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Abstract 

Bug predictions helps software quality assurance team to determine the effort required to 

test the software application. Anti-patterns and code smells can greatly influence the quality of the 

code. Refactoring can be a solution to remove the negative impact of these anti-patterns. In this 

paper, we explored the influence of code smells on the code and severity of bugs reported on 

multiple versions of the projects such as BIRT, Aspect J and SWT. We evaluated the correlation 

between the different code smells and severity of the bugs reported on these classes. This can help 

the quality assurance specialists and project managers assess the testing effort required based on 

the code smells detected. This can prove beneficial to the developers to restructure or refactor 

before deploying the code in the test environment. On the other hand, the testing team can 

concentrate on the bug prediction models, testing plan and assess the number of resources needed 

to perform testing. The empirical validation of our work found a strong correlation between several 

types of code smells and software bugs based on three large open source projects.
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Chapter 1 Introduction 

Many industries such as automotive, banks, insurance and health care are dependent on 

software systems. Ideally, software applications should not contain any bugs and if it does, it may 

prove to be very costly depending on its severity. Hence, it is absolutely important that these 

software applications function efficiently. Errors in the code need to be fixed based on its severity 

and priority. However, fixing these bugs prove to be very costly. It is estimated that 80% of the 

total cost of a software system is spent on fixing bugs [2]. To reduce this cost, many bug prediction 

models have been proposed by the research community to identify areas in software systems where 

bugs are likely to occur. The vast majority of these bug prediction models are built using the 

product (e.g., code complexity) and process (e.g., code churn) metrics, most of which are not 

actionable. For example, Nagappan and Ball [3] have used code churns to predict bugs in software 

systems [4]. 

Developers introduce code smells in the code due to lack of knowledge of design patterns, 

optimization techniques and efficient problem-solving capability. These antipatterns and code 

smells in the code might not affect the functionality of the system, but the code may be difficult to 

maintain. Software development guidelines are a set of rules which can help improve the quality 

of software. These rules are defined on the basis of experience gained by the software development 

community over time. Software antipatterns are a powerful and effective form of guidelines used 

for the identification of bad design choices and development practices that often lead to poor-

quality software [7].
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These code smells may also lead to bugs in the code. Previous work by Khomh et al. [5]  

have found that classes with code smells, are more prone to bugs than other classes[4]. In order to 

reduce the number of bugs, code smells must be reduced. This can be done through refactoring, 

and restructuring the code. There are various open source software and enterprise level software 

which can refactor and restructure the code to reduce the antipatterns and code smells. 

If we can compute the relationship between code smells and defects, then a lot of 

stakeholders can benefit from the results. The developers can save time fixing bugs, the testers can 

save time from restesting the code, the business team and other stakeholders who have invested 

time and money will see results of the feature within the estimated time for completion of the 

project. 

In this thesis, we have tried to compute the relationship between code smells and bugs 

reported by using out of the box machine learning algorithm provided by a tool named Weka. 

Machine learning and correlation computation were also done using the algorithms provided by 

the language R. Weka and R were utilized to observe a correlation between severity of the bugs 

reported and various code smells in the code. This study was conducted using the data extracted 

from three open projects such as BIRT, SWT, Aspect J. And, we have tried to  answer the below 

research questions. 

RQ1. Does code smell affect the severity of the bugs? 

We found that some of the code smells have more impact on the severity of the bugs than 

others. 

RQ2. Can these machine learning algorithm results provide us more information?  

Not only the severity of the bugs is affected, the overall number of bugs reported are 

impacted by the code smells present in the code. 
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The rest of the sections in the paper are organized as follows. Chapter 2 states some of the 

literature work already performed on learning from code smells and antipatterns in the code. 

Chapter 3 covers the methodology followed by us to find the correlation between code smells and 

severity of the bugs. Chapter 4 describes the results of our study. We have also explained the 

threats to validity. Chapter 5 states the conclusion and plans about future work.

 



 4 

Chapter 2 Literature study 

This section covers the literature study on finding the relationship between code smells and 

bugs reported and other related work.  

Zhang et. al. in their 2017 publication [8] have researched mainly about three 3 types of 

bad design features on 18 versions of the Apache common series. They discuss about the number 

of defects in the source files could have which has the 3 kinds of bad designs. They found that 

these have an impact on the number of defects reported.  

