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Abstract 

Persistent low levels of mathematics achievement are widely found throughout the United States. 

To reverse this trend, the researcher designed and tested the effects of a “re-envisioned” 

instruction model that incorporated a synthesis of six learning theories and current research from 

the fields of mathematics education, educational and cognitive psychologies, and neurosciences. 

General Tier I core instruction is the primary prevention component within a Multi-Tiered 

System of Support (MTSS). The “re-envisioned” instruction model and instructional tasks were 

used by two second-grade teachers to activate students’ cognitive structures and minimize 

students’ needs for Tier II and Tier III interventions. Cognitive structures are essential 

neurocognitive systems vital for student learning. This quasi-experimental research study was 

conducted in three second-grade classrooms. It took place in a midwestern part of the United 

States in a partial Title I Pre-K–5 elementary school. This study used mixed-research methods, 

including a variety of data collection instruments and statistical and qualitative measures, to 

explore four research questions. The findings suggest that effective implementation of the “Re-

Envisioned” instruction model minimized the number of students needing Tier II and Tier III 

interventions and increased students’ mathematics achievement in statistically significant ways.  

Keywords: cognitive structures, Tier I core instruction, inquiry-based instruction, 

mathematically “at risk” students, Multi-Tiered Systems of Support (MTSS), Elementary 

mathematics 
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Chapter 1: Introduction 

Throughout the last decade, students’ mathematical proficiency levels have increased 

(National Center for Education Statistics [NCES], 2016). Students who increased their scores 

ranged from average to top performers in mathematics. Alternatively, the average to below-

average students continue to underperform in this subject area and are “at-risk” for failure 

(Philipp et al., 2007). Data results from the Nation’s Report Card indicate that approximately 

60% of our 4th-grade students and 65% of our 8th-grade students remain less than proficient in 

mathematics (NCES, 2015a).  

Students’ lack of mathematics achievement holds long-term implications for society and 

for public education at large (Hill, Rowan, & Ball, 2005; Geary, 2011a). Low student 

achievement in this academic subject causes student failure in higher level math classes and adult 

life in general (Geary, 2013; Geary, Bailey, & Hoard, 2009; Jordan, Kaplan, Ramineni, & 

Locuniak, 2009). Future employability, rates of promotion, and annual incomes are in jeopardy 

as struggling mathematics students move into adulthood (Geary, 2011b). The mathematical skills 

and concepts learned in elementary school support the learning of advanced mathematics and are 

foundational for full participation in a technologically-advancing culture and society (Baroody & 

Ginsburg, 1990; Duval, 2006).  

Noteworthy initiatives in mathematics education have been instituted to confront this 

trend (Ball & Cohen, 1999). These include delineated shifts in teachers’ instructional practices 
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(National Council of Teachers of Mathematics [NCTM], 2000), the creation of standards-based 

curricula, and the adoption of rigorous learning standards (National Governors Association & 

Council of Chief State School Officers [NGA & CCSSO], 2010). Unfortunately, these initiatives 

have not increased students’ levels of mathematical understanding and achievement at scale, 

especially for the average to below-average students (Ball, Hill, & Bass, 2005; Cohen & Ball, 

2001). L.S. Fuchs and D. Fuchs (2001) claimed, “[The] prevention of mathematics difficulties in 

this country is generally ineffective not only for students with LD [learning disabilities], but also 

for nondisabled learners” (p. 85).  

To potentially improve students’ mathematics achievement and learning on a greater 

scale, a review of the theoretical origins of students’ learning difficulties, accompanied by a re-

examination of how learning occurs, was undertaken. An understanding of these key theoretical 

constructs and processes directed the design, implementation, and testing of the effects of an 

innovative instruction model used to implement general (Tier I) core mathematics instruction in 

two of three second-grade classrooms.  

This research study was conducted at a partial Title I, K–5 school identified as Midwest 

Elementary School during the 2014‒2015 school year. Two second-grade teachers used a “re-

envisioned” instruction model to implement Tier I core mathematics instruction with their 

second-graders. The third second-grade teacher implemented mathematics instruction with her 

students using their district’s mathematics program and curricular resources. The time frame for 

applying treatment and collecting data was September 2014 through January 2015. Additional 

data collection occurred in May 2015—four months after treatment. 

Results from this study illuminated important socio-cultural norms, essential pedagogical 

practices, and mathematical tasks that greatly influenced the experimental students’ increase in 
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mean mathematics achievement scores beyond the scores of the control group. Quantitative 

results also indicated reduction in many students’ needs for Tier II and Tier III interventions 

relative to the school’s MTSS program. Analysis of qualitative results suggest ways teacher 

educators and mathematics coaches can support teachers and students shifting their beliefs and 

practices for teaching and learning mathematics.  

A Perspective of the Problem 

Seminal and contemporary learning theories were consulted for the literature review. 

Current research from the fields of mathematics education, educational and cognitive 

psychologies, and the neurosciences were also investigated. These studies highlighted cognitive 

processes essential for learning. They revealed key instructional practices, essential elements of 

productive learning environments, and important constructs for re-designing mathematical tasks 

to support students learning concepts at a deeper level. 

Learning is cognitively and neurologically generated by the learner. Learning is the 

ability to create and strengthen one’s own neurological networks within the mind, creating new 

neuronal nodes that link to existing nodes (Devlin, 2010; Ifenthaler, Masduki, & Seel, 2011). 

Neurological connections and the strengthening of these connections occur through the mental 

processes of assimilation and accommodation. These mental processes require direct sensory 

exposure to environmental stimuli and mediated exposures to social stimuli such as language, 

signs, and symbols (Feuerstein, Feuerstein, Falik, & Rand, 2006; Vygotsky 1978/1930). Outward 

signs of learning include, but are not limited to, one’s ability to “make connections with prior 

knowledge and experiences, identify patterns [and relationships], identify predictable rules, and 

abstract generalizable principles” that can be applied to additional contexts and conditions 

(Garner, 2007, p. xiii).  
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The literature review also identified several theoretical origins for students’ learning 

difficulties related to learning mathematics. These include, but are not limited to, historical, 

biological, cognitive, socio-cultural, and pedagogical (Baroody, 2011). Collectively, these 

categories exemplify the complex processes of teaching and learning this academic subject. For 

this study’s purpose, only four of the five origins are specifically addressed through the “re-

envisioned” instruction model, namely: biological, cognitive, socio-cultural, and pedagogical.  

To introduce the need for this study, this next section briefly describes the nature of 

students’ learning difficulties given a historical perspective. General descriptions of the other 

four origins are found in Chapter 2.  

Historical Origin 

A brief historical overview affords the reader an understanding that the problem of 

learning difficulties in mathematics is not a recent phenomenon, and neither are educators’ and 

legislators’ efforts to address them. Beginning in the early 1960s, federal initiatives attempted to 

target consistently low-performing students in significant ways. In 1963, the United States 

government issued the federal law Mental Retardation Facilities and Community Mental Health 

Centers Construction Act (P.L. 88-164). This law provided researchers monetary assistance to 

study and understand mental retardation and learning disabilities experienced by American 

students.  

 Additional public laws followed. In 1975, the federal government authorized the 

Education for All Handicapped Children Act (EAHCA), and then renamed and reauthorized this 

act as the Individuals with Disabilities Education Act of 1997 (IDEA). The 1997 law utilized a 

discrepancy process for identifying students with learning disabilities (Bradley, Danielson, & 

Doolittle, 2007; Fuchs & Fuchs, 2007; Riccomini & Smith, 2011). The 1997 law directed 
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teachers and psychologists to document at least a two-year discrepancy between a student’s 

intellectual quotient and his or her academic achievement before providing and funding 

additional educational services (Fuchs & Fuchs, 2007). Under these federal requirements, a 

student “waited to fail” in mathematics, often until the 5th grade, before additional support or 

interventions were administered (Bradley et al., 2007; Fuchs, Fuchs, & Compton, 2012; Gresham 

& Little, 2012).  

Fortunately for students and their learning, in 2004 the United States government 

amended the Individuals with Disabilities Education Improvement Act (United States 

Department of Education, IDEIA, 2004). It now read, “In determining whether a child has a 

specific learning disability, a local agency may use a process that determines if he [or she] 

responds to scientific, research-based intervention as part of the evaluation process” (20 U.S.C. 

§1414[b][6]). This legislation became the source waters for the phrase “Response to 

Intervention” (RTI), now titled “Multi-Tiered Systems of Support” (or MTSS).  

The amended IDEIA (2004) law focused on improving student learning through a variety 

of means. One major alteration provided educators the ability to identify struggling students 

early in their formal schooling and permitted states to discontinue the use of the IQ discrepancy 

process. Thus, educators no longer waited for student failure before meeting their educational 

needs. Further amendments afforded more flexibility in the referral process, an increase in 

parental involvement, and included the use of evidence-based instructional materials and 

practices within the general education classroom. Fortunately for students and their learning, 

various options for early identification of students’ learning disabilities were finally endorsed by 

the federal government (Fuchs & Fuchs, 2007; Fuchs et al., 2012; Riccomini & Smith, 2011). 
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Once the 2004 IDEIA law was formally authorized and legally instituted, educational 

administrators quickly capitalized on these vital amendments. Central school administrations 

began implementing RTI (now known as MTSS) processes, including early identification and 

intervention. Naturally, educators wanted to reduce the number of students needing special 

education and/or tertiary programming, as well as to prevent students’ academic failure (Fuchs & 

Fuchs, 2007). Essentially, MTSS became a system for differentiating “between two explanations 

for low achievement: inadequate instruction versus disability” (Fuchs & Fuchs, 2007, p. 14).  

Although IDEIA was a step in the right direction, the United States Department of 

Education and policy makers did not recommend, nor endorse a specific MTSS model for 

schools and teachers to systematically institute (Bradley et al., 2007; Fuchs, Fuchs, & Stecker, 

2010). Nor did research identify a single model to be effective in all situations and in all cases 

(Mellard, McKnight, & Jordan, 2010). Left to interpret the implicit meaning within the law, 

many school staff interpreted the purposes and design of a MTSS model for themselves (D. 

Fuchs & L.S. Fuchs, 2005). School staffs readily instituted their own versions of MTSS 

frameworks to meet their students’ literacy and mathematics needs early on (Lembke, Hampton, 

& Beyers, 2012; Mellard et al., 2010).  

To assist educators’ efforts, several national organizations offered their own 

interpretations of the law. For instance, leaders of the National Council of Supervisors of 

Mathematics (NCSM, 2013) published a position statement declaring that prevention and 

intervention measures are necessary and essential in all K–12 mathematics programs. They 

described RTI as a “systematic, data-based method for identifying, defining, and resolving 

students’ academic difficulties using collaborative, school-wide, problem-solving approaches” 
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(p. 1). The RTI Action Network (2015) defined RTI as a multi-tiered system for identifying and 

supporting students who have learning difficulties.  

During a national conference in 2010, Francis (Skip) Fennell, former president of 

National Council of Teachers of Mathematics and professor of education at McDaniel College in 

Westminster, Maryland provided a brief description of the purposes for a RTI or MTSS model in 

mathematics. He described,  

Response to intervention (RTI) can be thought of as an early detection, prevention, and 

ongoing support system that identifies students and provides them with the support they 

need BEFORE they fall behind and before they are formally identified and designated for 

special education services. (Fennell, 2010, slide 2) 

Key words and phrases in Fennell’s description stood out as critical themes: early detection, 

prevention, ongoing support system, identifies students, provides them with support, before 

students fall behind, and before formal identification in special education services.  

To better understand how the teaching staff from Midwest Elementary School perceived 

the purpose of their RTI (or MTSS) model, Fennell’s (2010) terms and phrases were used to 

code staff’s perception data to the following question, “What is your working definition for 

Response to Intervention in mathematics?” Twenty-six teachers’ written responses were coded 

according to Fennell’s definition and themes. Results indicated that 19 of 26 teachers perceived 

the purpose of their school’s RTI program as identifying students and providing support. One-

fifth of teachers’ responses suggested early detection. Three teachers mentioned the use of 

prevention strategies. Three included an ongoing system of support and one teacher suggested 

intervening before students fall behind. Still, the word “before” was never explicitly articulated 

in their 26 written definitions.  
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Teachers’ responses suggest that all 26 teachers held differing interpretations or 

definitions of their RTI (MTSS) program enacted within Midwest Elementary. Significantly, 

most teachers did not perceive their model as providing preventative measures for students’ 

learning difficulties. Instead, they perceived their RTI (MTSS) model as a system for 

remediation.  

Challenging Expectations for Teaching Mathematics 

Just as preventative medicine promotes good health, preventing students’ learning 

difficulties from occurring in the first place is an important philosophical stance and means for 

increasing students’ mathematics achievement if “educational improvement is to be a long-term, 

generative process” (Cobb, Confrey, diSessa, Lehrer, & Schauble, 2003, p. 9). The proponents of 

MTSS endorse effective Tier I core mathematics instruction as the intended prevention 

mechanism for all students in general education classrooms (Clements & Samara, 2007; 

Gresham & Little, 2012; NCSM, 2013). Furthermore, all students’ instructional needs can be met 

by knowledgeable teachers using evidence-based pedagogy and effective instructional design 

(NCTM, 2000).  

Thus, the choices school districts, curriculum directors, general education teachers, and 

interventionists make for engaging students in learning mathematics hold explicit implications 

for improving student achievement. The mathematical tasks and instructional practices teachers 

use, the classroom environments teachers and students co-create, and the ways teacher and 

students engage with content are essential pathways for preventing students’ learning difficulties 

from occurring, as well as minimizing student difficulties when manifested (City, Elmore, 

Fiarman, & Teitel, 2009). Collectively, such processes for teaching and learning create 
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challenging expectations for school districts, staff, and individual teachers to take on single-

handedly.  

Theoretical Framework 

To understand the complexities of teaching and learning mathematics, multiple 

theoretical perspectives—both seminal and contemporary—were consulted. A variety of 

databases were accessed to identify and understand student learning and cognition. These 

databases included Psych INFO, Wiley Online Library, Open Access, Google Scholar, Google 

Search, JStor, ResearchGate, SAGE, ERIC, NCTM, and NCSM. Key terms such as cognitive 

structures, cognition, representations, spatial reasoning, learning theories, developmental stage 

theory, learning difficulties in mathematics, constructivism, socio-constructivism, and mediated 

learning theory were helpful in accessing prior research. Researchers’ names such as Jerome 

Bruner, Jean Piaget, Lev Vygotsky, Reuven Feuerstein, Betty Garner, and David Geary were 

primary key terms used in the electronic search. Additional journal articles were selected based 

upon the researcher’s knowledge and on the plethora of references existing within the extensive 

compilation of literature. 

 Subsequently, Design-Based Research (DBR), also known as Design Experiment, 

became the theoretical backdrop for designing and conducting this study (Barab & Squire, 2004; 

Cobb et al., 2003). Tracing back to the advanced and pragmatic research practices authored by 

Ann Brown (1992), DBR uses intervention to improve existing learning conditions as well as 

inform teacher practices. Cobb and his colleagues (2003) explained that DBR researchers labor 

to empirically fine tune what works while developing theories of intervention targeting specific 

domains.  
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DBR’s processes supported the design, implementation, and testing of the “re-

envisioned” instruction model implemented in two of the three second-grade classrooms for this 

study. To advance existing theoretical constructs for learning and transcend the environmental 

contexts of these authentic classrooms, the instruction model utilized a synthesis of six learning 

theories and evidence-based practices (Barab & Squire, 2004). Then, as unexpected contextual 

conditions surfaced, as teachers’ and students’ differing needs arose, or when implementation of 

the treatment was deemed unsuccessful, DBR’s flexible design enabled teachers and researcher, 

as co-participants, to collaboratively analyze and revise the treatment. Although changing one 

aspect of the treatment created perturbations in other aspects of the treatment, attempts were 

always made to isolate dependent variables for testing purposes (Brown, 1992; City et al., 2009). 

Variables included the socio-cultural environment of each classroom and teachers’ varying levels 

of pedagogical and content knowledge for teaching mathematics (Ball et al., 2005). Students’ 

readiness to learn specific mathematical concepts was another variable impacting this study.  

Research purists claim that DBR’s non-rigorous methodologies for establishing validity 

and reliability often lead to inaccurate results and reporting of data (Barab & Squire, 2004). To 

ensure valid and reliable results from this study, a quasi-experimental, concurrent mixed-

methods approach (as described by Creswell, 2009) incorporating a pre- and post-test non-

equivalent three-group and time series design was utilized (Cook & Campbell, 1979). The quasi-

experimental aspect of the study enabled the detection of similarities and differences in student 

outcomes between students receiving intervention and those who did not. Concurrent mixed-

methods data collection afforded the triangulation of multiple data sets. Merging thick 

descriptions of qualitative data with statistical results substantiated or challenged research 

results, thereby improving the validity of inferences made (Geertz, 1973). A pre- and post-test 
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group design controlled threats to internal validity of the experiment, such as students’ natural 

cognitive maturation (Johnson & Christensen, 2012). A time series design, whereby the same 

assessment measure was administered four months apart, helped determine the impact the model 

had upon students’ learning mathematics and the development of two cognitive structures. 

 With roots firmly planted in an empirical base of learning theories, the “re-envisioned” 

instruction model was implemented in “average classrooms operated by and for average students 

and teachers” utilizing DBR processes (Brown, 1992, p. 143). Subsequently, this study became a 

“crucible for the generation and testing” (Cobb et al., 2003, p. 9) of the “re-envisioned” 

instruction model used to implement Tier I core instruction in two of three second-grade 

mathematics classrooms.  

Cognitive Structures 

Central to this study was the conceptual design and teachers’ implementation of the “re-

envisioned” instruction model and re-designed tasks to cognitively engage students. These 

elements were all aligned to learning theories predicated upon the mediation and development of 

students’ cognitive structures. Activating and engaging students’ cognitive structures afforded a 

natural and viable approach for increasing students’ mathematics achievement and minimizing 

their learning difficulties in this academic subject.  

Cognitive structures are humans’ natural neuronal-mechanisms for learning (Geary, 

1995). They are defined as neurocognitive networks within the mind. Different types of 

cognitive structures exist. Primitive structures appear to be inherent and existent at birth (Geary, 

1995). Given appropriate stimuli and mediation, primitive structures develop into more complex 

neuronal systems supporting higher cognitive functioning (Feuerstein et al., 2006; Garner, 2007). 

For example, short- and long-term memories are mental structures integral to the assimilation 
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and accommodation of new information. As students mentally accommodate new concepts or 

ideas, their minds generate new neuronal nodes, becoming linked to existing neuronal structures 

(Ifenthaler et al., 2011). The level of development of one’s cognitive structures influence “the 

way in which an individual arranges facts, concepts, propositions, theories, and raw data at any 

point in time” (Ifenthaler et al., 2011, p. 42). If an individual’s cognitive structures are highly 

organized, his or her structures support comprehension, integration, retention, and application of 

new information.  

