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ABSTRACT

When does a Noetherian commutative ring R have uniform symbolic topologies

(USTP) on primes – read, when does there exist an integer D > 0 such that the

symbolic power P (Dr) ⊆ P r for all prime ideals P ⊆ R and all r > 0? Groundbreaking

work of Ein – Lazarsfeld – Smith, as extended by Hochster and Huneke, and by Ma

and Schwede in turn, provides a beautiful answer in the setting of finite-dimensional

excellent regular rings. Their work shows that there exists a D depending only on

the Krull dimension: in other words, the exact same D works for all regular rings as

stated of a fixed dimension.

Referring to this last observation, we say in the thesis that the class of excellent

regular rings enjoys class solidarity relative to the uniform symbolic topology prop-

erty (USTP class solidarity), a strong form of uniformity. In contrast, this thesis

shows that for certain classes of non-regular rings including rational surface singu-

larities and select normal toric rings, a uniform bound D does exist but depends

on the ring, not just its dimension. In particular, for rational double point surface

singularities over C, we show that USTP solidarity is plainly impossible.

It is natural to sleuth for analogues of the Improved Ein – Lazarsfeld – Smith

Theorem where the ring R is non-regular, or where the above ideal containments can

be improved using a linear function whose growth rate is slower. This thesis lies in

the overlap of these research directions, working with Noetherian domains.

vii



CHAPTER I

Introduction

1.1 An Invitational Sojourn to My Mathematical Playground

I will begin with two quotations. The first is attributed to the late mathematician

Sophie Germain: Algebra is nothing more than geometry in words; geometry is noth-

ing more than algebra in pictures. Indeed, many people regard algebra and geometry

to be at once antipodal yet interconnected – they often come together like siblings

in a sort of yin and yang relationship. Now onto the second quote which pairs well

with the first. While reading a MAA Book Review of Gregor Kemper’s A Course in

Commutative Algebra [45], the reviewer attributed the following perspective to the

late algebraic geometer George Kempf: Algebraic Geometry is a seesaw balancing

between two Mediterranean traditions of mathematical inquiry: the Arabic algebraic

tradition on the one hand, and the Greek geometric tradition on the other hand.

Algebraic varieties, common zero sets of systems of polynomial equations, are

the central objects of study in algebraic geometry. For instance, given a collection

A = {Fk}k∈K – possibly infinite, uncountable – of polynomials in n unknowns, either

real variables or complex variables, we might write

V(A)Rn = {p ∈ Rn : F (p) = 0,∀F ∈ A},

V(A)Cn = {p ∈ Cn : F (p) = 0,∀F ∈ A}

1
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for the real- and complex zero sets, respectively. In case a single nonconstant equation

suffices, we call the variety an algebraic hypersurface. For instance, from Day One

in undergraduate complex analysis we know that

V(x2 + 1)R = ∅, while V(x2 + 1)C = {i,−i},

where i =
√
−1 is the imaginary unit, relative to which C = {a + ib : a, b ∈ R}.

Indeed, any complex algebraic hypersurface must be a non-empty set, courtesy of

the Fundamental Theorem of Algebra. The latter result extends to a result David

Hilbert proved for complex varieties – Hilbert’s Nullstellensatz, a famed theorem

from classical algebraic geometry over algebraically closed fields like C.

That said, real algebraic hypersurfaces are often non-empty – indeed, infinite sets

when n > 1 – as illustrated by the following gallery of figures.

Figure 1.1: A gallery of real algebraic curves and surfaces.

Figure 1.1 features two curves (one-dimensional objects), and three surfaces (two-

dimensional). Herwig Hauser’s online Gallery of Algebraic Surfaces provides even

more variety in the profile pictures one can study and admire.

I work primarily in commutative algebra. One facet of commutative algebra is

the formal study of rings of polynomial functions on algebraic varieties, and their

associated modules and algebras. As exposited by David Eisenbud [17, Ch. 1], the

formal development of commutative algebra started in the 1800s, an outgrowth of

ongoing activity in algebraic geometry, algebraic number theory, and invariant theory.
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How does commutative algebra interact with and correspond to algebraic geome-

try? There are several echelons to answering this question, and the remainder of this

section offers one brush stroke answer, in part – closing with remarks on the Affine

Nullstellensatz Correspondence. We will work with real algebraic varieties for now,

abruptly incepting complex varieties later. Let R = R[X1, . . . , XN ] denote the ring

of real polynomials in N variables, viewed as functions RN → R. Given an algebraic

variety V ⊆ RN , each f ∈ R can be restricted to a function V → R. The (affine)

coordinate ring R[V ] of V consists of all functions V → R obtained by restricting

polynomials. For instance, the subsequent figure showcases a curve C = V(F )R2 and

a surface S = V(G)R3 , the zero sets of the respective polynomials below:

F (x, y) = (x2 + (y − 1.5)2 − 1/9) · (x2 + (y + 1.5)2 − 1/9)

· (x2 + y2 − 9) · (x+ 0.1(y3 − 9y));

G(x, y, z) = x6 + y6 + z6 − 1.

Figure 1.2: The curve C = {F (x, y) = 0}, and the surface S = {G(x, y, z) = 0}.

The polynomial F above defines a function F : R2 → R which vanishes on C, that is,

F : C → R is the zero function, F (p) = 0 for all points p in C.

Given V as above, this notion of vanishing functions translates to an ideal in R[V ].

There is a natural surjective ring homomorphism (Restriction to V ):

φ : R[x1, . . . , xN ] � R[V ], φ(f) = f |V : V → R.
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Setting I(V ) = kerφ = {f : f(p) = 0,∀p ∈ V }, we have a ring isomorphism

R[V ] ∼=
R[x1, . . . , xN ]

I(V )
.

For instance, R[C] ∼= R[x, y]/(F ) and R[S] ∼= R[x, y, z]/(G). Since R[V ] is isomorphic

to a quotient of a polynomial ring in finitely-many real variables, R[V ] is an affine

R-algebra, or an algebra of finite type over R. The defining ideal I(V ) of V is

always a radical ideal : that is, if fE ∈ I(V ) for some E > 0, then in fact f ∈ I(V ). In

words, the only nilpotent function in R[V ] is the zero function, where by nilpotent

function f ∈ R[V ], we mean that fE is the zero function on V for some E > 0.

Equivalently, the ring R[V ] is reduced.

Rather than sojourning into category theory to define what an equivalence of

categories is, we simply note that Nullstellensatz Correspondence is a name given to

several such equivalences which rigorously formalize the content of both Germain’s

and Kempf’s quotations from earlier. In particular, results from the general theory

of Noetherian commutative rings may be rendered to fruitful effect in geometric

parlance pertaining to algebraic varieties. The Nullstellensatz Correspondence over

C (or any algebraically closed field) implies, among other things, a series of bijective

correspondences translating between the geometry of varieties V and the algebra of

their coordinate rings C[V ] (e.g., between CN and C[x1, . . . , xN ]):

• Isomorphism classes of algebraic varieties over C are in bijection with isomor-

phism classes of reduced, affine C-algebras. Fixing one such variety or algebra,

algebraic subvarieties of a variety V are in order-reversing bijection with radical

ideals in C[V ]. In turn, irreducible algebraic subvarieties of V are in bijection

with prime ideals. In particular, the points p in V correspond to maximal ideals

mp = I(p) = {F ∈ C[V ] : F (p) = 0}.
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• One can assign a value in Z≥−1∪{∞} to any commutative ring called its (Krull)

dimension, which turns out be a finite numerical invariant for (isomorphism

classes of) reduced, affine C-algebras. In turn, one defines a notion of dimension

for (isomorphism classes of) affine algebraic varieties over C in order that the

dimension of a variety V coincides rigorously with the Krull dimension of C[V ].

To strike a contrast, there are pairs of reduced, affine R-algebras whose dimensions

disagree (hence are non-isomorphic) that correspond to the same variety up to iso-

morphism. For instance, if V = V(x2 + 1)R and W = V(1)R then V = W = ∅, but

R[V ] ∼= R[x]/(x2 + 1) ∼= C is zero dimensional while the zero ring R[W ] ∼= R[x]/(1)

has dimension -1. Pointedly, this never happens over an algebraically closed field.

We have reached the end of the invitational sojourn, the remaining sections read

more like a research seminar talk.

1.2 A Highlight Reel Backdrop to the Dissertation Problem

In this chapter, all rings are nonzero Noetherian commutative with identity.

This thesis is focused on comparing the asymptotic growth of symbolic powers of

ideals in Noetherian commutative rings, relative to regular powers. Echoing Sarah

Mayes [51, Introduction]: The asymptotic behavior of collections of algebraic objects

has been a fruitful research trend for several decades now, motivated by the philosophy

that there is often a uniformity or stability achieved in the limit that is hidden when

studying individual objects. Working with Noetherian commutative rings, this disser-

tation falls under said trend; see Huneke [39] and the survey by Huneke – Raicu [43].

We investigate two collections of ideals, namely, the regular and symbolic powers of

a fixed ideal, invoking geometric, combinatorial, or algebraic considerations.

To clarify, suppose we fix an ideal I in a Noetherian commutative ring R, say I =
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(f1, . . . , ft)R consists of all R-linear combinations of f1, . . . , ft ∈ R. For each positive

integer N , the N-th regular power IN of I consists of all R-linear combinations

of N -fold products of f1, . . . , ft. For instance, in the polynomial ring R = R[x, y] in

two real variables, if I = (x, y)R, then I2 = (x2, xy, y2)R. Meanwhile, the symbolic

powers of I are a family of ideals {I(N)} in R indexed by positive (or nonnegative)

integers N such that IN ⊆ I(N) for all N .

We wind up to a general definition in stages. If P is a prime ideal in a Noetherian

commutative ring R, its N-th (N ∈ Z>0) symbolic power

P (N) = PNRP ∩R := {r ∈ R : ur ∈ PN for some u ∈ R− P} ⊇ PN

is the unique P -primary component in any minimal primary decomposition of PN .

Indeed, P (N) is the smallest P -primary ideal containing PN . More generally, if

I = P1 ∩ · · · ∩ Pc is any radical ideal of R, expressed as a finite intersection of its

minimal primes, then the symbolic power I(N) := P
(N)
1 ∩ · · · ∩ P (N)

c .

Definition I.1 (Cf., [37, Introduction]). When I is any proper ideal of a Noetherian

commutative ring R, and AssR(R/I) is the set of associated primes of I, its N-th

symbolic power (N ≥ 0 an integer) is the following ideal:

I(N) := INW−1R ∩R, where W = R−
⋃
{P : P ∈ AssR(R/I)}.

In particular,

I(N) :=

f ∈ R : sf ∈ IN for some s 6∈
⋃

P∈AssR(R/I)

P

 .

By convention, we set I(0) = I0 = R to be the unit ideal.

Remark I.2. Note that I(1) = I since zdivR(R/I) =
⋃
P∈AssR(R/I) P is the set of all

zerodivisors modulo I. It is always true that Im ⊆ I(m) ⊆ I(r) when m ≥ r ≥ 1.

These ideal containments are strict in general, as we now illustrate.



7

Example I.3. Consider the prime ideal P = (x, y)R in R = C[x, y, z]/(y2 − xz)

which is standard graded. Then

P 3 = (x3, x2y, x2z, xyz)R $ P (3) = (x2, xy)R $ P (2) = (x)R.

The third equality can be checked directly. The second equality holds by applying

the main result of Chapter II, Lemma II.1, on divisor class groups with bounded

torsion: the divisor class group of R is isomorphic to Z/2Z.

The reader should not infer from the above example that computation of symbolic

powers is easy. Indeed, symbolic powers are difficult to understand algebraically –

it is generally hard to find generating sets for them. They are more readily intuitive

from the perspective of classical algebraic geometry in characteristic zero, intimately

tied to order of vanishing of functions via the Zariski – Nagata theorem. Working

over an algebraically closed field F of characteristic zero, suppose that S = F[X] is an

affine regular ring, that is, the coordinate ring of a smooth affine algebraic variety

X. For x ∈ X, let mx ⊆ S be the maximal ideal of regular functions that vanish at

x. If f ∈ S is a nonzero regular function vanishing at x, there is a unique e ∈ Z>0

such that f ∈ me
x \me+1

x ; we say f vanishes at x to order e, and let ordx(f) := e

denote the order of vanishing at f at x. By convention, ordx(0) =∞.

Given S = F[X] as above, we now fix a radical ideal I in S, and Z = Zeros(I) ⊆ X

the zero locus of I in X. The Zariski – Nagata theorem says the symbolic- and

differential powers of I coincide (see [17, Thm. 3.14], [18], and [59, Cor. 2.9]):

(1.1) I(N) = I〈N〉 := {f ∈ S : f ∈ mN
x for all x ∈ Z}

consists of the regular functions on X that vanish to order at least N at all points of

the zero locus of I. Working in a polynomial ring S = F[x1, . . . , xn] in characteristic
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zero, with standard monomial notation xA = xa1
1 · · ·xann with A ∈ (Z≥0)n of degree

|A| =
∑n

i=1 ai, it is often convenient to re-express identity (1.1) in terms of partial

derivatives up to a fixed order: for all N > 0,

(1.2) I(N) =
{
F ∈ S : all partials ∂|A|F

∂xA
∈ I for all A ∈ (Z≥0)n with |A| ≤ N − 1

}
.

Analogues of this Zariski – Nagata theorem have been uncovered recently, for poly-

nomial rings containing a perfect field, and for smooth Z-algebras in mixed charac-

teristic – see [13, Prop. 2.14, Exer. 2.15] and [62] for precise statements.

Now we motivate the problem that guides the thesis: Problem I.9 below. First,

The Ideal Containment Problem I.4. Given an ideal I in a Noetherian commu-

tative ring R, study the set of pairs {(N, r) ∈ (Z>0)2 : I(N) ⊆ Ir}. In particular, is it

the case that for each integer r > 0, there is an integer N > 0 such that I(N) ⊆ Ir?

Problem I.4 is plainly hard, but Irena Swanson’s theorem on linear equivalence of

ideal topologies provides a more aesthetic, linearized rendering of Problem I.4:

Theorem I.5 (cf., [63, Main Theorem 3.3]). Given an ideal I in a Noetherian com-

mutative ring R, Problem I.4 has an affirmative answer for I if and only if there is

an integer M := M(I) such that I(Mr) ⊆ Ir for all integers r > 0.

The Ideal Containment Problem I.6. Under the setup of Problem I.4, when is

there an integer M > 0 such that I(Mr) ⊆ Ir for all integers r > 0?

Thus when Problem I.4 – or equivalently, Problem I.6 – has an affirmative answer,

the topologies on R induced by the I-adic filtration and I-symbolic filtration, respec-

tively, are said to be (linearly) equivalent or cofinal; see Eisenbud [17, Ch. 5].

On the one hand, Problem I.4 can have a negative answer by example.
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Example I.7. Set R = C[x,y,z]
(xy,xz,yz)

and P = (x, y)R. Then for all N > 0, P (N) =

P 6⊆ P r for all integers r ≥ 2. As R is standard graded, the minimal degree of a

generator of PN is N , so P 6⊆ P r for any r ≥ 2. By definition, P (N) ⊆ P for all

N > 0. Conversely, P ⊆ P (N) for all N > 0 as xz = yz = 0 in R and z ∈ R− P .

On the other hand, Problem I.6 can have an affirmative answer for a family of ideals.

Example I.8 ([41, Prop. 2.4]). Problems I.4 and I.6 have an affirmative answer for:

1. All prime ideals in a complete local domain [41, Proof of Prop. 2.4].

2. All radical ideals in a normal domain of finite type over a field [41, Proof of

Prop. 2.4, first three sentences]. In particular, this covers the coordinate ring of

any normal affine algebraic variety in arbitrary characteristic.

This thesis is guided by pursuit of uniform affirmative answers for ideal families.

The Uniform Containment Problem I.9 ([13, Ch. 3]). Given a Noetherian com-

mutative ring R, and a family F of ideals in R satisfying Problem I.6, is there an

integer M := M(R,F) > 0 such that I(Mr) ⊆ Ir for all integers r > 0 and all I ∈ F?

When Problem I.9 has an affirmative answer, we say that R has uniform symbolic

topologies (USTP) on F [13, Ch. 3]. Here, uniform indicates that the exact same

multiplier M works for all members of the specified family of ideals: in Problem I.6,

the multiplier depends a priori on the ideal. Frequently, one expects F to consist of

all prime ideals in R or all radical ideals in R. We call a USTP result constructive

(or effective) if an explicit multiplier D is given, and nonconstructive otherwise.

Example I.10. A special case of Problem I.6 asks when I(N) = IN for all N . The

answer is affirmative in the following cases ([13, Ch. 4] points to some cases we omit):
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1. I is a maximal ideal. For any prime ideal P , P (N) = PN if and only if the

ideal PN is P -primary. It thus suffices to recall that any ideal whose radical is

a maximal ideal is primary [4, Lecture 18].

2. If R is Artinian, then I(N) = IN for all N and any radical ideal I. Indeed, all

prime ideals are maximal, and one can show that (symbolic) powers of distinct

maximal ideals are comaximal, so ideal intersections and ideal products coincide.

The radical ideal I is a finite product of maximal ideals I = m1 · · ·m`, and so

I(N) =
⋂̀
i=1

mN
i =

∏̀
i=1

mN
i = IN .

3. If R is a one-dimensional domain, then I(N) = IN for all N and any radical

ideal I. We may assume I is nonzero: the argument for case (2) is adaptable.

4. I is generated by a regular sequence in a Cohen-Macaulay ring; see Zariski-

Samuel [74, Lem. 5, Appendix 6]. The same can be said when I is generated

locally by a regular sequence. In particular, this holds when an ideal I ⊆ F[V ]

defines a smooth subvariety of a smooth affine algebraic variety V .

5. If R is a two-dimensional unique factorization domain (UFD), then Q(N) = QN

for all N > 0 and all radical ideals Q in R. The key observation to make

is that given comaximal ideals I, J in any Noetherian commutative ring R,

the symbolic powers I(a) and J (b) are comaximal for all a, b ∈ Z≥0, and hence

I(a) ∩ J (b) = I(a)J (b); to piece this together, one can follow the exercises on

comaximal ideals preceding the ring-theoretic Chinese Remainder Theorem in

[4, Lecture 1]. We note that Q(N) = QN for all N when all associated primes of

Q have the same height. The case Q = (0) is easy, the height two case follows

as in case (2) above. The case where all associated primes of Q have height one
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follows from Corollary II.13 of Lemma II.1. If Q = Q1 ∩Q2 in terms of radical

ideals, where all associated primes of Qi have height i, one can use comaximality

to prove that Q(N) = Q
(N)
1 Q

(N)
2 = (Q1Q2)N = QN for all N .

6. When a squarefree monomial ideal arises as the edge ideal I = I(G) of a simple

finite graph G, I(N) = IN for all N if and only if G is bipartite [23].

Remark I.11. We now indicate two senses in which an affirmative answer to Problem

I.9 could be uniform for a class of rings relative to a specified family of ideals. For

instance, we can talk about the class of all excellent regular rings, or the class of

Cohen-Macaulay, normal domains of finite type over C. We could further curate the

class by appending one or several common numerical invariants. For instance, we can

talk about all excellent regular rings of Krull dimension 3264, or all Cohen-Macaulay,

normal domains of finite type over C with Krull dimension two and Hilbert-Samuel

multiplicity two relative to an isolated singularity. Working with a class of rings

curated in said way which is an affirmative case of Problem I.9, relative to the same

family F of ideals in each ring in the class, e.g., all prime ideals:

1. The first, strong sense of uniformity holds – a USTP panacea (or class

solidarity) relative to the ideal family F and the specified invariants – if the

exact same multiplier M works for every ring of the class, and M depends only

on select numerical invariants among those indicated, and not on an individual

ring’s designated class or structure in some more nuanced, intimate way.

