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Abstract 

Previous studies on land-cover change have focused on urban growth and its 

consequences. However, urban shrinkage has also occurred as a consequence of global 

economic transformations. Urban shrinkage can have profound consequences and 

change the spatial patterns of urban vegetation. To detect and predict urban shrinkage is 

important for better urban planning and policy making. This study works on 1) 

determining the possible roles of spatial entropy, which represents the spatial 

configuration of urban vegetation, in combination with other socioeconomic variables, 

in predicting neighborhood stability and urban shrinkage, and 2) how the scale of 

defined neighborhoods may affect the relationship between spatial entropy and 

neighborhood stability. For the City of Detroit, MI, I adopted spectral mixture analysis 

of Landsat-8 imagery to yield moderate-resolution maps of urban vegetation proportion. 

I calculated spatial entropy for defined neighborhoods based on the vegetation 

information. Controlling for socioeconomic variables from parcel data and U.S. Census 

Data, I developed spatial models of the relationships between no-structure rate with 

neighorhoods, an indicator of urban shrinkage, and vegetation spatial entropy. Models 

were performed on two levels of neighborhoods: census block groups and census tracts. 

The results show that spatial entropy has the largest (negative) association with the no-

structure rate compared with other predictors on both levels of neighborhoods. While 

high-resolution imagery or parcel-based data were not readily available, this study 

shows that moderate-resolution imagery can be an effective source for detecting and 

predicting urban shrinkage. 

Keywords: shrinking cities, neighborhood stability, spatial entropy, remote sensing 
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1 Introduction and Background 

With the process of rapid urbanization, many studies on land-cover change have 

focused on urban growth and its consequences, such as impervious surfaces and urban 

sprawl(Bhatta et al. 2010b; Brueckner 2000; Weng 2001). While increases in global 

population and urban areas since the mid-20th century are expected to continue, urban 

shrinkage has also occurred as a consequence of global economic transformations, from 

cities in Europe and Japan to North America (Haase et al. 2014). Some of these cities 

are still undergoing population loss. Causes for this shrinking process can be 

complicated and include deindustrialization, economic crisis, suburbanization, and 

political factors.  

Urban shrinkage can have profound consequences on various urban 

characteristics including business, employment, housing, and urban infrastructure. The 

decline in population can lead to further demographic change, declining population 

density, increasing residential and commercial vacancy, housing loss and demolition. It 

can also be aggravated by out-migration and population aging. Urban infrastructures 

may also be affected due to lower demand, declining investment and the high cost of 

maintenance (Bartholomae et al. 2017).  

More specifically, urban shrinkage affects urban land use and change urban 

spatial patterns (Haase 2006). Depopulation might lead to residential vacancy, vacant 

industrial land, or housing loss. Moreover, urban shrinkage does not equally influence 

all neighborhoods; declines in population tend to be more impactful in relatively poorer 

areas (Guerrieri et al. 2012). This may imply a spatial differentiation pattern existing 
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within a shrinking city; that some more stable neighborhoods can manage to keep their 

residents while others that are shrinking tend to lose their resident population and 

housing, leading to further landscape change (Hoekveld 2014; Weaver and Bagchi-Sen 

2013). In shrinking cities, some shrinking neighborhoods have high vacancy rates, 

where derelict lawns are overgrown, and empty parcels are completely reclaimed by 

shrubs and trees; the spatial patterns of land cover may be expected to be relatively 

more uneven. Thus, uneven vegetation cover may indicate the extent of shrinkage. 

Might monitoring and predicting changes in urban neighborhood change in 

shrinking cities based on spatial patterns of urban vegetation in different neighborhoods 

help support urban planning and policy making? The green spaces in shrinking cities 

need to be well-managed. Open fields may serve as habitats and can potentially impact 

urban biodiversity. Also, urban vegetation has effects on urban ecology (Fritsche et al. 

2007). While causes and impacts of urban shrinkage have been studied elsewhere 

(Haase et al. 2012; Schwarz et al. 2010), few studies focus on the patterns of urban 

vegetation and its monitoring as potential information about urban socioeconomic 

change.  

Remote sensing (RS) and geographic information system (GIS) techniques have 

been used to quantitatively study the urban form, spatial configuration, and dynamics 

(Liu and Weng 2013). Using remote sensing imagery and image classification 

techniques, urban development monitoring has been conducted in the context of both 

growing and shrinking cities (Banzhaf et al. 2009). Based on time series remote sensing 

imagery and GIS TIGER road data, urban population growth rates can be modeled and 

estimated (Qiu et al. 2003). Simulation of land-use and urban form change with 
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modeling approaches has also been performed (Haase et al. 2012). Specifically, models 

of urban shrinkage found that residential vacancy was correlated with and could be 

modeled by some social, demographic, and spatial predictor variables (Kabisch et al. 

