

Dimensionality Reduction of Quality Objectives for Web Services Design Modularization

by

Hussein Skaf

A thesis submitted in partial fulfillment

of the requirements for the degree of

Master of Science

(Software Engineering)

in the University of Michigan-Dearborn

2018

Master’s Thesis Committee:

Associate Professor Marouane Kessentini, Chair

Professor Bruce Maxim

Professor William I. Grosky

ii

DEDICATION

To my Family.

iii

ACKNOWLEDGEMENTS

It is with a great joy that I reserve these few lines of gratitude and deep appreciation to all

those who directly or indirectly contributed to the completion of this work:

First and foremost, I offer my sincerest gratitude to Dr. Marouane Kessentini, who

dedicated all his wonderful time to collaborate, support and lead me to the end of this piece of

work. His advices, dedication, availability, relevant comments, corrections and committeemen led

to the success of this work.

I also express my greatest thanks to SBSE members who supported me with valuable

feedback and always kindly encouraged me to succeed this project.

I thank all the lecturers of the CIS master degree who have used their valuable time to

transmit the knowledge that help in putting this work together me.

Finally, I wish to express my deep gratitude and thank my family who has consistently

expressed its unconditional support and encouragement.

All those who contributed in one way or another, to make this work, can be found here, the

crowning of their efforts.

Thank you.

iv

TABLE OF CONTENTS

DEDICATION .. ii

ACKNOWLEDGEMENTS ... iii

LIST OF FIGURES ... vi

LIST OF TABLES .. vii

ABSTRACT ... viii

CHAPTER 1: INTRODUCTION ... 1

CHAPTER 2: BACKGROUND AND CHALLENGES .. 5

2.1 Background ... 5

2.1.1 Web Service Interface Defects ... 5

2.1.2 Used Metrics ... 6

2.1.3 Refactoring Types ... 7

2.1.4 Dimensionality Reduction .. 7

2.2 Motivating Example .. 8

CHAPTER 3: DIMENSIONALITY REDUCTION APPROACH FOR WEB SERVICES

MODULARIZATION .. 9

3.1 Approach Overview .. 9

3.2 NSGA-II .. 10

3.3 NSGA-II Adaptation ... 12

3.3.1 Solution Representation .. 12

3.3.2 Change Operators ... 12

v

3.3.3 Objective Functions and Solution Evaluation .. 13

3.4 Objective Reduction based on Nonlinear Correlation Information Entropy....................... 14

3.4.1 Correlation Analysis ... 14

3.4.2 Classification for correlated and non-correlated objectives ... 15

3.4.3 Objective Selection ... 16

CHAPTER 4: VALIDATION .. 18

4.1 Research Questions .. 18

4.2 Experimental Setup .. 20

4.3 Results and Discussions ... 21

CHAPTER 5: THREATS TO VALIDITY ... 29

CHAPTER 6: RELATED WORK .. 31

6.1 Web Services Design Quality .. 31

6.2 Services Interface Remodularization ... 32

CHAPTER 7: CONCLUSION ... 34

REFERENCES ... 35

vi

LIST OF FIGURES

Figure 1: An example of Web service interface modularization. 8

Figure 2: The objective reduction approach embedded in an NSGA-II. 10

Figure 3: Example of a solution representation. 12

Figure 4: Median manual correctness (MC) value 22

Figure 5: Median number of fixed design defects (NF) value. 23

Figure 6: Median precision (PR) value. 24

Figure 7: Median recall (RC) value. 24

Figure 8: Median number of objectives (NOB) value. 26

Figure 9: Quality Metrics Improvements using NSGAII-NCIE. 28

vii

LIST OF TABLES

Table 1: Amazon and Yahoo benchmark overview.

21

Table 2: Example of the modified NCIE matrix with 5 objectives. 25

viii

ABSTRACT

With the increasing use of service-oriented Architecture (SOA) in new software

development, there is a growing and urgent need to improve current practice in service-oriented

design. To improve the design of Web services, the search for Web services interface

modularization solutions deals, in general, with a large set of conflicting quality metrics. Deciding

about which and how the quality metrics are used to evaluate generated solutions are always left

to the designer. Some of these objectives could be correlated or conflicting.

In this paper, we propose a dimensionality reduction approach based on Non-dominated

Sorting Genetic Algorithm (NSGA-II) to address the Web services re-modularization problem.

Our approach aims at finding the best-reduced set of objectives (e.g. quality metrics) that can

generate near optimal Web services modularization solutions to fix quality issues in Web services

interface. The algorithm starts with a large number of interface design quality metrics as objectives

(e.g. coupling, cohesion, number of ports, number of port types, and number of antipatterns) that

are reduced based on the nonlinear correlation information entropy (NCIE).

The statistical analysis of our results, based on a set of 22 real world Web services provided

by Amazon and Yahoo, confirms that our dimensionality reduction Web services interface

modularization approach reduced significantly the number of objectives on several case studies to

a minimum of 2 objectives and performed significantly better than the state-of-the-art

modularization techniques in terms of generating well-designed Web services interface for users.

Keywords - Web service, interface design, modularization, dimensionality reduction approach,

NCIE, NSGA-II.

1

CHAPTER 1: INTRODUCTION

Service-oriented Architecture (SOA) is undeniably an important technology to assist in the

construction of complex applications. Indeed, it has effectively contributed to the development of

software systems, improving productivity and reducing cost through the reuse of independent and

self-contained services. Consequently, many companies are migrating to SOA technology

including FedEx1, Dropbox2, Google Maps3, PayPal4, and so on. Considering the importance and

the usefulness of this technology, developing service-oriented systems having a good quality has

become paramount. The fundamental principle of SOA is the separation of concerns in which

software systems are broken down into smaller services through functional decomposition. Central

to the concept was the idea of the application programming interface (API) as the contract to which

a service commit [1]. Therefore, a well-designed interface can sharply improve the quality of the

whole systems.

 However, like any other software systems, Web services, the predominant technology used

for implementing SOA, are continuously subjected to change and especially, service interfaces are

affected by different types of changes [2] Those changes are necessary to add new functionality

according to user's requirements and to fix bugs. Nevertheless, changing Web service becomes

increasingly difficult, expensive, and may have a negative impact on the design quality over the

time. Continuous change leads to combining many non-cohesive and semantically unrelated

operations in the same Web service. In particular, it may weaken the design of the Web service’s

interface by including a large number of non-cohesive operations. Exposing several operations

that are semantically unrelated make the interfaces lack cohesion and on the other side, the service

1 http://www.fedex.com/caenglish/businesstools/webservices
2 https://www.dropbox.com/developers/core
3 developers.google.com/maps/documentation/webservices
4 developer.paypal.com/webapps/developer/docs/classic/api

2

suffers from a high degree of interdependence. Therefore, this issue violates the two fundamental

concepts of service-oriented design [3] An example of well-known interface design defect is the

God Object Web service (GOWS) [4] which implements many operations related to different

businesses and technical abstractions in a single service interface leading to low cohesion of its

operations and high unavailability to end users because it is overloaded. Indeed, the choice of how

operations should be exposed through a service interface can have an impact on the performance,

popularity and reusability of the service [5] and it is not a trivial task. On one hand, Web services

interface including a high number of operations lead their clients to invoke their interfaces many

times which significantly deteriorate the performance. On the other hand, aggregating several

operations of an interface into one operation will reduce the reusability of the service.

Consequently, there is a high need for efficient re-modularization techniques that we can use to

improve the quality of service interfaces.