The research based on predicting the high and low severity faults were conducted by Zhou 

et. al. [9]. They have considered the object oriented metrics such as CBO, WMC, RFC, LCOM, 

DIT and used machine learning methods such as Naïve bayes, random forest and NNge to find the 

correlation with the low and high severity of the bugs.  They found that the CBO, WMC, RFC, 

and LCOM metrics have significance across defect severity. DIT metric did not have any 

significant impact on the severity of the defects. Subramanyam and Krishnan analyzed an e-

commerce application developed in C++ and Java [22]. The experiment was based on the 

application to study how the size of the class affects faults. The study was performed on 405 C++ 

and 301 Java classes and how the metrics were related to the faults irrespective of the size of the 

application.  

Shatnawi et al [10] in their paper talked about the software metrics and error proneness 

during the implementation phase of the development lifecycle. They considered the antipatterns, 

cyclic dependencies and coding methodology to determine the defect proneness. 
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Khomh et al. investigated the relation between antipatterns and defects reported. They 

performed the analysis on 10 releases of ArgoUML, 13 of Eclipse, 18 of Mylyn, and 13 of Rhino, 

and considered the changes and defects occurring between the releases. In their paper, they 

considered 13 antipatterns which are AntiSingleton, Blob, ClassDataShouldBePrivate, 

ComplexClass, LargeClass, LazyClass, LongMethod, LongParameterList, MessageChain, 

RefusedParentBequest, SpaghettiCode, SpeculativeGenerality, SwissArmyKnife. They found 

Complex class, Lazy class, Message chain, Long method and Anti- Singleton had more than 55% 

correlation with fault proneness. 

Sabane et al. [12] considered four projects to study about their antipatterns and how it 

affects unit testing and test-cases. The authors in this paper have performed investigation and found 

that the classes needed more unit testing when antipatterns found are more. A high number of test 

cases were required for the complex classes. This is in comparison with 

CDSBP(ClassDataShouldBePrivate), LzC (LazyClass), LM (LongMethod), MC 

(MessageChains), RPB (RefusedParent- Bequest). In conclusion, the study finds out that the 

antipattern increases the number of unit testcases written. 

Several studies results say that the code smells and anti patterns impact the quality of the 

software negatively [25, 26, 27, 28, 29, 30, 31, 32]. Deligiannis et al. [23] conducted a study to 

analyze how God classes impacted the software’s maintainability. Their approach confirmed that 

higher the design quality, higher the maintainability and understandability. They also concluded 

that God classes had a negative impact on the quality of the code.  

Abbes et al. [24] performed a few experiments on understandability of the projects  with 

and without Blob classes, Spaghetti code and both Blob class and Spaghetti code in it, by student 
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They found the students found it more difficult to understand the code with significant amount of 

Blob classes when compared to those projects without them. However, irrespective of the presence 

of Spaghetti code, there was no significant impact on the understanding. However, there was an 

impact and a difference in understanding of the code when both Blob class and Spaghetti code 

were present. The combination of both made a significant difference in understanding it.  

Olbrich et.al. [13] studied the impact of code smells on the quality of the code. They mainly 

focused on God class and Brain class. They conducted analysis on two open source and large scale 

projects. They found that these 2 code smells had a negative impact on the number of bugs 

reported. But, when they were normalized and without any of the mentioned code smells, the 

number of defects reported were less. The study also concluded that the classes with God class and 

Brain class do not affect the entire quality of the software unless they are large in size.
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Chapter 3 Methodology 

This section describes the methodology followed and this section aims to answer the research 

questions mentioned in section 1. 

a) Data acquisition 

In this section, we go over the process of how and where the data was acquired for analysis. We 

used at-least 15 versions of the open source projects. The projects which were analyzed are SWT, 

BIRT, Aspect J. The source code for about 15 versions were downloaded from checked in versions 

in GitHub. The source code for all the projects mentioned in the below table are written in Java. 

Each project version was sent through code smells and antipattern detection tools. Below is the list 

of projects used for analysis and versions of code which were downloaded.  

 

Project Versions 

SWT 15 versions between 0.9.0 and 4.2 

BIRT 15 versions between 2.1.0 and 4.2.2 

Aspect J 20 versions between 1.5.4 and 1.9.0 

Table 1:List of projects considered for data analytics 

 Along with the source code, we downloaded the bug reports for each version mentioned 

above, for each project, from Bugzilla. These bugs were reported by various individuals, in the 

bug reporting tool. We downloaded only those bugs which were Fixed and closed. We did not



 8 

 consider any open bugs for analysis. These defects were either fixed in the next version or future 

versions of the code. Data processing 

In this section, we discuss about the steps taken to transform the data captured in data 

acquisition section into more of a readable format by the tools used i.e. Weka and R. The below 

figure is the high level flow diagram of the study. 