Cognitive structures such as memory, recognition, visualization, spatial orientation, and 

conservation of constancy enable students to make connections between and among concepts 

(Garner, 2007; Kamii, Lewis, & Kirkland, 2001b). Students’ abilities to make connections 

between and among mathematical representations and properties are vital cognitive processes for 

learning mathematics (Ball, 2001; Ball et al., 2005; Duval, 2006; Skemp, 1976/2006; Van de 

Walle, Karp, & Bay-Williams, 2012). 

Purpose of the Study and Research Questions 

The aims for conducting this research were multi-purposed. The first two goals were to 

understand students’ learning difficulties and the different learning theories relative to mediating 

the development of students’ cognitive structures. This information afforded insights into how a 

synthesis of these theories might increase students’ mathematical understanding and 

achievement. That knowledge led to the third goal, which was to align the theories to current 

research and best practices from the fields of mathematics education, educational and cognitive 

psychologies, and the neurosciences. The fourth and fifth goals were to design an instruction 

model used for Tier I core mathematics instruction that mediated the development of students’ 

cognitive structures, namely conservation of constancy and spatial orientation and then test the 
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model’s effectiveness toward these ends. The final goals were to determine if the model was 

viable—meaning that teachers could effectively implement the instruction model using key 

processes and practices—and that students in the two experimental groups increased their 

understanding of mathematics in statistically significant ways when compared to the control 

group.  

Utilizing a quasi-experimental mixed-methods approach, this study investigated the 

following questions:  

1. To what extent did teacher implementation of the “re-envisioned” instruction model 

influence students’ mathematics achievement? 

H10: The change in students’ mathematics achievement scores between students 

who received treatment and students in the control group were not statistically 

different as determined by pre- to post- to end i-Ready Universal Screener 

assessments (Curriculum Associates, 2015). 

H1a: The change in students’ mathematics achievement scores between students 

who received treatment and students in the control group were statistically 

different as determined by pre- to post- to end i-Ready Universal Screener 

assessments (Curriculum Associates, 2015). 

2. Did teacher implementation of the “re-envisioned” instruction model minimize 

students' learning difficulties in mathematics? In other words, did teacher 

implementation of the model move students identified at Tier II and Tier III levels to 

Tier I and Tier II levels respectively as determined by the pre- to end tests from the i-

Ready Universal Screening Assessment (Curriculum Associates, 2015)?  
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H20: When comparing students in the two treatment groups to students in the 

control group, there were no statistical differences in count patterns representing 

students’ decrease (improvement) in Tier Levels from pre- to end according to the 

i-Ready Universal Screener assessment data.  

H2a: When comparing students in the two treatment groups to students in the 

control group, there were statistical differences in count patterns representing 

students’ decrease (improvement) in Tier Levels from pre- to end according to the 

i-Ready Universal Screener assessment data.  

3. To what extent did teacher implementation of the “re-envisioned” instruction model 

influence the development of students’ cognitive structures, specifically spatial 

orientation and conservation of constancy? 

H30: When comparing the treatment groups’ development of their cognitive 

structures to the control group’s development of their cognitive structures, there 

were no statistical differences as determined by pre- to post- test scores on the 

Adapted Cognitive Structure Assessment results. 

H3a: There were statistically significant differences in students’ development of 

their cognitive structures between students who received treatment and students 

who did not as determined by students’ pre- to post- test scores on the Adapted 

Cognitive Structure Assessment results. 

4. By the end of this study, to what extent did teacher implementation of the “re-

envisioned” instruction model influence students’ beliefs and practices for learning 

mathematics? 
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H40: By the end of the study, qualitative differences in students’ beliefs and 

practices for learning mathematics did not exist between students who received 

treatment and students who did not as indicated by students’ and teachers’ 

qualitative data.  

 H4a: By the end of the study, qualitative differences in students’ beliefs and 

practices for learning mathematics existed between students who received 

treatment and students who did not as indicated by students’ and teachers’ 

qualitative data. 

Potential Limitations and Weaknesses 

Limitations existed due to the complex nature of the research study and the design of the 

instruction model. At the beginning of the school year, the two teachers of the experimental 

groups were not ready to implement the instruction model as designed. Therefore, at the 

beginning of the study and periodically throughout, teachers requested implementation support. 

Support was provided in the form of modeling mathematics instruction—especially when 

instruction pertained to introducing novel mathematical representations. Furthermore, teachers 

requested lessons and tasks that supported their implementation of the “re-envisioned” 

instruction model. These forms of support may have influenced this study’s results thereby 

limiting generalization to other contexts (Barab & Squire, 2004). 

Another limitation to this study involved using a small sample size of study subjects or 

participants. For the quantitative portion of this study, participation was limited to students 

across all three classrooms (n = 54). A small sample size limited the potential for generalizing 

results to a wider population (Johnson & Christensen, 2012). 
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A third limitation was that the participants were a convenience sample. All second-grade 

teachers were involved with elements of the “re-envisioned” instruction model the previous 

school year. As such, the teacher in the control group struggled in philosophically staying true to 

the design of the mathematical tasks and lessons found in her school district’s mathematics 

program.  

A fourth limitation was that true experimental studies require random sampling 

(Creswell, 2009). Prior to this study, the school’s principal and first-grade teachers 

predetermined student placement with specific second-grade teachers. The principal also 

determined the classrooms of students who received treatment and those who functioned as the 

control. As such, this study was conducted using non-equivalent groupings. 

A fifth limitation to this study involved the instruments used to collect, code, and 

quantify data. Some of the qualitative instruments were generated by the researcher and used for 

the first time in this study. Thus, these instruments were not tested for validity nor reliability. 

Although other educators, researchers, and a statistician were consulted throughout the 

study, much of the qualitative data were analyzed and reported by one person. Rather than 

obtaining different perspectives and orientations to underlying phenomena, the data analysis and 

inferences may include biases relative to mathematics education. This presents the sixth foreseen 

limitation to this study. 

Significance of the Study 

Given these limitations, there were several factors motivating this research. First and 

foremost, the current data from the NCES (2016) suggest that the United States educational 

systems have not generated the level of mathematics achievement our students need to thrive in 

the 21st century (Stigler & Hiebert, 1999). Mathematics instruction that improves students’ 
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mathematics achievement and prevents students’ learning difficulties from occurring in the first 

place has been historically elusive and challenging to implement. No mathematics program is 

100% effective for preventing students’ mathematics learning difficulties (Fuchs et al., 2010). 

Accordingly, national concerns over the effectiveness of mathematics education and student 

learning are amplified (NCES, 2015a; National Research Council, 2001); and researchers 

continue to investigate ways to increase student achievement (National Research Council, 2001).  

Secondly, it was the researcher’s experience that districts adopting a MTSS model often 

hired untrained personnel (due to budget constraints) to enact Tier II interventions with their 

students. Tier II interventions require skilled personnel to implement explicit forms of 

supplemental interventions (Steedly, Dragoo, Arafeh, & Luke, 2008). The definitions for Tier II 

and Tier III levels of interventions are found in the glossary at the end of this chapter.  

Thirdly, few research studies describe specific ways classroom teachers can implement 

general Tier I core mathematics instruction to mediate the development of students’ cognitive 

structures. This includes the influence specific cognitive structures may have upon students’ 

learning of mathematics. Furthermore, very few schools are implementing an instruction model 

like the one represented by the “re-envisioned” instruction model.  

Hypothetically, designing and implementing an instruction model that utilizes a synthesis 

of learning theories, evidence-based instructional practices, and mathematical tasks that activate 

students’ existing cognitive structures could invite and foster students’ natural facility for 

learning. Thus, the results from this study may offer researchers and educators petite 

generalizations (Barab & Squire, 2004). One generalization is that this “re-envisioned” 

instruction model can be used to implement Tier I core mathematics instruction. Another 
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generalization is the importance for mediating the development of students’ cognitive structures 

to increase student learning. 

Most importantly, obtaining higher levels of mathematics cognition and achievement 

affords equal opportunity for all students. Obtaining mathematical understanding and 

proficiency, as described by the Common Core State Standards of Mathematical Practices, 

prepares students for success in the 21st century workforce and within our global community 

(NGA & CCSSO, 2010). When all students can use mathematics to address our global 

community’s needs, we will find solutions to the simple and complex problems we face today. 

Then, and only then, will everyone begin to “experience mathematics in ways that allow them to 

change the conditions of [all of our] lives” (Martin, Gholson, & Leonard, 2010, p. 17).  

Definitions and Terms 

 The following terms and definitions provide the reader a foreshadowing of key concepts 

and vocabulary found throughout this study. These terms aid the reader’s interpretation and 

comprehension of terminology found within various fields of education (e.g. educational 

psychology, mathematics education, special education, etc.). 

• Accommodation occurs within the mind. When a new concept does not fit with 

existing schema, the result is a state of confusion, disequilibrium, or cognitive 

conflict for a student. To rectify the mental conflict, the human mind modifies 

existing structures or schema by generating new neuronal nodes and pathways 

(Ifenthaler et al., 2011). This physiological mental “rewiring” generates new 

neurological architecture or a re-design of students’ schema, thus prompting stronger 

and more efficient capacities for connecting concepts, synthesizing information, and 

intellectualizing generalizations (Van de Walle et al., 2012). 
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• Assimilation occurs when concepts correspond with one’s existing schema. Repeated 

practice of a known skill or concept results in the physiological mental 

“strengthening” of existing neuronal networks. As skills and practices are revisited, 

the myelin sheaths of axons within the human mind thicken, thus creating stronger 

and more efficient flows of electrical current (Devlin, 2010).  

• Cognitive structures are innate interconnected sensory-motor and conceptual 

neurocognitive systems foundational for learning and for making meaning of one’s 

external world (Geary, 1995; Mink, 1964). These mental structures are also known as 

knowledge structures or schema (Garner, 2007). 

• Conceptual understanding is one’s ability to make sense of and explain mathematical 

situations and underlying structures, and make connections between and among key 

mathematical ideas, procedures, and representations. Moreover, students use 

conceptual understanding to analyze various approaches and solutions to problems, 

apply knowledge to unfamiliar mathematical situations, and construct generalizations 

to solve problems (Ma, 1999; NCTM, 2014). 

• Constructivism is a philosophical perspective that assumes human beings are already 

knowledgeable, thereby capable of creating, building, or constructing new 

understandings, giving new meaning to things or experiences. Constructivism occurs 

as students link what they already know (prior schema) to new learning. One’s active 

construction modifies existing schema within the mind by assimilating or 

accommodating new information into existing mental networks (Cobb, 1994; 

Ifenthaler et al., 2011; Montague, 1997; Noddings, 1990; Van de Walle et al., 2012). 
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• Disequilibration is cognitive dissonance or cognitive tension generated within a 

student’s mind when his or her perceptions differ from reality. This tension is 

released by the person transitioning to higher levels of cognitive thought through the 

acts of accommodation and assimilation resulting in equilibration of cognitive 

thought (Fox & Riconscente, 2008). 

• Explicit instruction involves highly organized, step-by-step processes whereby more 

knowledgeable persons make their thinking and decision-making processes visible 

and audible to learners. This form of instruction progresses from modeling and 

providing explanations of concepts and strategies to students practicing the action or 

concepts independently (Steedly et al., 2008; Van de Walle et al., 2014). 

• Figural units are the different elements or attributes of an object or representation a 

student “quickly recognizes as significant or informative” (Duval, 2014, p. 160). 

• Instrumental understanding involves learning mathematical rules and properties, 

basic math facts, procedures and algorithms without sense-making or reasoning 

processes. This is equivalent to procedural understanding (Skemp, 1976/2006). 

• The learning environment includes learning conditions, instructional methods, and 

tasks found within the classroom impacting students’ intellectual, physical, social, 

and emotional well-being. 

• Logico-mathematical knowledge is a network of inter-related mental relationships 

within one’s mind. These mental relationships support students making connections 

between parts and their respective wholes (Kato, Kamii, Ozaki, & Nagahiro, 2002). 

Logico-mathematical knowledge is developed by the individual.  
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• Mathematical structure is represented by numeric patterns (e.g. place value), 

numerical relationships (e.g. 6 is comprised of 5 and 1 more), classifications (all even 

numbers, squares are also rectangles), and mathematical properties (such as 

commutative, associative, identity, and inverse relationships). 

• Mediated Learning Experiences (MLE), are catalysts for human experience and 

cognitive change. MLE involves the transmission of knowledge and information by a 

knowledgeable mediator who provides mediating interactions targeting the growth 

and development of a student’s cognitive structures (Feuerstein et al., 2006). 

• Mediated tasks are activities intentionally designed to expose learners to stimuli that 

induce changes in the nature and structure of students’ neurocognitive networks or 

schema. 

• Metacognition involves conscious awareness of one’s self as knower—as an 

awareness “of one’s own thoughts and thought processes” and the knowledge of 

one’s “capability of communicating one’s rationale” relative to perspective, reasoning 

and actions (Fox & Riconscente, 2008, p. 378). It involves intentionality, intelligence, 

logical and empirical thinking, and verbal communication. 

• Number sense is defined as having a fluidity and flexibility for thinking about and 

working with number and operations. It includes “moving from initial development of 

counting techniques to more-sophisticated understandings of the size of numbers, 

number relationships, patterns, operations, and place value” (NCTM, 2000, p. 79).  

• Relational understanding is the ability to see connections between and among 

concepts. It also involves one knowing and understanding the rules and properties of 

mathematics, along with procedures and algorithms, understanding why they exist, 



A “RE-ENVISIONED” INSTRUCTION MODEL  23 

 

 

how they work, appropriately applying them in different situations, and finding 

efficient and effective solutions to unfamiliar problems (Skemp, 1976/2006). 

• Representations symbolize important features of mathematical constructs and actions 

that hold meaning. They illustrate ideas through visual, physical, contextual, verbal, 

and symbolic means. Words, story problems, symbols, diagrams, tables, graphs, 

equations, physical and pictorial models are all forms of mathematical representations 

(NCTM, 2014)  

• Scaffolding is the effort on the part of a more knowledgeable person to control 

elements of a task or learning activity that are initially beyond the zone of a learner’s 

capabilities, thereby allowing the learner to focus on and complete elements that are 

within the range of aptitude (Wood, Bruner, & Ross, 1976). 

• Schemata (or structures) are cognitive networks which hold orientation to a class of 

previous experiences, developed skills, and/or action sequences. Schemata enable 

students to relate and connect previous experiences and prior knowledge to new or 

current experiences and events by assimilating and accommodating information. 

• Self-regulation is the “deliberate control of one’s thoughts and actions” relative to 

self, to knowledge of others and objects, and to use of language (Fox & Riconscente, 

2008, p. 380). 

• Tier I core instruction is defined as the primary prevention component where all 

students receive general core content through high-quality classroom instruction. This 

includes evidence-based classroom practices that provide instructional differentiation, 

accommodations, and strategies that address students’ learning, motivation, and 

behaviors (Fuchs et al., 2012; Fuchs et al., 2010). Tier I instruction should meet the 
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learning needs of at least 80% of the student population within a classroom and 

school (RTI Action Network, 2015). 

• Tier II instruction is considered secondary prevention. Supplemental to Tier I core 

instruction, it involves small-group tutoring for students unresponsive to Tier I 

instruction. Mathematics instruction at this tier requires a specialist or interventionist 

who utilizes evidence-based pedagogy to accelerate students’ acquisition of new 

skills leading to mathematical proficiency (Fuchs & Fuchs, 2007; Fuchs et al., 2010). 

Tier II instruction should meet the learning needs of 10–15% of the student 

population within a classroom (RTI Action Network, 2015). 

• Tier III instruction is considered tertiary intervention. It involves the most intensive 

forms of instruction and interventions, including multidisciplinary forms of 

evaluations to determine possible learning disabilities, individualized programming, 

and progress monitoring. This level of instruction is for students considered to be 

high-risk within the learning context because they fail to respond to both Tier I and 

Tier II forms of prevention (Fuchs & Fuchs, 2007). Tier III instruction should meet 

the learning needs of 3‒5% of the student population within a classroom or school 

(RTI Action Network, 2015). 

• Understanding is the “measure of the quality and quantity of connections that an idea 

has with existing ideas” (Van de Walle et al., 2012, p. 23). The greater the number 

and/or quality of connections students make, the greater their understanding.  

• Universal Screening Mechanism is a brief assessment tool administered to all 

students to identify learning gaps. The screening tool contains a cut-point that reflects 

the likelihood of success or unsuccessful performance in the subject area being tested. 
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• Visualization is the spontaneous recognition of a concept relevant in any type of 

visual representation (Duval, 2014). Visualization is a tool used to remember, to 

construct meaning, and to generate knowledge and cognition. 

• Visual representations include all types of iconic tools such as signs, symbols, 

numerals, tables and graphs, drawings, pictures, written words, and physical 

representations. Visual representations embody mathematical concepts and actions. 

As instructional tools, they are used to help students make meaning of mathematical 

ideas, structures, and procedures (Hiebert et al., 1997). As visible representations of 

student-cognition, they illuminate student understanding or lack thereof. They also 

provide a forum for discussion and assist students in making connections within and 

between mathematical concepts (Duval, 2014; NCTM, 2014). 

• Zone of Proximal Development (ZPD) is the space between the actual intellectual 

development of a child during independent problem solving and the level of potential 

development for solving problems under the guidance of more knowledgeable 

persons (Vygotsky, 1978/1930). In other words, ZPD is at the “edge” of what 

students can do. With proper scaffolding, students can expand their mental regions 

and extend their behavioral capabilities. 
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Chapter 2: Literature Review 

After a cool June morning of fly-fishing for trout, my husband and I rested upon the 

banks of Michigan’s pine-laden Pere Marquette River. Within five minutes, a kayak transporting 

two boys, about 12 years of age, landed at our feet. My husband began asking the boys if school 

had ended for the summer. The conversation that ensued will forever be etched in the 

researcher’s memory:  

“So, are you boys done with school?” my husband inquired. 

The boy in the front of the kayak responded excitedly, “School is out for me!”  

With a forlorn face, the boy sitting in the back of the kayak replied softly, “It isn’t for me. 

I have to go to summer school.”  

“Oh. So why do you have to go to summer school?” the researcher asked.  

“I have to go for reading and for math,” the boy sadly replied.  

Noting the negative tone in this young boy’s voice and trying to generate some positive 

energy regarding his predicament, the researcher emphatically responded, “You know, 

when you do well in reading and math, you can become anything and everything you 

want to be! Reading and math are important skills you need every day of your life.”  