2. The second category of uniformity is when a USTP panacea is plainly unknown,

or decisively unattainable in deference to a clear and present obstruction to such

a multiplier M existing for all rings in the class simultaneously.

In particular, all finite-dimensional excellent regular rings enjoy a USTP panacea rel-
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ative to radical ideals and the Krull dimension – see Theorem I.18. In stark contrast,

almost every class of non-regular rings known to satisfy some version of Problem I.9

in the literature currently falls short of a USTP panacea; see Corollary I.27 for a

noteworthy exception. This observation on non-regular rings inspires Question I.34

below, which we confront in Chapter II of the thesis.

Before proceeding, we record a key concept going forward.

Definition I.12. We say that a sequence {Ji}i∈Z>0 of ideals in a Noetherian com-

mutative ring R is graded if Ja · Jb ⊆ Ja+b for all a, b ≥ 1.

If I is an ideal in a Noetherian commutative ring R, its regular powers {IN} and

its symbolic powers {I(N)} each form a graded sequence of ideals. As discussed in

papers such as [13, 14, 16, 37, 40, 41, 47, 50, 51], we articulate a heuristic:

Observation I.13. Asymptotic stability or uniformity in the comparative anatomy

and behaviors of two graded sequences, like {IN} and {I(N)}, may be influenced by –

and may carry – algebraic, combinatorial, or geometric information. The same may

often be said for auxiliary invariant objects associated to a graded sequence of ideals.

The cases recorded under Example I.10 are already indicative of this heuristic.

1.2.1 From Ein – Lazarsfeld – Smith to Non-Regular Rings and Finite

Extensions

We now illustrate Observation I.13 with weightier affirmative results on Problem

I.9. The most celebrated answer in this vein is the Ein – Lazarsfeld – Smith Theorem.

We now rehearse a few iterations in formulating this vexillary result.

We call an ideal I in a Noetherian commutative ring R unmixed if it has no

embedded primes, and moreover pure of height h if all associated primes have
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height h. Ein, Lazarsfeld, and Smith proved that for any unmixed ideal I in a

C-affine regular ring C[V ] – the coordinate ring of a smooth affine variety V over C,

(1.3) I(hr) ⊆ Ir for all r > 0,

where h is the maximal height of an associated prime of I, cf., [16, Thm. 2.2]. To

prove this, they developed an asymptotic multiplier ideal theory for graded systems

of ideals in R, availing tools of the trade in modern birational algebraic geometry

such as log resolution morphisms and vanishing theorems. They leverage properties

of this nascent theory – such as subadditivity – relative to the graded systems {IN}

and {I(N)} in case I is radical, extending to unmixed ideals as a brief follow-up

discussion. See also Hara [29]. This groundbreaking result was quite striking back

in 2000 (see [16, Introduction]): the simplicity and stability of the linear bound in

(1.3) ran contrary to what algebraic geometers would expect heuristically as the

singularities of the zero locus of I become nastier.

In 2001, Hochster and Huneke deduced (1.3) for all ideals I in a regular ring R

containing a field [37, Thm. 1.1], the first conclusion stated in the following theorem:

Theorem I.14 ([37, Thm. 1.1]). Let R be a Noetherian ring containing a field. Let

I be an ideal of R and h be the largest height of an associated prime of I.

1. If R is regular, then I(hr+kr) ⊆ (I(k+1))r for all integers k ≥ 0 and r ≥ 1.

2. If I has finite projective dimension, then I(hr) ⊆ (Ir)∗ for all r ≥ 1, where J∗ is

the tight closure of an ideal J in R.

They first prove their result in positive characteristic using tight closure methods

and recover the characteristic zero version by reduction to positive characteristic.

Remark I.15. In Theorem I.14(2), suppose the ring R is of prime characteristic and

weakly F -regular, meaning J∗ = J for all ideals J in R. Then we get (1.3) for
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all ideals I in R of finite projective dimension. It follows that finite-dimensional

weakly F -regular rings enjoy USTP solidarity as in Remark I.11(1), relative to ideals

of finite projective dimension and Krull dimension.

Remark I.16. The papers Hara [29], Hochster – Huneke [38], Takagi – Yoshida [65],

and Johnson [44] follow in the footsteps of [37], extending what is known about the

behavior of symbolic powers in Noetherian regular rings containing a field.

In 2017, Ma and Schwede deduced (1.3) for all radical ideals I in any excellent

regular ring R even in mixed characteristic:

Theorem I.17 ([48, Thm. 7.4]). If R is any Noetherian regular ring with reduced

fibers (e.g., any excellent regular ring), I is a radical ideal in R, and h is the maximal

height of an associated prime of I, then I(hr) ⊆ Ir for all r > 0.

As summarized in [48, Introduction], Ma and Schwede emulate the line of attack

first appearing in [16] and in [29], which we noted earlier. In passing, we record

the following version of the improved Ein – Lazarsfeld – Smith Theorem, a vexillary

USTP panacea:

Theorem I.18 ([16, Thm. 2.2], [37, Thm. 1.1], [48, Thm. 7.4]). If R is a d-

dimensional excellent regular ring and D = max{1, d − 1}, then Q(Dr) ⊆ Qr for

all radical ideals Q ⊆ R and all r > 0.

Remark I.19. The improved Ein – Lazarsfeld – Smith Theorem I.18 gives a bound

D depending only on the Krull dimension. Thus the same D works for all excellent

regular rings of dimension 3264, say, namely D = 3263. It turns out that it is

too much to hope for in general that a uniform bound depending only on the Krull

dimension might hold. We show in Chapter II, for example, that there are nice classes

of two-dimensional normal domains which require an arbitrarily large multiplier D.
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The Ein – Lazarsfeld – Smith theorem, as extended to Theorem I.14 by Hochster

and Huneke, inspired two directions of follow-up work. One direction as spearheaded

by Huneke – Katz – Validashti [40, 41] considers non-regular rings and finite exten-

sions of domains. The other direction as spearheaded by Brian Harbourne concerns

when given homogeneous ideals in a standard graded polynomial ring we can improve

the containments I(Dr) ⊆ Ir via a linear function whose growth rate is slower. We

consider the first direction for now, and backtrack to discuss the second direction

after posing Questions I.34 and I.35 below.

We now cover six USTP results by other mathematicians, representing the state-

of-the-art for non-regular rings. In 2009, Huneke – Katz – Validashti [40] deduced the

following USTP theorem via non-constructive methods for a large class of isolated

singularities (see also [40, Thm. 1.2, Thm. 3.5]).

Theorem I.20 ([40, Cor. 3.10]). Let R be an equicharacteristic Noetherian local

domain such that R is an isolated singularity. Assume that either:

1. The ring R is essentially of finite type over a field of characteristic zero; or

2. The ring R has positive characteristic, is F -finite and analytically irreducible.

Then there exists an E := E(R) ≥ 1 depending on R such that P (Er) ⊆ P r for all

r > 0 and all prime ideals P in R.

The above theorem is a far cry from a USTP panacea – indeed, for good reason.

Remark I.21. Suppose that R is the coordinate ring of an affine variety over any

perfect field F, whose singular locus is zero dimensional. When paired with Theorem

I.14, Theorem I.20 yields a uniform bound E for all primes in R. In particular, this

covers rings such as F[x, y, z]/(y2 − xz), F[x, y, z, w]/(xy − zw), and more generally

when R corresponds to the affine cone over any smooth projective variety.
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In 2013, Hochster’s doctoral student Ajinkya A. More obtained the following

result, where the USTP property descends along a finite extension of domains.

Theorem I.22 ([53, Thm. 4.4, Cor. 4.5]). Suppose R ⊆ S is a finite extension of

equicharacteristic normal domains such that: (1) S is a regular ring generated as an

R-module by n elements, and n! is invertible in S; and (2) R is either essentially

of finite type over an excellent Noetherian local ring (or over Z), or is of prime

characteristic p > 0 and F -finite. Then there exists an E := E(R) ≥ 1 depending

on the ring R such that P (Er) ⊆ P r for all r > 0 and all prime ideals P in R.

The next theorem, due to Huneke – Katz – Validashti [41] in 2015, improves upon

More’s USTP descent theorem. But first, in step with [13, Ch. 3] we record a

Hypothesis I.23 ([13, Hypothesis 3.1]). We consider a Noetherian reduced ring A

satisfying one of the following conditions:

1. A is essentially of finite type over Z or over an excellent ring containing a field;

2. A is of positive characteristic and is F -finite;

3. A is an excellent Noetherian ring which is the homomorphic image of a regular

ring of finite Krull dimension such that for all primes P , A/P has a resolution

of singularities obtained by blowing up an ideal.

Theorem I.24 ([13, Thm. 3.25], [41, Cor. 3.4]). Let R ⊆ S be a finite extension of

domains, with R normal, such that both R and S satisfy Hypothesis I.23. If S has

USTP on primes, then so does R.

Remark I.25. As noted in [41, Introduction], Huneke – Katz – Validashti ask whether

a complete local domain has uniform symbolic topologies on primes. Any complete

local domain is a finite extension of a regular local ring, and thus they were actually
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interested in the extent to which the USTP property on prime ideals ascends along

finite extensions of domains. In particular, an ascent version of the previous theorem

would imply that complete local domains have USTP on primes. However, USTP

ascent is trickier; see [41, Sec. 4] for the only known ascent results.

In 2017, Dao – De Stefani – Grifo – Huneke – Núñez-Betancourt proved the

following two results, special cases of Theorem I.24 which give effective bounds.

Theorem I.26 ([13, Thm. 3.29]). Fix a polynomial ring S = K[x1, . . . , xs] over a

field K, R ⊆ S a direct summand. Suppose that S is finitely generated as an R-

module. Let P ⊆ R be a prime ideal of height h. Let e = [S : R], i.e., the degree of

the fraction field of S over the fraction field of R. If e! is invertible in R, then

P (her) ⊆ P r for all r ≥ 1.

Corollary I.27 ([13, Cor. 3.30]). With notation as in Theorem I.26, fix G a finite

group that acts on S. Let R = SG be the ring of invariants. Let P ⊆ R be a prime

ideal of height h. Set e = [S : R] = #G. If e! is invertible in K, then

P (her) ⊆ P r for all r ≥ 1.

In 2018 joint work, Carvajal-Rojas – Smolkin [11] have specified a class of F -

regular rings called diagonally F -regular rings that are engineered to satisfy

USTP emulating the proof strategy of [16] and Hara [29]. They deduce:

Theorem I.28 (Carvajal-Rojas – Smolkin [11, cf. Thm. 4.1]). Fix an arbitrary

field F of positive characteristic. If R is a diagonally F -regular F-algebra essentially

of finite type, then R satisfies USTP on primes using the Ein – Lazarsfeld – Smith

multiplier D = max{1, dimR− 1}.
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Theorem I.29 (Carvajal-Rojas – Smolkin [11, cf. Thm. 5.6, Cor. 5.7]). Fix a

perfect field F of positive characteristic. Given positive integers r and s, the affine

cone over PrF × PsF satisfies USTP on primes using the Ein – Lazarsfeld – Smith

multiplier D = r + s.

Theorem I.30 (Carvajal-Rojas – Smolkin [11, cf. Prop. 5.5]). Suppose R and S

are diagonally F -regular algebras over an arbitrary field F of positive characteristic.

Then R⊗F S is also diagonally F -regular.

Remark I.31. As a consequence of Theorem I.29 we get that the hypersurface ring

R = F[P1 × P1] = F[x, y, z, w]/(xy − zw) has USTP on primes with D = 2. This

addresses a decade’s worth of fixation in the wake of Theorem I.20 – and frustration.

Remark I.32. As [11, Sec. 6] and [26, Sec. 5] illustrate, one heuristic advantage of

working in positive characteristic is that a result one deduces frequently admits a

nigh-verbatim analogue in characteristic zero, and the latter follows immediately

through standard techniques grouped under reduction to positive characteristic. In

particular, Theorem I.28 admits a characteristic zero analogue for algebras of dense

diagonally F -regular type [11, Thm. 6.1].

Remark I.33. More recently, Page – Smolkin – Tucker [56] build upon the work in [11]

in the setting of Hibi Rings, a class of normal toric rings associated to finite posets.

More precisely, they determine a subclass of Hibi Rings that in fact have diagonally

F -regular singularities relative to a stipulation on the underlying poset structure – a

subclass under which the Segre products in Theorem I.29 fall as members vacuously.

We have covered six USTP results on non-regular rings. Prior to this thesis work,

Remarks I.21 and I.31 are indicative that almost all examples and constructions ap-

plying these six results in the literature pertain to rings with isolated singularities.
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In this thesis, we offer results and examples that represent first steps towards ad-

dressing the following questions. The first question is a follow-up to Remarks I.11

and I.19. The second is addressed both below and recently by [11, Cor. 5.9] and [56].

Question I.34. Suppose that R belongs to a class of non-regular rings of dimension

d with uniform symbolic topologies on primes. Is there a bound E := E(d) depending

only on d such that P (Er) ⊆ P r for all r > 0 and all primes P ⊆ R?

Question I.35. What can be said in the direction of witnessing uniform symbolic

topologies in rings with non-isolated singularities?

1.2.2 Harbourne – Huneke Symbolic Indices

Referring back to the Ein – Lazarsfeld – Smith Theorem, we fix a polynomial

algebra R = F[PN ] = F[x0, . . . , xN ] standard graded over a field F. Then

I(Nr) ⊆ Ir

for all r > 0 and all graded ideals I ⊆ R. Bocci – Harbourne showed that these

containments cannot be improved asymptotically, replacing N in the symbolic power

with a uniform 0 < c < N that works for all r � 0 ([9, Thm. 2.4.3], [64, Prop. 3.2]).

In this sense, the multiplier N is understood to be asymptotically optimal.

When N = r = 2, we obtain the containment I(4) ⊆ I2 for all graded ideals I in

F[P2]. This observation spurred Craig Huneke to ask if the containment improves

to I(3) ⊆ I2 in case I is a radical ideal defining a finite set of points in P2. More

generally, one could ask the following

Question I.36 (Dropping the symbolic power by a constant). When N ≥ 2, is

I(Nr−c) ⊆ Ir for all r > 0, all graded I ⊆ F[PN ], and some uniform constant c > 0?

In particular, Harbourne asked whether c = N − 1 will work:
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Question I.37 (Harbourne [6, Conj. 8.4.2], [30, Conj. 4.1]). When N ≥ 2, is

I(N(r−1)+1) ⊆ Ir

for all r > 0 and all graded I ⊆ F[PN ]?

An affirmative answer to the latter question would imply an affirmative answer

to Huneke’s question on the I(3) ⊆ I2 containment. We call the index N(r − 1) + 1

a Harbourne – Huneke bound. All known affirmative results in the direction of

uncovering these bounds are consolidated in the ideal containment problem survey

preprint [64, Thm. 3.8] by Szemberg – Szpond. In particular, over any field F,

I(N(r−1)+1) ⊆ Ir

for all r > 0 and all monomial ideals I ⊆ F[PN ] [6, Ex. 8.4.5]. In the case of radical

monomial ideals, recent work of Gŕıfo – Huneke [26] generalizes this result along with

work by Takagi – Yoshida [65]. See also Gŕıfo [27] for exciting recent developments.

However, negative results are known in both zero and odd positive characteristic,

and we invite the reader to look into [2, 3, 15, 31, 64] for details. In passing, we

record the following example, which in fact answers Huneke’s question negatively.

Example I.38 (Dumnicki – Szemberg – Tutaj-Gasińska [15, Thm. 2.2]). The height

two radical ideal below satisfies I(3) 6⊆ I2:

I = (x0(x3
1 − x3

2), x1(x3
0 − x3

2), x2(x3
0 − x3

1)) ⊆ R = C[P2] = C[x0, x1, x2].

1.3 Thesis Outline: Main Results, Applications, General Conventions

This thesis consolidates results from four papers ([68, 69, 70, 71]), results that sup-

port Huneke’s philosophy in [39] that there are uniform bounds lurking in Noetherian

rings. First, we deduce in Chapter II the following result:



21

Theorem I.39 (Cf., Theorem II.1). Let R be a Noetherian normal domain whose

global divisor class group Cl(R) := Cl(Spec(R)) is annihilated by an integer D > 0.

Then

q(D(r−1)+s) = (q(D))r−1q(s), and q(D(r−1)+1) ⊆ qr,

for all prime ideals q ⊆ R of height one, all r > 0, and all 0 ≤ s < D.

At the end of Chapter II, we apply Theorem I.39 to conclude that the answer to Ques-

tion I.34 is no. Indeed, all rational surface singularities have Krull dimension two

and finite divisor class group. Applying Theorem I.39, all rational surface singulari-

ties have uniform symbolic topologies on primes. One might then ask whether there

exists a common bound B in terms of the Krull dimension – a USTP panacea. How-

ever, we show that the optimal bound B for obtaining the containments P (Br) ⊆ P r

does depend on the ring, and in particular, can be arbitrarily large; see Remark II.17.

In fact, we identify a sharp effective B by inspecting the divisor class group – this is

the content of the final column of Table 2.1 in Subsection 2.4.

As for Question I.35, I provide quid pro quo USTP results that are essentially

constructive: I record a formula for D at the cost of focusing on a prescribed family

of prime ideals inside of a class of rings with a prescribed structure. Theorem I.39

illustrates this theme, pairing well with key results in each of Chapters III and IV.

In Chapter III, we focus on the coordinate rings of normal affine toric varieties.

Such algebras are combinatorially-defined, finitely generated, Cohen-Macaulay, nor-

mal, and have rational singularities when working in characteristic zero. To illustrate

the main results of Chapter III, we record Theorems I.40 and I.41 below.

Adopting notation in toric algebra [12], we fix a convex rational polyhedral cone

C ⊆ Rn which is the R≥0-linear span of a finite set G ⊆ Zn; without loss of generality,

we may assume that each v ∈ G is primitive, so the coordinates of v have gcd one.
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The convex polyhedral cone dual to C is also rational

C∨ := {w ∈ Rn : w • v ≥ 0 for all v ∈ C} (where • denotes the dot product).

We further assume that C is both full and pointed so, respectively, the R-span of C

is Rn and C contains no line through the origin. In this case, there are uniquely-

determined sets of irredundant primitive generators for C and for C∨. The lattice

points of C∨ form a semigroup under vector addition, SC := C∨∩Zn, in which every

vector in SC is a Z≥0-linear combination over some finite subset A ⊆ SC . Working

over an arbitrary field F, the semigroup ring RF = F[C∨ ∩ Zn] is called the toric

F-algebra associated to C; it is always a normal domain of finite type over F [12,

Thm. 1.3.5]. The algebra RF has an F-basis of monomials {χM : M ∈ C∨ ∩Zn}, and

an ideal of RF is monomial (or torus-invariant) if it is generated by monomials.

The following results originally appeared as [70, Thm. 1.1, Thm. 1.2]. First,

Theorem I.40 (Cf., Theorem III.1). Suppose C ⊆ Rn is a full-dimensional pointed

polyhedral cone as above. Set D := maxw∈B (w • vG) ∈ Z>0, where B is a generating

set for the semigroup C∨∩Zn and vG ∈ Zn is the sum of any (finite) set G of vectors

in Zn generating C. Then

P (Dr) ⊆ P (D(r−1)+1) ⊆ P r,

for all r > 0 and all monomial prime ideals P in the toric ring RF = F[C∨ ∩ Zn].

We get the best result in Theorem I.40 by taking G to consist of the unique set of

primitive generators for C, in which case we write vC in place of vG; see Section 3.3.

The next result covers select non-monomial primes in a simplicial toric algebra.

Theorem I.41 (Cf., Theorem III.2). With notation as in Theorem I.40, assume

moreover that the divisor class group Cl(RF) is finite; that is, RF is a simplical toric
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algebra. Set U := lcm{maxw∈B(w • vC),# Cl(RF)} ∈ Z>0, where B and vC are as in

Theorem I.40. Then P (U(r−1)+1) ⊆ P r for all r > 0, all monomial primes in RF, and

all height one primes in RF.

