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Abstract 
 

Large-scale analysis of proteins is a critical tool in the life sciences, guiding drug 

development and elucidating important cellular processes. These measurements are 

accomplished with liquid chromatography-mass spectrometry (LC-MS), where proteins are 

enzymatically digested into peptides, separated via liquid chromatography, and analyzed by mass 

spectrometry. 

Typically, the most abundant peptide ion at a given time is selected for sequence 

identification, but limited instrument scan speed often results in under-sampling, compromising 

data completeness and reproducibility. In contrast, all-ion acquisition methods bypass peptide 

ion selection, measuring peptides ions across broad mass ranges. Despite capturing data for all 

events, peptide annotation is limited by inadequate separation prior to fragmentation, which 

results in interfering peaks in fragment spectra. Ion mobility spectrometry (IMS), where peptide 

ions are separated based on cross-sectional size and charge in the gas phase, adds an orthogonal 

analytical dimension to LC-MS proteomics. In-line ion mobility spectrometry provides 

additional separation without increasing analysis times, reducing spectral interference to improve 

reproducibility, peak capacity, and peptide identifications. 

However, these ion mobility separations were not optimized for complex peptide 

mixtures, and the true peak capacity of the LC-IMS-MS platform was unknown. Additionally, 

fragment ion information acquired during protein quantification experiments using stable isotope 

labeling by amino acids in cell culture (SILAC) was underutilized. Rigidity and opacity of 



 xi 

proprietary data analysis software also presents a barrier to improving LC-IMS-MS proteomics 

measurements. 

Chapter 1 presents the first quantitative characterization of traveling wave ion mobility 

separation in the context of real, complex proteomics samples. Taking into account the 

orthogonality of the LC, IMS, and MS separations, we found that IMS doubles the peak capacity 

of LC-MS alone under standard traveling wave settings. Seeking to improve the IMS separation, 

we discovered IMS settings that reproducibly increased peptide and protein identifications by 

over 40%. Chapter 2 describes a protein-centric statistical filtering method to leverage fragment 

ion quantification information. This filtering method reduces coefficients of variation by 4-fold, 

increasing confidence in differential protein measurements. Chapter 3 explores a new LC-IMS-

MS software tool, focusing on 3D peak detection parameters, and reports the first database 

searches of LC-IMS-MS data performed entirely with free, open-source tools.
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Chapter 1 Introduction 
 

Genome sequencing can provide important clues about the inner workings of the cell, but 

DNA is merely the template for the diverse set of proteins that actually perform biological 

functions. These proteins, sequences of amino acids of that fold to assume distinct three-

dimensional structures, function to catalyze chemical reactions, transfer signals by associating 

with other proteins, and provide structural support within the cell. Almost all drugs target 

proteins due to their active role in controlling biological function. To understand disease or 

answer other types of important biological questions, it is crucial to study proteins directly. 

While there are about 20,000 protein-coding human genes,1, 2 alternative splicing of RNA 

causes these genes to be translated into a total of about 70,000 different amino acid sequences.2 

Additionally, these proteins are frequently post-translationally modified by the addition of 

various molecules, such as a phosphoryl group or fatty acid, which can strongly influence their 

activity. Changes in the abundance of a protein or the way it is modified can have significant 

impacts on cellular function, and it is important for researchers to be able to detect these 

variations.  

To measure proteins between experimental conditions, such as different disease states, 

mutations, or drug treatments, proteins must be identified and quantified. In the 1970s, two-

dimensional polyacrylamide gel electrophoresis enabled researchers to separate and visualize 

about 1000 distinct proteins from cells.3-5 In these experiments, protein extracts were separated 

in one dimension by isoelectric point and in the other by mass, such that each protein type 
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occupied one spot in a two-dimensional gel. To visualize the spots, the gels were stained with 

dyes that specifically bind to proteins or the gels were imaged with autoradiography (Figure 1). 

 

These were the first ‘proteomics’ studies because they demonstrated the ability to observe 

the abundance of many proteins at once. However, only the most abundant proteins could be 

seen, and determining the identity of an individual protein spot was challenging. This often 

required detection with a specific antibody, the addition of a known internal protein standard for 

comparison, or identification by additional chromatography experiments to map radiolabeled 

pieces of the proteins to images from previous experiments.4-9 The amino acid sequence of a 

single protein spot could also be determined in a semi-automated manner using a combination of 

Edman degradation (sequential release of amino acids) and chromatography.10, 11 

In the late 1980s and early 1990s, the use of mass spectrometry to analyze protein 

extracts significantly accelerated the process of sequencing and identifying proteins.12, 13 The 

first experiments during this time period used ionization techniques such as secondary ion mass 

Figure 1. The first proteome-wide measurements. E. coli proteins are separated by isoelectric 
point (left to right) and molecular weight (decreasing from top to bottom). This research was 
originally published in the Journal of Biological Chemistry. P.H. O’Farrell. High resolution 
two-dimensional electrophoresis of proteins. J. Biol. Chem. 1975; 250(10):4007-4021. © The 
American Society for Biochemistry and Molecular Biology. 
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spectrometry and fast atom bombardment to energize proteins immobilized on a prepared 

surface, charging the protein molecules so that they could be analyzed by mass spectrometry.  

There are a number of different types of mass analyzers that can be used, but the basis of 

all types of mass spectrometry is the separation of ionized atoms or molecules by their mass-to-

charge ratio. This is most often accomplished by controlled electric fields within the instrument, 

and enables rapid, high-resolution measurements of charged molecules. Once they have been 

separated by their mass-to-charge (m/z) ratios, the charged molecules are detected by the 

instrument. The strength of the signal detected for each m/z ratio can be used to quantify the 

amount of a molecule of interest, a crucial feature for proteomics studies. 

 The application of electrospray ionization to mass spectrometry for protein analysis 

promised even higher throughput.14-17 In electrospray ionization (Figure 2), a solution containing 

the protein (or other analyte) of interest flows out of a high voltage (a few kV) needle or 

capillary.  

 

Figure 2. Electrospray ionization of proteins coupled to mass spectrometry. (a) Charged 
droplets emanate from the capillary in a strong electric field. (b) Liquid evaporates from ionized 
protein droplets (assisted in this image by a flow of dry N2 gas). (c) Protein ions enter the mass 
spectrometer. Reprinted from Trends in Biochemical Sciences, 20(6), Mann, M. & Wilm, M., 
Electrospray mass spectrometry for protein characterization, 219-224, Copyright (1995), with 
permission from Elsevier. 
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The electric field at the needle tip charges the emerging liquid, dispersing it into a fine 

spray of charged droplets via Coulomb forces. Through a combination of splitting and 

desolvation (drying), the droplet spray results in charged protein molecules with most or all of 

the initial solvent removed. This process is gentle, introducing charged molecules into the gas 

phase without breaking or fragmenting them.14, 18, 19 Electrospray also introduced the possibility 

of imparting multiple charges to intact protein molecules, which enabled the analysis of larger 

biomolecules and more advanced manipulation within the mass spectrometer.  

Electrospray ionization paired naturally with small-scale capillary separations of liquid 

protein samples, further increasing the specificity and throughput of protein analyses via mass 

spectrometry. The miniaturization of the electrospray apparatus, with flow rates of tens of nL per 

minute and capillary tip diameters of about 1 µm further improved sensitivity, allowing the 

detection of very small (femtomolar) amounts of proteins.20, 21 

 These studies worked well for analyzing purified proteins, but the detected signals of 

thousands of proteins from complex cell extracts would overlap, making it difficult to measure 

each protein. Separation prior to mass analysis is crucial to identifying and quantifying 

individual proteins. Liquid chromatography at flow rates amenable to miniaturized electrospray 

ionization22-24 is a powerful separation technique that can be added in-line prior to mass 

spectrometry, but mixtures of intact proteins are difficult to separate using this technique due to 

their widely varying sizes (ranging from about 1 to 1000 kDa, or about 10 to 1000 amino acid 

residues). To address this, proteins can be enzymatically cut into similarly sized pieces (usually 

from about 500 to 2500 Da, or about 5 to 25 amino acid residues) that can be efficiently 

separated by in-line liquid chromatography.  
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By the late 1990s and early 2000s, proteomic measurements were made by enzymatic 

cleavage, or digestion, of protein samples to create peptides, which were then separated with 

liquid chromatography and analyzed with electrospray ionization-mass spectrometry.25-27 In 

addition to using mass spectrometry to determine the mass-to-charge ratios of the ionized 

peptides, the peptide ions can be energized to break them apart, generating fragment ions that 

can be used to find the amino acid sequence of the originating peptide.28-30 This process of 

protein digestion, separation via liquid chromatography, and mass analysis with fragmentation is 

called ‘bottom-up’ or ‘shotgun’ proteomics (Figure 3), and is widely used today. 

 

 

To identify and quantify proteins from laboratory cultures or tissue samples, cells are 

lysed (broken open) to release their aqueous contents, which include fatty acids, salts, and 

metabolites in addition to proteins. A proteolytic enzyme, usually trypsin, which specifically 

cleaves the proteins at the amino acids arginine and lysine, is added to digest the proteins in the 

lysate solution (Figure 3a,b), usually overnight. Fatty acids, salts, metabolites and other non-

protein components of the digested lysate are then removed from the sample. 

Figure 3. Workflow of a typical proteomics experiment. Protein extracts from cells 
or tissue samples (a) are enzymatically digested into peptides (b). These peptides are 
separated via liquid chromatography (c). As peptides elute from the chromatography 
column, they are electrosprayed into a mass spectrometer (d). Fragment energy is also 
applied to measure the m/z values of peptide ion fragments for sequence determination 
(also d).   
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The cleaned-up peptide mixture is then placed into an autosampler, which injects the 

sample onto a narrow-bore capillary column (50-100 µm inner diameter) that is packed with 

small particles (1-5 µm diameter) of reversed-phase31 resin. The most popular resin for 

proteomics is C18 resin, which is made up of silica spheres covered with hydrocarbon chains, 

each of which contains 18 carbons. Because peptides are slightly hydrophobic, they mostly 

partition out of the surrounding water into interactions with the hydrocarbon chains of the resin. 

Over the course of the separation, an automatic pump gradually adds organic solvent to the 

column. As the percentage of the organic solvent surrounding the resin increases, the peptides 

partition out of the resin to rejoin the flow of liquid through the column.32, 33 

Separation occurs as different peptides rejoin the flow at rates depending on their 

hydrophobicity (determined by the amino acid composition) and size.34, 35 As a result, smaller, 

more hydrophilic peptides will elute, or emerge, from the column sooner than larger, more 

hydrophobic peptides (Figure 3c). Later eluting peptides have larger ‘retention times’, since they 

are retained by the column longer. The length of this separation of is generally between one and 

three hours for most liquid chromatography-mass spectrometry (LC-MS) proteomics 

experiments. 

As peptides elute from the column over the course of the LC-MS analysis, they are 

ionized and introduced into the mass spectrometer via electrospray (Figure 3c). The mass 

spectrometer scans the entire peptide mass range (usually between 100 to 2000 m/z) and 

determines the most abundant peptide ions in the scan. A multipole mass analyzer (such as a 

quadrupole36, 37) is then used to select the most abundant peptide ions, which are fragmented for 

sequence determination. The most commonly used fragmentation technique for peptides is 

collision-induced dissociation, which uses electric fields to accelerate peptide ions into a heavy 
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neutral gas (such as argon), transferring kinetic energy to raise the internal energy of the peptide 

ion until the bonds between amino acid residues are broken.13, 38, 39 This process of gaining 

further information about an ion via fragmentation is commonly called ‘tandem mass 

spectrometry’ or ‘MS2’, referring to the second mass spectrum measurement. 

The mass spectrometer records the resulting m/z spectra from all intact peptide ions and 

all MS2 spectra. Once the LC-MS acquisition is finished, the data can be processed and searched 

against a sequence database. Because peptides contain nitrogen and carbon, a population of 

peptides has a statistical distribution of masses due to the natural abundance of 13C and 15N.40 An 

example of this distribution can be seen in Figure 4, which shows the detected signal from a 

single tryptic peptide. 

 

These m/z distributions can be used to determine the charge and molecular mass of every 

peptide and fragment feature recorded by the instrument. Fortunately, peptide ions fragmented 

by collision-induced dissociation break in a predictable and reproducible manner between amino 

Figure 4. Mass-to-charge pattern of a single tryptic peptide. A high resolution 
mass spectrum of a tryptic peptide. The far left monoisotopic peak represents the 
population of the peptide that contains no heavy isotopes (13C or 15N). The next peak 
represents the population of the peptides that contain one 13C or 15N atom (adding 1 
Dalton to the mass of the peptide). Data is from a HEK293 cell digest measured with 
an Orbitrap Fusion Lumos mass spectrometer. 
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acid residues. If fragmentation occurs between all or most of the amino acids in the peptide, the 

sequence can be confidently determined by matching against a database of known protein 

sequences.  

Databases of all known protein sequences from an organism can be downloaded from a 

public repository such as Uniprot.1 To match protein sequences in the database to the peptide and 

fragment masses catalogued in the LC-MS experiment, each protein sequence in the database is 

subjected to a trypsin digest in silico, and each in silico peptide is then fragmented to generate a 

theoretical fragment spectrum. 

The experimental spectra are then compared to the theoretical spectra, and similarity 

scores are assigned for each comparison.28-30 The peptide sequence corresponding to the highest 

scoring theoretical spectrum is stored. From the list of peptide identifications, the proteins in the 

original sample are inferred.41 To validate whether the matched peptides and inferred proteins are 

correct identifications, each match is evaluated against all other matches in the experiment, as 

well as some matches that are necessarily false (e.g. to theoretical spectra from reversed protein 

sequences). Statistical modeling of the distribution of scores from all of these matches is used to 

determine a minimum score cutoff for true identifications, helping ensure that the final list of 

peptides and proteins reported by the software can be trusted.42-44 

Identification of peptides and proteins from LC-MS was originally done by hand, but is 

now almost always performed computationally. Depending on the software used, the process of 

obtaining validated lists of peptide and protein identifications from a single raw LC-MS data file 

can be completed in just a few minutes.45 

During the computational analysis of the raw LC-MS data, the measured abundance of 

each peptide ion can be stored. The amount of each identified protein in the originating cell or 
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tissue sample can be quantified from these ion abundances. This empowers researchers with the 

ability to assess large-scale differential protein abundances between experimental conditions, 

helping answer important questions about biological function or the mechanisms of disease. 

Despite the sensitivity and selectivity of modern LC-MS proteomics technologies, the 

sheer complexity of the proteome presents a formidable barrier to identifying and quantifying the 

entire set of proteins in a whole cell lysate. Tryptic digestion increases the complexity even 

more. For example, from the 20,422 reviewed human proteins in the Uniprot database, a tryptic 

digest yields 604,246 peptides between 5 and 50 amino acids in length (the range generally 

detectable by LC-MS methods), about a 30-fold increase in complexity. 

While many of these proteins (and peptides) are present in such low copy numbers in the 

cell that they are effectively unobservable by LC-MS, many of these tryptic peptides are 

abundant enough to be detected. Consequently, there are numerous detectable peptides similar in 

hydrophobicity and mass, and they elute from the chromatography column at the same time. 