With a smile, the boy at the front of the kayak exclaimed, “You know, math is my best 

subject, but I can’t stand it!”  

Taken aback, yet pondering his statement, the researcher questioned, “Perhaps it’s 

because your teacher doesn’t know how to teach it very well?” 
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With a surprised look, the boy expressed, “That’s the same thing my parents said!”  

Then, with great emphasis and wonderment, the boy at the back of the kayak declared,  

“I just don’t get math. You know what our math teacher does? She starts in the middle 

and keeps on going!” (C.D. Zielinski, June 19, 2015) 

This conversation was a powerful reminder of why the findings from this research study 

are important. The first boy’s comments suggested that, although math may be a student’s best 

subject, it does not guarantee one’s enjoyment. The second boy’s comments suggested that 

students who struggle often feel left behind and his teacher may not have had the skillset to help 

him “catch up.” The boy’s claim for starting in the middle also suggested that he may have 

cognitive structures needing further development!  

There are varying perceptions for why students struggle learning mathematics. Some 

teachers, parents, and students believe that one’s ability to learn mathematics is genetically 

inherited (Dweck, 2006). If parents struggled learning mathematics, their children will likely 

struggle too. Others attribute students’ poor mathematical performance on teachers’ ineffective 

instruction and lack of mathematical knowledge (Hill et al., 2005). Some believe students’ 

inabilities to learn mathematics are caused by neurological dysfunctions in students’ minds 

(Baroody, 2011). Given these varying perceptions for low student achievement, it is astonishing 

that “inadequate attention has been given to developing effective instructional methods for 

implementing standards-based reforms with children having learning difficulties” (Baroody, 

2011, p. 30). Understanding root causes for students’ learning difficulties and the ways students 

learn were integral in developing the conceptual and instructional framework represented by the 

“re-envisioned” instruction model.  
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The literature review within this chapter is multi-focused. This first section briefly 

describes general origins of students’ learning difficulties. The second and third sections present 

seminal and contemporary learning theories relative to cognitive structures, and identify key 

methods and processes for ways students learn. The fourth section strategically aligns learning 

theories to current research offered by educational and cognitive psychologists, neuroscientists, 

and mathematics education researchers. The last major section presents and describes the “re-

envisioned” instruction model’s conceptual framework and implementation. A summary 

concludes this chapter. 

Section 1: Possible Origins of Students’ Learning Difficulties in Mathematics 

 The historical origin for students’ learning difficulties was presented in Chapter 1. 

Chapter 2’s first section describes additional origins of students’ learning difficulties. These 

include brief explanations of biological, cognitive, socio-cultural, and pedagogical origins.  

Biological origin. Some teachers and researchers believe students’ learning difficulties 

result from biological and genetic defects in brain functioning (Baroody, 2011; Geary, 2004; 

Gersten & Chard, 1999). It is true that a very nominal percentage of students possess 

neurological limitations (Baroody, 2011). According to the NCES (2015b), approximately 4.5% 

of students enrolled in public education are identified with a specific biological learning 

disability. Amongst this 4.5%, a small percentage of these students are affected by learning 

disabilities related to mathematics. For instance, students diagnosed with dyscalculia suffer from 

a specific mathematics learning disability. Dyscalculia can inhibit and impair one’s ability to 

discriminate amongst numbers, identify the magnitude of numbers, and perform simple 

calculations (Dehaene, 2010). Dyscalculia is one of many biological factors effecting students’ 

abilities towards learning mathematics. 
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Another biological factor impacting students’ abilities to learn mathematics is described 

by Baroody (2011) and Fox (2001). They suggested that students’ maturation and readiness to 

learn specific skills, concepts, and strategies influence their learning. For example, conservation 

of number is integral to a child’s ability to count and not all five-year-old students comprehend 

that the number of elements in a set is invariant when objects are stretched out, close together, 

stacked, or otherwise arranged. Children do not develop this concept within the same biological 

timeframe. One’s development of number conservation takes time and multiple experiences.  

In a small portion of the 4.5% population of students identified with learning disabilities, 

their disabilities are attributed to biological factors. Among the 95% of the remaining students, 

some learners are influenced by other origins of learning difficulties. 

Cognitive origin. A third origin of learning difficulties is initiated by students’ 

underdeveloped cognitive structures or schema (Feuerstein et al., 2006; Garner, 2007; Geary, 

1995; Montague, 1997; Gruber & Voneche, 1995). Underdeveloped cognitive structures are 

created by impoverished stimulation within students’ learning environments (Feuerstein et al., 

2006). Conservation of constancy and spatial orientation, as in identifying and comparing where 

locations of objects are relative to oneself or to a specific context, are two significant cognitive 

structures impacting students’ learning of mathematics (Kamii, Kirkland, & Lewis, 2001a).  

Due to cognitive structures’ basic, yet significant nature, teachers, parents, and students 

frequently assume these mental structures are operational, when, in fact, they are not (Garner, 

2007). Students who possess underdeveloped structures may not understand the reasons for their 

confusion when trying to learn a new concept. Alternatively, those who have well-developed 

cognitive structures find it challenging to comprehend why students struggle learning a concept 

that appears to be obvious. Garner (2007, 2013) and Feuerstein and his colleagues (2006), 
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believed that students’ underdeveloped cognitive structures are causational factors for those who 

struggle learning academic subjects.  

Another cognitive origin involves students’ lack of number sense. Students’ lack of early 

numeracy skills and their inabilities to abstract generalizable principles significantly contribute 

to students’ learning difficulties in mathematics (Bryant, 2005; Geary, 2011b; Gersten & Chard, 

1999; Jordan et al., 2009; Montague, 1997). Van de Walle, Karp, Lovin, and Bay-Williams 

(2014) claimed that number sense involves conceptual understanding of the ways numbers are 

culturally used (e.g. number names, ordinality, notations etc.). Number sense includes students’ 

abilities to visualize quantities in a variety of contexts, understand numerical magnitude, and 

compose and decompose numbers in flexible ways. A student’s ability to subitize (quantify small 

groups of objects instantaneously), estimate, count, and solve basic arithmetic combinations and 

story problems denotes number sense. Such skills and concepts are integral to children’s 

mathematical cognition and understanding of number and operations (Bryant, 2005; Jordan, 

Kaplan, Olah, & Locuniak, 2006; Muldoon, Towse, Simms, Perra, & Menzies, 2012).  

Socio-cultural origin. A fourth learning difficulty originates within students’ socio-

cultural contexts. Interactions that occur between children and their environments are often 

defined by parents, teachers, children, and their respective communities (Vygotsky, 1978/1930). 

In fact, socio-cultural forces significantly shape students’ readiness to learn mathematics 

(Clements & Samara, 2009; Feuerstein et al., 2006; Gersten & Chard, 1999; Kozulin, 2002; 

Starkey & Klein, 2008). For instance, when compared to middle-class peer groups, children from 

low-income households often lack established logico-mathematical concepts of number (Kamii, 

Rummelsburg, & Kari, 2005). Logico-mathematical concepts enable children to connect 

concrete objects to abstract concepts, such as linking puzzle pieces together to create a full 
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picture or identifying the quantity of “five” counters on a ten frame (Gruber & Voneche, 1995; 

Kamii & Rummelsburg, 2008). Students’ mental constructions of mathematical relationships 

require logico-mathematical knowledge.  

Logico-mathematical knowledge is vital as young students begin formal mathematics 

instruction in schools (Kamii, Rummelsburg, & Kari, 2005). Without it, students’ lack of logico-

mathematical knowledge contributes to learning gaps in mathematics. Learning gaps often 

transform into learning disabilities, thus creating learning delays (Baroody, 2011). When 

students’ learning gaps are left unaddressed, learning delays result in students’ inabilities to learn 

advanced mathematics (Starkey & Klein, 2008).  

Additional socio-cultural factors contribute to the quality of students’ learning 

environments. These include deficit-oriented perceptions and low expectations held by the 

broader social community. For instance, stereotyping low SES students as passive learners—

capable of rote learning and incapable of self-directed learning—impacts student learning 

(Baroody, 2011; Haberman, 1991). The educational curricula assigned to students living within 

low socio-economic conditions are often restricted to memorization, skill, and drill of content 

(Haberman, 1991). Such socio-cultural beliefs, expectations, and outdated curricula and 

educational practices contribute to students becoming instructional casualties, preventing 

students from actualizing their true learning potentials (Baroody, 2011; Haberman, 1991; Silver 

& Stein, 1996).  

Naturally, schools’ and classrooms’ socio-cultural learning environments impact student 

achievement. A school’s curricula impact the content students learn and the rate at which they 

learn that content. Furthermore, teachers’ perceptions of themselves as teachers of mathematics 

and their perceptions about specific students and students’ capabilities enable or constrain 
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students’ opportunities and desires to learn mathematics (Haberman, 1991; Ma, 1999; Stigler & 

Hiebert, 1999).  

Pedagogical (instructional) origin. Like the socio-cultural origin, this next and final 

origin for discussion commences in mathematics classrooms. Students’ learning difficulties are 

influenced by teachers’ lack of mathematical knowledge and by their outdated and inadequate 

instructional practices (Ball, 1990; Baroody, 2011; Hill et al., Ball, 2005; Stigler & Hiebert, 

1999).  

Schools are historically-situated and cultural institutions where teachers often use the 

same methods for instruction they experienced as K-12 students (Ball, 1990; Stigler & Hiebert, 

1999). Teachers who have learned mathematics using rote memorization of rules, facts, and 

procedures tend to perpetuate this level of understanding with their own students (Hiebert, 

Morris, & Glass, 2003; Philipp et al., 2007; Skemp, 1976/2006). Teachers’ perceptions of 

mathematics as a field of study, their level of conceptual understanding of mathematics, and their 

pedagogical knowledge for teaching mathematics, impact students’ levels of achievement (Hill et 

al., 2005).  

Hill, Rowan, and Ball (2005) described mathematical knowledge as the knowledge 

teachers use to “carry out the work of teaching mathematics” (p. 373). This knowledge 

encompasses effective use of instructional resources, including mathematical representations to 

represent concepts and processes, and involves teachers’ accurate interpretations of students’ 

ideas and solution strategies. Not only do teachers need to understand mathematics for teaching, 

they also need to understand mathematical content, including the use of precise, yet accessible, 

mathematical vocabulary.  
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Improving student achievement in mathematics requires a change in teachers’ and 

students’ perceptions that mathematics is not a system of facts and procedures to be memorized. 

It requires teachers embracing constructivist and socio-constructivist principles to facilitate 

learning. The types of mathematical tasks teachers engage their students with and ways students 

engage with those tasks impact students’ learning in significant ways (City et al., 2009; Cohen & 

Ball, 2001; Henningsen & Stein, 1997; Smith & Stein, 1998).  

Section summary. The origins of students’ learning difficulties are varied, multi-faceted, 

and complex. Students’ varying levels of biological maturation, cognitive development, and lack 

of number sense contribute to low student performance. Teachers’ lack of mathematical and 

pedagogical knowledge also impacts student learning. Socio-cultural perceptions regarding 

specific students and their abilities to learn mathematics are additional contributors to students’ 

mathematical learning difficulties.  

The goals of this research study were to better understand how general classroom 

teachers might influence students’ mathematics achievement using Tier I core instruction. As 

teachers and students attended to the cognitive, pedagogical, and socio-cultural origins 

simultaneously, it was hypothesized that the following make a difference in student learning and 

achievement: 

• the ways teachers stimulate and engage students’ existing cognitive structures 

• the ways teachers design, select, or modify mathematical tasks  

• the ways teachers and students engage with those tasks 

• the ways teachers and students structure their learning environment  
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Unequivocally, Tier I core mathematics instruction can and should address students’ origins of 

learning difficulties (specifically cognitive, pedagogical, and socio-cultural, and in some cases, 

biological) by embracing theories for how students learn. 

Section 2: Seminal Learning Theorists and Cognitive Structures 

To improve students’ achievement in mathematics, it is critical to understand how young 

children make sense of and learn mathematics. Three seminal learning theorists’ 

conceptualizations for how students learn are offered in this next section. Piaget’s constructivism 

establishes a philosophical blueprint for designing and implementing the “re-envisioned” 

instruction model. Vygotsky’s socio-constructivism presents a framework for establishing 

productive socio-cultural learning environments (Cobb, 1994; Confrey, 1990; Noddings, 1990). 

Bruner’s (1966) representational learning theory describes the varied forms of mathematical 

representations used for instructional purposes, as well as the power and economy of those 

representations. His ideas illuminate key constructs for designing, selecting, and modifying the 

“re-designed” mathematical tasks used exclusively by the two experimental classrooms in this 

study. All three learning theorists’ definitions for cognitive structures, including their views for 

why and how these mental structures advance student learning, are presented in this next section.  

Jean Piaget. Education predominantly relied on behaviorist learning theory from 1920 to 

1950. This theory assumed children’s learning and behavior were shaped by punishments and 

rewards. Contrastingly, Jean Piaget, a scientist who studied the origins of knowledge, challenged 

the existing behaviorist theories of his day. Piaget (1964) believed student learning is based upon 

physical and neurological developments influenced by one’s genetics, biological maturation, and 

chronological age. He viewed children as knowledgeable and capable of developing new 

understandings by linking known concepts (existing schema) to new ideas. Thus, Piaget is 
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considered the educational pioneer for advancing his theory of constructivism (Noddings, 1990; 

Steiner, 1974; von Glasersfeld, 1990).  

Constructivism presupposed that children require and acquire physical, social, and 

logico-mathematical knowledge to support their construction of new ideas (Kamii, Kirkland, & 

Lewis, 2001a). As young children interact with objects in their environments, they notice the 

physical nature of those objects such as the shape, size, and color of a red ball. The color “red” 

and the name “ball” signify social knowledge. To understand the abstraction that not all spherical 

objects belong to the set of red balls requires logico-mathematical knowledge (Kamii, Kirkland, 

& Lewis, 2001a).  

Logico-mathematical knowledge involves interconnected sets of sensory-motor, mental, 

and conceptual operations functioning simultaneously (Piaget, 1964). Piaget (1964) contended 

that these sense-making operations (or cognitive structures) are foundational for acquiring 

knowledge and for correcting one’s underdeveloped or inaccurate perceptions of real-world 

abstractions (Gruber & Voneche, 1995).  

Two fundamental mental processes students use to build and advance their own levels of 

cognition are assimilation and accommodation (Piaget, 1962, 1964). Assimilation occurs 

whenever new information strongly correlates with one’s existing knowledge and understanding. 

It is through assimilation that students’ mental structures function and expand without changing 

structurally (von Glasersfeld, 1990). Comparative thinking, pattern finding, and rule 

identification support the mental processes necessary for assimilating information (Mink, 1964; 

Sinclair & Kamii, 1970).  

Piaget’s second mental process is accommodation (Piaget, 1962, 1964). Accommodation 

occurs when students’ perceptions of experiences or stimuli lead to unfamiliar or surprising 
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results (von Glasersfeld, 1990). For instance, when young students first encounter letters of the 

alphabet to represent an unknown value (such as a, x, or y), they often experience mental 

disequilibrium. The representation of a, x, or y, triggers cognitive dissonance or tension because 

young students often associate letters with sounds and words, not mathematics. To accommodate 

the abstract concept that a letter can also represent an unknown value, students need to 

reestablish mental equilibrium within their minds.  

Reestablishing mental equilibrium requires the reconfiguration of existing cognitive 

structures. Through the process of accommodation, new neurological nodes are constructed. 

These nodes support the construction of new neuronal pathways, thereby rewiring the electrical 

currents essential for processing information (Ifenthaler et al., 2011). Theoretically, these 

neuronal modifications “accommodate” the new concept of variable, creating and restoring a 

child’s cognitive balance or mental equilibration (Fox & Riconscente, 2008).  

Both assimilation and accommodation are vital cognitive processes for developing and 

advancing students’ cognitive structures and levels of cognition. A cyclical movement between 

assimilation and accommodation strengthens one’s cognitive structures overall (Bruner, 1966). 

The mental process of accommodation enlarges students’ neurological networks within the mind 

(Gruber & Voneche, 1995).  

Piaget believed that students’ mental cognition hinges upon their nervous system 

development, physical maturation, and the development of their sensory organs (Feuerstein et al., 

2006; Wink & Putney, 2002). Piaget’s conclusions strongly influenced his four stages of 

cognitive development: sensory-motor, pre-operational, concrete operational, and formal 

operational. Piaget believed each subsequent stage represents a higher level of cognitive 

thought; and, a child’s cognitive structures functioning at one stage of development is 
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determined by and becomes part of children’s cognitive structures during the next stage of 

development (Gruber & Voneche, 1995). 

For instance, young children often rely upon visual and kinesthetic observations and 

other sensory data during the sensory-motor stage. Then, as children’s actions upon objects 

increase, their cognition levels rise. Additional physical and logico-mathematical experiences 

enable children to actively connect concrete objects to abstract concepts transitioning them from 

sensory-motor to pre-operational to concrete operations (Gruber & Voneche, 1995). According 

to Piaget (1964), concrete mental operations are essential to the development of students’ 

cognitive structures and their advancement to the highest cognitive stage of development, formal 

operations. Existing structures give rise to new structures, always evolving, with higher 

structures governing the lower structures.  

Lev Vygotsky . As Piaget’s contemporary, Lev Vygotsky (1978/1930), a Russian 

psychologist, promulgated a growth and development model for learning. Like Piaget, Vygotsky 

believed human cognition is determined by an individual’s genetics and maturation, indicating 

biological or natural influencers (Wink & Putney, 2002). Where Piaget and Vygotsky differed 

was in their philosophical views for how learning occurs (Wink & Putney, 2002). Vygotsky 

believed human cognition is greatly influenced by the social interactions (nurture) children 

experience (Kozulin, 2002). He believed that when a child is inducted into a socio-cultural 

society, the level of that child’s cognition becomes qualitatively altered due to the historical 

properties of that child’s culture (Vygotsky, 1978/1930). Thus, Vygotsky is known as the father 

of socio-constructivist learning theory. 

Vygotsky argued that one’s social (nurture) and mental activity (nature) form the bedrock 

of one’s cognitive advancement (van der Veer, 2007). Socially-mediated interactions involve 



A “RE-ENVISIONED” INSTRUCTION MODEL  38 

 

 

more knowledgeable persons passing on their cultural knowledge to their children. According to 

Vygotsky, it is through these social interactions and use of cultural tools (i.e. language, signs and 

symbols) that children’s natural intellects immediately move to higher planes (Kozulin, 1990; 

van der Veer, 2007; Vygotsky, 1978/1930; Wink & Putney, 2002).  

