAVE Policy. The CAVE policy, de-

veloped by Godfrey and Powell (2001), is a nonparametric approach by ap-

46

proximating the underlying objective function using a series of piecewise linear

functions.

Comparison with parametric MLE algorithms. The numerical results are pre-

sented in Figure 2.1. Our results indicate that DDM performs very well, and is

consistent (i.e., it converges to the optimal solution). In contrast, MLE Censored is

significantly slower than DDM, and also suffers from inconsistency, i.e., it often fails

to converge to the optimal solution. This is due to a spiral-down effect. More specif-

ically, if the initial inventory level is lower than the optimal target level, the censored

demand is likely to give an even lower estimate in the next period (because the firm

cannot observe the lost-sales quantity). Then the target inventory level will be set

lower and lower, resulting in divergent cost. The consistency of MLE Censored hinges

on the (almost) perfect initial estimation of target levels, which is often impractical.

In fact, in three of the examples in Figure 2.1, the MLE Censored algorithm did not

converge; in the only one where it did converge, we actually picked starting target

levels close enough to the optimal levels so that it would converge, which of course

would not be possible in practice.

Comparison with nonparametric algorithms. The numerical results are pre-

sented in Figure 2.2. Our results show that DDM consistently outperforms both the

B-S policy and the CAVE policy. We also find out that the B-S policy has an ex-

tremely slow convergence rate while the CAVE policy is much faster but still slower

than DDM. Figure 2.2 also displays the performance of the Uncensored SAA pol-

icy (assuming the uncensored demand information). It is interesting to note that the

DDM policy performs very close to the Uncensored SAA policy in all of our examples.

Extreme cases with uneven lost-sales penalty costs. DDM performs consis-

tently very well for extreme cases with some pathological parameters (see Figure

2.3).

47

0 100 200 300 400 500
3000

3050

3100

3150

3200

3250

3300

3350

3400

3450

3500

Peroid t

A
v
e
ra

g
e
 C

o
s
t
u
p
 t
o
 T

im
e
 t

Comparison with Parametric Approaches
Demand for 3 Products ~ Poisson with Rates 35,10,5;

Each with Initial Invnetory 15,15,20;

0 100 200 300 400 500
3000

3050

3100

3150

3200

3250

3300

3350

3400

3450

3500

Period t

A
v
e
ra

g
e
 C

o
s
t
u
p
 t
o
 T

im
e
 t

Comparison with Parametric Approaches
Demand for 3 Products ~ Poisson with Rates 35, 10, 5;

Each with Initial Inventory 35,10,5;

0 100 200 300 400 500
3000

3050

3100

3150

3200

3250

3300

3350

3400

Period t

A
v
e
ra

g
e
 C

o
s
t
u
p
 t
o
 T

im
e
 t

Comparison with Parametric Approaches
Demand for 3 Products ~ N(25,3), N(15,3), N(10,3);

Each with Initial Inventory 15,15,20;

0 100 200 300 400 500
3000

3050

3100

3150

3200

3250

3300

3350

3400

Period t

A
v
e
ra

g
e
 C

o
s
t
u
p
 t
o
 T

im
e
 t

Comparison with Parametric Approaches
Demand for 3 Products ~ N(25,3), N(15,3), N(10,3);

Each with Initial Inventory 35,10,5;

DDM Policy

MLE Censored

Hindsight Policy

DDM Policy

MLE Censored

Hindsight Policy

DDM Policy

MLE Censored

Hindsight Policy

DDM Policy

MLE Censored

Hindsight Policy

Figure 2.1: Comparison with parametric approaches.

48

0 100 200 300 400 500
3100

3200

3300

3400

3500

3600

3700

3800

Period t

A
v
e

ra
g

e
 C

o
s
t

u
p

 t
o

 T
im

e
 t

Comparison with Non−Parametric Approaches
Demand for 3 Products ~ Poisson with Rates 25, 15, 10; Initial Inventory 50, 0, 0

0 100 200 300 400 500
3100

3200

3300

3400

3500

3600

3700

3800

Period t

A
v
e

ra
g

e
 C

o
s
t

u
p

 t
o

 T
im

e
 t

Comparison with Non−Parametric Approaches
Demand for 3 Products ~ Poisson with Rates 30, 10, 10; Initial Inventory 50, 0, 0

0 100 200 300 400 500
3000

3100

3200

3300

3400

3500

3600

3700

3800

Period t

A
v
e

ra
g

e
 C

o
s
t

u
p

 t
o

 T
im

e
 t

Comparison with Non−Parametric Approaches
Demand for 3 Products ~ N(25,3), N(15,3), N(10,3); Initial Inventory 50, 0, 0

0 100 200 300 400 500
3000

3100

3200

3300

3400

3500

3600

3700

3800

Period t

A
v
e

ra
g

e
 C

o
s
t

u
p

 t
o

 T
im

e
 t

Comparison with Non−Parametric Approaches
Demand for 3 Products ~ N(30,3), N(10,3), N(10,3); Initial Inventory 50, 0, 0

Uncensored SAA

BS Policy

DDM Policy

CAVE Policy

Hindsight Policy

Uncensored SAA

BS Policy

DDM Policy

CAVE Policy

Hindsight Policy

Uncensored SAA

BS Policy

DDM Policy

CAVE Policy

Hindsight Policy

Uncensored SAA

BS Policy

DDM Policy

CAVE Policy

Hindsight Policy

Figure 2.2: Comparison with nonparametric approaches.

49

0 50 100 150 200 250 300 350 400 450 500
3000

4000

5000

6000

7000

8000

9000

Period t

A
v
e

ra
g

e
 C

o
s
t

u
p

 t
o

 T
im

e
 t

Extreme Cases
Demand for 3 Products ~ Poisson with Rates 25,15,5

Uncensored SAA

BS Policy

DDM Policy

CAVE Policy

Hindsight Policy

0 50 100 150 200 250 300 350 400 450 500

3000

4000

5000

6000

7000

8000

9000

Period t

A
v
e

ra
g

e
 C

o
s
t

u
p

 t
o

 T
im

e
 t

Extreme Cases
Demand for 3 Products ~ N(25,3), N(15,3), N(10,3)

Uncensored SAA

BS Policy

DDM Policy

CAVE Policy

Hindsight Policy

Figure 2.3: Extreme cases with uneven lost-sales penalty costs.

2.7 Concluding Remark

We propose a stochastic gradient descent type algorithm to the stochastic multi-

product inventory systems under a warehouse-capacity constraint. We establish the

rate of convergence guarantee of our algorithm, i.e., the average expected T -period

cost of our policy converges to the optimal cost at the rate of O(1/
√
T). We would

like to note that with a slight modification of the newsvendor cost function, we can

establish O(log T/T) convergence of the proposed algorithm.

To close this chapter, we point out three interesting extensions for future research.

(a) Models with convex ordering cost. When the ordering cost is convex, Karlin (1958)

showed the optimal policy to be a generalized base stock policy for a single product.

That is, there exists a nonnegative function y(x) with 0 ≤ dy/dx ≤ 1 such that,

in any period, if the starting inventory level is x, order so that the inventory

level is brought to max(x, y(x)). The difficulty with extending our results to this

convex ordering cost setting is that the clairvoyant optimal solution is no longer

a single critical number y∗ but a function of x, i.e., y∗(x).

(b) Models with ordering capacity. When there is an ordering capacity in a single

50

product case, Federgruen and Zipkin (1986a,b) showed that a modified base-

stock policy is optimal under both the average and discounted cost criteria. More

specifically, there exists critical value y∗ ≥ 0 such that the manager wants to bring

the inventory order-up-to level as close as possible to this y∗ at the beginning of

each period (i.e., either order up to y∗ when possible, or order the full capacity).

Despite the simple form of optimal policies, the clairvoyant optimal critical value

cannot be myopically determined and requires recursive computation via dynamic

programming, which adds significant amount of complexity in developing regret

bounds.

(c) Models with setup cost. When the firm faces fixed costs for ordering that drive lot

sizing decisions, computing optimal (s, S) policies (see Veinott (1966)) in hind-

sight requires a dynamic programming approach and developing a data-driven

algorithm for this problem with a provable performance guarantee is likely to be

more challenging.

51

CHAPTER III

Nonparametric Algorithms for Stochastic

Inventory Systems with Random Capacity

3.1 Introduction

Capacity plays an important role in a production/inventory system (see Zipkin

(2000) and Simchi-Levi et al. (2014)). The amount of capacity and the variability

associated with this capacity affect the production plan as well as the amount of

inventory that the firm will carry. As seen from our literature review, there has been

a rich and growing literature on capacitated production/inventory systems, and this

literature has demonstrated that capacitated systems are inherently more difficult

to analyze compared to their uncapacitated counterparts, due to the fact that the

capacity constraint makes future costs heavily dependent on the current decision.

To the best of our knowledge, almost all papers on capacitated inventory systems

assume that the stochastic future demand that the firm will face and the stochastic

future capacity that the firm will have access to are given by exogenous random vari-

ables (or random processes), and the inventory decisions are made with full knowledge

of future demand and capacity distributions. However, in most practical settings, the

firm does not know the demand distribution a priori, and has to deduce the demand

distribution based on the observed demand while it is producing and selling the prod-

52

uct. Similarly, when the firm starts producing a new product on a manufacturing line,

the firm may have very little idea of the variability associated with this capacity a

priori. The uncertainty of capacity can be much more significant than the uncer-

tainty in demand in some cases. For instance, Tesla originally stated that it had a

line that would be able to build Model 3s at the rate of 5000 per week by the end

of June 2017. However, Tesla was never able to reach this production rate at any

time in 2017. In fact, during the entire fourth quarter of 2017, Tesla was only able to

produce 2425 Model 3s according to Sparks (2018). Tesla was finally able to achieve

the rate of 5000 produced cars the last week of the second quarter of 2018. However,

even at the end of August 2018, Tesla is not able to achieve anywhere near an average

5000 Model 3s production rate per week. Even if we ignore ramp-up issues and as-

sume that Tesla has finally (after one year’s delay) achieved “stability”, according to

Bloomberg’s estimate as of September 10, 2018, Tesla was only producing an average

of 3857 Model 3s per week in September according to Randall and Halford (2018).

Even though Tesla may have had more problems than the average manufacturer, sig-

nificant uncertainty over what production rate can be achieved at a factory is not

at all uncommon. In fact, some analysts now question whether this line will ever be

able to achieve a consistent production rate of 5000 Model 3s per week displaying the

difficulty of estimating the true capacity of a production line.

Another interesting example to look at over time is Apple’s launches of its iPhone.

When the iPhone 6 was being introduced, there were a large number of articles (see,

e.g., Brownlee (2014)) indicating that the radical redesign of Apple’s smartphone

would lead to a short supply of enough devices when it launched due to the increas-

ing difficulty of producing the phone with the new design. In this case, Apple was

producing the iPhone already for about 7 years. However, the new generation prod-

uct was significantly different so that the estimates that Apple had built of its lines’

production rates based on the old products were no longer valid. Similarly, as Apple

53

was about to launch its latest iPhone in October 2018, there were numerous reports

about potential capacity problems. Sohail (2018) discussed how supply might be

constrained at launch due to capacity problems. However, a month and a half after

launch, Apple found that sales of its XS and XR models were less than predicted and

had to resort to increasing what it offers for trade-in of previous generation iPhone

models as an incentive to boost sales. Thus, even in year 11 of production of its

product, Apple still has to deal with capacity and demand uncertainty and with each

new generation, it has to rediscover its capacity and demand distributions. This is

what has motivated us to develop a nonparametric learning algorithm which aids the

firm to decide on how many units to produce, while it is learning about its demand

and capacity distributions.

3.1.1 Main Result and Contributions

To the best of our knowledge, we develop the first nonparametric learning algo-

rithm, called the data-driven random capacity algorithm (DRC for short), for finding

the optimal policy in a periodic-review production/inventory system with random

capacities where the firm does not have access to both the demand and capacity

distributions a priori. The performance measure is the standard notion of regret in

online learning algorithms (see Shalev-Shwartz (2012); Hazan (2016)), which is de-

fined as the difference between the cost of the proposed learning algorithm and the

clairvoyant optimal cost, where the clairvoyant optimal cost corresponds to the hy-

pothetical case where the firm knew the demand and capacity distributions a priori

and applied the optimal policy.

Our main result is to show that the cumulative T -period regret of the DRC al-

gorithm is bounded by O(
√
T), which is also theoretically the best possible for this

class of problems. Our work contributes to the active and growing literature in in-

ventory learning literature (as seen from our detailed literature review below). In the

54

following, we shall highlight the main points of departure of the present chapter from

the most closely related prior works.

Our proposed learning algorithm is stochastic gradient descent type, which has

been successfully employed for various stochastic inventory systems, started by the

seminal work by Huh and Rusmevichientong (2009) which studied the classical multi-

period stochastic inventory model. Shi et al. (2016) then extended their approach

to a multi-product setting under a warehouse capacity constraint. The algorithms

and their analysis of both Huh and Rusmevichientong (2009) and Shi et al. (2016)

hinged on the myopic optimality of the clairvoyant optimal policy, i.e., it suffices to

examine a single-period cost function. However, in the present work, the random

production capacity (on how much can be produced) is fundamentally different than

the warehouse capacity (on how much can be stored) considered in Shi et al. (2016),

and it is well-known in the literature that models with random production capacities

are much harder to analyze, since the current decisions will impact the cost over

an extended period of time (rather than a single period). For example, an under-

ordering in one particular period may cause the system to be unable to produce up

to the inventory target level over the next multiple periods. Thus, there is a need

to carefully re-examine the random capacitated problem with demand and capacity

learning.

Apart from the two papers discussed above, there are also three closely related

papers to the present chapter, namely, Zhang et al. (2018) and Huh et al. (2009)

and Zhang et al. (2019). The former paper developed learning algorithms for the

perishable inventory system, and the latter two papers developed learning algorithms

for the lost-sales inventory system with positive lead times. It is well-known that both

inventory systems need to deal with the lasting impact of current decisions on future

cost, due to expanded state vectors and complex system dynamics. On a high level,

their main idea is to identify appropriate learning cycles to de-correlate the past and

55

future decisions, and carry out a cyclic stochastic gradient descent procedure based

on these learning cycles. There are, however, three points of departure.

First, while the present chapter pursues a similar cyclic updating idea, the cycle

in the random capacity problem is very different from the aforementioned inventory

systems. It turns out that the “right” cycle identified in our setting is the notion

termed production cycle, first proposed in Ciarallo et al. (1994) used to establish the

so-called extended myopic optimality for the random capacitated inventory systems.

The production cycle is defined as the interval between successive periods in which

the policy is able to attain a given base-stock level, in which one can show that the

cumulative cost within a production cycle is convex in the base-stock level. Naturally,

our DRC algorithm updates base-stock levels in each production cycle. Note that

these production cycles (which can be seen as renewal processes) are not a priori

fixed but are sequentially triggered as demand and supply are realized over time. In

our regret analysis, we develop explicit upper bounds on the moments of the length

of a random production cycle as well as the stochastic gradient of the cumulative cost

within the cycle.

Second, the observed capacity realizations are, in fact, censored. That is, when

the plant is able to complete production (i.e., capacity was sufficient in the current

period to bring inventory up to the desired level), the actual capacity will not be

directly observed. This creates major challenges in the design and analysis of learning

algorithms, since active explorations are needed to explore the capacity space.

Third, due to random capacity constraints, the firm may not be able to achieve

the desired target inventory level as prescribed by the algorithm, and hence we keep

track of a virtual (infeasible) bridging system by “temporarily ignoring” the random

capacity constraints, which is used to update our target level in the next iteration.

The gradient information of this virtual system needs to be correctly obtained from

the demand and the censored capacity observed in the real implemented system when

56

the random capacity constraints are imposed. Also, due to positive inventory carry-

over and capacity constraints, we need to ensure that the amount of overage and

underage inventory (relative to the desired target level) is appropriately bounded, to

achieve the desired rate of convergence of regret.

3.1.2 Relevant Literature

Our work is closely related to two streams of literature: (1) capacitated stochastic

inventory systems and (2) nonparametric learning algorithms for stochastic inventory

systems.

Capacitated stochastic inventory systems.

There has been a substantial body of literature on capacitated stochastic inventory

systems. The dominant paradigm in most of the existing literature has been to formu-

late stochastic inventory control problems using a dynamic programming framework.

This approach is effective in characterizing the structure of optimal policies. We

first list paper that considers fixed capacity, Federgruen and Zipkin (1986a,b) showed

that a modified base-stock policy is optimal under both the average and discounted

cost criteria. Tayur (1992), Kapuscinski and Tayur (1998), and Aviv and Federgruen

(1997) derived the optimal policy under independent cyclical demands. Özer and Wei

(2004) showed the optimality of modified base-stock policies in capacitated models

with advance demand information. Even for these classical capacitated systems with

non-perishable products, the simple structure of their optimal control policies does

not lead to efficient algorithms for computing the optimal control parameters. Tayur

(1992) used the shortfall distribution and the theory of storage processes to study the

optimal policy for the case of i.i.d. demands. Roundy and Muckstadt (2000) showed

how to obtain approximate base-stock levels by approximating the distribution of

the shortfall process. Kapuscinski and Tayur (1998) proposed a simulation-based

technique using infinitesimal perturbation analysis to compute the optimal policy for

57

capacitated systems with independent cyclical demands. Özer and Wei (2004) used

dynamic programming to solve capacitated models with advance demand information

when the problem size is small. Levi et al. (2008) gave a 2-approximation algorithm

for this class of problems. Angelus and Zhu (2017) identified the structure of optimal

policies for capacitated serial inventory systems. All the papers above assume that

the firm knows the stochastic demand distribution and the deterministic capacity

level.

There has also been a growing body of literature on stochastic inventory systems

where both demand and capacity are uncertain. When capacity is uncertain, several

papers (e.g., Henig and Gerchak (1990); Federgruen and Yang (2011); Huh and Na-

garajan (2010)) assumed that the firm has uncertain yield (i.e., if they start producing

a certain number of products, an uncertain proportion of what they started will be-

come finished goods). An alternative approach by Ciarallo et al. (1994) and Duenyas

et al. (1997) assumed that what the firm can produce in a given time interval (e,g.,

a week) is stochastic (due to for example unexpected downtime, unexpected supply

shortage, unexpected absenteeism etc.) and proved the optimality of extended myopic

policies for uncertain capacity and stochastic demand under discounted optimal costs

scenario. Güllü (1998) established a procedure to compute the optimal base stock

level for uncertain capacity inventory/production systems. Wang and Gerchak (1996)

extended the analysis to systems with both random capacity and random yield. Feng

(2010) addressed a joint pricing and inventory control problem with random capacity

and shows that the optimal policy is characterized by two critical values: a reorder

point and a target safety stock. More recently, Chen et al. (2018b) developed a uni-

fied transformation technique which converts a non-convex minimization problem to

an equivalent convex minimization problem, and such a transformation can be used

to prove the preservation of structural properties for inventory control problems with

random capacity. All the papers above assume that the firm knows the stochastic

58

demand distribution and the stochastic capacity distribution.

Nonparametric learning algorithms for stochastic inventory systems.

There has been a recent and growing interest in situations where the distribution

of demand is not known a priori. Many prior studies have adopted parametric ap-

proaches (see, e.g., Lariviere and Porteus (1999); Chen and Plambeck (2008); Liyan-

age and Shanthikumar (2005); Chu et al. (2008)), and we refer interested readers to

Huh and Rusmevichientong (2009) for a detailed discussion on the differences between

parametric and nonparametric approaches.

For nonparametric approaches, Burnetas and Smith (2000) considered a repeated

newsvendor problem, where they developed an algorithm that converges to the op-

timal ordering and pricing policy but did not give a convergence rate result. Huh

and Rusmevichientong (2009) proposed a gradient descent based algorithm for lost-

sales systems with censored demand. Besbes and Muharremoglu (2013) examined

the discrete demand case and showed that active exploration is needed. Huh et al.

(2011) applied the concept of Kaplan-Meier estimator to devise another data-driven

algorithm for censored demand. Shi et al. (2016) proposed an algorithm for multi-

product systems under a warehouse-capacity constraint. Zhang et al. (2018) proposed

an algorithm for the perishable inventory system. Huh et al. (2009) and Zhang et al.

(2019) developed learning algorithms for the lost-sales inventory system with posi-

tive lead times. Chen et al. (2019a, 2015) proposed algorithms for the joint pricing

and inventory control problem with backorders and lost-sales, Chen et al. (2019b)

proposed algorithms for a make-to-stock M/G/1 queueing system, respectively. An-

other popular nonparametric approach in the inventory literature is sample average

approximation (SAA) (e.g., Kleywegt et al. (2002); Levi et al. (2007, 2015)) which

uses the empirical distribution formed by uncensored samples drawn from the true

distribution. Concave adaptive value estimation (e.g., Godfrey and Powell (2001);

Powell et al. (2004)) successively approximates the objective cost function with a

59

sequence of piecewise linear functions. All the papers surveyed above did not model

random capacities in which new learning approaches need to be developed.