2006). However, researchers also found that change of spatial patterns occurs with time 

lags (Reis et al. 2016), so it can be helpful to include real-time data sources like remote 

sensing imagery in studies on changes in shrinking cities.  

A variety of spatial metrics based on RS and GIS techniques have been widely 

utilized for assessing and quantifying urban change (Ji et al. 2006; Reis et al. 2016; 

Siedentop and Fina 2010). These metrics can quantitatively describe and measure 

spatial patterns (Bhatta et al. 2010a). Several measurements like fragmentation, 

diversity, density, connectivity, and proximity have been developed and implemented in 

studies on urban forms (Knaap et al. 2007). Some landscape metrics are powerful tools 

for helping study urban landscape pattern and represent urban change characteristics. 

Diversity metrics, such as Shannon's entropy, can represent the distribution and 

composition of urban landscape quantitatively. Shannon's entropy was developed from 

the theory of information and was originally designed for measurement of information 

content. In geographical studies, entropy can be used to represent how evenly a 

geographical variable is distributed across the whole area (Kumar et al. 2007; Yeh and 

Li 2001). For example, in applications to land cover, the proportion of area in each of 

some number of classes can be distributed more evenly, such that each class covers 

similar, or dominated by a small subset of the classes. Larger values of entropy indicate 

a more even distribution (Jat et al. 2008; Li and Yeh 2004; Yeh and Li 2001). Thus, 

Shannon’s entropy should be a useful metric to identify a diverse spatial distribution of 
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geographical variables like vegetation abundance. Spatial entropy is scale dependent. 

For instance, zones that are too large may not be able to depict the differences in spatial 

configuration as the proportion of the land-cover type may become more balanced as a 

zone contains areas with different spatial patterns.  

A number of studies have utilized spatial entropy to identify urban change. 

Using population data and land-use data, the trend of urban sprawl in Shanghai area was 

identified (Li et al. 2016). A study focusing on Pearl River Delta analyzed entropy 

values and compactness indices for ten cities and found uneven land development 

patterns in this area (Li and Yeh 2004). Renyi’s entropy was also used for assessing the 

level of urban sprawl (Padmanaban et al. 2017). Using different forms of entropy to 

assess urban sprawl was studied as well (Yeh and Li 2001). However, most of these 

studies focused on the process of urban growth and conducted analysis at the level of 

the whole city instead of the level of neighborhoods; these studies showed an increasing 

trend in spatial entropy because of built-up areas sprawling across cites, while 

assessment of urban shrinkage and at the level of neighborhoods needs more studies. 

As mentioned above, urban vegetation cover can contain valuable information 

implying shrinkage. In this study, I used Landsat-8 images, which are moderate-

resolution images with 30m pixels. Images are freely available, and the dataset covers a 

long time period since 1972, which also enables potential time-series analysis. While 

GIS parcel-level data and high-resolution remote sensing data may be more accurate, 

they are usually not readily available especially for earlier years.  

There are several methods for estimating and mapping the area of vegetation 

cover from moderate-resolution RS imagery. Most of these studies have utilized pixel-
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based techniques, like per-pixel classification techniques, to investigate how urban land-

use changes (Siedentop and Fina 2010). However, when using moderate spatial 

resolution imagery, it is hard to get accurate results with per-pixel classification because 

pixels tend to be mixed, such that two or more land-cover types can be contained in one 

pixel. Therefore, using sub-pixel estimation methods (e.g., spectral mixture analysis 

approaches), estimating a pixel’s composition in terms of fractions of several sub-pixel 

categories (e.g., land-cover types) in the pixel can yield a more accurate representation 

of the land cover types and amounts physically present. 

Spectral mixture analysis (SMA) is an effective method that has been widely 

utilized to estimate sub-pixel fractions (Deng and Wu 2013; Small and Milesi 2013). 

The spectral information of each pixel is a mixture of various materials' spectral 

signatures, which can be derived from other pixels in the scene. Mixing models can be 

linear and nonlinear. While the nonlinear mixing model's physical process can be 

complex, linear spectral mixture analysis (LSMA) has been widely used in spectral 

unmixing.  In the LSMA model, every mixed pixel's spectral signature is assumed to be 

a linear combination of several pure spectral signatures of certain materials known as 

endmembers.  Analysis of urban reflectance suggested that urban reflectance can be 

divided into three endmembers: high albedo, low albedo, and vegetation. This model 

has been effectively used for unmixing reflectance spectra and estimating vegetation 

fraction (Small 2002; Small and Milesi 2013). More recently, spatially adaptive SMA 

(SASMA) was developed and able to identify fraction with an accuracy of about 10% 

(mean absolute error of 8.50%, root mean square error of 15.25%) (Deng and Wu 

2013). 
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In this study, I used spectral mixture analysis to identify vegetation cover. 

Shrinking neighborhoods were identified with the help of parcel data summarized as 

fraction of lots in a neighborhood that lack a structure (i.e., the no-structure rate), and 

spatial entropy was calculated based on vegetation fractions in these neighborhoods. 