Therefore, Vygotsky believed student learning occurs across two planes of intellectual 

thought. Learning first transpires on a social plane. Learning then occurs on a cognitive plane 

(Vygotsky, 1978/1930; Wink & Putney, 2002). For example, Vygotsky believed that a mediator 

or teacher passes on cultural information and knowledge causing the establishment of inter-

psychological knowledge within the mind of a student (Kozulin, 1990). Next, the interplay of 

social-exchanges involving words and actions between teacher and student induces learning on 

an intra-psychological plane (Fox & Riconscente, 2008; Kozulin, 1990; Wink & Putney, 2002). 

Students then connect these two forms of knowledge, inter-psychological and intra-

psychological, to make sense of concepts and regulate their own learning.  

Collectively, these forms of mental actions generate new and complex neurological 

pathways, highly interconnected and unified within the human mind. Vygotsky identified these 

neurological pathways as cognitive structures (Kozulin, 1990; Vygotsky, 1965). For Vygotsky, 

biologically-derived cognitive structures such as perception, memory, attention, comparative 

thinking, and intelligence are organized, intricate cognitive systems vital for learning (Boettcher, 

2007; Kozulin, 1990).  

Vygotsky (1978/1930) believed that language, signs, and symbols are essential tools for 

mediating children’s cognitive advancement in mathematics. He perceived language, signs, and 

symbols (including a child’s inner speech) important microcosms of human consciousness 

(Kozulin, 1990). He was adamant that “cognitive functioning based on higher order symbolic 
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tools associated with literacy and numeracy is superior to that based upon everyday experience 

and the oral transmission of culture” (Kozulin, 2002, p. 13).  

Vygotsky’s (1978/1930) Zone of Proximal Development (ZPD) embodied his theoretical 

views for social-constructivism. Unlike Piaget’s sequential stages of maturational cognition, 

Vygotsky (1978/1930) claimed that a ZPD was the unique space between the child’s intellectual 

development during independent problem solving and the child’s potential development for 

problem-solving when guided by more knowledgeable persons. Teachers can advance student 

cognition beyond students’ own natural cognitive endowments by aligning mathematical 

experiences to students’ ZPD. Teachers need not wait for students’ biological maturation to 

occur. Student cognition can be advance through challenging tasks. Teachers can pose novel 

representations and facilitate and sustain social communication between all those in the 

classroom. Social-constructivism suggests that learning through culturally- and socially-derived 

means (language, signs, and symbols) positions students for advancing to higher levels of 

cognitive thought. 

Jerome Bruner. Largely influenced by Piaget’s theory of constructivism and Vygotsky’s 

theory of social-constructivism, Jerome Bruner, a research professor of psychology, claimed that 

children’s cognitive development depends upon physical and biological maturation, as well as 

their natural and socio-cultural environments (Bruner, 1966, 1977, 1996, 1997; Takaya, 2008). 

Bruner (2008) believed that as a child entered a culture, that culture entered that child’s mind.  

For Bruner (1966), the classroom is an important communal space for furthering 

children’s cognition. He argued that a socially-accommodating classroom promotes social 

acceptance, allowing students to obtain culturally-held knowledge (Bruner, 1996, 1997). For 

instance, as students develop and share mathematical representations reflecting the three distinct 
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meanings of subtraction (take-away, comparison, and missing addend), mathematical language 

and interpretations for that operation become accessible knowledge (Fuson, 1984). Student 

participation, acceptance, and interactions within a socio-cultural environment are critical factors 

for developing student cognition, metacognition, and reflective thought processes. 

Bruner (1977) agreed with Piaget that students use their prior knowledge to construct 

new insights and understandings of a concept. In fact, he believed that gaining knowledge of 

something was more valuable and applicable than acquiring knowledge about something 

(Takaya, 2008). Acquiring knowledge of a concept necessitates students transforming 

information into usable knowledge using their cognitive structures.  

Bruner’s (1966) cognitive development model or representational learning theory 

epitomizes his own interpretation of the progression of one’s intellectual development. His 

model suggests that students need to engage with the following representational modes: enactive 

(doing or action), iconic (internal imagery development), and symbolic (symbolic-verbal 

encoding) to develop and generate their own cognitive structures.  

Bruner’s (1966) first mode or phase of his developmental model is titled enactive 

representation. To physically encode information, students use their senses and physical bodies 

to explore their environment, manipulate objects, and practice skills. As students encounter 

mathematical concepts for the first time, students’ strategic use of physical mathematical tools 

such as multi-link cubes, counters, and fingers support them making sense of abstract concepts 

such as counting, mathematical properties and operations. 

Bruner’s (1966) second mode of intellectual development is termed iconic 

representation. Iconic representation is generated as students represent their existing 

understanding using mental imagery. Mental iconic representations are derived from memories 
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of past encounters and events. These image-based representations involve self-selected 

sequenced perceptions triggered by cognitive structures involving spatial, temporal, and 

quantitative orientations (Bruner, 1964). Mental images of numerical magnitudes, mathematical 

models, and other forms of representations often portray students’ perceptions, interpretations, 

and reinterpretations of experiences existing in one’s memory. Mental iconic images (or 

visualization) are important epistemological tools for all students, especially for those struggling 

to learn mathematics (Presmeg, 2014).  

Bruner’s (1966) third mode of intellectual development consists of symbolic 

representations. Symbolic representations involve diagrams, pictures, drawings, graphs, and the 

like. In fact, symbolic memory representations are associated with language in all forms, 

including musical and mathematical notations and abstract representations, all products of 

cultural innovations (Bruner, 1966). Expressing ideas and concepts using abstract 

representational forms require higher levels of cognition. For example, the internalization of 

language as a cognitive tool allows students to flexibly represent and transform previous 

experiences of “fiveness” into new symbolic forms. Five fingers on a hand or five petals on a 

flower can be depicted as five circles on a page or by the numeral 5. Bruner believed culturally-

induced symbolic experiences increase students’ sensory abilities; and, student use of language 

systems is indispensable for advancing student cognition (Bruner, 1964).  

Bruner (1966) asserted that regardless of the levels of abstraction, all concepts can be 

represented by simple recognizable forms all students can interpret and understand. Teachers can 

effectively scaffold students’ learning of new concepts by considering both the economy and 

power of mathematical representations relative to where students are within a mathematical 

learning trajectory. The economy of a representation is the amount of information students need 
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to hold in their minds to process and make sense of that representation. The power of the 

representation pertains to students’ mental capacities to use the representation to make 

connections to what they already know about specific mathematical concepts.  

Comparisons of seminal learning theorists’ ideas. Piaget’s, Vygotsky’s, and Bruner’s 

extensive work and invaluable insights are more numerous than these brief descriptions present. 

These theorists clearly indicated the existence of cognitive structures. Their work describes 

specific intellectual processes and instructional practices to advance student cognition.  

Piaget contended that rich learning experiences support students constructing 

understanding of new concepts and ideas (Smith, 2000). To achieve understanding, students use 

their existing cognitive structures to mentally process information. Children’s mental 

construction of higher levels of cognition are achieved by assimilating familiar concepts and 

accommodating new and unfamiliar concepts. These ideas epitomize Piaget’s theory of 

constructivism.  

Contrastingly, Vygotsky’s (1978/1930) socio-constructivist theory suggests that learning 

is cultivated through social means. Vygotsky believed students first construct ideas on a social 

plane, then on an individual plane. Mathematics lessons are naturally filled with language, signs, 

symbols, and tools that need to be socially introduced and communicated. As teachers and 

knowledgeable others pose meaningful mathematical representations and stimulating questions, 

children can individually construct their own ideas using existing cognitive structures involved 

with language, memory, attention, and comparative thinking. Then, children learn how to 

communicate mathematically using others and their own abstractions of mathematical ideas.  

Bruner’s (1966) representational learning theory aligns to Vygotsky’s cultural signs and 

symbols. The use of enactive, iconic, and symbolic representations which align to students’ 
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existing cognitive structures stimulate students’ assimilation and accommodation of new 

concepts and information (Bruner, 1977). Thus, Bruner (1966) and Vygotsky (1978/1930) 

contended that a teacher need not wait for students’ biological maturation as Piaget’s (1964) 

model suggests. Bruner’s ideas for considering the power and economy of a representation and 

Vygotsky’s ZPD reminds teachers that it is possible to effectively prepare and nurture students’ 

cognitive readiness for learning mathematics, as well as take them beyond their own natural 

cognitive endowments (Bruner, 1977).  

Section 3: Contemporary Learning Theorists and Cognitive Structures 

 This next section presents three contemporary theorists’ views relative to meditating the 

development of students’ cognitive structures. Geary (1995) described two classifications of 

cognitive structures, biologically primary and biologically secondary, with the second form of 

structures developing through deliberate and sustained formal instruction. Feuerstein and his 

colleagues (2006) suggested that all students progress cognitively as they participate in 

strategically designed experiences targeting the development of their cognitive structures. 

Finally, Garner (2007) stressed that it is students who must develop their own cognitive 

structures and it takes strategic and reflective teachers to mediate such development.  

David Geary. David Geary (1995, 2007), a developmental psychologist, claimed human 

cognition and development are influenced by inherited biological factors and deliberate socio-

cultural experiences. Geary’s (1995) evolution-based learning theory draws upon Vygotsky’s 

and Bruner’s theories relative to the origins of students’ cognitive functioning (Sweller, 2008).  

Geary’s (1995, 2007) learning theory identifies two classes of cognitive structures, each 

defined by the ease with which they are co-opted for different tasks. The first class of structures 

is considered biologically primary. Biologically primary structures are found across all human 
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cultures and across many different animal species. Humans and animals both inherit common, 

yet specific cognitive structures that increase their chances for survival, allowing them to adapt 

to the contexts in which they live (Keil, 1981).  

Biologically primary structures consist of highly-evolved specialized neurobiological 

systems which process domain-specific information. For example, perceptual and attentional 

cognitive structures, such as visual scanning and subitizing, enable youngsters to attend to the 

geometric and quantitative features of their environments (Geary, 1995). Human infants, as 

young as 18 months of age, demonstrate sensitivity to ordinal relationships up to three and four 

items (Geary, 1995; Sousa, 2008). Ordinality, subitizing, and simple arithmetic are essential 

functions for the young of a species to survive. These mental structures support processing and 

identification of the number of enemies approaching (fight or flee) or the quantity of berries for 

the purposes of gathering (Geary, 1995, 2011a; Sousa, 2008).  

Other inherited biologically primary structures include one’s ability to navigate the 

environment, remember locations of objects, use objects as tools, and acquire language skills 

(Geary, 1995). As human fetuses are exposed to their mothers’ voices and voice patterns in 

utero, research suggests that the developing embryo becomes sensitized to the constructs of the 

mother’s cultural-language (Geary, 2007). Subsequently, biologically primary cognitive 

structures are essential and foundational for acquiring complex competencies involving 

language, symbols, and mathematics (Jordan et al., 2009). These same structures are involved in 

complex cognitive processing, allowing children to discover, acquire, process, assimilate, and 

learn vast amounts of information rapidly and effortlessly.  

For higher levels of cognition, Geary’s (1995) second class of structures are classified 

biologically secondary. Unlike primary structures, biologically secondary structures vary across 
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cultures and across generations of people. Secondary structures are developed through social-

cultural means supporting their development (Geary, 1995, 2007). Aligning to Vygotsky’s socio-

constructivism, secondary structures develop from the interplay between biologically evolved 

structures and the social interactions influencing their development. Geary (1995, 2007) 

hypothesized that students’ biologically secondary cognitive structures emerge through 

deliberate and sustained instruction and practice facilitated by those who already possess 

secondary structures.  

For instance, young students’ higher forms of mathematical cognition are developed by 

observing others in the counting process and then counting physical objects themselves. 

Working- and long-term memory systems, which are considered biologically secondary 

cognitive structures, support students’ learning how to identify numbers by name, count large 

quantities, and use tools such as a number line to develop conceptual understanding of the 

Hindu-Arabic numeration system (Geary, 1995). According to Geary, if biologically primary or 

secondary structures—such as working and long-term memory—are underdeveloped, then 

student learning of advanced mathematics becomes a challenging feat for the learner (Feuerstein 

et al., 2006; Garner, 2007; Geary, 1995). 

Reuven Feuerstein. Reuven Feuerstein, a developmental clinical cognitive psychologist 

and proponent of neuroscience, described the human mind as modifiable (Feuerstein et al., 2006; 

Tribus, 1996). He believed that intentional instructional experiences by more knowledgeable 

persons can modify a student’s neurological architecture (Byrnes & Fox, 1998; Feuerstein et al., 

2006; Garner, 2007). Most importantly, Feuerstein’s modifiability refers to a learner’s capacity to 

change the course of his or her neurological development irrespective of the causes and 

conditions of his or her learning disabilities (Kozulin, 2002).  
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Feuerstein asserted that children’s level of intelligence increases through two modes of 

interactions between individuals and their environments: direct contact with stimuli and 

mediated experiences with stimuli. Direct contact with stimuli begins in utero (Feuerstein et al., 

2006). The learner (or fetus) modifies his or her behavior to adapt to external stimuli. This 

change in the learner’s behavior generates new cognitive structures within the learner’s mind, 

which in turn, increases the learner’s intelligence.  

Older children’s cognitive advancement relies heavily upon effective socio-cultural 

experiences or what Feuerstein (2006) described as mediated learning experiences (MLE). 

Consistent with Vygotsky’s (1978/1930) socio-constructivist learning theory, MLE is a proactive 

method to “change the cognitive structure of the learner and to transform him/her into an 

autonomous, independent thinker, capable of initiating and elaborating ideas” (Feuerstein et al., 

2006, p. 124). Thus, the mediator’s intent is not to teach academic content, but to increase the 

learner’s and the mediator’s understanding of how the learner processes information and then 

seeks ways to improve the learner’s mental processing (Tribus, 1996).  

 Effective MLE includes: (a) an increase in the learner’s awareness for how he or she 

learns; (b) a change in the learner’s cognition and behavioral patterns; (c) the development of the 

learner’s abilities to recognize and identify relationships; and (d) an increase of strategies in the 

learner’s toolbox for problem solving. As such, MLE requires intentional and transcendent 

human interactions between a mediator and the learner. The mediator intentionally selects, 

frames, filters, schedules, and arranges a stimulus input. The mediator then acts as a filter, 

transforming the stimulus whereby the learner perceives the stimulus with a new or differing 

perception. These new perceptions involve the “temporal, spatial, and ordinal attributes of the 
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stimulus and other such relationships such as the attribution of value and meaning” (Feuerstein et 

al., 2006, p. 88).  

A fundamental feature of the MLE process is that there are three distinct movements or 

phases of mental processing: input, elaboration, and output (Feuerstein et al., 2006). Input is 

represented by various data forms or stimuli received through the learner’s sensory register. 

Once data is received, the learner elaborates upon the information by sorting, analyzing, 

classifying, and synthesizing the information for coding purposes (Bruner, 1957). Once the 

sensory information is coded, the learner makes decisions about the information and then 

presents his or her output. Student output is represented by the learner’s sense-making, coding 

processes, and decisions regarding the original sensory stimulus. 

To describe the mental processes of input, elaboration and output, an example is 

presented here. To develop students’ understanding of numerical relationships, a teacher may 

pose the following number line represented in Figure 2.1 and ask students, “What do you 

notice?” Students use their sensory registers to observe the number line’s sensory data (input) 

and note the patterns and numerical structures inherent within the number line representation. 

Students use their cognitive structures to make sense of and elaborate upon the figural units 

inherent within the representation (Simon, 2001). Once students perceive and make sense on an 

individual mental plane, students engage in conversations on a socio-cultural plane (output). 

 

 

Figure 1: Number line 
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To further expound upon students’ cognitive thought processes during a mediated 

learning experience in mathematics, this number line representation requires students to estimate 

the value of n given the spatial location of n relative to 20 and 35. Students’ understanding that 

number lines continue indefinitely in both directions and that number lines can begin with any 

value are pre-requisite knowledge for analysis and sense-making. Another pre-requisite for 

students is understanding that there is an underlying uniform scale proportional in the numerical 

values between 20 and 35. These concepts constitute the figural units within the representation 

above. 

Students take in sensory input by noticing that n is situated between 20 and 35 and is 

about two-thirds the distance from 20 and closer to 35 (input). Here, students must mentally 

elaborate that the variable n represents an unknown value and that n can be determined by 

dividing the distance between 20 and 35 into equal segments. Student output is then represented 

by their expressions of ideas regarding the representation and providing an approximation or 

exact value for n, along with their justifications.  

These fundamental mental processes of input, elaboration, and output require students to 

activate their existing knowledge and prior experiences and focus their attention on the figural 

units and inherent structure of the representation. Such cognitive processes reflect students’ 

abilities (or inabilities) to consider numerical relationships, find viable solutions, and articulate 

justifications for defining n’s value. 

Consistent with Vygotsky’s (1978/1930) social-constructivist views, Feuerstein and his 

colleagues (2006) claimed that culturally-derived signs and symbols are important mediational 

tools that transmit cultural knowledge, as well as facilitate the growth of students’ cognitive 

structures (Kozulin, 2002). Additional tools that transmit socio-knowledge include language, 
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gestures, and observation of behaviors. Still, language is the most efficient and economic tool for 

transmitting knowledge and skills and used for mediating meaning and understanding (Vygotsky, 

1978/1930). As students engage in mediated learning experiences using culturally derived signs, 

symbols, and language, important neurological changes take place. These neurological changes 

indicate that learning is occurring within a child’s mind (Feuerstein et al., 2006). 

Betty Garner. Betty Garner (2007, 2013), an education researcher and theorist, 

explained that learning occurs when students interact “creatively with information to construct 

meaning” (Garner, 2007, p. xv). Comparing her theory of metability to Feuerstein’s MLE, 

Garner proposed that students must actively alter their own neurological structures through “the 

ongoing, dynamic, interactive cycle of learning, creating, and changing” (Garner, 2007, p. xv). 

Neither mathematical tasks nor teachers alter or develop students’ cognitive structures, but 

students themselves generate these neurological changes within their own minds.  

Garner’s (2007) theory of metability was generated through her personal observations of 

students as they learned. She noted students’ reflective awareness of sensory input supported 

their construction of meaning and understanding, leading to changes in students’ levels of 

cognition. Garner (2007) described cognitive structures as basic mental tools essential for 

making sense of information and for learning everything about the world and beyond.  

Central to Garner’s work are the hierarchal classifications of cognitive structure systems. 