3.1.3 Organization and General Notation

The remainder of the chapter is organized as follows. In §3.2, we formally describe

the capacitated inventory control problem for random capacity. In §3.3, we show

that a target interval policy is optimal for capacitated inventory control problem

with salvaging decisions. In §3.4, we introduce the data-driven algorithm for random

capacity under unknown demand and capacity distribution. In §3.5, we carry out an

asymptotic regret analysis, and show that the average T -period expected cost of our

policy differs from the optimal expected cost by at most O(
√
T). In §3.6, we compare

our policy performance to the performance of two straw heuristic policies and show

that simple heuristic policies used in practice may not work very well. In §3.7, we

conclude this chapter and point out plausible future research avenues.

Throughout the chapter, we often distinguish between a random variable and its

realizations using capital and lower-case letters, respectively. For any real numbers

a, b ∈ R, a+ = max{a, 0}, a− = −min{a, 0}; the join operator a∨ b = max{a, b}; the

meet operator a ∧ b = min{a, b}.

3.2 Stochastic Inventory Control with Uncertain Capacity

We consider an infinite horizon periodic-review stochastic inventory planning

problem with production capacity constraint. We use (time-generic) random vari-

able D to denote random demand, and U to denote random production capacity.

The random production capacity may be caused by maintenance or downtime in the

production line, lack of materials, etc (see Zipkin (2000); Simchi-Levi et al. (2014);

Snyder and Shen (2011)). The demand and the capacity have distribution functions

FD(·) and FU(·) respectively and density functions fD(·) and fU(·) respectively.

60

At the beginning of our planning horizon, the firm does not know the underlying

distributions of D and U . In each period t = 1, 2, ..., the sequence of events are as

follows:

(a) At the beginning of each period t, the firm observes the starting inventory level xt

before production. (We assume without loss of generality that the system starts

empty, i.e., x1 = 0.) The firm also observes the past demand and (censored)

capacity realizations up to period t− 1.

(b) Then the firm decides the target inventory level st. If st ≥ xt, then it will try

to produce qt = st − xt to bring its inventory level up to st. Here, qt is the

target production quantity which may not be achieved due to capacity. During

the period, the firm will realize its random production capacity ut, and therefore

its final inventory level will be st ∧ (xt + ut). We emphasize here that the firm

will not observe the actual capacity realization ut if they meet their inventory

target st. Thus, the firm actually observes the censored capacity ũt, i.e., when the

production plan cannot be fulfilled at period t, ũt = ut; otherwise, ũt = (st−xt)+∧

ut. On the other hand, if st < xt, then the firm will salvage −qt = xt − st units.

Notice that in our model, we allow for negative qt, which represents salvaging.

We denote the inventory level after production or salvaging as yt = st ∧ (xt +ut).

If the firm decides to bring its inventory level up, it incurs a production cost

c(yt−xt)+ and if it decides to bring its inventory level down, it receives a salvage

value θ(xt − yt)+, where c is the per-unit production cost and θ is the per-unit

salvage value. We assume that θ ≤ c.

(c) At the end of the period t, after production is completed, the demand Dt is real-

ized, and we denote its realization by dt, which is satisfied to the maximum extent

using on-hand inventory. Unsatisfied demands are backlogged, which means that

the firm can observe full demand realization dt in period t. The state transition

61

can be written as xt+1 = st ∧ (xt + ut)− dt = yt − dt. The overage and underage

costs at the end of period t is h(yt − dt)+ + b(dt − yt)+, where h is the per unit

holding cost and b is the per unit backlogging cost.

Following the system dynamics described above, we write the single-period cost

as a function of st and xt as follows.

Ω(xt, st) = c(st ∧ (xt + Ut)− xt)+ − θ(xt − st ∧ (xt + Ut))
+

+h (st ∧ (xt + Ut)−Dt)
+ + b (Dt − st ∧ (xt + Ut))

+

= c(yt − xt)+ − θ(xt − yt)+ + h(yt −Dt)
+ + b(Dt − yt)+.

Let ft denote the cumulative information collected up to the beginning of period t,

which includes all the realized demands d, observed (censored) capacities u, and past

ordering decisions s up to period t − 1. A feasible closed-loop control policy π is a

sequence of functions st = πt(xt, ft), t = 1, 2, ..., mapping the beginning inventory

xt and ft into the ending inventory decision st. The objective is to find an efficient

and effective adaptive inventory control policy π, or a sequence of inventory targets

{st}∞t=1, which minimizes the long-run average expected cost

lim sup
T→∞

1

T
· E

[
T∑
t=1

Ω (xt, st)

]
.

3.3 Clairvoyant Optimal Policy

To facilitate the design of a learning algorithm, we first study the clairvoyant

scenario by assuming that the distributions of demand and production capacity were

given a priori. Furthermore, we assume that the actual production capacity in each

period is observed by the firm, i.e., there is no capacity censoring in this clairvoyant

case. The clairvoyant case is useful as it serves as a lower bound on the cost achievable

by the learning model. For the case where the firm can only raise its inventory

62

(without any salvage decisions), Ciarallo et al. (1994) showed that a produce-up-to

policy is optimal. In this chapter, a minor contribution is to extend their policy by

enabling the firm to salvage extra goods with salvage price θ at the beginning of each

period before the demand is realized. The firm incurs production cost c per-unit good

if it decides to produce and receives a salvage value of θ (i.e., incurring a salvage cost

−θ) per-unit good if it decides to salvage, and c ≥ θ.

We shall introduce a target interval policy, and show that it is optimal for both

the finite-horizon model and the infinite-horizon model. A target interval policy can

be characterized by two threshold values (s∗l , s
∗
u) such that if the starting inventory

level x < s∗l , we produce to bring inventory level up to s∗l , if x > s∗u, we salvage down

to s∗u, and if s∗l ≤ x ≤ x∗u, we do nothing.

Assumption 3.1. We make the following assumptions on the demand and capacity

distributions.

(a) The demands D1, . . . , DT and the capacities U1, . . . , UT are independently and

identically distributed (i.i.d.) continuous random variables, respectively. Also,

the demand Dt and the capacity Ut are independent across all time periods t ∈

{1, . . . T}.

(b) The (time generic) demand and capacity D and U have a bounded support [0, d̄]

and a bounded support [0, ū], respectively. We also assume that E[U] > E[D] to

ensure the system stability.

(c) The (clairvoyant) optimal produce-up-to level s∗l lies in a bounded interval [0, s̄],

i.e., s∗l ∈ [0, s̄].

Assumption 3.1(a) assumes the stationarity of the underlying production and in-

ventory system to be jointly learned and optimized over time. Assumption 3.1(b)

ensures the stability of the system, i.e., the system can clear all the backorders from

63

time to time. Assumption 3.1(c) assumes that the firm knows an upper bound (po-

tentially a loose one) on the optimal ordering levels. These assumptions are mild

and standard in inventory learning literature (see, e.g., Huh and Rusmevichientong

(2009); Huh et al. (2009); Zhang et al. (2019, 2018)). We also remark here that an im-

portant future research direction is to incorporate non-stationarity of the demand and

capacity processes, which would require a significant methodological breakthrough.

Symbol Type Description

c Parameter Production cost.
θ Parameter Salvage cost.
h Parameter Per unit holding cost.
b Parameter Per unit backlogging cost.
Dt, dt Parameter Random demand and its realization in period t.
FD, fD Parameter Demand probability and density function.
Ut, ut Parameter Random production capacity and its realization in period t.
FU , fU Parameter Capacity probability and density function.
s∗l or s∗ State Clairvoyant target product-up-to level after ordering.
s∗u State Clairvoyant target salvage-down-to level after salvaging.
xt State Beginning inventory level in period t.
yt State Ending inventory level in period t.
st Control Target inventory level after ordering/salvaging in period t.
qt Control Ordering/salvaging quantity in period t.

Table 3.1: Summary of Major Notation

3.3.1 Optimal Policy for the Single Period Problem with Salvaging De-

cisions

We first use a single-period problem to illustrate the idea of target interval policy,

and then extend it to the multi-period problem with salvage decisions.

Proposition 3.2. A target interval policy is optimal for the single period problem.

Proposition 3.2 shows that the optimal policy for the single period problem is

characterized by two critical numbers (s∗l , s
∗
u),. More precisely, the optimal policy can

be described as follows:

(i). When s∗l ≤ x ≤ s∗u, the firm decides to do nothing.

64

Cost

(a)

Cost

(b)

Cost

(c)

Figure 3.1: Illustration of a target interval policy

(ii). When x < s∗l , the firm decides to produce to bring inventory up to s∗l as close

as possible.

(iii). When s∗u < x, the firm decides to salvage and bring inventory down to s∗u.

The three situations discussed above can be readily illustrated in Figure 3.1. The

two curves are labeled “q ≥ 0” and “q < 0”, respectively. The solid curve is the

effective cost function Ω(y), which consists of curve “q ≥ 0” for s ≥ x, and curve

“q < 0” for s < x.

Proof of Proposition 3.2:

Proof. To prove the target interval policy, we write the optimal single-period cost

function as follows.

E [Ω(x, s)] = min

{
min
s≥x

E [Ω+(x, s)] ,min
s<x

E [Ω−(x, s)]

}
, (3.1)

65

where

E [Ω+(x, s)] = c · (1− FU(s− x))(s− x) + c ·
s−x∫
0

rfU(r)dr

+ (1− FU(s− x))

 ∞∫
s

b(z − s)fD(z)dz +

s∫
0

h(s− z)fD(z)dz


+

s−x∫
0

∞∫
x+r

b(z − x− r)fD(z)dzfU(r)dr +

s−x∫
0

x+r∫
0

h(x+ r − z)fD(z)dzfU(r)dr,

(3.1a)

E [Ω−(x, s)] = θ · (s− x) +

 ∞∫
s

b(z − s)fD(z)dz +

s∫
0

h(s− z)fD(z)dz

 . (3.1b)

Notice that we produce up to s when s ≥ x, and salvage down to s when s < x.

We shall explain that in (3.1a) we condition on the event s ≤ (x+ U), which has

a probability of (1 − FU(s − x)), we have s ∧ (x + U) = s and apply the standard

newsvendor integral E[s−D]+ + E[D − s]+ =
∫ s

0
(s− z)dz +

∫∞
s

(z − s)dz. Similarly

conditioning on the event s > (x + U), which has a probability of FU(s − x) =∫ s−x
0

fU(r)dr, we have s ∧ (x+ U) = x+ U and also apply the standard newsvendor

integral. Since we allow for salvaging, the target level s can always be achieved in

(3.1b).

To show a target interval policy is optimal, we first show that (3.1a) and(3.1b)

have global minimizers s∗l and s∗u, respectively. Then, we show that 0 ≤ s∗l ≤ s∗u <∞.

Finally, we discuss different strategies based on different starting inventory levels to

imply that a target interval policy is optimal.

By applying the Leibniz integral rule, the first partial derivative of (3.1a) with

66

respect to s is

∂

∂s
E [Ω+(x, s)]

= (1− FU(s− x))

c+

∞∫
s

∂

∂s
b(z − s)fD(z)dz +

s∫
0

∂

∂s
h(s− z)fD(z)dz

 .
It can be easily solved that the solution to the first-order optimality, denoted by s∗l ,

is

s∗l = F−1
D

(
b− c
h+ b

)
and

c+

∞∫
s∗l

∂

∂s
b(z − s)fD(z)dz +

s∗l∫
0

∂

∂s
h(s− z)fD(z)dz = 0. (3.2)

Then it is straightforward to see that ∂E [Ω+(x, s)] /∂s < 0 for s < s∗l , and we

have∂E [Ω+(x, q)] /∂q > 0 for s > s∗l . Thus, we conclude that s∗l is the global minimum

of E [Ω+(x, s)].

Moreover, the second partial derivative of (3.1a) with respect to s is

∂2

∂2s
E [Ω+(x, s)]

= cfU(s− x) + (1− FU(s− x))

 ∞∫
s

∂2

∂2s
b(z − s)fD(z)dz

+

s∫
0

∂2

∂2s
h(s− z)fD(z)dz + fD(s)(h+ b)


−fU(s− x)

 ∞∫
s

∂

∂s
b(z − s)fD(z)dz +

s∫
0

∂

∂s
h(s− z)fD(z)dz


= (1− FU(s− x)) [(h+ b)fD(s)]− fU(s− x) [(h+ b)FD(s)− b+ c] .

67

It is easy to see when s ≤ s∗l ,

(1− FU(s− x)) [(h+ b)fD(s)] > 0 and fU(s− x) [(h+ b)FD(s)− b+ c] ≤ 0.

Therefore, when s ≤ s∗l , ∂
2E [Ω+(x, s)] /∂s2 ≥ 0, which suggests that E [Ω+(x, s)] is

convex in s ≤ s∗l .

Similarly, the first partial derivative of (3.1b) with respect to s is

∂

∂s
E [Ω−(x, s)] = θ +

∞∫
s

−bfD(z)dz +

s∫
0

hfD(z)dz (3.3)

and it is straightforward to check

∂2

∂2s
E [Ω−(x, s)] ≥ 0,

which implies that E [Ω−(x, s)] is convex in s. Let s∗u be the solution to the first-order

condition ∂E [Ω−(x, s)] /∂s = 0, and then the solution s∗u is the global minimum of

E [Ω−(x, s)].

Since θ ≤ c, by comparing (3.2) and (3.3), we have s∗l ≤ s∗u. The optimal strategy

is as follows.

(i). When s∗l ≤ x ≤ s∗u, the firm decides to do nothing.

(ii). When x < s∗l , the firm decides to produce up to s∗l (as much as possible).

(iii). When s∗u < x, the firm decides to salvage down to s∗u.

The three cases discussed above can be readily illustrated in Figure 3.1. We sketch

(3.1a) and (3.1b) as functions of s = x + q. The two curves are labeled “q ≥ 0” and

“q < 0”, respectively. We note that (3.1a) and (3.1b) intersect at q = 0, as discussed

earlier. The solid curve is the effective cost function Ω(s), which consists of the curve

“q ≥ 0” for s ≥ x, and the curve “q < 0” for s < x.

68

3.3.2 Optimal Policy for the Multi-Period Problem with Salvaging Deci-

sions

Next, we derive the optimal policy for the multi-period problem with salvaging

decisions.

Proposition 3.3. (a) A target interval policy is optimal in any period t = 1, . . . , T

for the multi-period problem with salvaging, where T is the planning horizon.

(b) A target interval policy is optimal for both the infinite horizon discounted and

average cost problems with salvaging decisions.

Proof of Proposition 3.3:

Proof. We first prove Proposition 3.3(a). Define G∗t (xt) be the optimal cost from

period t to period T with starting inventory xt, then the optimality equation for the

system can be written as follows.

G∗t (xt) ≡ min

{
min
st≥xt

Gt+(xt, st), min
st<xt

Gt−(xt, st)

}
, (3.4)

where

Gt+(xt, st) = E [Ω+(xt, st)] +

∞∫
0

st−xt∫
0

G∗t+1(xt + r − z)fU(r)drfD(z)dz

+ (1− FU(st − xt))
∞∫

0

G∗t+1(st − z)fD(z)dz, (3.4a)

Gt−(xt, st) = E [Ω−(xt, st)] +

∞∫
0

G∗t+1(st − z)fD(z)dz, (3.4b)

where E [Ω+(xt, st)] and E [Ω−(xt, st)] represent the cost functions of period t with the

produce-up-to decision and the salvage-down-to decision, respectively, as in Proposi-

tion 3.2.

69

Our goal is to prove that a target interval policy is optimal for any period t,

i.e., there exist two threshold levels st,l and st,u such that the optimal target level s∗t

satisfies

s∗t =


st,l, xt < st,l,

xt, st,l ≤ xt ≤ st,u,

st,u, xt > st,u.

Lemma 3.4. If G∗t+1(·) is convex, then G∗t (·) is also convex. Also, a target interval

policy is optimal in period t.

Proof. Proof. We first show that a target interval policy is optimal in period t. The

cost function for period t consists of (3.4a) and (3.4b). When st ≥ xt, the cost

function is (3.4a), and when st < xt, the cost function is (3.4b). Since G∗t+1(·) and

E [Ω−(xt, st)] are convex in st, then we have that (3.4b) is convex in st and we let st,u

be the global minimum for (3.4b). For (3.4a), the first-order condition is

∂

∂st
Gt+(xt, st)

=
∂

∂st
E [Ω+(xt, st)] + (1− FU(st − xt))

∞∫
0

G∗
′

t+1(st − z)fD(z)dz = 0 (3.5)

Let st,l be the solution to (3.5). Following the same arguments as in Proposition 3.2

and the convexity of G∗t+1(·) and E [Ω+(xt, st)] for st ≤ st,l, we conclude that st,l is the

global minimum for (3.4a). Also, since θ ≤ c, we have that st,l ≤ st,u. Thus, a target

interval policy is optimal by following the three cases discussed in the single-period

problem in Proposition 3.2.

Next, we show that G∗t (xt) is convex in xt. Given st,l and st,u, we can readily write

G∗t (xt) with respect to the starting inventory xt as follows.

G∗t (xt) = min {minst≥xt Gt+(xt, st),minst<xt Gt−(xt, st)} =

70



E [Ω+(xt, st,l)]

+

∞∫
0

st,l−xt∫
0

G∗t+1(xt + r − z)fU(r)drfD(z)dz

+(1− F (st,l − xt))
∞∫

0

G∗t+1(st,l − zt)fD(z)dz, xt < st,l, (3.6a)

∞∫
xt

b(z − xt)fD(z)dz +

xt∫
0

h(xt − z)fD(z)dz

+

∞∫
0

G∗t+1(xt − z)fD(z)dz, st,l ≤ xt ≤ st,u, (3.6b)

E [Ω−(xt, st,u)] +

∞∫
0

G∗t+1(st,u − z)fD(z)dz, st,u < xt, (3.6c)

where st,l and st,u are the global minima defined earlier.

By the Leibniz integral rule, the second derivatives of (3.6a), (3.6b), and (3.6c)

with respect to xt are

∂2

∂2xt
G∗t (xt) =



∂2

∂2xt
E [Ω+(xt, st,l)]

+

∞∫
0

st,l−xt∫
0

G∗
′′

t+1(xt + r − z)fU(r)drfD(z)dz, xt < st,l, (3.7a)

(h+ b)fD(xt) +

∞∫
0

G∗
′′

t+1(xt − z)fD(z)dz, st,l ≤ xt ≤ st,u, (3.7b)

∂2

∂2xt
E [Ω−(xt, st,u)] +

∞∫
0

G∗
′′

t+1(st,u − z)fD(z)dz, st,u < xt. (3.7c)

Because E [Ω+(xt, st,l)] and E [Ω−(xt, st,u)] are convex (which has been derived in

Proposition 3.2), and G∗
′′
t+1(·) is positive (by the inductive assumption), we have that

(3.7a), (3.7b), and (3.7c) are all positive. This means that G∗t (xt) is convex on these

71

three intervals separately. It remains to show that G∗t (xt) is convex on the entire

domain by carefully checking the connecting points between these intervals. We have

lim
δ→0−

G∗t (st,l)−G∗t (st,l − δ)
δ

= (h+ b)FD(st,l)− b+

∞∫
0

G∗
′

t+1(st,l − z)fD(z)dz,

lim
δ→0+

G∗t (st,l + δ)−G∗t (st,l)
δ

= (h+ b)FD(st,l)− b+

∞∫
0

G∗
′

t+1(st,l − z)fD(z)dz,

lim
δ→0−

G∗t (st,u)−G∗t (st,u − δ)
δ

= (h+ b)FD(st,u)− b+

∞∫
0

G∗
′

t+1(st,u − z)fD(z)dz,

lim
δ→0+

G∗t (st,u + δ)−G∗t (st,u)
δ

= (h+ b)FD(st,u)− b+

∞∫
0

G∗
′

t+1(st,u − z)fD(z)dz.

Thus, we can see that the first derivatives at the connecting points are the same, and

therefore G∗t (·) is continuously differentiable and convex on the entire domain.

By definition, we know that G∗T+1(xT+1) = −θ(xT+1) is convex. Thus, from

Lemma 3.4 and applying induction, we conclude that the target interval policy is

optimal for any period t = 1, . . . , T . This proves Proposition 3.3(a).

We then prove Proposition 3.3(b). The single-period cost and derivative are ex-

actly the same for both the produce-up-to and salvage-down-to cases. The optimality

equation for infinite horizon case can be written as

J(x) = min

{
min
s≥x

G+(x, s),min
s<x

G−(x, s)

}
.