Due to the increased out-migration and demolition rates, abandoned properties and 

empty parcels tend to be overgrown and covered by vegetation. Thus, shrinking 

neighborhoods tend to represent a more diverse spatial pattern and relatively uneven 

distribution of vegetation, which can lead to lower values for spatial entropy in 

shrinking neighborhoods compared to more stable neighborhoods. To assess how 

spatial entropy could be an effective indicator of urban spatial pattern change, we fitted 

spatial lag models of the no-structure rate in relation to spatial entropy of vegetation, 

while controlling for other predictors from demographic data and parcel data. We 

analyzed spatial entropy values for urban vegetation cover at the level of neighborhoods 

to see how this metric can reveal spatial differentiation pattern in different 

neighborhoods in Detroit City. 

I investigated (1) how spatial entropy, a metric derived from moderate-

resolution images representing the spatial configuration of land cover, relates to 

indicators of shrinkage in neighborhoods and helps differentiate neighborhood condition 

within a shrinking city. As previous studies (Batty et al. 2014; Bhatta et al. 2010a) have 

pointed out, spatial entropy is a scale-dependent metric so it is also important to 

investigate (2) what scales (i.e. size of neighborhoods, or spatial resolution of remote 

sensing imagery) used for entropy calculation yield results that best differentiate the 

urban spatial patterns of shrinking neighborhoods from those of stable neighborhoods. 
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2 Methods 

2.1 Study Area 

My study area was the City of Detroit, Michigan, which has experienced 

continuous demographic and economic decline during recent decades. The population 

of Detroit peaked in the 1950s as a result of the expansion of the auto industry and the 

industrialization of this city (Neill 2015). After World War II, Detroit gradually lost its 

advantages when faced with global market competition. Manufacturing job losses and 

suburbanization led to outmigration from the city. The subprime mortgage crisis in 

2007 also aggravated the trend of population loss and economic decline. 

Deindustrialization and decentralizing trends of the auto industry have made Detroit 

probably the most famous shrinking city in the U.S (Xie et al. 2018). The population of 

Detroit City has dropped from 1.85 million in 1950 to 670,000 in 2015, which means 

the city’s population has decreased by over 60% since 1950 (U.S. Census Bureau 2016).  

Along with the demographic and economic decline, spatial patterns in Detroit 

City changed accordingly. Compared to urban growth, the spatial patterns of urban 

shrinkage may be less clear. In shrinking cities like Detroit, commonly observed spatial 

patterns include vacant land, large-scale demolition, and increasing open spaces. It is 

notable that even though the city is losing its population, different neighborhoods in the 

city present a different population trend as shown in Fig. 1. Some neighborhoods are 

losing their residents much quicker than others. In more stable neighborhoods where 

less population loss is observed, buildings/structures and vegetation are more evenly 
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distributed. In neighborhoods with more population loss, more houses and 

infrastructures are abandoned and demolished, and vegetation may grow in such places 

and then cover these areas. Thus, we may expect that houses and vegetation are 

distributed more unevenly in such shrinking neighborhoods.  

  

Figure 1. (a) A shrinking neighborhood with 

overgrown vegetation and diversely distributed 

properties 

Figure 1. (b) A more stable neighborhood with 

regular distribution of houses and vegetation  

 

2.2 Subpixel analysis (Spectral Mixture Analysis) 

Vegetation information in this study was extracted from Landsat-8 imagery 

acquired on July 13, 2013 (Row 020 Col 031). The cloud-free image was acquired in 

the summertime for estimating vegetation abundance. The terrain-corrected surface 

reflectance product was download from the U.S. Geological Survey. Radiometric and 

atmospheric correction was performed on the image. 
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A limited spatial resolution will cause spectral mixture in remote sensing 

images, meaning that each pixel can contain various objects with different spectral 

information. The Landsat image we used in this study has a spatial resolution of 30m, 

which is larger than many structures in the city such as single houses. Thus, it is 

challenging to label each pixel as a single category of land use using per-pixel 

classification approaches. I employed Small’s (Small 2002) model for spectral mixture 

analysis (SMA), which divides urban land cover into three categories: vegetation, high-

albedo, and low-albedo. Spatially adaptive spectral mixture analysis (SASMA) 

algorithm was used because it can incorporate both spectral and spatial information to 

find endmembers and yield more accurate estimation.  

For LSMA, the observed spectrum in an image is assumed to be a linear 

combination of spectra of several endmembers, which represent different land-cover 

types. Typically, the endmembers should have spectra of pure materials. However, 

finding the pure spectra of different land-cover types can sometimes be challenging. 