When one peptide ion is mass-selected for fragmentation, there are often other co-eluting peptide 

ions with similar m/z values that are selected and fragmented as well. This co-fragmentation 

phenomenon is exacerbated by poor chromatographic separation and imprecise quadrupole 

isolation. 

Insufficient separation prior to mass analysis leads to complex fragment ion spectra that 

contain products of multiple peptide ions. One in-depth study of human cell lysate found that 

signal from the target peptide ion was usually less than 50% of the ion intensity within the 

selection window.46 Contaminating peaks in the spectra lead to lower database search scores, 

increasing the rate of false negatives and reducing the number of peptides that can be identified 

from the sample.47 Additionally, co-fragmentation can skew protein quantification.  
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 Ion mobility spectrometry has been added to the LC-MS workflow, introducing an 

additional dimension of separation to improve proteomics data acquisition. A post-ionization 

separation in the gas phase, ion mobility spectrometry disperses ions by their collisional cross 

sections (Figure 5). 

 

Because the gas-phase cross-section of a peptide ion does not perfectly correlate with 

retention time and mass-to-charge, ion mobility brings additional resolving power to LC and MS 

analysis. There are a number of different modes of ion mobility spectrometry, all of which 

operate on the principle that the size-to-charge ratio of an ion influences the time it takes to 

traverse through a buffer gas in the presence of an electric field. 

Figure 5. Three popular modes of ion mobility spectrometry. Ions with small collisional 
cross sections are in red, large ions are in blue. (a) Drift-tube ion mobility passes ions through a 
drift gas along the axis of an applied electric field. The red ion undergoes fewer interactions 
with the drift gas, and traverses the device faster than the blue ion. (b) Traveling wave ion 
mobility separation occurs as a travelling voltage wave is applied to a series stacked ring ion 
guides (SRIGs). Small ions are pushed forward by the wave, while large ions roll over the 
wave, taking longer to exit the device. (c) Field-asymmetric ion mobility employs an 
alternating, asymmetric electric field, causing ions to drift towards two electrodes (yellow) at 
different rates, separating ions spatially. Reprinted by permission from: Springer Nature, Nature 
Chemistry, “The power if ion mobility mass spectrometry for structural characterization and 
the study of conformational dynamics”, F. Lanucara, S.W. Holman, C.J. Gray, C.E. Eyers. 
Copyright 2014.  
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The first ion mobility measurements were made as early as the late 1800s, but the 

technique was first coupled to mass spectrometry in the 1960s (Figure 6).48, 49  

 

 Ion mobility-mass spectrometry (IMS-MS) technologies have enabled high-throughput, 

sensitive and selective measurements of biomolecules.50-55 Many of these measurements were 

made in IMS-MS prototypes constructed in research laboratories, but there are now three major 

Figure 6. Historical timeline of ion mobility-mass spectrometry. The number of 
peer-reviewed publications in ion mobility and ion mobility-mass spectrometry is 
plotted against a timeline of important developments in ion mobility and ion 
mobility-mass spectrometry instrumentation. Reproduced with permission from May, 
J. C., & McLean, J. A. (2015). Ion mobility-mass spectrometry: time-dispersive 
instrumentation. Analytical chemistry, 87(3), 1422-1436. Direct link: 
https://pubs.acs.org/doi/full/10.1021/ac504720m. Further permissions related to the 
material excerpted should be directed to the ACS 
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commercially available IMS-MS instruments. These are the Waters traveling wave ion mobility-

time of flight mass spectrometer,56 Bruker trapped ion mobility-time of flight mass 

spectrometer,57 and Agilent drift-tube ion mobility-time of flight mass spectrometer.58 The first 

of these, introduced in 2006, employs traveling wave ion mobility spectrometry (Figure 5b), 

which disperses ions based on their ability to ‘surf’ on a traveling electric field. 

The traveling wave device is a series of ring ion guides filled with a neutral gas, usually a 

mixture of He and N2. Ions are confined along the axis of separation by a radiofrequency field, 

while a repeating pattern of DC voltages is sequentially applied to the stacked ring ion guides, 

creating a wave that travels at speeds of hundreds of meters per second.56, 59, 60 As they 

experience fewer collisions with the buffer gas, ions with smaller collisional cross sections 

(higher mobilities) are pushed further by the voltage wave before rolling over behind it. 

Consequently, lower-mobility ions roll over behind the wave more frequently and take longer to 

transit the device.61 

 In the commercial traveling wave-ion mobility mass spectrometer, the Waters Synapt G2-

S, ions are introduced by electrospray, and neutral species are filtered out using a stepped ion 

guide (Figure 7). A quadrupole acts to guide ions to a trapping region, where they are 

accumulated then released into the traveling wave ion mobility device. As ions exit the device, 

they are transferred into an orthogonal acceleration62 time-of-flight mass analyzer.63, 64 
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In the Synapt, intact peptide ions are fragmented after ion mobility separation in the 

transfer region. Because of this, collision voltages can be ramped up throughout the ion mobility 

separation, such that higher energies can be applied to larger peptide ions with later drift times. 

Drift time-specific collision energy can significantly improve the efficiency of peptide 

fragmentation, and thus greater signal-to-noise ratios of peaks in the resulting fragment spectra.65 

The application of drift time-specific collision energies alone has been shown to improve protein 

identifications by over 40%. The combination of ion mobility separation and drift time-specific 

collision energy improves proteome coverage by over 120% compared to the same acquisition 

strategy with no ion mobility separation.65 

In addition to increased fragmentation efficiency, such improvements in peptide and 

protein identifications can largely be attributed to the selectivity afforded by the ion mobility 

separation. Indeed, the additional dimension of separation has been shown to decrease ambiguity 

Figure 7. Schematic of the traveling wave ion mobility-time of flight instrument 
(Synapt G2-S). After being separated by the traveling wave device (“Triwave”), m/z 
values are measured with the time-of-flight mass analyzer (“QuanTOF”). Copyright 2011, 
Waters Corporation. 
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in peptide-fragment matching and significantly increase the number of fragment peaks that can 

be associated with their originating peptides, improving database search scores.66 

The Synapt has been used to make a number of important proteome measurements, 

including the correlation of lipid post-translational modification with the expression of an 

oncogenic transcription factor,67 protein expression profiling of different strains of the human 

cytomegalovirus,68 and the identification of biomarkers to distinguish between pancreatic cancer 

and pancreatitis.69 

The motivation of the work described in this thesis document is to benchmark, study, and 

improve the platform for proteomics experiments, with a particular focus on whole proteome 

measurements. Specifically, this thesis explores the true resolving power of the three-

dimensional LC-IMS-MS system for highly complex mixtures of tryptic peptides and introduces 

a statistical filtering method to enhance quantitative proteome measurements. This work also 

reports attempts to develop flexible, open-source tools to help interrogate LC-IMS-MS data for 

analytical method development and routine proteomics experiments. 

 These findings can be applied to ion mobility-enhanced proteomics broadly, as they 

provide a framework for optimization of ion mobility parameters for peptide identification, a 

detailed method for measuring and tracking peak capacity during method development (work 

previously published as Haynes, S.E.; Polasky, D.A.; Dixit, S.M.; Majmudar, J.D.; Neeson, 

K.; Ruotolo, B.T.; Martin, B.R. Anal. Chem. 2017, 89(11), 5669-5672), a means to leverage 

all identified peaks to improve data-independent stable isotope quantification (work previously 

published as Haynes, S.E.; Majmudar, J.D.; Martin, B.R. Anal. Chem. 2018, 90(15), 8722-

8726), and an approach for tuning software to improve performance of feature detection from 

multidimensional LC-IMS-MS data. 
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Chapter 2 Quantification of LC-IMS-MS resolving power for complex proteomics 
 

Introduction 

One of the primary challenges to acquiring complete and quantitative proteome 

measurements is the enormous complexity of the protein digests. Efficient separation of tryptic 

peptides via liquid chromatography prior to electrospray ionization is the first key step to 

tackling this complexity. Once peptide ions have entered the mass spectrometer, they must be 

separated from one another and fragmented individually to provide sequence information for 

each. As discussed in Chapter 1, the original approach to separating peptides within the 

instrument is to sequentially isolate and fragment only those peptides within a narrow mass-to-

charge window.70, 71 While this selection process allows the instrument to distinguish between 

co-eluting peptides of different masses, the instrument only has time to isolate and fragment 

peptide ions with the highest abundance. As a result, the instrument is unable to acquire high-

quality spectra for many of the peptide ions, leading to a stochastic selection process that 

compromises both reproducibility and completeness of the protein measurements. 

An alternative approach to performing proteome-wide measurements is all-ion 

fragmentation, where no mass-to-charge discrimination is used prior to fragmentation. This 

approach is termed MSE, and is used to acquire fragmentation spectra for all peptides eluting at a 

given time.72 The mass spectrometer cycles between acquiring spectra of intact peptide ions (low 

collision energy) and fragment ions (high collision energy). In this way, mass spectra for all 

peptide and fragment ions are recorded, but the resulting fragment ion spectra are highly 
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complex. Deconvolution of the spectra requires precise liquid chromatography separation so that 

chromatographic peak shapes can be used to match fragments to their respective intact peptide.73 

Given the high complexity of most proteomic samples, multiple peptides often elute 

simultaneously and are co-fragmented, which can make the fragment ion spectra difficult to 

interpret. This phenomenon of ion interference complicates identification and quantification of 

individual features, reducing depth and accuracy of proteome coverage.47, 74-78 Without extensive 

off-line fractionation prior to analysis, liquid chromatography coupled to MSE mass 

spectrometry is unable to resolve all features in a complex proteomics sample.  

The combination of liquid chromatography and MSE alone does not have sufficient peak 

capacity to separate all tryptic peptides from a whole cell digest. Peak capacity is the number of 

components that can theoretically be resolved by a specific separation technique.74 For example, 

in liquid chromatography, the peak capacity can be defined as the total time of the separation 

divided by the width (in time) of the average chromatographic peak. Co-elution and co-

fragmentation of peptides is a symptom of insufficient peak capacity in proteomics analyses. 

One way to increase peak capacity is to introduce in-line ion mobility separation. This 

orthogonal separation dimension prior to fragmentation helps deconvolute complex mass spectra, 

increasing the number of individually resolved peptides and precursor ions.79 In traveling-wave 

ion mobility spectrometry (TWIMS), ions are confined on-axis by a radiofrequency field, and 

direct current voltages are sequentially applied to stacked-ring ion guides. This creates a 

potential wave that pushes ions along through neutral gas. Ions with larger collisional cross 

sections fall behind the traveling wave more frequently and arrive later to the detector. This 

arrival time, or drift time, is related to the size, shape, and charge of each ion. Importantly, 

TWIMS separation can resolve isobaric features with distinct cross sectional areas.56, 60 In 
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addition, since larger peptides have later arrival times and also require more energy for 

fragmentation, adjusting collision energy as a function of drift time improves fragmentation 

efficiency and significantly increases the number of peptide and protein identifications when 

employed with TWIMS.65 

Previous reports have sought to quantify the benefit of the addition of ion mobility to 

liquid chromatography-mass spectrometry for proteomic analyses in terms of peak capacity, 

often relying on extrapolation from individual studies of simple sample mixtures in order to 

predict outcomes for whole-cell tryptic digests.80-85 Such results are highly dependent on ion 

mobility resolution, defined as the centroid arrival time divided by the width of arrival time 

distribution at half height. For TWIMS, a drift-time ion mobility resolution of 45 has been 

reported for peptides on current generation equipment, with larger values possible when 

resolution is instead measured in cross-sectional space.60, 86 Despite significant commercial and 

user interest in ion mobility separation, there is little information on how much selectivity 

TWIMS adds to liquid chromatography-mass spectrometry analyses of highly complex 

proteomics samples. Additionally, it is unclear whether one fixed set of TWIMS parameters can 

provide adequate separation across the entire diversity of peptides from a whole cell tryptic 

digest, and there are few reported attempts to optimize TWIMS parameters for proteomics. 87 

To address these issues, we benchmarked TWIMS separation using a commercial HeLa 

cell tryptic digest. Two of the primary traveling wave ion mobility parameters that can be tuned 

to affect separation are the wave height (in volts) and wave velocity (in m/s) of the voltages that 

travel along the stacked-ring ion guides of the device.55, 86 Published TWIMS settings were 

surveyed, and we found that many reports use fixed wave height and velocity settings of 40 V 

and 600 m/s respectively, although there is no clear consensus (Table 1).  
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Synapt 
model 

Wave velocity 
(m/s) 

Wave height 
(V) citation 

modified 
G2 300 1.7 

Lermyte, Frederik, et al. "ETD allows for native surface mapping of a 
150 kDa noncovalent complex on a commercial Q-TWIMS-TOF 
instrument." J. Am. Soc. Mass Spectrom. 25.3 (2014): 343-350. 

modified 
G2-S 300 20 

Song, Yang, et al. "Refining the Structural Model of a 
Heterohexameric Protein Complex: Surface Induced Dissociation and 
Ion Mobility Provide Key Connectivity and Topology 
Information." ACS Cent. Sci. 1.9 (2015): 477-487. 

G2-S 500 40 
Brantley, Matthew, et al. "Automated deconvolution of overlapped ion 
mobility profiles." J. Am. Soc. Mass Spectrom. 25.10 (2014): 1810-
1819. 

G2-S 500 28 
Thomas, Andreas, et al. "Simplifying and expanding the screening for 
peptides< 2 kDa by direct urine injection, liquid chromatography, and 
ion mobility mass spectrometry." J. Sep. Sci. 39.2 (2016): 333-341. 

G2-S 600 n/a 
Cao, Li, et al. "Alterations in molecular pathways in the retina of early 
experimental glaucoma eyes." Int. J. Physiol., Pathophysiol. 
Pharmacol. 7.1 (2015): 44. 

G2 600 40 
Cortes, Diego F., Miranda K. Landis, and Andrew K. Ottens. "High-
capacity peptide-centric platform to decode the proteomic response to 
brain injury." Electrophoresis 33.24 (2012): 3712-3719. 

G2-Si 600 n/a 
Reis, Ricardo Souza, et al. "Putrescine induces somatic embryo 
development and proteomic changes in embryogenic callus of 
sugarcane." J. proteomics 130 (2016): 170-179. 

G2-S 600 n/a 
Wang, Hong, and Sam Hanash. "Mass spectrometry based proteomics 
for absolute quantification of proteins from tumor cells." Methods 81 
(2015): 34-40. 

G2-S 650 n/a 
Craxton, A., et al. "XLS (c9orf142) is a new component of mammalian 
DNA double-stranded break repair." Cell Death Differ. 22.6 (2015): 
890-897. 

G2-S 650 40 

Gelb, Abby S., et al. "A study of calibrant selection in measurement of 
carbohydrate and peptide ion-neutral collision cross sections by 
traveling wave ion mobility spectrometry." Anal. Chem. 86.22 (2014): 
11396-11402. 

G2-S 650 40 
Soderquist, Ryan G., et al. "Development of advanced host cell protein 
enrichment and detection strategies to enable process relevant spike 
challenge studies." Biotechnol. Prog. 31.4 (2015): 983-989. 

G2-S 650 40 

Thomas, Andreas, Wilhelm Schänzer, and Mario Thevis. 
"Determination of human insulin and its analogues in human blood 
using liquid chromatography coupled to ion mobility mass 
spectrometry (LC-IM-MS)." Drug Test. Anal. 6.11-12 (2014): 1125-
1132. 