72

where

G+(x, s) = E [Ω+(x, s)] + α

∞∫
0

s−x∫
0

J(x+ r − z)fU(r)drfD(z)dz

+ α(1− F (s− x))

∞∫
0

J(s− z)fD(z)dz, (3.8a)

G−(x, s) = E [Ω−(x, s)] + α

∞∫
0

J(s− z)fD(z)dz, (3.8b)

where 0 ≤ α < 1 is the discount factor. Our goal is to prove that a target interval

policy is optimal, i.e., there are two threshold levels s∗l and s∗u such that the optimal

target level is s∗l when x < s∗l and s∗u when x > s∗u and x otherwise. Similar to Lemma

3.4, we can show that J(x) is convex in the starting inventory x. The remainder

argument is identical to that of Proposition 3.3(a). For the infinite horizon average

cost problem, it suffices to check the set of conditions in Schäl (1993), ensuring the

limit of the discounted cost optimal policy is the average optimal policy as the discount

factor α → 1−. Verifying these conditions is standard, and we omit the details for

brevity.

We have shown that if the firm has the option to salvage extra goods at the begin-

ning of each period, then it will choose to salvage extra goods if the starting inventory

is high enough. In the full-information problem, we can immediately conclude that in

the infinite horizon problem, the salvage decision will only be made in the first period

when the initial starting inventory is higher than s∗u. This is because after salvaging

down to s∗u in the first period, the inventory level will gradually be consumed down

below s∗l and after that, the inventory level will never exceed s∗l again, due to the

stationary demand assumption. Thus, the optimal produce-up-to level s∗l is the same

as the optimal produce-up-to level, denoted by s∗, in Ciarallo et al. (1994) without

salvaging options, and an extended myopic policy described therein is also optimal

73

for the infinite horizon average cost setting. In the remainder of this chapter, we will

use s∗l and s∗ interchangeably.

However, we must emphasize here that in the learning version of the problem,

since we do not know the demand and capacity distributions (and of course s∗l or s∗),

we need to actively explore the inventory space, and salvaging decisions will be made

in our nonparametric online learning algorithm (more frequently in the beginning

phase).

3.4 Nonparametric Learning Algorithms

As discussed in §3.1, in many practical scenarios, the firm does not know the dis-

tribution of demand D nor the distribution of production capacity U at the beginning

of the planning horizon. Instead, the firm has to rely on the observable demand and

capacity realizations over time to make adaptive production decisions. More precisely,

in each period t, the firm can observe the realized demand dt as well as the observed

production capacity ũt. In our model, while dt is the true demand realization (since

the demands are backlogged), the observed production capacity ũt is, in fact, cen-

sored. More explicitly, the censored capacity ũt = (st − xt)+ ∧ ut. That is, suppose

the firm wants to raise the starting inventory level xt to some target level st. If the

true realized production capacity ut > (st − xt)+, then the firm cannot observe the

uncensored capacity realization ut. Our objective is to find an efficient and effective

learning production control policy whose long-run average cost converges to the clair-

voyant optimal cost (had the distributional information of both the random demand

and the random capacity been given a priori) at a provably tight convergence rate.

3.4.1 The Notion of Production Cycles

It is well-known in the literature that the optimal policy for a capacitated inventory

system cannot be solved myopically, i.e., the control that minimizes a single-period

74

cost is not optimal. Moreover, when capacities are random, the per-period cost

function is non-convex (see, e.g., Ciarallo et al. (1994) and Chen et al. (2018b)).

Thus, the standard online stochastic gradient descent algorithms cannot be readily

applied to solve our model.

To overcome this difficulty, we partition the set of time periods into carefully

designed learning cycles, and update our production target levels from cycle to cycle,

instead of from period to period. We first formally define these learning cycles. Given

that we produce up to the target level st in some period t and then use the same

target level st for all subsequent periods, we define a production cycle as the set of

successive periods starting from period t to the next period in which we are able to

produce up to st again. Mathematically, let τj denote the starting period of the jth

production cycle. Then, for any given initial target level s1 ∈ [0, s̄], we have

τ1 = 1, τj = min
{
t ≥ τj−1 + 1

∣∣∣ xt + ut ≥ sτj−1

}
, for all j ≥ 2.

For convenience, we call sτj the cycle target level for production cycle j. We let

lj be the cycle length of the jth production cycle, i.e., lj = τj+1 − τj.

Figure 3.2 gives a simple graphical example of a production cycle. Suppose the

target production level s5 = 30 and the realized capacity levels ut = 15 for t = 5, . . . , 9.

In periods 6, 7, 8, we are not able to attain the target level s5 even if we produce the

full capacity in these periods, whereas we are able to do so in period 9. Therefore this

production cycle runs from period 5 to period 9. Note that in period 9, we could only

observe the censored capacity ũ9 = 11 (instead of the true realized capacity u9 = 15),

because we only need to produce 11 to attain the target level.

The definition of these production cycles is motivated by the idea of extended

myopic policies, which we shall discuss next. In the full-information (clairvoyant)

case with stationary demand, the structural results in §3.3 imply that if the system

75

starts with initial inventory s∗ (for simplicity we drop the subscript from the optimal

produce-up-to level s∗l), then the optimal policy is a modified base-stock policy, i.e.,

in each period t,

yt =


s∗, if xt + ut ≥ s∗,

xt + ut, if xt + ut < s∗.

In this case, our definition of production cycles reduces to

τ1 = 1, τj = min
{
t ≥ τj−1 + 1

∣∣∣ yt = s∗
}
, for all j ≥ 2.

In other words, the optimal system forms a sequence of production cycles whose

cycle target levels are all set to be s∗, which is also illustrated at the top portion

of Figure 3.3. Ciarallo et al. (1994) showed that the extended myopic policy, which

is obtained by merely minimizing the expected total cost within a single production

cycle, is optimal. This motivates us to design a nonparametric learning algorithm

that updates the modified base-stock levels in a cyclic way, in which the sequence

of production cycle costs in our system will eventually converge to the production

cycle cost of the optimal system. We emphasize again that the (clairvoyant) optimal

system needs not salvage since s∗ can be computed with known demand and capacity

distributions, whereas our system needs to actively explore the inventory space to

recover s∗ and thus salvaging can happen frequently in the beginning phase of the

learning algorithm.

3.4.2 The Data-Driven Random Capacity Algorithm (DRC)

With the definition of production cycles, we shall describe our data-driven random

capacity algorithm (DRC for short). The DRC algorithm keeps track of two systems

in parallel, and also ensures that both systems share the same production cycles as in

the optimal system (which uses the same optimal base-stock level s∗ in every period).

76

Production Cycle

Demand
Full Capacity

Full Capacity

t

In
v
e
n
to

ry
 L

e
v
e
l

...

30

20

10

40

5 6 7 8 9 10

Figure 3.2: An illustration of a production cycle

Production Cycle 1

Dem
andF

u
ll

C
a
p
a
c
it
y

In
v
e

n
to

ry
 L

e
v
e

l

Production Cycle 2

t51 7 11 13 ...

optimal system

virtual system

actual implemented

system

Update target

level

Figure 3.3: An illustration of the algorithmic design

77

The optimal system is depicted using dash-dot lines shown at the top of Figure 3.

The optimal system starts at optimal base-stock level s∗, and uses s∗ as target level

in every period.

The first system that the DRC algorithm keeps track of is a virtual (or ideal)

system, which starts from an arbitrary inventory level ŝ1. The DRC algorithm main-

tains a triplet (ŝt, ŷt, x̂t) in each period t, where ŝt is the virtual target level, ŷt is the

virtual inventory level, and x̂t is the virtual starting inventory level. At the beginning

of each production cycle j, namely, in period τj, the DRC algorithm computes the

(desired) virtual cycle target level ŝτj , and artificially adjusts the virtual inventory

level ŷτj = ŝτj by temporarily ignoring the random capacity constraint in that period.

For all subsequent periods t ∈ [τj + 1, τj+1 − 1] within production cycle j, the DRC

algorithm sets the virtual target production level ŝt = ŝτj and runs the virtual system

as usual (facing the same demands and random capacity constraints as in the actual

implemented system), i.e., ŷt = ŝt ∧ (x̂t + ut) and x̂t+1 = ŷt − dt. Figure 3.3 gives an

example of the evolution of a virtual system, as depicted using dotted lines.

The second system is the actual implemented system, which starts from an ar-

bitrary inventory level s1 = ŝ1. The DRC algorithm maintains a triplet (st, yt, xt)

in each period t, where st is the target production level, yt is the actual attained

inventory level, and xt is the actual starting inventory level. Different than the vir-

tual system described above, at the beginning of each production cycle j, namely,

in period τj, the DRC algorithm tries to reach the (desired) virtual target level ŝτj

but may fail to do so due to random capacity constraints. The resulting inventory

level yτj may possibly be lower than ŝτj . Nevertheless, to keep the production cycle

synchronized with that of the optimal system, we simply set the cycle target level

sτj = yτj , and keep the target production level the same within the production cycle,

i.e., st = sτj for all t ∈ [τj, τj+1 − 1]. Figure 3.3 gives an example of the evolution of

an actual implemented system (as depicted using solid lines).

78

We now present the detailed description of the DRC algorithm.

The Data-Driven Random Capacity Algorithm (DRC)

Step 0. (Initialization.) In the first period t = 1, set the initial inventory

x1 ∈ [0, s̄] arbitrarily. We set both the target level and the virtual target level the

same as the initial inventory, i.e., s1 = ŝ1 = x1. Then we also have the actual attained

inventory level y1 = x1 and the virtual inventory level ŷ1 = x̂1 = x1. Initialize the

counter for production cycles j = 1, and set t = τ1 = 1.

Step 1. (Updating the Virtual System.)

The algorithm updates the virtual target level in period t+ 1 by

ŝt+1 =


P[0,s̄]

(
ŝτj − ηj ·

∑t
k=τj
Gk(ŝτj)

)
, if t = τj,

ŝτj , if t > τj,

where Gk(ŝτj) =


h, if ŝτj ∧ (x̂k + uk) ≥ dk,

−b, otherwise.

Note that the projection operator P[0,s̄](x) = max{0,min{x, s̄}}. The step-size is

chosen to be

ηj =
γ√∑j
k=1 lk

, where lk = τk+1 − τk,

where γ > 0 is a constant (to be optimized later for the tightest theoretical regret

bound).

The evolution of the virtual system is given as follows,

ŷt =


ŝτj −

∑t−1
i=τj

di +
∑t

i=τj+1 ui, for t > τj,

ŝτj , for t = τj,

and x̂t+1 = ŷt − dt.

Step 2. (Updating the Actual Implemented System.)

79

We have the following cases when updating the actual implemented system based on

ŝt.

(i). If ŝt+1 ≥ sτj , then we try to produce up to ŝt+1, and the actual inventory level

yt+1 will be

yt+1 =


ŝt+1, if xt+1 + ut+1 ≥ ŝt+1,

xt+1 + ut+1, if xt+1 + ut+1 < ŝt+1.

(a) If sτj ≤ yt+1 ≤ ŝt+1, we start a new production cycle j + 1, by setting the

starting period of this new cycle τj+1 = t+ 1. Correspondingly, we set the

virtual cycle target level ŝτj+1
= ŝt+1, and the actual implemented cycle

target level sτj+1
= yt+1. We then increase the value of j by one.

(b) If yt+1 < sτj , we are still in the same production cycle j, and thus we set

st+1 = sτj .

(ii). If ŝt+1 < sτj , then we first try to produce up to sτj (instead of ŝt+1) , and the

actual inventory level yt+1 will be

yt+1 =


sτj , if xt+1 + ut+1 ≥ sτj ,

xt+1 + ut+1, if xt+1 + ut+1 < sτj .

(a) If yt+1 = sτj , we salvage our inventory level down to yt+1 = ŝt+1. We then

start a new production cycle j+1, by setting the starting period of this new

cycle τj+1 = t + 1. Correspondingly, we set the virtual cycle target level

ŝτj+1
= ŝt+1, and the actual implemented cycle target level sτj+1

= ŝt+1.

We then increase the value of j by one.

(b) If yt+1 < sτj , we are still in the same production cycle j, and thus we set

st+1 = sτj .

80

We then increase the value of t by one, and go to Step 1. If t = T , terminate the

algorithm.

3.4.3 Overview of the DRC Algorithm

In Step 1, we update the virtual system using the online stochastic gradient descent

method. In each period t of any given cycle j, the DRC algorithm tries to minimize the

total expected cost associated with production cycle j by updating the virtual target

level using a gradient estimator
∑t

k=τj
Gk(ŝτj) of the total cost accrued from period

τj to period t. We shall show in Lemma 3.14 below that Gj(ŝτj) =
∑τj+1−1

k=τj
Gk(ŝτj)

is the sample-path cycle cost gradient of production cycle j. Note that Gj(ŝτj) is

the sample-path cycle cost gradient for the virtual system. However, we could only

observe the demand and censored capacity information in the actual implemented

system, and the key question is that whether this information is sufficient to evaluate

this Gj(ŝτj) correctly.

Lemma 3.5. The sample-path cycle cost gradient of the virtual system Gj(ŝτj) =∑τj+1−1
k=τj

Gk(ŝτj) for every cycle j ≥ 1 can be evaluated correctly, using the observed

demand and censored capacity information of the actual implemented system.

Proof. It suffices to show that for each period k = τj, . . . , τj+1 − 1, the cost gradient

estimator Gk(ŝτj) can be evaluated correctly. We have the following two cases.

(a) If k = τj, i.e., the production cycle j starts in period k, we must have xk + ũk ≥

sτj−1 by our definition of production cycle. In addition, we observe the full

capacity ũi = ui in period i = τj−1 + 1, . . . , k − 1 but only observe the censored

capacity ũk ≤ uk in period k.

(1) if sk = ŝk, by the system dynamics we have

ŝk = sk = xk + ũk ≤ x̂k + ũk ≤ x̂k + uk,

81

where the first inequality holds because by our algorithm design, we always

have sτj−1
≤ ŝτj−1

for all j = 2, 3, . . ., and then

xk = sτj−1
−

τj−1∑
i=τj−1

di +

τj−1∑
i=τj−1+1

ui ≤ ŝτj−1
−

τj−1∑
i=τj−1

di +

τj−1∑
i=τj−1+1

ui = x̂k.

Hence, the event
{
ŝτj ∧ (x̂k + uk) ≥ dk

}
is equivalent to

{
ŝτj ≥ dk

}
, and

therefore we can evaluate Gk(ŝτj) correctly.

(2) if sk < ŝk, we have produced full capacity and therefore observe the full

capacity ũk = uk. Then the event
{
ŝτj ∧ (x̂k + uk) ≥ dk

}
is equivalent to{

ŝτj ∧ (x̂k + ũk) ≥ dk
}
, and therefore we can evaluate Gk(ŝτj) correctly.

(b) On the other hand, if k ∈ [τj + 1, τj+1 − 1], i.e., then we are still in the current

production cycle j. In this case, we always produce at full capacity, and therefore

we observe the full capacity ũk = uk. Then the event
{
ŝτj ∧ (x̂k + uk) ≥ dk

}
is equivalent to

{
ŝτj ∧ (x̂k + ũk) ≥ dk

}
, and therefore we can evaluate Gk(ŝτj)

correctly.

Combining the above two cases yields the desired the result.

In Step 2, we compare ŝt+1 and sτj to decide how to update the actual implemented

system. We have two cases. The first case is when ŝt+1 ≥ sτj . We want to produce up

to the new target level ŝt+1 instead of sτj . If the actual implemented inventory level

yt+1 ≥ sτj , we know that the current production cycle ends because we have achieved

at least sτj , and then we shall start the next production cycle. In order to perfectly

align the production cycle with that of the optimal system when ŝt+1 ≥ yt+1 ≥ sτj ,

we should set the next cycle target level sτj+1
= yt+1. Otherwise, we produce at full

capacity, and stay in the same production cycle, which is also synchronized with the

optimal production cycle. The second case is when ŝt+1 < sτj . We first produce up to

the current cycle target level sτj to check whether we can start the next production

82

cycle. If sτj is achieved, we shall start the next production cycle and salvage the

inventory level down to yt+1 = ŝt+1 and also set the new cycle target level sτj+1
= ŝt+1.

Otherwise, we produce at full capacity, and stay in the same production cycle, which

is also synchronized with the optimal production cycle.

The central idea here is to exactly align the production cycles of the actual imple-

mented system (as well as the virtual bridging system) with those of the (clairvoyant)

optimal system, even while updating our cycle target level at the beginning of each

production cycle. As illustrated in Figure 3.3, the optimal system knows s∗ a priori

and keeps using the target level s∗ (i.e., the optimal modified base-stock level) in

every period t. Whenever the target level s∗ is achieved, we start the next production

cycle. However, in the learning problem, the firm does not know s∗ and needs to

constantly update the cycle target level at the beginning of each production cycle.

Due to the discrepancy between the new and the previous target levels, it is crucial to

design an algorithm that can determine whether the current production cycle ends,

and whether we should adopt the new target level in the very same period. Figure 3.4

shows the possible scenarios. The scenarios 1(a), 1(b) and 1(c) show the case when

ŝt+1 ≥ sτj . In this case, we always raise the inventory to ŝt+1 as much as possible. If

ŝt+1 is achieved, we know that the production cycle ends. Even if ŝt+1 is not achieved,

we know that we produce at full capacity and then can readily determine whether

the production cycle ends (by checking if we reach at least sτj). The scenarios 2(a),

2(b) and 2(c) show the case when ŝt+1 < sτj . In this case, we always raise the inven-

tory to sτj as much as possible to determine whether the production cycle ends (by

checking if we reach exactly sτj). We salvage the inventory level down to ŝt+1 only if

the production cycle ends.

83

t

30

20

10

40

2 31

Not a production cycle

t

30

20

10

40

3

t

30

20

10

40

2 31

A production cycle

t

In
v
e
n
to

ry
 L

e
v
e
l

30

20

10

40

2 31

Full capacity

t

30

20

10

40

2 31 t

30

20

10

40

2 31

1(a) 1(b) 1(c)

2(a) 2(b) 2(c)

A production cycle

A production cycle
Not a production cycle Not a production cycle

In
v
e
n
to

ry
 L

e
v
e
l

In
v
e
n
to

ry
 L

e
v
e
l

In
v
e
n
to

ry
 L

e
v
e
l

In
v
e
n
to

ry
 L

e
v
e
l

In
v
e
n
to

ry
 L

e
v
e
l

Full capacity

Full capacity

Full capacity

Full capacity

Full capacity

time time time

time time time

Figure 3.4: A schematic illustration of all possible scenarios

3.5 Performance Analysis of the DRC Algorithm

We carry out a performance analysis of our proposed DRC algorithm. The per-

formance measure is the natural notion of regret, which is defined as the difference

between the cost incurred by our nonparametric learning algorithm DRC and the

clairvoyant optimal cost (where the demand and production capacity distribution are

both known a priori). That is, for any T ≥ 1,

RT = E

[
T∑
t=1

Ω(xt, st)− Ω(xt, s
∗)

]
,

where st is the target level prescribed by the DRC algorithm for period t, and s∗ is

the clairvoyant optimal target level. Theorem 3.6 below states the main result of this

chapter.

Theorem 3.6. For stochastic inventory systems with demand and capacity learning,

the cumulative regret RT of the data-driven random capacity algorithm (DRC) is

bounded by O(
√
T). In other words, the average regret RT/T approaches to 0 at the

84

rate of O(1/
√
T).

Remark 3.7. We first define µ = E[U]−E[D], the difference between expected capacity

and expected demand. We define υ = 2µ2/(ū+ d̄)2 and X1 = (h∨ b)l1−
∑τ2

t=τ1+1 Ut+∑τ2−1
t=τ1

Dt, and then further define α = −E[X1] and σ2 = V ar[X1] and β = E[X3
1].

The optimal constant γ in the step size is given by

γ =
s̄√

(h ∨ b)2
(

1
υ

+ 2
υ2

+ 2
υ3

)
+ 2(h ∨ b)2 s̄

µ
σ
α
e

6β

σ3
+α
σ + 2(c+ θ)(h ∨ b)σ

α
e

6β

σ3
+α
σ

,

and the associated constant K in the regret bound of Theorem 3.6 is given by

K = s̄

√
(h ∨ b)2

(
1

υ
+

2

υ2
+

2

υ3

)
+ 2(h ∨ b)2

s̄

µ

σ

α
e

6β

σ3
+α
σ + 2(c+ θ)(h ∨ b)σ

α
e

6β

σ3
+α
σ .

The proposed DRC algorithm is the first nonparametric learning algorithm for ran-

dom capacitated inventory systems, which achieves a square-root regret rate. More-

over, this square-root regret rate is unimprovable, even for the repeated newsvendor

problem without inventory carryover and with infinite capacity, which is a special

case of our problem.

Proposition 3.8. Even in the case of uncensored demand, there exist problem in-

stances such that the expected regret for any learning algorithm is lower bounded by

Ω(
√
T).

Proof. The proof of Proposition 3.8 is identical to that of Proposition 1 in Zhang

et al. (2018) for the repeated uncapacitated newsvendor problem.