 A variety of work relies on quality of services has been proposed in the literature, and the

majority of them proposed to discover the design defects and antipatterns in Web services based

on a set of quality metrics related to the interface and code levels [4], [6], [7], [8], [9]. The hard

question is how to remove these antipatterns. Despite its importance, service interfaces re-

modularization, the main part of the service that needs to be improved, is still in its teenage years

[10], [11], [12], [13]. Athanasopoulos et al. represent the first attempt to treat the problem of

interface services remodularization [10]. They have formulated the problem as a single-objective

problem focusing only on cohesion to find the best decomposition of service interfaces. Ouni et

al. suggest that coupling is as important metric as cohesion to drive service interfaces

remodularization [11]. However, coupling and cohesion are not enough to generate efficient

remodularization and other objectives are also needed to be addressed. In our previous work [12],

we selected a high number of objectives to evaluate service interfaces remodularization solutions.

Indeed, deciding on how to decompose/modularize an interface is subjective and difficult to

automate since a large number of conflicting quality metrics are involved. Thus, multi-objective

evolutionary algorithms seem to be efficient to handle a search space of solutions evaluated by

conflicting objectives. However, it is known that problems with a high number of objectives cause

additional difficulties in terms of the quality of the Pareto set approximation [14] and NSGAII, the

one of the most widely used algorithm for generating the Pareto in search-based software

engineering (SBSE), is inadequate in our case. Hence, we used dimensionality reduction

3

techniques based on PCA-NSGAII to address the Web services modularization problem.

Nevertheless, PCA-NSGAII is a linear dimensionality reduction method and objectives can be

reduced are either linearly or nonlinearly correlated, mostly nonlinearly correlated [15].

 In this current work, we could go even further in order to select the most representative

objectives, we propose a novel dimensionality reduction approach based on nonlinear correlation

information entropy (NCIE) [16] embedded in NSGA-II. Our approach aims at finding the best

reduced set of objectives (e.g. quality metrics) that can generate near optimal Web services

modularization solutions to (i) maximize cohesion, (ii) minimize coupling, (iii) maximize number

of port types, (iv) minimize number of operations per port type, and (v) minimize number of

antipatterns. The algorithm starts with many quality metrics as objectives that are reduced based

on the correlation between them. In the current study, we selected 5 interface design quality metrics

coupling, cohesion, number of ports, average of operations per port types, and number of

antipatterns.

 Therefore, the main contributions of this paper can be summarized as follows: The paper

introduces a novel approach of the Web Services re-modularization problem as a reduction

approach based on nonlinear correlation information entropy (NCIE) embedded in NSGA-II that

takes into account the redundant objectives. We extended our previous work [12] by pointing out

the redundant objectives as an important issue. For that, we propose a fully-automated Web

services restructuring technique covering these 3 points:

1) Reduction: Performing objective reduction on generated population

2) Evaluation: Performing non-dominated sorting on selected conflicting objectives

3) Selection: Performing crowding distance sorting on selected objectives

We evaluated our approach on two empirical studies. The first one using a set of 22 real-world

Web services, provided by Amazon and Yahoo and the second one using 570 Web services,

provided by ... Pareto optimality-based algorithm used in this study succeeded in finding a good

sequence of re-modularization that should provide the best compromise between used metrics to

improve the service interface quality. Statistical analysis of our experiments shows that our

dimensionality reduction approach reduced significantly the number of objectives on several case

studies to a minimum of 2 objectives and shows that the proposed NCIE outperforms NSGA-II

4

and performed significantly better than the state-of-the-art modularization techniques [10], [11],

[12].

 The remaining of this paper is organized as follows. Section 2 describes the relevant

background and a motivating example for the presented work. Section 3 explains dimensionality

reduction approach for Web services modularization. Section 4 provides the different results with

existing Web services (Amazon,Yahoo). Section 5 discusses the threats to validity. Section 6

outlines the related work. Finally, section 7 presents the conclusion and future works.

5

CHAPTER 2: BACKGROUND AND CHALLENGES

To better understand our contribution, we start, in this section, by providing the necessary

background of our approach. Then, we discuss a motivating example that illustrates the specific

problems that are addressed by our proposal.

2.1 Background

 Most of existing real-world Web services interface regroup together high number

operations implementing different abstractions such as the Amazon EC2 that contains more than

100 operations in some releases. There are few WSDL design improvement tools [17] that have

emerged to provide basic refactorings on WSDL files, however applying these refactorings is fully

manual and time consuming. These interface design refactorings correspond to Interface

Decomposition, Interface Merging (to merge multiple interfaces) and Move Operation (to move

an operation between different interfaces).

2.1.1 Web Service Interface Defects

Web service interface defects are defined as bad design choices that can have a negative

impact on the interface quality such as maintainability, changeability and comprehensibility

which may impact the usability and popularity of services [18], [19]. They can be also

considered as structural characteristics of the interface that may indicate a design problem that

makes the service hard to evolve and maintain and trigger refactoring [17]. In fact, most of

these defects can emerge during the evolution of a service and represent patterns or aspects of

interface design that may cause problems in the further development of the service. To this

end, recent studies defined different types of Web services design defects [17], [18], [19]. In

our experiments, we considered five types of common Web service antipatterns from the

literature [20].

6

• God object Web service (GOWS): also called Multi service, refers to a service

implementing a high number of operations related to different businesses and technical

abstractions in a single service.

• Fine grained Web service (FGWS): also called Nano service, is a too fine-grained

service, refers to a small Web service whose overhead (communications, maintenance,

and so on) outweighs its utility.

• Data Web service (DWS): contains typically accessor operations, i.e., getters and

setters. In a distributed environment, some Web services may only perform some

simple information retrieval or data access operations.

• Chatty Web service (CWS): represents an antipattern where a high number of

operations are required to complete one abstraction.

• CRUDy Interface (CU): is an antipattern where the design encourages services the

RPC-like behavior by declaring create, read, update, and delete (CRUD) operations,

e.g., createX(), readY(), etc.

We choose these defect types in our experiments because they are the most frequent

and hard to fix [4], [8], [21]. However, the proposed approach in this paper is generic and can

be applied to any type of defects.

2.1.2 Used Metrics

 We consider five metrics in our approach to deal with the Web service interface

remodularization problem. Two metrics are related to the two main properties in restructuring

software in general coupling and cohesion. Coupling refers to the strength of associations

between implementation elements belonging to the same service [22]. We define the coupling

metric as the average coupling values between all possible pairs of operations of interfaces.

Cohesion describes how closely the operations of a service interface are related. We use Lack

of Cohesion (LOC) metric. Other properties related to the Web service interface level were

also suggested: NPT metric calculates the number of port-types, NOPT metric is the average

number of operations per port types, ANTIs metric is the number of design antipatterns that

can be detected using the rules defined in [4], [6].

7

2.1.3 Refactoring Types

 Our approach supports three high-level refactorings, as described in the following

categories:

• Interface Decomposition: Split an interface into multiple port types.

• Interface Consolidation: Merge a set of interfaces that collectively implement a

complete, single abstraction into one interface that represents a single cohesive

abstraction.

• Move Operation: Move an operation from one interface to another one.

These refactorings are composed by low-level refactorings such as delete and add operations.

2.1.4 Dimensionality Reduction

 The remodularization problem is formulating, in general, using optimization problem.

Most real-world optimization problems encountered in practice involve multiple criteria to be

considered simultaneously. However, in practice, existing evolutionary multi-objective

optimization techniques are applied only to problems having smaller number of objectives to

find a representative set of Pareto-optimal solutions [23]. Therefore, these methods including

NSGA-II may not adequately handle multi-objective optimization problems. Several works

have been made to overcome the limitations of existing multi-objective optimization

techniques and to make them more effective and efficient [24], [25], [26]. One of the most

important proposed work is Objective reduction. The advantages of objective reduction have

been highlighted in several studies [27], [28]. The basic goal of this method is to select the

smallest set of conflicting objectives by dropping the redundant objectives without changing

the Pareto set of the original problem. Removing redundancy and making balance between

conflicting objectives are important issues in modeling decision problems.