G2-S 650 40 Wortham, Noel C., et al. "Stoichiometry of the eIF2B complex is 
maintained by mutual stabilization of subunits." Biochem. J. 473.5 

Table 1. Profile of reported Waters Synapt TWIMS settings. Wave velocity and heights 
reported for various proteomic, metabolomic and lipidomic studies performed with the 
Synapt G2 and later instrument models, may not be an exhaustive list. Many proteomics 
studies employed a constant wave velocity of ~600 m/s and 40 V wave height. A number of 
publications state that ‘optimized mobility conditions’ were used, but limited information 
about the optimization process is given. 
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(2016): 571-580. 

G2-S 650 40 

Zhang, Linwen, et al. "In Situ metabolic analysis of single plant cells 
by capillary microsampling and electrospray ionization mass 
spectrometry with ion mobility separation." Analyst 139.20 (2014): 
5079-5085. 

G2-S 650 40 
Zhang, Qingchun, et al. "Characterization of the co-elution of host cell 
proteins with monoclonal antibodies during protein A 
purification." Biotechnol. Prog. (2016). 

G2-S 652 40 
Jin, Ya, et al. "Analysis of low-density lipoprotein-associated proteins 
using the method of digitized native protein 
mapping." Electrophoresis (2016). 

G2-S 652 40 

Jin, Ya, et al. "Proteomic analysis of cellular soluble proteins from 
human bronchial smooth muscle cells by combining nondenaturing 
micro 2DE and quantitative LC-MS/MS. 1. Preparation of more than 
4000 native protein maps." Electrophoresis 36.15 (2015): 1711-1723. 

G2 800 32 Jia, Chenxi, et al. "Site-specific Localization of D-Amino Acids in 
Bioactive Peptides by Ion Mobility Spectrometry." (2016). 

G2-S 900 n/a 
Parviainen, Ville I., et al. "Label-free mass spectrometry proteome 
quantification of human embryonic kidney cells following 24 hours of 
sialic acid overproduction." Proteome sci. 11.1 (2013): 1. 

G2-S 1000 40 

Sturm, Robert M., Christopher B. Lietz, and Lingjun Li. "Improved 
isobaric tandem mass tag quantification by ion mobility mass 
spectrometry." Rapid Commun. Mass Spectrom. 28.9 (2014): 1051-
1060. 

G2-S 1200 n/a 
Aird, Steven D., et al. "Snake venoms are integrated systems, but 
abundant venom proteins evolve more rapidly." BMC genomics 16.1 
(2015): 1. 

G2-S 1300 30.5 
Geromanos, Scott J., et al. "Using ion purity scores for enhancing 
quantitative accuracy and precision in complex proteomics 
samples." Anal. Bioanal. Chem. 404.4 (2012): 1127-1139. 

G2-S 1200-300 40 
Milic, Ivana, et al. "Separation and characterization of oxidized 
isomeric lipid–peptide adducts by ion mobility mass spectrometry." J. 
Mass Spectrom. 50.12 (2015): 1386-1392. 

G2-S 1200-400 38 

Helm, Stefan, et al. "Protein identification and quantification by data-
independent acquisition and multi-parallel collision-induced 
dissociation mass spectrometry (MS E) in the chloroplast stroma 
proteome." J. proteomics 98 (2014): 79-89. 

G2-Si 1200-400 40 
Scheerlinck, Ellen, et al. "Minimizing technical variation during 
sample preparation prior to label-free quantitative mass 
spectrometry." Anal. Biochem. 490 (2015): 14-19. 

G2-S 1250, 1000 40 

Harper, Brett, Mahsan Miladi, and Touradj Solouki. "Loss of internal 
backbone carbonyls: additional evidence for sequence-scrambling in 
collision-induced dissociation of y-type ions." J. Am. Soc. Mass 
Spectrom. 25.10 (2014): 1716-1729. 

G2-S 250, 540, 900 20, 30, 40 
respectively 

Kune, Christopher, Johann Far, and Edwin De Pauw. "Accurate drift 
time determination by traveling wave ion mobility spectrometry: The 
concept of the diffusion calibration." Anal. Chem. (2016). 

G2 500, 500, 600, 
700, 800 

30, 35, 35, 35, 
40 respectively 

Lietz, Christopher B., Qing Yu, and Lingjun Li. "Large-scale collision 
cross-section profiling on a traveling wave ion mobility mass 
spectrometer." J. Am. Soc. Mass Spectrom. 25.12 (2014): 2009-2019. 

G2-S 800-200 40 

Gavriilidou, Agni FM, Basri Gulbakan, and Renato Zenobi. "Influence 
of Ammonium Acetate Concentration on Receptor–Ligand Binding 
Affinities Measured by Native Nano ESI-MS: A Systematic 
Study." Anal. Chem. 87.20 (2015): 10378-10384. 
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G2-S 800-500 40 
Distler, Ute, et al. "Drift time-specific collision energies enable deep-
coverage data-independent acquisition proteomics." Nat. Methods 2 
(2014): 167-170. 

G2-S 800-500 40 Docter, Dominic, et al. "Quantitative profiling of the protein coronas 
that form around nanoparticles." Nat. Protoc. 9.9 (2014): 2030-2044. 

G2-S 800-500 40 

Schwarz, Alexandra, et al. "A systems level analysis reveals 
transcriptomic and proteomic complexity in Ixodes ricinus midgut and 
salivary glands during early attachment and feeding." Mol. Cell. 
Proteomics 13.10 (2014): 2725-2735. 

G2-S 800-500 40 

Tenzer, Stefan, et al. "Proteome-wide characterization of the RNA-
binding protein RALY-interactome using the in vivo-biotinylation-
pulldown-quant (iBioPQ) approach." J. Proteome Res. 12.6 (2013): 
2869-2884. 

G2-S between 1500 
and 1000 

between 25 
and 40 

Rathore, Deepali, Forouzan Aboufazeli, and Eric D. Dodds. "Obtaining 
complementary polypeptide sequence information from a single 
precursor ion packet via sequential ion mobility-resolved electron 
transfer and vibrational activation." Analyst 140.21 (2015): 7175-7183. 

 

As the mechanisms of separation in reversed-phase liquid chromatography (LC), 

traveling wave ion mobility spectrometry (TWIMS), and mass spectrometry (MS) each leverage 

mass-to-charge ratio, cross-sectional area, and hydrophobicity to different extents. The 

difference, or orthogonality, between these separation processes determines the extent to which 

resolving power will increase when the techniques are used in tandem.88 

Taking into account the degree of orthogonality observed between the LC, TWIMS and 

MS dimensions, we calculated a three-dimensional separation space to provide a quantifiable 

peak capacity. Importantly, the majority of ions fell within a limited area of the TWIMS 

separation space. Systematic optimization of TWIMS wave height and wave velocity parameters 

identified ramped wave velocity settings that increased the drift space occupancy, yielding a 40% 

increase in peptide annotations and a 50% increase in the theoretical peak capacity. Under these 

conditions, the velocity of the DC pulses within the TWIMS separator are ramped in a time 

domain that allows high mobility species to experience primarily higher wave velocities and 

lower mobility peptides to experience progressively lower velocities, each of which can be 

optimized for the mobility range of the peptides separated. Overall, this analysis establishes a 
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quantitative benchmark for TWIMS separation, highlighting customizable settings to optimally 

resolve peptide features in complex proteomics samples.  

Ion mobility spectrometry separation dramatically improves the number of peptide and 

protein identifications in all-ion fragmentation (MSE) shotgun proteomics. Unfortunately, IMS-

resolved MSE data files acquired on the Waters Synapt platform are stored in a proprietary file 

format, and existing tools for data conversion perform poorly with ion mobility-mass 

spectrometry data. For example, msconvert89, a popular tool for converting between LC-MS file 

formats, collapses TWIMS separation information entirely, so that peptide ion drift times cannot 

be found and used.  

 While individual peptide features can be manually interrogated using the Waters 

proprietary DriftScope software, it is not technically feasible to manually extract comprehensive 

information for each of the hundreds of thousands of features across an IMS-MS proteomics data 

set.  

To address this issue, we designed a user-friendly interface (TWIMExtract) around a 

minimal raw data extraction tool provided by Waters (see Data Analysis section, below). 

TWIMExtract is a Java-based graphical user interface (GUI) for extracting data from Waters’ 

proprietary .raw format. It uses an executable to query the proprietary format and return 

information requested by the user. The Java GUI allows users to quickly process large numbers 

of data files and extract whole or targeted data sets in an automated fashion. The user selects the 

data file(s) to query, which are displayed in a table with accompanying information, and range 

file(s) specifying the regions of the three-dimensional data to extract. Any of the three 

dimensions of data (retention time, m/z, and ion mobility arrival time) can be extracted 

individually. This enables users interested in obtaining retention time chromatograms, arrival 
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time distributions, or mass spectra of any or all features in their raw data set to rapidly and 

automatically extract those features for further analysis. TWIMExtract provides raw data without 

further processing and is intended to act as a flexible piece of larger downstream data analysis 

pipelines. Importantly, TWIMExtract can extract hundreds of thousands of user-defined slices of 

liquid chromatography-ion mobility-mass spectrometry (LC-IMS-MS) data in just a few hours. 

Users can specify any combination of ranges of chromatographic retention time, IM drift time, 

and m/z and process any number of raw data files with any number of slices. Key parameters can 

be exported with the data, including collision energies and TWIMS settings, and multiple 

extractions from the same raw file can be automatically stitched together into a single .csv output 

file. TWIMExtract also has batch processing capabilities to enable large-scale automated data 

extraction. 

Experimental 

Reagents and solvents were purchased from Fisher unless otherwise indicated. 

Mass spectrometry 
 

HeLa protein cell digest standard (20 µg, Pierce, 88329) was resuspended in LC-MS 

grade water supplemented with 10 fmol / µL alcohol dehydrogenase, 3% acetonitrile, and 0.1% 

formic acid. For each experiment, 2 µL (200 ng) of the reconstituted HeLa standard was injected 

and separated using a one-dimensional Waters nanoAcquity UPLC system fitted with a 5 µm 

C18 (180 µm x 20 mm) trap column and a 1.8 µm HSS T3 analytical column (75 µm x 250 mm). 

Tryptic HeLa peptides were loaded onto the trap column over 3 minutes, followed by analytical 

separation over a 110 minute gradient (3% acetonitrile to 40% acetonitrile over 92 minutes) at a 

flow rate of 0.5 µL / min. Eluting peptides were introduced to the Synapt-G2S HDMS traveling 
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wave ion mobility quadrupole time-of-flight mass spectrometer (Waters) by electrospray 

ionization using a pre-cut uncoated 10 µm ID SilicaTip nanospray emitter (New Objective). The 

Synapt-G2S auxiliary pump was used to deliver the lock mass compound [Glu1]-Fibrinopeptide 

B (100 fmol / µL; Waters) at 400 nL / min through the reference sprayer of the nanoLockSpray 

source. The nanoESI source was set to 70°C with a 3 kV applied potential. Data-independent 

acquisition (MSE) was performed in positive mode. The quadrupole mass analyzer was set to 

transmit all precursor ions (50-2000 m/z) through to the TOF mass analyzer. Precursor ions 

traveled through the quadrupole mass analyzer, and were then separated in the traveling wave 

device using the manufacturer recommended constant wave height of 40 V and wave velocity of 

600 m/s, which was later optimized. Low and elevated-energy scans were alternated every 0.5 

seconds (0.05 s interscan delay) to acquire sequential precursor and product ion data. Collision 

energy was applied after ion mobility separation in the transfer cell to fragment peptide ions via 

collision-induced dissociation. In the low-energy mode, data were collected at constant collision 

energy (CE) of 4 eV across all 200 drift bins (TOF scans). In high-energy mode, no CE was 

applied in bins 0 – 19. Collision energy ramping was applied for the 1000-600 m / s wave 

velocity condition as follows (collision energies used with the 600 m / s condition in 

parentheses): bins 20 – 119, 16.4 – 58.5 eV (11.0 – 44.1 eV); bins 120 – 200, 58.9 – 63.9 eV 

(44.4 – 49 eV). Wave velocities in the trap and transfer cell were set to 311 m / s and 380 m / s, 

respectively, with wave heights of 4 V. In the trap cell, the N2 gas flow rate was 2.0 mL / min. In 

the ion mobility cell, the He and N2 flow rates were set to 180 and 90 mL / min, respectively. 

The mass spectrometer was operated in Resolution mode (V-mode), with a typical resolving 

power of at least 20,000 FWHM. Data were mass corrected post-acquisition by comparison to 
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the doubly-charged monoisotopic ion of [Glu1]-Fibrinopeptide B (m/z = 785.843), which was 

sampled from the nanoLockSpray source every 30 seconds throughout data acquisition. 

Data analysis 
 

Raw data files were analyzed with ProteinLynx Global SERVER version 3.0.2 (PLGS, 

Waters Corporation), searching against the Uniprot database of the human proteome. The 

following criteria were applied to perform the search: (i) trypsin as digestion enzyme, (ii) one 

missed cleavage allowed, (iii) carbamidomethyl cysteine as a fixed modification and methionine 

oxidation as a variable modification, (iv) a minimum of two identified fragment ions per peptide 

and a minimum of five fragments per protein, and (v) at least two identified peptides per protein. 

The global protein false discovery rate (FDR) was set at 1% using a reversed sequence database. 

Any identified peptides with a calculated mass error greater than 10 ppm were not considered. 

Accurate mass retention time (AMRT) and peptide information was extracted using 

TWIMExtract.  The TWIMExtract tool, along with instructions for installation and operation, 

can be downloaded from https://sites.lsa.umich.edu/ruotolo/software. 

Also available on this site is the Python script used to measure drift arrival time 

distributions and ion mobility resolution following the use of TWIMExtract. Briefly, ion 

mobility arrival time distributions for each extracted feature are analyzed to find the highest 

intensity peak, from which the arrival time and peak width at half the maximum intensity are 

found. From the arrival time and width, ion mobility resolution of the feature is calculated.  

Source code for TWIMExtract can be found at www.github.com/dpolasky/TWIMExtract. 
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Results and Discussion 

We applied TWIMExtract to evaluate the arrival time distributions of peptide ion features 

across ±0.005 m/z and ±0.2 min from their respective centroid values. We then implemented a 

custom peak-processing algorithm in Python (see Experimental section) to extract the centroid 

drift time, peak width, and resolution of the dominant peak within the arrival time distribution. 

Due to the complexity of the HeLa digest, the m/z and retention time windows occasionally 

extracted multiple peptide features in a single ion mobility arrive time distribution. In the rare 

event (<0.1%) when an ion clearly fell outside the linear m/z−drift time trendline of the assigned 

charge state, the event was flagged as an incorrect assignment and excluded from further 

analysis. 