We draw connections between the multiplier U and the so-called F-signature of RF

in Section 3.4. We then discuss the extent to which the multipliers D and U in

Theorems I.40 and I.41 are sharp, deferring to examples consolidated in Section 3.5.

Along the way to deducing Theorems I.40 and I.41, we confronted various issues

related to studying Problem I.6 even in the non-toric case. One such issue concerns

how the USTP property interacts with faithfully flat ring extensions, analogous to

the Huneke – Katz – Validashti USTP Descent Theorem I.24.

Remark I.42. The following is presented in Grifo – Huneke [26, Rem. 6]. Suppose

that ϕ : A → B is a faithfully flat map of Noetherian rings. Suppose that P is a

prime ideal in A, and that the ideal Q = PB := 〈ϕ(P )〉B. Then a containment

Q(a) ⊆ Qb =⇒ P (a) ⊆ P b.

By flatness, Q ∩ A = P , and nonzerodivisors in A/P remain nonzerodivisors in

B/Q = A/P ⊗A B. Thus P (a) ⊆ Q(a) ∩ A ⊆ Qb ∩ A = P b. So again we see that

in efforts to preserve uniform symbolic topologies along a ring extension – whether

finite or faithfully flat, going down is easier than going up; Melvin Hochster usually

indicates the opposite when discussing the Going Up and Going Down Theorems for

Integral Extensions in the Math 614 Commutative Algebra class at UM-Ann Arbor.

We deduce a result, Proposition IV.6, which implies that if the ideal Q in Remark

I.42 is prime, then the implication above improves to an if-and-only-if statement.

This proves to be handy in deducing the main result of Chapter IV, the following

theorem (Cf., Theorem IV.1).
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Theorem I.43. Let F be an algebraically closed field. Let R1, . . . , Rn (n ≥ 2) be

domains, finitely generated as F-algebras. Suppose that for each 1 ≤ i ≤ n, there

exists a positive integer Di such that for all prime ideals P in Ri, either:

1. P (Dir) ⊆ P r for all r > 0 and for all i; or, even stronger,

2. P (Di(r−1)+1) ⊆ P r for all r > 0 and for all i.

Fix any n prime ideals Pi in Ri, and consider the expanded ideals P ′i = PiT in the

domain T = (
⊗

F)ni=1Ri, along with their sum Q =
∑n

i=1 P
′
i in T . Then:

(a) When (1) holds, Q(Dr) ⊆ Qr for all r > 0, where D = D1 + · · ·+Dn.

(b) When (2) holds, this improves to Q(D(r−1)+1) ⊆ Qr for all r > 0, where instead

D = max{D1, . . . , Dn}.

The proof of this theorem leverages a multinomial formula for the symbolic powers of

the prime ideal Q in T (Theorem IV.11). Hà – Nguyen – Trung – Trung announced

in 2017 a binomial theorem for symbolic powers of ideal sums [28, Thm. 3.4], gen-

eralizing [8, Thm. 7.8], where one takes two arbitrary ideals I ⊆ A, J ⊆ B inside of

two Noetherian commutative algebras over a common field k, whose tensor product

R = A⊗k B is Noetherian; see Remark IV.17 for details. However, we give a proof

of the Multinomial Theorem IV.11 which is more elementary and self-contained.

What is the intended mode of application for Theorem I.43? Referring back to

Remark I.21, note that the class of rings R to which Theorems I.20, I.22, I.24, and

I.26 apply is large. Applying Theorem IV.1 to any collection of two or more rings

under Remark I.21, Remark IV.16 says that we can create an infinite set of primes

– namely, the set QED(T ) below – as a vantage point for data suggestive of uniform

symbolic topologies in the corresponding tensor product domain T . Pointedly, since

the domain we create has non-isolated singularities, prior to [11, Cor. 5.9] no theorem
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in the literature affirmed that the domain has uniform symbolic topologies on all

primes. We illustrate how these matters occur together in Example I.44 below.

But first, we fix an algebraically closed field F. If R is a domain, finitely generated

as an F-algebra, we use the tensor power notation T = R⊗N = (
⊗

F)Ni=1Ri to denote

the domain obtained by tensoring together N copies of R over F. Leasing notation

from Remark IV.16, we record the following set of multinomial prime ideals in T :

QED(T ) :=

{
Q =

N∑
i=1

PiT ∈ Spec(T ) : each Pi ∈ Spec(Ri)

}
.

Example I.44. Fix an algebraically closed field F. Given integers a and d both at

least two, consider an affine hypersurface domain R = F[z1, . . . , za]/(Fd) where Fd

is an irreducible homogeneous polynomial of degree d, with isolated singularity at the

origin. Consider the varieties VR = Spec(R) ⊆ Fa and V = Spec(T ) ⊆ FaN where

T = R⊗N =
F[zi,1, . . . , zi,a : 1 ≤ i ≤ N ]

(Fd(zi,1, . . . , zi,a) : 1 ≤ i ≤ N)
.

Per Remark I.21, Theorem IV.1 implies that Q(NE·r) ⊆ Qr for all r > 0 and all

primes Q ∈ QED(T ). In terms of n-factor Cartesian products, the singular locus

Sing(V ) = ({0}×VR×· · ·×VR)∪(VR×{0}×VR×· · ·×VR)∪· · ·∪(VR×· · ·×VR×{0})

is equidimensional of dimension (a − 1)(N − 1). In particular, while T is not an

isolated singularity when N ≥ 2, the set QED(T ) is infinite by Remark IV.16 and

provides a vantage point for witnessing uniform linear multipliers.

Chapter V closes the thesis, consolidating a few prospects for follow-up work. In

particular, we focus on some immediate – and frustratingly open – questions that

linger in the wake of our results in the toric setting. We close by mentioning one

avenue for formal inquiry into extending our results on uniform symbolic topologies

to cover all prime ideals in a simplicial toric algebra. This concludes our outline.
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Before proceeding to Chapter II, we record ongoing conventions for the thesis,

consolidating those from the four papers ([68, 69, 70, 71]) in a list below.

Conventions I.45. All rings considered in this thesis are commutative with identity.

Except when stated otherwise, all of our rings R will be Noetherian domains.

1. In Chapters II and III, R will typically be a normal domain as well. In these

two chapters, when we say R is (N-)graded, we mean that R =
⊕

d≥0Rd is

graded by the set N = Z≥0 of nonnegative integers, with R0 being a field, and

m =
⊕

d>0Rd the unique homogeneous maximal ideal.

2. In Chapter IV, our rings will typically be affine F-algebras, that is, of finite

type over a fixed field F of arbitrary characteristic. By algebraic variety over

F, we will mean an integral scheme of finite type over the field F.

3. Throughout, F denotes by default an arbitrary ground field of arbitrary charac-

teristic.



CHAPTER II

Sharp Bounds for Domains with Finite Divisor Class Groups

This chapter consolidates the relevant material in our papers [68] and [69]. The

following theorem, the main result of this chapter, allows us to produce effective

bounds for uniform symbolic topologies:

Theorem II.1. Let R be a Noetherian normal domain whose global divisor class

group Cl(R) := Cl(Spec(R)) is annihilated by an integer D > 0. Then

q(D(r−1)+s) = (q(D))r−1q(s), and q(D(r−1)+1) ⊆ qr,

for all ideals q ⊆ R of pure height one, all r > 0, and all 0 ≤ s < D.

In particular, when R in Theorem II.1 has Krull dimension two, it satisfies the

uniform symbolic topology property on prime ideals, since height one primes are the

only nontrivial class to check in this instance.

In Section 2.4, our endgame is to apply Theorem II.1 to answer Question I.34 in

the negative: even if a class of d-dimensional non-regular rings R satisfies uniform

symbolic topologies on primes, there need not be a multiplier M := M(d) depending

only on the Krull dimension d such that P (Mr) ⊆ P r for all r > 0 and all primes P

in R. We show that the answer is no, even restricted to rationally singular surfaces,

or better still, rings of invariants of finite groups acting on C2.

The reader is invited to revisit the list of Conventions I.45 as appropriate.

27
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2.1 Preliminaries on Divisor Class Groups

Our main references are Fossum [20], Hartshorne [32, II.6], Hochster [36], and

Matsumura [49, Ch. 11]. However, we opt to state mathematical definitions and

results from these sources only for Noetherian normal domains, rather than for Krull

domains in general as is done in [20] and [49].

Throughout, R will denote a Noetherian normal domain. Let P denote the set

of height-one primes in R. As noted in Matsumura’s chapter on Krull rings ([49,

Corollary of Thm. 12.3]), when f ∈ R is a nonzero nonunit, and νP is the discrete

valuation on the DVR RP (for P ∈ P), we have a unique primary decomposition

(f)R =
⋂
P∈P

P (NP ), where NP := νP (f) = 0 for all but finitely many P.

We define the Weil divisor of f to be div(f) :=
∑

P∈P NP · P . Additionally, we

define the trivial effective Weil divisor div(〈1〉R) = div(R) = [R] := 0 of the unit

ideal to have identically zero Z-coefficients.

Definition II.2. The divisor class group of a Noetherian normal domain R,

Cl(R) = Cl(Spec(R)),

is the free abelian group on the set P of height one prime ideals of R modulo relations

a1P1 + · · ·+ arPr = 0,

whenever the ideal P
(a1)
1 ∩ . . . ∩ P (ar)

r is principal.

In particular, Cl(R) is trivial if and only if R is a UFD [32, II.6]. Both conditions

mean that every height one prime ideal in R is principal. By the next lemma, this

latter assertion is equivalent to all symbolic powers of a height one prime ideal P ⊆ R

being principal, so P (a) = P a for all a > 0 and all height one primes P in a UFD.
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Lemma II.3. If S is an arbitrary Noetherian ring, and P = (f) is prime with f

being a nonzerodivisor in S, then P (a) = (fa) for all a > 0.

Proof. Induce on a with base case a = 1. Assuming the statement for some a ≥ 1,

take x ∈ P (a+1). Since x ∈ P (a+1) ⊆ P (a) = (fa), x = fay for some y. By the choice

of x, there is s 6∈ P with sx = sfay ∈ P a+1 = (fa+1). Since f is a nonzerodivisor,

sy ∈ (f) = P , which is prime. Therefore, y ∈ P = (f), and x ∈ (fa+1).

We now record three theorems without formal proof, consolidating some results

from Ch.II, Sections 7, 8, and 10 of Fossum [20]. The first result consolidates some

immediate consequences of a fact called Nagata’s theorem [20, Thm. 7.1].

Theorem II.4 (cf., Fossum [20, Cor. 7.2, Cor. 7.3]). Let S be a multiplicatively

closed subset of a Noetherian normal domain A. Then:

1. The natural map Cl(A) → Cl(S−1A) is a surjection of abelian groups. The

kernel is generated by the classes of the height one prime ideals which meet S.

2. If S is generated by prime elements of A, then Cl(A) → Cl(S−1A) is an iso-

morphism of abelian groups.

The next two results will allow us to streamline class group computations in Chap-

ter III to a particularly nice setup where we have an incisive handle on computing

class groups up to isomorphism.

Theorem II.5 (cf., Fossum [20, Thm. 8.1, Cor. 8.2]). Working with polynomial

extensions of a Noetherian normal domain A, we have isomorphisms for any n ∈ Z>0:

Cl(A) ∼= Cl(A[X1, . . . , Xn]) ∼= Cl(A[X±1
1 , . . . , X±1

n ]).

Proof Sketch. One can induce on n with base case n = 1. Assuming n = 1, the

left-hand isomorphism is the content of Fossum [20, Thm. 8.1]. For the right-hand
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isomorphism, apply Theorem II.4(2) to the polynomial ring B = A[X] and the

multiplicatively closed set S ⊆ B generated by the prime element X ∈ B, so S−1B =

A[X±1] is a Laurent polynomial ring in one variable over A.

Theorem II.6 (cf., Fossum [20, Cor. 10.3, Cor. 10.7]). Suppose A = ⊕∞n=0Ai is

an N-graded Noetherian normal domain where A0 = F is a field, with homogeneous

maximal ideal m = ⊕∞n=1Ai. Then:

1. We have an isomorphism Cl(A) ∼= Cl(Am).

2. Suppose that F′ is any field extension of A0 = F, and that A′ := A ⊗F F′ is a

Noetherian normal domain. Then A′ is faithfully flat over A and the induced

homomorphism Cl(A)→ Cl(A′) is injective.

2.2 Annihilation of Divisor Class Groups

We now assume that R is a Noetherian normal ring, meaning that the local ring

Rp is a normal domain for all primes p in R. In particular, R is reduced.

Definition II.7. Given a Noetherian normal ring R, the affine scheme X = Spec(R)

is locally factorial if Rp is a UFD for all prime ideals p ⊆ R. Equivalently, the

local class group Cl(Rp) = 0 is trivial for all primes p ⊆ R.

Definition II.8. A Noetherian normal ring R is (locally) uniformly annihilated

if there exists an integer (multiplier) D > 0 such that any of the following equivalent

conditions will hold:

1. D · Cl(Rp) = 0 for all prime ideals p ⊆ R. More precisely, P (D)Rp = (PRp)
(D)

is principal for all height one primes P ⊆ p.

2. D · Cl(Rm) = 0 for all maximal ideals m ⊆ R.
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3. The annihilator ideal AnnZ(Cl(Rp)) ⊇ DZ for all prime ideals p ⊆ R.

Notice that (2) implies (1) since principal ideals remain principal when we extend

along the ring map Rm → Rp. Note that since one can take D = 1 at locally factorial

points of Spec(R), it suffices to compute D at maximal ideals m ⊆ R such that Rm

is not a UFD. In language more familiar to algebraic geometers, D annihilates the

local class group Clloc(X) := Cl(X)/Pic(X) of X = Spec(R).

Remark II.9. A Noetherian normal domain R is uniformly annihilated when the

annihilator ideal AnnZ(Cl(R)) 6= 0 (e.g., if Cl(R) is finite). However, the smallest

local uniform multiplier need not annihilate Cl(R) globally. For example, if the

Dedekind domain R = Z[
√
−5], then Cl(R) ∼= Z/2Z. However, any Dedekind domain

R is locally factorial, so D = 1 is the optimal local uniform multiplier.

Remark II.10. If R as in Remark II.9 is local, then the smallest uniform multiplier

would generate AnnZ(Cl(R)). When R is N-graded over a field with unique graded

maximal ideal m, Cl(R) ∼= Cl(Rm) by Theorem II.6 and we again consider a generator

of AnnZ(Cl(R)). In each case, this optimal multiplier D is the class group’s order if

and only if the group is finite cyclic; we fill in Table 2.1’s final column via this fact.

Recall from Chapter I that a proper ideal I in a Noetherian ring has pure height

h if all of its associated primes have height h, in particular, none are embedded.

Proposition II.11. Let R be a Noetherian normal domain, and q any ideal of pure

height one with associated primes P1, . . . , Pc. Then:

(a) There exist positive integers b1, . . . , bc, uniquely determined by q, such that the

symbolic power q(E) = P
(Eb1)
1 ∩ . . . ∩ P (Ebc)

r for all E > 0.

(b) If either (1) D · Cl(R) = 0, or simply (2) q(D) is principal, then for all integers

r > 0, q(Dr) = (q(D))r is principal and q(Dr) ⊆ qr.
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Proof. First, we prove (a). For each i, the local ring Si = RPi
is a discrete valuation

ring, and we let ti ∈ Si be a local uniformizing parameter. Then Si is a PID, so an

ideal J ⊆ Si is PiSi = (ti)Si-primary if and only if J = (PiSi)
n = P n

i Si = (tni )Si

for some n > 0. In particular, qSi is PiSi-primary, say qSi = (tbii )Si. Then the

Pi-primary component of q is P
(bi)
i . Thus q = P

(b1)
1 ∩ . . . ∩ P (br)

r and clearly the

bi are uniquely determined by q. Similarly, qESi = (tEbii )Si for E > 0, so q(E) =

P
(Eb1)
1 ∩ . . . ∩ P (Ebr)

r for all E > 0.

For (b), first note that (1) implies (2): indeed, since q = P
(b1)
1 ∩· · ·∩P (bc)

r , it yields

an element [q] := b1[P1] + · · ·+ bc[Pc] ∈ Cl(R), and since 0 = D[q] = [q(D)] ∈ Cl(R),

we conclude that q(D) is principal. So we proceed assuming q(D) is principal. Since

q(D) ⊆ q(1) = q, by taking r-th powers, part (b) follows in full once we explain how

q(Dr) = (q(D))r for all integers r > 0. Indeed, using the notation in the proof of (a),

q(Dr)Si = (q(D))rSi = (tDrbi)Si for all i, and we simply contract back to R.

Per Proposition II.11(a), we may define Weil divisors

div[q] := b1 · P1 + · · ·+ bc · Pc, div[q(E)] := E · div[q] = Eb1 · P1 + · · ·+ Ebc · Pc,

where E > 0. In particular, div[q(A+B)] = div[q(A)] + div[q(B)] for all pairs of non-

negative integers A and B.

2.3 Proving the Main Result, Two Immediate Corollaries

Proof of Theorem II.1. Our proof of the first claim replaces r − 1 with r ≥ 0. Per

Proposition II.11(b), suppose q(Dr) = (q(D))r = (f r) is principal for all r ≥ 0 and

some nonzero f ∈ R. Now set I = q(s). Following the first proof in Hochster’s notes

[36], we have a short exact sequence

0→ (f r)R

(f r)I
→ R

(f r)I
→ R

(f r)R
→ 0
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and (fr)R
(fr)I

∼= R/I as R-modules via the R-linear map φ : R � (fr)R
(fr)I

with φ(g) = gf r.

Thus per our exact sequence (cf., Thm. 6.3 of Matsumura [49]),

∅ 6= AssR(R/(f r)I) ⊆ AssR(R/I) ∪ AssR(R/(f r)R)

and so AssR(R/(f r)I) contains only height one primes since the latter two sets do.

Finally, comparing Weil divisors of pure height one ideals

div[(f r)I = (q(D))rq(s)]
(∗)
= div[(f r)R] + div[I] = div[q(Dr)] + div[q(s)] = div[q(Dr+s)].

As Hochster notes, one can check identity (*) after first localizing at each height one

prime Q; in this case, the identity is obvious in a DVR. Per (*), the ideals q(Dr+s) and

(q(D))rq(s) have the exact same primary decomposition and hence are equal. Since

q(D) ⊆ q(1) = q, setting s = 1 yields q(D(r−1)+1) = (q(D))r−1q(1) ⊆ qr−1+1 = qr.

We now record two immediate corollaries of Theorem II.1:

Corollary II.12. Let R be a Noetherian normal ring. Suppose D annihilates Cl(Rm)

for all maximal ideals m in R. Then the symbolic power

q(D(r−1)+s) = (q(D))r−1q(s), and q(D(r−1)+1) ⊆ qr,

for all ideals q ⊆ R of pure height one, all r > 0, and all 0 ≤ s < D.

Proof. Reduce to the local case: given two ideals I, J in R, the inclusion I ⊆ J holds

(that is, the R-module J+I
J

= 0) if and only if IRm ⊆ JRm (that is, the Rm-module

(J+I)Rm

JRm
= JRm+IRm

JRm
= 0) for all maximal ideals m ⊆ R. So we may assume R is a

normal Noetherian local domain and D annihilates Cl(R) – invoke Theorem II.1.

Corollary II.13. For a Noetherian normal domain R, the following assertions are

equivalent to R being a UFD (i.e., every height one prime ideal is principal):
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1. The divisor class group Cl(R) = Cl(Spec(R)) = 0 is trivial.

2. Every ideal in R of pure height one is principal.

3. All symbolic powers of any ideal in R of pure height one are principal.

In this case, q(r) = qr for all r > 0 and all ideals q $ R of pure height one.

2.4 Applications to Rational Surface Singularities

We emphasize two classes of rings that satisfy the hypotheses of Theorem II.1.