The remainder of this chapter is to establish the regret upper bound in Theorem

3.6. For each j ≥ 1, if we adopt the cycle target level sτj and also artificially set

the initial inventory level xτj = sτj , we can then express the cost associated with the

85

production cycle j as

Θ(sτj) =

τj+1∑
t=τj+1

c
(
sτj ∧ (xt + Ut)− xt

)+
(3.9)

+

τj+1−1∑
t=τj

[
h
(
sτj ∧ (xt + Ut)−Dt

)+
+ b
(
Dt − sτj ∧ (xt + Ut)

)+
]

=

τj+1−1∑
t=τj+1

cUt + c(sτj − xτj+1
)

+

τj+1−1∑
t=τj

[
h
(
sτj ∧ (xt + Ut)−Dt

)+
+ b
(
Dt − sτj ∧ (xt + Ut)

)+
]

=

τj+1−1∑
t=τj+1

cUt + c

τj+1−1∑
t=τj

Dt −
τj+1−1∑
t=τj+1

Ut


+

τj+1−1∑
t=τj

[
h
(
sτj ∧ (xt + Ut)−Dt

)+
+ b
(
Dt − sτj ∧ (xt + Ut)

)+
]
,

where the second equality comes from the fact that we always produce at full capacity

within a production cycle, except for the last period in which we are able to reach

the target level. The third equality follows from expressing

xτj+1
= xτj +

τj+1−1∑
t=τj+1

Ut −
τj+1−1∑
t=τj

Dt = sτj +

τj+1−1∑
t=τj+1

Ut −
τj+1−1∑
t=τj

Dt.

Now, we use J to denote the total number of production cycles before period T ,

including possibly the last incomplete cycle. (If the last cycle is not completed at

T , then we truncate the cycle and also let τJ+1 − 1 = T , i.e., sτJ+1
= sτJ). By the

86

construction of the DRC algorithm, we can write the cumulative regret as

RT = E

[
T∑
t=1

Ω(xt, st)− Ω(xt, s
∗)

]

= E

[
J∑
j=1

Θ(sτj) +
J∑
j=1

(
c
(
sτj+1

− sτj
)+

+ θ
(
sτj − sτj+1

)+
)

−
J∑
j=1

τj+1−1∑
t=τj

Ω(xt, s
∗)


= E

 J∑
j=1

Θ(sτj)−
J∑
j=1

τj+1−1∑
t=τj

Ω(xt, s
∗)


+E

[
J∑
j=1

(
c
(
sτj+1

− sτj
)+

+ θ
(
sτj − sτj+1

)+
)]

= E

 J∑
j=1

Θ(ŝτj)−
J∑
j=1

τj+1−1∑
t=τj

Ω(xt, s
∗)

+ E

[
J∑
j=1

Θ(sτj)−
J∑
j=1

Θ(ŝτj)

]

+E

[
J∑
j=1

(
c
(
sτj+1

− sτj
)+

+ θ
(
sτj − sτj+1

)+
)]

,

where on the right-hand side of the fourth equality, the first term is the production

cycle cost difference between using the virtual target level ŝτj and using the clairvoyant

optimal target level s∗. The second term is the production cycle cost difference

between using the actual implemented target level sτj and using the virtual target

level ŝτj . The third term is the cumulative production and salvaging costs incurred

by adjusting the production cycle target levels.

To prove Theorem 3.6, it is clear that it suffices to establish the following set of

results.

Proposition 3.9. For any J ≥ 1, there exists a constant K1 ∈ R+ such that

E

 J∑
j=1

Θ(ŝτj)−
J∑
j=1

τj+1−1∑
t=τj

Ω(xt, s
∗)

 ≤ K1

√
T .

87

Proposition 3.10. For any J ≥ 1, there exists a constant K2 ∈ R+ such that

E

[
J∑
j=1

Θ(sτj)−
J∑
j=1

Θ(ŝτj)

]
≤ K2

√
T .

Proposition 3.11. For any J ≥ 1, there exists a constant K3 ∈ R+ such that

E

[
J∑
j=1

(
c
(
sτj+1

− sτj
)+

+ θ
(
sτj − sτj+1

)+
)]
≤ K3

√
T .

3.5.1 Several Key Building Blocks for the Proof of Theorem 3.6

Before proving Propositions 3.9, 3.10, and 3.11, we first establish some key pre-

liminary results.

Recall that the production cycle defined in §3.4.1 is the interval between successive

periods in which the policy is able to attain a given base-stock level. We first show

that the cumulative cost within a production cycle is convex in the base-stock level.

Lemma 3.12. The production cycle cost Θ(s) is convex in s along every sample path.

Proof. It suffices to analyze the first production cycle cost (with x1 = s1)

Θ(s1) =

τ2−1∑
t=2

cUt + c

(
τ2−1∑
t=1

Dt −
τ2−1∑
t=2

Ut

)

+

τ2−1∑
t=1

[
h (s1 ∧ (xt + Ut)−Dt)

+ + b (Dt − s1 ∧ (xt + Ut))
+] .

Taking the first derivative of Θ(s1) w.r.t. s1, we have

Θ′ (s1) =

τ2−1∑
t=1

(
h(ξ+

t (s1))− b(ξ−t (s1))
)
, (3.10)

where ξ+
t (s1) = 1

{
s1 −

t∑
t′=1

Dt′ +
t∑

t′=2

Ut′ ≥ 0

}

and ξ−t (s1) = 1

{
s1 −

t∑
t′=1

Dt′ +
t∑

t′=2

Ut′ < 0

}

88

are indicator functions of the positive inventory left-over and the unsatisfied demand

at the end of period t, respectively.

For any given δ > 0, we have

Θ′(s1 + δ) =

τ2−1∑
t=1

[
h
(
ξ+(s1 + δ)

)
− b
(
ξ−(s1 + δ)

)]
.

It is clear that when the target level increases, the positive inventory left-over will

also increase, i.e, ξ+(s1 + δ) ≥ ξ+(s1). Similarly, we also have ξ−(s1 + δ) ≤ ξ−(s1).

Therefore, we have Θ′ (s1 + δ) ≥ Θ′ (s1) for any value of s1, and thus Θ(·) is convex.

Given the convexity result, our DRC algorithm updates base-stock levels in each

production cycle. Note that these production cycles (as renewal processes) are not

a priori fixed but are sequentially triggered as demand and capacity realize over

time. Therefore, we need to develop an upper bound on the moments of a random

production cycle. The proof of Lemma 3.13 relies on building an upward drifting

random walk with Ut as upward step and Dt as downward step, wherein the chance

of hitting a level below zero is exponentially small due to concentration inequalities.

Since the ending of a production cycle corresponds to the situation where the random

walk hits zero, the second moment of its length of the current production cycle can

be bounded.

Lemma 3.13. The second moment of the length of a production cycle E
[
l2j
]

is

bounded for all cycle j.

Proof. By the definition of a production cycle in §3.4.1, we have

P{lj = l}

= P

Uτj+1 −Dτj < 0, . . . ,

τj+l−1∑
t=τj+1

Ut −
τj+l−2∑
t=τj

Dt < 0,

τj+l∑
t=τj+1

Ut −
τj+l−1∑
t=τj

Dt ≥ 0

 .

89

Since Dt and Ut are both i.i.d., so is lj. Let Mk be an upward drifting random walk,

more precisely, Mk =
∑k

t=1 (Ut −Dt) . Then we have, by letting µ = E [Ut −Dt] and

υ = 2µ2/
(
ū+ d̄

)2
,

E
[
l2j
]

=
∞∑
k=1

k2P (M1 < 0, . . . ,Mk−1 < 0,Mk ≥ 0)

≤
∞∑
k=1

k2P (Mk−1 − (k − 1)µ < − (k − 1)µ)

≤
∞∑
k=1

k2 exp

(
−2 (k − 1)µ2(

ū+ d̄
)2

)

≤
∞∫

0

(k + 1)2 exp

(
− 2kµ2(

ū+ d̄
)2

)
dk =

1

υ
+

2

υ2
+

2

υ3
<∞

where the second inequality follows from the Hoeffding’s inequality.

We also need to develop an upper bound on the cycle cost gradient.

Lemma 3.14. For any j ≥ 1, the function Gj(s) =
∑τj+1−1

t=τj
Gt(s) is the sample-path

cycle cost gradient of production cycle j, where s is the cycle target level. Moreover,

Gj(·) has a bounded second moment, i.e., E
[
G2
j(s)

]
<∞ for any s.

Proof. From the definition of Gj(s) and (3.10), it is clear that

Gj(s) =

τj+1−1∑
t=τj

Gt(s) =

τj+1−1∑
t=τj

[
h(ξ+

t (s))− b(ξ−t (s))
]

= Θ′ (s) .

Moreover, we have

E
[
G2
j(s)

]
= E

(τ2−1∑
t=1

(
h(ξ+

t (s1))− b(ξ−t (s1))
))2


≤ E

[
(h ∨ b)2 l2j

]
= (h ∨ b)2 E

[
l2j
]
<∞,

where the last inequality follows from Lemma 3.13.

90

3.5.2 Proof of Proposition 3.9

Proposition 3.9 provides an upper bound on the production cycle cost difference

between using the virtual target level ŝτj and using the clairvoyant optimal target level

s∗. The proof follows a similar argument used in the general stochastic approximation

literature Nemirovski et al. (2009) as well as the online convex optimization literature

Hazan (2016). The main point of departure is due to the a priori random cycles, and

therefore the proof relies crucially on Lemmas 3.13 and 3.14 previously established.

By optimality of s∗, we have E [Ω(s∗, s∗)] = infx {E [Ω(x, s∗)]}, i.e., s∗ minimizes

the expected single period cost. Also notice that the length of a production cycle is

independent of the cycle target level being implemented. Thus, we have

E

 J∑
j=1

Θ(ŝτj)−
J∑
j=1

τj+1−1∑
t=τj

Ω(xt, s
∗)

 ≤ E

 J∑
j=1

Θ(ŝτj)−
J∑
j=1

τj+1−1∑
t=τj

Ω(s∗, s∗)

(3.11)

= E

[
J∑
j=1

(
Θ(ŝτj)−Θ(s∗)

)]
.

By the sample path convexity of Θ(·) shown in Lemma 3.12, we have

E

[
J∑
j=1

(
Θ(ŝτj)−Θ(s∗)

)]
≤

J∑
j=1

E
[
∇Θ(ŝτj)(ŝτj − s∗)

]
=

J∑
j=1

E
[
Gj(ŝτj)(ŝτj − s∗)

]
. (3.12)

By the definition of ŝτj+1
in the DRC algorithm,

E
(
ŝτj+1

− s∗
)2 ≤ E

(
ŝτj − ηjGj(ŝτj)− s∗

)2

= E
(
ŝτj − s∗

)2
+ E

(
ηjGj(ŝτj)

)2 − E
[
2ηjGj(ŝτj)(ŝτj − s∗)

]
= E

(
ŝτj − s∗

)2
+ E[ηj]E

(
Gj(ŝτj)

)2 − 2E[ηj]E
[
Gj(ŝτj)(ŝτj − s∗)

]
,

91

where the second equality holds because the step-size ηj is independent of ŝτj and

Gj(ŝτj). Thus,

E
[
Gj(ŝτj)(ŝτj − s∗)

]
≤ 1

2E[ηj]

(
E
(
ŝτj − s∗

)2 − E
(
ŝτj+1

− s∗
)2
)

+
1

2
E
[
ηj
(
Gj(ŝτj)

)2
]
. (3.13)

Combining (3.12) and (3.13), we have

J∑
j=1

E
[
∇Θ(ŝτj)(ŝτj − s∗)

]
≤

J∑
j=1

(
1

2E[ηj]

(
E
(
ŝτj − s∗

)2 − E
(
ŝτj+1

− s∗
)2
)

+
1

2
E
[
ηj
(
Gj(ŝτj)

)2
])

=
1

2E[η1]
E (ŝτ1 − s∗)

2 − 1

2E[ηj]
E
(
ŝτj+1

− s∗
)2

+
1

2

J∑
j=2

(
1

E[ηj]
− 1

E[ηj−1]

)
E
(
ŝτj − s∗

)2
+

J∑
j=1

E
[
ηj
(
Gj(ŝτj)

)2
]

2

≤ 2s̄2

(
1

2E[η1]
+

1

2

J∑
j=2

(
1

E[ηj]
− 1

E[ηj−1]

))
+
E[
(
Gj(ŝτj)

)2
]

2

J∑
j=1

E[ηj]

=
s̄2

E[ηJ]
+
E[
(
Gj(ŝτj)

)2
]

2

J∑
j=1

E[ηj]

≤ K1

√
T ,

where the last inequality holds due to Lemma 3.14 (bounded second moment of G(·))

and
J∑
j=1

E[ηj] = γ

J∑
j=1

E

1/

√√√√ j∑
i=1

li

 ≤ γ

T∑
t=1

1/
√
t ≤ 2γ

√
T .

3.5.3 Proof of Proposition 3.10

Proposition 3.10 provides an upper bound on the production cycle cost difference

between using the actual implemented target level sτj and using the virtual target

92

level ŝτj . The main idea of this proof on a high level is to set up an upper bounding

stochastic process that resembles the waiting time process of a GI/GI/1 queue. A

similar argument appeared Huh and Rusmevichientong (2009) and Shi et al. (2016).

There are two differences. First, the mapping to the waiting time process is more

involved in the presence of random capacities. In the above two papers, the resulting

level is always higher than the target level, whereas the resulting level could be either

higher or lower than the target level in our setting. Second, the present chapter needs

to bound the difference in cycle target levels (relying on Lemmas 3.13 and 3.14),

rather than per-period target levels.

By the definition of production cycle cost (3.9), we have

E
[
Θ(sτj)−Θ(ŝτj)

]
= E

τj+1−1∑
t=τj

[
h
(
sτj ∧ (xt + Ut)−Dt

)+
+ b
(
Dt − sτj ∧ (xt + Ut)

)+
]

−
τj+1−1∑
t=τj

[
h
(
ŝτj ∧ (xt + Ut)−Dt

)+
+ b
(
Dt − ŝτj ∧ (xt + Ut)

)+
]

≤ E

lj−1∑
t=1

(h ∨ b)|sτj − ŝτj |

 ≤ E[lj](h ∨ b)|sτj − ŝτj |,

where the second inequality holds due to the Wald’s Theorem using the fact that lj

is independent of sτj and ŝτj , and the first inequality follows from the fact that for

any t ∈ [τj, τj+1 − 1], we have

E
[[
h
(
sτj ∧ (xt + Ut)−Dt

)+
+ b
(
Dt − sτj ∧ (xt + Ut)

)+
]

−
[
h
(
ŝτj ∧ (xt + Ut)−Dt

)+
+ b
(
Dt − ŝτj ∧ (xt + Ut)

)+
]]

≤ E
[
h
(
sτj ∧ (xt + Ut)− ŝτj ∧ (xt + Ut)

)+

+b
(
ŝτj ∧ (xt + Ut)− sτj ∧ (xt + Ut)

)+
]

≤ (h ∨ b)
∣∣sτj − ŝτj ∣∣ .

93

Thus, to prove Proposition 3.10, it suffices to prove

E

[
J∑
j=1

Θ(sτj)−
J∑
j=1

Θ(ŝτj)

]
≤ E[lj](h ∨ b)E

[
J∑
j=1

|sτj − ŝτj |

]
≤ O(

√
T).

Next, we consider an auxiliary stochastic process (Zj | j ≥ 0) defined by

Zj+1 =

Zj +
γλj√∑j
t=1 lt

− νj

+

, (3.14)

where the random variables λj = (h ∨ b)lj, and νj =
∑τj+1

t=τj+1 Ut −
∑τj+1−1

t=τj
Dt, and

Z0 = 0. Moreover, since we know that in period τj+1, the production cycle ends, we

must have

νj =

τj+1∑
t=τj+1

Ut −
τj+1−1∑
t=τj

Dt ≥ 0.

Now we want to relate |ŝτj − sτj | to the stochastic process defined above. We can see

from the DRC algorithm that the only situation when the virtual target level cannot

be achieved is when ŝτj > sτj . When ŝτj ≤ sτj , we can salvage extra inventory and

achieve the virtual target level. Therefore, we relate |ŝτj − sτj | with the stochastic

process Zj.

Lemma 3.15. For any j ≥ 1,

E

[
J∑
j=1

|sτj − ŝτj |

]
≤ E

[
J∑
j=1

Zj

]
,

where {Zj, j ≥ 1} is the stochastic process we define above.

Proof. All the stochastic comparisons within this proof are with probability one.

When ŝτj+1
< xτj+1

+ Uτj+1
, we have ŝτj+1

− sτj+1
= 0 ≤ Zj+1. When ŝτj+1

> xτj+1
+

Uτj+1
, we have sτj+1

= xτj+1
+Uτj+1

= sτj−
∑τj+1−1

t=τj
Dt+

∑τj+1−1
t=τj+1 Ut+Uτj+1. Therefore,

94

we have

∣∣ŝτj+1
− sτj+1

∣∣
= ŝτj+1

− sτj+1
= P[0,s̄]

(
ŝτj − ηjGj(ŝτj)

)
− sτj+1

≤
∣∣P[0,s̄]

(
ŝτj − ηjGj(ŝτj)

)∣∣− sτj+1

≤
∣∣ŝτj − ηjGj(ŝτj)

∣∣− sτj +

τj+1−1∑
t=τj

Dt −
τj+1−1∑
t=τj+1

Ut

− Uτj+1

≤
∣∣ŝτj − sτj − ηjGj(ŝτj)

∣∣+

τj+1−1∑
t=τj

Dt −
τj+1−1∑
t=τj+1

Ut

− Uτj+1

≤
∣∣ŝτj − sτj ∣∣+

∣∣ηjGj(ŝτj)
∣∣−
τj+1−1∑
t=τj+1

Ut −
τj+1−1∑
t=τj

Dt


≤

∣∣ŝτj − sτj ∣∣+ ηj(h ∨ b) · lj −

τj+1−1∑
t=τj+1

Ut −
τj+1−1∑
t=τj

Dt

 ,

where the first equality holds because following the DRC algorithm, we always have

sτj ≤ ŝτj . The third inequality holds because sτj is always nonnegative. This is

because the virtual target level is truncated to be nonnegative all the time, and we

update the actual implemented target level when the production cycle ends, which

means after the previous actual implemented target level is achieved. Since s1 ≥ 0,

sτj ≥ 0 for all j. The fourth inequality holds because of the triangular inequality and

the last inequality holds because |Gj(ŝτj)| ≤ (h ∨ b) · lj.

Therefore, from the above claim we have

∣∣sτj+1
− ŝτj+1

∣∣ ≤
|sτj − ŝτj |+ ηj(h ∨ b)lj −

τj+1−1∑
t=τj+1

Ut −
τj+1−1∑
t=τj

Dt

+

.

Comparing to (3.14), we have

ηj(h ∨ b)lj ≤
γλj√∑j
t=1 lt

,

95

and since s1−ŝ1 = 0, it follows, from the recursive definition of Zj, that |sτj+1
−ŝτj+1

| ≤

Zj+1 holds with probability one. Summing up both sides of the inequality completes

the proof.

We observe that the stochastic process Zj is very similar to the waiting time

in a GI/GI/1 queue, except that the service time is scaled by γ/
√∑j

i=1 li in each

production cycle j. Now consider a GI/GI/1 queue (Wj | j ≥ 0) defined by the

following Lindley’s equation: W0 = 0, and

Wj+1 = [Wj + λj − νj]+ , (3.15)

where the sequences λj and νj consist of independent and identically distributed

random variables (only dependent upon the distributions of D and U). Let ϕ0 = 0,

ϕ1 = inf{t ≥ 1 : Wj = 0} and for t ≥ 1, ϕt+1 = inf{t > ϕt : Wj = 0}. Let

Bt = ϕt − ϕt−1. The random variable Wj is the waiting time of the jth customer in

the GI/GI/1 queue, where the inter-arrival time between the jth and j+1th customers

is distributed as νj, and the service time is distributed as λj. Then, Bt is the length

of the tth busy period. Let ρ = E[λ1]/E[ν1] represent the system utilization. Note

that if ρ < 1, then the queue is stable, and the random variable Bt is independent

and identically distributed.

We invoke the following result from Loulou (1978) to bound E[Bt], the expected

busy period of a GI/G/1 queue with inter-arrival distribution ν and service time λ.

Lemma 3.16 (Loulou (1978)). Let Xj = λj − νj, and α = −E[X1]. Let σ2 be the

variance of X1. If E[X1]3 = β <∞, and ρ < 1,

E[B1] ≤ σ

α
exp

(
6β3

σ3
+
α

σ

)
.

For each n ≥ 1, let the random variable i(n) denote the index t such that Bt

96

contains n. This means that the nth customer is within the Bi(n) busy period. Since

Bt is i.i.d., we know that E[Bi(n)] = E[Bt] = E[B1].

Lemma 3.17. For any period t ≥ 1, we have

E

[
J∑
j=1

Zj

]
≤ 2γ(h ∨ b)E[B1]

√
T .