 

Figure 1:Complete flowchart of the methodology used. 

Step 1) Downloading the source code- We downloaded about 15 versions of the code,  for 

both SWT and BIRT projects, from GitHub. For the Aspect J project, we downloaded about 

20 versions of the project from GitHub. We considered only the Java files and the script 
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files for analysis.  So, the total number of versions of application source code considered 

for analysis added up-to 50. 

Step 2) Detecting antipatterns- The downloaded application code for each version for each 

project were run through antipattern and code smell detectors, to detect the various code 

smells. The code smells detected by the tools are CyclicDependencies, BlobClass, 

GodClass, DataClass, SchizophrenicClass, RefusedParentBequest, DistortedHierarchy, 

IntensiveCoupling, ShotgunSurgery, FeatureEnvy, BlobOperation. This data is then used 

for data analysis. Once the antipatterns are detected for each class for each version of a 

given project, we find the sum of the antipatterns detected for each given version 

considered here for analysis, for each project. Below is a complete list of code smells 

mentioned above and its definitions. 

 

ANTI PATTERN DEFINITION 

Cyclic Dependencies A cyclic dependency is a relation between two or 

more modules which either directly or indirectly 

depend on each other to function properly. [14] 

BlobClass A class that contains almost all the functionality 

and a lot of responsibilities in a given application.  

GodClass A God Class is an object that controls way too 

many other objects in the system and has grown 

beyond all logic to become The Class That Does 

Everything.[15] 

DataClass A data class refers to a class that contains only 

fields and crude methods for accessing them 

(getters and setters) [16] 
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SchizophrenicClass A class that contains disjoint sets of public 

methods that are used by disjoint sets of client 

classes  [17] 

RefusedParentBequest If a subclass uses only some of the methods and 

properties inherited from its parents, the hierarchy 

is off-kilter. [18] 

DistortedHierarchy A Distorted Hierarchy is an inheritance hierarchy 

that is unusually narrow and deep. This design 

flaw is inspired by one of Arthur Riel's heuristics, 

which says that "in practice, inheritance 

hierarchies should be no deeper than an average 

person can keep in his or her short-term memory. 

A popular value for this depth is six". Having an 

inheritance hierarchy that is too deep may cause 

maintainers "to get lost" in the hierarchy making 

the system in general harder to maintain. [19] 

IntensiveCoupling Intensive Coupling is the flaw of an method when 

a method is tied to many other operations in the 

system, whereby these provider operations are 

dispersed only into one or a few classes [20] 

 

ShotgunSurgery This smell is evident when you must change lots 

of pieces of code in different places simply to add 

a new or extended piece of behavior. Whenever a 

method is called by too many other methods, any 

change to such a method ripples through the 

design. Such changes are likely to fail when the 

number of to-be-changed locations exceeds the 

capacity of human’s short term memory. [20] 

FeatureEnvy The Feature Envy design flaw refers to functions 

or methods that seem more interested in the data 
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of other Classes and modules than the data of 

those in which they reside. These "envious 

operations" access either directly or via accessor 

methods. This situation is a strong indication that 

the affected method was probably misplaced and 

that it should be moved to the capsule that defines 

the "envied data" [20] 

BlobOperation A Blob Operation is a very large and complex 

operation, which tends to centralize too much of 

the functionality of a class or module. Such an 

operation usually starts normal and grows over 

time until it gets out of control, becoming hard to 

read and maintain [20] 

Table 2:List of code smells and its definitions 

Step 3) Extracting bug reports- For each version of the project mentioned in the previous 

section, resolved bugs with severity of the bugs reported are collected from Bugzilla. These 

bugs are resolved and fixed. Moreover, the severity level of the bugs collected for analytics 

are showstopper, critical, major, normal, minor. Showstopper being the most critical. 