We consider rationally singular surfaces now, and postpone a discussion of simplicial

toric rings until Chapter III.

Definition II.14 ([46]). A two-dimensional, normal Noetherian local domain (R,m)

to have rational singularities if there is a proper, birational map f : X → Spec(R)

from a regular scheme X such that H1(X,OX) = 0.

In particular, two-dimensional regular local rings have rational singularities.

We record the following result due to Joe Lipman.

Theorem II.15 (Lipman [46, Prop 17.1]). Let (R,m) be a normal Noetherian local

domain of dimension two. If R has a rational singularity, then Cl(R) is finite.

By applying Theorem II.1 to any rationally singular surface, we conclude that

Theorem II.16. All two-dimensional rational singularities (R,m) satisfy uniform

symbolic topologies on primes.

In step with the improved Ein – Lazarsfeld – Smith Theorem I.18, applying Corollary

II.12 yields a separate proof that all two-dimensional regular rings R satisfy uniform

symbolic topology on primes and P (r) = P r for all r > 0 and all primes P in R.
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To obtain additional explicit, effective multipliers, we turn to the case of complete,

normal Noetherian local domains S in equal characteristic zero with du Val (ADE)

isolated singularity and algebraically closed residue field; for simplicity, we work

with C. In [46, Sec. 24], Lipman computes the class group isomorphism type (as a

Z-module) of each du Val singularity. The du Val (ADE) singularities, also known as

rational double points, are the most basic isolated surface singularities. Their minimal

resolutions can be understood and classified by the simply-laced Dynkin diagrams

of types A, D, and E. We can express S as above as the quotient of the power series

C[[x, y, z]] by a single local equation. We now situate a succinct data table, where

the last column’s entries are the optimal uniform multipliers from Remark II.10:

du Val Singularity
type Local Equation

Class group
(isomorphism type) Dmin(S)

An (n ≥ 1) xz − yn+1 Z/(n + 1)Z n + 1

Dn (n ≥ 4) x2 + yz2 − zn−1

{
(Z/2Z)2 n even

Z/4Z n odd.

{
2 n even

4 n odd.

En (n = 6, 7, 8)


x4 + y3 + z2 if n = 6

x3y + y3 + z2 if n = 7

x5 + y3 + z2 if n = 8


Z/3Z if n = 6

Z/2Z if n = 7

0 if n = 8


3 if n = 6

2 if n = 7

1 if n = 8

Table 2.1: Pertinent data for each Complex du Val surface singularity type.

An analogous data table can be drafted for affine du Val singularity hypersurfaces

in C3 (affine, N-graded case), which arise as the quotients C2/G by the action of a

finite subgroup G ⊆ SU2(C) of the special unitary group.

To close, we swiftly settle Question I.34 from Chapter I in the negative.

Remark II.17. When a Noetherian ring R satisfies the uniform symbolic topology

property (USTP) on prime ideals, experts might initially expect that the optimal

multiplier D = Dmin(R) should depend only on simple numerical invariants of R,

such as Krull dimension, or the multiplicity of R at an isolated singularity. However,
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An-singularities and E8-singularities have multiplicity two, being rational double

points. At one extreme, Dmin(An) = n+ 1 is optimal, grows arbitrarily large with n,

and does not depend on any such numerical invariants of An. At the other extreme,

Dmin(E8) = 1 is lower than both the Krull dimension and the multiplicity. Therefore,

a (sharp) uniform bound depending only on such numerical invariants need not exist,

even if we restrict to rings of invariants of actions of finite groups on C2.

We have now fulfilled the endgame promised at the start of the chapter.

Before vaulting into toric algebra jargon in Chapter III, we pause to rehearse an

iteration of Problem I.9 and the motivational questions at stake in this thesis.

Question II.18. Given a Noetherian commutative ring R, when is there an integer

D, depending only on R, such that the symbolic power P (Dr) ⊆ P r for all prime ideals

P ⊆ R and all positive integers r? In short, when does R have uniform symbolic

topologies on primes [41]? Moreover, can we effectively compute the multiplier D

in terms of simple data about R?

We will bear Question II.18 in mind as we vault into Chapters III and IV below –

the main results of these chapters concern prime ideals only. The first page of each

chapter will record the main result(s) for the benefit of readers already familiar with

the relevant jargon and notation. The remainder of each chapter is curated to get all

other readers on the same page – as far as necessary background and any follow-up

considerations taken up after deducing our main results.



CHAPTER III

Uniform Symbolic Topologies in Normal Toric Domains

This chapter consolidates material from our papers [68], [69], and [70]. We an-

swer Question II.18 for torus-invariant primes in a normal toric (or monomial, or

semigroup) algebra – the coordinate rings of normal affine toric varieties, hence also

Cohen-Macaulay and combinatorially-defined. We now state our main results for

readers accustomed to conventions in Cox – Little – Schenck [12] and Fulton [21].

Theorem III.1. Let C ⊆ NR be a full pointed rational polyhedral cone. Let RF =

F[C∨ ∩M ] be the associated toric algebra over a field F. Set D := maxm∈B〈m, vC〉,

where B is the minimal generating set for C∨ ∩M and vC ∈ N is the sum of the

primitive generators for C. Then

P (D(r−1)+1) ⊆ P r

for all r > 0, and all monomial primes P in RF.

Corollary III.2. With notation as in Theorem III.1, we assume further that C is

simplicial. Define T := max {maxm∈B〈m, vC〉, D} , where D is any positive integer

such that D · Cl(RF) = 0. Then

P (T (r−1)+1) ⊆ P r

for all r > 0, all monomial primes, and all height one primes in RF.

37
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The reader is invited to revisit the list of Conventions I.45 as appropriate.

3.1 Tapas of Toric Algebra for Full-Dimensional Cones

As in Cox – Little – Schenck [12, Ch.1,3,4] and Fulton [21, Ch.1,3], a lattice is a

free abelian group of finite rank. We fix a perfect bilinear pairing 〈·, ·〉 : M ×N → Z

between two lattices M and N ; this identifies M with HomZ(N,Z) and N with

HomZ(M,Z). Our pairing extends to a perfect pairing of finite-dimensional vector

spaces 〈·, ·〉 : MR ×NR → R, where MR := M ⊗Z R and NR := N ⊗Z R.

Going forward, we fix a full pointed N-rational polyhedral cone C ⊆ NR and its

M -rational dual: respectively, for some finite subset G ⊆ N − {0} these are closed,

convex sets of the form

C = Cone(G) :=

{∑
v∈G

av · v : each av ∈ R≥0

}
⊆ NR, and

C∨ := {w ∈MR : 〈w, v〉 ≥ 0 for all v ∈ C} = {w ∈MR : 〈w, v〉 ≥ 0 for all v ∈ G}.

By definition, the dimension of a cone in MR or NR is the dimension of the real

vector subspace it spans; a cone is full(-dimensional) if it spans the full ambient

space. A cone in MR or NR is pointed (or strongly convex) if it contains no line

through the origin. A pointed full-dimensional cone C is said to be simplicial if it

can be generated by exactly d = dimR(NR) elements in N .

There is a uniquely-determined minimal finite generating set B for the semigroup

C∨ ∩ M , its Hilbert basis. This basis consists of the irreducible vectors m ∈

C∨ ∩ M − {0}, read, nonzero vectors that cannot be expressed as a sum of two

nonzero vectors in C∨ ∩M [12, Prop. 1.2.17, Prop. 1.2.23].

Fix an arbitrary ground field F. The semigroup ring RF = F[C∨∩M ] is the toric

F-algebra associated to C. This ring RF is a normal domain of finite type over
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F [12, Thm. 1.3.5]. Note that RF has an F-basis {χm : m ∈ C∨ ∩M} of monomials,

giving RF an M -grading, where deg(χm) := m. A monomial ideal (also called

an M-homogeneous or torus-invariant ideal) in RF is an ideal generated by a

subset of these monomials.

3.2 Proof of Main Results and Example Computations

Definition III.3. Fix a lattice L and a convex polyhedral cone C ⊆ LR. A face of

C is a convex polyhedral cone F in LR obtained by intersecting C with a hyperplane

which is the kernel of a linear functional m ∈ C∨; F is proper if F 6= C.

There is a bijective inclusion-reversing correspondence between faces F of C and

faces F ∗ of C∨, where F ∗ = {w ∈ C∨ : 〈w, v〉 = 0 for all v ∈ F} is the face of C∨

dual to F [21, Sec. 1.2]. Under this correspondence, it turns out that C∨ is pointed

if and only if C is full – and vice versa, and

(3.1) dim(F ) + dim(F ∗) = dim(NR) = dim(MR).

Proof of Theorem III.1. We may fix a face F 6= {0} of the full pointed rational cone

C, and P = PF the corresponding monomial prime in R = RF. First, we note F

has a uniquely-determined set GF of primitive generators – by definition, a vector

v ∈ N is primitive if 1
k
· v 6∈ N for all k ∈ Z>1. Fulton [21, p.53] records a surjective

M -graded ring map between integral domains in terms of the face F ∗ of C∨ dual to

F (cf., the discussion following Definition III.3 below), even when C is not full:

φF : RF = F[C∨ ∩M ] � F[F ∗ ∩M ], φF (χm) =


χm if 〈m, v〉 = 0 for all v ∈ F

0 if 〈m, v〉 > 0 for some v ∈ F.

The monomial prime ideal of F , PF := ker(φF ), has height equal to dim(F ).
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Lemma III.4. Fix a face F of a pointed rational cone C, and the monomial prime

PF ⊆ RF above. Let GF be the set of primitive generators of F , and set vF :=∑
v∈GF

v ∈ F ∩N . Then

(3.2) PF = ({χm : m ∈ C∨ ∩M and the integer 〈m, vF 〉 > 0})RF.

Proof. First, in defining φF (χm) above, notice we can work with v ∈ GF without loss

of generality. Now, fix m ∈ C∨ ∩M . Then 〈m, v〉 ∈ Z≥0 for all v ∈ C ∩N . As 〈·, ·〉

is bilinear, (3.2) follows since a sum of nonnegative integers is positive if and only if

one of the summands is positive.

Lemma III.5. For each integer E ≥ 1, we have P
(E)
F ⊆ IF (E) ⊆ P

dE/D′e
F ⊆ P

dE/De
F

where

IF (E) := (χm : 〈m, vF 〉 ≥ E)R, D := max
m∈B
〈m, vC〉 , and D′ := max

m∈B
〈m, vF 〉 ≤ D.

Proof. First, IF (E) is PF -primary for all E ≥ 1, i.e., if sf ∈ IF (E) for some s ∈

R − PF , then f ∈ IF (E). As IF (E) is monomial, we may test this by fixing χm ∈

IF (E)RPF
∩ R and χq ∈ R − PF such that χm · χq = χm+q ∈ IF (E): 〈q, vF 〉 =

0, while E ≤ 〈m+ q, vF 〉 = 〈m, vF 〉 + 〈q, vF 〉 = 〈m, vF 〉 , so χm ∈ IF (E). Thus all

IF (E) are PF -primary, and certainly PE
F ⊆ IF (E). Thus P

(E)
F ⊆ IF (E), being the

smallest PF -primary ideal containing PE
F .

Now fix any monomial χ` ∈ IF (E), say ` =
∑

m∈B am · m with am ∈ Z≥0. Let

S ⊆ B consist of those m ∈ B such that the monomials χm form a minimal generating

set for P . By linearity of 〈•, vF 〉,

E ≤ 〈`, vF 〉 =
∑
m∈B

am 〈m, vF 〉 =
∑
m∈S

am 〈m, vF 〉 ≤
∑
m∈S

am ·D′ =⇒
∑
m∈S

am ≥ dE/D′e.

Thus χ` ∈ P
∑

m∈S am
F ⊆ P

dE/D′e
F , ergo IF (E) ⊆ P

dE/D′e
F ⊆ P

dE/De
F , proving the

lemma.
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To finish the proof of Theorem III.1, set E = D(r − 1) + 1 in the lemma. Thus

P
(D(r−1)+1)
F ⊆ P r

F for all r > 0, as desired.

Remark III.6. In passing, we invite the reader to compare the ideals IF (•) in Lemma

III.5 with Bruns and Gubeladze’s terminology and description [10, Ch. 4, p. 149] for

the symbolic powers of the height one monomial primes in terms of a full pointed

cone. Lemma III.5 works in any height, and the Bruns – Gubeladze description may

be adapted to this general height case too.

Proof of Corollary III.2. Since C is simplicial, # Cl(RF) is finite by Theorem III.23

and Lemma III.27 below. Now we simply combine Theorem III.1 with Lemma II.1,

and take the maximum of the values.

Remark III.7. When the cone C in Corollary III.2 is smooth – read, C is generated

by a Z-basis for N , then T = 1 and P (r) = P r for all r > 0, all monomial primes,

and all height one primes in RF. As C is smooth, C and C∨ are generated by a Z-

basis for N and the dual basis for M , respectively. Also, # Cl(RF) = # Cl(RF) = 1.

Note that in general, this means our multiplier T will not confirm uniform symbolic

topologies for all primes P in a toric algebra. For example, even in a polynomial

ring of dimension three, there are height two primes for which P (r) 6= P r for some

r ≥ 2; [13, page two of Introduction] gives an example.

Remark III.8. Two-dimensional toric algebras are always simplicial with cyclic di-

visor class group. In this case, the conclusion of Corollary III.2 holds using the

multiplier # Cl(RF). This multiplier is sharp by Proposition III.32.

Remark III.9. Theorem III.1 and its corollary can be adapted to the non-full case

by replacing RF with R′F as in Proposition III.22, and applying both Theorem II.5

and Proposition IV.9 to the faithfully flat map ϕ from Proposition III.22.
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Example III.10. Fix a field F and integers n ≥ 2 and E ≥ 2. Let

R =
F[x1, . . . , xn, z]

(zE − x1 · · ·xn)
.

Then Theorem III.1 and its corollary ensure that P (T (r−1)+1) ⊆ P r for all r > 0, all

monomial primes, and all height one primes in R, where T = max{n,E}. Indeed,

R is a toric algebra arising from the simplical full pointed cone C ⊆ Rn spanned

by {en, E · ei + en : i = 1, . . . , n − 1} ⊆ Zn, where e1, . . . , en denote the standard

basis vectors in Rn. We can compute that Cl(R) ∼= (Z/EZ)n−1 so E · Cl(R) = 0;

see Example III.46 below for details. Meanwhile, in the notation of Theorem III.1

B = {e1, . . . , en−1, en, E ·en−e1−· · ·−en−1} ⊆ Zn – see Lemma III.41, and the vector

vC = n · en + E · (e1 + · · ·+ en−1) ∈ Zn, so we compute that maxm∈B 〈m, vC〉 = n.

3.2.1 Closing Example Computation: Segre – Veronese algebras

In what follows, F is a fixed arbitrary field. For more on Segre products, see [24].

Segre – Veronese algebras are a well-known class of normal toric rings.

Definition III.11. Fix a family A1, . . . , Ak of k standard graded algebras of finite

type over F, with Ai = F[ai,1, . . . , ai,bi ] in terms of algebra generators. Their Segre

product over F is the ring S = (#F)ki=1Ai generated up to isomorphism as an F-

algebra by all k-fold products of the ai,j.

Definition III.12. We fix integers E ≥ 1 and m ≥ 2. Suppose A = F[x1, . . . , xm] is

a standard graded polynomial ring in m variables over a field F. Let VE,m ⊆ A denote

the E-th Veronese subring of A, the standard graded F-subalgebra generated by

all monomials of degree E in the xi. There are
(
m−1+E

E

)
such monomials; this number

is the embedding dimension of VE,m.
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Definition III.13. Fix k-tuples E = (E1, . . . , Ek) ∈ (Z≥1)k andm = (m1, . . . ,mk) ∈

(Z≥2)k of integers, with k ≥ 1. Furthermore, we set d(j) =
(∑j

i=1 mi

)
− (j − 1)

for each 1 ≤ j ≤ k: d(k) is the Krull dimension of the Segre product SV
(
E,m

)
=

(#F)ki=1VEi,mi
of k Veronese rings in m1, . . . ,mk variables, respectively; we call this

algebra a Segre – Veronese algebra with degree sequence E.

Theorem III.14. Suppose A = SV
(
E,m

)
is a Segre – Veronese algebra over F

with E = (E1, . . . , Ek). Let D :=
∑k

i=1Ei. Then P (D(r−1)+1) ⊆ P r for all r > 0 and

all monomial primes P in A.

Proof. Given a lattice N ∼= Zd we will use e1, . . . , ed ∈ N to denote a choice of

basis for N will dual basis e∗1, . . . , e
∗
d for M . In the setup of Theorem III.1, the

cardinality of the minimal generating set B of C∨∩M is the embedding dimension

of RF = F[C∨ ∩M ] – see [12, Sec. 1.0, Proof of Thm. 1.3.10].

We now provide an explicit cone C ⊆ NR and an explicit Hilbert basis B to

feed into Theorem III.1. Fix k-tuples E ∈ (Z≥1)k and m ∈ (Z≥2)k. Set d(j) =(∑j
i=1 mi

)
−(j−1) for 1 ≤ j ≤ k, while d(0) = 0. Given SV

(
E,m

)
= (#F)ki=1VEi,mi

,

we fix a latticeN ∼= Zd(k) and record a cone C = C
(
E,m

)
⊆ NR ∼= Rd(k) as stipulated

withRF = F[C∨∩M ] ∼= SV
(
E,m

)
. Specifically, consider the cone C ⊆ NR generated

by the following irredundant collection of primitive vectors:

A =
⋃

1≤j≤k

Aj, where A1 = {e1, . . . , em1−1,−e1 − · · · − em1−1 + E1 · em1},

and for each 2 ≤ j ≤ k, Aj =

eh, Ej · em1 −
d(j)∑

h=d(j−1)+1

eh : d(j − 1) + 1 ≤ h ≤ d(j)

 .

The semigroup C∨ ∩M is generated by the following set of irreducible vectors:

B =

{
e∗m1

+
k∑
j=1

mj−1∑
`=1

aj,` · e∗d(j−1)+` : 0 ≤
mj−1∑
`=1

aj,` ≤ Ej for 1 ≤ j ≤ k

}
.
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Indeed, #B =
∏k

j=1

(
mj−1+Ej

Ej

)
, the embedding dimension of SV (E,m). Finally, one

can record a bijection between the monomial generators of RF and those typically

used to present SV (E,m); cf., Lemma III.43 below for how the bijection would look

in the coordinates aj,` for each j. Feeding vC =
∑

u∈A u = (
∑k

j=1Ej) · em1 and B

into Theorem III.1 yields the multiplier D =
∑k

j=1Ej.

Over any perfect field K, a Segre – Veronese algebra has uniform symbolic topologies

on all primes, per [16, Thm. 2.2], [37, Thm. 1.1], and [40, Cor. 3.10]. However, no

explicit multiplier is provided by these cited results; indeed, the cases k = 1 and

k = 2 (with E = (1, 1)) were only addressed recently via [13, Cor. 3.30] and [11,

Thm. 5.6] [56], respectively. Meanwhile, the multiplier in Theorem III.14 covers the

torus-invariant primes in Segre – Veronese algebras over an arbitrary field.

3.3 Tapas of Toric Algebra for Arbitrary Cones

Throughout, C ⊆ NR will be an arbitrary rational convex polyhedral cone. In

particular, although C need not be full-dimensional or pointed:

Remark III.15. In forming the toric algebra F[C∨ ∩M ], there is no loss of generality

in assuming C is pointed in NR. Indeed, because C∨ ∩M = C∨ ∩M ′ where M ′ =

M ∩{R-span of C∨ in MR}, we may replace M by M ′ to assume C∨ is full in (M ′)R.

Now, replacing N and C by the duals of M ′ and C∨, we may assume that C is

pointed in N ′ = HomZ(M ′,Z). Compare with [12, Proof of Thm. 1.3.5] for details.