Instead, SASMA was designed to identify “most representative” endmembers with a 

spatially adaptive approach. A classification tree incorporating both spatial and spectral 

information was used for automatically extracting candidates of endmembers. For each 

mixed pixel in the scene, the algorithm will synthesize spectral signatures of all 

endmember candidates by inverse-distance-weighting (IDW) method within a local 

search window, to yield the final endmember spectra, which are considered as the most 

“representative” endmembers. Then, an LSMA method with the spectra was utilized for 

estimating the vegetation abundance within a pixel. To demonstrate SASMA’s 

advantage, we also conduct a plain LSMA on the Detroit scene to see which method has 
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better results. To validate the results of SASMA and plain LSMA, we randomly 

sampled 180 validation sites, 90*90m in size, over the study area. Root mean square 

error (RMSE), mean absolute error (MAE), and systematic error (SE) were used for 

accuracy assessment. The reference dataset for validation is the National Agriculture 

Imagery Program (NAIP) Data. NAIP acquires high-resolution aerial imagery during 

the agricultural growing seasons. The spatial resolution for images of Michigan is ~0.6 

meters. These aerial photographs were imported in ArcMap 10.3, and vegetation 

abundance for each site was calculated.  

 

2.3 Spatial Entropy 

Shannon's entropy has been used for quantifying the degree of spatial dispersion 

or concentration of a geographical variable 𝑥𝑖 across 𝑛 zones (pixels in this study) (Yeh 

and Li 2001). The relative entropy can be calculated as: 

𝐸 = ∑ 𝑝𝑖𝑙𝑜𝑔 (
1

𝑝𝑖
) 𝑙𝑜𝑔⁄ ⁡(𝑛)𝑛

𝑖=1 , 𝑝𝑖 = 𝑥𝑖 ∑ 𝑥𝑖
𝑛
𝑖=1⁄ , 

where 𝑥𝑖 is the value of the geographical variable of interest; in this analysis, the 

variable is the vegetation abundance. 𝑝𝑖 is the share of vegetation in the i-th zone over 

the vegetation in all 𝑛 pixels, The values of entropy range from 0 to 1. Smaller values of 

entropy indicate that the distribution of vegetation is more uneven while larger values 

indicate a more even distribution (Jat et al. 2008; Yeh and Li 2001). As shown in Fig. 1, 

shrinking neighborhoods have a relatively uneven distribution of vegetation. Some 

pixels are less vegetated with more building structures, while other pixels can be more 

vegetated. Thus, the hypothesis is that shrinking neighborhoods will have lower entropy 
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values in general; stable neighborhoods are vegetated more evenly, and proportions of 

vegetation in each pixel vary less, which results in higher entropy values.  

The value of relative entropy varies with the number of pixels (𝑛) within a 

neighborhood. Also, this value can still be affected by the size of pixels (Batty et al. 

2014; Bhatta et al. 2010b). Thus, we experimented with two levels of neighborhoods: 

census tracts and census block groups. We also calculated spatial entropy at four levels 

of image spatial resolution: 30m, 60m, 120m, and 250m. Different levels of 

neighborhood and spatial resolution were tested to see on which level spatial entropy 

shows a stronger correlation with neighborhood shrinkage and instability. 

 

2.4 Census and parcel variables 

2.4.1 American community survey 

The 2011-2015 American Community Survey (ACS) 5-year estimates data 

products at levels of census tract and census block group were acquired from the US 

Census Bureau. In the City of Detroit, there are 310 census tracts and 879 census block 

groups. The U.S. Census Bureau’s Topologically Integrated Geographic Encoding and 

Referencing (TIGER) has a product “TIGER/Line with Selected Demographic and 

Economic Data” which integrates geographic line dataset and ACS 5-year estimates. 

The dataset containing variables averaged from 2011 to 2015 was chosen to match the 

acquisition date (2013) of the Landsat image. Demographic and economic variables 

were selected as indicators of socioeconomic conditions of the neighborhoods. Selected 

variables include population in a neighborhood, population density of the neighborhood, 
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the proportion of the population with regular high school diploma, the population for 

whom poverty status is determined, the proportion of the population below the poverty 

level, and median income in the neighborhood. 

2.4.2 Parcel data 

The Motor City Mapping is a project dedicated to surveying every parcel within 

the city of Detroit. The survey was conducted from December 2013 to February 2014. 

The dataset has information of more than 370,000 parcels including their conditions, 

presence of structures, occupancy, and use. The City of Detroit’s open data portal also 

has a parcel map dataset which includes the last sale prices of the parcels. The parcel-

level datasets acquired from Data Driven Detroit data portal and the City of Detroit’s 

open data portal were overlayed with the census tracts and census block groups’ 

boundaries using ArcGIS. Variables at the two levels of neighborhoods were obtained 

from the overlayed data. The variables include the proportion of parcels encoded "No 

Structure" (no-structure rate), number of parcels in a neighborhood, average area of 

parcels within a neighborhood, area of a neighborhood, the proportion of 

commercial/industrial/institutional (CII) parcels, and the average price of residential 

parcels.  
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2.5 Spatial models 