 Conflicting Objectives: Simply, there is conflict between two objectives when good

values for one of them imply bad values for another [29]. Brockhoff et al. give the formal

definition [28]:

Definition 1: Two objective sets F1, F2 are called conflicting if the induced weak Pareto

dominance relations differ, that is, ≤ F1 ≠ ≤ F2 and nonconflicting otherwise (≤ F1 = ≤ F2).

8

 Redundant objectives: One of the objectives can be viewed as a redundant of the other

objective if it is not in conflict with it [30]. Brockhoff et al. give the formal definition [28]:

Definition 2: A set F' ⊆ F of objectives is called redundant if and only if there exists an

objective F" ⸦ F' that is nonconflicting with F'.

2.2 Motivating Example

 The need to investigate remodularization for service interfaces has been motivated by

several issues related to service interfaces design. To illustrate some of these problems, we give a

concrete example provided by Amazon. We will use the architecture shown in figure 1 consists of

four Web service interfaces Amazon Simple Storage Service (AmazonS3), Application Ver1,

Application Ver7 and Application Ver11. AmazonS3 interface including 16 operations to be used

by the other clients. Four operations are invoked by Application Ver}, Application Ver7 invoked

2 other operations and Application Ver11 invoked 3 other different operations. This solution is,

however, undesirable since (1) it implements several features in one service and per consequent,

generates an excessive number of calls from different clients to a single interface (2) it implements

unrelated operations. This practice violates the design principles and it is critical to fix. To improve

this situation, AmazonS3 can be decomposed into several services that group together the most

related operations into a newly created service. Thus, three new services have been introduced

AmazonS3-AccessManage, AmazonS3-BucketManage, and AmazonS3-ObjectManage. In this

way, we will reduce the number of unrelated operations/functionalities implemented in AmazonS3.

Figure 1: An example of Web service interface modularization

9

CHAPTER 3: DIMENSIONALITY REDUCTION APPROACH FOR WEB

SERVICES MODULARIZATION

We start by outlining the limits of automated refactoring solutions. The first limit that these

solutions deal, in general, with a set of conflicting criteria such as several quality metrics or

coverage measures. The second limit that some of these objectives could be redundant or

correlated, whereas the third one that the current practice is to leave the decision of aggregating

fitness functions or treating them separately to the intuition of the SBSE designer.

Wang et al. recently proposed a novel objective reduction approach based on nonlinear

correlation information entropy (NCIE) to solve the problems with redundant objectives [30].

Therefore, we used this approach to select the most conflicting objectives during the execution of

NSGA-II.

3.1 Approach Overview

 The general structure of our approach is sketched in Figure 2. The approach takes as inputs

a set of quality metrics, several Web services refactoring types, and a Web service to be refactored.

The first component consists of a regular execution of NSGA-II during a number of iterations.

During this phase, NSGA-II will try to find the non-dominated solutions balancing the initial set

containing all the objectives such as improving the quality metrics of the service and minimizing

the number of refactorings in the proposed solutions.

 After a number of iterations, the second component of the algorithm is executed to analyze

the execution traces of the first component (solutions and their evaluations), using the nonlinear

correlation information entropy, to check the correlation and the redundancy between the different

objectives. This component generates as output the selected objectives. When a redundancy

between objectives is detected, we remove the redundant objectives. Then, the first component is

executed again with the new objective set.

10

The whole process of these two components continue until a maximum number of

iterations is reached. A set of non-dominated refactoring solutions are proposed to the users with

the reduced objectives set to select the best Web service refactorings sequence based on his or her

preferences.

Figure 2: The objective reduction approach embedded in an NSGA-II.

3.2 NSGA-II

 NSGA-II is one of the most efficient and popular multi-objective search techniques [16]

that has been successfully applied to several engineering optimal design problems [31]. It is based

on the genetic algorithm and inspired by the theory of the natural selection in the biological

genetics which was developed by Darwin. The basic idea of this algorithm is to make a population

of candidate solutions evolve toward the near-optimal trade-off solution in order to solve a multi-

objective optimization problem.

 As described in Algorithm 1 the first step in NSGA-II is to create randomly an initial

population P0 of individuals encoded using a specific representation (line1). Then, an offspring

population Q0 is generated from the population of parents P0 (line2) using genetic operators

(crossover and mutation). A combined population is formed between both parent and offspring

populations into an initial population R0 of size N (line5). Then, the population Rt is sorted

according to Fast-non-dominated-sort (line6). This method is used by NSGA-II to classify a

population into non-dominated fronts. In fact, the algorithm is called the Nondominated Sorting

Genetic Algorithm, since it is based on a nondominated sorting procedure. The concept of this

technique consists of comparing each solution with every other solution in the population to check

if it is dominated. The best non-dominated set as selected for the next generation. Fronts are added

best ranked first followed by the next-best and so on until the parent population Pt+1 is filled with

N solutions (line8). After that, the solutions of the last selected front are sorted using crowding

11

distance technique (line9). This technique measures how close an individual is to its neighbors.

Then, this new population Pt+1 with N solutions is now used for selection, crossover and mutation

in order to create a new population Qt+1 with N solutions (Line15). This process is repeated until

reaching the maximum number of generations according to stop criteria.

 Our approach is applied in every generation of NSGA-II to update the correlation

information among objectives. Thus, the next section presents Objective Reduction based on

Nonlinear Correlation Information Entropy.

Algorithm 1. High level pseudo code for NSGA-II

Begin

Create an initial population P0

Create an offspring population Q0

t = 0

while stopping criteria not reached do

R4 = Pt ∪ Qt

F = fast-non-dominated-sort(Rt)

Pt+1 = ∅ and i = 1

while | Pt+1 | + | Fi | ≤ N do

/*Apply crowding-distance-assignment(Fi)

Pt+1 = Pt+1 ∪ Fi

i = i + 1

end while

Sort(Fi ≺ n)

12

3.3 NSGA-II Adaptation

 In this subsection, we describe how we adapted the NSGA-II in terms of solution

representation, objective functions and change operators to find the best compromise and the

reduced set of objectives (software quality metrics).

3.3.1 Solution Representation

 A solution consists of a sequence of n interface change operations assigned to a set

of port types. A port type could contain one or many operations but an operation could be

assigned to only one port type. A vector-based representation is used to cluster the different

operations of the original interface, taken as input from the WSDL file description, into

appropriate interfaces, i.e., port types. Figure 3 describes an example of 5 operations

assigned to two port types. As output, a vector representation is automatically translated

by our tool into a graphical interface of the modularized Web service.

Figure 3: Example of a solution representation

3.3.2 Change Operators

In each search algorithm, the variation operators play the key role of moving within

the search space with the aim of driving the search towards optimal solutions. For the

crossover, we use the one-point crossover operator. It starts by selecting and splitting at

random two parent solutions. Then, this operator creates two child solutions by putting, for

the first child, the first part of the first parent with the second part of the second parent, and

Pt+1 = Pt+1 ∪ Fi [N - | Pt+1 |]

Qt+1 = create-new-population(Pt+1)

t = t + 1

end while

13

vice versa for the second child. It is important to note that in multi-objective optimization,

it is better to create children that are close to their parents to have a more efficient search

process. For mutation, we use the bit-string mutation operator that picks probabilistically

one or more refactoring operations from its or their associated sequence and replaces them

by other ones from the initial list of possible refactorings. When applying the change

operators, different pre- and post-conditions are checked to ensure the applicability of the

newly generated solutions such as removing redundant operations or conflicts between

operations such as assigning the same operation to two different port types.