Classifications include comparative thinking structures, symbolic representation structures, and 

logical reasoning structures, all essential for learning mathematics (Garner, 2007). Each 

classification is categorized by type, by the kind of thinking it supports, how it affects student 

learning, and the applications necessary for developing student understanding. 
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Garner’s (2007) first classification system consists of comparative thinking cognitive 

structures. They include recognition, conservation of constancy, memory, classification, spatial 

and temporal orientation, and metaphorical thinking. All support the processing of information in 

distinguishing how differing stimuli are alike and different. These are also pre-requisites for 

developing higher-ordered cognitive structures and the understanding of mathematics (Bruner, 

1957). For example, to conceptually understand mathematics, students must recognize numerals, 

signs and symbols, understand their relationships and significance, and identify and generate 

numerous equivalent representations. Students use conservation of constancy to perform 

operations or evaluate equations. With conservation of constancy, students notice what changes 

and what stays the same between representations. Students use spatial orientation to analyze the 

exponential structure of the Base Ten number system and to visualize a rectangular prism 

representing 1,000,000. Temporal orientation enables students to understand the sequential, step 

by step processes of algorithms and problem solving. Comparative thinking structures were 

foundational for learning everything else in mathematics (Garner, 2007).  

Garner’s (2007) next classification of cognitive structures involve symbolic 

representation cognitive structures. This system of structures processes information by 

transforming comparative structure data into abstract coding systems. Thus, symbolic 

representations include language in all forms, written and spoken, from words to non-verbal 

representations. These structure types encompass music, rhythms, body expressions, and all 

types of physical movement that embody meaning. They also include graphics such as drawings, 

graphs, and other representations depicting mathematical phenomena.  

Included within symbolic classifications is quantification. Quantification makes possible 

mathematical forms for computing and operating with number, for measuring in two- and three-
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dimensional planes, and for expediting skills necessary for success in courses such as geometry, 

algebra, trigonometry and calculus. Hence, Garner’s symbolic structures embody all of Bruner’s 

(1957, 1966) enactive, iconic and symbolic representations, essential for working with and for 

developing understanding of abstract concepts within mathematics. 

Garner’s last classification system of cognitive structures includes logical reasoning 

structures. These structures encompass higher levels of cognitive thought enabling students to 

“systematically process and generate information” (Garner, 2007, p. 2). These structures involve 

deductive reasoning and inductive reasoning. Deductive reasoning influences one’s ability to 

draw conclusions from existing generalizations. Inductive reasoning allows students to predict, 

forecast, and make conjectures or tentative generalizations from perceived patterns. Logical 

thinking structures support the identification of relationships related to cause and effect. Analysis 

structures support the discovery of an underlying nature or inner relationship between a whole 

and its parts. Problem-framing and problem-solving help students clarify and organize the 

relationships of elements and parameters within a problem for investigation, consideration, or 

solution finding. Such logical reasoning structures are vital cognitive processes involved in 

interpreting and understanding the abstractions in mathematics and for finding viable solutions.  

Comparisons of contemporary learning theorists’ ideas. Geary, Feuerstein, and 

Garner addressed biological, cognitive, socio-cultural, and pedagogical origins of students’ 

learning difficulties suggesting the importance for mediating the development of students’ 

cognitive structures. Each theorist described cognitive structures as foundational neurological 

systems essential for learning. For example, Geary (1995; 2007) believed all children are born 

with genetically-inherited (biologically primary) cognitive structures enabling them to interpret, 

understand, and survive in their environments..  
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Feuerstein’s theory of MLE (2006) requires intentional planning of instructional tasks 

and careful selection of tools by a mediator to incite the development of students’ cognitive 

structures. The mediator models and verbalizes the cognitive processes students are to replicate. 

Focusing one’s attention, chunking information, asking questions, and sense-making are all 

important learning processes the mediator models for the learner.  

Contrastingly, Garner’s (2007) theory of metability invites students to explore, observe, 

make sense, and problem solve for themselves. These ideas align to Piaget’s theory of 

constructivism. As the mediator poses representations, problems and questions, the mediator 

expects students to pause, notice, and reflect upon their existing knowledge, thereby focusing 

their attention on the details or figural units and structure of the sensory stimulus. Students’ 

reflective awareness supports them in making connections to prior knowledge. Unlike 

Feuerstein’s MLE, Garner’s (2007) theory of metability empowers students to create, learn, and 

change their own levels of cognition.  

Fundamentally, all three theorists suggested that the development of students’ cognitive 

structures are necessary for learning. Geary (1995) believed that the stimulation and activation of 

genetically-inherited structures initiates the development of key biologically secondary structures 

that support the learning of advanced mathematics. Feuerstein et al. (2006) believed that a 

mediator transmits his or her knowledge and understanding to the student. The learner must first 

experience concepts and skills on a social plane before he or she can make sense of and use them 

on an individual plane. These ideas align to Vygotsky’s (1978/1930) notions of socio-

constructivism. 

Akin to Piaget’s constructivist ideas, Garner (2007) believed that the nature and design of 

mediational tasks and use of more open-ended question types allow students to reflect upon their 
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existing knowledge, make comparisons and connections, and construct new insights. These 

mental actions on the part of the learners modify the neurological makeup of their cognitive 

structures and advance their cognition. Hence, metability represents the process for learning, 

changing, and growing on a mental plane. Even with the biological and developmental 

determinants for students’ cognitive growth, all three theorists’ learning theories suggested that 

mediating the development of students’ cognitive structures positively impact students’ learning 

in all areas of life, not only in mathematics (Garner, 2007).  

Section 4: Articulation and Alignment of Current Research to Seminal and Contemporary 

Learning Theories  

Section 1 described the origins of students’ learning difficulties. Section 2 and Section 3 

presented seminal and contemporary theories addressing students’ cognitive structures and their 

importance for learning and advancing student cognition. Section 4 now presents research from 

the fields of mathematics education, cognitive and educational psychologies, and the 

neurosciences. Such fields provide a richness of current research, recommendations, and 

evidence-based practices for improving students’ learning of mathematics.  

The synthesis of learning theories, combined with the recommendations for research-

based processes and practices, influenced the design of the “re-envisioned” instruction model. A 

foreshadowing of these principles, elements, and processes for designing and implementing the 

model are described in this section. This includes a description of conducive environmental 

conditions, as well as an articulation of specific cognitive processes and instructional practices 

central to mediating the development of students’ cognitive structures.  

 Neuroscience and cognitive structures. Congruent with evolution-based learning theory, 

constructivism and MLE, today’s neuroscience research indicates that all children are born with 
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neuronal networks, clusters, or assemblies of neurons waiting to activate, to communicate, and 

interconnect through synapse processes (Byrnes & Fox, 1998; Sedikides & Skowronski, 1991). 

Recent research indicates that cognitive structures are essential building blocks for cognitive 

processing (Ifenthaler et al., 2011) and many years of evolution have equipped humans with 

specific cognitive processes essential for survival. These include pattern recognition, subitizing 

nominal quantity of objects, and making “rapid judgements and inferences” (Devlin, 2010, p. 

171).  

 Studies revealed that babies are born with core mental systems that support their 

deductions about the relative sizes of objects (Ansari, 2010; Devlin, 2010). As infants, babies can 

focus on the quantitative attributes of sets and can determine which of two sets has more objects 

or figures (Devlin, 2010; Fuson, 2009; Sousa, 2008). These findings are consistent with Geary’s 

(1995) biologically primary structures he identified through his work (e.g. visual scanning, 

simple quantification, and subitizing). 

Piaget’s (1974) and Vygotsky’s (1978/1930) work determined that young children have 

evolutionary- and genetically- inherited language capabilities and core mental systems linked to 

mathematics. Neurological-imaging indicate that the left and right hemispheres of the brain are 

activated when students make inferences of semantics and syntax and when they attempt to 

comprehend narratives such as story problems and mathematical vocabulary and symbols 

(Devlin, 2010).  

Brain research studies have also revealed that spatial orientation and reasoning occur in 

the two parietal lobes within the mind (Devlin, 2010). These lobes are found in the top posterior 

of both right and left hemispheres of the human brain. They support the integration of sensory 

input (primarily visual) and the construction of a spatial coordinate system. The parietal lobes of 
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the brain “house number sense and support spatial reasoning” (Devlin, 2010, p. 172). As children 

mentally compare and operate with quantities and numbers, or when they consider numbers in 

written and verbal forms, the parietal lobes within the brain are stimulated. This region also lies 

near other neurological areas that engage students in spatial coding, subitizing, distinguishing the 

size of objects and their location, estimation, and determining the cardinality of a set of objects 

(Dehaene, 2010). 

Mediating the development of students’ spatial orientation and skills is integral to 

increasing students’ mathematics achievement (Gunderson, Ramirez, Beilock, & Levine, 2012; 

Kell, Lubinski, Benbow, & Steiger, 2013). Incorporating tasks focused on subitizing, counting, 

estimation, and mapping numbers on a number line help mediate the development of students’ 

cognitive structure for spatial orientation (Li & Geary, 2013). Students’ ability to map numbers 

onto a linear number line are indicative of young students’ later mathematical proficiencies 

(Booth & Siegler, 2006; Dehaene, 2010).  

Children’s cognitive structures and neuronal pathways within their minds are continually 

constructed, developed, and strengthened daily as children work to make sense of mathematics 

(Devlin, 2010). As children work to learn, the number of their neurological dendritic linkages 

increase, and the integration of cognitive structures strengthen. Theoretically, the number of 

linkages constitute effective and efficient (or ineffective and inefficient) information processing 

mechanisms, thereby impacting the ultimate quantity and patterns of neuronal connectivity 

within the human mind (Byrnes & Fox, 1998). The mental processes of assimilation and 

accommodation of mathematical information enable students to acquire more knowledge and 

skills through cognitive generation of mental networks (Byrnes & Fox, 1998).  
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Mathematics education research and cognitive structures. Today’s mathematics 

education researchers no longer debate between nature or nurture, genetics or environment 

(Dweck, 2006). Battista (2010), a current mathematics education researcher, claimed, “ALL 

students have pre-mathematical knowledge of mathematics topics that they are first learning” (p. 

40). He further argued, “Research in mathematics education has repeatedly demonstrated that 

students build new mathematical understandings out of their current relevant mental structures” 

(p. 40). It is the nature and expanse of students’ pre-mathematical knowledge that varies amongst 

children.  

Piaget (1964), Vygotsky (1978/1930), Bruner (1977), Garner (2007), and current 

researchers agree that young children are competent problem solvers; and, young children often 

understand more mathematics than adults assume (Dehaene, 2010). For instance, in Philipp’s and 

Schappelle’s study (2012), they observed children solving problems in novel ways without the 

“benefit” of first receiving explicit or direct instruction. They witnessed young children 

considering flexible solution strategies, thinking differently than what the researchers imagined. 

Other studies revealed young children setting their own mathematical challenges using building 

blocks during a classroom’s scheduled free play (Anghileri, 2006).  

Corresponding to Piaget’s (1964) learning theory of constructivism, the above studies 

provide evidence that children use their existing mathematical knowledge, skills, and cognitive 

structures to construct their own understanding of mathematics via critical and creative thinking 

processes. These ideas align to the concepts of Garner’s (2007) metability and Vygotsky’s ideas 

of self-regulation (Fox & Riconscente, 2008). Young children often learn through trial and error 

(Anghileri, 2006).  
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In addition to spatial orientation, conservation of constancy is another comparative 

thinking structure vital for learning mathematics (Garner, 2007; Piaget, 1964). Conservation of 

constancy enables students to identify and distinguish an object’s characteristics (e.g. numeric 

values, quantities, a collection of 2-D shapes, etc.) and discern between abstract concepts that 

stay constant and those that change as in pattern finding (Garner, 2007).  

Fundamentally, conservation of constancy is essential for students who are transitioning 

to more abstract mathematical thinking involving conservation of number. For instance, 

understanding that a pile of ten cubes will always equal 10 cubes regardless of the cubes’ 

arrangement, is one example of conservation of constancy. When working with number facts, 

students use conservation of constancy to perform operations and evaluate equations (as in 3 + 3 

= 4 + 2). Conservation of constancy influences students’ creation of mathematical 

generalizations (Bruner, 1977; Garner, 2007). Teachers’ use of instructional tasks that activate 

students’ cognitive structures responsible for pattern recognition, visualization, spatial 

orientation, and conservation of constancy help students improve their mathematical 

understanding (Feuerstein et al., 2006; Kamii, Lewis, & Kirkland, 2001b). 

Experts in the field of mathematics education embrace and promote constructivism and 

socio-constructivism as best philosophical approaches for teaching and learning mathematics 

(NCTM, 2000). Mathematics educators believe both theories, when effectively embraced by the 

school community, promote powerful learning experiences that facilitate students’ mathematical 

understanding (Baroody, 2011; Battista, 2010). Still, the concept and practice of strategically 

focusing teachers’ efforts on mediating the development of students’ cognitive structures is a 

concept all mathematics educators have yet to research and embrace. 
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Cognitive tools to mediate the development of cognitive structures. Teachers’ carefully-

selected instructional tasks (input), and the ways teachers engage students with those tasks, 

support students increasing and strengthening the neuronal connections within their minds. Just 

as Vygotsky (1978/1930) argued, it is through collaborative social interactions that students first 

gain important information about cultural symbolic systems (e.g., logic and language). This is 

because “language is a socially shared code representing concepts” and mathematics is a 

culturally-derived symbolic system (Jordaan & Moonsamy, 2015, p. 103).  

Socially-shared language directs and develops an individual’s thought processes and self-

regulation of attention. For instance, children alter their own cognitive systems by becoming 

reflectively aware of a sensory input, identifying the cognitive strategies most useful to them, 

and then strengthening those interlinked neuronal systems by engaging in repeated, extended, 

and novel experiences (Dehaene, 2010). The ability to direct one’s focus and mental processes 

using signs, words and symbols is fundamental for mathematics concept formation (Fox & 

Riconscente, 2008).  

Garner (2007, 2013)—a strong proponent of constructivism, socio-constructivism, and 

mediated learning theory—understood that the information students retain is a function for how 

long and how deeply their attentions are allocated toward a stimulus. Thus, it is imperative 

teachers guide students in allocating their attention selectively, teaching them how to become 

self-reflective learners.  

To support and engage students’ selective attention and reflective awareness, teachers 

present a form of mathematical representation (sensory input) and then pose purposeful questions 

such as: “What do you notice?,” “What sense can you make of this?,” or “What do you know for 

sure?” These question-types support students’ visual discrimination and mental processing of 
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attributes and surface details of physical objects and of the figural units embedded within 

mathematical representations. Students make sense of the representation by making connections 

with their prior knowledge (schema or cognitive structures) and experiences. This is called 

elaboration. Students bring long- and short-term memory to the forefront to compare, classify, 

and connect the processed information to their existing knowledge (coding). This is the time 

when students make connections in their minds to creating mental iconic images.  

Constructing mental images within one’s mind is essential for learning mathematics. 

Visualization is defined as a quick and often spontaneous recognition of what is mathematically 

relevant within a visual representation (Duval, 2014). As a mental activity, visualization is 

intentionally used for processing information, for remembering it, for planning, and for 

constructing meaning thereby generating knowledge and cognition (Garner, 2007). Current 

mathematics education researchers suggest that students’ depth of mathematical understanding 

highly correlates to the strength of connections among various forms of internalized mental 

representations (NCTM, 2014).  

One’s ability to visualize correlates to Bruner’s (1966) iconic mode of representation. In 

mathematics, iconic images and symbols are mental images represented through words, numbers, 

pictures, diagrams, etc. (Garner, 2007). Students’ abilities to visualize iconic images within their 

minds involve the figural units or surface features of a visible representation (Duval, 2014; 

Garner, 2007). Mental images support students interpreting and making sense of quantities, 

number magnitudes, number and operations, and other forms of mathematical representations.  

A student’s ability to transform one form of representation into another, from physical or 

symbolic representations, to internal visualizations, then to visible displays, while maintaining 

the same meaning and significance, is integral to developing mathematical proficiency (NCTM, 
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2014; Rubenstein & Thompson, 2012). Students’ external representations (output) become 

observable evidence of students’ capacities to “see” with their minds (Woleck, 2001). Thus, 

visualization and transforming iconic images into visible representations are essential cognitive 

processes for interpreting and learning mathematics.  

Instructional tools to mediate the development of cognitive structures. Vygotsky 

(1978/1930) argued that the use of language creates the social (nurture) and mental (nature) 

constructs vital for students’ cognitive advancement (van der Veer, 2007). It is the classroom 

environment that supports culturally shared interpretations, meanings, and understandings 

whereby mathematical language, signs, and symbols are socially and culturally constructed, 

transmitted, and understood. These ideas strongly align to Vygotsky’s (1978/1930) work and to 

the other five learning theorists discussed earlier in the chapter.  

Current mathematics education researchers have identified two pedagogical practices that 

align to Vygotsky’s claims. One practice is teacher’s artful facilitation of mathematical discourse 

(Herbel-Eisenmann, 2009). Another instructional practice is teachers’ questioning techniques 

(Boaler & Brodie, 2004; Rubenstein & Thompson, 2012). 

Two main instructional intentions direct teachers’ mathematical discourse: creating 

productive social conditions for learning and the analysis of mathematical content (Herbel-

Eisenmann, 2009). When discourse is socially focused, teachers and students work co-

collaboratively to create safe learning spaces. Here, students understand that their mathematical 

ideas are expected, accepted, and respected. Further, teachers and students are responsible for 

ensuring discourse is respectful, open, inclusive, and learning-focused. Classroom expectations, 

routines, and even the organization of the furniture encourage or prohibit students sharing their 

mathematical thinking and work with each other (Herbel-Eisenmann, 2009).  
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When discourse is content focused, there are two approaches. There is the calculation 

approach and the conceptual approach (Herbel-Eisenmann, 2009). For the calculation approach, 

student discourse is focused on the operations and calculations used to solve mathematics 

problems. For a conceptual approach, student discourse is focused on why a specific strategy is 

selected. Student conversations may follow a specific line of thinking and address how students’ 

ideas relate to the meanings of the problem. This last approach often leads to student 

explanations and justifications “grounded in the concepts and relationships that are central to the 

problem” (Herbel-Eisenmann, 2009, p. 31).  

Additional content conversations may introduce mathematical vocabulary and contextual 

situations. Here, formal mathematical language is modeled, and vocabulary is often introduced 

and discussed using examples (Rubenstein, Beckmann, & Thompson, 2004). The introduction of 

formal vocabulary affords students opportunities to acquire more sophisticated language, glean 

new insights, and gain conceptual understandings of complex ideas such as mathematical 

operations, number relationships, and place value (Kozulin, 2002; Rubenstein et al., 2004). 

Ultimately, communication and language assist students in acquiring more complex behaviors 

and thought processes such as describing one’s thinking using formal mathematical vocabulary 

and symbols, persevering through problem solving, and using mathematical tools strategically 

(Battista, 2010; NCTM, 2000, 2014). 