It is assumed that spatial autocorrelation is present in the study area. Thus, other 

than an ordinary least squares (OLS) model, modeling approaches accounting spatial 

autocorrelation are more suitable for modeling areal data. Appropriately estimating 

effects and their significance can be modeled in the presence of spatial autocorrelation 

using a spatial lag model or a spatial error model. The spatial lag model assumes that 

the dependent variable was affected not only by the values of predictors with the a given 

spatial unit, but also values of the dependent variable in neighboring locations. Impacts 

coming from neighboring regions are weighted by a spatial weights matrix. The spatial 

lag model takes the form as follow: 

𝐲 = 𝜌𝐖𝐲 + 𝐗𝛽 + 𝐞, 

where 𝐲 is the dependent variable, and 𝐖⁡is the spatial weights matrix where the 

diagonal elements are zero, so one neighborhood’s dependent variable will not appear 

on the right side of the formula (Bivand et al. 2008; Viton 2010).  

The spatial error model assumes that the errors of the model are spatial 

autocorrelated, so it takes the form as: 

𝐲 = 𝐗𝛽 + 𝐮, 𝐮 = 𝜆𝐖𝐮 + 𝐞, 

𝐖 is defined as the in the spatial lag model (Bivand et al. 2008; Viton 2010).  

Based on the variograms and results of Lagrange multiplier tests (Anselin 1988; 

Anselin et al. 1996) on the variables mentioned above, the spatial lag model should be 

more suitable for the dataset we have. The spatial models were fitted at the two levels of 
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neighborhoods (census tract and census block group) and the four levels of spatial 

resolution.  

Spatial entropy and other variables from parcel data were log-transformed. As 

the spatial models require that the variables should be similar in scales and large scales 

will cause spatial models’ inversion of asymptotic covariance matrix failed, variables 

were transformed or rescaled, so the spatial models were able to fit. Akaike’s 

information criterion (AIC) was used for measuring the goodness of models and 

variable selection. Variable selection is a criterion-based procedure, and the model with 

the lowest AIC value was chosen as the final model. 

In spatial lag models, as the response variable is spatially lagged, so the response 

variable in neighborhood 𝑖 is not only affected by the predictors in neighborhood⁡𝑖, but 

also by⁡𝑖’s neighboring neighborhoods’ response variables. Therefore, while the 

response variable in neighborhood 𝑖 is directly affected by the predictors in 

neighborhood⁡𝑖, it is also indirectly affected by predictors of⁡𝑖’s neighboring 

neighborhoods. Interpretation on the fitted coefficients 𝛽 may be insufficient, as 𝛽 does 

not account for the spatial spillover, while a change in any predictor variable of a single 

observation will influence not only the neighborhood itself (direct impact) but other 

neighborhoods (indirect impact). Impact measures were formulated to assess both direct 

impacts and indirect impacts. For a predictor 𝑟 of two different neighborhoods 𝑖 and 𝑗 

(𝑖 ≠ 𝑗), in the OLS model, ∂𝑦𝑖 𝜕𝑥𝑖𝑟⁄ = 𝛽𝑟, ∂𝑦𝑖 𝜕𝑥𝑗𝑟⁄ = 0, while in the spatial lag 

model, ∂𝑦𝑖 𝜕𝑥𝑗𝑟⁄ = ((𝐈 − 𝜌𝐖)−1𝐈𝛽𝑟)𝑖𝑗. Let 𝑆𝑟(𝑊) = ((𝐈 − 𝜌𝐖)−1𝐈𝛽𝑟), the average of 

diagonal elements in the 𝑛 × 𝑛 matrix 𝑆𝑟(𝑊) is the average direct impact, and the 

average total impact is calculated as the sum of all elements in the matrix divided by 𝑛. 
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The average indirect impact is the difference between the total impact and direct impact. 

The impact measure accounting both direct and indirect impacts of predictor variables is 

more suitable and used in this study to assess each predictor’s effect on the response 

variable (Bivand et al. 2008; LeSage and Pace 2009; LeSage and Fischer 2008). All 

remote sensing image processing was done by ENVI 5.3. SASMA was implemented 

with Matlab R2015b. The spatial lag models were fitted in R with the ‘spdep’ package. 

 

3 Results 

3.1 Vegetation abundance 

The result of vegetation abundance yielded by SASMA is shown as follow: 

 

Figure 2. Vegetation abundance yielded by SASMA 
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As table 1 shows, SASMA achieves an RMSE of 7.9%, while non-adaptive 

LSMA has an RMSE of 14.01%. Also, SASMA has lower values in MAE and SE, 

which shows it is a more robust method compared to a plain LSMA in predicting 

subpixel vegetation abundance.  

Table 1. Comparison of accuracy of vegetation abundance between SASMA and non-adaptive 

LSMA. 