3.3.3 Objective Functions and Solution Evaluation

Once the solution has been created, we should formalize the evaluation of an individual

as a fitness function. For that, we used the 5 quality attributes along with the number of

refactorings in the solutions (solution size) as fitness functions of our algorithm. In our

approach we optimize the following objectives:

1) Coupling: This objective measures the overall coupling among interfaces in a

modularization M. It is defined as follows:

where Cpl(sii, sij) was defined in [11].

2) Cohesion: The cohesion objective function corresponds to the average

cohesion score of each port type in a Modularization M and it is calculated as

follows:

where LoC(sii) denotes the total interface lack of cohesion, and | M | is the total

number of interfaces in the modularization M.

3) Number of port types: This objective expected to be maximized to avoid

having all operations in one port types. It's defined as follows:

14

4) Number of operations per port types: This objective is ought to be

minimized to avoid the unrelated operations in the same port types. It's

measured as follows:

where Size(si) returns the number of operations in the interface si.

5) Number of antipatterns: Antipatterns have negative impact on the interface

quality and thus, this objective is expected to be minimized. It is calculated as

follows:

where NbAntis(si) returns the total number of detected defect types, introduced

previously, in the interface si.

The initial iterations of NSGA-II will use all the 5 fitness functions as input then the

algorithm will reduce the number of objectives by mining the execution traces (the

solutions and their evaluations).

3.4 Objective Reduction based on Nonlinear Correlation Information Entropy

The general structure of this approach is defined in 3 steps: 1) Measuring the correlation

among objectives; 2) Classifying objectives by separating the objectives correlated from those

non-correlated to a given objective; 3) Selecting the most conflicting objectives. The following

subsections give more details about these steps.

3.4.1 Correlation Analysis

 The first key step of our approach is to measure the relationship of objectives. A

nonlinear correlation information entropy (NCIE) can be used as a robust correlation

metric. The main difference between NCIE and the other existing correlation analysis

approaches is that NCIE can handle both linear and non-linear correlation [30]. In this

study, we use the modified NCIE matrix to measure the redundant and conflicting

objectives. NCIE is modified by adding the information of covariance. The sign of the

covariance therefore shows whether two objectives are in conflict. The modified NCIE is

shown in Eq. 6

15

where covij is the ijth element in the correlation matrix.

 NCCij denotes the nonlinear correlation coefficient of the ith and jth variable [32]. It

quantizes the correlation in [0,1] for linear and nonlinear cases. If the result is a large

positive value, the two objectives are highly positively correlated; if it is a large negative

value, the two objectives are highly conflicted and if the result is around zero, the two

objectives are not correlated.

3.4.2 Classification for correlated and non-correlated objectives

The basic idea is to separate the objective correlated to objective fi from those non-

correlated to objective fi [30] by determining the correlation degree.

Algorithm 2. Pseudo code of classifying objectives.

Input: R-modified NCIE of the remaining objectives to objective fi (R =

RN (i, j), (fj ∊ St) and (fi ∊ Sr)), m-number of objectives.

Output: R’ with classification for correlated and non-correlated

objectives.

Add values 0 and 1 (the boundary of non-correlated and correlated) to RN

as R*.

Sort R* to R’ in an ascending order.

Classify R’ into two clusters (R’ [1 : k] and R’ [k + 1 : end]).

In other words, cut across the least dense area between the two clusters.

R’ [1 : k] without 0 is the cluster of objectives non-correlated to fi [k + 1:

end]) without 1 is the cluster of objectives correlated to fi.

16

Algorithm 2 takes as input modified NCIE matrix and the number of objectives and

returns as output a new matrix with classification for correlated and non-correlated

objectives. The situation that all the objectives are non-correlated or correlated to fi is

handled by adding 0 and 1 values (line 3). Then, the matrix is sorting in an ascending order

(line4). Afterward, k-means clustering has been used to cut across the least dense area

between the two clusters (line5). At the end, 2 clusters are obtained, the first is the cluster

of objectives non-correlated to fi and the second is the cluster of objectives correlated to fi

(line6).

3.4.3 Objective Selection

Objective selection is another key step in the objective reduction approach.

According to the obtained NCIE matrix from correlation analysis, we select the most

conflicting objectives.

Algorithm 3 takes as input modified NCIE matrix of the current population and

the number of objectives and returns as output the selected objective set Sr. The T-threshold

is calculated based on classification (Line3). Since classification is separating the

objectives into 2 clusters, the threshold is set based on the values in the clusters (Line4).

Then, selecting the most representative and the most conflicting objectives, which is the

objective with the largest absolute sum of its NCIEs to other objectives (Line [5-10]).

The selected conflicting objectives are stored in to be after outputted (Line11). The

objectives that are positively correlated with the stored objectives are omitted (Line [12-

13]).

Algorithm 3. Pseudo code of the objective selection.

Input: R-modified NCIE matrix of the current population, m-number of

objectives.

Output: Sr-selected objective set

Parameter: T-threshold

17

St = [1 : m], Sr = ∅.

while St ≠ ∅.

if all the elements in RN are positive, then

J = argmax(sum(RN (1 : m, j))). Find the most representative

objective

else

J = argmi(sum(RN (i, j))), where RN (i, j) < 0 and 1 ≤ i ≤ m.

Find the most conflicting objective with remaining objectives

end if

Move fJ from St to Sr.

F = {fJ |R
N (J, j) > Tmax(R

N (J, j)) (fJ ∊ St)}. Find set F with the objectives

correlated to fJ.

Delete set F from St.

end while

18

CHAPTER 4: VALIDATION

To evaluate the efficiency of our reduction approach based on nonlinear correlation

information entropy for improving the quality of service interfaces, we conducted experiments

based on a set of 22 real-world Web services. The obtained results are statistically analyzed with

the aim of comparing our proposal with a variety of existing state-of-the-art modularization

approaches. In this section, we first present our research questions and then describe the

experimental setup and finally discuss the obtained results.

4.1 Research Questions

To evaluate the relevance and performance of the proposed dimensionality reduction approach,

we defined the following four research questions:

• RQ1: To what extent can the proposed dimensionality reduction approach recommends

useful Web service refactorings?

• RQ2: To what extent does the proposed dimensionality reduction approach reduce the

number of objectives while recommending useful refactorings?

 • RQ3: How does the proposed dimensionality reduction approach perform compared to other

existing Web services modularization techniques not based on computational search [10], [11]

and our previous work [12]?

 • RQ4: What is the impact of the suggested remodularizations by our approach on design

quality metrics?

To answer RQ1, we considered both automatic and manual validations to evaluate the

usefulness of the proposed Web service refactorings. For the manual validation, we asked groups

of potential users of our tool to manually evaluate whether the suggested refactorings are feasible

and efficient at improving the services quality and achieving their maintainability objectives. We

define the metric Manual Correctness (MC) that corresponds to the number of

19

meaningful refactorings divided by the total number of suggested refactorings. (MC) is given by

the following equation (7):

In addition to the \textit{MC} measure, we have also evaluated the ability of our approach to

fix design defects using the percentage of fixed defects NF which is the percentage of design

defects fixed by the application of the best refactoring solution and corresponds as defined in (8);

to the number of fixed defects divided by the total number of defects.

The defects are detected using a set of rules defined in our previous work [4].

For the automatic validation we compared the proposed Web service refactorings with the

expected ones using the traditional precision and recall evaluation measures [33]. These expected

refactorings are suggested by users (e.g. subjects of our study) to fix existing Web service design

defects as detailed later. The precision is to estimate the ratio of correctly Web services refactorings

among the set of all proposed refactorings. We compute the precision score as follows (9):

The recall denotes the ratio of correct refactorings selected among the set of all expected ones

and is given by Eq. (10).