Proof. As defined above, the stochastic process Zj+1 =

[
Zj +

γλj√∑j
i=1 li
− νj

]+

. Since

Zj can be interpreted as the waiting time in the GI/GI/1 queueing system, we can

rewrite Zj as

Zj =

j∑
j′=1

 γλj′√∑j′

i=1 li

− νj′

1
[
j′ ∈ Bi(j)

]
≤

j∑
j′=1

γλj′√∑j′

i=1 li

1
[
j′ ∈ Bi(j)

]
. (3.16)

We then bound the total waiting time of sequence Zj by only considering the cumu-

lative service times as follows.

E

[
J∑
j=1

Zj

]
= E

 J∑
j=1

j∑
j′=1

γλj′√∑j′

i=1 li

1[j′ ∈ Bi(j)]


≤ E

 J∑
j=1

J∑
j′=1

γ(h ∨ b)lj′√∑j′

i=1 li

1[j′ ∈ Bi(j)]


≤ E

 J∑
j′=1

γ(h ∨ b)lj′√∑j′

i=1 li

J∑
j=1

1[j′ ∈ Bi(j)]


= E

 J∑
j′=1

γ(h ∨ b)lj′√∑j′

i=1 li

Bi(j′)

 ≤ E[T∑
t=1

γ(h ∨ b)√
t

Bi(t)

]
,

where the last inequality holds because

J∑
j′=1

lj′√∑j′

i=1 li

≤
T∑
t=1

1√
t
, where T =

J∑
j′=1

lj′ .

97

Thus, we have

E

[
J∑
j=1

Zj

]
≤ E

[
T∑
t=1

γ(h ∨ b)√
t

Bi(t)

]

= γ(h ∨ b)E

[
T∑
t=1

1√
t

]
E[Bi(t)]

≤ 2γ(h ∨ b)
√
TE[B1], (3.17)

where the last inequality follows from the fact that
∑T

t=1
1√
t
≤ 2
√
T − 1. Combining

(3.16) and (3.17) completes the proof.

Combining Lemmas 3.15 and 3.17, we have

E

[
J∑
j=1

Θ(sτj)−
J∑
j=1

Θ(ŝτj)

]
≤ E

[
J∑
j=1

γ(h ∨ b)(ŝτj − sτj)

]

≤ γ(h ∨ b)E[l1]E

[
J∑
j=1

Zj

]
≤ 2γ(h ∨ b)2E[l1]E[B]

√
T ,

where both E[B] and E[l1] are bounded constants. This completes the proof for

Proposition 3.10.

3.5.4 Proof of Proposition 3.11

Proposition 3.11 provides an upper bound on the cumulative production and sal-

vaging costs incurred by adjusting the production cycle target levels. The main idea

of this proof on a high level is to use the fact that the cycle target levels of the actual

implemented system are getting closer to the ones of the virtual system over time,

and each change in the cycle target level can be sufficiently bounded, resulting in an

98

upper bound on the cumulative production and salvaging costs.

E

[
J∑
j=1

c
(
sτj+1

− sτj
)+

]
≤ E

[
J∑
j=1

c
(
ŝτj+1

− sτj
)+

]

= E

[
J∑
j=1

c
(
P[0,s̄]

(
ŝτj − ηj ·Gj(ŝτj)

)
− sτj

)+

]

≤ E

[
J∑
j=1

c
((
ŝτj − ηj ·Gj(ŝτj)

)
− sτj

)+

]

≤ E

[
J∑
j=1

c
∣∣ŝτj − sτj ∣∣+

J∑
j=1

c
∣∣ηj ·Gj(ŝτj)

∣∣] ≤ K4

√
T ,

where K4 is some positive constant. The result trivially holds if sτj+1
≤ sτj . Now,

consider the case where sτj+1
> sτj , i.e., the firm produces. The first inequality holds

because if the firm produces, we must have sτj+1
≤ ŝτj+1

by the construction of DRC.

The second inequality holds because sτj ≥ 0. The third inequality holds by the

triangular inequality. The last inequality is due to the fact that
∑J

j=1

∣∣ŝτj − sτj ∣∣ ≤
O(
√
T) from Proposition 3.10, and

J∑
j=1

c
∣∣ηj ·Gj(ŝτj)

∣∣ ≤ cγ(h ∨ b)
J∑
j=1

lj√∑j
i=1 li

≤ 2cγ(h ∨ b)
√
T .

Similarly,

E

[
J∑
j=1

θ(sτj − sτj+1
)+

]
= E

[
J∑
j=1

θ(sτj − ŝτj+1
)+

]

= E

[
J∑
j=1

θ
(
sτj −P[0,s̄]

(
ŝτj − ηj ·Gj(ŝτj)

))+

]

≤ E

[
J∑
j=1

θ
(
sτj −

(
ŝτj − ηj ·Gj(ŝτj)

))+

]

≤ E

[
J∑
j=1

θ
∣∣ŝτj − sτj ∣∣+

J∑
j=1

θ
∣∣ηj ·Gj(ŝτj)

∣∣] ≤ K5

√
T ,

99

where K5 is some positive constant. The result trivially holds if sτj ≤ sτj+1
. Now,

consider the case where sτj > sτj+1
, i.e., the firm salvages. The first equality holds

because if the firm salvages, we must have sτj+1
= ŝτj+1

by the construction of DRC.

The first inequality holds because s̄ ≥ sτj . The second inequality holds by the trian-

gular inequality. The last inequality follows the same idea as in the first part of this

section.

Combing the above two parts completes the proof of Proposition 3.11.

Finally, Theorem 3.6 is a direct consequence of Propositions 3.9, 3.10, and 3.11,

which gives us the desired regret upper bound.

3.6 Numerical Experiments

We conduct numerical experiments to demonstrate the efficacy of our proposed

DRC algorithm. To the best of our knowledge, we are not aware of any existing

learning algorithms that are applicable to random capacitated inventory systems.

Thus, we have designed two simple heuristic learning algorithms (that are intuitively

sound and practical), and use them as benchmarks to validate the performance of

the DRC algorithm. Our results show that the performance of the DRC algorithms

is superior to these two benchmarking heuristics both in terms of consistency and

convergence rate. All the simulations were implemented on an Intel Xeon 3.50GHz

PC.

3.6.1 Design of Experiments

We conduct our numerical experiments using a normal distribution for the ran-

dom demand and a mixture of two normal distributions for the random capacity.

More specifically, we set the demand to be N(10, 32). We test four different capac-

ity distributions, namely, a mixture of 20% N(5, 12) and 80% N(14, 42), a mixture

of 20% N(5, 12) and 80% N(17, 52), a mixture of 20% N(5, 12) and 80% N(20, 62),

100

and also a mixture of 20% N(5, 32) and 80% N(17, 52). The distributions correspond

to environments where the product capacity is subject to downtime. Clearly, in a

production environment, capacity may be random even if no significant downtime

occurs (e.g., due to variations in operator speed). However, machine downtime can

significantly impact capacity. These examples correspond to situations where the pro-

duction system experiences downtime that affects capacity with 20% probability. (We

have experimented with other examples of downtime and obtained similar results.)

The production cost c = 10, and the salvaging value is set to be half of the

production cost, i.e., θ = 5. The backlogging cost is linear in backorder quantity,

with per-unit cost b = 10, and the holding cost is 2% per period of the production

cost, i.e., h = 0.2. We set the time horizon T = 1000, and compare the average

cost of our DRC algorithm with that of the two benchmarking heuristic algorithms

(described below) as well as the clairvoyant optimal cost over 1000 periods.

Clairvoyant Optimal Policy: The clairvoyant optimal policy is a stationary

policy, given that the firm knows both the demand and capacity distributions at the

beginning of the planning horizon. The average cost is calculated by averaging 1000

runs over 1000 periods.

Benchmarking Heuristic 1: We start with an arbitrary inventory level s1 and

start the first production cycle. For t ≥ 1, we keep the target level st = sj the same

during one production cycle j ≥ 1. If the inventory level yt reaches sj, we claim

that the jth production cycle ends and then we collect all the past observed demand

data to form an empirical demand distribution and all the past observed capacity

data (except the capacity data obtained at the end of each production cycle) to form

an empirical capacity distribution. We omit the capacity data obtained at the end

of each production cycle because we might not produce at full capacity (when the

previous target level is achieved). Then we treat the updated empirical demand and

capacity distributions as true distributions, and derive the long-run optimal target

101

level sj+1 for the subsequent cycle j + 1. Note that the long-run optimal target level

(with well-defined input demand and capacity distributions) can be computed using

the detailed computational procedure described in Ciarallo et al. (1994). The average

cost is calculated by averaging 1000 runs over 1000 periods.

Benchmarking Heuristic 2: We start with an arbitrary inventory level s1, and

keep the target level st = sj the same during one production cycle j ≥ 1. We still

update the empirical demand distribution at the end of each production cycle using

all past observed demand data. However, in the first N = 10 periods, we always

try to produce up to the maximum capacity ū, and we form the empirical capacity

distribution using only these N full capacity sample points, and treat the empirical

capacity distribution as the true capacity distribution for the rest of decision horizon.

At the end of each production cycle, we still collect all the past observed demand

data to form an empirical demand distribution, and similar to heuristic 1, derive the

long-run optimal target level for the subsequent cycle together with the empirical

capacity distribution. In other words, in the first N periods, we always produce up

to the full capacity instead of the target level to get true information of the capacity,

and after N periods, we carry out a regular modified base-stock policy. The average

cost is calculated by averaging 1000 runs over 1000 periods. We have experimented

with N values different than 10 and our results are similar to those we report below.

3.6.2 Numerical Results and Findings

The numerical results are presented in Figure 3.5. We observe that Heuristic 1 is

inconsistent, i.e., it fails to converge to the clairvoyant optimal cost. This is because

even if we collect all the capacity data only when we produce at full capacity, the

empirical distribution formed by these data is still biased (as the capacity data we

observe is smaller than the true capacity). Heuristic 2 performs better than Heuristic

1, but still suffers from inconsistency.

102

0 200 400 600 800 1000

t

100

120

140

160

180

200

A
ve

ra
ge

 C
os

t

Comparison with Heuristic Approach
Demand~Normal(10,3)

Capacity~Normal(14,4)w.80%, Normal(5,1)w.20%

DRC Algorithm
Heuristic 1
Heuristic 2
Optimal Policy

200 400 600 800 1000

t

100

120

140

160

180

200

A
ve

ra
ge

 C
os

t

Comparison with Heuristic Approach
Demand~Normal(10,3)

Capacity~Normal(17,5)w.80%, Normal(5,1)w.20%

DRC Algorithm
Heuristic 1
Heuristic 2
Optimal Policy

0 200 400 600 800 1000

t

100

120

140

160

180

200

A
ve

ra
ge

 C
os

t

Comparison with Heuristic Approach
Demand~Normal(10,3)

Capacity~Normal(20,6)w.80%, Normal(5,1)w.20%

DRC Algorithm
Heuristic 1
Heuristic 2
Optimal Policy

200 400 600 800 1000

t

100

120

140

160

180

200

A
ve

ra
ge

 C
os

t

Comparison with Heuristic Approach
Demand~Normal(10,3)

Capacity~Normal(17,5)w.80%, Normal(5,3)w.20%

DRC Algorithm
Heuristic 1
Heuristic 2
Optimal Policy

Figure 3.5: Computational performance of the DRC algorithm

Comparing to the benchmarking heuristic algorithms, the DRC algorithm con-

verges to the clairvoyant optimal cost consistently and also at a much faster rate.

We can also observe that when the capacity utilization (defined as the mean demand

over the mean capacity) increases, the convergence rate slows down. This is because

when the capacity utilization is high, it generally takes more periods for the system to

reach the previous target level, resulting in longer production cycle length and slower

updating frequency. Finally, we find that increasing the variability of distributions

does not affect the performance of the DRC algorithm.

103

3.7 Concluding Remark

In this chapter, we have proposed a stochastic gradient descent type of algorithm

for the stochastic inventory systems with random production capacity constraints,

where the capacity is censored. Our algorithm utilizes the fact that the clairvoyant

optimal policy is the extended myopic policy and updates the target inventory level

in a cyclic manner. We have shown that the average T -period cost of our algorithm

converges to the optimal cost at the rate of O(1/
√
T), which is the best achievable

convergence rate. To the best of our knowledge, this chapter is the first to study learn-

ing algorithms for stochastic inventory systems under uncertain capacity constraints.

We have also compared our algorithm with two straw heuristic algorithms that are

easy to use, and we have shown that our proposed algorithm performs significantly

better than the heuristics in both consistency and efficiency. Indeed, our numerical

experiments have shown that with censored capacity information, the heuristics may

not converge to the optimal policy.

To close this chapter, we leave an important open question on how to design an

efficient and effective learning algorithm for the capacitated inventory systems with

lost-sales and censored demand. In the present chapter, with backlogging demand,

the length of the production cycle is independent of the target level, and therefore

the production cycles in our proposed algorithm and the optimal system are perfectly

aligned. With lost-sales and censored demand, the length of the production cycle be-

comes dependent on the target level, and comparing any two feasible policies becomes

much more challenging, which would require significantly new ideas and techniques.

104

CHAPTER IV

Optimal Learning Algorithms for Make-To-Stock

Queueing Systems

4.1 Introduction

We consider a classical infinite-horizon M/G/1 make-to-stock queueing system

that arises in many practical production settings. There is a single facility which

is dedicated to producing a single product type. The demand arrival process (of

customers) is a Poisson process with rate λ, that is, the inter-arrival time between

successive arrivals is denoted by an exponential random variable R with rate λ. The

production time of each product in this single facility is random, which is denoted

by an independent and identically distributed (i.i.d.) random variable U with finite

mean E[U]. The probability density function (p.d.f.) and cumulative distribution

function (c.d.f.) of U are denoted by fU(·), FU(·), respectively.

The facility is either producing or idling, and the setup time for the facility to

switch between these two modes is assumed to be negligible. While the facility is

producing, the output is continuous and goes directly into the onhand inventory.

Demand is satisfied from the onhand inventory on a first-come-first-served basis. If

a customer arrives at the system with zero onhand inventory, the demand will be

backlogged. The system incurs an inventory holding cost h per unit product per

105

unit time whenever the inventory is positive, and incurs a backlogging cost b per

unit product per unit time whenever the inventory is negative (or backlogged). The

objective is to minimize the long-run average expected sum of holding and backlogging

costs.

4.1.1 Main result and our contribution

Different than the existing literature, at the beginning of the planning horizon,

the decision maker has no prior information about the underlying distribution of

the production time U as well as the customer arrival rate λ. The performance

measure considered in our setting is the notion of regret, which is defined as the

difference in cost between a feasible adaptive control policy (that does not have the

prior distributional information but only relies on past observations) and a clairvoyant

optimal policy (had the distributional information about U and λ been known). The

main result of this paper is to devise an efficient adaptive control policy and prove

that the cumulative regret RT ≤ O(
√
T) for a T -period problem. In other words, the

average T -period running cost converges to the clairvoyant optimal cost at O(1/
√
T),

which is also shown to be tight (formally stated in Theorem 4.2).

4.1.2 Relevant literature

With complete distributional information on both the arrival and production

times, this problem has been studied extensively in the literature (see, e.g., Evans

(1967), Sobel (1982), Gavish and Graves (1980), Federgruen and Zipkin (1986a)). We

refer interested readers to Kapuscinski and Tayur (1999) for a comprehensive survey.

The optimal policy is typically of the base-stock type (i.e., the facility produces when

inventory falls below a certain threshold and idles otherwise), which was first proved

by Gavish and Graves (1980) and Sobel (1982) for the single product and single fa-

cility case. Zheng and Zipkin (1990) studied the policy for two symmetric products,

106

and the results were generalized to various multiproduct settings (see e.g., H. Zipkin

(1995), Wein (1992), Veatch and Wein (1996), Bertsimas and Paschalidis (2001)).

There are also several extensions to the single product case but with multiple demand

classes (see e.g., Ha (1997a), Ha (1997b), Ha (2000)). The make-to-stock queues have

also been studied in the context of pricing and admission control. Li (1992) consid-

ered a single product but with congestion and exogenous price. Scott Carr (2000)

considered a make-to-stock production system where both sequencing and admission

control decisions are made. Caldentey and Wein (2006) discussed a single-product

make-to-stock system with two pricing options. There is a large body of literature

incorporating more detailed modeling of the production facility, including tandem

queues (see e.g., Kapuscinski and Tayur (1999), Ahn et al. (2002), Ahn et al. (1999),

Iravani et al. (1997), Duenyas et al. (1998)), and unreliable production facilities (see

e.g., Feng and Yan (2000), Feng and Xiao (2002)). There is also extensive body of

queueing theory on admission control (see e.g., Lippman (1975), Lippman and Stid-

ham (1977), Stidham (1978)). A comprehensive survey can be referred to Crabill

et al. (1977) and Stidham (1985).

When there is no prior knowledge about the arrival rate and the distribution of

production times, there is very little literature considering the joint learning and op-

timal control problem. The present chapter aims to fill in this important gap, by

devising an adaptive algorithm with provably tight convergence rate to the clair-

voyant optimal solution. Our algorithm is stochastic gradient descent type, mo-

tivated by the literature on robust stochastic approximation (see e.g., Nemirovski

et al. (2009) and references therein) and online convex optimization (see e.g., Hazan

(2016) and references therein). There has been some recent progress for the discrete-

time production-inventory systems under incomplete information, giving rise to ef-

ficient learning algorithms for various models (see e.g., Burnetas and Smith (2000),

Huh and Rusmevichientong (2009), Huh et al. (2009), Shi et al. (2016), Zhang et al.

107

(2018),Zhang et al. (2019), Chen et al. (2018a)). However, we note that the aforemen-

tioned learning problems are designed primarily for discrete time review systems with

only the demand (arrival) distribution information unknown a prior. For the continu-

ous review system considered in this chapter, in addition to the unknown arrival rate,

we also need to learn the distribution of the production time while minimizing the

total costs on the fly. As a result, the design and analysis of the proposed algorithm

become more challenging. We hope that this work could open many future research

avenues for joint learning and control for queueing systems.

4.1.3 Organization

The rest of the chapter is organized as follows. We formally present our model in

§4.2. We give our learning algorithm in §4.3 and its performance analysis in §4.4. We

conduct a numerical study to demonstrate the efficacy of the proposed algorithm in

§4.5. We conclude this paper and point out several future research directions in §4.6.

4.2 Model, System Dynamics, and Costs

Consider an infinite-horizon make-to-stock inventory system wherein a single pro-

duction facility is dedicated to producing one product. The facility can be set up

to produce or turn down and idle. While the facility is producing, the output goes

directly to the inventory. The demand arrival process (of customers) is a Poisson

process with rate λ, and is supplied from the inventory. When the inventory is not

available, the demand is backlogged (customer will wait). The inventory holding cost

is h and the backlogging cost is b per inventory per unit time. The production time

have distribution FR(·) and density fR(·).

At any time t, the decision maker can observe its inventory level x(t). If a product

finishes at time τ , then we consider the inventory level x(τ) = x(τ−)+1, where x(τ−)

is the time instance just before τ . Similarly, if a customer arrives at time τ , then we

108

consider the inventory level x(τ) = x(τ−)− 1. Let the initial inventory level be x(0),

the inventory level at time t can be written as x(t) = x(0) + P (0, t) −D(0, t) where

P (0, t) and D(0, t) are the total number of products produced and the total number

of customers arrived at and before time t, respectively.

The decision is when to turn on or off the facility. More precisely, if the facility is

idle at time t, then when the next customer arrives and consumes one product from

the inventory, we need to decide whether to start production or not. On the other

hand, if the facility is producing at time t, then when the current product is finished,

we need to decide whether to continue production or to set the facility idle.

At the beginning of the planning horizon, the decision maker has no prior knowl-

edge about the customer arriving rate as well as the underlying production time

distribution. At any time t, the decision maker has access to all past customer arrival

times and all past production times up to time t. Define the decision epoch to be the

time whenever a product is finished or a customer arrives. At each decision epoch,

the decision maker will decide its target inventory level s(t) and make the decision

accordingly.

Let H(t) denote the information collected up to time t. Our objective is to find

an adaptive policy π, or a series of inventory target levels s(t) := π(H(t), x(t)) which

minimizes the long run average expected cost

lim sup
T→∞

E

[∫ T
0

(hx(t)+ + bx(t)−) dt

T

]
,

where x(t)+ = max(x(t), 0) is the positive inventory in the system at time t, and

x(t)− = −min(x(t), 0) is the backlogging demand in the system at time t.

109

Symbol Type Description
h Param Per-unit per-unit-of-time holding cost.
b Param Per-unit per-unit-of-time backlogging cost.
D(t1, t2), d(t1, t2) Param Random demand and its realization

within time interval [t1, t2).
P (t1, t2), p(t1, t2) Param Random production and its realization

within time interval [t1, t2).
Ri, ri Param Random inter-arrival time between ith

and (i+ 1)th customer.
FR, fR Param Inter-arrival time c.d.f. and p.d.f.
Uj, uj Param Random production time for the jth product.
FU , fU Param Production time c.d.f. and p.d.f.
x(t) State Initial inventory level at time t.
s(t) State Target inventory level at time t.
sk State Target inventory level of the kth production cycle.
ŝk State (Integer) virtual target inventory level of

the kth production cycle.
s̃k State (float) virtual target inventory level of

the kth production cycle.
αi State The time when the ith product finishes.
βj State The time when the jth customer shows up.
Lk State The cycle length of the kth production cycle.