Apart from the above data collection and pre-processing, the total number of bugs 

reported were also considered as part of the data acquisition process. Figure 2 depicts the 

high-level view of the number of bugs reported for each project for some of the project 

releases.  
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Figure 2: Charts depicting bugs reported in the major versions of the BIRT project 

 

Figure 3:Charts depicting bugsreported in the major versions of the SWT project 

 

Figure 4:Charts depicting bugs reported in the major versions of the Aspect J project 
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b) Machine learning tools used 

In this section, we discuss about the algorithms and methods used for machine 

learning analysis and finding correlation. R’s Linear regression algorithm was used to 

perform data analytics and run machine learning algorithms. In order to find the 

correlation between the severity of the bugs and antipatterns detected in the source 

code, there were 2 algorithms provided by R out of the box was utilized. The algorithms 

used are Kendall and Spearman and average was computed. We also ran one of the 

machine learning algorithms to find correlation provided by Weka[6], purely for our 

reference. 

c) Analysis methodology 

A correlation coefficient measures the extent to which two variables tend to change 

together. The coefficient describes both the strength and the direction of the 

relationship[21]. The results provided by the outcome of the machines learning 

algorithms depicts the correlation between the number of severity of bugs reported and 

detected code smells. The correlation was then converted into percentages. To verify 

our analysis and performance of correlation algorithms, we compared the results with 

the latest version results. For instance, if the correlation between critical bug and 

shotgun surgery antipattern is around 50%, then we took the test data from the latest 

version of the 3 open source projects and compared with the analysis results.  Below 

are the correlation results of three open source projects BIRT, SWT and Aspect J with 

the severity of the bugs. The average of the results was found, and they were considered 

as the final correlation results between code smells and severity of bugs. 
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Figure 5:X Axis indicates the severity of the bugs. Y axis indicated the correlation of the bugs. 

Color indicates the type of code smell for project BIRT 

 

Figure 6:X Axis indicates the severity of the bugs. Y axis indicated the correlation of the bugs. 

Color indicates the type of code smell for project Aspect J 
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Figure 7:X Axis indicates the severity of the bugs. Y axis indicated the correlation of the bugs. 

Color indicates the type of code smell for project SWT 
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Chapter 4 Results 

RQ1. Do antipatterns affect the severity of the bugs? 

Some antipatterns present in the application have adverse effect on the severity of the bugs 

reported. Firstly, we shall go through the results for each project individually. For project BIRT- 

Code smells such as Feature envy and RequestParentBequest have a major impact on the severity 

of the bugs overall when compared to other code smells. Bugs with severity level such as blocker, 

critical, major, minor, normal are equally affected and have a high correlation with Feature Envy 

code smell. Bugs with normal severity are reported more when RequestParentBequest are high in 

the code. In general, when both feature envy and RequestParentBequest are higher, the normal 

severity of bugs are higher in most of the cases considered during the study.  

For project Aspect J, Shotgun surgery and Blob class has a major impact and have higher 

correlation on the Blocker bugs in most of the versions. Intensive coupling had a negative 

correlation with Blocker, minor severity bugs and so is Distorted Hierarchy code smell on major 

severity of bugs. 

For project SWT, Distorted Hierarchy had the highest correlation with normal severity bugs. Data 

class has the second highest correlation with minor and normal severity bugs. Shotgun surgery has 

higher correlation with normal, critical and minor severity bugs. 

Now, let us look at the antipatterns which has major impact on the bugs when all the data was 

inputted through the machine learning tools. Antipatterns such as Shotgun surgery have a huge 

impact mainly on the critical bugs reported. They have a correlation of nearly 47% with the 
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critical bugs. That means, more the antipattern found, more will be the critical of bugs detected. 

Overall, shotgun surgery antipattern is correlated to the number of bugs, blocker, critical, major, 

normal and minor bugs.  

Next comes the Data class antipattern. This antipattern has a potential to introduce bugs which 

could be a blocker or show stopper. There is nearly a 38% correlation. Between data class and 

blocker bugs. Same is the case with Blob class. Blob class when und in a version of the code, then 

there is a good possibility that there that class may contain critical or blocker bugs. Other mediocre 

impacts on the bugs were from antipatterns such as Feature Envy, Data class on number of bugs, 

major, normal and minor bugs reported.  

RQ2. Can these antipatterns results provide us more information?  

Not only the severity of the bugs is affected, the overall number of bugs reported also depend on 

the antipatterns found in the code. Looking at the results, some of the antipatterns have an impact 

on the number of bugs reported. Shotgun surgery, Feature envy, Blob operation, Blob class and 

data class are some of them.  