We started by comparing the ion mobility drift times with mass to charge (m/z) and LC 

retention time of a commercial HeLa cell proteome tryptic digest, plotting each separation in two 

dimensions. Drift time information was extracted for all annotated peptides and compared to the 

accurate mass retention time (AMRT) features. The lists of AMRTs, which can be found in one 

of the .csv files resulting from PLGS analysis, include all deisotoped features detected in both 

low (peptide) and high (fragment) ion spectra. The AMRT datasets provide another means of 

benchmarking the LC-TWIMS-MS system by reporting all peptide-like features, whether or not 

those features resulted in database search hits. When ion mobility drift times are compared to 

m/z, tryptic peptides are primarily in the 2+ charge state and share a common trendline (Figure 

8a). 
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Importantly, both AMRTs and annotated peptides show nearly identical distributions in 

the drift and mass dimensions, and in both instances the majority of features occupy a small, 

highly dense region of separation space. Liquid chromatography separation is significantly more 

orthogonal to ion mobility separation and distributes features more evenly across the separation 

space, a trend that can be observed with both annotated peptides and AMRTs (Figure 8b). 

Indeed, ∼90% of the annotated peptides or AMRTs occupy less than 25% of the overall drift 

space (Figure 9a). Under these traveling wave settings, tryptic peptides do not access the 

majority of TWIMS separation space, highlighting poor separation efficiency for complex 

mixtures of peptides with similar collisional cross sections.  

Next, we evaluated TWIMS resolving power for both AMRTs and annotated peptides in 

the HeLa cell tryptic digest. After optimization of wave height and wave velocity, synthetic 

Figure 8. Distribution of annotated peptides and AMRTs in three dimensions. 
(a) Two dimensional plot of m/z and drift separates ions by charge state. 1+ peptides 
have longer drift times and are entirely separated from the 2+ and higher trendlines. 
(b) Two dimensional plot of liquid chromatography versus drift separation reveals 
greater orthogonality than mass-to-charge separation. Representative data from three 
independent replicates. 
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peptide standards can reportedly achieve IMS resolution between 25 and 45.60, 86 In a complex 

tryptic digest, our analysis returned significantly lower values, with a mean resolution of 18.6 

and a large standard deviation of 5.5 (Figure 9b). 

 

Peptides with different charge states had significantly different apparent TWIMS 

resolutions. For example, 1+ peptides exhibited higher mean resolution (21.1 ± 0.4) than 2+ 

Figure 9. Tryptic peptides occupy a limited area of TWIMS separation space. 
(a) Distribution of AMRTs and peptides in drift time. Shaded gray areas define 
25% of the total TWIMS separation space, corresponding to approximately 90% of 
the total AMRT and peptide events. (b) Ion mobility resolution of >106 AMRTs, 
displayed by charge state. (c) TWIMS doubles the peak capacity of LC-MS 
analysis. Data are representative of 3 independent replicates. 
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(18.6 ± 0.3) and higher charge state (18.4 ± 0.2) ions (p < 0.001, N = 3). When the same peptide 

was compared across different charge states, the species with higher charge generally exhibited 

lower mobility resolution (Table 2). This is most likely due to the broadening of the arrival time 

distributions of higher charge features due to the presence of unresolved conformers. Highly 

charged ions may adopt extended conformations in order to reduce charge repulsion, increasing 

the measured width of the arrival time distribution.90 

  

peptide sequence 

1+ 
drift 
time 
(ms) 

1+ 
FWHM 

(ms) 

1+ 
resolution 

2+ 
drift 
time 
(ms) 

2+ 
FWHM 

(ms) 

2+ 
resolution 

resolution 
difference 

ELNYFAK 7.4 0.402 19.2 2.4 0.201 12.0 7.2 

EIAQDFK 7.2 0.402 17.8 2.3 0.201 11.3 6.5 

                

peptide sequence 

2+ 
drift 
time 
(ms) 

2+ 
FWHM 

(ms) 

2+ 
resolution 

3+ 
drift 
time 
(ms) 

3+ 
FWHM 

(ms) 

3+ 
resolution 

resolution 
difference 

GHLENNPALEK 3.2 0.134 24.0 2.3 0.201 11.7 12.3 

AQIHDLVLVGGSTR 4.1 0.201 20.3 2.5 0.268 9.5 10.8 

GQPIYIQFSNHK 3.7 0.134 27.5 2.3 0.134 17.0 10.5 

EGMAALQSDPWQQELYR 5.4 0.201 27.0 3.4 0.201 16.7 10.3 

EILGTAQSVGCNVDGR 4.2 0.201 21.0 2.9 0.268 11.0 10.0 

HEQNIDCGGGYVK 3.8 0.134 28.5 2.5 0.134 18.5 10.0 

GITINAAHVEYSTAAR 4.9 0.201 24.3 2.9 0.201 14.7 9.7 

ADDGRPFPQVIK 3.6 0.134 27.0 2.5 0.134 18.5 8.5 

SPFVVQVGEACNPNACR 4.9 0.201 24.3 3.2 0.201 16.0 8.3 

GSYVSIHSSGFR 3.6 0.134 26.5 2.6 0.134 19.5 7.0 

GHLENNPALEK 3.2 0.134 24.0 2.3 0.134 17.5 6.5 

VPADTEVVCAPPTAYIDFAR 5.9 0.268 22.0 3.3 0.201 16.3 5.7 

EILGTAQSVGCNVDGR 4.3 0.268 16.0 2.9 0.268 10.8 5.3 

TIGGGDDSFNTFFSETGAGK 5.0 0.268 18.8 2.8 0.201 14.0 4.8 

LAGTQPLEVLEAVQR 4.4 0.268 16.5 2.7 0.201 13.3 3.2 

ALTVPELTQQMFDAK 4.6 0.201 23.0 2.7 0.134 20.5 2.5 

ALTVPELTQQMFDAK 4.6 0.201 22.7 2.7 0.134 20.5 2.2 

EHALLAYTLGVK 3.6 0.268 13.5 2.3 0.201 11.3 2.2 

ETAENYLGHTAK 3.8 0.201 18.7 2.2 0.134 16.5 2.2 

Table 2. Ion mobility resolution of identical peptides in different charge states. 
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ITGEAFVQFASQELAEK 4.9 0.268 18.3 3.3 0.201 16.3 1.9 

ALQEGEGDLSISADR 4.0 0.201 20.0 2.5 0.134 18.5 1.5 

RAAEDDEDDDVDTK 4.1 0.201 20.3 2.6 0.134 19.5 0.8 

ALTVPELTQQMFDSK 4.5 0.335 13.4 2.7 0.201 13.3 0.1 

KYDAFLASESLIK 4.1 0.201 20.3 2.8 0.134 21.0 -0.7 

QAGEVTYADAHK 3.2 0.201 16.0 2.3 0.134 17.0 -1.0 

AQTAHIVLEDGTK 3.8 0.201 19.0 2.8 0.134 21.0 -2.0 

TIGGGDDSFNTFFSETGAGK 5.0 0.268 18.5 2.8 0.134 21.0 -2.5 

LAGTQPLEVLEAVQR 4.4 0.268 16.3 2.7 0.134 20.0 -3.8 

YPLFEGQETGKK 3.4 0.268 12.8 2.3 0.134 17.5 -4.8 

FDHIFYTGNTAVGK 4.1 0.268 15.3 2.9 0.134 21.5 -6.3 

                

peptide sequence 

3+ 
drift 
time 
(ms) 

3+ 
FWHM 

(ms) 

3+ 
resolution 

4+ 
drift 
time 
(ms) 

4+ 
FWHM 

(ms) 

4+ 
resolution 

resolution 
difference 

VHIPNDDAQFDASHCDSDK 3.5 0.134 26.0 2.7 0.201 13.3 12.7 

VIHLSNLPHSGYSDSAVLK 3.4 0.134 25.0 2.9 0.201 14.3 10.7 

KPTDGASSSNCVTDISHLVR 3.3 0.201 16.7 2.8 0.201 14.0 2.7 

LMLSTSEYSQSPKMESLSSHR 3.4 0.201 17.0 3.2 0.201 16.0 1.0 

FVPQEMGPHTVAVKYR 3.1 0.201 15.7 2.5 0.134 18.5 -2.8 

EATTDFTVDSRPLTQVGGDHIK 4.0 0.268 15.0 2.9 0.134 22.0 -7.0 

 

The ‘resolution difference’ column contains the resolution of the higher charge state 

subtracted from that of the lower charge state (e.g. [1+ resolution] – [2+ resolution]). These 

resolution differences between charge states of the same peptide are shown in Figure 10. For the 

same peptide identified in different charge states (n=41 comparisons), the lower charge state 

generally exhibited higher ion mobility resolution, likely due to fewer stable conformational 

states. 
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Using the extracted TWIMS resolution data, we next sought to estimate the total three-

dimensional peak capacity of the LC-TWIMS-MS analysis. Peak capacity of a single dimension 

of separation represents the total separation length divided by the average peak width. If LC, 

IMS, and MS were fully orthogonal to one another, the total peak capacity of the LC-IMS-MS 

system would be the product of each of the peak capacities from each dimension.88 Because LC, 

IMS, and MS separate peptides on the basis of related physicochemical properties, we accounted 

for their empirical correlation in our estimates of three-dimensional system peak capacity 

(Figure 9).  

First, we calculated linear fits of m/z and drift time separately for 1+, 2+, and combined 

3−7+ charge states (white dashed line, step Figure 11.1). From these linear fits, a mean m/z 

value was calculated for each drift time “bin”, and a conservative separation length was defined 

as the average deviation from the mean m/z.82 From these values, two-dimensional drift time – 

Figure 10. Ion mobility resolution of identical peptides in different charge 
states. IM resolution difference between higher and lower charge states (comparing 
1+ to 2+, 2+ to 3+ , and 3+ to 4+ , as shown in the table above (e.g. [1+ resolution] – 
[2+ resolution]). Median is displayed as the red line, upper and lower quartiles are 
bounded by the blue box. 
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m/z peak capacity was calculated for each charge trendline by multiplying the correlation-

adjusted m/z peak capacity by the drift time peak capacity (orange shaded regions in Figure 

11.1) demarcating the actual area of two-dimensional IMS-MS separation space occupied 

(orange shaded regions). Average peak widths across both the m/z and drift time dimensions 

were fit into the separation area to give the two-dimensional peak capacity for each charge 

trendline (Figure 11.2). 

 

Summing the three two-dimensional peak capacities yielded a two-dimensional peak 

capacity of 5.67 ± 0.27 × 104 peaks across the m/z and ion mobility dimensions (Figure 11.3), 

Figure 11. Calculation of peak capacity in three dimensions. 
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nearly twice the 2.93 ± 0.01 × 104 peaks defined by mass analysis alone (Figure 9). Next, the 

degree of correlation between LC, IM, and MS separation was defined (Figure 11.4). Both m/z 

and drift time are almost completely uncorrelated with retention time. To provide the most 

conservative estimate of three-dimensional peak capacity, we estimated the contribution of the 

LC dimension from the slightly stronger retention time−m/z correlation (Figure 11.6). This 

added separation “length” was then divided by average chromatographic peak width (12 s), 

resulting in 53-fold more peak capacity than the two-dimensional IM-MS separation. The 2-

dimensional peak capacity multiplied 53-fold produced a total three-dimensional peak capacity 

estimate of 2.95 ± 0.11 × 106 using the standard TWIMS settings or twice the 1.53 ± 0.01 × 106 

afforded by LC-MS alone (Figure 9). 

From our analysis, the starting TWIMS settings (wave height of 40 V, wave velocity of 

600 m/s) do not efficiently occupy the available IM separation space. Therefore, we sought to 

optimize TWIMS separation using the HeLa cell protein digest standard. 

 

Figure 12. Protein identifications using differential wave velocities. 
Constant wave height (40 V) was used for all experiments.   
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Our initial survey tested 20 different combinations of traveling-wave velocities, which overall 

achieved largely the same number of protein annotations when the same collision energy profile 

was used (Figure 12). 

  The total number of annotated proteins from different TWIMS wave velocities 

demonstrates a greater number of protein identifications with variable velocities versus a 

constant collision energy gradient. These data represent the first iteration of experiments with 

modified traveling wave speed. From here, we chose the three traveling wave conditions that 

yielded the most protein identifications (900 – 600, 900 – 150 and 1000 – 600 m / s) for further 

optimization. For each of these three conditions (in addition to 600 m / s), drift-time specific 

collision energy profiles were generated following the protocol outlined by Distler et al.65 

Interestingly, linearly decreasing the traveling-wave velocity during the 13.4 ms 

separation increased the number of annotated proteins by approximately 10%. Therefore, we 

selected the 1000−600 m/s wave velocity (and 40 V wave height) was chosen for further 

analysis, optimizing the drift time−specific collision energy profile to increase fragmentation 

efficiency. Following this optimization, the 1000−600 m/s wave velocity reproducibly increased 

the mean number of annotated peptides from 1.25 ± 0.05 × 104 to 2.00 ± 0.14 × 104 peptides, or 

more than 60% (Figure 13a). 
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This translated to an increase from 1289 ± 21 to 1820 ± 64 proteins and increased 

occupancy throughout the ion mobility separation dimension with no loss in peak integrity 

(Figure 13b and Figure 14). An increased spread in drift time, an overall shift to later drift 

times, and an increased number of detected features (particularly in the higher mass range) can 

be observed using the 1000-600 m/s condition. 

Figure 13. Variable-velocity TWIMS separation improves peptide analysis. (a) 
Peptide and protein identifications are increased with variable-velocity TWIMS. (b) 
Optimized wave velocity settings increase drift space occupancy. (c) Enhanced 
TWIMS resolution from variable−velocity separation. (d) LC-IMS-MS peak 
capacity is increased with optimized TWIMS settings. Data are representative of 
three independent replicates. 
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In fact, we observe an overall increase in the mean resolution from 18.8 ± 0.6 to 21.9 ± 

0.2 (Figure 13c), which significantly shifts the median drift time toward larger values while 

maintaining peak width, yielding improved overall resolution. Furthermore, the resulting mean 

peak capacity is 4.25 ± 0.2 × 106 or 44% higher than the default traveling-wave velocity settings 

(Figure 13d). Importantly, the variable drift time settings (1000−600 m/s) not only improved ion 

dispersal but also improved transmission efficiency (Figure 15). We also examined the rate of 

peptide identifications from all peptide-like features (AMRT) across drift time and retention time 

(Figure 16). Relative to total ion current, the peptide annotation rate was higher at longer drift 

times. In addition, the 1000−600 m/s wave velocity settings increased the mean size of identified 

peptides from 649 ± 2 to 692 ± 5 m/z, which is likely related to more effective drift time-

dependent collision energy assignment resulting from more efficient ion dispersal. Clearly, even 

Figure 14. Variable-velocity TWIMS enhancement in occupied 
separation space. Comparison of accurate mass retention time pair 
(AMRT) drift time and m/z distributions between 600 m/s (top) and 
1000-600 m/s (bottom) wave velocity.  
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modest improvements in TWIMS separation can greatly enhance the resultant LC-IM-MS peak 

capacity, affording better precursor-fragment alignment, peak annotation, and ultimately a larger 

number of high-confidence protein identifications. 

 

Overall, this chapter presents a detailed analysis of the resolving power and peak capacity 

of LC-TWIMS-MS for cellular mixtures of tryptic peptides. On the basis of this analysis, 

TWIMS is only marginally orthogonal to LC-MS analysis, yet as previously reported, TWIMS 

separation increases the number of protein identifications from all-ion fragmentation methods. 