Method RMSE MAE SE 

SASMA 7.90% 6.04% 0.01% 

non-adaptive LSMA 14.01% 11.05% -0.09% 

 

3.2 Spatial model results 

3.2.1 Results at different levels of neighborhoods 

Based on AIC, the selected variables at the level of census block group include 

spatial entropy, number of parcels, CII proportion, the average price of residential 

parcels, population, the proportion of the population with high school diploma, and 

median income in the neighborhood. Variables at the level of census tract are the same 

as variables at the block group level excluding the average price of residential parcels. 

Table 2 shows the models’ fit of both OLS models and spatial lag models using the 

selected variables above at the two levels of neighborhoods. It is noted that even the 

OLS models have good fit (with R-squared of 0.54 and 0.50 at tract and block-group 

level respectively). Variance inflation factors are calculated and the result shows no 

serious collinearity among the predictors in these models. However, using spatial lag 

models improves the models' fit at both tract level and block-group level, which 

indicates the presence of spatial dependence in the response variable.  
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Table 2. Goodness of fit of OLS models and spatial lag models at tract and block-group levels. 

Null AIC is for models without predictor variables. R2 for OLS models and pseudo-R2 for 

spatial lag models.  

 Tract Block Group 

Model OLS Spatial Lag OLS Spatial Lag 

null AIC 761.97 504.79 2402.69 1489.79 

AIC 318.32 543.47 1818.13 1087.42 

R2/pseudo-R2 0.54 0.82 0.5 0.81 

 

Fig. 3 shows the impact measures of predictors at the two levels of 

neighborhoods. At block-group level, all predictors have significant impacts except the 

average price of residential parcels. At tract level, all predictors are significant.  

At both levels, spatial entropy, median income, and population are the predictors 

that negatively impact on the response variable (no-structure rate), while high school 

proportion, CII proportion, and the number of parcels have positive impacts on no-

structure rate.   

In terms of the magnitude of the impacts, spatial entropy has the largest impact 

of -8.50 on the response variable. Median income (-3.54) and population (-2.74) are the 

second and third most influential predictors at this level. At the tract level, spatial 

entropy (-6.37) remains the most impactful predictor. Median income (-5.24) and 

population (-2.69) are the second and third most influential variable.  
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Figure 3. Impact measures of predictors at (a) tract and (b) block-group levels. Green bars 

represent direct impacts while orange indirect (described in 2.5 spatial models). Error bars stand 

for 95% confidence intervals. *p<.05, **p<.01, ***p<.001. 

 

The residual spatial autocorrelation present in the OLS model was reduced as a 

problem in model estimation through use of the spatial model. The LM test (Breusch–

Godfrey test) shows non-significant spatial autocorrelation in residuals for the spatial 

lag models at the tract (p=0.725) and block-group (0.380) levels, while significant 
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spatial autocorrelation is observed at both tract (p<0.001) and block-group (p<0.001) 

levels. The residual values of the block-group-level OLS model show strong clustering 

(Fig 4b), while, such clustering is not observed jn the residuals from the spatial lag 

model (Fig 4a). Lower values of residuals in the OLS model are clustered in the 

northwestern part and the northeastern corner of Detroit City. Thus, the spatial lag 

model is able to deal with the problem of spatial dependence in the dataset. 

 

Figure 4. Residuals distribution of (a) OLS model and (b) spatial lag model at the block-group 

level. 

Comparing models estimated for two scales (census block group and tract) and 

those with and without the social variables, we see a strong effect of vegetation spatial 

entropy on the no-structure rate (Figure 5). All models have reasonably high pseudo R-

squared values, with the models at tract level having a slightly higher R-squared value 

than those at block-group level. 

 

3.2.2 Results at multiple levels of image spatial resolution 

AIC and impact values were used to compare models with spatial entropy values 

calculated based on different levels of spatial resolution (Table 3). At tract level, AIC 
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does not change much from spatial resolution of 30m to 250m, with the lowest AIC 

being 317.6 at the level of 120m. At block-group level, AIC values of the models at 

30m, 60m, and 120m are similar, with the lowest AIC being 1084.7 at the level of 60m. 

However, when spatial resolution goes to 250m, the AIC value increases to 1097.2, 

which is much higher than the AIC values at other levels. Also, the impact measure of 

entropy based on the image of 250m resolution is no longer significant, which indicates 

the spatial resolution of 250m may not be appropriate for calculating spatial entropy at 

block-group level of neighborhoods.   