To investigate our second research question RQ2, we examine firstly the number of objectives

(NOB) and then, we evaluate the efficiency of our approach to restructure Web services design in

terms of precision, recall, manual correctness and percentage of fixed defects.

To answer RQ3, we compared our results with a recent state-of-the art approaches by [10],

[11], [12]. Athanasopoulos et al. proposed a Web service refactoring approach based on a greedy

algorithm to refactor and split Web service interfaces based on different cohesion measures. Ouni

et al. proposed a graph decomposition approach for Web services remodularization using coupling

and cohesion metrics. Wang et al. proposed a dimensionality reduction technique based on PCA-

20

NSGAII to address the Web services modularization problem using several Web service quality

metrics.

To answer RQ4, we assess the quality metrics improvement of the interface remodularization

solutions proposed by our approach for 570 Web services.

4.2 Experimental Setup

The aim of the experiment presented in this paper is to answer the previous research questions.

Our evaluation involved 14 independent volunteer participants including 6 industrial developers

and 8 graduate students. In particular, 3 senior developers from Browser King5, 3 developers from

Accunet Web Services6, 3 MSc and 5 PhD candidates in Software Engineering. We first gathered

information about the participant’s background. All participants are familiar with service-oriented

development and SOAP Web services with an experience ranging from 4 to 9 years. The

participants were unaware of the techniques to be evaluated neither the particular research

questions, in order to guarantee that there will be no bias in their judgment. In the following, we

will describe Web services used.

We conducted our experiment on a benchmark of 22 real-world services provided by Amazon7

and Yahoo8. We selected services with interfaces exposing at least 10 operations. We chose these

Web services because their WSDL interfaces are publicly available, and they are widely used in

different contexts and were previously studied in the literature [10], [34]. Table 1 presents our

used benchmark.

5 http://www.browserkings.com
6 www.accunet.us
7 http://aws.amazon.com
8 developer.searchmarketing.yahoo.com/docs/V6/reference/

21

4.3 Results and Discussions

Results for RQ1. To answer RQ1, we evaluated the average of Manual Correctness (MC), the

percentage of fixed defects (NF), Precision (PR) and Recall (RC) scores. Figure 4 presents the

evaluation of the MC score. We observe that the score is higher than 85% on all the 22 Web

services. The correctness score achieved 100% on 10 Web services, which means that, from the

developers' point of view the suggested Web services refactorings for these Web services are all

correct. Thus, this finding indicates that the created port types and applied changes to the initial

design are considered useful and correct according the developers of our experiments.

22

Figure 4: Median manual correctness (MC) value over 30 runs on all the Web services using the different techniques

with a 95% confidence level (α < 5%).

We reported also the ability of our approach to fix several types of design defects and to

improve the service interface design quality as described in Figure 5 that depicts the results of the

percentage of fixed several types of design defects (NF). On average, for the different Web

services, 85% of design defects are considered fixed by developers, which is considered a good

score since developers may reject or modify some design changes that fix some defects because

they do not consider some of them as very important (their goal is not to fix all design defects in

the Web service interface) or because they wanted to focus on improving the cohesion and

minimize coupling. We found that our approach succeeded to fix all design antipatterns of

AmazonVPCPortType and MessageQueue services. The manual evaluation results by developers

confirm that our approach produces relevant Web services refactoring suggestions. Nevertheless,

these two measures just evaluate the correctness and not the relevance of the recommended

solutions, therefore we also evaluated our approach automatically by comparing the proposed

modularization changes with some expected ones defined manually by the different groups for the

different Web services.

23

Figure 5: Median number of fixed design defects (NF) value over 30 runs on all the Web services using the different

techniques with a 95% confidence level (α < 5%).

From Figure 6, we observe that NSGAII-NCIE performs well, with an average of precision of

81%, and a ratio of 97% of precision for AutoScalingPortType means that the results are very close

to the actual defects, while is the lowest score was 58% for AmazonEC2PortType. This is not

surprising since this Web service has also the worst MC, NF scores and it can be explained by the

fact that this Web service include the higher number of operations than others (87 operations),

thereby a higher number of antipatterns. In terms of recall, and as stated in Figure 7, we found

that it differed only slightly between our Web services except few of them, the average recall value

was 75%, i.e. is the proportion of design defects that were correctly identified, the highest observed

value was 96% for TargetingService and the lowest was 65% for AdGroupService and AdService.

24

Figure 6: Median precision (PR) value over 30 runs on all the Web services using the different techniques with a

95% confidence level (α < 5%).

Figure 7: Median recall (RC) value over 30 runs on all the Web services using the different techniques with a 95%

confidence level (α < 5%).

To summarize and answer RQ1, both automatic and manual experimentation results

confirm that our approach helps the participants to restructure their Web service interface design

efficiently by finding the relevant portTypes and improve the quality of all the 22 Web services.

25

Results for RQ2. These results need to be interpreted in the wake of: (i) the reduction of

objectives, and (ii) the pertinence and the efficiency of our approach to restructure Web services

design.

We present, here, how we selected the most conflicting objectives using the nonlinear

correlation information entropy approach. Table 2 gives an example of the process of our objective

selection method. Firstly, the temporary set St is {Cohesion, Coupling, PortType, NOPT, ANTIs},

and the selected objective set Sr is Ø.

Objective NOPT is selected because it has the largest negative sum NCIE to other objectives

(NOPT=-1.352) and Cohesion is omitted because it is positively correlated to the selected

objective. In fact, Cohesion is a redundant objective with NOPT. Therefore, Sr = {NOPT} and St

= {Coupling, PortType, ANTIs}. Then, objective PortType is selected because it is the most

representative objective (PortType=0.767). ANTIs and Coupling are omitted because both

objectives are positively correlated to the selected objective. Per consequent, the set of reduced

and most conflicting objectives is {PortType, NOPT}.

Figure 8 shows the number of objectives after reduction over 30 independent runs on all

systems.

26

Figure 8: Median number of objectives (NOB) value over 30 runs on all the Web services using NSGAII-NCIE.

 As we can see, the number of objectives were reduced to only 2 in 8 Web services, 3 in 11

others, while 4 objectives might be required to perfectly represent the results for the rest of Web

services. Thus, this finding indicates the ability of NCIE approach to reduce significantly the

number of objectives. However, the interpretation of the objective reduction alone is inadequate.

Thus, combined with the results of RQ1, where our approach achieving significantly high

precision and recall with a good correctness and a great percentage of fixed defects, accompanying

this reduction can confirm the usefulness of our approach.

 To summarize and answer RQ2, it is clear that the proposed NSGAII-NCIE formulation

successfully reduced the number of objectives while generating useful Web services refactoring

recommendations.

 Results for RQ3. To answer RQ3, we evaluate the efficiency of our approach comparing

to three other contributions of Athanasopoulos et al. [10], Ouni et al. [11] and Wang et al. [12].

The comparison is performed in terms of: (1) correctness of suggested refactorings, (2) the

percentage of fixed defects that is calculated using defect detection rules, (3) precision, and (4)

recall values. As described in Figure 4, for the 22 Web services, an interesting improvement was

achieved in terms of correctness by using NSGAII-NCIE and provides an average of 96% of

proposed remodularization operations is considered correct and meaningful. This score is

27

significantly higher than the scores of the three other approaches having respectively only 45%,

62% and 77%, on average as MC scores on the different Web services. Therefore, our approach

achieved much better results comparing to the three other approaches in terms of correctness.

 Regarding the percentage of fixed defects, we noted that more than 87% of detected design

defects were fixed as an average for all the Web services. By comparison, as depicted in Figure

5, the results for Athanasopoulos et al. is only 25%, for Ouni et al. is 70% and for Wang et al. is

77%. The underperformance of Athanasopoulos technique and slightly less Ouni technique in

terms of percentage of fixed defects, can be explained by the fact that the main goal of these studies

is not to mainly fix these defects. These studies are limited to the coupling and cohesion metrics

which may not be sufficient to guide the modularization of Web services.