Additionally, the optimized, wave velocity ramped TWIMS conditions increased the overall 

peak capacity by 2.8-fold over LC-MS analysis alone, which significantly enhances peptide and 

protein identifications. Improvements in ion mobility separation technologies promise to further 

improve the peak capacities of LC-IMS-MS systems for the analysis of tryptic peptides, which 

Figure 15. Total ion drift time distributions under 
different traveling wave velocities. 
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will continue to reduce ion interferences that are currently commonplace in most complex data-

independent acquisition proteomics analyses. 

 

Figure 16. Peptide assignment efficiency as a function of drift time (top) 
and retention time (bottom). The percentage of annotated peptides out of all 
AMRTs per drift bin or for 0.5 minutes of retention time for both traveling 
wave settings is shown shaded and corresponds to the left axis. The percentage 
of the total ion current over drift or retention time for each condition is shown 
as line traces and corresponds to the right axis. 
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Chapter 3 Development of post-processing methods to improve DIA-SILAC quantification 
 

Introduction 

As discussed in Chapter 1, the standard method for acquiring LC-MS proteomics data 

relies on repeating acquisition cycles initialized by a scan of peptide ions followed by dynamic 

selection, isolation, and fragmentation of a fixed number of the most abundant ions for sequence 

identification.91 In regions of high chromatographic complexity, the rate of the data-dependent 

acquisition (DDA) duty cycle limits isolation, fragmentation, and subsequent identification to 

only the most intense precursor ions. This stochastic sampling method ties the number of 

analyzed peptides to the instrument scan speed, and fundamentally limits proteome coverage.92 

Additionally, the low mass resolution of multipole ion selection often produces undesirable ion 

interference, yielding chimeric fragmentation spectra across >50% of MS2 spectra.47 The 

resulting composite fragment spectra incur scoring penalties during database searching, which 

limits confident peptide annotations. These variables diminish quantitative accuracy and 

reproducibility between analyses, particularly replicate LC-MS experiments, prompting the need 

for alternative acquisition methods. 

To address this gap, data-independent acquisition (DIA) methods have been developed 

that bypass abundance-based ion selection. Instead of iteratively isolating the most abundant ions 

for fragmentation, all-ion fragmentation methods, such as MSE, use alternating MS scans 

collected at low and high collision energies, generating precursor (MS1) and product (MS2) ion 

spectra across the entire mass range.72, 93, 94 Post-acquisition alignment of MS1 and MS2 spectra 
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peptide elution profiles allows accurate assignment of precursors to their corresponding product 

ions.73 

Recent commercial mass spectrometers incorporating ion mobility spectrometry (IMS) 

separation provide an orthogonal approach to reduce ion interference for DIA workflows. In 

general terms, IMS describes a gas-phase separation that resolves ions based on their size, shape, 

and charge on a millisecond time scale. These inherent physical properties impart distinct IMS 

drift times, providing an orthogonal analytical dimension that increases peak capacity (as 

quantified in Chapter 1), reduces ion interference, and delivers multiparameter peptide analytics 

(retention time, drift time, precursor and product m/z) that can be used for library building.81, 95 

Furthermore, drift-time dependent collision energy assignment produces more efficient 

fragmentation by delivering higher collision energies to larger peptides with longer drift times.65 

Altogether, IMS-DIA methods yield a 2.3-fold higher annotation rate than the theoretical 

maximum for a first generation quadrupole Orbitrap instrument using higher energy collisional 

dissociation (HCD).65 This results in 1/3 more annotated proteins and twice as many annotated 

peptides. Based on these values, IMS separation improves both peak capacity and fragmentation 

efficiency to provide a unique addition to DIA analysis platforms.  

Label-free quantification methods typically measure the sum of the abundances of three 

ions with the highest intensity per protein (top-3 analysis), which generally correlates with 

protein abundance.93 This procedure immediately triages the bulk of the peptide features from 

the final measurement, diminishing the statistical power of the measurement needed for 

confident cross-experiment analyses. In SWATH acquisition experiments, where 10-25 m/z 

windows are used in place of abundance-based ion selection, proteins can be similarly quantified 

by summing the five most intense product ions from the three most intense peak groups. This 
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approach yields intraday coefficients of variation of less than 20% across replicate runs, but 

variance increases significantly between different laboratories operating the same instrument.96 

Many sources of the variance observed between facilities in this study could be corrected by 

incorporating internal standards. 

We hypothesized that stable isotope labeling by amino acids in cell culture (SILAC) 

analysis might improve reproducible DIA quantitation across the proteome, especially since 

comparative ratios are internally quantified and eliminate many sources of experimental error. In 

this approach, control and experimental cells are grown separately in “Light” media or stable 

isotope-labeled “Heavy” media supplemented with L-arginine (13C6, 15N4) and L-lysine (13C6, 

15N2). The cell lysates are then mixed and digested with trypsin for comparative LC-MS 

proteomic analysis. Since trypsin cuts proteins at arginine and lysine residues, the ion abundance 

of each control (Light) and experimental (Heavy) peptides can be quantified and compared 

across all tryptic peptides. In one study, when SILAC is combined with IMS-DIA methods, even 

the point in the LC gradients where the most peptides are eluting, IMS separation limits 

interference of SILAC ions to only 5.5%.75 The addition of ion mobility spectrometry enhances 

peak capacity to resolve much of the complexity introduced through incorporation of 2-plex 

stable isotope labels. Nevertheless, it remained unclear if this purity is sufficient for accurate 

quantitative analysis. This chapter describes the benchmarking of stable isotope quantitation 

using IMS-DIA methods, particularly for accurate quantification across a range of fractional 

abundance changes. 

Experimental 

Reagents and solvents were purchased from Fisher unless otherwise indicated. 
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Cell culture and sample preparation 
 

HEK 293T cells were grown for more than 7 passages in Light or Heavy SILAC DMEM 

(Thermo Scientific, #88364) supplemented with Penicillin-Streptomycin (Gibco), 10% v/v 

dialyzed fetal bovine serum (Atlanta Biologicals), and 1.1 mM arginine and lysine. Heavy 

arginine (+10 Da: 13C6, 15N4 labeled L-arginine hydrochloride) and Heavy lysine (+8 Da: 13C6, 

15N2 labeled L-lysine hydrochloride) were purchased from Sigma. For protein turnover 

experiments, cells grown in Heavy SILAC media were gently rinsed with 1x PBS (Gibco), and 

light media was added for 2, 4 or 6 hours. Cell pellets were lysed by sonication in 6 M urea in 1x 

PBS and quantified by BCA (BioRad). Light and Heavy lysates were combined at 5 different 

Light : Heavy ratios (1/5, 1/3, 1/2, 1, 2, 3, 5). Each of these samples was reduced with 10 mM 

dithiothreitol (DTT) for 30 minutes at room temperature, then alkylated with 50 mM 

iodoacetamide for 30 minutes at room temperature in the dark. Samples were diluted with PBS 

so that the final concentration of urea was 1.2 M. Trypsin/LysC mix (Promega) was added to 

digest the samples overnight at 35°C with agitation. Digests were desalted using Waters Oasis 

HLB µElution plate (2 mg sorbent per well, 30 µm particle size). Sorbent was conditioned with 

UPLC-grade acetonitrile and water containing 0.1% trifluoroacetic acid (Acros Organics), 

digests were loaded onto the sorbent, washed first with UPLC-grade water containing 0.1% 

trifluoroacetic acid, then with UPLC-grade water, and peptides were finally eluted with 70% 

acetonitrile in water. Peptide eluate was dried using a vacuum centrifuge, then resuspended in 

UPLC-grade water containing 3% acetonitrile and 0.1% (v/v) formic acid. 

LC-IMS-MS data acquisition 
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In triplicate, 2 µL (~350 ng) of each sample was injected onto Waters nanoAcquity 

UPLC system fitted with a 5 µm C18 (180 µm x 20 mm) trap column and a 1.8 µm HSS T3 

analytical column (75 µm x 250 mm). Peptides were loaded onto the trap column over 3 minutes, 

followed by analytical separation over a 105 minute gradient (10 minute trapping, 3% to 35% 

acetonitrile over 95 minutes), at a flow rate of 0.5 µL / minute and an average pressure of ~5800 

psi. The lock mass compounds [Glu1]-Fibrinopeptide B and Leu-enkephalin (each ~100 fmol / 

µL) were delivered by the auxiliary pump of the LC system at 0.4 µL / min to the 

nanoLockSpray reference source of the mass spectrometer. The nano electrospray ionization 

source was set to 70° C and a 3 kV potential was applied. Peptides were analyzed in positive 

mode on a Waters Synapt G2-S HDMS traveling wave ion mobility time-of-flight (IMS-TOF) 

mass spectrometer. Precursor ions entering the instrument were separated by traveling wave ion 

mobility, using 40 V wave height and 600 m/s wave velocity. Ions between 50-2000 m/z exiting 

the ion mobility region were transferred to the TOF mass analyzer with a wave height of 4 V and 

a wave velocity of 380 m/s. Fragmentation energy was alternately applied post-ion mobility 

separation in the transfer cell. Alternating low and elevated-energy scans were performed every 

0.5 seconds (0.05 s interscan delay) to obtain precursor and fragment information, respectively. 

In low energy MS mode, data were collected at constant collision energy (CE) of 4 eV across all 

200 drift bins (TOF scans). In high-energy mode, no collision energy was applied in bins 0-19; a 

CE ramp from 17 to 60 eV was applied from bins 20-119, and a CE ramp from 60 to 72 eV was 

applied from bins 120-200. For mass analysis of precursor and fragment ions, the TOF was  

operated in V-mode with a typical resolving power of at least 20,000 FWHM. Data were mass 

corrected post-acquisition by comparison to the doubly-charged monoisotopic ion of [Glu1]- 

Fibrinopeptide B (m/z = 785.843), which was sampled every 30 seconds during acquisition. 
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Database searching and quantification 
 

Raw data were analyzed with ProteinLynx Global SERVER version 3.0.2 (PLGS, Waters 

Corporation), searching against a database of the human proteome (downloaded from UniProt on 

February 11, 2016). The following criteria were applied in the search: (i) trypsin as digestion 

enzyme, (ii) one missed cleavage allowed, (iii) carbamidomethylated cysteine, Heavy (13C6, 15N2 

+8.014 Da) lysine, and Heavy (13C6, 15N4 +10.021 Da) arginine as fixed modifications and 

methionine oxidation as a variable modification, (iv) a minimum of two identified fragment ions 

per peptide and a minimum of five fragments per protein, and (v) at least two identified peptides 

per protein. The false discovery rate for protein identifications was set at 1% using a decoy 

database of reversed protein sequences. Any identified peptides with a calculated mass error 

greater than 10 ppm were not considered. 

DIA-SIFT: Extraction of y-ion ratios and quartile filtering 
 

Precursor SILAC ratios from the PLGS search contained Light / Heavy ratios, but there 

was no information on y-ion ratios. Using a custom Python script, y-ion SILAC ratio 

measurements were extracted from the .csv files containing fragment results. The script searched 

for all heavy-labeled y-ion fragments, then compared the ion abundance of each heavy-labeled 

product ion to the intensity of the matching light-labeled product ion. The resulting y-ion Light / 

Heavy ratios were then added to a database already containing precursor Light / Heavy ratios 

from the peptide PLGS result files. The pooled precursor and fragment ratios from three 

technical replicates (replicate injections) were concatenated. A second script pooled all precursor 

and fragment Light / Heavy ratios for each identified protein. The distribution of Light / Heavy 

ratios for each protein was fit with quartiles, and outliers were filtered out according to an 
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optimized quartile width. Because the observed distribution of Light / Heavy ratios was unique 

for each protein, the absolute width of the quartile filter varied between proteins. The lower and 

upper bounds of Light / Heavy ratio measurements that passed the quartile filter for each protein 

were determined as follows: 

𝑙𝑜𝑤𝑒𝑟 = 𝑞1− 𝑖𝑞𝑟_𝑓𝑎𝑐𝑡𝑜𝑟(𝑞3− 𝑞1) 

𝑙𝑜𝑤𝑒𝑟 = 𝑞3+ 𝑖𝑞𝑟_𝑓𝑎𝑐𝑡𝑜𝑟(𝑞3− 𝑞1) 

 

where q1 is the first quartile (25th percentile), q3 is the third quartile (75th percentile), and 

iqr_factor was 0.2. This value for the iqr_factor was selected after testing values between 0 and 

1. Values less than 0 were not tested in order to maintain a substantial portion (at least 50 %) of 

the total measurements for each protein. The Python scripts used to perform fragment ratio 

extraction and quartile filtering, along with instructions for use, can be found at 

github.com/martin-lab/DIA-SIFT. 

 

Results and Discussion 

Since SILAC light and heavy peptide pairs share common retention and ion mobility drift 

times, the paired peptides co-fragment, and the resulting y-ion fragment spectra include light and 

heavy peak pairs derived from the C-terminal arginine or lysine labels. In current IMS-DIA 

proteomic analysis workflows, these product ion pairs are automatically binned together by drift 

and retention time during peptide annotation (Figure 17a,b).
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 To access these product ion ratios for quantitation, we developed a SILAC analysis 

pipeline to process output files generated by the APEX algorithm provided in the PLGS software 

(Waters).73, 97 This post-processing algorithm retroactively extracts y-ion peak pair assignments, 

and since the DIA workflow samples peptide fragments across their chromatographic elution 

profile, the peak area can be quantified for all assigned y-ion pairs.  

A series of human SILAC-labeled 293T cell tryptic digests of known Light / Heavy ratios 

were analyzed using a quadrupole IMS time-of-flight mass spectrometer (Synapt G2-S HDMS; 

Waters). Across different SILAC mixtures, MS2 y-ion ratio measurements nearly doubled the 

number of quantifiable observations, producing up to 60 000 quantifiable ratios summed across 3 

replicates using a 105 min gradient (Figure 17c). Across this triplicate dilution series, 1254 ± 

Figure 17. y-Ion quantitation increases measurable observations in DIA-SILAC 
analysis. (a) Schematic of SILAC IMS-DIA analysis. SILAC pairs share a common 
drift time and retention time for both precursor and product ions. (b) MS2 spectra of 
SILAC analysis (1:1) of histone 2B tryptic peptide demonstrating “Light” and 
“Heavy” (13C6, 15N4) y-ion pairs (shaded orange). (c) SILAC quantitation of y-ion 
ratios increases the number of quantifiable observations. Data represent aggregate 
observations across three replicates. (d) Fragment and precursor ion intensity 
profiles derived from SILAC IMS-DIA analysis. 
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153 (SD) proteins were identified with an average of 19 precursor and 21 y-ion SILAC ratios per 

protein. Fragment ion intensities average 1−2 orders of magnitude lower than precursor ions, yet 

remain well within the dynamic range of the detector, allowing accurate quantitation (Figure 

17d). By including these intrinsic y-ion SILAC ratios, on average, each peptide is measured ∼5 

times, providing inherent validation of the quantified precursor ratio.  

Label-free MS2 quantitation of IMS-DIA data reportedly increases the accuracy of 

protein quantification, even when protein abundance spans a wide dynamic range.98 In order to 

explore this further, we quantified the distribution of SILAC ratios across peptides from the 

different SILAC mixtures.  In analyses of predefined mixtures spanning a 25-fold range, MS1 

quantitation yielded a broad distribution of ratios with a 95% confidence interval for the 

coefficient of variation between 28 and 30% (Figure 18a), signifying extensive ion interference 

amplified by the increased sample complexity. 
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 In comparison, MS2 quantitation of y-ion ratios acquired with IMS-DIA methods 

yielded a broad distribution of measurements with a 95% confidence interval for the coefficient 

of variation between 76 and 80% (Figure 18b). However, the quantified ratios across individual 

proteins were largely Gaussian, with outliers amplifying the overall variance. These protein-level 

CVs are similar to retrospective analysis across several archived DDA experiments acquired on 

various Orbitrap instruments (Figure 19).99-101 Raw data from 3 different SILAC experiments 

were downloaded from the ProteomeXchange102 repository (http://www.proteomexchange.org/). 