Remark III.16. When C∨ is pointed, RF also has a non-canonical N-grading obtained

by fixing any group homomorphism M → Z taking positive values C∨ ∩M − {0}.

The set {χm : m ∈ C∨ ∩M −{0}} generates the unique homogeneous maximal ideal

m under this N-grading. Our proofs of Lemma III.27 and Proposition III.32 use this.

We now clarify Remark III.9 from above, working towards Proposition III.22.
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Proposition III.17 (Minkowski sum – Ideal sum). Suppose C ⊆ NR is a pointed

rational polyhedral cone, and RF = F[C∨ ∩M ] is the corresponding toric F-algebra.

When a face F = Cone(GF ) = ρ1 + . . .+ ρ` as a Minkowski sum of rays,

(3.3) PF =
∑̀
j=1

Pρj

as a sum of ideals.

Proof. Let GF = {uρj : 1 ≤ j ≤ `} consist of the primitive ray generators. Any v ∈ F

satisfies

v =
∑̀
j=1

ajuρj , for some a1, . . . , a` ∈ R≥0.

Given any w ∈ C∨, 〈w, v〉 ≥ 0 for all v ∈ C. Thus for v ∈ F as above,

0 ≤ 〈w, v〉 =
∑̀
j=1

aj〈w, uρj〉, for some a1, . . . , a` ∈ R≥0,

and so 〈w, v〉 is positive if and only if 〈w, uρj〉 > 0 for some 1 ≤ j ≤ `. We infer that

PF and
∑`

j=1 Pρj have a generating set in common, and hence coincide.

Definition III.18. With notation as in Proposition III.17, we call (3.3) a Minkowski

sum – ideal sum decomposition for PF .

Remark III.19. Adapting the proof of Proposition III.17 accordingly, we could use

any decomposition of F as a Minkowski sum of faces, the latter need not be rays.

Our next goalpost is Lemma III.21 on decomposing monomial primes in tensor

products of normal toric rings. Fix two pointed rational polyhedral cones Ci =

Cone(Si) ⊂ (Ni)R (i = 1, 2), where each Si consists of the primitive ray generators.

Define lattices N = N1 × N2,M = M1 × M2 per the standing conventions. Let

〈, 〉i : Mi × Ni → Z and 〈, 〉 : M × N → Z indicate our three designated bilinear

pairings.
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Remark III.20. While tedious, we could pedantically write down compatibility con-

ditions to the effect that the output values of these pairings will agree relative to

the obvious Z-linear embeddings Ni ↪→ N and Mi ↪→ M , e.g., N1
∼= N1 × {0}. In

particular, in a slight abuse of notation, going forward we identify

〈, 〉 = 〈, 〉1 + 〈, 〉2.

This generalizes the usual dot product setup naturally, ZE ⊆ RE, where E = m+ n

as a sum of positive integers.

The product cone C = C1 ×C2 in NR is a pointed rational polyhedral cone. In

terms of ray generators, C is generated as

C = (C1 × {0}) + ({0} × C2) = Cone[(S1 × {0}) ∪ ({0} × S2)] ⊆ NR.

Note that

C∨ = (C1 × {0})∨ ∩ ({0} × C2)∨ = C∨1 × C∨2 .

For the right-hand equality, we defer to Remark III.20.

Lemma III.21. For n ≥ 2, let R1, . . . , Rn be normal toric rings over a field F, built

from pointed rational polyhedral cones Ci ⊆ (Ni)R, respectively. Consider the normal

toric ring R ∼= R1 ⊗F · · · ⊗F Rn. Every monomial prime ideal Q in R is a sum

Q =
∑n

i=1(PiR) of expanded ideals, where each ideal Pi ⊆ Ri is a monomial prime.

Proof. Induce on n with base case n = 2; we focus on the base case for the remainder

of the proof. Suppose Ri = (Ri)F = F[C∨i ∩Mi], and

R = RF = F[C∨ ∩M ] ∼= R1 ⊗F R2.

Any monomial prime in R corresponds bijectively with a face of C. All faces of C are

of the form F = F1 × F2 where Fi is a face of Ci. Given F as stated, with QF ⊆ R

the corresponding monomial prime, the base case follows from proving that
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(1) QF1×F2 = QF1×{0} +Q{0}×F2 ; and

(2) As expansions of monomial ideals, QF1×{0} = PF1R, Q{0}×F2 = PF2R.

The Minkowski sum – ideal sum decomposition (3.3) suffices to verify both

claims. First, to see (1), notice F1 × F2 = (F1 × {0}) + ({0} × F2) as a Minkowski

sum of faces. As for (2), (3.3) allows us to reduce verification to the case where

the Fi are rays. We do so explicitly for Qρ×{0} where ρ is a ray of C1. We will use

notations χa, φb, ψc for characters in R,R1, R2 respectively. We express an arbitrary

(3.4) w = (w1, w2) ∈ C∨ ∩M = (C∨1 ∩M1)× (C∨2 ∩M2),

where wi ∈ C∨i ∩Mi. For w as in (3.4), the three characters χw, χ(w1,0) = φw1 , χ(0,w2) =

ψw2 all lie in R. Indeed, given any v = (v1, v2) ∈ C with vi ∈ Ci, and w as in (3.4),

all dot product terms below are nonnegative: deferring to Remark III.20,

〈w, v〉 = 〈w1, v1〉+ 〈w2, v2〉

〈(w1, 0), v〉 = 〈w1, v1〉 ≥ 0, 〈(0, w2), v〉 = 〈w2, v2〉 ≥ 0.

In particular, since v ∈ C was arbitrary both (w1, 0) and (0, w2) lie in C∨ ∩M .

Now suppose χw = χ(w1,0)χ(0,w2) = φw1ψw2 ∈ Qρ×{0}, i.e., 〈w, v〉 > 0 for some

vector v = (v1, v2) ∈ ρ × {0}. Since v2 = 0 here, equivalently 〈w, v〉 = 〈w1, v1〉 > 0

for some v1 ∈ ρ, i.e., the character χ(w1,0) = φw1 ∈ PρR. Since χ(0,w2) = ψw2 ∈ R,

χw = φw1ψw2 ∈ PρR. Thus Qρ×{0} ⊆ PρR. For the other inclusion: the characters

χ(w1,0) = φw1 as above generate PρR, and each such generator lies in Qρ×{0} since we

already indicated above that χw ∈ Qρ×{0} if and only if χ(w1,0) = φw1 ∈ PρR.

In case the pointed cone C is not full, the next proposition is handy.

Proposition III.22. Let N ′R be the R-span of a pointed cone C ⊆ NR. Set N ′ =

N ′R ∩ N , and consider C as a full-dimensional cone in N ′R (relabeled as C ′). Let
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M ′ = HomZ(N ′,Z) be the dual lattice. Then working over an arbitrary ground field

F, the toric ring RF := F[C∨ ∩M ] is isomorphic to R′F ⊗F L where the toric ring

R′F := F[(C ′)∨ ∩ M ′] and L is a Laurent polynomial ring over F. In particular,

there is a bijective correspondence between the monomial primes of R′F and RF given

by expansion and contraction of ideals along the faithfully flat ring map ϕ : R′F ↪→

R′F ⊗ L = RF. Moreover, the divisor class groups of RF and R′F are isomorphic.

Proof. While Cox – Little – Schenck [12, Proof of Prop. 3.3.9] yields the first assertion,

Lemma III.21 yields the second since a Laurent polynomial ring has no nonzero

monomial primes. As for the class group assertion, RF is a Laurent polynomial ring

over R′F after base change, so we may simply apply Theorem II.5.

We now recall how to compute divisor class groups up to isomorphism when

working over algebraically closed fields. Working over an algebraically closed field

F, fix a pointed cone C as in Remark III.15 and the pair of rings RF and R′F as in

Proposition III.22. When C 6= {0}, each ρ ∈ Σ(1), the collection of rational rays

(one-dimensional faces) of C, yields a unique primitive generator uρ ∈ ρ ∩N for

C and a torus-invariant height one prime ideal Pρ in R′F; cf., [12, Thm. 3.2.6]. The

torus-invariant height one primes generate a free abelian group
⊕

ρ∈Σ(1) ZPρ which

maps surjectively onto the divisor class group of R′F. More precisely, we record the

following well-known theorem; see [12, Ch. 4].

Theorem III.23. With notation as in Proposition III.22, let C ⊆ NR be a pointed

cone with primitive generators Σ(1) as described above. Then there is a short exact

sequence of abelian groups

(3.5) 0→M ′ φ→
⊕
ρ∈Σ(1)

ZPρ → Cl(R′F)→ 0,
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where φ(m) = div(χm) =
∑

ρ∈Σ(1)〈m,uρ〉Pρ. Furthermore, Cl(RF) and Cl(R′F) are

isomorphic, Cl(RF) is finite abelian if and only if C is simplicial, and trivial if and

only if C is smooth.

Remark III.24. This above result follows from [12, Prop. 3.3.9, Prop. 4.1.1-4.1.2,

Thm. 4.1.3, Exer. 4.1.1-4.1.2, Prop. 4.2.2, Prop. 4.2.6, and Prop. 4.2.7], essentially

consolidating what facts we need to bear in mind going forward in the manuscript.

Definition III.25. The cone C ⊆ NR is simplicial (respectively, smooth) if

C = {0} or the primitive ray generators form part of an R-basis for NR (resp., a Z-

basis for N). We also apply the adjectives simplicial and smooth to the corresponding

toric algebra RF and the toric F-variety Spec(RF).

Remark III.26. In algebro-geometric language, if C as in Theorem III.23 is simplicial,

then all Weil divisors on Spec(RF) are Q-Cartier of index at most the order of Cl(RF).

The next lemma says we can reduce all toric divisor class group computations to

the case where F is algebraically closed, to leverage Theorem III.23.

Lemma III.27. With notation as in Proposition III.22, the divisor class groups

Cl(RF) ∼= Cl(RF) are isomorphic.

Proof. By now it is clear we can reduce to the case where C is a full pointed cone in

NR. The algebra RF admits an N-grading with its zeroth graded piece being F; see

the passage above Remark III.15. We may then cite Theorem II.6(2) to conclude that

up to isomorphism, Cl(RF) ⊆ Cl(RF) as a subgroup. This improves to an equality for

normal toric rings because the divisor classes of height one monomial primes belong

to both groups and generate the latter by Theorem III.23.
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3.4 Drawing Connections to Convex Polytopes and Their Volumes

3.4.1 Improved Uniform Symbolic Topologies for Simplicial Toric Rings

Aside from our results on rational surface singularities in Chapter II, we have:

Theorem III.28. Let C ⊆ NR be a simplicial full pointed rational polyhedral cone,

F an arbitrary field, and let RF = F[C∨ ∩M ] be the corresponding toric F-algebra.

Then RF satisfies uniform symbolic topologies on all ideals of pure height one with

multiplier D, where D is the volume of the parallelotope spanned by the primitive

generators of C, where the volume form Vol on NR is chosen so that a hypercube

spanned by primitive generators of N has volume one.

Proof. Assuming without loss of generality that F is algebraically closed, the short

exact sequence (3.5) makes it easy to compute the divisor class group Cl(RF) up to

isomorphism. In practice, we pick a basis e1, . . . , en of N with dual basis e∗1, . . . , e
∗
n

for M , so that both N and M are isomorphic to Zn. Then the pairing 〈·, ·〉 becomes

dot product, and our volume form Vol agrees with Lebesgue measure on Rn.

The collection Σ(1) = {ρ1, . . . , ρn} of rays of C has n elements as C is full and

simplicial. Let uρ1 , . . . , uρr ∈ N be the primitive ray generators. In terms of the

isomorphism N ∼= Zn, we express uρi as the column vector (〈e∗1, uρi〉, . . . , 〈e∗n, uρi〉)T

where T denotes transpose. The map φ in Theorem III.23 can be treated, up to

isomorphism, as a map Zn → Zn given by the matrix AC := (uρ1 , . . . , uρn)T in terms

of transpose: the i-th row of AC is given by the coordinates of uρi . Theorem III.23

says Cl(RF) is the cokernel of φ, and hence can be computed up to isomorphism by

first finding the Smith normal form of AC .

Note that since the alternating sum of the ranks in the exact sequence (3.5)

vanishes, Cl(RF) has rank zero and hence is finite abeilan. As AC defines the action
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of φ, the Smith normal form indicates that D := | det(AC)| is the order of Cl(RF).

In the Lebesgue measure on Rn, this D is the volume of the parallelotope spanned

by the primitive generators of C. To finish, we simply invoke Lemma II.1.

3.4.2 Teasing a Connection with Von Korff’s Toric F-Signature Formula

Now fix a perfect field K of positive characteristic p. Given an F-finite N-graded

domain R of finite type over K, for each integer e ≥ 0, we have an R-module

isomorphism R1/pe ∼= Rae ⊕ M where M has no free summand, and the integer

ae ≤ ped where d = dimR. By definition, the F-signature of R is (see [42], [66])

s(R) := lim sup
e→∞

ae
ped

= lim
e→∞

ae
ped

, 0 ≤ s(R) ≤ 1.

The F-signature has ties to measuring F-singularities: for instance, s(R) is positive

if and only if R is strongly F-regular [1], and s(R) = 1 if and only if R is regular [66,

Thm. 4.16]; see also [33] and [57].

Over the perfect field K, any normal toric ring is strongly F-regular and its F-

signature is rational [60]. We now state Von Korff’s result [67, Thm. 3.2.3]; see also

Watanabe – Yoshida [72, Thm. 5.1] and Yao [73, Rem. 2.3(4)]:

Theorem III.29 (cf., Von Korff [67, Thm. 3.2.3]). With notation as in Proposition

III.22, we define a convex polytope,

PC′ := {w ∈M ′
R : 0 ≤ 〈w, v〉 < 1,∀v ∈ G} $ (C ′)∨,

where G is the set of primitive generators of C ′ 6= {0}. Then over any perfect

field K of positive characteristic, the F-signature s(RK) = s(R′K) = Vol(PC′) ∈ Q>0,

where the volume form Vol on M ′
R is chosen so that a hypercube spanned by primitive

generators of M ′ has volume one.
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Corollary III.30. When the cone C ′ in Theorem III.29 is simplicial, s(R′K) = 1/D

where the integer D = # Cl(R′K).

Proof. We may reduce to the case where C is full and K is algebraically closed via

Theorem III.23, Lemma III.27, and Theorem III.29. We then pick a basis e1, . . . , en

for the lattice N and the dual basis e∗1, . . . , e
∗
n for M as in the proof of Theorem

III.28, so the volume form Vol agrees with the Lebesgue measure on Rn. Then

one can confirm the claim that s(RK) · # Cl(RK) = 1 either via linear algebra or

by applying the change-of-variables formula from multivariate calculus: either way,

invoking the proof of Theorem III.28 is key.

Let u1, . . . , un be the primitive generators for C, indexed so that the matrix A =

AC from the proof of Theorem III.28 is positive-definite. Defining new coordinates

`i := `i(m) = 〈m,ui〉, for all m = (x1, . . . , xn) ∈ Rn, we set

�n := {(`1, . . . , `n) ∈ Rn : 0 ≤ `i < 1},

the unit n-cube in Rn in the coordinates `1, . . . , `n defined above. Let

LA : Rn
(x1,...,xn)

∼=→ Rn
(`1,...,`n)

denote the R-linear change-of-coordinates map defined by A. As the polytope PC =

L−1
A (�n), basic linear algebra indicates that

1 = Vol(�n) = det(A) · Vol(PC).

The corollary then follows by the proof of Theorem III.28.

Remark III.31. Given Theorem III.29, we could opt to replace the invariant T from

Corollary III.2 with the possibly larger invariant featured in Theorem I.41:

U = lcm{max
m∈B
〈m, vC〉,# Cl(RK)} ∈ Z>0.
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By Corollary III.30, U is an integer multiple of the reciprocal 1/s(RK) = # Cl(RK)

of the F-signature of RK that controls the asymptotic growth of symbolic powers.

We briefly revisit this connection in our closing Chapter V.

3.5 (Non-)Sharp Multipliers, Segre – Veronese algebras revisited

This section is complementary in part to Section 2.4. To start, we deduce a result

that occasionally provides first examples of sharp multipliers in the toric setting.

Proposition III.32. With notation as in Corollary III.2, we assume C is a simpli-

cial full pointed rational polyhedral cone. We now set B := maxw∈PG 〈w, vC〉 where

PG ⊆ B consists of the primitive generators of C∨. There exists a monomial prime

P in R = RF of height one such that:

1. P (B(r−1)) 6⊆ P r for some r ≥ 2;

2. There is no positive integer D′ < B such that P (D′(r−1)+1) ⊆ P r for all r > 0.

Proof. Let v1, . . . , vn ∈ N and w1, . . . , wn ∈M denote the primitive generators for C

and for C∨, respectively. We index these generators so that the nonnegative integer

〈wj, vi〉 is positive if and only if i = j: we may do this citing the notion of facet

normals [12, after Prop. 1.2.8]. In deference to Lemma III.4(3.2), let Pj (1 ≤ j ≤ n)

be the height one monomial prime in RF such that a monomial χm ∈ Pj if and only

if 〈m, vj〉 > 0. In particular, χwj ∈ Pj for each j.

Next we show that for each 1 ≤ j ≤ n, 〈wj, vj〉 is the order of the element in

Cl(RF) corresponding to Pj. We may leverage exact sequence (3.5) from Theorem

III.23, since Lemma III.27 allows us reduce to the case where F is algebraically closed.

For 1 ≤ j ≤ n, we have 0 = [div(χwj)] = 〈wj, vj〉[Dρj ], where ρj is the rational ray of

C generated by vj. Thus P
(〈wj ,vj〉)
j = (χwj)R. Since the order of [Dρj ] is the smallest
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Ej > 0 such that P
(Ej)
j = (χmj)R is principal for some mj ∈ C∨ ∩M − {0}, Ej

divides 〈wj, vj〉, and P
(〈wj ,vj〉)
j = (P

(Ej)
j )L where L = 〈wj, vj〉/Ej. As C∨ is pointed,

χwj = χL·mj and L = 1, since wj ∈ B is an irreducible vector in C∨ ∩M .

To prove (1), notice B = 〈wj0 , vj0〉 for some 1 ≤ j0 ≤ n. Then

(*): (χwj0 )R = P
(B)
j0
6⊆ P 2

j0
.

By Remark III.16, when the cone C is full-dimensional in NR, the semigroup algebra

RF = F[C∨ ∩M ] can be N-graded. Thus any minimal generator f of a homogeneous

ideal I satisfies f ∈ I − I2 by Nakayama’s lemma. In our situation, I = Pj0 and

f = χwj0 . Observation (*) also gives part (2), arguing by contradiction and using

Lemma IV.12 accordingly.

We offer several examples to show that establishing sharpness of our bilinear

multipliers is a delicate matter meriting further study.

Example III.33. We fix integers n ≥ 2 and E ≥ 2, and an arbitrary field F. Let VE,n

be the E-th Veronese subalgebra of the polynomial ring F[x1, . . . , xn], that is, the F-

algebra generated by all monomials of degree E in x1, . . . , xn. Then P (E(r−1)+1) ⊆ P r

for all r > 0, all monomial primes, and all primes of height one by Corollary III.2; see

Lemma III.43 for details. However, for any E ′ < E, the proof of Proposition III.32

guarantees that we can find a prime P ⊆ VE,n (monomial, height one) such that

P (E′(r−1)+1) 6⊆ P r for some r ≥ 2, namely, for r = 2. In fact, this last observation

holds for all monomial primes in VE,n, aside from the zero ideal and the maximal

monomial ideal for which E ′ = 1 will do; see the proof of Theorem III.44 below.

Despite Example III.33, Corollary III.2 does not give sharp multipliers in general.

Example III.34. For any n > 2, let R = F[Z,X1, . . . , Xn]/(Z2 − X1 · · ·Xn) as in
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Example III.10. Citing the proof of Theorem III.42, when P ⊆ R is any monomial

prime of height at least 2:

• P (r) = P r for all r > 0; however,

• The multiplier D′ corresponding to P in Lemma III.5 always satisfies D′ ≥ 2.