Table 4.1: Summary of Major Notation

110

4.3 An Adaptive Learning Algorithm

Our algorithm utilizes a stochastic gradient updating rule to ensure that it con-

verges to the optimal policy. We first introduce the concept of a production cycle,

which gives rise to a renewal process in a queueing system. A production cycle is

defined as the time elapsed between two successive hits of a certain inventory target

level, i.e., the duration which begins when the inventory level hits the target level

and ends when the inventory level is brought back to the same target level again.

In the clairvoyant problem, it is well known that a base-stock type policy is op-

timal. That is, there exists an optimal target level s∗ such that the facility keeps

producing whenever the inventory level x(t) < s∗ and shuts down and stays idle when

the inventory level is brought back to s∗, i.e., x(t) = s∗. Let

αi = the time epoch when the ith product is finished for i = 1, 2, . . .

βj = the time epoch when the jth customer arrives for j = 1, 2, . . .

Figure 4.1(a) illustrates a sample path example of the clairvoyant system. The deci-

sion maker will always try to produce up to the optimal inventory level s∗. At α5, the

inventory level reaches s∗, then a production cycle starts at α5 and ends at α8 when

the inventory level reaches s∗ again. The next production cycle starts at α8 and ends

at α14. A production cycle consists of an “off” cycle [α5, β6] when the facility is idle,

and an “on” cycle [β6, α8] when the facility is producing. We call such a production

cycle as a standard production cycle. Note that for the clairvoyant problem, the off

cycle corresponds to the idle period and the on cycle corresponds to the busy period

in an M/G/1 queue.

However, in the incomplete information model, the decision maker does not know

s∗, and therefore needs to update the target level based on past realizations. Figures

4.1(b) and 4.1(c) show two possible cases. Suppose the initial target level is ŝ1. Then

111

a standard production cycle starts at α5 and ends at α8, according to the above

definition. In the first case shown by Figure 4.1(b), a new target level ŝ2 > ŝ1

is suggested by an algorithm π. At α8, the facility will keep producing until the

inventory level reaches ŝ2 at α15. Then α15 marks the start of the second standard

production cycle. In this case, the transition period from ŝ1 to ŝ2 is called “busy

transition period” (since the facility is trying to produce up to achieve the new target

level).

On the other hand, in the second case shown by Figure 4.1(c), a new target level

ŝ2 ≤ ŝ1 is suggested by an algorithm π. At α8, the facility shuts down and stays idle

until enough customers arrive to bring the inventory level down to ŝ2 at β11. Then β11

marks the start of the second standard production cycle. In this case, the transition

period from ŝ1 to ŝ2 is called “idle transition period” (since the facility is trying to

stay idle to lower the inventory to achieve the new target level).

In order to correctly carry out the updates, we shall only utilize the information

collected from a standard production cycle, thanks to the convexity property (shown

in Lemma 4.3). We remark that [α10, α14] in Figure 4.1(b) also forms a production

cycle if we treat the inventory level at α10 as a target level. The difference between

this production cycle and the ones previously discussed is that the facility is not idle

at the beginning of this production cycle. Thus, [α10, α14] does not form a standard

production cycle, and a bias will be introduced if we use the information collected from

[α10, α14] to update the target level (which will be shown to vanish in the proposed

algorithm at an appropriate rate).

4.3.1 Algorithm Description

Assumption 4.1. We make the following assumptions.

(a) The utilization factor ρ = λE[U] < 1.

(b) The optimal target level lies in a bounded interval [0, s̄].

112

In
v
e

n
to

ry
 L

e
v
e

l

off on

complete cycle

off on

complete cycle
In

v
e

n
to

ry
 L

e
v
e

l

off on

complete cycle

busy transition period

In
v
e

n
to

ry
 L

e
v
e

l

off on

complete cycle

on

(a)

(b)

(c)

complete cycle

off

idle transition period

Figure 4.1: Illustration of the production cycles and dynamics of different policies

113

Now we shall introduce our data-driven algorithm for the make-to-stock queue

(DMTS for short). The DMTS algorithm has two main design principles. One is to

utilize the information collected from a standard production cycle to carry out unbi-

ased updates, and the other one is to leverage the information in the transition period

(between updating and actually attaining the target level) to improve efficiency.

We maintain two systems throughout the algorithm. The first system is the

actual implemented system, where the algorithm keeps track of x(t) as the actual

inventory level at time t, αi as the ith product completion time, and βj as the jth

customer arrival time. Based on x(t), αi, βj collected from the actual implemented

system, we construct the second (infeasible) system termed the virtual system, which

is a series of standard production cycles (that minimize the gaps between any two

consecutive cycles). We refer to the standard production cycles in the virtual system

as the virtual production cycles. The virtual system records τ sk as the starting time

for the kth virtual production cycle, and τ ek as the ending time for the kth virtual

production cycle. The algorithm maintains the virtual target level ŝk for the kth

virtual production cycle. At the beginning of the kth virtual production cycle, the

virtual system artificially sets the virtual inventory level x̂(τ sk) = ŝk. At the end

of the kth virtual production cycle, the algorithm computes the (fractional) virtual

target level s̃k+1 for the next production cycle, which is then rounded to an integer

value ŝk+1.

The algorithm always wants to bring the actual inventory level x(t) up to virtual

target level ŝk+1 for t ∈ [τ ek , τ
e
k+1], i.e., the facility will keep producing if x(t) < ŝk+1

and stays idle if x(t) ≥ ŝk+1 for t ∈ [τ ek , τ
e
k+1]. However, a caveat is that x̂(τ sk+1)

may fail to reach the virtual target level ŝk+1. So the algorithm is forced to take

the actual inventory at τ sk+1 as the target level for the (k + 1)th cycle, i.e., setting

s(t) = sk+1 = x(τ sk+1) for t ∈ [τ sk+1, τ
e
k+1]. Note that during the transition period

t ∈ [τ ek , τ
s
k+1], we use the target level s(t) = ŝk+1.

114

On a high level, the algorithm repeats the following three processes. First, begin-

ning at τ sk , we construct the corresponding virtual production cycle, and decide τ ek .

Second, at τ ek , we update the current target level from sk to ŝk+1. Third, we decide

τ sk+1 based on different cases.

Algorithm 1 Data-Driven Algorithm for the Make-To-Stock Queue (DMTS)

Step 0. (Initialization.)

Set initial inventory x(0) ∈ [0, s̄]. Set s0 = ŝ0 = s̃0 = x(0). Initialize the cycle counter

k = 1, and τ s1 = 0.

Step 1. (Keeping track of virtual production cycles.)

At time t = τ sk , the actual implemented system sets target inventory level sk = x(τ sk).

We construct the corresponding virtual production cycle starting with inventory level

ŝk based on different cases.

(i). If the actual and virtual target levels are the same, i.e., sk = ŝk, then we define

τ ek = min{t > τ sk |x̂(t) = ŝk} = min{t > τ sk |x(t) = sk}

where in this case x̂(t) = x(t). We keep producing until τ ek and calculate the

gradient for update by

Gk(ŝk) =


∫ τek
τsk

[h1 [x̂(t) ≥ 0] + b1 [x̂(t) < 0]] dt, if ŝk = bs̃kc,∫ τek
τsk

[h1 [x̂(t) > 0] + b1 [x̂(t) ≤ 0]] dt, if ŝk = ds̃ke.

Figure 4.2(a) gives an example for this case.

(ii). If, on the other hand, the actual target level is lower than the virtual target

level, i.e., sk < ŝk, then we still need to determine when the virtual production

115

cycle ends and thus we define

τ ek = min{t > τ sk |x̂(t) = ŝk} (4.1)

where

x̂(t) = ŝk + p(τ sk , t− βsk)− d(τ sk , t)

and βsk = min{βi > τ sk} is the time in which the first customer arrives after τ sk .

Then we keep producing if x(t) < ŝk and stay idle if x(t) = ŝk. There are two

possibilities as follows.

(a) If x(t) does not reach the target level ŝk twice before τ ek , we calculate the

gradient for update by

Gk(ŝk) =


∫ τek
τsk

[h1 [x̂(t) ≥ 0] + b1 [x̂(t) < 0]] dt, if ŝk = bs̃kc,∫ τek
τsk

[h1 [x̂(t) > 0] + b1 [x̂(t) ≤ 0]] dt, if ŝk = ds̃ke.

And we keep τ ek unchanged as in (4.1). Figures 4.2(d) and 4.2(e) give two

examples for this case, where the system in 4.2(d) does not hit ŝk+1 and

the system in 4.2(e) hits ŝk+1 exactly once.

(b) If x(t) reaches ŝk twice before τ ek , then we reset τ ek to be the second time

x(t) reaches ŝk, i.e.,

τ ek = min{t > τ ′sk |x(t) = ŝk}, and τ ′sk = min{t > τ sk |x(t) = ŝk}.

Then we calculate the gradient for update by

Gk(ŝk) =


∫ τek
τ ′sk

[h1 [x(t) ≥ 0] + b1 [x(t) < 0]] dt, if ŝk = bs̃kc,∫ τek
τ ′sk

[h1 [x(t) > 0] + b1 [x(t) ≤ 0]] dt, if ŝk = ds̃ke.

116

Figure 4.2(f) gives an example for this case.

Step 2. (Updating the virtual target inventory level.)

At time t = τ ek , we update the virtual target level via a stochastic gradient descent

step as follows.

s̃k+1 = P[0,s̄] (ŝk − ηk ·Gk(ŝk)) , where the step size ηk =
1√∑k

i=1 τ
e
i − τ si

.

Note that the projection operator P[0,s̄] = max{0,min{x, s̄}}.

Since s̃k+1 could be fractional, we use the following randomized rounding rule to

get ŝk+1.

ŝk+1 =


ds̃k+1e, with probability s̃k+1 − bs̃k+1c,

bs̃k+1c, with probability 1− (s̃k+1 − bs̃k+1c).

Step 3. (Updating the actual implemented target inventory level.)

At time t = τ ek , we choose different updating strategy depending on the virtual target

level ŝk+1 and the mode of the facility (either producing or idling).

(i). If x(t) = ŝk, then the facility is idle, and we have three cases.

(a) If x(t) = ŝk+1, we stay idle and set the new cycle target level sk+1 = ŝk+1

and set τ sk+1 = τ ek . Figure 4.1(a) gives an example for this case.

(b) If x(t) > ŝk+1, we stay idle and set the new cycle target level sk+1 = ŝk+1

and set

τ sk+1 = min{t > τ ek | x(t) = ŝk+1}.

Figure 4.2(a) gives an example for this case.

(c) If x(t) < ŝk+1, we keep producing, and there are two sub-cases as follows.

i. If x(t) reaches ŝk+1 before any customer arrives, then we set the new

117

cycle target level sk+1 = ŝk+1 and

τ sk+1 = min{t ≥ τ ek | x(t) = ŝk+1}.

Figure 4.2(b) gives an example for this case.

ii. If x(t) does not reach ŝk+1 before any customer arrives, then we set

τ sk+1 = max{αj < β′k}, and β′k = min{βi > τ ek}.

We set the new cycle target level sk+1 = x(τ sk+1). Figure 4.2(b) gives

an example for this case.

(ii). If x(t) < ŝk, then the facility is producing, and we have three cases.

(a) If x(t) = ŝk+1, we keep producing. Set τ sk+1 = τ ek and the new target level

sk+1 = ŝk+1.

(b) If x(t) < ŝk+1, we keep producing, and we have two sub-cases as follows.

i. If x(t) reaches ŝk+1 before any customer arrives, then we set the new

cycle target level sk+1 = ŝk+1 and set

τ sk+1 = min{t > τ ek | x(t) = ŝk+1}.

ii. If x(t) does not reach ŝk+1 before any customer arrives, then we set

τ sk+1 = max{αj < β′k}, and β′k = min{βi > τ ek}.

We set the new cycle target level sk+1 = x(τ sk+1).

(c) If x(t) > ŝk+1, we finish the current product first, and we have two sub-

cases as follows.

118

i. If at the time t when the current product is finished and x(t) ≥ ŝk+1,

then we idle and set new cycle target level sk+1 = ŝk+1, and set

τ sk+1 = min{t > τ ek | x(t) = ŝk+1}.

ii. If at the time t when the current product is finished and x(t) < ŝk+1,

then we keep producing and apply the previous case (b).

In
ve

nt
or

y
Le

ve
l

off on

complete cycle

on

complete cycle

off

idle transition period

In
ve

nt
or

y
Le

ve
l

off on

a complete cycle

virtual production cycle

off on

(c)

(a)

(b)

busy transition
period

In
ve

nt
or

y
Le

ve
l

off on

a complete cycle a complete cycle

off on

busy transition
period

In
ve

nt
or

y
Le

ve
l

off on

a complete cycle

virtual production cycle

off on
busy transition
period

In
ve

nt
or

y
Le

ve
l

virtual production cycle

off on
busy transition
period

In
ve

nt
or

y
Le

ve
l

virtual production cycle
busy transition
period

(d)

(e)

(f)

Figure 4.2: Illustration of the dynamics of our policy

119

4.4 Performance Analysis of the DMTS Algorithm

We measure the performance of the DMTS algorithm by cumulative regret or

simply regret, which is defined as the difference between the cost incurred by our

algorithm and the clairvoyant optimal cost (had the arrival rate and the production

time distribution are both known a priori). That is, for any T ≥ 1,

RT = E

 T∫
0

(hx(t)+ + bx(t)−)dt

− E[K∑
k=1

G(s∗)

]
,

where x(t) is the inventory level at time t under the DMTS algorithm, and s∗ is the

clairvoyant optimal target level. Theorem 4.2 below states the main result of this

paper.

Theorem 4.2. For a make-to-stock queue with unknown arrival rate and produc-

tion time distribution a priori, the cumulative regret RT of the DMTS algorithm is

bounded by O(
√
T). In other words, the average T -period running cost converges to

the clairvoyant optimal cost at O(1/
√
T), which is provably tight.

Proof. Let K be the total number of (τ s, τ e) pairs constructed by the algorithm during

time [0, T], including possibly the last incomplete production cycle. If τ eK > T , then

we truncate that cycle and let τ eK = T . We also truncate the last transition period

[τ eK , τ
s
K+1] by setting τ sK+1 = T and set sK+1 = sK . We can then decompose the

120

cumulative regret as follows.

RT = E

 T∫
0

(hx(t)+ + bx(t)−)dt

− E[K∑
k=1

G(s∗)

]

= E

 K∑
k=1

τek∫
τsk

(hx(t)+ + bx(t)−)dt+
K∑
k=1

τsk+1∫
τek

(hx(t)+ + bx(t)−)dt


−E

[
K∑
k=1

G(s∗)

]

= E

[
K∑
k=1

G(ŝk)−
K∑
k=1

G(s∗)

]
+ E

 K∑
k=1

τek∫
τsk

(hx(t)+ + bx(t)−)dt−
K∑
k=1

G(ŝk)


+E

 K∑
k=1

τsk+1∫
τek

(hx(t)+ + bx(t)−)dt

 , (4.2)

where G(ŝk) and G(s∗) are the costs for a standard production cycle using sk and

s∗ as target levels, respectively. Note that G(ŝk) represents the cost for the virtual

production cycle we constructed. In the third equality, the first part is the cost differ-

ence between the virtual production cycles and the optimal system, the second part

is the cost difference between the actual implemented system and the corresponding

virtual production cycles, and the third part is the cost for the transition period in

the actual implemented system.

The proof of Theorem is a direct consequence of Propositions 4.5, 4.9, and 4.10

(shown below) which give bounds for the three parts in (4.2). Proposition 4.5 utilizes

preliminary results Lemma 4.3 and 4.4. Proposition 4.9 utilizes preliminary results

Lemma 4.6, 4.7 and 4.8. Moreover, the convergence rate is tight (or optimal) due to

Proposition 4.11 (also shown below).

Lemma 4.3. The cost of the standard production cycle is convex in the target level

with probability one.

121

Proof. Let G(s) denote the cost of a standard production cycle under an arbitrary

target level s. At the beginning of the cycle, the inventory level is s and the facility

is idle. The facility starts producing when the first customer arrives. We can write

the cost as follows.

G(s) =

τe∫
τs

[
h (s ∧ (x(τ s) + P (τ s, t)−D(τ s, t)))+

−b (s ∧ (D(τ s, t)− x(τ s)− P (τ s, t)))+] dt
= hs(βs − τ s) +

τe∫
βs

[
h (s ∧ (x(βs) + P (βs, t)−D(βs, t)))+

−b (s ∧ (D(βs, t)− x(βs)− P (βs, t)))+] dt
= hs(βs − τ s) +

τe∫
βs

[
h (x(βs) + P (βs, t)−D(βs, t))+

−b (D(βs, t)− x(βs)− P (βs, t))+] dt,
= hs(βs − τ s) +

τe∫
βs

[
h (s− 1 + P (βs, t)−D(βs, t))+

−b (D(βs, t)− s+ 1− P (βs, t))+] dt,
where τ s and τ e are the production cycle starting and ending times, respectively.

Note that P (t1, t2) is the number of units produced during [t1, t2], and D(t1, t2) is

the number of customers arrived during [t1, t2], and βs is the arrival time of the

first customer after τ s. The second equality holds because the facility is always idle

before the first customer arrives, and the target level is always non-negative, i.e.,

s ≥ 0. The second equality holds because s ≥ x(βs) + P (βs, t) − D(βs, t) for all

t ∈ [βs, τ e] due to the construction of the policy. The last equality holds because

x(βs) = x(τ s)− 1 = s− 1.

122

Taking the first derivative of G(s) with respect to s, we have

∂

∂s
G(s) = h(βs − τ s) +

τe∫
βs

[h1[x(t) ≥ 0]− b1[x(t) < 0]] dt,

and

x(t) = s− 1 + P (βs, t)−D(βs, t).

It is clear that ∂
∂s
G(s + δ) ≥ ∂

∂s
G(s) for any δ > 0 and any s > 0. Thus, G(s) is

convex. In addition, we use the Fundamental Theorem of Calculus to take derivative

and have

∇E [G(ŝ)] = hE[β] + E

 τe∫
βs

[h1[x̂(t) ≥ 0] + b1[x̂(t) < 0]] dt


where E[β] = E[βs − τ s] is the expected customer inter-arrival time.

Lemma 4.4. For any k ≥ 1, Gk(ŝk) is an unbiased estimator of the expected cost

gradient of the kth production cycle, i.e., E[Gk(ŝk)] = ∇E [G(ŝk)]. Also, Gk(ŝk) has

a bounded second moment, i.e., E[(Gk(ŝk))
2] <∞.

Proof. Since the system can observe both the inter-arrival times and production times,

the algorithm can construct x̂(t) based on ŝk and x(t). However, since inventory is

discrete, we incorporate a probabilistic rounding rule while calculating ŝk. Then we

have the following two cases when calculating Gk(ŝk).

If ŝk = bs̃kc, then when the virtual inventory level x̂(t) = 0, the system would

have strictly positive inventory if s̃k were implemented as the target level. Therefore,

to have any backlog in the virtual system, the virtual inventory level needs to be

strictly negative, and therefore we use b1 [x̂(t) < 0] to indicate the backlogging cost.

Similarly, if ŝk = ds̃ke, then when the virtual inventory level x̂(t) = 0, the system

123

would have strictly negative inventory if s̃k were implemented as the target level.

Therefore, to have any leftover inventory in the virtual system, the virtual inventory

level needs to be strictly positive, and therefore we use h1 [x̂(t) > 0] to indicate the

holding cost.

Based on the algorithm, if sk < ŝk and x(t) does not reach ŝk twice before τ ek ,

then if ŝk = bs̃kc, we have

E[Gk(ŝk)] = E

 τek∫
τsk

[h1 [x(t) ≥ 0] + b1 [x < 0]] dt


= E

h(βsk − τ sk) +

τek∫
βsk

[h1 [x̂(t) ≥ 0] + b1 [x̂(t) < 0]] dt


= hE[β] + E

 τek∫
βsk

[h1[x̂(t) ≥ 0] + b1[x̂(t) < 0]] dt

 = ∇E [G(ŝk)] .

Note that x̂(t) = ŝk + p(τ sk , t − βsk) − d(τ sk , t) has the same dynamics as x(t) =

sk + p(τ sk , t− βsk)− d(τ sk , t). The same argument applies to the case where ŝk = ds̃ke,

and also the case where sk = ŝk.

If sk < ŝk and x(t) reaches ŝk twice before τ ek , then Gk(ŝk) is calculated using the

actual inventory level x(t) within [τ ′sk , τ
e
k]. Because the cycle length is independent of

the target level and only dependent on the inter-arrival and the production times, it

is clear that E[Gk(ŝk)] = ∇E [G(ŝk)].