Replicates were searched independently in Proteome Discoverer 2.2 using Sequest HT and 

Figure 18. Distribution of precursor and y-ion SILAC ratios. Protein level CVs 
from (A) unfiltered precursors or (B) unfiltered fragments pooled across samples 

(293T cell lysates with Light / Heavy ratios 1/5, 1/3, 1/2, 1, 2, 3, 5). The 95% 
confidence interval is shown for each analysis. 
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Percolator with the following search parameters: trypsin as digestion reagent, 1 missed cleavage 

allowed, 10 ppm precursor tolerance and 0.05 Da fragment tolerance, fixed carbamidomethyl 

cysteine, variable methionine oxidation, and appropriate isotopic labels. Percolator was used to 

filter identifications at 1% FDR. Precursor area (MS1) quantification was used for each analysis. 

Protein level % CV from pooled replicates for each experiment is shown, along with the 

respective 95% confidence interval (bold text). 

 

Figure 19. Distribution of precursor SILAC ratios obtained from 
three publicly available data-dependent (DDA) studies. 
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In both our DIA data and data from three publicly available DDA experiments, protein-

level SILAC measurements exhibit significant coefficients of variation. To address this issue 

within our DIA SILAC data, we introduced a simple statistical filter, termed DIA-SIFT, to 

eliminate outliers from pooled MS1 and MS2 ratios (Figure 20a). 

 

 

Figure 20. Quantile filtering of pooled MS1 and y-ion SILAC ratios improves 
accuracy. (A) Measured ratios are pooled together for quantile filtering of each protein. 
(B) Elimination of outlier ratios (those outside the dashed lines) by quantile filtering of 
pooled SILAC ratios for accurate protein quantitation. (C) Systematic analysis of quantile 
filter window relationship to the percent CV across the analysis at different defined SILAC 
mixtures. (D) Profile of observations remaining after quantile filtering MS1 and y-ion 
ratios by protein using a stringent 0.2 i.q.r. filter. (E) Quantile filtering reduces outlying 
peptide ratios to narrow the overall distribution of SILAC ratios toward the true value 
across the chromatographic gradient. Data compiled from three independent replicates. The 
color heatmap corresponds to a two-dimensional kernel density estimate. 
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 Since MS1 and MS2 ratios are both intrinsic to the actual ratio, precursor and y-ion 

measurements are weighted equally. The pooled measurements for each protein are then quantile 

filtered, removing any statistical outliers from the overall protein measurement. For example, the 

chaperone protein CCT4 reports a largely Gaussian distribution of both precursor and y-ion 

ratios in a 1:1 (Light:Heavy) analysis. DIA-SIFT filtering removes interfered outliers while 

retaining sufficient measurements for accurate quantitation (Figure 20b). Pooled protein 

measurements are only filtered when there are at least three observations, and no quantified 

proteins are outright eliminated from the analysis.  

MS1-based SILAC measurements are typically reported as median values, which can 

complicate later statistical analysis. Here, a sufficient number of measurements are retained to 

average any inconsistencies and more accurately reflect the true SILAC ratio. Applying a 0.2 

inner quartile range (IQR) filter (see Experimental Methods in the Supporting Information) 

retains 67 ± 10% (mean ± standard deviation) of the observations in the final protein quantitation 

(Figure 20c,d), while reducing the coefficient of variation >4-fold across the SILAC dilution 

series. The selected filter thresholds balance stringency with retention of quantified observations. 

Outlier ratios are largely eliminated after quantile filtering and are equally distributed across the 

chromatographic gradient (Figure 20e). Overall, DIA-SIFT restores accurate protein quantitation 

in SILAC IMS-DIA analysis without removing any protein identifications.  
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Across the tested dilution series, DIA-SIFT dramatically improves accurate quantitation 

of fractional changes across the proteome (Figure 21a, Figure 22, and Figure 23).  

 

For example, in a 1:1 mixture the mean protein-level coefficient of variation is reduced 

from 0.55 to 0.12, and the mean peptide-level variation is reduced from 0.24 to 0.06. The overall 

result is a reduction in outliers, which is essential for accurately measuring biologically 

significant changes.  

Due to the larger observed variance of protein SILAC ratios when quantified from MS2-

observations alone compared to MS1 measurements alone, we tested whether weighing MS1 

Figure 21. DIA-SIFT reduces variance to more accurately measure changes in protein 
levels. (A) Protein quantitative accuracy is improved by DIA-SIFT. Observed coefficients of 
variation across a defined SILAC dilution series are broad and harbor a number of outliers. 
DIA-SIFT reduces variation equivalently across the series. Violin plots illustrate the 
distribtion of ratios. The median, 25th and 75th percentiles are shown in the white box plot 
insets. (B) PulseSILAC labeling measurements are resolved by DIA-SIFT analysis. Five 
proteins are shown across three time points after cell growth media was switched from heavy 
to light. Shaded error represents the standard deviation for each protein. 
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observations more heavily would further improve quantification. In Figure 23, distributions of 

mean Light / Heavy protein ratios are shown across samples of different defined ratios when 

single, double, and triple MS1 weight was used with DIA-SIFT. Weighting MS1 ratios more 

heavily than y-ion ratios had no effect on the overall accuracy, highlighting the broad dynamic 

range of TOF-based SILAC quantitation. Overall, quantile filtering reduces the mean coefficient 

of variation to less than 15% across all samples across the dilution series. 

 

 

Figure 22. DIA-SIFT improves precursor and y-ion SILAC ratio correlation. (A) 
Correlation of precursor and y-ion ratios improve with DIA-SIFT processing. (B) The 
correlated coefficients of variation are reduced by DIA-SIFT processing. (1 point = 1 protein, 
color corresponds to two-dimensional kernel density estimate, which is calculated separately 
for each plot). Data shown are from a 1:1 (Light / Heavy) 293T lysate. 
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As further validation, human 293T cells initially grown in heavy SILAC media (with 

arginine +10 and lysine +8) were switched to light media and collected after different time 

intervals. The rate of heavy to light amino acid incorporation reports the ratio of old and newly 

synthesized proteins (Figure 21b). Unprocessed quantification data is highly variable and cannot 

be reasonably interpreted. After processing the data with DIA-SIFT, individual proteins are more 

accurately quantified to determine their rate of synthesis and turnover.  

 

 

Overall, DIA-SILAC methods offer several unique advantages for proteomics data 

analysis. Recent NeuCoDIA methods also quantify y-ion ratios, leveraging neutron-encoded 

SILAC labels to avoid increased sample complexity.103 Despite the promise of this approach, its 

practical application is limited by the long acquisition times required for high-resolution analysis 

(120 000 resolution at 200 m/z) of the neutron-encoded labels. In order to keep pace with the 

liquid chromatography gradient, only a narrow mass range (100 m/z) with four 27 m/ z-wide 

Figure 23. DIA-SIFT with increased weighting of MS1 observations. Observed ratio 
distributions (y-axis) are plotted against the true ratio (x-axis). 
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SWATH windows is acquired per experiment. In comparison, IMS-DIA SILAC methods profile 

the entire mass range, collect more frequent MS1 and MS2 scans for better chromatographic 

peak definition, and yield significantly more quantifiable observations than NeuCoDIA analysis. 

Nonetheless, both DDA and DIA SILAC analysis reduce the total number of annotated proteins 

by ∼20%.75, 104 When accuracy is critical, this fractional loss in proteome coverage is less of a 

concern. In addition, the largest ratio changes are typically the most biologically interesting. 

Thus, implementing DIA-SIFT will reduce false positives and direct further biological validation 

to bona fide targets.  

Here we demonstrate that DIA analysis yields y-ion ratio measurements that enhance 

SILAC quantitation. y-Ions can be easily identified as fragments pairs with matched drift and 

retention times. Since the y-ion pairs are matched using drift and retention time peaks, they 

represent multiple measurements and not single scans typical of DDA spectra. Beyond protein 

quantification, these y-ion pairs could also be leveraged to enhance confidence in peptide search 

algorithms, since they provide an orthogonal validation of accurate peptide fragmentation.105 

Implementing y-ion pair statistics in label-assisted de novo sequencing (LADS) algorithms could 

further enhance peptide annotation, quantitation, and reproducibility. Overall, DIA-SIFT 

algorithms can be adapted for SWATH analysis of SILAC or NeuCode-labeled peptides, 

providing a simple filter to leverage y-ion ratios for more accurate quantitation. 
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Chapter 4 Optimization of open-source LC-IMS-MS proteomics data analysis software 

Introduction 

Data-dependent acquisition is the current standard method in LC-MS protein annotation 

and quantification. In high complexity samples, limited duty cycle and co-isolation during 

abundance-based ion selection often results in under-sampling. In contrast, all-ion fragmentation 

(data-independent acquisition) methods bypass peptide ion selection, alternating low and high 

collision energies to analyze precursor and fragment ions across wide mass ranges. Traveling 

wave ion mobility spectrometry (IMS) adds an additional dimension of separation, reducing 

interference of precursor ions to improve reproducibility, peak capacity, and peptide 

identifications. Despite the advantages of ion mobility separation, these multidimensional 

proteomics data are not compatible with the majority of database search engines. 

While the software tool TWIMExtract95 (Chapter 2) can extract LC-IMS-MS features in 

any of the three dimensions from a predefined list, it cannot discern these features directly from 

the raw data file. In order to perform a database search on LC-IMS-MS data, each peptide and 

fragment feature must be detected across all three dimensions of separation to retain the full 

information content of the acquired data. Outside of the proprietary software packages offered by 

the Waters Corporation, there are no tools to analyze bottom-up LC-IMS-MS proteomics data.  

This chapter presents the initial testing of an informatics pipeline for peak extraction and 

correlated peptide and fragment analysis from data-independent liquid chromatography-ion 

mobility-mass spectrometry (LC-IMS-MS) data. Peak detection from raw LC-IMS-MS data 

occurs across the three dimensions.106 Features are first de-isotoped (monoisotopic mass is 
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determined from the isotopic distribution of each feature, see Figure 4), followed by grouping of 

fragment ions (from high energy scans) to their respective precursors (intact peptide ions from 

low energy scans). The data are then exported as standardized file format (.mgf), which is 

compatible with most proteomics search engines.107 

This chapter details parameter optimization studies of an open-source data analysis tool 

previously published for IMS-MS studies of intact proteins. Raw LC-IMS-MS proteomics data 

quality can be highly variable, fluctuating based on sample complexity, instrument tuning, 

calibration quality, and liquid chromatography performance. For this reason, there is a need to 

empirically test the use of different parameters within the software to identify those will perform 

well for LC-IMS-MS proteomics data. 

Data generated in a number of different laboratories was used to test the software 

parameters for feature detection and precursor-fragment grouping. This chapter reports a high-

throughput approach to test many unique combinations of parameters that control the peak 

detection and precursor-fragment grouping steps of LC-IMS-MS proteomics data analysis. The 

findings from this chapter can be used to guide users of the open-source tools in parameter 

selection to improve their data analysis. 

Using this pipeline, which is shown in Figure 24, we can successfully generate a 

common proteomics file format from liquid chromatography-ion mobility-mass spectrometry 

data. These files can be fed into almost any database search engine, and for these studies we 

selected MSFragger45 to perform ultrafast database searching, and Philosopher, which integrates 

PeptideProphet and ProteinProphet for statistical validation with convenient reporting tools. This 

pipeline provides the first open-source approach towards transparent and flexible data analysis 

from the Waters LC-IMS-MS platform. 
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Experimental 

To test the general utility and robustness of the pipeline for analyzing data across 

different laboratories and sample types, six ‘.raw’ data files were tested (Table 3). Three of these 

files were downloaded from the publicly accessible proteomics data repository, 

proteomeXchange.102 Two of the remaining three files were generated and analyzed in Chapter 

2,95 and the third was provided by Waters via personal communication. The raw files tested each 

consisted of a human protein sample analyzed by the MSE acquisition method108 over reversed-

phase liquid chromatography gradients ranging in length from 50 to 120 minutes. Only one of 

Figure 24. Overview of LC-IMS-MS data analysis pipeline testing. IMTBX is used to 
extract features from three dimensions, and Grppr correlates precursors and fragments. 
MSFragger is used to perform database searches, and Philosopher (which integrates 
PeptideProphet and ProteinProphet) is used to validate database search hits. 
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these raw files (sample label CRC) was subjected to pre-fractionation prior to LC-MS analysis, 

the remaining five are whole, unfractionated human cell digests. 

 

 

proteomeXchange 
identifier citation sample type instrument 

model 
sample 
label 

gradient 
length 
(min) 

PXD005735 
Quesada-Calvo et 
al. Clin. Proteom. 
2017.109  

Human serum samples, 1/5 
high-pH reversed phase 
fractions 

Synapt G2 CRC 80 

PXD005551 
Piltti et al. Sci. 
Rep. 2017.110 Human chondrosarcoma 

2/8 cell culture Synapt G2-Si HCS28 120 

(N/A) 
Haynes et al. 
Anal. Chem. 
2017.95 

Human HeLa standard 
digest Synapt G2-S H1000 80 

(N/A) 
Haynes et al. 
Anal. Chem. 
2017.95 

Human HeLa standard 
digest Synapt G2-S H600 80 

(N/A) (N/A) Human HeLa digest from 
Waters for ABRF study Synapt G2-Si Waters 95 

PXD004696 
Cassoli et al. 
Proteomics 
2017.111 

Human MO3.13 
oligodendrocyte cell 
culture 

Synapt G2-Si MO3 50 

 

The testing pipeline was composed of three major parts, (1) raw feature extraction and 

grouping, (2) database searching with MSFragger,45 and (3) validation of search results using 

PeptideProphet42 and ProteinProphet112 via Philosopher. The first step in the pipeline, feature 

extraction and precursor-fragment grouping, was performed by the combination of IMTBX / 

Grppr, which have been applied previously for intact protein analyses.106 More detailed 

descriptions of the IMTBX / Grppr tools can be found in the original publication and at 

https://dmtavt.com/IMTBX. 

Table 3. List of raw data files used to test the data analysis pipeline. The 
sample label is used to refer to each file throughout this chapter. 
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Peak detection from raw LC-IMS-MS data 
 

IMTBX is written in C# (.NET 4.5.1), and was operated in the 3D peak detection mode. 

Version 4.4.1 was used for the studies reported in this chapter. A full IMS scan is represented as 

a sparse matrix of N rows and M columns, where N is the number of IM drift bins (typically 

200), and M is the number of bins for the m/z axis (typically 100000−300000 bins). Each of 

these IMS scans take approximately 1 second to acquire during the LC-MS analysis. Low and 

high-energy IMS scans are alternated during acquisition, and are separated from each other 

(stored as function 1 and function 2, respectively) in the raw file.  