Another key instructional tool is the set of questions teachers pose to students. Recent 

research findings demonstrate that posing authentic questions increases students’ engagement 

and critical thinking skills (Boaler & Brodie, 2004). Authentic question types are questions 

without pre-determined answers. Additional question types focus students’ attention on the 

following: 
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• gathering information  

• exploring mathematical meanings and relationships 

• linking concepts to representations 

• extending student thinking 

• establishing contexts for investigation  

Current researchers claim that teachers’ strategic use of higher-level questions prompt students’ 

analysis, evaluation, and argumentation of mathematical ideas (Boaler & Brodie, 2004; Way, 

2001/2011).  

Asking good questions requires sufficient teacher pedagogical content knowledge. 

Pedagogical content knowledge includes knowing mathematics and knowing how students learn 

mathematics (e.g. specific representations, potential misconceptions, etc.) (Ball et al., 2005; Hill 

et al., 2005). Good questions often (a) reveal students’ conceptions and misconceptions about 

mathematical ideas; (b) afford students opportunities to generate substantive discourse; (c) invite 

all students to participate; and, (d) direct student focus, encourage reflective awareness, and 

increase their depth of thinking to develop conceptual understanding. Vygotsky (1978/1930) 

understood that language and communication are integral for student learning, metacognition, 

self-regulation, mathematical identity, and academic achievement (Hadjioannou, 2007; Kozulin, 

2002; Mooney, 2013).  

Objects, pictures, drawings, graphs, charts, tables, and symbolic notations are important 

cultural tools representing important mathematical phenomena, ideas, and concepts (Hiebert et 

al., 1997). Thus, mathematical representations are invaluable tools skillfully used by teachers in 

effective mathematics instruction (Duval, 2014; Rubenstein & Thompson, 2012). Mathematical 

representations assist students in exploring and grappling with conceptual complexities. They 
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support problem solving, mathematical discourse, and afford students opportunities to recognize 

similarities and differences among related ideas (NCTM, 2000, 2014). The types of instructional 

tools teachers use to activate children’s cognitive structures are critical considerations at every 

juncture of classroom instruction (Sedikides & Skowronski, 1991). 

To ensure representations are most effective for mediating the development of students’ 

cognitive structures, it is essential that the figural units and structure of the representation are 

visible. Visibility offers students opportunities to make sense of the mathematical patterns and 

structures inherent within the representations. Thus, a teacher must be clear about the goals of 

the lesson, and then be strategic in the selection, implementation, and use of mathematical 

representation(s) (Kamii, Lewis, & Kirkland, 2001b).  

To strategically select a mathematical representation for instructional purposes, teachers 

first consider the figural units, as well as the structure of that representation. Figural units are the 

different elements or attributes a student “quickly recognizes as significant or informative” 

within the representation itself (Duval, 2014, p. 160). Before presenting a representation to 

students for analysis, teachers analyze that representation for themselves, noting possible student 

responses. This intentional action supports teachers’ decisions for the best selection of 

representations, in that it meets students where they are on the learning continuum relative to the 

mathematical goals and concepts of the lesson.  

For example, during students’ first encounter with place value, young students often 

struggle understanding that one unit can also represent the value of 10, 100, or 1,000 (Van de 

Walle et al., 2014). Therefore, rather than using base-ten blocks as students’ first manipulative 

for exploring place value concepts, a teacher may select multi-link cubes to represent these 

exponential denominations. Multi-link cubes allow students to build one stick of 10 at a time 
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using 10 individual cubes. Whereas with base-ten blocks, 10 small cubes are already assembled 

into one stick and 10 sticks assembled into one flat representing 100 cubes. Students’ 

considerations for composing one 10 from 10 cubes is done for them. 

With multi-link cubes, students compose 10 individual cubes into a stick of 10 cubes by 

counting and connecting each cube. They visibly notice that one unit can represent a value of 10. 

Moving forward, students build 10 sets of “10” sticks and lay the sticks side-by-side constructing 

a 10 x 10 model or 100. These actions enable students to understand that one unit of 100 also has 

a value of 10 groups of 10, or 100 cubes. Using these enactive representations, students can 

visualize the magnitude of 100. Next, to visualize the magnitude of 1,000, students build a 10 x 

(10 x 10) cube or 10 groups of 100. Once students experience several compositions and 

decompositions of 10, 100, and 1,000 using multi-link cubes, students move toward representing 

one unit of 10, 100, and 1,000 using sets of base-ten blocks. While engaged with both sets of 

physical tools simultaneously, the teacher draws students’ attention to comparing the sets of 

multi-link cubes with the base-ten block representations in physical and symbolic forms. 

Students use their comparative thinking structures (e.g. conservation of constancy, spatial 

orientation) to make connections between the various equivalent representations.  

When introducing the concept of a number line up to 100, a teacher may first select a 

measuring tool such as a meter stick to convey the concept of a number line. During students’ 

initial examination of a meter stick, students may notice a number as positional, as in the number 

12 sits between the numbers 11 and 13. Students may also notice that, as numbers increase 

within a decade, the digit in the ten’s place stays the same while the digit in the one’s place 

increases by one. Students may notice that the distance between any two consecutive counting 
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numbers on the meter stick is always equivalent regardless of the length of the “number line” 

(Charles, 2005).  

Thus, the sets of multi-link cubes and meter sticks are physical objects representing the 

stimulus input for developing students’ numerical reasoning, a sense of magnitude, and 

conceptual understanding of place value. Such enactive models coincide with Bruner’s (1957, 

1966) representational learning theory that students’ initial instruction is most effective using 

enactive representations. Studies show that children’s use of physical and visual representations 

of mathematical concepts support their mastering and maintaining mathematical competencies in 

later years (L.S. Fuchs & D. Fuchs, 2001).  

Mathematical tasks to mediate the development of cognitive structures. Effective 

mathematics instruction engages students in cognitively demanding tasks where they experience 

productive struggle (Henningsen & Stein, 1997; Van de Walle et al., 2014). Cognitively-

demanding tasks are often complex and non-routine. Bruner (1966) described such tasks as 

powerful and economic instructional tools because they compel students to become thinkers and 

creative users of mathematics, thereby influencing the quality of their learning (City et al., 2009; 

Paris & Paris, 2001; Silver & Stein, 1996). Furthermore, productive struggle indicates that such 

tasks fall within students’ ZPD, yet are still problematic for students to solve. Cognitively 

demanding task-types help mediate the development of students’ biologically secondary 

structures because they require cognitive effort (assimilation and accommodation), including 

sense-making and connection-making on the part of the learner.  

One powerful and economic way teachers can meet varied student needs and readiness 

for learning within a classroom is by using open-ended tasks and prompts (Van de Walle et al., 

2014). Open-ended tasks and prompts scaffold students’ access to solving problems. Such tasks 
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afford students opportunities to reflectively access their current levels of understanding, use their 

existing knowledge, including familiar tools and representations, to find viable solutions. They 

provide access to a struggling student who may hold underdeveloped cognitive structures and 

engage students who have already developed conservation of constancy (as in 9 + 3 = 10 + 2). 

Research demonstrates that students who participate in classroom environments where teachers 

posed open-ended tasks are found to be more cognitively engaged (Paris & Paris, 2001).  

Another key feature of open-ended tasks is they often have more than one correct answer 

or solution path, inviting higher-levels of cognitive demand (Van de Walle et al., 2014). For 

instance, a teacher might pose an open-ended task such as the following, “The answer is 12. 

What might the mathematics context be?” The teacher asks students to reflect upon and create 

multiple problems that result in the answer 12. One student might record, “A friend has 15 pieces 

of candy and he gave me 3 pieces. So, my friend has 12 pieces left.” Another student might 

write, “Twelve equals a dozen eggs.” A different second-grade student might offer the following, 

“Well, if I owed my mom 13 dollars and I got 25 dollars from my grandma for my birthday 

present, I would pay my mom and then I would have 12 dollars left.” If the teacher were to 

record the symbolic representation of this student’s problem, it would look like this: ‒ ($13.00) + 

$25.00 = $12.00. Open-ended tasks engage students at their levels of difficulty. Students who 

engage in open-ended tasks often possess a variety of problem-solving strategies, persevere 

under challenging circumstances, and strive to construct meaning (Paris & Paris, 2001).  

Subitizing tasks are another form of mathematical tasks teachers use to stimulate and 

engage students’ cognitive structures. Subitizing refers to one’s ability to recognize the 

numerosity of a set of objects efficiently without counting. Clements (1999), an early childhood 

mathematics education researcher, describes two major forms of subitizing: perceptual and 
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conceptual. Perceptual subitizing involves the ability to immediately scan and recognize a small 

quantity of objects or pictures of dots without using additional mathematics or learned processes. 

Perceptual subitizing is considered a biologically primary cognitive structure because infants 

within the first two months of life and some animal species unitize or subitize up to three objects 

(Geary, 1995). This form of subitizing supports the development of concepts connected to 

cardinality.  

 Pattern recognition supports students moving toward conceptual subitizing (Clements, 

1999). Conceptual subitizing is considered a more advanced form of perceptual subitizing and is 

an essential skill for developing students’ sense of number (Van de Walle et al., 2014). It also 

supports the development of students’ cognitive structures involving visualization, 

quantification, conservation of constancies, pattern finding, and logical reasoning. According to 

Geary’s (1995) definition, conceptual subitizing is considered a biologically secondary cognitive 

structure because it is developed over time and is mediated by others.  

An example of conceptual subitizing is to present a domino containing four pips on one 

side and five pips on the other side. Flashing this domino in a mere four seconds, students may 

quickly “see” a double four and one more. Multiple experiences for conceptually subitizing 

quantities help students recognize that a double four equals eight and add one more, wherein 4 + 

4 = 8, (4 + 4) + 1 = 8 + 1 = 9. 

Other foundational tasks in early elementary mathematics classrooms involve counting. 

Clements and Samara (2009) argued, “Without verbal counting, quantitative thinking does not 

develop” (p. 21). Geary, Hoard, Byrd-Craven, Nugent, and Numtee’s (2007) research findings 

supported this claim. Current research found that students engaging in counting tasks using 

physical tools minimizes their knowledge gaps, especially the gaps that low achieving students 
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often hold (Bryant et al., 2008). Students who struggle with counting tasks often struggle with 

memory retrieval.  

Studies suggest counting tasks support students developing more efficient and effective 

ways to count and learn how to keep track of those counts (Schwerdtfeger & Chan, 2007). 

Students’ development of counting abilities forecast their capacities for numerical learning and 

simple arithmetic (Jordan et al., 2009; Passolunghi, Vercelloni & Schadee, 2007). In fact, 

counting is a more powerful method than subitizing when quantifying groups of objects.  

Counting collections of objects aligns to Piaget’s (1965/1952) concrete-representational 

stage of development, follows Bruner’s (1966) three modes of representations: enactive, iconic 

and symbolic, and his notions of power and economy. The development of students’ cognitive 

structures related to number sense and whole numbers and operations rely heavily upon students’ 

abilities to connect enactive quantitative representations to linguistic and symbolic 

representations representing numbers and space. As students engage with counting and subitizing 

tasks, their secondary cognitive structures such as memory-based retrieval and number name 

acquisition are mediated. Problem solving, quantification, conservation of constancy, and 

symbolic representation are also mediated and strengthened. Early detection of students’ 

underdeveloped counting abilities, followed by appropriate interventions, furthers students’ 

primary cognitive abilities and advances their biologically secondary cognitive structures (Geary, 

1995, 2011a).  

In addition to counting tasks, research studies also provide strong evidence linking 

students’ spatial skills to mathematics achievement (Gunderson et al., 2012; Kell et al., 2013). 

Number line tasks support the development of students’ spatial skills. For example, for making 

sense of the number line represented in Figure 1, students need to use their spatial reasoning 
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skills to determine the value of n. Students’ “ability to use a number line is a key component of 

children’s understanding of number” (Geary et al., 2007, p. 1344).  

Based upon these findings, a variety of number line activities underscoring one-to-one 

correspondence, counting, numerical magnitude, number relationships, and mathematical 

operations are essential for developing students’ cognitive structures relative to classification, 

seriation, and spatial and temporal orientations (Booth & Siegler, 2008; Gunderson et al., 2012; 

Jordan et al., 2009; Kamii et al., 2005). Current research studies prove that the use of a mental 

number line increases students’ number knowledge and understanding of simple addition and 

subtraction problems (Bryant, 2005).  

Special education research and instructional practices. National mathematics 

organizations and mathematics educators believe that using constructivist and socio-

constructivist principles and engage students with cognitively demanding tasks increase student 

achievement in mathematics (Baroody & Ginsburg, 1990; NCTM, 2014; National Research 

Council, 2012; Noddings, 1990; Van de Walle et al., 2012). However, the application of these 

philosophical stances and instructional practices with students who appear to have learning 

challenges remain the center of much controversy. Cognitive psychologists and researchers 

within special education conduct studies investigating the learning challenges exhibited by 

struggling students. Their findings suggest that explicit and systematic instruction are considered 

best pedagogical practices for students with learning challenges (Bryant et al., 2008; Geary, 

1995; Gersten et al., 2009; Montague, 1997). Explicit and systematic instruction involve the use 

of teacher modeling and demonstration, intentional instructional scaffolding, student 

verbalization of thought processes, cumulative reviews of concepts, and corrective feedback 

(Gersten et al., 2009). In and of themselves, explicit and systematic practices are proven to offer 



A “RE-ENVISIONED” INSTRUCTION MODEL  70 

 

 

valid and reliable learning outcomes (Gersten et al., 2009) and many of these practices align to 

Feuerstein’s (2006) MLE theory. This type of instruction is highly effective for improving 

students’ computation abilities; however, it is not applicable when the desired outcome is to 

develop higher-order thinking and problem solving (Steedly et al., 2008). Students who 

participate in step-by-step instruction or rote memorization without sense-making or developing 

conceptual understanding do not retain skills for long, nor are they able to transfer concepts to 

other contexts (Devlin, 2010; Woodward & Montague, 2002).  

The continual challenge for teachers is finding a balance between developing students’ 

conceptual understanding and procedural knowledge. Engaging students in higher order thinking 

and problem solving supports the development of student’s biologically secondary cognitive 

structures which are vital for participating in advanced mathematics courses (Geary, 1995; 

Ifenthaler, 2011). It is important to remember that when considering instructional approaches 

constructivism, socio-constructivism, representational learning theory or explicit and systematic 

instruction all offer empirical evidence substantiating researchers’ claims. 

Section 5: The “Re-Envisioned” Instruction Model 

Teaching is a cultural and systemic activity (Stigler & Heibert, 1999). Until recently, the 

basic structure of mathematics lessons—especially at the secondary level—had remained 

unchanged for the past 100 years (Stigler & Heibert, 1999). Most lessons are still structured 

within a 45- to 60-minute time frame. At the beginning of a lesson, a teacher reviews or checks 

students’ homework assigned the previous school day. To introduce a new lesson, the teacher 

first demonstrates a skill or procedure, modeling it step-by-step while students observe. Once 

teachers perceive students can replicate that skill or procedure independently, the teacher assigns 
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multiple problems for students to practice. See Figure 2 for the traditional framework and 

purpose for a mathematics lesson (Stigler & Hiebert, 1999). 

 

 

 

 

 

 

 

 

 

 

Alternatively, this chapter describes a “Re-Envisioned” instructional model for 

implementing mathematics lessons. Six theorists’ views and current research attribute children’s 

cognitive advancement to neurological networks of cognitive structures. Current neuroscience 

research suggests there are highly interactive subsystems of structures within the human mind. 

These structures wait for stimulation and then work in concert to support students’ making 

connections neurologically, experientially, and abstractly (Byrnes & Fox, 1998; Ifenthaler, 2011; 

Sedikides & Skowronski, 1991). According to these theorists, cognitive structures clearly 

influence students’ cognition, cognitive growth, and learning (Duval, 2006; Feuerstein et al., 

2006; Garner, 2007; Sweller, 2008). 

Furthermore, all six theorists claimed that students’ cognitive structures change as they 

mature and learn. The stronger and more integrated students’ cognitive structures are, the more 

 

Figure 2. Traditional Framework and Purpose for Mathematics Lesson       
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accessible mathematical concepts become (Wood et al., 1976). Current research is consistent 

with such claims. The human mind is malleable—not hard-wired as previously assumed—and all 

students can learn mathematics, irrespective of the origins of students’ learning difficulties 

(Dweck, 2006; Feuerstein et al., 2006). The premise for mediating the development of students’ 

cognitive structures to minimize their learning difficulties holds major implications. As Sweller 

(2008) claimed, instructional practices that fail to mediate the development of human cognition 

relative to students’ existing cognitive structures are likely to be haphazard in their effectiveness.  

Two conceptual frameworks for the “re-envisioned” instruction model. The synthesis 

of learning theories and current research informed the conceptual framework identified as the 

“re-envisioned” instruction model. This model is used for teaching Tier I core mathematics 

instruction. The purpose of Tier I core instruction is to meet the learning needs of most students 

within a classroom and further their cognitive growth. Hence, the “re-envisioned” instruction 

model relies heavily upon the application of the six learning theories and current research 

detailed in this paper.  

To advance learning and deepen students’ conceptual understanding, the “re-envisioned” 

instruction model embeds a synthesis of learning theories and current research within three 

distinct instructional segments: (a) launch, (b) exploration, and (c) summary/reflection. The 

purposes for each instructional segment resemble the intended constructs found in the Connected 

Mathematics Project’s framework for mathematics instruction (Michigan State University, 

2017). The launch provides initial stimulus or sensory input to engage students in thinking about 

the mathematical focus of a lesson. The exploration segment encourages students to elaborate 

upon the mathematical concepts of the lesson using specific tasks. The summary/reflection 

affords time for whole-group sharing (output) of student-generated solution strategies, 



A “RE-ENVISIONED” INSTRUCTION MODEL  73 

 

 

mathematical representations, justifications, critique, and argumentation. Outward signs of 

student learning include making connections to prior knowledge and experiences, identifying 

patterns [and relationships], identifying predictable rules, abstracting generalizable principles, 

and applying one’s learning to additional contexts and concepts (Garner, 2007). Each 

instructional segment is depicted in Figure 3. 

 

 

Within each segment, all three phases of mental actions: input, elaboration, and output 

also occur (see Figure 3). Input, elaboration, and output become critical mediated cognitive 

processes (thought and analysis) and externalized actions (e.g. intentional discourse, 

mathematical modeling, and written records) that assist students mentally engaging multiple 

times with the intended concepts of a lesson within a 60-90-minute timeframe (Feuerstein et al., 

2006), vastly different from the traditional structure and purpose of mathematics instruction. See 

Figure 4 to understand these differences in processes and purpose of the “re-envisioned” 

instruction model. 