 

Table 3. AIC of spatial models using entropy calculated from remotely sensed images with 

multiple levels of spatial resolution at tract and block-group levels. *p<.05, **p<.01, 

***p<.001, n.s. = not significant. 

Block Group 
 

Tract 
 

Resolution Impact of Entropy AIC Impact of Entropy AIC 

30m -8.50*** 1087.4 -6.37* 318.32 

60m -8.01*** 1084.7 -5.37* 318.71 

120m -4.92*** 1087.6 -4.92* 317.6 

250m -1.10 n.s. 1097.2 -2.57* 319.52 
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Figure 5. Comparison of observed values fitted values of no-structure rates at (a) & (c) block-

group level and (b) & (d) tract level. (a) and (b) show the full models at block-group and tract 

levels with all predictors included, while (c) and (d) show the models with spatial entropy as the 

only predictor. The orange solid line is the regression line while the green dashed line is the 

reference line of 1:1. Each dot represents an individual neighborhood. 
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4 Discussion 

4.1 Variable importance  

To assess spatial entropy as a predictor of neighborhood structural conditions 

associated with shrinkage, we compared its impact with other social measures included 

in the models. Both tract and block-group level models had the same following 

predictors in addition to spatial entropy: number of parcels, CII proportion, population, 

the proportion of the population with high school diploma, and median income in the 

neighborhood, while the average price of residential parcels is only included in the 

block-group level model. 

Spatial entropy had a significant effect on the no-structure rate at both tract and 

block-group levels even with these social variables included. In fact, its impact was 

largest among all of the variables. As expected, spatial entropy has a negative impact on 

no-structure rate, meaning that higher spatial entropy values are associated with lower 

no-structure rates. This relationship agrees with the hypothesis that spatial entropy is 

higher in neighborhoods with population and housing loss where no-structure rate tend 

to be higher and vegetation should be distributed unevenly. The second most impactful 

predictor at both levels was median income, which was also negatively associated with 

no-structure rate. Residents with higher income have more options to choose where they 

live, and they tend to live in more stable neighborhoods where structures are well 

maintained instead of shrinking neighborhoods where they may be neighbors to a 

number of empty lots. The third most influential predictor at both levels was population, 

and it is not surprising to find that population is negatively associated with no-structure 

rate. One of the most important characteristics of urban shrinkage is population loss. A 
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neighborhood with more population is more likely to be a stable neighborhood with 

fewer abandoned houses and vacant lots resulting in a lower no-structure rate. The 

proportion of the population with regular high school diploma was the fourth most 

impactful predictor in both levels' models. The more educated a neighborhood’s 

residents are, the more likely is the neighborhood to have a low no-structure rate and, 

therefore, be more stable. The other two predictors, the number of parcels and CII 

proportion, are both statistically significant with relatively smaller impacts. These two 

predictors were also the only two that were positively associated with the response 

variable.  

At the block-group level, the average price of residential parcels had the lowest 

impact value and was negatively associated with the response variable. It was surprising 

to find that the parcel price is not as influential as other predictors. Moreover, at tract 

level, parcel price was dropped based on AIC, and it was not statistically significant 

even when including it as a predictor at the tract level. It seems that parcel price should 

be a very useful variable in predicting a neighborhood’s housing condition. More stable 

neighborhoods with better infrastructure and housing units should have higher parcel 

price. Its relatively low impact might be caused by the dataset. The average price of 

residential parcels is retrieved from the City of Detroit’s open data portal, and the 

dataset records each parcel’s price of its last sale. Thus, these price data can come from 

different years and in fact may not be comparable.  

Overall, we find that the most impactful variable is spatial entropy based on 

remotely sensed images, and the second to fourth most influential variables all come 

from demographic data, while predictors from parcel data have the smallest impacts. 



24 

 

 

 

Also, Fig. 5(c) and (d) show that even the models can still perform well when including 

spatial entropy as the only one predictor. It is important to note that landscape changes 

may happen after (or lag in time) the social, economic, and demographic changes that 

are driving neighborhood change. However, possibility of enhancing studies of 

neighborhood change with the increased spatial and temporal resolution provided by 

remotely sensed imagery nonetheless suggests some value in using spatial entropy as a 

useful measure of housing loss and neighborhood stability.  

 

4.2 Edge cases 

Based on the results, spatial entropy is negatively associated with no-structure 

rate. However, we did find some edge cases in our study area with both low no-structure 

rate and low spatial entropy. Fig. 6 shows the high-spatial-resolution image (NAIP 

images) of such neighborhoods. These neighborhoods all have relatively large parcels 

whose use may be commercial, industrial, or institutional. Such commercial, industrial, 

and/or institutional areas are very different from residential areas in terms of spatial 

configuration, so the entropy value in such neighborhoods should decrease. In this 

study, we included the covariate CII proportion to control this factor. However, if parcel 

data are not available in the area of interest, we may still try using other metrics like 

distance to CBD, or distance to roads as a potential substitute for commercial 

proportion. Thus, spatial entropy should still be a practical and effective metric for 

prediction of neighborhood stability. 
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Figure 6. NAIP high-resolution images of 3 examples of “edge cases” neighborhoods both low 

no-structure rate and low spatial entropy. 