To process the LC-IMS-MS data, a 3-D Gaussian filter of user-specified size and shape is 

applied to smooth the data. The size and shape of the Gaussian filter corresponds to the number 

of neighboring scans taken into account and their weighting, respectively. A lone data point 

removal step, controlled by user-specified parameters, is then used to filter out nonzero intensity 

data points that only have few neighboring nonzero points. Signal-to-noise ratio thresholds and 

absolute intensity cutoffs can also be specified by the user for each function. Local maxima in 

each scan are found and used as seed points for fitting the peaks with 3D Gaussians. All detected 

features from function 1 and function 2 are written to .txt files for precursor-fragment grouping. 

Peaks in the m/z spectra throughout the LC-MS file can be calibrated post-acquisition by 

comparison to the lockmass spray, which is sampled every 30 seconds throughout the acquisition 

process. All six raw files included in this study were calibrated using the doubly-charged 

monoisotopic peak of [Glu1]-fibrinopeptide-B (785.8426 m/z). 
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Precursor-fragment grouping 
 

Fragment ions from function 2 were correlated to precursor ions from function 1 using 

Grppr version 0.3.17. Grppr takes as input the set of 2D function 1 and function 2 peaks 

containing peak intensities as well as locations and widths in both dimensions (m/z and drift 

time). The ‘Averagine’ algorithm was used for isotopic cluster detection, which uses the 

Averagine113 model amino acid to calculate theoretical isotopic distributions for each peak to 

compare to the data. This algorithm determines the charge and monoisotopic mass of each 

feature, which is then recorded to a .mgf file for database searching.  

Ions in function 2 can often be found with shifted drift times relative to function 1. Grppr 

provides adjustable tolerances for the maximum allowable width of this drift time shift. For these 

studies, the maximum drift shift allowed was 3.5 bins. The minimum number of peaks required 

to write a cluster to the output file can also be specified to reduce output file size. A minimum of 

three fragment peaks was used. 

 

Database searching 
 

Prior to database searching, .mgf files output from IMTBX / Grppr were converted to the 

.mzXML format. The msconvert tool from ProteoWizard package89 was used with default 

parameters. ProteoWizard can be downloaded from 

http://proteowizard.sourceforge.net/download.html.  

Database searches were performed using MSFragger.45 This search algorithm features an 

optimized fragment ion indexing method that makes it roughly two orders of magnitude faster 

than other tools. While it is well-suited for the challenging task of ‘open’ searching, where 
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allowed mass tolerances can be of hundreds of Daltons, it performs well for closed searches, and 

its speed was crucial to the feasibility of this study.  

A database of reviewed human protein sequences (20410 sequences downloaded from 

Uniprot1 on October 29, 2018) was used. Trypsin was specified as the digesting enzyme, with 2 

missed cleavages allowed. Fixed carbamidomethyl cysteine was specified as a fixed 

modification, and methionine oxidation and acetyl N-termini were specified as variable 

modifications, with a maximum combination of variable modifications for each peptide set at 

5000. Closed searches were performed, with precursor and fragment mass tolerance of 50 and 40 

ppm, respectively. Standard 13C isotope error was allowed. The minimum and maximum lengths 

of peptides searched were 7 and 50 residues, and the mass range was 500 to 5000 Da. A 

minimum of 3 peaks per spectrum was required to be included in the search, and only the top 

100 peaks from each spectrum were used.  

The March 16, 2018 release of MSFragger was used. For the work described in this 

chapter, a standalone version of the tool was run as part of the testing pipeline, but a user-

friendly interface has since been developed for more routine use. This tool, called FragPipe, can 

be found at https://nesvilab.github.io/FragPipe/ along with instructions for use. 

 

Validation of peptide and protein identifications 
 

Database search hits, in the form of ‘.pepXML’ files resulting from MSFragger analyses, 

were validated using PeptideProphet42 and ProteinProphet112. Validation is crucial to deriving 

meaningful results from resulting lists of peptides and proteins, particularly in this work, where 

changes to feature detection parameters will significantly influence the quality of the resulting 

spectra and thus the distributions of search scores. PeptideProphet and ProteinProphet validation 
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helps ensure that the peptide identifications can be compared as raw data processing parameters 

are changed.  

PeptideProphet models the distributions of search scores, mass error, and other attributes 

of every peptide-spectrum match (PSM) returned by MSFragger. This includes those matches to 

the reversed protein sequences, which are necessarily incorrect. Using machine learning 

techniques to find a model that best distinguishes between correct and incorrect peptide 

assignments, PeptideProphet assigns a probability of being correct to each PSM. Using similar 

machine learning techniques, ProteinProphet is then used to assign probabilities that each 

identified protein is truly present in the sample. From these probabilities, lists of PSMs and 

identified peptides and proteins can be reported. 

A tool called Philosopher was used to run PeptideProphet and ProteinProphet, facilitating 

automation of peptide and protein validation. Philosopher was also used to perform the reporting 

step, taking the validated peptide and protein outputs and generating .tsv files, which were used 

for all downstream data analysis. While Philosopher was only used for validation and reporting 

in these studies, it can also be used as an all-in-one data analysis toolkit for both open and closed 

proteomics searches.  Philosopher is currently unpublished, but it can be downloaded at 

https://nesvilab.github.io/philosopher/. 

 

High-throughput testing approach 
 

To find optimal parameters for IMTBX across the six different raw data files, a range of 

values for each of 12 different parameters were tested. These 12 parameters and the ranges of 

values tested for both IMTBX can be seen in Table 4. 
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parameter min max increment # possible 

mz 1 3 1 3 
im 1 3 1 3 
rt 1 3 1 3 
hyper_mz 0.2 0.8 0.1 7 
hyper_im 0.2 0.8 0.1 7 
hyper_rt 0.2 0.8 0.1 7 
ln 4 14 1 11 
lr 1 8 1 8 
npts 7 12 1 6 
noiseWnd1 0.5 3 0.5 6 
noiseWnd2 1 6 1 6 
snr 1 3 0.2 11 

 

The first three parameters (mz, im, and rt) in Table 4 control the width of the Gaussian 

filter in terms of points in each dimension (m/z, ion mobility, and retention time, respectively). 

The next three parameters (hyper_mz, hyper_im, and hyper_rt) control the shape of the Gaussian 

filter in each dimension. The values tested, between 0.2 and 0.8, correspond to weight of the 

farthest filter point in each direction. The next three parameters (ln, lr, and npts) are used to 

distinguish true peaks from noise. The minimum number of non-zero neighbors is controlled by 

ln, and the taxi-cab radius in which this criterion applies is lr. An overall threshold is provided by 

npts, which is the minimum number of points needed for a peak to be reported. noiseWnd1 and 

noiseWnd2 are the widths of the noise estimation window in the m/z dimension. Finally, a 

signal-to-noise threshold is applied using snr. 

  From these ranges, there are approximately 1.9 billion possible combinations of 

parameters. Testing all combinations is not feasible, so a scheme was devised to sample this 12-

Table 4. IMTBX parameters tested. Minimum and maximum values, 
increment size, and the resulting number of possible values for each parameter 
are shown. 
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dimensional parameter space. A Halton sequence114 was used to generate quasi-random 

combinations of values of these 12 parameters that were evenly sampled relative to a more 

random approach. 

 A wrapper script written in Python 3 was used to run IMTBX, Grppr, msconvert, 

MSFragger, and Philosopher in a semi-automated manner on a desktop computer (2-core, 96 GB 

RAM). 

 

Results and Discussion 

A single test involving peak detection, precursor-fragment grouping, file conversion, 

database searching, and validation from a full LC-IMS-MS raw file took between 2 and 5 hours 

to complete, and required 5 to 15 GB of storage space. A method of sampling only a section of 

scans from the center of the raw file was used to facilitate higher throughput sampling of the 

parameter space. 

To validate this approach, 100 IMTBX parameter combinations were used to extract 

sections of variable sizes from the center of the LC-IMS-MS run. The center of the gradient was 

chosen because the highest density of peptides elute at this time, and the peptide features in the 

middle of the gradient are representative of average peptides. Figure 25 demonstrates that the 

number of peptide-spectrum matches (PSMs) obtained from the small section (250 scans, or 

approximately 5 minutes) scaled linearly to those from a much larger section (2000 scans, or 

approximately 40 minutes) from the center of the file. Peptide and protein identifications also 

scaled linearly, with correlation coefficients of 0.84 and 0.76, respectively. 
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 Because the number of identified features scaled well with increasing amount of the raw 

file used, the 5 minute (250 scan) sections were used to significantly increase throughput of 

parameter testing. Prior to large-scale testing of IMTBX parameters, the criteria for accepting 

isotopic clusters was first tested on a smaller scale. The other Grppr options were used as 

specified in the Experimental section. In Grppr, the minimum number of peaks required to 

identify an isotopic cluster (see Figure 4) can be specified separately for function 1 (peptide) and 

function 2 (fragment) spectra. Using 100 unique sets of IMTBX parameters generated according 

to Table 4, three different options were tested (Figure 26). 

Figure 25. PSMs obtained between 5 minute (250 scan) and 40 minute (2000 
scan) sections of an LC-IMS-MS raw file. Points represent the number of 
peptide-spectrum matches from 100 unique IMTBX parameter combinations 
tested on raw file H1000 (80 minute total gradient length). OLS line of best fit is 
shown in blue with the 95% confidence interval shaded gray. 
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 For each option tested (2-1, 3-1, 3-2), the first number in the pair (2, 3, 3) indicates the 

number of isotopic peaks required to accept a cluster from function 1 spectra, and the second 

number in the pair (1, 1, 2) indicates the number of isotopic peaks required to accept a cluster in 

function 2. The numbers of parameter sets that failed to return any identified features were 14, 5, 

and 21, from deisotope options 2-1, 3-1, and 3-2, respectively. The numbers of peptide-spectrum 

matches were 722, 867, and 331; and the numbers of unique peptide sequences identified were 

106, 130, and 50 for deisotope options 2-1, 3-1, and 3-2, respectively. Because option 3-1 had 

the fewest number of failed parameter sets and the highest average number of PSMs and peptide 

identifications, this option was used for the subsequent large-scale test of IMTBX parameters. 

 

Figure 26. Peptide-spectrum matches (left) and unique peptide sequences 
(right) observed with three Grppr deisotope options for 100 parameter sets. 
Each colored bar indicates the number of features identified for one IMTBX 
parameter set according to each color scale (PSMs and peptides, respectively).  
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For the large-scale test, a total of 5000 unique IMTBX parameter combinations generated 

using the Halton method (see Experimental section) were tested using five minute sections from 

the center of each of the six LC-IMS-MS raw files. The numbers of peptide-spectrum matches 

and unique sequences identified for each of these is shown in Figure 27. 

 

 

The raw files returned very different numbers of identified features, which is to be 

expected given the different sample types and three different versions of the Synapt (G2, G2-S, 

and G2-Si). The H1000 file returned the most peptide identifications (87 sequences on average), 

and the CRC file returned the lowest (an average of 1.8 sequences). Overall, the top-performing 

parameter sets for the H1000 file tended to also work well for the H600 and MO3 files (Figure 

Figure 27. Unique peptide identifications obtained from each raw LC-IMS-MS file 
using 5000 different IMTBX parameter sets. Color indicates the number of 
sequences identified for each test according to the color scale at right. 
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27). It is likely that the CRC file returned so few peptides because the originating sample was 

pre-fractionated serum, which would be expected to contain fewer unique peptides overall. The 

CRC file was also the only one acquired on the oldest instrument model of the three, the Synapt 

G2. Behind the H1000 file, MO3 returned the second most peptide identifications (49 sequences 

on average), and this data was acquired on the newest instrument version, the Synapt G2-Si.  

The highest performing parameter set from the 5000 that were tested was 1-1-1-0.7-0.2-

0.5-5-7-12-1.5-2-2.2 (in the order mz-im-rt-hyper_mz-hyper_im-hyper_rt-ln-lr-npts-noiseWnd1-

noiseWnd2-snr). The full raw file H1000 (80 minute gradient of a standard HeLa digest acquired 

on a Synapt G2-S) was extracted using these IMTBX settings and compared to the Waters 

proprietary software, ProteinLynx Global Server (PLGS) version 3.0.2. 

The PLGS software was used to both for feature detection and database searching. PLGS 

can generate the .mgf file format to use with other database searches, with options for intensity 

thresholds in function 1 and function 2. In addition to searching the raw file H1000 to obtain 

peptide and protein reports, PLGS was also used to generate an .mgf file (with default intensity 

thresholds) to run through the database searching and validation portion of the analysis pipeline 

for side-by-side comparison. 

For these comparisons, the database search was performed on the full H1000 file 

according to the methods specified in the Experimental section. The PLGS search was performed 

using the same mass tolerances as the MSFragger searches (50 ppm and 40 ppm for peptide and 

fragment spectra, respectively), with three minimum fragment ions to identify a peptide and at 

least two peptides required to identify a protein. A global false discovery rate was set to 1% in 

PLGS using the reverse sequences appended to the protein database. 
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The peptide and protein results from these comparisons are shown in area-proportional 

Venn diagrams (Figure 28).  

 

 

The IMTBX / Grppr analysis pipeline returned only 57% and 20% of the total unique 

peptide sequences and 53% and 38% of the total proteins identified from the PLGS .mgf and the 

PLGS search, respectively. While the PLGS search significantly outperformed the MSFragger 

and Philosopher search and validation pipeline in terms of the numbers of identifications, the 

proprietary software may not include rigorous statistical validation of the database search hits. 

PLGS does not report the same search scores as most other search engines, so these scores 

cannot be directly compared to those from MSFragger. Distributions of selected search scores 

(hyperscore, nextscore, and expectation value) from validated peptide identifications from 

IMTBX / Grppr and PLGS .mgf are shown in Figure 29.  

Figure 28. Peptide and protein identifications from the best-performing IMTBX / 
Grppr parameters (red), the .mgf file generated using PLGS (green), and a PLGS 
search (blue). The numbers of identifications are represented proportionally by the area of 
each region of the Venn diagram. 
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Briefly, hyperscore takes into account the number and intensities of matched fragment 

ions. Nextscore is the score of the second-highest scoring peptide match for a given spectrum. 

The expectation value is derived from these other search scores, and indicates the number of 

peptides with scores equal to or better than the observed score that would be expected if peptides 

match the experimental spectrum purely by random chance. 

The hyperscore and nextscore distributions between PLGS and IMTBX feature detection 

(.mgf files) are similar, but peptides identified with PLGS have significantly lower expectation 

values (0.34 vs 0.51 on average). The average charge of a validated peptide-spectrum match was 

slightly higher when PLGS feature detection was used compared to IMTBX (2.23 and 2.17 

average charge, respectively).  

Compared to the PLGS-generated .mgf file, IMTBX / Grppr was only able to extract 

about half of the peptide and fragment features overall. However, given that only 5000 out of the 

over 9 billion possible parameter combinations were sampled, it is likely that the performance of 

the IMTBX / Grppr pipeline could still be improved. 