Theorem III.1 gives a uniform multiplier D that works for all monomial primes.

Even when this multiplier is sharp across all monomial primes, it need not be best

possible for all monomial primes of a given height, contrasting with Example III.33.

Example III.35. Let R = F[C∨∩Z3] = F[x, y, z, w]/(xy−zw), for the non-simplicial

cone C ⊆ R3 with e1, e2, e1 + e3, e2 + e3 as primitive generators. Theorem III.1

says P (2r−1) ⊆ P r for all r > 0 and all monomial primes in R, observing that

C∨ ∩ Z3 is minimally generated by B = {e1, e2, e3, (1, 1,−1)}. Given any height two

monomial prime P in R, these containments cannot be improved to P (r) = P r for

all r ≥ 2. For instance, if P = (x, y, z)R, then for any s ≥ 1, zs ∈ P (2s) − P 2s and

zs+1 ∈ P (2s+1) − P 2s+1: indeed, ws ∈ R − P and R can be standard graded, so the

least degree of a homogeneous element of P r is r. By contrast, P (r) = P r for all r

and for any height one monomial prime P in R: the invariant D′ = 1 in Lemma III.5

via direct computation.

Remark III.36. To reiterate, Carvajal-Rojas and Smolkin show D = 2 works for all

primes in R = F[x, y, z, w]/(xy − zw) over a perfect field F of positive characteristic

[11], translating to a verbatim analogue in characteristic zero. See also [56].

We do not currently see how to extend Theorems III.1 or III.14 to a form covering

all prime ideals. However, we now deduce results that make a bit of progress in this

direction. We work with select primes which are homogeneous with respect to the
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standard grading on a Segre – Veronese algebra. We start with the case of Segre

products of polynomial rings, where the proof is simpler to record.

Theorem III.37. Working over an algebraically closed field F, let R be the homo-

geneous coordinate ring of the image Σ ⊆ PA of Pn1 × · · · × PnT under the Segre

embedding map. Let P be any homogeneous prime ideal in R of height dim(R)− 1 =

n1 + · · ·+ nT . Then

(3.6) P (Tr) ⊆ P (T (r−1)+1) ⊆ P r

for all r > 0.

Proof. Consider the transitive action of G =
∏T

i=1 PGL(ni + 1,F) on
∏T

i=1 Pni and

the action of G on R via ring isomorphisms. Any prime P as stated corresponds to

a unique point in Pn1 × · · · × PnT . By transitivity, there exists some g ∈ G inducing

a ring isomorphism g : R → R such that g(P ) = P̃ where P̃ is the monomial prime

ideal corresponding to the torus-invariant point

([0 : · · · : 0 : 1], [0 : · · · : 0 : 1], . . . , [0 : · · · : 0 : 1]) ∈ Pn1 × · · · × PnT .

Since (3.6) holds for P̃ by Theorem III.14, by applying g−1 we conclude that (3.6)

holds for P as well.

Theorem III.38. Working over an algebraically closed field F, let R be the homo-

geneous coordinate ring of the image Σ ⊆ PA of Pn1 × · · · × PnT under the Segre –

Veronese embedding map determined by a line bundle O(D1, . . . , DT ) corresponding

to the degree sequence (D1, . . . , DT ) ∈ (Z≥1)T . Let P be any homogeneous prime

ideal in R of height dim(R)− 1 = n1 + · · ·+ nT . Then

(3.7) P (Er) ⊆ P (E(r−1)+1) ⊆ P r

for all r > 0, where the multiplier E :=
∑T

i=1Di.
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Proof. Let G = PGL(n1 + 1,F) × · · · × PGL(nT + 1,F). We note that G acts

transitively on the Segre – Veronese variety Σ. For R as stated, note that

R ⊆ S = F[uij : 1 ≤ i ≤ T, 0 ≤ j ≤ ni]

is the NT -graded subalgebra generated by monomials of degree (D1, . . . , DT )–degree

Di in the uij’s for a given i, each of which has degree Di · ei in terms of standard

basis vectors. We note that G acts on S and takes elements of degree (D1, . . . , DT )

to elements of degree (D1, . . . , DT ). Thus G acts on R.

A prime P = Px in R of height dimR − 1 corresponds to a point x in Σ. By

transitivity, there exists g ∈ G sending x to a torus-invariant point y ∈ Σ. The

corresponding ring isomorphism g : R → R sends Px to the monomial prime ideal

g(Px) = Py in R. Since (3.7) holds for Py by Theorem III.14 for E as stated, by

applying g−1 we conclude that (3.7) holds for Px as well.

Remark III.39. In Theorems III.37 and III.38, if F is not algebraically closed, the

statement still holds for homogeneous primes that remain prime after base changing

to the algebraic closure F; see Proposition IV.9 to aid in digesting this point.

3.6 Wrap Up: Further Example Computations

Several of the examples above refer to work going into proving the following

theorem in [69, Sec. 4]. We rehearse this work below for convenience.

Theorem III.40. Let S = F[x1, . . . , xn] (n ≥ 1) be a polynomial ring over an

arbitrary field F. Consider the finite extensions of normal toric rings VD ⊆ S ⊆ HD,

where

1. VD ⊆ S is the D-th Veronese subring with its standard N-grading, and

2. HD = F[z, x1, . . . , xn]/(zD − x1 · · ·xn) is a hypersurface ring.
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Then P (D(r−1)+1) ⊆ P r for all r > 0 and all monomial prime ideals P in each ring.

Theorem III.40 is easy if n = 1 orD = 1: all rings in sight are polynomial rings and

monomial primes are complete intersections. Thus going forward, we will assume

that n ≥ 2 and D ≥ 2. We will give presentations of our rings as subrings of the

domain of Laurent polynomials L = F[s±1
1 , . . . , s±1

n−1, u
±1] in n indeterminates over

the field F. The proof will proceed in cases, starting with the ring HD = F[x1,...,xn,z]
(zD−x1···xn)

.

In practice, we pick a basis e1, . . . , en of N with dual basis e∗1, . . . , e
∗
n for M , so that

both N and M are isomorphic to Zn. Then the pairing 〈·, ·〉 becomes dot product.

In the proofs of Theorems III.42 and III.44 below, we implicitly use the fact that

for any prime ideal P in a Noetherian ring R, P (E) = PE :R (s)∞ :=
⋃
j≥0(PE :R s

j)

for any s 6∈ P belonging to all associated primes of PE. See [13, Ch. 3] for details.

The Hypersurface Case:

We first observe that HD is a toric ring, up to isomorphism:

Lemma III.41. Consider the full-dimensional simplicial pointed rational polyhedral

cone σ
(n)
D ⊆ NR ∼= Rn whose ray generators are Dei + en ∈ N for 1 ≤ i < n and

en ∈ N in terms of the selected basis for N .

1. The Hilbert basis of the semigroup (σ
(n)
D )∨ ∩M consists of n+ 1 vectors: the n

dual basis vectors e∗1, . . . , e
∗
n, together with the vector −e∗1 · · ·− e∗n−1 +De∗n ∈M .

2. The toric ring F[(σ
(n)
D )∨ ∩M ] ∼= F[x1,...,xn,z]

(zD−x1···xn)
= HD.

Proof. The reader can use the hilbertBasis algorithm implemented in the Polyhedra

package in Macaulay2 [25] to check (1). For (2), recall that to each m =
∑n

i=1mie
∗
i ∈

(σ
(n)
D )∨ ∩M we assign a Laurent monomial χm = sm1

1 · · · s
mn−1

n−1 umn in the semigroup
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ring F[(σ
(n)
D )∨ ∩M ]. Given (1), in terms of F-algebra generators we have

F[(σ
(n)
D )∨ ∩M ] = F

[
s1, . . . , sn−1,

uD

(s1 · · · sn−1)
, u

]
⊆ F[s±1

1 , . . . , s±1
n−1, u

±1].

Given a polynomial ring R = F[x1, . . . , xn−1, xn, z] in n + 1 variables, consider the

surjective algebra map φ : R = F[x1, . . . , xn−1, xn, z] � F[(σ
(n)
D )∨ ∩M ] under which

xi 7→ si for each 1 ≤ i ≤ n − 1, xn 7→ uD

(s1···sn−1)
, and z 7→ u. Since dim(R) =

dim(F[(σ
(n)
D )∨ ∩M ]) + 1, we conclude that the kernel of φ is a height one prime in

the UFD R, and hence is principal. Now F = zD − x1 · · ·xn ∈ R is irreducible

by Eisenstein’s Criterion and belongs to the kernel of φ, so kerφ = (F ), and the

isomorphism claim follows.

We now deduce the following refinement of Theorem III.40 for HD:

Theorem III.42. Take the ring HD = F[x1, . . . , xn, z]/(z
D − x1 · · ·xn), and P one

of the monomial prime ideals of HD (i.e., M-graded /torus-invariant); assume P is

nonzero and nonmaximal. When D ≤ ht(P ) (the height of P ), P (E) = PE for all

E > 0. If D ≥ ht(P ) and E ≡ 1 (mod D), then

P (E) ⊆ P ht(P )(E−1
D )+1.

In particular, P (Dr) ⊆ P (D(r−1)+1) ⊆ P ht(P )(r−1)+1 ⊆ P r for all r > 0.

Proof. To start, the height j prime ideal Pj := (z, x1, . . . , xj)HD, for 1 ≤ j ≤ n− 1,

equals Pτ for the j-dimensional face τ of σ
(n)
D generated by Dei + en for 1 ≤ i ≤

j. As a saturation, P
(E)
j = PE

j :HD
(
∏n

i=j+1 xi)
∞. Since P

(E)
j is monomial, in

chasing down inclusions below it suffices to discern which monomial classes g =

(z`xa1
1 · · ·x

aj
j )(x

aj+1

j+1 · · · xann ) ∈ HD multiply a power of m =
∏n

i=j+1 xi into PE
j . For g
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as above, by definition g ∈ P (E)
j if and only if for all T � 0,

PE
j 3 mTg = z`

(
n∏

i=j+1

xai+Ti

)(
j∏
i=1

xaii

)

= z`

(
n∏
i=1

xi

)T ′ ( n∏
i=j+1

xai+T−T
′

i

)(
j∏
i=1

xai−T
′

i

)

=

(
zD·T

′+`

j∏
i=1

xai−T
′

i

)(
n∏

i=j+1

xai+T−T
′

i

)

where T ′ = T ′(T ) := min(a1, . . . , aj, aj+1 + T, . . . , an + T ) = min(a1, . . . , aj) for all

T � 0. We conclude that zD·T
′+`
(∏j

i=1 x
ai−T ′
i

)
∈ PE

j , and infer the inequality

(3.8) (D − j)T ′ +

(
j∑
i=1

ai

)
+ ` ≥ E.

Before proceeding, notice that since T ′ ≥ 0, when D ≤ j so that the number

(D−j)T ′ is nonpositive, (3.8) implies that
(∑j

i=1 ai

)
+` ≥ E, so (z`xa1

1 · · ·x
aj
j ) ∈ PE

j

and hence g ∈ PE
j already. Thus P

(E)
j = PE

j for all E > 0 when D ≤ j, since both

are generated by monomial classes. Thus in the remainder of the proof we will

assume that D ≥ j = ht(Pj), i.e., D − j ≥ 0.

In this case, assuming E ≡ 1 (mod D), we now show that P
(E)
j ⊆ P

1+j(E−1
D )

j . Fix

a monomial

g =

(
z`

j∏
i=1

xaii

)(
n∏

i=j+1

xaii

)
∈ P (E)

j ,

and T ′ = min(a1, . . . , aj) exactly as before. Now g ∈ PG
j where G := ` +

∑j
i=1 ai.

The more involved case for us is when (**) T ′ ≤ (E − 1)/D: otherwise

G ≥ a1 + · · ·+ aj ≥ jT ′ ≥ j(E − 1)/D + 1,

whence one easily infers that g ∈ P
j(E−1

D )+1

j . Assuming (**), we now show that

G ≥ j
(
E−1
D

)
+ 1. Suppose to the contrary that G ≤ j

(
E−1
D

)
. Since g ∈ P

(E)
j ,
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inequality (3.8) above says

(D − j)T ′ +G = (D − j)T ′ +

(
j∑
i=1

ai

)
+ ` ≥ E =⇒ G ≥ E − (D − j)T ′.

Then since E − 1−DT ′ ≥ 0 by (**), and D − j ≥ 0, we see that

j (E − 1) = Dj

(
E − 1

D

)
≥ DG ≥ DE −D(D − j)T ′

= D(E − 1) +D −D(D − j)T ′

= j(E − 1) +D + (D − j)(E − 1−DT ′)

≥ j(E − 1) +D + (D − j)(0)

= j(E − 1) +D

a contradiction. Thus G ≥ j
(
E−1
D

)
+ 1, so g ∈ P 1+j(E−1

D )
j . In particular, when E =

D(r − 1) + 1, we have P
(D(r−1)+1)
j ⊆ P

1+j(r−1)
j . Finally, applying coordinate changes

according to every permutation of x[n] := {x1, . . . , xn}, any (nonzero, nonmaximal)

monomial prime ideal in HD can be obtained from the Pj running through all indices

1 ≤ j ≤ n− 1, along with obtaining the desired containments.

The Veronese Case:

Let N = Z≥0 denote the set of nonnegative integers. To start,

Lemma III.43. Consider the full-dimensional simplicial pointed rational polyhedral

cone η
(n)
D ⊆ NR ∼= Rn whose ray generators are ei for 1 ≤ i < n along with the vector

−e1 − . . .− en−1 +Den in terms of the basis selected for N .

1. The Hilbert basis of the semigroup (η
(n)
D )∨ ∩M is the set of vectors{

e∗n +
n−1∑
i=1

aie
∗
i ∈M : all ai ≥ 0 and 0 ≤

n−1∑
i=1

ai ≤ D

}
.

2. The toric ring F[(η
(n)
D )∨∩M ] ∼= VD, the D-th Veronese subring of the polynomial

ring F[s1, . . . , sn−1, u] in the n indeterminates s1, . . . , sn−1, u.
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Proof. The reader can use the hilbertBasis algorithm implemented in the Polyhedra

package in Macaulay2 [25] to check (1). Given (1), as an algebra over F, we have

F[(η
(n)
D )∨ ∩M ] = F

[
sa1

1 · · · s
an−1

n−1 u : each ai ≥ 0, 0 ≤
n−1∑
i=1

ai ≤ D

]
∼=

F[x(a1,...,an−1) : each ai ≥ 0, 0 ≤
∑n−1

i=1 ai ≤ D]

(xexf − xgxh : e+ f = g + h ∈ Nn−1)
.

Within the polynomial ring F[s1, . . . , sn−1, u], applying the correspondence

sa1
1 · · · s

an−1

n−1 u←→ sa1
1 · · · s

an−1

n−1 u
D−a1−···−an−1

takes the generators in the presentation of F[(η
(n)
D )∨ ∩ M ] and recovers the usual

presentation of VD in terms of degree D monomials in n variables. Therefore, (2)

holds: F[(η
(n)
D )∨ ∩M ] ∼= VD.

We use the toric presentation of VD to deduce the following refinement of Theorem

(III.40) for VD:

Theorem III.44. Over an arbitrary field F, take the D-th Veronese subring VD ⊆

F[s1, . . . , sn−1, u] and P one of the monomial prime ideals of VD. When P is nonzero

and nonmaximal, P (E) ⊆ P r if and only if r ≤ dE/De. In particular, P (Dr) ⊆

P (D(r−1)+1) ⊆ P r for all r > 0 and the right-hand containment is sharp.

Proof. For all 1 ≤ j ≤ n− 1, define height one primes

Pj = Pej =

(
sa1

1 · · · s
an−1

n−1 u : aj > 0, and 1 ≤
n−1∑
b=1

ab ≤ D

)
VD.

Then by the Minkowski sum-ideal sum decomposition (3.3) Pj1<···<jk := Pj1 +

· · · + Pjk is a prime of height 1 ≤ k ≤ n − 1 for each size-k subset j1 < . . . < jk of

[n−1] = {1, . . . , n−1}. In particular, we focus on P1<···<k = (sāu : ā ∈ Tk)VD, where

Tk :=

{
ā = (a1, . . . , an−1) ∈ Nn−1 : 1 ≤

k∑
b=1

ab ≤
n−1∑
b=1

ab ≤ D

}
.
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Any monomial g in P
(E)
1<···<k ⊆ P1<···<k ⊆ P1<···<n−1 belongs to P1<···<k and so decom-

poses (for some B ≥ 0) as

g = uB
∏

ā∈Tn−1

(sāu)iā =
∏
ā∈Tk

(sāu)iā

uB ∏
ā∈Tn−1−Tk

(sāu)iā

 ∈ P∑
ā∈Tk

iā

1<···<k .

Note that this factorization of g into two monomial pieces (Tk versus Tn−1 − Tk) is

unique up to applying the Veronese relations sēu · sf̄u = sḡu · sh̄u (ē+ f̄ = ḡ + h̄).

Setting the monomial m := u ·
∏

ā∈Tn−1−Tk s
āu ∈ VD to be the product of the

monomials sa1
1 · · · s

an−1

n−1 u with aj = 0 for all 1 ≤ j ≤ k(≤ n − 1), we have P
(E)
1<···<k =

PE
1<···<k :VD (m)∞, and the monomial g is in P

(E)
1<···<k precisely when for all T � 0,

g ·mT =

(
uB+T

∏
ā∈Tk

(sāu)iā

) ∏
ā∈Tn−1−Tk

(sāu)iā+T ∈ PE
1<···<k.

In particular, the monomial in parentheses is in PE
1<···<k so it is a multiple of some

E-fold product of generators of P1<···<k = (sāu : ā ∈ Tk)VD. Thus we infer that two

inequalities must hold, signifying we have enough u’s and sj’s (1 ≤ j ≤ k) at our

disposal, respectively, to feasibly form such a E-fold product. These inequalities are

(1)
∑

ā∈Tk iā +B + T ≥ E, and (2) the sum

∑
ā∈Tk

iā(a1 + · · ·+ ak) =
D∑
j=1

`j · j ≥ E,

where `j :=
∑

ā∈Tk,j iā, Tk,j := {ā ∈ Tk : the partition a1 + · · ·+ ak = j}. Indeed,

E ≤
D∑
j=1

`j · j ≤ D

(
D∑
j=1

`j

)
=⇒

D∑
j=1

`j ≥ dE/De,

so (2) implies that (3)
∑

ā∈Tk iā =
∑D

j=1 `j ≥ dE/De.1 For any monomial g ∈

P
(E)
1<···<k, (3) implies that g ∈ P dE/De1<···<k. Thus P

(E)
1<···<k ⊆ P

dE/De
1<···<k for all E > 0.

1Together, inequalities (1) and (3) are equivalent to

∑
ā∈Tk

iā =
D∑

j=1

`j ≥ max{dE/De, E − (B + T )} ≡ dE/De for all T ≥ E.
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Additionally if we consider R with its standard N-grading, then the minimal

degree of a monomial (e.g., a monomial generator) in P r
1<···<k is r. Noticing that for

1 ≤ j ≤ k, the degree dE/De monomial (sDj u)dE/De ∈ PE
1<···<k : (u(E+1)−dE/De) ⊆

PE
1<···<k : (m(E+1)−dE/De) ⊆ P

(E)
1<···<k, we obtain the only-if part of: for each 1 ≤ k ≤ n,

P
(E)
1<···<k ⊆ P r

1<···<k if and only if r ≤ dE/De.

Setting E = Dr − (D − 1) = D(r − 1) + 1, we have dE/D = (r − 1) + 1/De = r,

so that P
(Dr−(D−1))
1<···<k ⊆ P r

1<···<k for all r > 0 and this containment is sharp.