Let B be the busy period of a standard production cycle. Then its second moment

is given by

E[B2] =
E[U2]

(1− ρ)2
=

E[U2]

(1− λE[U])2
<∞,

and the second moment of the idle period is

E[β2] =
2

λ2
<∞,

124

where β is the inter-arrival time of a single customer. Note that ρ = λE[U] < 1.

Therefore, we have

E[(Gk(ŝk))
2] ≤ E

[
(h ∨ b)2(β +B)2

]
<∞.

This completes the proof.

Proposition 4.5. For any K ≥ 1, there exists a constant A1 such that

E

[
K∑
k=1

G(ŝk)− G(s∗)

]
≤ A1

√
T .

Proof. Since G(s) is convex almost surely by Lemma 4.3, and also E [Gk(ŝk)] is an

unbiased estimator of ∇E [G(ŝk)] by Lemma 4.4, we can bound the difference by

E

[
K∑
k=1

(G(ŝk)− G(s∗))

]
≤ E

[
K∑
k=1

∇G(ŝk)(ŝk − s∗)

]
(4.3)

= E

[
E

[
K∑
k=1

∇G(ŝk)(ŝk − s∗)

]
| ŝk

]

= E

[
K∑
k=1

E [∇G(ŝk)(ŝk − s∗)] | ŝk

]

= E

[
K∑
k=1

∇E [G(ŝk)] (ŝk − s∗) | ŝk

]

= E

[
K∑
k=1

E [Gk(ŝk)] (ŝk − s∗)

]
.

By the definition of the projection operator P[0,s̄], we have that (P[0,s̄](ŝk−s∗))2 ≤

(ŝk − s∗)2, and so

(s̃k+1 − s∗)2 = (P[0,s̄](ŝk − ηkGk(ŝk)− s∗))2

≤ (ŝk − ηkGk(ŝk)− s∗)2

= (ŝk − s∗)2 + η2
kGk(ŝk)

2 − 2ηkGk(ŝk)(ŝk − s∗).

125

After re-arranging the terms, we have

Gk(ŝk)(ŝk − s∗) ≤
1

2ηk

(
(ŝk − s∗)2 − (s̃k+1 − s∗)2)+

1

2
ηk (Gk(ŝk))

2 . (4.4)

Now, combining (4.3) and (4.4), we have

E

[
K∑
k=1

(G(ŝk)− G(s∗))

]
≤

K∑
k=1

E [Gk(ŝk)(ŝk − s∗)]

≤
K∑
k=1

(
1

2E[ηk]

(
E (ŝk − s∗)2 − E (s̃k+1 − s∗)2)+

1

2
E
[
ηk (Gk(ŝk))

2])
=

1

2E[η1]
E (ŝ1 − s∗)2 − 1

2E[ηk]
E (s̃k+1 − s∗)2 +

1

2

K∑
k=2

(
1

E[ηk]
− 1

E[ηk−1]

)
E (ŝk − s∗)2 +

K∑
k=1

E
[
ηk (Gk(ŝk))

2]
2

≤ 2s̄2

(
1

2E[η1]
+

1

2

K∑
k=2

(
1

E[ηk]
− 1

E[ηk−1]

))
+
E[(Gk(ŝk))

2]

2

K∑
k=1

E[ηk]

=
s̄2

E[ηK]
+
E[(Gk(ŝk))

2]

2

K∑
k=1

E[ηk] ≤ A1

√
T , (4.5)

where the last inequality holds due to the fact that E[(Gk(ŝk))
2] is finite by Lemma

4.4 and
K∑
k=1

E[ηk] =
K∑
k=1

E

1/

√√√√ k∑
i=1

(τ ek − τ sk)

 ≤ T∫
t=1

1/
√
t ≤ 2

√
T .

This completes the proof.

Lemma 4.6. For any k ≥ 1,

E

 τek∫
τsk

(hx(t)+ + bx(t)−)dt− G(ŝk)

 ≤ E[Lk](h∨b)(ŝk−sk), where Lk = τ ek−τ sk .

Proof. There are two cases. If at t = τ sk , the facility is idle, then based on the DMTS

algorithm, we know that the actual inventory level must reach the virtual target level,

126

i.e., x(τ sk) = sk = ŝk. Then we have

τek∫
τsk

(hx(t)+ + bx(t)−)dt = G(ŝk).

Otherwise, if at t = τ sk , the facility is not idle, then we need to the construct corre-

sponding virtual production cycle. Therefore, applying the system dynamics of both

actual implemented and virtual systems, we have

τek∫
τsk

(hx(t)+ + bx(t)−)dt− G(ŝk)

=

τek∫
τsk

[h(x(t) ≥ 0) + b(x(t) < 0)] dt−
τek∫
τsk

[h(x̂(t) ≥ 0) + b(x̂(t) < 0)] dt

=

τek∫
τsk

[
h (sk + p(τ sk , t)− d(τ sk , t))

+ + b (d(τ sk , t)− sk − p(τ sk , t))
+] dt

−
τek∫
τsk

[
h (ŝk + p(τ sk , t− βsk)− d(τ sk , t))

+ + b (d(τ sk , t)− ŝk − p(τ sk , t− βsk))
+] dt

=

τek∫
τsk

−h [ŝk + p(τ sk , t− βsk)−max{sk + p(τ sk , t), d(τ sk , t)}]
+ dt

+

τek∫
τsk

b [min{ŝk − p(τ sk , t+ βsk), d(τ sk , t)} − sk + p(τ sk , t)]
+ dt

≤
τek∫
τsk

(h ∨ b)(ŝk + p(τ sk , t− βsk)− sk − p(τ sk , t))+dt

≤
τek∫
τsk

(h ∨ b)(ŝk − sk)dt,

where the second equality is derived by applying the system dynamics of x(t) and

127

x̂(t), and the third equality holds due to the fact that sk ≤ ŝk for all k and when

x ≤ x̂, we have

(x−d)+−(x̂−d)+ = −(x̂−max{x, d})+ and (d−x)+−(d−x̂)+ = (min{x̂, d}−x)+.

The last inequality is due to the fact that p(τ sk , t − βsk) ≤ p(τ sk , t) for any k and t.

Since the length of the production cycle does not depend on ŝk and sk, we have

E

 τek∫
τsk

(hx(t)+ + bx(t)−)dt− G(ŝk)

 ≤ E

 τek∫
τsk

(h ∨ b)(ŝk − sk)dt


= E[Lk](h ∨ b)(ŝk − sk).

This completes the proof.

Lemma 4.7. Define Zk as a stochastic process. Z0 = 0, and for k ≥ 0,

Zk+1 =

Zk +
υk√∑k
i=1 Li

− ωk

+

(4.6)

where random variable υk = (h ∨ b)Lk, and ωk = P (τ ek , τ
s
k+1)− |s̃k+1 − ŝk+1|.

Then we have for any K ≥ 1,

E

[
K∑
k=1

(ŝk − sk)

]
≤ E

[
K∑
k=1

Zk

]

Proof. When ŝk+1 ≤ sk, according to the algorithm, we know that the facility must

be idle at t = τ sk+1. Therefore, we have ŝk+1−sk+1 = 0 ≤ Zk+1. When ŝk+1 > sk, then

the algorithm keeps track of a transition period, and we have sk+1 = sk +P (τ ek , τ
s
k+1)

where P (τ ek , τ
s
k+1) is the number of products finished during [τ ek , τ

s
k+1]. Therefore, we

128

can write

ŝk+1 − sk+1 ≤ dP[0,s̄] (ŝk − ηk ·Gk(ŝk))e − sk+1

≤ |P[0,s̄] (ŝk − ηk ·Gk(ŝk)) |+ |s̃k+1 − ŝk+1| − sk+1

≤ |ŝk − ηk ·Gk(ŝk)|+ |s̃k+1 − ŝk+1| − sk − P (τ ek , τ
s
k+1)

≤ |ŝk − sk − ηk ·Gk(ŝk)|+ |s̃k+1 − ŝk+1| − P (τ ek , τ
s
k+1)

≤ |ŝk − sk|+ |ηk ·Gk(ŝk)|+ |s̃k+1 − ŝk+1| − P (τ ek , τ
s
k+1)

≤ (ŝk − sk) + ηk(h ∨ b)Lk − (P (τ ek , τ
s
k+1)− |s̃k+1 − ŝk+1|)

= (ŝk − sk) +
1√∑k
i Li

(h ∨ b)Lk − (P (τ ek , τ
s
k+1)− |s̃k+1 − ŝk+1|).

The first inequality holds because ŝk+1 is derived from probabilistic rounding on

s̃k+1. The third inequality is due to the convexity property of P[0,s̄]. The fifth in-

equality holds because of the triangular inequality. The last inequality holds because

|Gk(ŝk)| ≤ (h ∨ b)Lk where Lk = τ ek − τ sk . In addition, we know that ŝ0 − s0 = 0.

Then, by the definition of Zk+1, it is clear that ŝk+1 − sk+1 ≤ Zk+1. Summing up

both sides of the inequality completes the proof.

Define a GI/G/1 queue having the waiting time of the kth customer (Wk | k ≥ 0)

by the Lindley’s equation:

Wk+1 = [Wk + υk − ωk]+, where W0 = 0 (4.7)

where υk denote the inter-arrival time between the kth and kth customers and υk

denote the service time of the kth customer. Let ϕ0 = 0, ϕm = inf{k ≥ 1 : Wk = 0}

for any m ≥ 1. Then Bm = ϕm−ϕm−1 denote the number of customer served during

the mth busy cycle, where the busy cycle is defined as the time period between an

129

arrival which finds the system empty until another arrival which finds the system

empty again.

Lemma 4.8. For any period K ≥ 1, we have

E

[
K∑
k=1

Zk

]
≤ 2(h ∨ b)

√
TE[B1].

Proof. Based on the definition of Zk, υk and ωk are independent and identically

distributed random variables which only depends on the distribution of R and U .

The stochastic process of Wk scales the service of Zk by 1/
√∑k

i=1 Li in each period

k. Since the system utilization factor ρ < 1, we have E[P (τ ek , τ
s
k+1)] ≥ 1 if ŝk+1 > sk.

Then we have E[ωk] = E[P (τ ek , τ
s
k+1)] − |s̃k+1 − ŝk+1| > 0. Therefore, the stochastic

process Wk can be forced to be stable by having E[υk]/E[ωk] ≤ 1.

For each k ≥ 1, let the random variable n(k) denote the index such that the

n(k)th busy cycle contains customer k. It is well-know that in a GI/G/1 queue, if

the system is stable, then Bm is i.i.d, i.e.,

E[Bn(k)] = E[Bm] = E[B1].

Then we rewrite Zk in respect of Um as follows,

Zk ≤
k∑

k′=1

 √
υk′√∑k′

i=1 Li

− ωk′

1 [n(k′) = n(k)]]

≤
k∑

k′=1

 √
υk′√∑k′

i=1 Li

1 [n(k′) = n(k)] . (4.8)

The first inequality holds because the stochastic process Wk dominates Zk and when

Wk = 0, Zk = 0. 1 [n(k′) = n(k)] states that customer k′ and customer k are in the

same busy cycle.

130

Then we can bound the summation of Zk by

E

[
K∑
k=1

Zk

]
≤ E

 K∑
k=1

k∑
k′=1

√
υk′√∑k′

i=1 Li

1 [n(k′) = n(k)]


≤ E

 K∑
k=1

K∑
k′=1

(h ∨ b)Lk′√∑k′

i=1 Li

1 [n(k′) = n(k)]


≤ E

 K∑
k′=1

(h ∨ b)Lk′√∑k′

i=1 Li

K∑
k=1

1 [n(k′) = n(k)]


= E

 K∑
k′=1

(h ∨ b)Lk′√∑k′

i=1 Li

Bn(k′)


≤ E(h ∨ b)E

 T∫
t=0

1√
t
dt

E[Bn(k′)]

≤ 2(h ∨ b)
√
TE[B1].

The last two inequalities hold because

K∑
k′=1

Lk′√∑k′

i=1 Li

≤
T∫

t=0

1√
t
dt ≤ 2

√
T , where T =

K∑
k′=1

L′k.

And since Lk′ relates with υk′ which denotes the inter-arrival time between the k′th

customer and the k′ + 1th customer, Lk′ is independent of the busy cycle containing

the k′th customer, and thus independent of Bn(k′).

Proposition 4.9. For any K ≥ 1, there exists a constant A2 such that

E

 K∑
k=1

τek∫
τsk

(hx(t)+ + bx(t)−)dt− G(ŝk)

 ≤ A2

√
T .

131

Proof. Combining Lemmas 4.6, 4.7 and 4.8, we have

E

[
K∑
k=1

G(sk)−
K∑
k=1

G(ŝk)

]
≤ E

[
K∑
k=1

E[Lk](h ∨ b)(ŝk − sk)

]

≤ (h ∨ b)E[L1]E

[
K∑
k=1

Zk

]
≤ 2(h ∨ b)2E[L1]E[B1]

√
T .

It has been shown by Loulou (1978) that the expected number of customer served by

the first busy cycle E[B1] for a GI/G/1 queue is bounded by a constant involving up

to the third moment of υ−ω (the difference between inter-arrival and service times).

Moreover, E[L1] = E[β + B] is shown to be finite in Lemma 4.4. This completes the

proof for Proposition 4.9.

Proposition 4.10. For any K ≥ 1, there exists a constant A3 such that

E

 K∑
k=1

τsk+1∫
τek

(hx(t)+ + bx(t)−)dt

 ≤ A3

√
T

Proof. We can write

E

 K∑
k=1

τsk+1∫
τek

(hx(t)+ + bx(t)−)dt


≤ hs̄E

[
K∑
k=1

(sk − sk+1)+ · U +
K∑
k=1

(sk+1 − sk)+ ·R

]

≤ hs̄E

[
K∑
k=1

|sk − sk+1|

]
E [R + U] ≤ A3

√
T .

The first inequality follows from the fact that if sk < sk+1, then it would take (sk −

sk+1)U time for the system to bring the inventory level from sk up to sk+1 where U is

the production time. Similarly, if sk > sk+1, then it would take (sk+1− sk)R time for

132

the system to bring the inventory level from sk down to sk+1 where R is the customer

inter-arrival time. Note that s̄ is the upper bound on the target level sk. Since sk ≥ 0

for all k, the transition period will not incur backlogging cost, and therefore we upper

bound the system by the maximum holding cost. The second inequality holds because

sk is independent with R and U . The last inequality is derived from the fact that

E

[
K∑
k=1

|sk+1 − sk|

]
≤ E

[
K∑
k=1

|sk+1 − ŝk|+ |ŝk − sk|

]

≤ E

[
K∑
k=1

|ŝk+1 − ŝk|

]
+ E

[
K∑
k=1

(ŝk − sk)

]
≤ A6

√
T ,

where the first and second inequalities hold because sk ≤ ŝk for all k, and the last

inequality holds because

E

[
K∑
k=1

|ŝk+1 − ŝk|

]
≤ E

[
K∑
k=1

|ηkGk(ŝk)|

]
≤ A4

√
T .

due to our updating rule and the fact that Gk(ŝk) is bounded by Lemma 4.4. Finally,

invoking Lemmas 4.7 and 4.8,

E

[
K∑
k=1

(ŝk − sk)

]
≤ A5

√
T .

This completes the proof.

Proposition 4.11. The lower bound of any learning algorithm is Ω(
√
T) for T > 4.

Proof. Consider a make-to-stock system where the customers arrive as a Poisson pro-

cess with rate λ. The system production time of one product follows an exponential

distribution with rate µ. The customer is backlogged when there is no inventory. The

system incurs a holding cost of h per product per unit time and waiting cost of b per

133

customer per unit time. At the beginning, the inventory level is zero, and a policy

chooses a target stock level y such that when the system has inventory level x < y,

the facility keeps producing, and when the system inventory level reaches y, the fa-

cility stops. The expected cost over time T can be written as
∫ T

0
hx(t)+ + bx(t)+dt,

where x(t)+ is the number of positive inventory at time t and x(t)− is the number of

backorders (negative inventory) at time t.

Consider a pair of production rates, µ1 and µ2, where

µ1 =
6
√
T

3
√
T + 2

, µ2 =
6
√
T

3
√
T − 2

.

Consider h = b = 1 and λ = 1, the queue length follows the following pair of

distributions:

F a
Q(k) =



1
2

+ 1
3
√
T

for k = 0

3
4
− 1

3
√
T
− 1

9T
for k = 1

1 for k =∞

, F b
Q(k) =



1
2
− 1

3
√
T

for k = 0

3
4

+ 1
3
√
T
− 1

9T
for k = 1

1 for k =∞.

Since the optimal inventory level y∗ = min{y ≥ 0 : P(Q ≤ y) ≥ b
h+b
}, it is clear that

the optimal inventory level for F a
Q is 0 and that for F b

Q is 1 because F b
Q(1) > 1/2. We

prove that, no policy can achieve a worst-case expected regret better than Ω(
√
T).

We will use the fact that for discrete demand, we have

C(y)− C(y∗) =

T∫
0

(h+ b)

max{y∗,y}−1∑
i=min{y∗,y}

∣∣∣∣ b

b+ h
− FQ(i)

∣∣∣∣ dt.
Let π be an arbitrary policy. The worst-case expected regret under policy π is bounded

134

below as follows:

sup
F∈F


T∫

0

(
hx(t)+ + bx(t)+ − hx∗(t)+ − bx∗(t)+

)
dt


= sup

F∈{FaQ,F
b
Q}
{C(y)− C(y∗)}

≥ (b+ h)
1

6
√
T

max


T∫

0

Pπa
(
yπ >

1

2

)
,

T∫
0

Pπb
(
yπ ≤ 1

2

)
≥ (b+ h)

1

12
√
T

T∫
0

max

{
Pπa
(
yπ >

1

2

)
,Pπb

(
yπ ≤ 1

2

)}
,

By Theorem 2.2 in Tsybakov (2009), we have

max

{
Pπa
(
yπ >

1

2

)
,Pπb

(
yπ ≤ 1

2

)}
≥ 1

12
exp{−Kt−1(Pa,Pb)},

where

Kt(Pa,Pb) = Ea
[
log
Pa(Q1, · · · , Qt)

Pb(Q1, · · · , Qt)

]
is the Kullback-Leibler divergence Kullback and Leibler (1951) between the distribu-

tion of Q1, · · · , Qt under F a
Q and F b

Q, which is equal to

Kt(Pa,Pb) = t

[(
1

2
+

1

3
√
T

)
log

(
1 + 2

3
√
T

1− 2
3
√
T

)
+

(
1

2
− 1

3
√
T

)
log

(
1− 2

3
√
T

1 + 2
3
√
T

)]
.

(4.9)

By Taylor’s theorem, one can establish that for all x ∈ (0, 1/2),

2x ≤ log
1 + x

1− x
≤ 2x+ 2x2. (4.10)

Therefore, by substituting (4.10) into (4.9), we obtain Kt(Pa,Pb) ≤ 33t
8T

. Then we

have

max

{
Pπa
(
yπ >

1

2

)
,Pπb

(
yπ ≤ 1

2

)}
≥ 1

12
e−33/8,

135

which leads to

sup


T∫

0

hx(t)+ + bx(t)+ − hx∗(t)+ − bx∗(t)+

 ≥ (b+ h)
1

12
√
T

T∫
0

1

12
e−33/8

≥ 1

72
e−33/8

√
T .

Therefore, we have shown that even for this simple case, the lower bound of any

learning algorithms is Ω(
√
T).

4.5 Numerical Experiments

We conduct numerical experiments to demonstrate the efficacy of our proposed

algorithm. To the best of our knowledge, there are no existing learning algorithms

in the literature. Thus, we designed an intuitive heuristic to compare against. Our

numerical result shows that the proposed algorithm outperforms the heuristic. More-

over, the more loaded the system becomes, the greater improvement our algorithm

achieves.

4.5.1 Design of Experiments

The customer arrival process is a Poisson process with rate 1/λ = 20. The pro-

duction time is tested through different normal distributions, e.g., N(8, 52), N(10, 52),

N(12, 52), and gamma distributions with mean 14.

The holding cost for holding one product in the inventory is h = 0.2 per unit

time. The penalty cost for backlogging one customer (due to insufficient inventory)

is b = 10 per unit time. We set the time horizon to be T = 100000, and compare

the average cost of our algorithm against the average cost of the heuristic and the

optimal average cost. The initial inventory for both our algorithm and the heuristic

is set to be s0 = 0.

136

Clairvoyant Optimal Policy: The clairvoyant optimal policy is a stationary

policy. Given that the decision maker knows the distribution of the production time

and the customer arriving rate, the optimal make-to-stock level can be calculated

using simulation.

A Simple Benchmark Heuristic: The heuristic works as follows. It starts

with some arbitrary target inventory s0 (we set s0 = 0 here for convenience). The

heuristic will record the production and inter-arrival times along the process. Every

time that there is a new product finished or a new customer arrived, the heuristic

generates a new empirical distribution of the production time or the arriving rate, and

then calculate the next target level based on these empirical distributions. During

the process, the facility keeps producing whenever the target level is higher than the

current inventory level, and stays idle otherwise.