Figure 29. Comparison of MSFragger search score distributions of validated 
peptide-spectrum matches from IMTBX and PLGS. Density plots are shown, where 
the shaded areas are normalized (equal) between the IMTBX and PLGS data. 
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While there were too few individual raw files tested to discern any real trends in the 

performance of IMTBX for data acquired using different instrument models or sample types, the 

results of sampling 5000 different parameter combinations were used to attempt to predict more 

optimal combinations. To fit the 12-dimensional test data, three different modeling approaches 

were used: multiple linear regression, multivariate adaptive regression splines115, 116, and gradient 

boosted regression117-120. To test each of the three modeling approaches, 80% of the 5000 

parameter sets was used to train, and 20% of the data was used for testing. Models were 

evaluated based on the coefficient of determination between the true number of peptides 

identified and those predicted by the model. 

Multiple linear regression was performed with the LinearRegression function from the 

scikit-learn package in Python with default settings. Comprehensive parameter optimization of 

the multivariate adaptive regression splines (MARS) and gradient boosted regression models was 

performed to provide the best fit for each of these models. The Python implementation of MARS 

(found in the py-earth package https://contrib.scikit-learn.org/py-earth/) was used with the 

following parameters: fast_K=3, endspan_alpha=0.001, minspan_alpha=0.001, 

allow_missing=True, max_terms=50, max_degree=50, and penalty=3.0. Gradient boosted 

regression was performed with the GradientBoostingRegressor function from scikit-learn with 

the following parameters: learning_rate=0.01, max_depth=3, min_samples_leaf=3, 

max_features=1.0, subsample=1.0, loss=’ls’, min_weight_fraction_leaf=0.1. The coefficients of 

determination (R2 values) for the linear regression, MARS, and gradient boosted regression 

predictions from five independent train/test split trials were 0.21 ± 0.01, 0.23 ± 0.01, and 0.24 ± 

0.01 (mean ± standard deviation), respectively.  Both the MARS and gradient boosted regression 

models performed better than the simple linear regression model. Though it gave a marginally 
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better fit than MARS, gradient boosted regression yielded the highest R2 value and thus provided 

the most accurate model of IMTBX parameter performance. 

From the gradient boosted regression model, the number of peptide identifications was 

predicted for each of the IMTBX parameter combinations in the testing portion of the dataset. 

The results of these predictions are plotted against the actual number of peptides identified from 

the IMTBX parameter set for all six raw LC-IMS-MS raw files together (Figure 30a). The 

predictive power of the model, which is quite low when all raw files are examined together, is 

significantly increased when only one raw file is used (Figure 30b).  

 

 

The average cross-predicted score (coefficient of determination of the predicted vs. actual 

results) was 0.24 ± 0.01 (n=5 individual train/test splits) when all files were used, compared to 

0.70 ± 0.03 when only H1000 was used to train and test the model. 

Figure 30. Predicted number of peptide identifications as a function of the true 
number of peptide identifications for each IMTBX parameter combination. 
Predictions based on results of the 5000 different IMTBX parameter sets (a) from all six 
raw files, and (b) from file H1000 alone. 
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Using the fit from the gradient boosted regression model of all six raw files, response in 

terms of peptide identifications across the range of values tested for each of the 12 IMTBX 

parameters is shown in Figure 31. 

 

 

Figure 31. Peptide identification response across the values tested for each IMTBX 
parameter. Partial dependence values (y-axis) indicate the change in peptide 
identifications relative to the performance of the average parameter set.  
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Some significant relationships can be observed, such as a decrease in peptide 

identifications as the values of im, rt, and hyper_im increase. Other effects on feature 

identification, such as snr and hyper_mz, appear to be complex, likely representing complex 

relationships with other variables. Other IMTBX parameters such as ln, npts, and noiseWnd1, do 

not appear to have a significant effect, but it is possible that interactions between parameters 

obscure individual effects when visualized in a single dimension. Though the complexities of the 

interactions between IMTBX parameters cannot be visualized due to the high dimensionality of 

the parameter space, the gradient boosted regression model can be used to determine the 

parameters that are most influential in accurately detecting peptide features from the raw LC-

IMS-MS data. 

The relative importance of each IMTBX parameter is shown in Figure 32. 

 

 

Figure 32. Importance of each IMTBX parameter as determined by the 
gradient boosted regression model fit to all six raw files. Relative importance 
(x-axis) is plotted as the percentage relative to the maximum for all parameters. 
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According to the model, hyper_mz, snr, and noiseWnd2 are the most influential 

parameters. Interestingly, these three most important parameters do not have pronounced effects 

when visualized alone in the partial dependence plots (Figure 31). This indicates that complex 

interactions between parameters occur, which makes it challenging to predict optimal parameter 

combinations. Additionally, the overall predictive power of the model is quite low (R2 < 0.25, 

Figure 30a) when used for all raw files, indicative of a poor fit to the data. Given that the fit and 

predictive power is greatly improved when only a single raw file is used (R2 = 0.7, Figure 30b), 

it is likely that the peptide and fragment ion features are too different between raw files, and 

IMTBX parameters suitable for one file are unsuitable for another. 

Overall, the partial dependence plots of mz, im, and rt indicate that the values of these 

parameters (as well as their respective ‘hyper’ parameters) should generally be kept low to 

improve feature detection. Fully automated tuning of IMTBX feature detection parameters, 

where grid searching could be applied on-line to each raw file individually (or batch of raw files 

in an experiment), is theoretically feasible, but would require significant time, memory, and 

computational resources.  

This chapter demonstrates initial use and testing of the first open-source data analysis 

software for LC-IMS-MS proteomics. A framework for exploring complex parameter spaces of 

new tools is presented. In future work, the process of parameter optimization could be fully 

automated, with the results of improved multiple regression modeling used to guide new 

sampling of the parameter space. Results of initial fitting of one 5000-sample test can be used to 

test the feasibility of an automated process. Even without further optimization, the IMTBX / 

Grppr tools are well suited to analyses of intact proteins on the IMS-MS platform. For analyses 
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of simple peptide mixtures, this pipeline offers free, open-source proteomics data analysis and 

feature detection capabilities for analytical method development. 
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Chapter 5 Conclusion 

 

 

 Mass spectrometry-based proteomics is a crucial tool for research in biomedicine and 

biology. The work described in this dissertation centers around one of the commercially 

available mass spectrometry platforms currently being used to conduct proteomics experiments. 

This instrument platform, the Waters Synapt G2-S, integrates traveling-wave ion mobility 

spectrometry with liquid chromatography-mass spectrometry, leveraging the orthogonality of the 

ion mobility separation to improve selectivity and proteome coverage. 

The sheer complexity of the trypsin-digested proteome, which likely contains millions of 

different uniquely modified peptides, will remain a barrier to identifying and quantifying the 

entire set of proteins in a whole cell lysate. Without additional in-line separation, co-elution of 

peptides of similar mass from the liquid chromatography column leads to co-fragmentation of 

peptide ions, generating complex fragment ion spectra that contain products of multiple peptide 

ions. These contaminated spectra result in lost identifications and skewed protein quantification. 

 Complex proteomics samples can be fractionated (using techniques such as gel 

electrophoresis, high-pH reversed phase liquid chromatography, or isoelectric focusing) prior to 

LC-MS analysis to reduce complexity and achieve deeper proteome coverage. However, these 

methods require multiplying the LC-MS analysis time by the number of fractions, imposing a 

steep time cost on increased selectivity. 
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In-line separations, such as ion mobility spectrometry, do not require additional 

separation time, as these separations occur over milliseconds, and fit neatly between the LC time 

scale (seconds) and the MS timescale (microseconds). As mass spectrometry-based proteomics 

continues towards becoming a routine tool in drug discovery, biological investigations, and 

personalized medicine, instrument platforms that employ such time-saving separations are likely 

to increase in popularity. But to maximize their performance, the true selectivity of such systems 

will need to be studied analytically with measures such as total peak capacity for tryptic peptides. 

The work discussed in Chapter 2 presents a framework for the analytical study of a three-

dimensional LC-IMS-MS system, and demonstrates that even modest improvements in 

selectivity can increase peak capacity to enhance proteome coverage by significant margins. 

Following on this framework for monitoring system peak capacity, continued work to optimize 

ion mobility separations for complex proteomics promises further improvements in selectivity. 

Additionally, because of the relationship between ion mobility drift times and mass-to-charge, 

peptide ions separated by ion mobility prior to fragmentation can be dissociated with collision 

energies tuned to provide high-quality fragment ion spectra. 

Given the enhanced selectivity and fragmentation efficiency afforded by ion mobility 

spectrometry, instruments incorporating IMS have the potential to become the top-performing 

platforms for high-throughput proteomics studies. Indeed, a trapped ion mobility spectrometry-

time of flight (TIMS-TOF) instrument recently introduced by Bruker has demonstrated 

promising results. The TIMS-TOF platform uses ion mobility and subsequent quadrupole m/z 

filtering to isolate peptide ions prior to fragmentation, decreasing co-isolation to improve 

fragment ion spectral quality (Figure 31).121-123  
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Currently, the instrument can obtain roughly two times greater proteome coverage than the 

previous state-of-the-art platform, the Orbitrap Fusion Lumos.124 The authors reported 

identification of 2500 proteins from complex HeLa cell digests over short, 30-minute LC 

gradients, and over 6000 proteins when 120-minute gradients were used. 

Figure 31. Schematic of the trapped ion mobility-time of flight instrument and proteomics 
acquisition method. (a) Eluting peptides are ionized and enter the mass spectrometer. (b) 
Trapping mechanism of the dual ion mobility analyzer is shown. The first regions traps peptide 
ions, and the second performs the mobility separation. (c) Ions exit the ion mobility region and 
(d) are mass analyzed. (e) To acquire fragment spectra, the quadrupole is synchronized to the ion 
mobility device, isolating peptide ions by mobility and m/z prior to fragmentation. (f) This yields 
mobility-resolved fragment spectra. This research was originally published in Molecular & 
Cellular Proteomics. Meier, F., Brunner, A.D., Koch, S., Koch, H., Lubeck, M., Krause, M., 
Goedecke, N., Decker, J., Kosinski, T., Park, M.A. and Bache, N. "Online parallel accumulation–
serial fragmentation (PASEF) with a novel trapped ion mobility mass spectrometer". Mol Cell 
Proteomics. 2018; 17.12:2534-2545. Copyright the American Society for Biochemistry and 
Molecular Biology. 
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Other manufacturers in addition to Bruker are also pursuing high-resolution ion mobility 

separations coupled to mass spectrometry. A commercial drift tube ion mobility-time of flight 

instrument has recently been introduced125, as well as a cyclic traveling wave ion mobility-time 

of flight platform126. The cyclic ion mobility instrument is shown in Figure 32. An extension of 

the linear traveling wave device described in Chapter 1, the cyclic traveling wave device consists 

of stacked ring ion guides over which a voltage wave is passed within a confining 

radiofrequency field. In contrast to the linear ion mobility setup employed by the Synapt, where 

the path length of the separation is limited to the physical length of the ion mobility region, ions 

can be sent for multiple passes through the cyclic ion mobility device. This allows for the 

possibility of extremely long separation path lengths and increases the flexibility of the traveling 

wave device to improve separation efficiency. 
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The resolution of the ion mobility separations (measured by the drift time over the drift 

time peak width, or R = td/tFWHM) achieved by drift tube and cyclic traveling wave devices (75125 

and 350126, respectively) may significantly exceed that of the current generation Synapt 

instruments, which we measured to be less than 20 for tryptic peptides. If separation times 

remain in the millisecond timescale, such massive improvements in resolving power will surely 

lead to significant increases in the number of features that can be identified from complex 

proteomics samples. 

Ideally, some of these new ion-mobility enabled instrument platforms would retain the 

capability to perform data-independent acquisition (DIA), where no abundance-based m/z 

isolation is performed prior to peptide fragmentation. Data-independent acquisition generates 

highly complex fragment spectra that can be challenging to deconvolve, but data-dependent 

Figure 34. Cyclic traveling wave ion mobility device coupled to a time-of-flight mass 
analyzer. (a) Schematic of the the quadruopole-cyclic ion mobility-mass spectrometry 
geometry. (b) Side-on schematic of the cyclic ion mobility device with pre- and post- 
separation trapping regions show. (c) Location of electrode array for switching traveling 
wave direction. Reprinted from ChemRxiv via Creative Commons 4.0. Eldrid, C., Ujma, J., 
Kalfas, S., Giles, K., & Thalassinos, K. (2018). Gas Phase Stability of Protein Ions in a 
Cyclic Ion Mobility Spectrometry Travelling Wave Device.  
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acquisition sacrifices cross-replicate reproducibility and may also suffer from interference from 

co-isolated peptides ions. To devise the best possible workflows for proteome analyses, overall 

quantification accuracy and the balance between spectral quality and reproducibility should be 

carefully monitored as different acquisition schemes are explored on these new ion mobility-

enabled platforms. 

Data-independent acquisition stores all peptide and fragment information, increasing the 

total number of signals available for protein quantification. The work described in Chapter 3 

leveraged the y-ion peaks measured by DIA analysis to improve protein quantification by stable 

isotope labeling in cell culture (SILAC). The statistical filtering method demonstrated in Chapter 

3 could also be applied to improve SILAC or dimethyl protein quantification when other data-

independent acquisition methods, such as SWATH70, 127, are used.  

A major bottleneck in advancing ion mobility-mass spectrometry proteomics is data 

analysis. In contrast to most LC-MS data formats, few free tools are available to use with ion 

mobility-mass spectrometry data for feature extraction and conversion to widely-accepted file 

formats. This limitation hinders analytical method development, such as optimization of ion 

mobility separations and assessing fragmentation efficiency. Proprietary analysis software also 

imposes hard limitations on the types of search algorithms and validation tools that can be used 

to analyze LC-IMS-MS proteomics data. 

Chapter 4 of this thesis examines a new, open-source tool106 for analyzing traveling wave 

ion mobility-mass spectrometry data. While the tool, IMTBX / Grppr, has been successfully used 

to automatically analyze IMS-MS experiments of intact proteins, it has not been examined in the 

context of LC-IMS-MS proteomics data. The appropriate peak detection parameters for 

extracting peptide and fragment ion features from the multidimensional data were unknown, and 
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a sampling approach was used to empirically test values for these parameters. From tests of 

thousands of combinations of values, the best-performing parameters of IMTBX / Grppr 

recovered only half the number of protein identifications as the proprietary peak detection 

software. 

While the open-source tools did not perform as well as the proprietary tools, it is likely 

that the performance of IMTBX / Gppr could be improved with further sampling following the 

process outlined in Chapter 4. These initial results also provide users of the LC-IMS-MS 

platform with the tools to analyze simple peptide mixtures without having to purchase 

proprietary software. 

Flexible, open-source tools will be necessary to carry out analytical studies of current and 

next-generation ion mobility mass spectrometers in the context of complex proteome 

measurements. Optimizing and testing such peak detection tools will present a challenge, and the 

empirical sampling approach discussed in Chapter 4 could be applied to improve software 

performance in a variety of other situations where values of multiple parameters are unknown.  

Large-scale measurements of protein expression, interactions, and modifications will 

remain a crucial tool in the life sciences. In-line ion mobility separations are a promising 

direction for bottom-up proteomics. As LC-IMS-MS instrumentation advances, careful analytical 

studies of peak capacity and optimization of selectivity for tryptic peptides will be required, 

along with statistical methods for improving confidence in quantitative proteomics results and 

flexible, open-source tools to analyze the data. By applying these concepts to one LC-IMS-MS 

instrument platform, the work described in this thesis demonstrates the promise of such careful 

analytical studies in pursuit of proteome-wide measurements.
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