In review, our argument does not depend crucially on which size-k index subset

j1 < . . . < jk of [n] = {1, 2, . . . , n} we worked with; going with 1 < 2 < . . . < k merely

simplifies notation. In other words, in applying suitable permutations of the algebra

generators for VD, one obtains the above characterization of ideal containment for

all of the monomial prime ideals in the ring having one of the Pj as an ideal

summand. To handle monomial primes having the height one prime

P(−1,...,−1,D) =

(
sa1

1 · · · s
an−1

n−1 u : 0 ≤
n−1∑
i=1

ai ≤ D − 1

)

as a summand, we use the F-algebra isomorphisms φj : VD → VD (1 ≤ j ≤ n − 1)

under which a monomial algebra generator g = sa1
1 · · · s

aj
j · · · s

an−1

n−1 u with 0 ≤ A :=∑n−1
i=1 ai ≤ D is sent to

φj(g) =



sa1
1 · · · sD−Aj · · · san−1

n−1 u if A ≤ D − 1 and aj = 0

sa1
1 · · · s0

j · · · s
an−1

n−1 u if A = D and aj > 0

g if A ≤ D − 1 and aj > 0

g if A = D and aj = 0.

We note that φ2
j = φj ◦φj is the identity, and the height one prime φj(P(−1,...,−1,D)) =

Pj: indeed, when h = sa1
1 · · · s

aj
j · · · s

an−1

n−1 u is a generator of Pj, aj > 0; when A ≤



65

D − 1, h = φj(h), or else D − A = 0, aj = D −
(∑

1≤i 6=j≤n−1 ai

)
> 0, and h =

φj(g) where g = sa1
1 · · · s0

j · · · s
an−1

n−1 u ∈ P(−1,...,−1,D). Moreover, we conclude that a

(sharp) containment Q(m) ⊂ Qr for any monomial prime Q with Pj as a summand

translates under φj to a (sharp) containment (Q′)(m) ⊂ (Q′)r for a monomial prime

Q′ of the same height as Q, with P(−1,...,−1,D) replacing Pj as an ideal summand.

Having analyzed ideals with one of the Pj as a summand quite thoroughly, this final

observation completes the proof.

To close the chapter, we now account for divisor class group computations cited

in select examples recorded earlier.

Remark III.45. With notation as in Theorem III.23 and in the first paragraph of the

proof of Theorem III.28, we note that if C ⊆ NR is a full pointed rational polyhedral

cone, then we have the following presentation for the divisor class group:

Cl(F[C∨ ∩M ]) ∼=
⊕

ρ∈Σ(1) Z · [Dρ]

〈
∑

ρ∈Σ(1)〈e∗i , uρ〉[Dρ] = 0: 1 ≤ i ≤ n〉
,

where the e∗i ∈M form the dual basis to the basis e1, . . . , en ∈ N chosen in N .

Example III.46. We work with the polyhedral cones in the proof of Theorem III.40,

showing that Cl(HD) ∼= (Z/DZ)n−1 and Cl(VD) ∼= Z/DZ. Although these class

group facts are well known in certain circles and can be deduced by other means (see

e.g., [61]), for completeness of exposition we include succinct computations.
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1. The cone σ
(n)
D ⊆ NR has ray generators fi = Dei + en for 1 ≤ i < n and en, and

Cl(F[(σ
(n)
D )∨ ∩ Zn]) ∼=

Z · [Den ]⊕
⊕n−1

i=1 Z · [Dfi ]

〈D[Dfi ] = 0 (1 ≤ i < n), [Den ] = −[Df1 ]− · · · − [Dfn−1 ]〉

∼=
Z · −[Df1 ]− · · · − [Dfn−1 ]⊕

⊕n−1
i=1 Z · [Dfi ]

〈D[Df1 ] = 0, . . . , D[Dfn−1 ] = 0〉

=

⊕n−1
i=1 Z · [Dfi ]

〈D[Df1 ] = 0, . . . , D[Dfn−1 ] = 0〉

∼= (Z/DZ)n−1.

2. The cone η
(n)
D ⊆ NR has ray generators ei for 1 ≤ i < n and fn = Den−

∑n−1
i=1 ei,

and

Cl(F[(η
(n)
D )∨ ∩ Zn]) ∼=

Z · [Dfn ]⊕
⊕n−1

i=1 Z · [Dei ]

〈[Dei ]− [Dfn ] = 0 (1 ≤ i < n), D[Dfn ] = 0〉

∼=
Z · [Dfn ]

〈D[Dfn ] = 0〉

∼= (Z/DZ).



CHAPTER IV

Uniform Symbolic Topologies via Multinomial Expansions

This chapter consolidates the relevant material in our paper [71]. The following

theorem is the main result of this chapter – a ready and cost-effective half-measure

to partially address Question II.18 from the close of Chapter II.

Theorem IV.1. Let F be an algebraically closed field. Let R1, . . . , Rn (n ≥ 2) be

affine commutative F-algebras which are domains. Suppose that for each 1 ≤ i ≤ n,

there exists a positive integer Di such that for all prime ideals P in Ri, either:

1. P (Dir) ⊆ P r for all r > 0 and for all i; or, even stronger,

2. P (Di(r−1)+1) ⊆ P r for all r > 0 and for all i.

Fix any n prime ideals Pi in Ri, and consider the expanded ideals P ′i = PiT in the

affine domain T = (
⊗

F)ni=1Ri, along with their sum Q =
∑n

i=1 P
′
i in T . Then:

(a) When (1) holds, Q(Dr) ⊆ Qr for all r > 0, where D = D1 + · · ·+Dn.

(b) When (2) holds, this improves to Q(D(r−1)+1) ⊆ Qr for all r > 0, where instead

D = max{D1, . . . , Dn}.

We previously discussed and illustrated the intended mode of application of this

theorem in Chapter I, and thus will not repeat ourselves later in the chapter.

67
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We first record the relevant preliminaries to prove this result, culminating in a

proof of the Symbolic Power Multinomial Theorem IV.11 which inspires the title of

the chapter. Our main theorem is then deduced as a swift corollary of Theorem

IV.11. We close the chapter with a few remarks, in particular, tying our work to

that of Há – Nguyen – Trung – Trung in [28].

The reader is invited to revisit the list of Conventions I.45 as appropriate.

4.1 Preliminaries, the Symbolic Power Multinomial Theorem

Torsion free modules over Noetherian Domains

A module M over a domain R is torsion free if whenever rx = 0 for some

x ∈ M and r ∈ R, then either r = 0 or x = 0. We first record a lemma on torsion

free modules to be used both here and in the next subsection (cf., Lemmas 15.6.7-8

from the Stacks Project page [5] on torsion free modules):

Lemma IV.2. Let R be a Noetherian domain. Let M be a nonzero finitely generated

R-module. Then the following assertions are equivalent:

1. M is torsion free;

2. M is a submodule of a finitely generated free module;

3. (0) is the only associated prime of M, i.e., AssR(M) = {(0)}.

Working over an arbitrary field F, we fix two affine F-algebras R and S which are

domains. The tensor product T = R⊗F S will be an affine F-algebra. The F-algebra

T is a domain when F is algebraically closed (Milne [52, Prop. 4.15]). We note that

when R and S are duly nice (e.g., polynomial, or normal toric rings more generally),

T is a domain over any field. We now record two additional lemmas.

http://stacks.math.columbia.edu/tag/0549
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Lemma IV.3. Suppose that all three of R, S, and T = R ⊗F S are affine domains

over a field F. If M and N are finitely generated torsion free modules over R and S,

respectively, then M ⊗F N is a finitely generated torsion free T -module.

Proof. Viewed as vector spaces, M⊗FN = 0 if and only if M = 0 or N = 0, in which

case torsion freeness is vacuous. So we will assume all three of M,N, and M ⊗F N

are nonzero. Per Lemma IV.2, suppose we have embeddings M ⊆ Ra and N ⊆ Sb.

Apply the functor • ⊗F N to the first inclusion to get M ⊗ N ⊆ Ra ⊗ N , which

in turn is contained in Ra ⊗ Sb by tensoring the inclusion N ⊆ Sb with Ra. Thus

M ⊗ N ⊆ Ra ⊗ Sb ∼= (R ⊗ S)ab = T ab, where the isomorphism is easily checked in

the category of F-vector spaces since direct sum commutes with tensor product. Of

course, this inclusion holds in the category of T -modules, and all T -submodules of

T ab are finitely generated since T is Noetherian, so we are done by invoking Lemma

IV.2 again.

Lemma IV.4. For any prime P in any Noetherian ring A, the finitely generated

module P (a)/P (a+1) is torsion free as an A/P -module for all integers a ≥ 0.

Proof. Say x ∈ (P (a)/P (a+1)) is killed by r ∈ A/P . This means, lifting to A, that

x ∈ P (a) and rx ∈ P (a+1). Localize at P . Then rx ∈ P (a+1)AP = P a+1AP . If

r 6∈ P , this means x ∈ P a+1AP ∩ A = P (a+1). That is, either r = 0 in A/P or

otherwise, x = 0 in (P (a)/P (a+1)). Ergo by definition, (P (a)/P (a+1)) is a torsion-free

A/P -module.

Finally, we record a consequence of Lemma IV.3 that will be important in the

next subsection. The following proposition follows immediately from Lemmas IV.3

and IV.4
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Proposition IV.5. Suppose that all three of R, S, and T = R ⊗F S are affine

domains over a field F. Fix two prime ideals P and Q in R and S respectively, such

that the affine F-algebra T ′ = (R/P )⊗F (S/Q) is a domain. Then (P (a)/P (a+1))⊗F

(Q(b)/Q(b+1)) is finitely generated and torsion free over T ′ for any pair of nonnegative

integers a and b.

USTP Preservation along Faithfully Flat Maps

Picking up from Remark I.42, we state a result first proved in [69, Prop. 2.1]: it

provides a convenient setup for preserving containments of the type I(N) ⊆ Ir along

a faithfully flat ring extension. Consider a flat map φ : A → B of Noetherian rings.

In what follows, the ideal JB := 〈φ(J)〉B for any ideal J in A, and JrB = (JB)r for

all r ≥ 0 since the two ideals share a generating set. For any A-module E, the proof

of Theorem 23.2 (ii) in Matsumura [49] shows that

(4.1) AssB(E ⊗A B) =
⋃

P∈AssA(E)

AssB(B/PB).

We define a set

I(A) = {proper ideals I ⊆ A : AssB(B/IB) = {PB : P ∈ AssA(A/I)}}.

Setting the module E = A/I in (4.1), we observe that I ∈ I(A) if and only if

the extended ideal PB is prime for all P ∈ AssA(A/I). That PB is prime is not

automatic, per the example following our proof of

Proposition IV.6. Suppose φ : A→ B is a faithfully flat map of Noetherian rings.

Then for each I ∈ I(A) and all integer pairs (N, r) ∈ (Z≥0)2, we have

(4.2) I(N)B = (IB)(N),

and I(N) ⊆ Ir if and only if (IB)(N) = I(N)B ⊆ IrB = (IB)r.
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Proof. First, I(N)B ⊆ (IB)(N): indeed, if f ∈ I(N), then sf ∈ IN for some s ∈ A

such that

s 6∈
⋃

P∈AssA(A/I)

P
(?)
=

⋃
P∈AssA(A/I)

(PB ∩ A) =

 ⋃
P∈AssA(A/I)

PB

 ∩ A
where (?) holds by faithful flatness. Thus s 6∈

⋃
P∈AssA(A/I) PB =

⋃
Q∈AssB(B/IB) Q,

where equality holds since I ∈ I(A) by hypothesis. We thus conclude that f ∈

(IB)(N).

By definition, (IB)(N)BW = (IB)NBW = INBW since all three ideals contract to

(IB)(N), where BW is the localization of B at the multiplicative system

W = B −

 ⋃
Q∈AssB(B/IB)

Q

 = B −

 ⋃
P∈AssA(A/I)

PB

 .

Notice that since I(N)B ⊆ (IB)(N), the right-hand containment holds in

INBW ⊆ I(N)BW = (I(N)B)BW ⊆ (IB)(N)BW = INBW .

Thus I(N)B and (IB)(N) localize to the same ideal INBW ; contracting back to B,

we conclude that (4.2) holds for all N ≥ 0. Finally, (4.2) gives both implications of

the second part of the proposition, adducing faithful flatness once more to contract

an ideal containment to A.

Remark IV.7. Two remarks in passing: on the one hand, when B is a polynomial

ring in finitely many variables over a Noetherian ring A, the set I(A) consists of all

proper ideals in A; on the other hand, I(A) may miss some proper ideals relative to

an arbitrary faithfully flat ring extension.

Example IV.8. The extension

R =
R[x]

(x2 + 1)
↪→ C⊗R R ∼=

C[x]

(x2 + 1)
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is faithfully flat over R, since R is free and hence faithfully flat over R; the zero ideal

in R is maximal, hence prime, but it fails to extend to a primary ideal of C[x]
(x2+1)

as

(x2 + 1) = (x+ i) ∩ (x− i) in C[x].

We now define the set P(A) = {prime ideals P ⊆ A : PB is prime} to consist of

prime ideals that extend along φ to prime ideals of B. A special case of the above

proposition to be used below is the following

Proposition IV.9. Suppose φ : A→ B is a faithfully flat map of Noetherian rings.

Then for each prime ideal P ∈ P(A) and all integer pairs (N, r) ∈ (Z≥0)2, we have

(4.3) P (N)B = (PB)(N),

and P (N) ⊆ P r if and only if (PB)(N) = P (N)B ⊆ P rB = (PB)r.

When B is a polynomial ring in finitely many variables over A and φ is inclusion,

P(A) = Spec(A). It is possible that P(A) 6= Spec(A) in Proposition IV.9, per

Example IV.8 above. Working over a field F, we use Proposition IV.9 when B =

A ⊗F C for two affine F-algebras, so B is an affine F-algebra; when A and C are

domains and F is algebraically closed, B is a domain, P(A) = Spec(A) and P(C) =

Spec(C).

Proving the Multinomial Theorem

Working over an algebraically closed field F, we fix two affine F-algebras R and S

that are domains, and two prime ideals P ⊆ R, Q ⊆ S. Let

T = R⊗ S ⊇ P ⊗ S +R⊗Q =: PT +QT, T ′ = (R/P )⊗ (S/Q) ∼= T/(PT +QT ),

where all tensor products are over F. Both T and T ′ are affine domains over F.

Because F is algebraically closed, the extended ideals PT,QT are both prime, along

with their sum PT + QT . We cannot relax the assumption that F is algebraically
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closed to its merely being perfect. For instance, R is perfect (being of characteristic

zero), and along the ring extension

S :=
R[x]

(x2 + 1)
∼= C ↪→ T :=

C[x]

(x2 + 1)
∼= C⊗R S ∼= C⊗R C

the zero ideal of S (which is maximal) extends to a radical ideal which is not prime.

We now prove a binomial theorem for the symbolic powers of PT +QT .

Theorem IV.10. For all n ≥ 1, the symbolic power

(PT +QT )(n) =
∑
a+b=n

(PT )(a)(QT )(b).

Proof. We’ll drop the T ’s from the notation, and we will assume that both P,Q are

nonzero to justify the effort. For 0 ≤ c ≤ n, set Jc =
∑c

t=0 P
(c−t)Q(t), so Jc ⊆ Jc−1

for all 1 ≤ c ≤ n, since P (c−t) ⊆ P (c−1−t) for t ≤ c − 1 and for t = c, Q(c) ⊆ Q(c−1).

Note that

(P +Q)n =
∑
a+b=n

P aQb ⊆ Jn =
∑
a+b=n

P (a)Q(b)
(!)

⊆ (P +Q)(n),

and (!) is easy to verify term-by-term for each P (a)Q(b). Indeed, P (a)Q(b) is generated

by elements of the form fg with f ∈ P (a) ⊂ R and g ∈ Q(b) ⊂ S (viewing them

as elements of T ). We need fg ∈ (P + Q)(a+b). Per Proposition IV.9, there exist

u ∈ R − P and v ∈ S − Q such that uf ∈ P a and vg ∈ Qb. Viewing u and

v as elements of the overring T , we have uv 6∈ (P + Q). Indeed, since P + Q is

prime, if uv ∈ P + Q, then either u or v is in P + Q, but (P + Q)T ∩ R = P

and (P + Q)T ∩ S = Q, contradicting that u 6∈ P and v 6∈ Q. Therefore, in T ,

(uf)(vg) = (uv)(fg) ∈ P aQb ⊂ (P + Q)a+b, which means fg ∈ (P + Q)(a+b). Thus

(!) holds, and notably Jn is a proper ideal–read, Jn $ T .

Since Jn contains (P +Q)n, and (P +Q)(n) is the smallest (P +Q)-primary ideal

containing (P + Q)n, the opposite inclusion to (!) will follow once we show that Jn
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is (P + Q)-primary, i.e., that the set of associated primes AssT (T/Jn) = {P + Q}.

We have short exact sequences of T -modules

0→ Jc−1/Jc → T/Jc → T/Jc−1 → 0, for all 1 ≤ c ≤ n.

Thus AssT (Jc−1/Jc) ⊆ AssT (T/Jc) ⊆ AssT (Jc−1/Jc)∪AssT (T/Jc−1) for all 1 ≤ c ≤ n,

using the fact that given an inclusion of modules N ⊆M ,

Ass(N) ⊆ Ass(M) ⊆ Ass(N) ∪ Ass(M/N).

Thus by iterative unwinding and using that J0 = T , i.e., AssT (T/J0) = ∅, we

conclude that

∅ 6= AssT (T/Jn) ⊆
n⋃
c=1

AssT (Jc−1/Jc).(4.4)

Taking all direct sums and tensor products over F, we have a series of vector space

isomorphisms

Jc−1/Jc ∼=
⊕

a+b=c−1

[P (a)/P (a+1) ⊗Q(b)/Q(b+1)], 1 ≤ c ≤ n.(4.5)

We prove this first, considering two chains of symbolic powers, where each ideal is

expressed as a direct sum of F-vector spaces:

P (c) = V0 ⊆ P (c−1) = V0 ⊕ V1 ⊆ . . . ⊆ P (0) = R = V0 ⊕ · · · ⊕ Vc,

Q(c) = W0 ⊆ Q(c−1) = W0 ⊕W1 ⊆ . . . ⊆ Q(0) = S = W0 ⊕ · · · ⊕Wc.

In particular, for all pairs 0 ≤ a, b ≤ c− 1,

P (a) =
c−a⊕
i=0

Vi, P (a+1) =
c−a−1⊕
i=0

Vi, Q(b) =
c−b⊕
j=0

Wj, Q(b+1) =
c−b−1⊕
j=0

Wj.

For any pair a, b as above with a+ b = c− 1, c− b = a+ 1, and so

⊕
a+b=c−1

P (a)

P (a+1)
⊗F

Q(b)

Q(b+1)
∼=

⊕
a+b=c−1

Vc−a ⊗Wc−b =
c−1⊕
a=0

Vc−a ⊗Wa+1.
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We now prove (4.5) by killing off a common vector space. First,

Jc−1 =
∑

a+b=c−1

P (a)Q(b) =
⊕

0≤a≤c−1
0≤i≤c−a,0≤j≤a+1

Vi ⊗Wj

=
⊕

0≤a≤c−1
0≤i<c−a or 0≤j<a+1

(Vi ⊗Wj) ⊕
c−1⊕
a=0

Vc−a ⊗Wa+1,

while Jc =
∑
a+b=c

P (a)Q(b) =
⊕

0≤a≤c
0≤i≤c−a,0≤j≤a

Vi ⊗Wj.

Identifying repeated copies of a Vi ⊗ Vj term with i+ j ≤ c (we can do this since we

are working with vector subspaces of the ring T ), it is straightforward to check that

the boxed sums are equal. Thus for each 1 ≤ c ≤ n, we have canonical isomorphisms

of F-vector spaces:

Jc−1/Jc ∼=
c−1⊕
a=0

Vc−a ⊗Wa+1
∼=

⊕
a+b=c−1

P (a)

P (a+1)
⊗F

Q(b)

Q(b+1)
.