 We compared the four approaches in terms of automatic validation REprecision and RErecall,

as depicted respectively in figures 6 and 7. For all the 30 runs of the 22 Web services, NSGAII-

NCIE achieved an average precision of 81% and an average recall of 75%, while in NSGAII-PCA

achieved 72% and 77% of precision and recall, respectively. These two approaches were much

better than Ouni et al. approach which achieved 50% of precision and 55% of recall and

Athansopoulos et al. approach achieves an average precision of 26% and an average recall of 39%.

 To summarize, NSGAII-NCIE approach were slightly better than NSGAII-PCA in most of

the cases, and significantly better than those obtained in [10], [11] in all studied Web services.

 Results for RQ4. To answer RQ4, we present the obtained quality metrics improvement

values for Cohesion, number per port types (NPT), number of operations per port types (NOPT)

and number of Antipatterns (ANTIs) that we calculated before and after remodularization and this

for 570 Web services. From Figure 9, we noticed that cohesion metric has been exponentially

increasing with an average of cohesion of the refactored interfaces of 0.892 while it was before

0.066. This increase is due to the move of operations between service interfaces to have more

cohesive services. Another interesting observation was that NPT metric has been growing, it was

≃ 1 as an average before and achieved ≃ 8 port types after the remodularization. Increasing the

number of port types is a desired effect to avoid having all operations in a single large interface.

Moreover, we have noted that the applied remodularization tend to produce smaller interfaces, it

generated few operations per interfaces. The average value was 27 operations per port types before

and only 5 after NSGAII-NCIE.

28

Figure 9: Quality Metrics Improvements using NSGAII-NCIE.

29

CHAPTER 5: THREATS TO VALIDITY

This study suffers from some threats to validity which prevent to generalize the obtained

results such as the data collection. These threats to validity can be classified in three categories:

construct, internal and external validity.

Construct threats to validity regard the relationship between theory and observation. A

construct threat can be related to the number of selected objectives. Although we selected five

quality metrics in this study, using more sets of metrics may prove fruitful. Another possible threat

related to the suitability to our evaluation metrics. We used the standard metrics precision and

recall that are widely accepted as good measures for antipattern detection solutions [4], [12].

Another construct threats to validity is the convenience of the threshold we applied to determine

whether two objectives are correlated. In fact, the number of objectives per clusters selected by the

widely known clustering algorithm K-means used could affect the results of our study e.g., some

conflicting objectives would not be selected. But, classification for correlated and non-correlated

objectives is a one-dimensional problem and K-means is an efficient algorithm to fulfill this task.

Internal threats to validity concern possible bias with the results obtained by our proposal.

A threat to consider can be related to the knowledge and expertise of the human evaluators.

Inadequate knowledge could lead to limited ability to assess the quality of an interface. We

mitigate this threat by selecting participants having from 4 to 9 years of experience with service-

oriented development and familiar with SOAP Web services. Moreover, to avoid bias in the

experiment none of the authors have been involved in this evaluation. In addition, we randomized

the ordering in which the MOWSIR, Athanasopoulos et al. and random refactorings were shown

to participants, to mitigate any sort of learning or fatigue effect.

External threats to validity refers to the generalizability of our findings. In this study, it

concerns mainly the studied Web services. We have selected 22 real world Web services belong

30

to different application domains, offer diverse functionalities, have different sizes ranging from 10

to 87 operations and were developed by different companies Yahoo and Amazon. However, we

considered in our approach only SOAP Web services and we cannot assert that our results can be

generalized to services developed with other technologies e.g., REST Web services, and to other

practitioners. In addition, we did not evaluate our approach on all possible defect types. However,

the five types of Web service antipatterns we employed constitute a wide representative set of

standard and most frequent defects.

31

CHAPTER 6: RELATED WORK

6.1 Web Services Design Quality

Detecting, fixing and specifying design defects in SOA and Web services is a relatively

new area. The first book in the literature was written by Dudney et al. [19] and provides informal

definitions of a set of Web service design defects. More recently, Rotem-Gal-Oz et al. [17] have

provided the symptoms of some additional SOA antipatterns also informally. Furthermore, Král et

al. [18] have described seven "popular" SOA antipatterns which violate the SOA principles but

they did not discuss their detection. In another study, Rodriguez et al. [35] have introduced a

catalog of WSDL-based Web Services discoverability antipatterns. Likewise, Torkmani et al. [36]

have presented a repository of 45 general antipatterns in SOA. They have introduced a new method

based on check lists to identify and detect antipatterns of SOA in service-oriented development.

The goal of this work is a comprehensive review of these antipatterns that will help developers to

work with a clear understanding of patterns in phases of software development and so avoid many

potential problems. Moha et al. [37] have proposed a rule-based approach called SODA for SCA

systems (Service Component Architecture). Later, Palma et al. [38] extended this work for Web

service design defects in SODA-W. The proposed approach relies on declarative rule specification

using a domain-specific language (DSL) to specify/identify the key symptoms that characterize

design defect using a set of WSDL metrics. In another study, Rodriguez et al. [39], [40] and Mateos

et al. [41] provided a set of guidelines for service providers to avoid bad practices while writing

WSDLs. Based on some heuristics, the authors detected eight bad practices in the writing of WSDL

for Web services. The heuristics are simple rules based on pattern matching. In other work [36],

the authors presented a repository of 45 general design defects in SOA. The goal of this work is a

comprehensive review of these defects that will help developers to work with a clear understanding

of patterns in phases of software development and so avoid many potential problems. Recently,

32

Ouni et al. [42], [43] proposed a search-based approach based on standard GP to find regularities,

from examples of Web service design defects, to be translated into detection rules.

6.2 Services Interface Remodularization

Few studies have been focused on the problem of fixing Web service design antipatterns in the

recent years. Remodularization of web service interface was first proposed by Athanasopoulos et

al. [10]. They have proposed a single-objective optimization-based approach using greedy

algorithm to automatically decomposing Web services interface into more cohesive interfaces in

order to improve the service interface design quality. They considered only a suite of cohesion

metrics which used interface specification. However, the notion of coupling has not been

considered which is another main attribute related to the decomposition. Later, Ouni et al.

suggested that coupling is as important metric as cohesion and proposed Service Interface

Modularization (SIM) approach with an objective function formulated based on maximizing the

interface cohesion and minimizing inter-interface coupling to automatically decomposing large

interfaces with semantically unrelated operations into smaller cohesive interfaces [11]. In a recent

study of Wang et al., an interactive recommendation approach was introduced [13]. This approach

is based on interactive non-dominated sorting genetic algorithm (NSGA-II) to find the best trade-

offs between these three objectives: (1) improving several interface design quality metrics (e.g.

coupling, cohesion, number of portTypes and number of antipatterns) (2) maximizing the

satisfaction of the interaction constraints learnt from the user/developer feedback, while (3)

minimizing the deviation from the initial design. However, the proposed approach didn't support

a high number of objectives.

Conversely, in the object paradigm, many works were conducted to improve the modular

structure of the software and various studies have been published on that topic [44], [45], [46],

[47], [48], [49], [50], [51], [52], [53]. Most of the proposed approaches to object-oriented systems

remodularization are based on clustering algorithms or search-based techniques. We present some

of the many existing approaches, focusing on applications of clustering or SBSE approaches to the

problem of re-modularization.

Wiggerts provides an overview of software clustering techniques in systems Remodularization

[44]. He discusses on how approach based on clustering algorithms automatically partition systems

into cohesive clusters. Harman et al. [45] introduces a new representation and crossover operator

33

for a software clustering problem, which reduces the search space of possible modularizations.