 

Figure 3. The Conceptual Framework for the “Re-Envisioned” Instruction Model 

 

Launch

(Input)

Exploration

(Elaboration)

Summary/
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(Output) 5–15 minutes

20–40 minutes

10–20 minutes
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To obtain a purview of specific teacher and student roles essential for engaging in the 

mental actions and processes of input, elaboration, and output during each instructional segment, 

see Table 2.1.  

 

  

       

Figure 4. The Three Phases of Mental Actions for Lesson Implementation 
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Table 2.1 

The “Re-Envisioned” Instruction Model’s Framework for Three Mental Actions 

Segment 1: Launch 

Mental 

Actions 
Teacher Role Student Role 

Input  Activate students’ cognitive structures by 

presenting a form of mathematical 

representation and asking open-ended 

questions such as “What do you notice?” 

and “What sense can you make of this?” 

 

Use senses to take in sensory 

data and make observations of 

representations. 

Elaboration Move around the room. Ask clarifying 

questions such as, “What are you 

understanding the task to be?” “What do 

you know for sure?” Listen to students’ 

reasoning.  

 

Connect observations to existing 

schema and prior experiences to 

make sense of information. Use 

memory, recognition, 

classification, logical and 

deductive reasoning to mentally 

code sensory data. 

 

Output Generate a public visual display (anchor 

chart) representing student thinking and 

sense-making, including students’ 

misconceptions. Ask clarifying questions to 

understand student thinking and 

perspectives. Present mathematical 

vocabulary as needed. This chart serves as a 

scaffolding tool and input for students as 

they begin the exploration segment. 

Record observations and 

thoughts in a mathematician’s 

notebook. Use language, 

drawings, and mathematical 

representations to exhibit sense-

making. Share own observations 

and sense-making ideas with 

whole group. Build upon each 

other’s ideas, ask questions, and 

critique one another’s 

mathematical thinking. 
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Segment 2: Exploration 

Mental 

Actions 
Teacher Role Student Role 

Input  Introduce selected task(s) to students. 

Ensure students understand the task(s), 

possibly referring to the anchor chart 

created in the launch of lesson.  

 

Use the output from the launch 

and own logical reasoning to 

make sense of mathematical 

task(s).  

Elaboration Listen to students’ explanations and 

justifications, and ask clarifying questions.  

Extend student thinking. Make mental or 

physical notes of students’ conversations, 

solutions, and strategies to share during last 

segment of lesson. Encourage students to 

account for their thinking and strategies 

using recording sheets or mathematicians’ 

notebooks.  

 

Work toward comprehension 

and solution strategies using 

logical reasoning, pattern 

finding, problem solving, 

quantification, and discourse.  

Output Pre-select the order of students’ sharing 

during Summary/Reflection of lesson. 

Record thinking in various 

forms on a recording sheet or in 

a mathematician’s notebook. 

Use concrete tools and 

manipulatives, draw pictorial 

representations, justify and 

explain thinking to peers and 

group members. Practice using 

precise mathematical language. 
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Segment 3: Summary/Reflection 

Mental 

Actions 
Teacher Role Student Role 

Input  Scaffold the order and presentation of 

student ideas, building from simplest to 

complex, concrete to abstract, or conceptual 

to procedural; or pose a new question for 

students to consider. Ensure that the lowest-

performing students are heard, and their 

strategies shared. 

Share thinking from exploration 

segment, including 

representations, solution 

strategies, findings, or 

connections, to demonstrate 

understanding of the concepts 

and goals of the lesson.  

  

Elaboration Use questions and student-to-student 

discourse to connect student explanations 

back to the launch of the lesson. Add onto 

the original anchor chart or create a new 

chart capturing students’ additional insights. 

Support students building upon each other’s 

ideas by promoting student-to-student 

discourse, making connections between 

ideas, strategies, solutions, procedures, and 

representations. 

 

Make mental connections 

between the various 

mathematical representations, 

solution strategies, procedures, 

and ideas. 

 

Output Use public documents generated during 

Segment 1 and Segment 3 to compare, 

correct misconceptions, facilitate student-

generation of new insights, meanings, 

connections, and revise student thinking. 

Pose a new question for students to consider 

and foreshadow upcoming lessons. 

Process and summarize new 

insights, including 

generalizations. Reflect upon 

and revise thinking using 

analysis and synthesis. 

Demonstrate new 

understandings using words, 

pictures, numbers, equations, 

etc. Generate new questions for 

future investigations.  
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To support the reader gaining an in-depth understanding for how a teacher uses the 

launch of a lesson to stimulate students’ three mental actions of input, elaboration, and output, 

an in-depth description is provided below. Brief descriptions of the exploration and 

summary/reflection segments follow. 

Preparing the launch. Teachers use their understanding of mathematics, their 

knowledge of students, and knowledge of their grade-level curricula to select, design, and 

modify varying forms of mathematical representations and tasks. Teachers’ selected 

representations and tasks fall within students’ zone of proximal development and are cognitively 

demanding. When considering the most effective representations and tasks to use, teachers 

consider the figural units, as well as the mathematical structures embedded within a graph, 

picture, mathematical model, a story problem, or student work. The teacher then identifies 

possible student responses to determine if the selected representation/task supports student 

understanding relative to the goals of the lesson. Once a representation or task is selected, the 

teacher launches the lesson by presenting the mathematical representation/task as students’ 

sensory input.  

Launch implementation. The launch is the first instructional segment of the “re-

envisioned” instruction model. It frames the initial input or beginning stimulus for the entire 

mathematics lesson. In addition to framing the initial input for a lesson, the teacher uses the 

launch to facilitate student progression through the three phases of mental actions: input, 

elaboration, and output.  

The mathematical representation and the teacher’s prompts provide the sensory input 

necessary for stimulating and accessing students’ existing cognitive structures. The teacher’s 

mediational prompts, in the form of questions or instruction, invite students to focus and pay 
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attention to the figural units, details, and mathematical structure of the representation (Learner & 

Johns, 2012). Teacher prompts may include, “What sense can you make of this?,” “What do you 

notice?,” “What mathematical connections might you make when you look at this 

representation?,” or “What patterns do you notice?” (Garner, 2007). Here, teachers do not tell 

students what to see, nor do teachers anticipate one specific response. For students to construct 

understanding, students need to make sense of the information for themselves. Students’ natural 

thought processes of memory, intelligence, and attention help bring their prior knowledge to the 

forefront.  

All sensory stimuli received by the mind is coded, symbolized, and generalized according 

to students existing mental structures (Jensen, 2000). To make sense of the mathematical 

representation, students use their comparative thinking structures to compare, analyze, 

synthesize, and evaluate the representation’s figural units and mathematical structure. Figural 

units are the different elements or attributes a student “quickly recognizes as significant or 

informative” (Duval, 2014, p. 160).  

Students’ sense-making processes of mental coding, symbolizing, and generalizing are 

considered elaboration. Elaboration is central to cognitive processing because it supports 

students’ transforming discreet bites of data into organized knowledge that is relational 

(Feuerstein et al., 2006). Elaboration involves retrieving information from memory and using 

existing cognitive structures to mentally represent, manipulate, and transform sensory data into 

visualized images within the mind. Hence, memory retrieval, reflective awareness, mental 

coding, and visualization are essential mental tools for creating meaning and for developing 

relational understanding. 
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Once mental images are in place, students transform their mental images into abstract and 

symbolic representations that are observable to others. This represents the third phase of mental 

actions: output. Observable representations include numbers, written and audible words, physical 

actions, drawings, graphs, etc. Student-generated mathematical representations are the visible 

manifestations of cognitive structures functioning within students’ minds (Duval, 2006; Geary, 

1995).  

Students share their own observations and insights in public ways during this third phase 

of the launch. Teachers solicit students’ visible and audible mathematical representations and 

records them verbatim onto an anchor chart or other recording device. Student output provides 

new data for the entire learning community to consider, reflect upon, and critique.  

Student output can be used in formative ways. Students analyze and critique each other’s 

mathematical reasoning, revise and extend their learning, and engage in inter- and intra- personal 

exchanges necessary for mediating the development of their own cognitive structures (Kozulin, 

1990; Vygotsky, 1965). Naturally, student output sheds light on their current understandings and 

misconceptions they may have.  

Utilizing this on-going, formative, dynamic assessment, teachers gain insights to where 

students are on the learning continuum relative to the mathematical goals of the lesson. They can 

provide additional instructional scaffolds or build students’ background knowledge before 

continuing to segment two, the exploration segment of the lesson (Feuerstein et al., 2006; 

Garner, 2007; Kozulin, 1990).  

Exploration implementation. The exploration segment of the lesson is the second 

instructional segment for mediating students’ cognitive structures relative to the goals of a 

lesson. During the exploration segment, stimulus inputs are additional representations or tasks 
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offered by a teacher or classmates. These include instructions for a game or activity, or parts of 

an anchor chart generated during the launch. Mental elaboration occurs as students strategize to 

find a viable solution to a problem, while they investigate other students’ conjectures, or while 

playing a game. The output of the exploration segment may include students justifying a 

conjecture, identifying examples or counter-examples, recording steps in a solution strategy, or 

questioning opponents’ moves in a game. 

Summary/reflection implementation. For the last segment of the lesson, the 

summary/reflection segment, input, elaboration, and output are again mental actions and 

processes that support student discourse and mathematical reasoning. Stimulus input to a whole 

group discussion might include the juxtaposition and comparison of two students’ solution 

strategies, a new or modified representation, a strategy in a game, or a student’s claim. Whole 

group discussion represents elaboration upon students’ ideas and claims, while a public record of 

students’ thinking, or modification of the initial anchor chart serves as output. To further 

understand how teachers and students engage with the mental actions of input, elaboration, and 

output, review Table 2.1. 

Chapter Summary  

Two conjectures were made at the beginning of this study. The first conjecture was that a 

single learning theory, by itself, could not counteract the historical trends of low student 

achievement in mathematics. A second conjecture was that an effective Tier I core instruction 

model could provide teachers effective ways for meditating the development of students’ 

biologically primary and secondary cognitive structures. These structures are essential for 

minimizing students learning difficulties and for increasing student achievement in mathematics. 

The number of research studies focused on mediating the development of students’ cognitive 
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structures using Tier I core mathematics instruction is insufficient. Sweller (2008) claimed that 

instructional practices that fail to consider student’s existing cognitive structures relative to 

learning mathematics are likely to be haphazard in their effectiveness. 

These conjectures and lack of research exposed the need for conducting this study: (a) to 

understand how a general education teacher might use Tier I core instruction to minimize 

students’ learning difficulties by addressing their origins, e.g. biological, cognitive, socio-

cultural, and pedagogical; (b) reduce students’ need for Tier II and Tier III interventions by 

mediating the development of students’ cognitive structures; and, (c) build on existing research 

relative to increasing students’ mathematics achievement. 

 To conduct this study, the origins of students’ learning difficulties were reviewed. To 

understand the processes for learning, three seminal and three contemporary learning theories 

were consulted. Next, additional literature from the fields of mathematics education, cognitive 

and educational psychologies, and the neurosciences were reviewed and aligned to each learning 

theory. Each field revealed important cognitive processes and pedagogical practices for learning 

and for teaching mathematics. The extensive literature review supported a synthesis of theories, 

cognitive processes, and instructional practices used to create, refine, and test an innovative 

instruction model used for Tier I core instruction within a school’s MTSS program.  

Chapter 3 presents the methods and procedures for conducting this study. It explains the 

research design. The chapter also offers an in-depth description of the study’s participants and 

location, as well as descriptions of instruments used to collect and analyze quantitative and 

qualitative data. Lastly, Chapter 3 provides details about specific conditions, methods, and 

processes necessary for replication. 
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Chapter 3: Methods and Procedures 

Purposes of the Study 

The main purpose for this study was to address the lack of student achievement in 

mathematics by creating an instruction model and using it to deliver Tier I core instruction. Tier I 

core instruction is the fundamental instructional mechanism for minimizing students’ learning 

difficulties in mathematics (Clements & Samara, 2007; Gresham & Little, 2012; NCSM, 2013). 

The development of the “re-envisioned” instruction model relied heavily upon six learning 

theorists’ conceptualizations for mediating the development of students’ cognitive structures. 

Cognitive structures are neurocognitive systems vital for student learning (Garner, 2007; 

Feuerstein et al., 2006). In addition to creating this model, the study tested the model’s 

effectiveness for improving students’ achievement and minimizing students’ learning difficulties 

in this academic subject. 

The literature review briefly described five origins for students’ learning difficulties. For 

this study, the “re-envisioned” instruction model targets four origins of students learning 

difficulties: biological, cognitive, socio-cultural, and pedagogical. Collectively, these origins 

were addressed through teachers’ and students’ use of the instruction model. 

The focused unpacking of each learning theory illuminated vital constructs and processes 

for ways children learn relative to the existence and influence of their cognitive structures. The 

literature review also supported the alignment between six theories and current research from 

multiple educational fields including the neurosciences. The model was then tested for four 

specific effects: 
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1. How effective was the model in increasing students’ mathematics achievement?  

2. What was the model’s effectiveness in minimizing students’ learning difficulties in 

mathematics?  

3. To what extent did teachers’ implementation of the model mediate the development 

of students’ cognitive structures, specifically spatial orientation and conservation of 

constancy?  

4. How did teachers’ implementation of the model influence students’ beliefs about and 

practices for learning mathematics?  

To answer these four questions, this study was conducted in three second-grade 

classrooms at a partial Title I, K-5 school—identified as Midwest Elementary School—during 

the 2014‒2015 school year. The time frame for applying treatment and collecting data was 

September 2014 through January 2015. Additional data collection occurred in May 2015, four 

months after treatment. 

Researcher’s Background 

From 2005 to 2013 the researcher was employed by a county-wide Intermediate School 

District as a mathematics education consultant. The researcher worked with low-performing 

school districts relative to mathematics achievement. A main responsibility involved coaching K-

8 general and special education teachers in improving their instructional practices. Additional 

responsibilities included designing and providing professional learning for teachers, writing 

mathematics curriculum aligned to CCSSM, and collaborating with other consultants to support 

and evaluate school districts’ implementation of MTSS. These experiences strikingly 

demonstrated to the researcher the need for strengthening Tier I core instruction as the means to 

improve student learning. 
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The responsibilities as a mathematics education consultant developed the researcher’s 

capacity to design and conduct this study. Curriculum work supported the selection and design of 

mathematical tasks. Coaching experiences prepared the researcher to support teacher 

implementation of the “re-envisioned” instruction model. The involvement with school districts’ 

MTSS implementation informed the processes for data collection. In short, many of the study’s 

processes were supported by the extensive work and experiences with different teachers in actual 

classrooms in a variety of educational settings. 

Research Design  

This study was quasi-experimental. Two classrooms received treatment, while the third 

classroom functioned as a control. The study’s theoretical framework was grounded in design-

based research (Barab & Squire, 2004; Brown, 1992; Cobb et al., 2003). The premise of design-

based research is that an intervention or treatment be conducted in authentic classrooms (Design-

Based Research Collective, 2003). Authentic settings enable researchers to determine causational 

factors for how and why interventions or treatments work.  

Through a variety of collection methods, both quantitative and qualitative data were 

concurrently collected throughout the study. The application of a mixed-methods approach 

increased the internal and external validity of the study. Merging teachers’ and students’ 

perceptions, explanations, and observations of behaviors and activities with quantifiable data 

supported cross-validation and data-triangulation (Creswell, 2009). The concurrent side-by-side 

design included quantitative data collected at the beginning and end of treatment, and four 

months after treatment. Thus, a time series design structured the gathering of students’ pre-, post- 

and end test scores (Creswell, 2009; Cook & Campbell, 1979).  
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Qualitative data were captured through a variety of means. Communication and 

interactions between the researcher and teachers, between the researcher and students, 

individually, in small groups, and in whole groups occurred throughout the study (DeWalt & 

DeWalt, 2011). Collection methods included surveys, questionnaires, face-to-face interviews, 

observations of teachers’ instruction and teacher/student dialogues, scripted field notes of verbal 

communications, and photos and photocopies of students’ work. Information- and image- rich 

transcriptions often originated in teacher and students’ handwritten texts, instructional artifacts, 

and photographs and records of students’ mathematical thinking. Much of this data reflected 

students’ words, phrases, sentences, and diagrams (Creswell, 2009). Collected with 

intentionality, the qualitative sources aided the researcher’s memory of the communication, 

activities, and learning experiences that transpired throughout the study.  

A convenience sample generated the population for the study (Creswell, 2009). The 

researcher worked with all K-5 teachers at Midwest Elementary School the previous school year 

(2013–2014). Teachers were supported in improving their instructional practices for teaching 

mathematics. During that time, the researcher established a professional working relationship 

with all teachers and with the school’s principal.  

The student subjects consisted of non-equivalent groupings. The school’s principal and 

first-grade teachers pre-determined first-grade students’ placement into non-equivalent second-

grade groups for the school year, 2014–2015. Teachers’ placements of students were predicated 

on their knowledge of their first-graders and the strengths of second-grade teachers. With 

deliberation, the school’s principal determined the two teacher and student groups who were to 

receive treatment. In this study, these groups are referred to as CLB and CLC. The principal also 

determined the teacher and student group who functioned as the control. This teacher and her 
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classroom is known as CLA. Having a control group supported the detection, isolation, and 

identification of possible causational factors and confounding variables impacting the overall 

effects of the treatment (Creswell, 2009).  

Research Site  

Midwest Elementary School housed approximately 419 general education students, 

kindergarten through fifth grade during the time of the study (September 2014–January 2015). In 

addition to the 419 general education students, approximately 40 pre-school students and two 

classes of cognitively impaired students in self-contained classrooms also attended this school. 

The general education students assigned to this school lived within the geographical boundaries 

defined by the school district’s administration and Board of Education.  

Approximately 67% of the school’s student population were Caucasian. Hispanic, Asian, 

and African-American students were also members of the school’s demographics. Some families 

were transient, meaning they attended school for a short time period, moved, and then returned to 

Midwest Elementary. Approximately 40% of the student population were eligible for 

government-funded free or reduced lunch. Thus, this school was under a targeted assistance plan 

for Title I funds. Student attendance rate was 97%.  

During the study, the employees at the school consisted of one principal, 47 staff 

members, and two secretaries. For K-5 general education teachers, each grade level was 

comprised of a three-member team. Each team member was near other team members to 

facilitate collaboration. Grade level teams collaborated two or more times each week to plan 

instruction and discuss student progress. 

All core academic subjects were taught by highly qualified teachers as defined by 

Midwest State’s Department of Education and Midwest School District. Of the professional staff 
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working at Midwest Elementary, eight staff were endorsed with bachelor’s degrees and 22 staff 

members were endorsed with master’s degrees. The principal was the instructional leader for 9 

years with minimal staff turnover during the previous 5 years.  