Therefore, since for each 1 ≤ c ≤ n there is a natural surjective T -module map

(hence F-linear)

⊕
a+b=c−1

[P (a)/P (a+1) ⊗Q(b)/Q(b+1)]→ Jc−1/Jc,

this map must be injective per isomorphism (4.5). Thus for all 1 ≤ c ≤ n,

AssT (Jc−1/Jc) =
⋃

a+b=c−1

AssT [P (a)/P (a+1) ⊗Q(b)/Q(b+1)].

For any 1 ≤ c ≤ n such that Jc−1/Jc 6= 0, i.e., AssT (Jc−1/Jc) 6= ∅, in turn the

above identity implies that one of the modules P (a)/P (a+1) ⊗Q(b)/Q(b+1) is nonzero,

in which case

(4.6) AssT (Jc−1/Jc) =
⋃

a+b=c−1

AssT [P (a)/P (a+1) ⊗Q(b)/Q(b+1)] = {P +Q}.
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To explain the right-hand equality: for any pair (a, b) ∈ (Z≥0)2, Proposition IV.5

says that

Ma,b := P (a)/P (a+1) ⊗Q(b)/Q(b+1)

is a finitely generated torsion-free module over T ′ = (R/P ) ⊗ (S/Q) ∼= T/(P + Q);

thus when Ma,b 6= 0, we have AssT/(P+Q)(Ma,b) = {(0)} by Lemma IV.2: that is,

AssT (Ma,b) = {P +Q}.

Finally, combining (4.6) with the inclusion (4.4) for AssT (T/Jn) 6= ∅–recall, Jn is

a proper ideal, we conclude that AssT (T/Jn) =
⋃n
c=1 AssT (Jc−1/Jc) = {P +Q}, that

is, the ideal Jn is (P + Q)-primary as was to be shown. Thus Jn ⊇ (P + Q)(n), and

indeed this is an equality.

We now deduce a multinomial theorem by induction on the number of tensor

factors:

Theorem IV.11. Let F be an algebraically closed field. Let R1, . . . , Rn (n ≥ 2) be

affine commutative F-algebras which are domains. Fix any n prime ideals Pi in Ri,

and consider the expanded ideals P ′i = PiT in the affine domain T = (
⊗

F)ni=1Ri.

Then the symbolic power

(4.7)

(
n∑
i=1

P ′i

)(N)

=
∑

A1+···+An=N

n∏
i=1

(P ′i )
(Ai) for any N ≥ 0.

Proof. Induce on the number n of tensor factors with base case n = 2 being Theorem

IV.10. Now suppose n ≥ 3, and assume the result for tensoring up to n− 1 factors.

Suppose that R = R1 and S = R2⊗F · · ·⊗FRn, and that we have an expansion result

in S of the form

(4.8)

(
n∑
i=2

Pi

)(N)

=
∑

A2+...+An=N

n∏
i=2

P
(Ai)
i for all nonnegative integers N
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for n − 1 primes Pi ⊆ Ri (2 ≤ i ≤ n). The sum Q :=
∑n

i=2 Pi is prime along

with all extensions of the Pi to S. Given a prime P = P1 in R, the sum P + Q is

prime in T = R ⊗F S, together with all extensions PiT and QT being prime. The

first equality below holds by Theorem IV.10, and applying Proposition IV.9 to the

extension φ : S ↪→ T , the second equality holds by (4.8):

(P +Q)(N) =
∑

A1+B=N

P (A1)Q(B) =
N∑

A1=0

P
(A1)
1

( ∑
A2+...+An=N−A1

n∏
i=2

P
(Ai)
i

)

⊆
∑

A1+A2+...+An=N

n∏
i=1

P
(Ai)
i ,

using the fact that I(J+K) ⊆ IJ+IK whenever I, J,K are ideals in a commutative

ring. This proves the n-fold version of the hard inclusion in the proof of Theorem

IV.10; deducing the opposite inclusion is about as easy as before, hence the above

inclusion is an equality.

4.2 Proving the Main Theorem, Closing Remarks

Before proceeding, we record the following handy result, an asymptotic conversion

lemma [69, Lem. 3.3]:

Lemma IV.12. Given any proper ideal I in a Noetherian ring S, and E ∈ Z≥0,

(1) I(N) ⊆ IdN/Ee for all N ≥ 0 ⇐⇒ (2) I(E(r−1)+1) ⊆ Ir for all r > 0.

Proof. The case N = 0 is trivial (the unit ideal is contained in itself), so we show

equivalence when N > 0. Given r > 0, setting N = E(r − 1) + 1 in (1) gives (2).

That (2) implies (1) follows from noticing that for any two positive integers N, r, we

have r = dN/Ee if and only if N = E(r−1) + j for some 1 ≤ j ≤ E, and I(m) ⊆ I(n)

when m ≥ n.
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We now use the Multinomial Theorem IV.11 to deduce a corollary. Note that

Theorem IV.1 is the version of this corollary where all tensor factors are assumed to

satisfy uniform symbolic topologies on primes.

Corollary IV.13. Let F be an algebraically closed field. Let R1, . . . , Rn (n ≥ 2)

be affine commutative F-algebras which are domains. Fix n primes Pi ⊆ Ri, and

consider the expanded ideals P ′i = PiT in the affine domain T = (
⊗

F)ni=1Ri; set

Q =
∑n

i=1 P
′
i . Suppose that for each 1 ≤ i ≤ n, there exists a positive integer Di

such that either:

1. P
(Dir)
i ⊆ P r

i for all r > 0 and for all i; or, even stronger,

2. P
(Di(r−1)+1)
i ⊆ P r

i for all r > 0 and for all i.

When (1) holds, Q(Dr) ⊆ Qr for all r > 0, where D = D1 + · · · + Dn. When (2)

holds, this improves to Q(D(r−1)+1) ⊆ Qr for all r > 0, where D = max{D1, . . . , Dn}.

Proof. Assume (1) holds. Per Theorem IV.11 note that for D = D1 +D2 + · · ·+Dn,

Q(Dr) =
∑

A1+A2+···+An=D1r+D2r+···+Dnr

n∏
i=1

(P ′i )
(Ai).

In each n-tuple of indices (A1, . . . , An), we must have that Aj ≥ Djr for some j,

otherwise
∑n

i=1Ai <
∑n

i=1Dir, a contradiction. Thus each summand
∏n

i=1(P ′i )
(Ai)

will lie in some (P ′j)
r applying (1) and Proposition IV.9, and hence also in Qr. Since

r > 0 was arbitrary, we win.

If (2) holds, then P
(D(r−1)+1)
i ⊆ P r

i for all r > 0 and all i, where D = max1≤i≤nDi,

so equivalently per Lemma IV.12 and Proposition IV.9, for all n-tuples (A1, . . . , An) ∈

(Z≥0)n, we have containments (P ′i )
(Ai) ⊆ (P ′i )

dAi/De ⊆ QdAi/De. For all nonnegative
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integers N , per Theorem IV.11

Q(N) =
∑

A1+···+An=N

n∏
i=1

(P ′i )
(Ai) ⊆

∑
A1+···+An=N

n∏
i=1

(P ′i )
dAi/De

⊆
∑

A1+···+An=N

n∏
i=1

QdAi/De ⊆ QdN/De,

since the integer
∑n

i=1dAi/De ≥ d(
∑n

i=1 Ai)/De = dN/De for all n-tuples (A1, . . . , An) ∈

(Z≥0)n with
∑n

i=1Ai = N . Thus equivalently, Q(D(r−1)+1) ⊆ Qr for all r > 0 by

Lemma IV.12.

Remark IV.14. We get a much stronger conclusion in Corollary IV.13 when (2) holds.

This is because we can then give a proof using Lemma IV.12 as a workaround. It is

less clear what the strongest conclusion to shoot for is when (1) holds. We note that

if (1) holds under Corollary IV.13, then setting D = maxDi, one can alternatively

prove by contradiction that

Q(n(Dr−1)+1) ⊆ Qr for all r > 0.

In part (1) of the proof above, simply adjust the claim “Aj ≥ Djr for some j” to

“Aj ≥ Dr for some j.” Otherwise, some tuple satisfies n(Dr − 1) + 1 =
∑n

i=1Ai ≤

n(Dr − 1), a contradiction.

Remark IV.15. One can state variants of Theorem IV.1 and Corollary IV.13 when

F is not algebraically closed. One instead assumes that after base changing to the

algebraic closure, the tensor product T is a domain along with T⊗FF, and the primes

Pi remain prime when expanded to Ri ⊗ F. See Proposition IV.9.

Remark IV.16. When all hypotheses are satisfied, Corollary IV.13 typically applies

to an infinite set of prime ideals in the tensor product T . If R is a Noetherian ring

of dimension at least two, or a Noetherian ring of dimension one which has infinitely

many maximal ideals, then Spec(R) is infinite; see [4, Exercises 21.11-21.12]. Now
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suppose R1, . . . , Rn are F-affine domains, with n ≥ 2 and F algebraically closed, at

least one of which is of dimension one or more. Then in the domain T = (
⊗

F)ni=1Ri,

the following set QED(T ) := {Q =
∑n

i=1 PiT ∈ Spec(T ) : ∀1 ≤ i ≤ n, Pi ∈ Spec(Ri)}

is infinite.

Remark IV.17. Let R = F[x1, . . . , xm], S = F[y1, . . . , yn], and T = R ⊗F S ∼=

F[x1, . . . , xm, y1, . . . , yn] be polynomial rings over a field F. Our original inspiration

for Theorem IV.11 was the following

Theorem (Thm. 7.8 of Bocci et.al [8]). Let I ⊆ R and J ⊆ S be squarefree monomial

ideals in the polynomial rings R and S, respectively. Let I ′ = IT and J ′ = JT be

their expansions to T . Then for any N ≥ 0, the symbolic power

(4.9) (I ′ + J ′)(N) =
N∑
i=0

(I ′)(N−i)(J ′)(i) =
∑

A+B=N

(I ′)(A)(J ′)(B).

Há – Nguyen – Trung – Trung [28, Thm. 3.4] recently extended the above theorem

to the case of two nonzero ideals I ⊆ R, J ⊆ S in two Noetherian commutative

F-algebras such that T = R⊗F S is also Noetherian. A general multinomial theorem

then follows by adapting the proof of Theorem IV.11, where one containment would

require the n-fold version of [28, Lem. 2.1(i)]. Combining this multinomial expansion

with Proposition IV.6 and Lemma IV.12, one can extend Corollary IV.13 to a form

allowing, for instance, any proper ideals Ii ⊆ Ri. As a final note in passing, the proof

of Proposition IV.6 still works up to a tweak of multiplicative system, for those who

opt to define symbolic powers of proper ideals using only minimal associated primes

as in [28], rather than using all associated primes as in [69].

Before proceeding to the final chapter, we remind the reader that our intended

mode of application for Theorem IV.1 was expounded upon and illustrated in the

introductory chapter to the thesis. Thus we opt not to repeat ourselves here.



CHAPTER V

Uniform Symbolic Topologies: A Few Avenues for
Follow-Up Work

To summarize, we have deduced several quid pro quo results on uniform symbolic

topologies for select families of ideals across a wide range of Noetherian domains.

These results are also stated in a manner that incentivizes the search for Harbourne

– Huneke symbolic indices in non-regular domains.

In Chapter II, we deduced criteria – Lemma II.1 and Corollary II.12 – to uncover

uniform symbolic topologies on ideals of pure height one in Noetherian normal rings.

In Chapter III, we deduced a USTP result for monomial primes in normal toric rings

which adapts to cover primes of height one for simplicial toric rings – Theorems III.1

and III.2. Between Chapters II and III, we also demonstrated the utility of these

criteria relative to familiar classes of local- or graded Cohen-Macaulay domains with

rational singularities [35, 34]. We now list two natural lines for further investigation.

1. Can Lemma II.1 be strengthened to cover all (non-prime) ideals of height one?

2. Can we identify a candidate mechanism (e.g., group-theoretic) to verify the

uniform symbolic topology property and/or Harbourne – Huneke bounds for:

all prime ideals of height one in non-simplicial toric rings; or all prime ideals

of height two or more, even in the case of simplicial toric rings of dimension at

81



82

least three?

In Chapter IV, we deduced a powerful criterion for proliferating uniform linear

bounds on the growth of symbolic powers of prime ideals (e.g., Harbourne – Huneke

bounds) – Theorem IV.1. In the setting of domains of finite type over algebraically

closed fields, this criterion contributes further evidence for Huneke’s philosophy in

[39] about uniform bounds lurking throughout commutative algebra. A goalpost

question that exceeds our grasp at present is:

Question V.1. Do analogues of Theorem IV.1 exist for other product constructions

in commutative algebra, such as Segre products of N-graded rings, or fiber products

of toric rings?

We now focus on the toric setting. We expound upon the following natural prob-

lems lingering in the wake of our work in Chapter III. Namely:

Question V.2. Working over an arbitrary field F, can one identify an effective mul-

tiplier relative to which a normal toric F-algebra satisfies uniform symbolic topologies

on all radical monomial ideals?

Question V.3. Working over an arbitrary field F, does a normal toric F-algebra

satisfy uniform symbolic topologies on all prime ideals? Can one identify an effective

multiplier?

Since one-dimensional normal toric algebras are regular, the above questions are

only potentially harrowing in Krull dimension two or higher. That being said, the

two-dimensional case is also as well-behaved as one could dare to hope for:

Remark V.4. Recall that over any field, all two-dimensional normal toric algebras

are simplicial. We note that both parts of both questions have an affirmative answer
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for all radical ideals in this case, using the order of the divisor class group. The latter

matches the reciprocal of the F-signature when working over perfect fields of positive

characteristic; see Corollary III.30. If the reader is curious how to prove the USTP

on all radical ideals, one can adapt the comaximality-based argument from Chapter

I showing that all symbolic and ordinary powers coincide for any radical ideal in a

two-dimensional UFD: see under Example I.10(5).

Given the connection between divisor class group order and the F-signature of

simplicial toric rings in Corollary III.30, experts in positive characteristic commuta-

tive algebra might be tempted by the following generalization of Question V.3.

Question V.5. Suppose R is of prime characteristic p > 0 and R is F -finite(=finitely

generated as a module over the subring Rp of p-th powers). Can we specify suitable

hypothesis relative to which a strongly F -regular ring R must satisfy uniform sym-

bolic topologies on prime ideals, with an explicit, effective multiplier involving the

reciprocal 1/s(R) of the F -signature?

Personally, I have yet to find this prospectus fruitful, and not simply because I

currently lack an incisive handle on positive characteristic techniques, and potentially

relevant techniques in related fields like singularity theory in algebraic geometry.

Moving on, in deference to Question V.2, there are two immediate hurdles to

extending Theorems III.1 and III.2 to the case of radical ideals. The first is concep-

tual, and frustratingly unassailable despite banging one’s head against a chalkboard:

suppose we know that there exists a bound E ≥ 1 such that P (Er) ⊆ P r for all r > 0

and all minimal primes of a radical ideal I. How would it then follow that

I(Fr) :=
⋂

P∈MinR(R/I)

P (Fr) ⊆ Ir

for all r > 0 and some value F ≥ 1? All of the work that culminated in the Improved
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Ein-Lazarsfeld-Smith Theorem I.18 used techniques that provided seamless–though

not necessarily elementary–workarounds to this conceptual hurdle.

To speak to our second hurdle, a potential workaround that would appeal to my

taste, and which is currently lacking, is a description of the radical monomial ideals

on par with Lemma III.4 for the monomial primes. The latter is what eventually

allowed us to deduce Theorem III.1 using the bilinearity of the pairing 〈, 〉. That

being said, this potential workaround might ultimately be a non-starter. Even if

we had such a description of radical monomial ideals, as the latter form an infinite

family of ideals, there need not be a sensible analogue of the multiplier constructed

in Theorem III.1–the latter multiplier is the maximum among a finite set of integers.

Transitioning, we briefly discuss where we stand on approaching Question V.3.

Alas, the situation is not great. As of right now, select affirmative results on the

latter part of Question V.3 are known when attention is restricted to Segre-Veronese

algebras over perfect fields. For instance, Corollary I.27 applies to Veronese rings.

That being said, examples in Chapter III involving Segre-Veronese algebras are in-

dicative that even if the answer to Question V.3 turns out to be affirmative in a

prodigious range of cases, it is pointless to sleuth moreover for an affirmation of

USTP class solidarity relative to prime ideals in the toric setting.

5.1 USTP formulas for rationally singular combinatorial algebras

In future work, I would aim to adjust the invariant D in Theorem III.1 to a

multiplier for all primes in R, based on the following

Problem Rubric V.6. Identify hypotheses on a Noetherian ring R such that

P (Ehr) ⊆ P r for all r > 0 and all primes P in R, where h is the height of P

and the integer E depends only on R.
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I would propose to fill in Rubric V.6 for simplicial toric rings first. My proposed

line of attack is to flesh out a correspondence between annihilation of Chow groups in

the toric case and symbolic topologies on primes. To any Noetherian normal domain

R, one can associate a family {Ah(R)}h∈Z>0 of abelian groups called Chow groups,

where Ah(R) is presented as the free abelian group on the set of height h prime ideals

(or codimension h-cycles) in R modulo some relations [58]. While these groups are

notoriously difficult to compute in general, the prospects improve for toric rings. For

example, the first Chow group A1(R) = Cl(R) is the divisor class group.

In the toric setting, Chow groups are finitely-generated abelian groups [21, Ch. 5]

[22]. For finitely-generated abelian groups, the condition of being annihilated by an

integer D > 0 as in Lemma II.1 is equivalent to being of finite order. I propose

to show that for a simplicial toric ring R we can fill in Rubric V.6 one height at a

time, proving an analogue of Lemma II.1 for each Chow group Ah(R). Indeed, I aim

to show that there is some choice of common annihilator D in terms of intersection

numbers involving the canonical divisor KV of the toric variety V = Spec(R).

An outstanding question left open by my thesis – a dream deferred – is:

Question V.7. Can we characterize which normal toric algebras satisfy USTP – if

not all of them?

All normal toric algebras of dimension one or two are simplicial and thus satisfy

USTP. Thus issues can occur only in dimension three or higher. Ultimately, given

a toric algebra R we have access to several invariants handed to us from possibly

orthogonal theories and methodology. Ideally, I want to scaffold connections between

the invariants, taking first steps towards a more streamlined and unified theory to

attack the above question.

In a separate direction, cluster algebras are combinatorially defined algebras de-
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fined by Sergey Fomin and Andrei Zelevinski as a unifying framework for studying

total positivity in a wide range of algebraic and geometric contexts. Cluster alge-

bra structures have been uncovered in corners of math and physics such as: quiver

representations, Teichmüller theory, discrete integrable systems, knot theory, Poisson

geometry, statistical physics and mirror symmetry. Locally acyclic cluster algebras as

defined by Greg Muller [54], prior to being one of my adviser’s postdoctoral advisees,

are a particularly well-behaved and prodigious subclass. Locally acyclic cluster al-

gebras are known to have rational singularities over fields of characteristic zero [7]

and divisor class groups free of finite rank [19]. That said, there remains consider-

able room beyond the entries [7, 19] to explore interactions between cluster algebra

structures and matters at the heart of commutative algebra. I would seek to:

Project V.8. Identify locally acyclic cluster algebras satisfying uniform symbolic

topologies on primes.

I would propose the Plücker homogeneous coordinate ring R = F[Gr(k, n)] of Grass-

mann varieties as a starting place for Project V.8, which is a locally acyclic cluster

algebra as deduced by Muller – Speyer [55]. Working with Gr(2, 4) first, we get

R ∼= F[A,B,C,D,E, F ]/(AF −BE + CD) which is a cluster algebra of rank five. I

propose to investigate this hypersurface ring first as part of post-dissertation work.
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