Seng et al. treated the remodularization task as a single-objective optimization problem using

genetic algorithm to improve the decomposition of a software system [46].

Since 1998, SBSE has been applied extensively to support the automation of software

modularization. The first attempt to address this problem using search-based approach was

presented by Mancoridis et al. [48]. In a later study, they experimented their Bunch tool [49] for

module clustering with genetic algorithms, hill climbing and simulated annealing. A more recent

work by Bavota et al. [51] introduces an automatic approach to determine the related classes that

should belong together in a package by combining use of semantic and structural measures.

Praditwong et al. formulated the clustering problem as a multi-objective optimization problem

[50], in which the goal is to maximizing the sum of intra-edges of all clusters, minimizing the sum

of inter-edges of all clusters, maximizing the number of clusters, maximizing the number of

isolated clusters and minimizing the number of isolated clusters. Later, Abdeen et al. [52] used

multi-objective optimization approach based on NSGA-II in order to improve packages structure.

Their approaches use the following objectives: (1) maximizing package cohesion, (2) minimizing

package coupling, (3) minimizing package cycles, (4) avoiding Blob packages, and (5) minimizing

the modification of the original modularization. More recently, in 2015, Mkaouer et al. proposed

a novel many-objective search-based approach using NSGA-III for the automation of software

remodularization [53] as the number of objectives considered in their problem formulation is high

such as structural improvement of packages, number of changes, semantic coherence of the

restructured program, and consistency with change history.

34

CHAPTER 7: CONCLUSION

In this paper, we proposed a dimensionality reduction approach for multi-objective Web

services remodularization that adjusts the number of considered objectives during the search for

near optimal solutions. A regular multi-objective NSGA-II algorithm with an initial set of five

quality metrics is executed for a number of iterations then we employ the nonlinear metric NCIE

to measure the correlation among objectives. The number of objectives maybe reduced during the

next iterations based on NCIE results. The process is repeated several times until a maximum

number of iterations is reached to generate a set of non-dominated Web services modularization

solutions. The proposed approach is evaluated on (i) 22 real-world Web services provided by

Amazon and Yahoo; where we conducted a human study on a set of users who evaluated the

approach and compared it with the state-of-the-art Web services modularization techniques and

(ii) a benchmark of 570 Web services where we evaluated the improvements of quality metrics.

Our evaluation results provide strong evidence that our technique successfully reduced

significantly the initial set of large number of objectives/quality metrics. The results also show that

our approach outperforms several of existing Web services modularization techniques [10], [11],

[12]. In our future work, we are planning to consider a larger set of refactorings in our experiments

and to validate our technique with additional objectives, antipatterns and Web services in order to

conclude about the general applicability of our methodology. Furthermore, we are planning to

adapt our dimensionality reduction approach to others problems such as Web services

composition. Another future research direction related to our work is to integrate the developers

in the loop when reducing the number of objectives to either select which one to eliminate or revise

the fitness function formulation (aggregating the objectives).

35

REFERENCES

[1] Leymann, F., Roller, D., & Schmidt, M. T. (2002). Web services and business process

management. IBM systems Journal, 41(2), 198-211.

[2] Romano, D., & Pinzger, M. (2012, June). Analyzing the evolution of web services using fine-

grained changes. In Web Services (ICWS), 2012 IEEE 19th International Conference on (pp.

392-399). IEEE.

[3] Papazoglou, M. P., & Van Den Heuvel, W. J. (2006). Service-oriented design and

development methodology. International Journal of Web Engineering and Technology, 2(4),

412-442.

[4] Ouni, A., Kessentini, M., Inoue, K., & Cinnéide, M. O. (2017). Search-based web service

antipatterns detection. IEEE Transactions on Services Computing, 10(4), 603-617.

[5] Perepletchikov, M., Ryan, C., & Tari, Z. (2010). The impact of service cohesion on the

analyzability of service-oriented software. IEEE Transactions on Services Computing, 3(2),

89-103.

[6] Wang, H., Kessentini, M., & Ouni, A. (2016, October). Bi-level identification of web service

defects. In International Conference on Service-Oriented Computing (pp. 352-368). Springer,

Cham.

[7] Ouni, A., Daagi, M., Kessentini, M., Bouktif, S., & Gammoudi, M. M. (2017, June). A

Machine Learning-Based Approach to Detect Web Service Design Defects. In Web Services

(ICWS), 2017 IEEE International Conference on (pp. 532-539). IEEE.

[8] Moha, N., Palma, F., Nayrolles, M., Conseil, B. J., Guéhéneuc, Y. G., Baudry, B., & Jézéquel,

J. M. (2012, November). Specification and detection of SOA antipatterns. In International

Conference on Service-Oriented Computing (pp. 1-16). Springer, Berlin, Heidelberg.

[9] Palma, F., Nayrolles, M., Moha, N., Guéhéneuc, Y. G., Baudry, B., & Jézéquel, J. M. (2013).

Soa antipatterns: An approach for their specification and detection. International Journal of

Cooperative Information Systems, 22(04), 1341004.

[10] Athanasopoulos, D., Zarras, A. V., Miskos, G., Issarny, V., & Vassiliadis, P. (2015).

Cohesion-driven decomposition of service interfaces without access to source code. IEEE

Transactions on Services Computing, 8(4), 550-562.

36

[11] Ouni, A., Salem, Z., Inoue, K., & Soui, M. (2016, June). SIM: an automated approach to

improve web service interface modularization. In Web Services (ICWS), 2016 IEEE

International Conference on (pp. 91-98). IEEE.

[12] Wang, H., & Kessentini, M. (2017, November). Improving Web Services Design Quality

Using Dimensionality Reduction Techniques. In International Conference on Service-

Oriented Computing (pp. 499-507). Springer, Cham.

[13] Wang, H., Kessentini, M., & Ouni, A. (2017). Interactive Refactoring of Web Service

Interfaces Using Computational Search. IEEE Transactions on Services Computing.

[14] D. Brockhoff and E. Zitzler, “Are all objectives necessary? on dimensionality reduction in

evolutionary multiobjective optimization,” in Parallel Problem Solving from Nature-PPSN

IX. Springer, 2006, pp. 533–542.

[15] Saxena, D. K., Duro, J. A., Tiwari, A., Deb, K., & Zhang, Q. (2013). Objective reduction in

many-objective optimization: Linear and nonlinear algorithms. IEEE Transactions on

Evolutionary Computation, 17(1), 77-99.

[16] Deb, K., Pratap, A., Agarwal, S., & Meyarivan, T. A. M. T. (2002). A fast and elitist

multiobjective genetic algorithm: NSGA-II. IEEE transactions on evolutionary

computation, 6(2), 182-197.

[17] A. Rotem-Gal-Oz, SOA Patterns. Manning Publications, 2012

[18] Kral, J., Zemlicka, M., & Popular, S. O. A. Antipatterns, Future Computing, Service

Computation, Cognitive, Adaptive, Content, Patterns, 2009. COMPUTATIONWORLD, 9,

271-276.

[19] B. Dudney, J. Krozak, K. Wittkopf, S. Asbury, and D. Osborne, J2EE Antipatterns. John

Wiley; Sons, Inc., 2003.

[20] A. Rotem-Gal-Oz, E. Bruno, and U. Dahan, SOA patterns. Manning, 2012.

[21] Palma, F., Moha, N., Tremblay, G., & Guéhéneuc, Y. G. (2014, August). Specification and

detection of SOA antipatterns in web services. In European Conference on Software

Architecture (pp. 58-73). Springer, Cham.