 

4.3 Scale issue of spatial entropy  

The scale issue is an interesting part of the use of spatial entropy in monitoring 

neighborhood shrinkage. Previous works have shown that the metric of entropy is scale-

dependent, which means the size of pixels and the size of neighborhoods can both affect 

the results of spatial entropy (Batty et al. 2014). Table 3 shows how the model fit 

(measured by AIC) changes while tuning the size of pixels at both tract and block-group 

levels.   

At the block-group level, the AIC values do not change much from the spatial 

resolution of 30m to 120m. However, when the spatial resolution goes to 250m, the 

AIC value significantly increases, which indicates a worse model fit.  

Table 4 shows the average areas of census tracts and census block groups in 

Detroit City and the average numbers of pixels that are included in a neighborhood at 

multiple levels of spatial resolution. From Table 4 we can find that on average, each 
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neighborhood has less than seven pixels when the spatial resolution is 250m. We can 

also find that although spatial entropy is a scale-dependent metric, the model fit does 

not seem to be affected too much by pixel size unless the pixel size is relatively too 

large compared to the neighborhood size.  

Table 4. Mean areas of all census block groups and census tracts in Detroit City, and mean # of 

pixels within a census block group and census tract at spatial resolutions of 30m, 60m, 120m, 

and 250m. 

 Block Group Tract 

Mean area 409,234 𝑚2 1,160,375 𝑚2 

Mean # of pixels–30m 448.7 1275.2 

Mean # of pixels–60m 112.6 318.8 

Mean # of pixels–120m 28.4 80 

Mean # of pixels–250m 6.8 18.7 

 

However, when using the 250m-resolution image, a neighborhood on average 

contains fewer than seven pixels at block-group level. Such neighborhoods with a really 

limited number of pixels will negatively affect the model fit. A previous study shows 

that the entropy value tends to increase quickly as the value of n increases when n is 

small (Batty et al. 2014). The rate of increase slows down when n gets larger. Thus, 

when neighborhood size is relatively small compared to the pixel size, the variation in 

neighborhood’s entropy values may not mainly come from the difference in the 

characteristics of neighborhoods, but the difference in the number of pixels a 

neighborhood contains. This also explains why the total impact of spatial entropy at 

250m and block-group level is not significant, because the correlation between spatial 

entropy and no-structure rate is weakened at the spatial resolution of 250m.  
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In terms of pixel size, we also hypothesize that the spatial resolution should not 

be too coarse. In this study, we are using spatial entropy to measure if urban vegetation 

is evenly distributed in a neighborhood. An image with coarser spatial resolution 

usually contains less information than one with finer resolution. When using larger 

pixels, it is similar to averaging the smaller pixels, which will decrease the variation of 

vegetation abundance in the pixels. Also, some uneven distribution of vegetation may 

only be observed at a finer spatial resolution. Table 3 also has similar results: the impact 

of spatial entropy does show a decreasing trend when pixel size gets larger.  

It is also hypothesized that high spatial resolution images with too-small pixel 

sizes may bring in much noise and may not be suitable for calculating spatial entropy. 

We are also interested in how spatial entropy values would change as the spatial 

resolution of images gets finer than 30m. However, it is hard for us to experiment as 

30m is the finest resolution we can get from the Landsat dataset.  

Overall, to use spatial entropy as an indicator of urban shrinkage, it is better to 

use images with finer spatial resolution and make sure that each neighborhood contains 

an adequate number of pixels, so that the values of spatial entropy will not fluctuate too 

much. 

 

4.4 Next Steps 

While we find that spatial entropy is an effective indicator of neighborhood 

stability in Detroit City, our experiment is confined to a relatively small area. In future 

studies, we should experiment on whether the relationship between spatial entropy and 
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housing loss (no-structure rate) is consistent in other areas, like in suburban Detroit or 

other shrinking cities. Also, it will be interesting to do some time-series analysis, to see 

how spatial entropy changed over the years and try to understand how the shrinking 

process developed in the City of Detroit. 

 

5 Conclusion 

In this study, I estimated spatial lag models at tract and block-group levels to 

test if spatial entropy derived from moderate-resolution imagery is associated with a 

measure of neighborhood stability. Different from previous studies on urban change that 

used spatial entropy at the city level, we calculated spatial entropy values at the 

neighborhood level. Along with other demographic and parcel variables, the spatial lag 

models worked very well at both tract and block-group levels in predicting no-structure 

rates. Among all predictors, spatial entropy is the most impactful one, and even in 

models with the only one predictor being spatial entropy, the models can still perform 

well, which shows the importance of spatial entropy in predicting neighborhood 

stability. Thus, spatial entropy is an effective metric for monitoring the shrinkage of 

neighborhoods, and moderate-resolution imagery can be an effective source for 

monitoring and predicting urban shrinkage. Although spatial entropy is a scale-

dependent metric, while allowing enough pixels in a neighborhood, the spatial 

resolution of remotely sensed images does not influence the models’ fit much, and 

models can perform well at both tract and block-group levels.  
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