The correlation results obtained can be utilized widely only when there is cross functional  

use for it. Projects which are developed for other domains and in other platforms should also be 

able to use these results. Training data might not be available for all the projects and hence an 

analysis of this sort is difficult to perform. In Seyyed Ehsan et.al. [4], the authors have investigated 

to what extent one can use cross-system antipattern information to predict bugs.  The table bellows 

show us the average results of correlation obtained from algorithms in R and Weka.  
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Correlation in percentage 

Type of Code Smell Bugs Blocker Critical Major Normal Minor 

CyclicDependencies 15.262321 16.97536 20.96995 16.22578 16.41439 5.789681 

BlobClass 33.690053 35.43676 36.6478 34.04369 34.0954 26.627642 

GodClass 38.750997 36.15608 34.69065 11.5761 9.88837 2.6435106 

DataClass 25.755167 37.94491 32.26146 29.07789 27.25107 25.970856 

SchizophrenicClass 8.750997 16.15608 14.65065 19.8461 9.83463 2.648818 

RefusedParentBequest 11.332892 13.03306 16.03328 12.41961 12.48002 1.494728 

DistortedHierarchy 24.314972 28.69896 27.81644 25.22981 25.51821 17.14929 

IntensiveCoupling 15.262321 16.97536 20.96995 16.22578 16.41439 5.789681 

ShotgunSurgery 43.561208 40.60772 46.77912 42.8939 42.86865 42.181963 

FeatureEnvy 29.570747 34.94926 33.55192 31.64831 30.11961 23.985822 

BlobOperation 25.616555 28.48134 31.47996 27.0109 26.79429 16.224009 

Table 3:Correlation between code smells and severity of bugs measured in percentages 

In order to determine the accuracy of the results, the number of bugs reported in the last 2 versions 

of the considered four open source projects were taken. When the code smell Shotgun surgery is 

high in a project, the number of critical bugs reported are more and vice versa. The major impact 

is seen on the critical bugs reported followed by the number of bugs reported in total.   

Our future work is to perform the same experiment with other bigger open source projects from 

different domains and validate our results. This will provide us with more evidence that the results 

can be generalized for other projects as well irrespective of the domain.  
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Chapter 5 Threats to validity 

A lot of practitioners and software researchers have studied about relation between 

antipatterns and bugs reported, code smells and number of bugs. This paper deals with code smells 

and severity of bugs in particular. In our study, we have considered four major software 

applications related to varied domain. We haven’t considered any other application which is 

mainly utilized by healthcare, insurance, banking and other major industries. Hence, we cannot be 

sure that the results observed during this study applies across all the other domains.   

In this section, we find out the factors which can bias our study, discuss about the construct 

validity threats, threats to internal validity, threats to external validity and reliability validity 

threats.  

Construct validity threats concern the relation between the results which are observed and 

theory. In this study, we have considered only those bugs which were reported via Bugzilla and 

status of the bugs as Fixed or Closed. We did not consider open bugs or bugs marked as Others or 

enhancements. 

Threat to internal validity is about the project we chose for our study, machine learning 

analysis methods used, deductions and conclusions obtained from them. The projects we chose 

were the open source projects from GitHub. The machine learning algorithms used to study the 

training data and find the correlation, were open source projects.Since, the results were compared 

with the results provided by language R and by Weka, any other detection techniques should be 

able to confirm our results.  
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Threat to external validity is to generalize our results to other domains. We have considered 

multiple versions of 3 open source systems with different sizes and belonging to different domains. 

We have considered only few code smell types and not a comprehensive list of all code smells 

types. Other researchers can analyze the code using various other code smell types. Also, further 

validation can be done using other set of machine learning software and algorithms which are more 

efficient in learning the data. 

Conclusion validity threats is related to the methodology used and the outcome of the 

analysis. We haven’t deviated from our initial research questions, assumptions and methodology 

used. Also, our analysis does not require to make assumptions about the data. Finally, we tried to 

provide all the details related to this study so that other researchers can replicate the study.  
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Chapter 6 Conclusion 

Our study investigated the effectiveness of code smells on severity of the bugs. We detected 

the code smells from various open source java projects namely BIRT, SWT and Aspect J. Then, 

we downloaded the bugs that were reported and were later fixed. Finally, we ran machine learning 

methods to find the correlation between the two. Our findings strongly support the following:  

1. We provided an empirical validation that some code smells can help us foretell severity 

of bugs which might be reported. 

2. Some code smells, specifically Shotgun surgery and Blob class have a higher 

correlation with the bug which are a show-stopper and critical to the application. Data 

class and Blob class has a higher impact on the certain severity levels of bugs namely, 

critical and major. Whereas, Schizophrenic Class code smell has overall less impact. 
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