Multi-Start DMTS: The algorithm starts with some arbitrary target inventory

s0 (we also set s0 = 0). Different than the original DMTS, we assume multiple virtual

systems with different starting points s′0 = {1, 2, · · · , s̄}. Next, we will follow the steps

in DMTS to calculate Gk using realized inter-arrival and production times for every

virtual starting points and obtain multiple ŝk+1. We will pick the actual ŝk+1 to be

the one with the minimum average cost. The rest is the same as DMTS. It is evident

that the algorithm preserves the convergence result (regardless of the starting point).

4.5.2 Numerical Results and Findings

We compare our algorithm with the heuristic through three performance metrics.

The first metric is the time to achieve within 5% error within the clairvoyant optimal

cost. Note that this time is in terms of the time of the queueing system, not the com-

putational time. The second metric is the improvement of empirical convergence rate

of our algorithm over the heuristic, which is calculated as the percentage difference

of the 5% optimality convergence time between our algorithm and the heuristic. The

137

Inter-
arrival
Time

Production Time

Time to
Achieve 5%
Optimality

Gap

Improvement
in Covergence

Rate

Reduction in
Policy

Fluctuation

20 N(8, 5) 7641 1.65% -33.64%
20 N(10, 5) 7164 2.00% -13.99%
20 N(12, 5) 5891 31.00% -5.25%
20 N(14, 5) 16114 43.96% 34.55%
20 N(16, 5) 14600 50.05% 57.48%
20 N(18, 5) 17985 56.87% 68.91%

20 Gamma
(

142

32
, 32

14

)
7340 0% 30.20%

20 Gamma
(

142

52
, 52

14

)
14519 37.73% 35.26%

20 Gamma
(

142

72
, 72

14

)
7546 50.02% 32.91%

20 Gamma
(

142

92
, 92

14

)
19417 31.48% 43.30%

Table 4.2: Summary of Computational Results

third metric is the reduction in policy fluctuation of our algorithm compared with

the heuristic. The policy fluctuation here is defined to be the average change of two

consecutive target levels. Note that the higher the fluctuation is, the more difficult

it would be to implement the policy in practice. For each test case, we run both

algorithms 1000 times and take the average performance. The numerical results are

shown in Table 4.2.

The numerical results show that our algorithm achieves a better empirical con-

vergence rate. We find that the higher the system utilization factor is, the greater

the improvement our algorithm achieves. The reason can be explained by the policy

fluctuation. When the utilization factor is higher, the optimal target level calcu-

lated based on empirical distributions can be fluctuating drastically, thus making

the heuristic converge slowly to the clairvoyant optimal cost. In contrast, our algo-

rithm exhibits a much smoother trajectory. We also find that our policy, in general,

performs better when the variance of the production time is higher.

138

4.6 Concluding Remark

In this chapter, we have proposed an adaptive learning algorithm for a make-to-

stock queueing system, where both the customer arriving rate and the production time

distribution are unknown to the decision maker a priori. The algorithm is a stochastic

gradient descent type, ensuring that the policy converges to the clairvoyant optimal

policy. One key idea is that following the rules of our algorithm, one can effectively

couple the production cycles of the actual implemented system and the virtual system.

We have shown that the average T -period running cost converges to the clairvoyant

optimal cost at the rate of O(1/
√
T), which is theoretically the best possible for this

class of problems.

To close this chapter, we would like to point out several promising future research

avenues. First, one could consider a make-to-stock queue with general inter-arrival

distributions. Second, it would be interesting to see if one can incorporate setup cost

or setup time into the model and devise a provably-good learning algorithm. Third,

there are many other core queueing systems or networks, and we hope this work serves

as a gateway to this topic.

139

CHAPTER V

Conclusion

This dissertation focuses on the data-driven management of inventory and queue-

ing systems. Different than the conventional approach of first finding the best proba-

bilistic representations of uncertainties and then carrying out the stochastic optimiza-

tion, we develop a non-parametric approach focusing on the (continuous) interplay

between learning and optimization.

The three essays presented in the previous chapters study three canonical stochas-

tic systems through structured ways of trading off exploration and exploitation. They

also give insights on how to establish the theoretical convergence rates when apply-

ing a stochastic gradient descent based algorithm with added constraints on inventory

and timing. There are several promising future research directions. First, there might

be other important factors that need to be considered and incorporated, e.g., fixed

cost, seasonal and nonstationary demand, pricing decisions. Second, the methods

developed in this thesis could be applied to tackle stochastic systems with censored

data, physical constraints, and complex state transitions in other domains.

140

BIBLIOGRAPHY

141

BIBLIOGRAPHY

Ahn, H.-S., I. Duenyas, and R. Q. Zhang (1999), Optimal stochastic scheduling of
a two-stage tandem queue with parallel servers, Advances in Applied Probability,
31 (4), 1095–1117.

Ahn, H.-S., I. Duenyas, and M. E. Lewis (2002), Optimal control of a two-stage
tandem queuing system with flexible servers, Probability in the Engineering and
Informational Sciences, 16 (4), 453–469.

Angelus, A., and W. Zhu (2017), Looking upstream: Optimal policies for a class of ca-
pacitated multi-stage inventory systems, Production and Operations Management,
26 (11), 2071–2088.

Aviv, Y., and A. Federgruen (1997), Stochastic inventory models with limited pro-
duction capacity and periodically varying parameters, Probab. Engrg. Informational
Sci., 11, 107–135.

Bertsekas, D. P. (2000), Dynamic Programming and Optimal Control, 2nd ed., Athena
Scientific.

Bertsekas, D. P., and S. E. Shreve (2007), Stochastic Optimal Control: The Discrete-
Time Case, Athena Scientific.

Bertsimas, D., and I. C. Paschalidis (2001), Probabilistic service level guarantees in
make-to-stock manufacturing systems, Operations Research, 49 (1), 119–133.

Besbes, O., and A. Muharremoglu (2013), On implications of demand censoring in
the newsvendor problem, Management Science, 59 (6), 1407–1424.

Beyer, D., S. P. Sethi, and R. Sridhar (2001), Stochastic multi-product inventory
models with limited storage, Journal of Optimization Theory and Applications,
111, 553–588.

Beyer, D., S. P. Sethi, and R. Sridhar (2002), Average-cost optimality of a base-stock
policy for a multi-product inventory model with limited storage, in Decision &
Control in Management Science, Advances in Computational Management Science,
vol. 4, edited by G. Zaccour, pp. 241–260, Springer, New York, NY.

Bookbinder, J. H., and A. E. Lordahl (1989), Estimation of inventory re-order levels
using the bootstrap statistical procedure, IIE Transactions, 21 (4), 302–312.

142

Boyd, S., and L. Vandenberghe (2004), Convex Optimization, Cambridge University
Press, New York, NY, USA.

Brownlee, J. (2014), Manufacturing problems could make the iPhone 6 hard to find
at launch., online; accessed 29 October 2018.

Burnetas, A. N., and C. E. Smith (2000), Adaptive ordering and pricing for perishable
products, Operations Research, 48 (3), 436–443.

Caldentey, R., and L. M. Wein (2006), Revenue management of a make-to-stock
queue, Operations Research, 54 (5), 859–875.

Chen, B., X. Chao, and C. Shi (2015), Nonparametric algorithms for joint pricing and
inventory control with lost-sales and censored demand, Working paper, University
of Michigan, Ann Arbor, MI.

Chen, B., X. Chao, and H.-S. Ahn (2019a), Coordinating pricing and inventory re-
plenishment with nonparametric demand learning, forthcoming in Operations Re-
search.

Chen, L., and E. L. Plambeck (2008), Dynamic inventory management with learn-
ing about the demand distribution and substitution probability, Manufacturing &
Service Operations Management, 10 (2), 236–256.

Chen, W., C. Shi, and I. Duenyas (2018a), Nonparametric algorithms for stochastic
inventory systems with random capacity, Working paper, University of Michigan,
Ann Arbor, MI.

Chen, W., C. Shi, and I. Duenyas (2019b), Optimal learning algorithm for make-
to-stock queueing systems, Working paper, University of Michigan, Ann Arbor,
MI.

Chen, X., X. Gao, and Z. Pang (2018b), Preservation of structural properties in
optimization with decisions truncated by random variables and its applications,
Operations Research, 66 (2), 340–357.

Choi, J., J. J. Cao, H. E. Romeijn, J. Geunes, and S. X. Bai (2005), A stochastic multi-
item inventory model with unequal replenishment intervals and limited warehouse
capacity, IIE Transactions, 37 (12), 1129–1141.

Chu, L. Y., J. G. Shanthikumar, and Z.-J. M. Shen (2008), Solving operational statis-
tics via a bayesian analysis, Operations Research Letters, 36 (1), 110 – 116.

Ciarallo, F. W., R. Akella, and T. E. Morton (1994), A periodic review, production
planning model with uncertain capacity and uncertain demand — optimality of
extended myopic policies, Management Science, 40 (3), 320–332.

Crabill, T. B., D. Gross, and M. J. Magazine (1977), A classified bibliography of
research on optimal design and control of queues, Operations Research, 25 (2), 219–
232.

143

Duenyas, I., W. J. Hopp, and Y. Bassok (1997), Production quotas as bounds on
interplant JIT contracts, Management Science, 43 (10), 1372–1386.

Duenyas, I., D. Gupta, and T. L. Olsen (1998), Control of a single-server tandem
queueing system with setups, Operations Research, 46 (2), 218–230.

Evans, R. V. (1967), Inventory control of a multiproduct system with a limited pro-
duction resource, Naval Research Logistics, 14 (2), 173–184.

Federgruen, A., and N. Yang (2011), Procurement strategies with unreliable suppliers,
Operations research, 59 (4), 1033–1039.

Federgruen, A., and P. Zipkin (1986a), An inventory model with limited produc-
tion capacity and uncertain demands I: The average-cost criterion, Mathematics of
Operations Research, 11 (2), 193–207.

Federgruen, A., and P. Zipkin (1986b), An inventory model with limited production
capacity and uncertain demands II: The discounted-cost criterion, Mathematics of
Operations Research, 11 (2), 208–215.

Feng, Q. (2010), Integrating dynamic pricing and replenishment decisions under sup-
ply capacity uncertainty, Management Science, 56 (12), 2154–2172.

Feng, Y., and B. Xiao (2002), Optimal threshold control in discrete failure-prone
manufacturing systems, IEEE Transactions on Automatic Control, 47 (7), 1167–
1174.

Feng, Y., and H. Yan (2000), Optimal production control in a discrete manufactur-
ing system with unreliable machines and random demands, IEEE Transactions on
Automatic Control, 45 (12), 2280–2296.

Flaxman, A. D., A. T. Kalai, and H. B. McMahan (2005), Online convex optimization
in the bandit setting: Gradient descent without a gradient, in Proceedings of the
Sixteenth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA ’05, pp.
385–394.

Gavish, B., and S. C. Graves (1980), A one-product production/inventory problem
under continuous review policy, Operations Research, 28 (5), 1228–1236.

Glasserman, P. (1991), Gradient Estimation Via Perturbation Analysis, Kluwer in-
ternational series in engineering and computer science: Discrete event dynamic
systems, Springer, New York, NY.

Godfrey, G. A., and W. B. Powell (2001), An adaptive, distribution-free algorithm
for the newsvendor problem with censored demands, with applications to inventory
and distribution, Management Science, 47 (8), 1101–1112.

Güllü, R. (1998), Base stock policies for production/inventory problems with uncer-
tain capacity levels, European Journal of Operational Research, 105 (1), 43–51.

144

H. Zipkin, P. (1995), Performance analysis of a multi-item production-inventory sys-
tem under alternative policies, Management Science, 41, 690–703.

Ha, A. Y. (1997a), Inventory rationing in a make-to-stock production system with
several demand classes and lost sales, Management Science, 43 (8), 1093–1103.

Ha, A. Y. (1997b), Optimal dynamic scheduling policy for a make-to-stock production
system, Operations Research, 45 (1), 42–53.

Ha, A. Y. (2000), Stock rationing in an M/Ek/1 make-to-stock queue, Management
Science, 46 (1), 77–87.

Hazan, E. (2016), Introduction to online convex optimization, Found. Trends Optim.,
2 (3-4), 157–325.

Hazan, E., A. Kalai, S. Kale, and A. Agarwal (2006), Logarithmic regret algorithms
for online convex optimization, in In 19th COLT, pp. 499–513.

Henig, M., and Y. Gerchak (1990), The structure of periodic review policies in the
presence of random yield, Operations Research, 38 (4), 634–643.

Huh, W. H., and P. Rusmevichientong (2009), A non-parametric asymptotic analysis
of inventory planning with censored demand, Mathematics of Operations Research,
34 (1), 103–123.

Huh, W. H., P. Rusmevichientong, R. Levi, and J. Orlin (2011), Adaptive data-
driven inventory control with censored demand based on kaplan-meier estimator,
Operations Research, 59 (4), 929–941.

Huh, W. T., and M. Nagarajan (2010), Linear inflation rules for the random yield
problem: Analysis and computations, Operations research, 58 (1), 244–251.

Huh, W. T., G. Janakiraman, J. A. Muckstadt, and P. Rusmevichientong (2009), An
adaptive algorithm for finding the optimal base-stock policy in lost sales inventory
systems with censored demand, Mathematics of Operations Research, 34 (2), 397–
416.

Ignall, E., and A. F. Veinott (1969), Optimality of myopic inventory policies for
several substitute products, Management Science, 15 (5), 284–304.

Iravani, S. M. R., M. J. M. Posner, and J. A. Buzacott (1997), A two-stage tandem
queue attended by a moving server with holding and switching costs, Queueing
Systems, 26 (3-4), 203–228.

Kapuscinski, R., and S. Tayur (1998), A capacitated production-inventory model with
periodic demand, Operations Research, 46 (6), 899–911.

Kapuscinski, R., and S. Tayur (1999), Optimal policies and simulation-based opti-
mization for capacitated production inventory systems, in Quantitative Models for
Supply Chain Management, pp. 7–40, Springer, New York, NY.

145

Karlin, S. (1958), Optimal Inventory Policy for the Arrow-Harris-Marschak Dynamic
Model, Stanford University Press, Stanford, California., in K. Arrow, S. Karlin, and
H. Scarf (Eds.), Studies in the Mathematical Theory of Inventory and Production.

Kleywegt, A. J., A. Shapiro, and T. Homem-de Mello (2002), The sample average ap-
proximation method for stochastic discrete optimization, SIAM J. on Optimization,
12 (2), 479–502.

Kullback, S., and R. A. Leibler (1951), On information and sufficiency, Ann. Math.
Statist., 22 (1), 79–86.

Kunnumkal, S., and H. Topaloglu (2008), Using stochastic approximation methods
to compute optimal base-stock levels in inventory control problems, Operations
Research, 56 (3), 646–664.

Lariviere, M. A., and E. L. Porteus (1999), Stalking information: Bayesian inventory
management with unobserved lost sales, Management Science, 45 (3), 346–363.

Levi, R., R. O. Roundy, and D. B. Shmoys (2007), Provably near-optimal sampling-
based policies for stochastic inventory control models, Mathematics of Operations
Research, 32 (4), 821–839.

Levi, R., R. O. Roundy, D. B. Shmoys, and V. A. Truong (2008), Approximation
algorithms for capacitated stochastic inventory models, Operations Research, 56,
1184–1199.

Levi, R., G. Perakis, and J. Uichanco (2015), The data-driven newsvendor problem:
New bounds and insights, Operations Research, 63 (6), 1294–1306.

Li, L. (1992), The role of inventory in delivery-time competition, Management Sci-
ence, 38 (2), 182–197.

Lippman, S. A. (1975), Applying a new device in the optimization of exponential
queuing systems, Operations Research, 23 (4), 687–710.

Lippman, S. A., and S. Stidham (1977), Individual versus social optimization in
exponential congestion systems, Operations Research, 25 (2), 233–247.

Liyanage, L. H., and J. G. Shanthikumar (2005), A practical inventory control policy
using operational statistics, Operations Research Letters, 33 (4), 341 – 348.

Loulou, R. (1978), An explicit upper bound for the mean busy period in a GI/G/1
queue, Journal of Applied Probability, 15 (2), 452–455.

Maglaras, C., and S. Eren (2015), A maximum entropy joint demand estimation and
capacity control policy, Production and Operations Management, 24 (3), 438–450.

Nemirovski, A., A. Juditsky, G. Lan, and A. Shapiro (2009), Robust stochastic ap-
proximation approach to stochastic programming, SIAM J. on Optimization, 19 (4).

146

Özer, O., and W. Wei (2004), Inventory control with limited capacity and advance
demand information, Operations Research, 52 (6), 988–1000.

Powell, W., A. Ruszczyński, and H. Topaloglu (2004), Learning algorithms for sepa-
rable approximations of discrete stochastic optimization problems, Mathematics of
Operations Research, 29 (4), 814–836.

Randall, T., and D. Halford (2018), Tesla model 3 tracker, online; accessed 29 October
2018.

Roundy, R. O., and J. A. Muckstadt (2000), Heuristic computation of periodic-review
base stock inventory policies, Management Science, 46 (1), 104–109.

Schäl, M. (1993), Average optimality in dynamic programming with general state
space, Math. Oper. Res., 18 (1), 163–172.

Scott Carr, I. D. (2000), Optimal admission control and sequencing in a make-to-
stock/make-to-order production system, Operations Research, 48 (5), 709–720.

Shaked, M., and J. G. Shanthikumar (2007), Stochastic Orders, Springer Series in
Statistics, Physica-Verlag.

Shalev-Shwartz, S. (2012), Online learning and online convex optimization, Found.
Trends Mach. Learn., 4 (2), 107–194.

Shi, C., W. Chen, and I. Duenyas (2016), Nonparametric data-driven algorithms
for multiproduct inventory systems with censored demand, Operations Research,
64 (2), 362–370.

Simchi-Levi, D., X. Chen, and J. Bramel (2014), The Logic of Logistics: Theory,
Algorithms, and Applications for Logistics and Supply Chain Management, Springer
Series in Operations Research and Financial Engineering, Springer, New York, NY.

Snyder, L. V., and Z.-J. M. Shen (2011), Fundamentals of supply chain theory, John
Wiley & Sons, Hoboken, New Jersey.

Sobel, M. J. (1982), The optimality of full service policies, Operations Research, 30 (4),
636–649.

Sohail, O. (2018), Production problems might delay LCD iPhone 9 model to launch
in november - notch said to be the culprit., online; accessed 29 October 2018.

Sparks, D. (2018), Tesla model 3 production rate: 3,000 units per week, online;
accessed 29 October 2018.

Stidham, S. (1978), Socially and individually optimal control of arrivals to a GI/M/1
queue, Management Science, 24 (15), 1598–1610.

Stidham, S. (1985), Optimal control of admission to a queueing system, IEEE Trans-
actions on Automatic Control, 30 (8), 705–713.

147

Tayur, S. (1992), Computing the optimal policy for capacitated inventory models,
Stochastic Models, 9, 585–598.

Tsybakov, A. (2009), Introduction to Nonparametric Estimation, Springer-Verlag,
New York, NY.

Veatch, M. H., and L. M. Wein (1996), Scheduling a make-to-stock queue: Index
policies and hedging points, Operations Research, 44 (4), 634–647.

Veinott, A. F. (1965), Optimal policy for a multi-product, dynamic, nonstationary
inventory problem, Management Science, 12 (3), pp. 206–222.

Veinott, A. F. (1966), On the optimality of (s,S) inventory policies: new conditions
and a new proof, SIAM J. Appl. Math, 14, 1067–1083.

Wang, Y., and Y. Gerchak (1996), Periodic review production models with variable
capacity, random yield, and uncertain demand, Management science, 42 (1), 130–
137.

Wein, L. M. (1992), Dynamic scheduling of a multiclass make-to-stock queue, Oper-
ations Research, 40 (4), 724–735.

Zhang, H., X. Chao, and C. Shi (2018), Perishable inventory systems: Convexity
results for base-stock policies and learning algorithms under censored demand,
Operations Research, 66 (5), 1276–1286.

Zhang, H., X. Chao, and C. Shi (2019), Closing the gap: A learning algorithm for the
lost-sales inventory system with lead times, forthcoming in Management Science.

Zheng, Y.-S., and P. Zipkin (1990), A queueing model to analyze the value of cen-
tralized inventory information, Operations Research, 38 (2), 296–307.

Zinkevich, M. (2003), Online convex programming and generalized infinitesimal gradi-
ent ascent, in Proceedings of the 20th International Conference on Machine Learn-
ing (ICML), edited by T. Fawcett and N. Mishra, pp. 928–936, AAAI Press, Cam-
bridge, MA, USA.

Zipkin, P. (2000), Foundations of Inventory Management, McGraw-Hill, New York.

148