[22] M. Perepletchikov, C. Ryan, K. Frampton, and Z. Tari, “Coupling metrics for predicting

maintainability in service-oriented designs,” in Software Engineering Conference, 2007.

ASWEC 2007. 18th Australian. IEEE, 2007, pp. 329–340.

[23] K. Deb and D. K. Saxena, “On finding pareto-optimal solutions through dimensionality

reduction for certain large dimensional multi-objective optimization problems,” Kangal

report, vol. 2005011, 2005.

37

[24] K. Deb and H. Jain, “Handling many-objective problems using an improved nsga-ii

procedure,” in Evolutionary computation (CEC), 2012 IEEE congress on. IEEE, 2012, pp. 1–

8.

[25] A. L. Jaimes, C. A. C. Coello, and J. E. U. Barrientos, “Online objective reduction to deal

with many-objective problems,” in International Conference on Evolutionary Multi-Criterion

Optimization. Springer, 2009, pp. 423–437.

[26] S. Kukkonen and J. Lampinen, “Ranking-dominance and manyobjective optimization,” in

Evolutionary Computation, 2007. CEC 2007. IEEE Congress on. IEEE, 2007, pp. 3983–3990.

[27] López Jaimes, A., Coello Coello, C. A., & Chakraborty, D. (2008, July). Objective reduction

using a feature selection technique. In Proceedings of the 10th annual conference on Genetic

and evolutionary computation (pp. 673-680). ACM.

[28] D. Brockhoff and E. Zitzler, “Objective reduction in evolutionary multiobjective

optimization: Theory and applications,” Evolutionary computation, vol. 17, no. 2, pp. 135–

166, 2009.

[29] A. R. Freitas, P. J. Fleming, and F. G. Guimaraes, “A nonparametric harmony-based objective

reduction method for manyobjective optimization,” in Systems, Man, and Cybernetics (SMC),

2013 IEEE International Conference on. IEEE, 2013, pp. 651–656.

[30] H. Wang and X. Yao, “Objective reduction based on nonlinear correlation information

entropy,” Soft Computing, vol. 20, no. 6, pp. 2393–2407, 2016.

[31] K. Mitra and R. Gopinath, “Multiobjective optimization of an industrial grinding operation

using elitist nondominated sorting genetic algorithm,” Chemical Engineering Science, vol. 59,

no. 2, pp. 385–396, 2004.

[32] Q. Wang, Y. Shen, and J. Q. Zhang, “A nonlinear correlation measure for multivariable data

set,” Physica D: Nonlinear Phenomena, vol. 200, no. 3-4, pp. 287–295, 2005.

[33] D. L. Olson and D. Delen, Advanced data mining techniques. Springer Science & Business

Media, 2008.

[34] M. Fokaefs, R. Mikhaiel, N. Tsantalis, E. Stroulia, and A. Lau, “An empirical study on web

service evolution,” in Web Services (ICWS), 2011 IEEE International Conference on. IEEE,

2011, pp. 49–56.

[35] J. M. Rodriguez, M. Crasso, A. Zunino, and M. Campo, “Improving web service descriptions

for effective service discovery,” Science of Computer Programming, vol. 75, no. 11, pp.

1001–1021, 2010.

38

[36] M. A. Torkamani and H. Bagheri, “A Systematic Method for Identification of Anti-patterns

in Service Oriented System Development,” International Journal of Electrical and Computer

Engineering, vol. 4, no. 1, pp. 16–23, 2014.

[37] N. Moha, F. Palma, M. Nayrolles, B. J. Conseil, Y.-G. Gueh´ eneuc, ´ B. Baudry, and J.-M.

Jez´ equel, ´ Service-Oriented Computing: 10th International Conference, ICSOC 2012,

Shanghai, China, November 12- 15, 2012. Proceedings. Springer Berlin Heidelberg, 2012, pp.

1–16.

[38] F. Palma, N. Moha, G. Tremblay, and Y.-G. Gueh´ eneuc, “Specifica- ´ tion and detection of

soa antipatterns in web services,” in Software Architecture. Springer, 2014, pp. 58–73.

[39] J. M. Rodriguez, M. Crasso, A. Zunino, and M. Campo, “Automatically detecting

opportunities for web service descriptions improvement,” in Software Services for e-World.

Springer, 2010, pp. 139–150.

[40] A. Sinha, P. Malo, A. Frantsev, and K. Deb, “Multi-objective stackelberg game between a

regulating authority and a mining company: A case study in environmental economics,” in

IEEE Congress on Evolutionary Computation, 2013, pp. 478–485.

[41] C. Mateos, A. Zunino, and J. L. O. Coscia, “Avoiding WSDL Bad Practices in Code-First

Web Services,” SADIO Electronic Journal of Informatics and Operational Research, vol. 11,

no. 1, pp. 31–48, 2012.

[42] A. Ouni, M. Kessentini, K. Inoue, and M. O Cinneide, “Searchbased web service antipatterns

detection,” IEEE Transactions on Services Computing, vol. PP, no. 99, 2015.

[43] A. Ouni, R. Gaikovina Kula, M. Kessentini, and K. Inoue, “Web service antipatterns detection

using genetic programming,” in Conference on Genetic and Evolutionary Computation

(GECCO), ser. GECCO ’15, 2015, pp. 1351–1358.

[44] T. A. Wiggerts, “Using clustering algorithms in legacy systems remodularization,” in Reverse

Engineering, 1997. Proceedings of the Fourth Working Conference on. IEEE, 1997, pp. 33–

43.

[45] M. Harman, R. Hierons, and M. Proctor, “A new representation and crossover operator for

search-based optimization of software modularization,” in Proceedings of the 4th Annual

Conference on Genetic and Evolutionary Computation. Morgan Kaufmann Publishers Inc.,

2002, pp. 1351–1358.

[46] O. Seng, M. Bauer, M. Biehl, and G. Pache, “Search-based improvement of subsystem

decompositions,” in Proceedings of the 7th annual conference on Genetic and evolutionary

computation. ACM, 2005, pp. 1045–1051.

[47] O. Maqbool and H. Babri, “Hierarchical clustering for software architecture recovery,” IEEE

Transactions on Software Engineering, vol. 33, no. 11, 2007.

39

[48] S. Mancoridis, B. S. Mitchell, C. Rorres, Y. Chen, and E. R. Gansner, “Using automatic

clustering to produce high-level system organi- 13 zations of source code,” in Program

Comprehension, 1998. IWPC’98. Proceedings., 6th International Workshop on. IEEE, 1998,

pp. 45–52.

[49] B. S. Mitchell and S. Mancoridis, “On the automatic modularization of software systems using

the bunch tool,” IEEE Transactions on Software Engineering, vol. 32, no. 3, pp. 193–208,

2006.

[50] K. Praditwong, M. Harman, and X. Yao, “Software module clustering as a multi-objective

search problem,” IEEE Transactions on Software Engineering, vol. 37, no. 2, pp. 264–282,

2011.

[51] G. Bavota, A. De Lucia, A. Marcus, and R. Oliveto, “Software re-modularization based on

structural and semantic metrics,” in Reverse Engineering (WCRE), 2010 17th Working

Conference on. IEEE, 2010, pp. 195–204.

[52] H. Abdeen, H. Sahraoui, O. Shata, N. Anquetil, and S. Ducasse, “Towards automatically

improving package structure while respecting original design decisions,” in Reverse

Engineering (WCRE), 2013 20th Working Conference on. IEEE, 2013, pp. 212–221.

[53] W. Mkaouer, M. Kessentini, A. Shaout, P. Koligheu, S. Bechikh, K. Deb, and A. Ouni,

“Many-objective software remodularization using nsga-iii,” ACM Transactions on Software

Engineering and Methodology (TOSEM), vol. 24, no. 3, p. 17, 2015.