Parent enrollment in the school’s PTA organization was high, with 100% participation 

for male students and 99% participation for female students. Midwest Elementary school’s 

community took pride in their collaborative work and pledged to ensure quality learning 

experiences for all students attending this school (Midwest School’s Annual Report, 2013–

2014).  

All third-through fifth-grade students at Midwest Elementary School were tested using 

the 2014–2015 statewide assessment for mathematics.1 More than half (58.1%) of all third-

graders received a score of proficient, 24.2% were designated partially proficient, and 17.7% 

were deemed not proficient. For the 2015 fourth-grade NAEP assessment, 100% of their fourth-

graders participated (NCES. 2015a). Assessment data suggested that only 18% of their students 

were considered proficient or advanced in mathematics. The remaining 82% of fourth-graders 

were considered basic or below proficient. 

Study Subjects/Participants 

Several variables justified the selection of Midwest Elementary School’s second-grade 

teachers as the teacher-subjects for this study. The second-grade teachers strengthened 

pedagogical skills for teaching mathematics through their participation in school-wide training 

the previous school year. Teachers learned how to facilitate mathematical discussions using 

______________________________________________________________________________ 

1 It was not possible to compare Midwest Elementary third-grade state test scores from 2013‒ 

2014 to third-grade students’ state test scores in 2014‒2015 due to a change in the state 

assessment and the assessment’s parameters (i.e. spring- vs. fall-testing windows).  
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inquiry-based questions. They implemented the use of mathematician’s notebooks. They also 

learned about the launch, exploration, and summary/reflection segments of the “re-envisioned” 

instruction model. 

A second motive for selecting this team was that there were many similarities amongst all 

three teachers. All three teachers held master degrees. All were considered highly effective for 

teaching literacy, while none specialized in teaching mathematics. All taught professionally for 

10 to 11 years and taught second-grade students for at least 5 years. Each had served on a 

curriculum team either at their school or at the district level. Teachers’ similarities reduced the 

number of confounding variables impacting the results of this study (Creswell, 2009).  

A third motive for this selection was that Midwest Elementary School’s principal 

considered the second-grade teachers a high-functioning team. She often observed them working 

together, discussing and planning instruction in all subject areas: literacy, mathematics, writing, 

social studies, and science. They each taught math in 60- to 75-minute time blocks per school 

day. They used their district’s Benchmark Assessments to guide their instructional planning and 

used their district’s mathematics program as their main resource for mathematics instruction. 

When one of the teachers accessed an additional resource, she shared it with the others (e.g. 

“Teachers Pay Teachers”). The final and most important variable pertained to teachers’ high 

expectations for students. Each teacher facilitated a classroom environment where students 

worked to make sense of mathematics. Teachers expected students to record their ideas in their 

mathematician’s notebooks and each teacher expected her students to make meaning using 

constructivist and socio-constructivist principles.  

Like the larger school population, many of the second-grade students in these classrooms 

were Caucasian. Approximately 25% of the students, however, represented other ethnicities 
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including Hispanic, African-American, Asian, and Russian. Two migrant families had second-

graders attend school at the beginning of the school year. These families left mid-year and came 

back the following fall. Approximately one-fifth to one-third of the students in each classroom 

were eligible for federally-funded free-and-reduced lunch plans. At the beginning of the school 

year, each classroom had close to the same ratio of boys to girls: 13 males, 9 females; 12 males, 

9 females; and 12 males, 10 females.  

To control for regression and confounding variables (Creswell, 2009), exclusion criterion 

did exist in this study. Students who received alternative or additional mathematics support 

during the school day were excluded from the data set. Three second-grade students attended a 

third-grade classroom for mathematics instruction. Naturally, these students were excluded from 

the data set. One second-grade student required special education services and did not participate 

in general mathematics instruction. This student was excluded as well. Additionally, three 

second-grade students required English-Language services during mathematics instruction. 

Although these students participated in daily mathematics instruction along with their identified 

classmates, these students’ data were excluded from the study. Three students moved out of the 

school boundaries before the study ended. These students were not included in the data set. All 

student data analyzed and referenced in this study involved students who received Tier I core 

instruction from their assigned general education teacher during the school day and remained at 

the school site throughout the study. All students in this study, including Tier II and III students, 

did not receive additional educational services or support beyond the classroom. This decision 

reduced the threat of outside influences impacting the results of the study. 
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Overview of Methods and Procedures 

Specific methods and procedures were used to conduct this study from September 2014 

to January 2015 and one time in May 2015. As an active participant, all procedures were enacted 

or directed by the primary investigator/ researcher (DeWalt & DeWalt, 2011). Categories of 

procedures were classified under general headings. These headings included: recruitment, 

screening, data analysis, monitoring, teacher implementation support, and intervention. While 

most classifications are self-explanatory, “intervention” described methods and procedures 

unanticipated in the original proposal for this study.  

An overview of enacted procedures is presented here. General procedures are sequenced 

as enacted. Following this brief overview, more specific details regarding methods and 

procedures are provided in subsequent sections in this chapter, as well as in Appendix A. 

The first and most important procedure was to seek for and acquire IRB approval to 

conduct this study. Approval was granted in September 2014 by the University of Michigan’s 

IRB Committee. The remaining actions follow the sequence as described below: 

1. Recruitment ‒ Sought and gained consent from participating subjects: district 

administrator, school principal, teachers, parents, and students. 

2. Screening ‒ Conducted personal interviews with teachers and students using 

structured questionnaires. 

3. Screening ‒ Conducted formative assessment tasks and the Adapted Cognitive 

Structure Assessment (Tile Task, Number Line Assessment, and Cognitive Structure 

Protocol). 

4. Data analysis ‒ Analyzed student results from the formative assessment tasks to 

identify instructional tasks used in the two experimental classrooms.  
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5. Teacher implementation support ‒ Modeled instruction using the “re-envisioned” 

instruction model, the cube task and arrow roads task with the two experimental 

groups. 

6.  Monitoring ‒ Conducted first observations of classroom instruction in all classrooms. 

Created scripted field notes of observations and photographed instructional artifacts. 

7. Teacher implementation support ‒ Conferred with teachers relative to their 

implementation of “re-envisioned” instruction model and instructional tasks. 

Discussed student understanding of mathematical concepts.  

8. Teacher implementation support ‒ Provided the instructional resource Number Talks 

to the two experimental teachers. Modeled subitizing lessons for CLB and CLC 

Teachers with students. 

9. Screening – CLA, CLB, and CLC Teachers administered the pre- i-Ready screening 

assessment to their students in the school’s computer lab, October 2014. Copies of 

student results were printed by each classroom teacher and shared with the researcher. 

10. Teacher implementation support ‒ Provided mathematics games to the two 

experimental teachers to implement with their students (see Table 3.1). 

11. Monitoring – Observed student engagement with specific mathematical tasks and 

games. Generated scripted field notes of observations and photographed instructional 

artifacts. 

12. Intervention – Provided support and resources to the two experimental teachers 

including a journal article for Counting Collections, student observation data, 

Benchmark Assessment I (BA) item analysis. 

13. Teacher Implementation Support ‒ Modeled counting task and pattern task. 
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14. Monitoring – Observed student engagement with specific mathematical tasks. 

Generated scripted field notes of observations and photographed instructional 

artifacts. 

15. Intervention ‒ Conducted an item analysis of BA II assessment items. Designed and 

created mathematics lessons aligned to the school district’s Benchmark Assessment 

II, to the “re-envisioned” instruction model’s conceptual framework, and to the 

district’s mathematics program. These lessons were given to the teachers of the 

experimental groups.  

16. Monitoring – Conducted second observation of all teachers’ classroom instruction. 

Conferred with teachers to improve instruction relative to implementation of “re-

envisioned” instruction model and students’ current understanding of mathematics. 

Generated scripted field notes and photographed instructional artifacts. 

17. Intervention ‒ Supported CLA, CLB, and CLC Teachers by testing teacher-identified 

students relative to their understanding of numbers and operations. Provided teachers 

with assessment results and suggestions for instructing each student.  

18. Teacher implementation support ‒ Modeled novel tasks (open number line) for the 

two experimental teachers. Engaged teachers in reflective practice.  

19. Monitoring ‒ Conducted final classroom observations. Generated scripted field notes 

and photographed instructional artifacts. 

20. Screening – CLA, CLB, CLC Teachers conducted the post- i-Ready screening 

assessment in the school’s computer lab with their students. Copies of student results 

were printed by each classroom teacher and shared with the researcher. 
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21. Screening – Conducted post- Number Line Assessment to determine students’ 

mathematical progress in spatial orientation. Conducted post- Adapted Cognitive 

Structure Assessment with each student. Assessed student-perceptions for learning 

mathematics with a questionnaire.  

22. Screening ‒ Conducted final data collection. Teachers shared copies of the end-of-

year i-Ready assessment results with the researcher. Researcher conducted informal 

teacher interviews and students’ self-analysis and reflections of their growth in 

mathematics. 

23. Data analysis ‒ Transcribed all qualitative data. Analyzed teachers’ classroom 

instruction using the M-Scan rubric and questioning protocols. Analyzed students’ 

qualitative data and coded for themes. Used specific instruments to conduct statistical 

tests to compare students’ pre- to post- to end qualitative i-Ready assessment results. 

The above information presents a general overview. For replication purposes, the following 

information offers further details about the procedures and methods used to conduct this study. 

The headings correlate to the classifications of procedures previously mentioned.  

Recruitment. Midwest school district’s Executive Director of Instruction, Technology, 

and Assessment, Midwest Elementary school’s principal, second-grade teachers, respective 

parents and students were invited to participate in this study. The previous spring, the executive 

director gave his consent in electronic form. In a formal meeting conducted the first week of 

school, the principal and teachers signed forms documenting their consent for participation. 

These documents provided brief descriptions of the study, an outline of the work, expectations of 

teachers and researcher, and possible benefits to both teachers and students. The principal’s and 

teachers’ concerns and questions were discussed and addressed at that time. 
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Parents attended Midwest Elementary school’s curriculum night during the second week 

of school. Second-graders’ parents were informed about the purpose and design of the study at 

this meeting. After second-grade teachers explained second-grade curriculum and student 

expectations, the school’s principle invited parents to learn about the proposed research study. 

The study’s purpose, description, and expectations were shared by the researcher via a Power 

Point presentation and consent forms.  

Both forms of communications informed parents. Parents were notified that all second-

grade students would participate in daily mathematics instruction. They were told that two 

classrooms would receive instruction using the “re-envisioned” instruction model and 

mathematical tasks, while the third classroom would receive instruction using the district’s 

mathematics program. Parents were informed that student work would be collected and analyzed 

and that their child’s data would be protected by school protocols in accordance with Federal 

Privacy Laws. This meant that all identifying information regarding each child would be 

transformed into numerical codes and stored in a secured physical and electronic location within 

the researcher’s home.  

Nevertheless, parents’ main query was, “Which of the two classrooms will be the 

treatment and which classroom will be the control?” The school’s principal requested that this 

information be kept private. She believed this information was too sensitive for students and 

their families. Consent forms were provided at the end of the meeting to parents in attendance 

without divulging this information. Families who were not in attendance received personal letters 

describing the study, accompanied by corresponding consent forms. Teachers’ classroom rosters 

structured the gathering and documentation of parent consent forms in early September 2014.  
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Individual student assent was sought, once parent consent was achieved. Individual 

student meetings were conducted utilizing a protocol explaining the study in student-friendly 

language. Each child was informed that he/she would be included in the gathering of qualitative 

data (e.g. mathematician’s notebooks and interviews). After students attended to the brief 

description of the purpose and expectations, the researcher asked each child if he/she wanted to 

participate. If the child agreed to the conditions of the study, he or she signed an assent form. 

From all three classrooms, 34 students were granted permission by their parents to participate, 

while 33 students agreed to the conditions for their participation. Students’ assent and 

participation generated the collection of qualitative data analyzed in this study.  

Screening and monitoring. Screening measures, assessment tasks, questionnaires, and 

personal interviews were vital methods for assessing and monitoring teachers’ and students’ 

mathematical content knowledge and skillsets. While the i-Ready screening data was not 

available until the second week of October, the researcher utilized two formative assessment 

tasks Mid-September 2014 to screen all students for number sense. NCTM (2000) defined 

number sense as having fluid and flexible ways of thinking about and working with number and 

operations, as well as “moving from initial development of counting techniques to more-

sophisticated understandings of the size of numbers, number relationships, patterns, operations, 

and place value” (p. 79).  

The following tasks were used to assess students’ development of number sense. The first 

formative assessment task, How Many Squares? was administered to all three student groups 

mid-September 2014. The task originated from the mathematics program Investigations in 

Numbers, Data and Space, Grade 1, Unit 8 (Russell, 2007, p. 76). This assessment task required 
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students to identify the cardinality of a set of paper tiles using their understanding of counting 

and number combinations.  

Material preparation included 25 sets of paper tiles that were precut into single squares, 

into sets of two-square tile strips, and five-square tile strips, with each set contained in individual 

plastic bags. To conduct the assessment, a plastic bag of paper tiles was distributed to each 

student. Students were directed to work individually to arrange their tile set in ways that made 

sense to them. To complete the task, students arranged the tiles and identified the cardinality of 

the set by counting tiles. They drew a pictorial representation of their tile arrangement onto a 

blank sheet of paper and recorded the way they calculated the total number of tiles. Students’ 

resulting pictorial representations and equations illuminated their abilities to transfer enactive 

representations into iconic and symbolic representations. Data analysis also provided important 

information relative to students who correctly identified the cardinality of the set, recorded 

numerals accurately, recognized numeric relationships amongst tiles (2 two-tile sets + a tile = 5 

tiles), and used symbols indicating addition and equality.  

The second formative assessment task was an Open Number Line Task. This task was 

created by the researcher. Research studies indicated strong evidence linking students’ 

visuospatial skills to their mathematical performance and achievement (Gunderson et al., 2012; 

Presmeg, 2014). Thus, the open number line task assessed students’ cognitive structures 

involving visuospatial orientation, as well as students’ mathematical understanding of one-to- 

one correspondence, counting, numerical magnitude, numerical relationships, and equal-

distancing of consecutive multiples.  

The Open Number Line Formative Assessment Task consisted of three open number 

lines parallel to each other on a single page (see Appendix F). Each number line positioned 0 on 
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the far left and 100 on the far right. Students were expected to place the remaining numbers on 

each number line. The first number line required students to count, place, and record multiples of 

ten beginning at 0 and ending at 100. Parallel to the first number line was a second number line. 

The second number line required students to count, place, and record multiples of 20 from 0 to 

100. A third number line was parallel to the first and second number lines. The third number line 

required students to count, place, and record multiples of 25 from 0 to 100.  

Specific performance criteria were identified to analyze student data. A running record 

was used to document individual student performances. Students who completed the task 

correctly demonstrated their understanding of number sequences. They demonstrated their skills 

for skip counting by 10, 20, and 25 by placing multiples of these numbers using respective 

distances on corresponding number lines. Student data and subsequent analyses from the tile and 

number line task informed task selection for the two experimental groups involved in this study.  

Multiple methods were used to screen and monitor teachers’ content knowledge and 

pedagogical skillsets for teaching mathematics. A semi-formal interview was conducted with 

each teacher at the beginning of the study. Teachers were asked about their strengths and 

challenges in teaching mathematics. In addition to the interviews, teachers’ mathematics 

instruction was observed several times throughout the study; and, the M-Scan Rubric supported 

the analysis of each teacher’s pedagogical skillset used to implement their lessons. A face-to-face 

debriefing occurred with each teacher after each observed lesson. Discussions revealed teachers’ 

knowledge of mathematical content and use of mathematical representations for instruction (or 

lack thereof). Teachers also shared their observations regarding student understanding. Teachers’ 

choices for instructional tasks also illuminated their level of understanding of Common Core 

State Standards for Mathematics (NGA & CCSSO, 2010)  
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Teacher implementation support. Implementation support was provided on an “as-

needed” basis determined by the experimental teachers or by the researcher for the duration of 

the study. CLB and CLC Teachers immediately requested implementation support at the 

beginning of the study. They wanted to observe the researcher modeling lessons with their 

students using the mental and externalized processes and actions supported by the “re-

envisioned” instruction model.  

Modeling instruction provided teachers first-hand experiences in observing the cognitive 

processes and pedagogical actions required for effective implementation. Modeling lessons 

reduced variability in teacher implementation. For example, teachers observed the enactment of 

lessons utilizing mathematical representations in all forms: enactive, iconic, and symbolic. 

Teachers observed instructional practices that stimulated students’ cognitive structures (or 

schema) and reflective awareness. They witnessed the use of different question types for 

engaging students in higher-levels of cognitive thought. During the enactment of the launch and 

summary/reflection segments of lessons, teachers listened as students participated in 

mathematical discourse. Equally important, teachers observed their students using constructivist 

and socio-constructivist processes to record their mathematical observations and thinking in their 

mathematician’s notebooks. Teachers’ observations enabled them to implement the “re-

envisioned” instruction model using the same practices and processes. 

The experimental teachers also engaged in reflection and dialogue after observing a 

modeled lesson. Student learning and teachers’ implementation of mathematics instruction were 

discussed. The dialogue between researcher and teacher supported teachers’ decisions regarding 

next steps for their mathematics instruction.  
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Specific tasks were selected and provided to the experimental teachers to mediate the 

development of students’ number sense and to develop their cognitive structures, essential for 

learning mathematics (See Table 3.1). The literature review also illuminated vital concepts and 

processes for developing students’ sense of number. These processes included subitizing, 

estimating, and counting (Bryant, 2005; Jordan et al., 2006; Muldoon et al., 2012). It was 

essential students engaged with tasks that required them to visualize quantities in a variety of 

contexts (Duval, 2014), compose and decompose numbers in flexible ways, calculate using 

number relationships, and solve basic arithmetic combinations and story problems (Van de Walle 

et al., 2014).  

One of the first mathematics tasks selected for CLB and CLC Teachers and students was 

the Cube Task. Stacks of multi-linked cubes introduced students to the concepts of number 

patterns, relationships, equalities, and counting. To focus students’ attention on these concepts, 

pairs of students were given three individual stacks of cubes: a stack of 2 cubes, a stack of 4 

cubes, and a stack of 6 cubes. They were then asked to analyze the representations through the 

teacher’s prompt, “What do you notice?” (Garner, 2007). After a minute or so, students began to 

record their observations in their mathematician’s notebooks. The facilitation of mathematical 

discourse supported the unpacking and sharing of students’ initial perceptions and observations. 

Another instructional task teachers used with their students was Arrow Roads. This task 

engaged students in considering the placement of numbers on a hundred chart. It also supported 

students using number relationships to add and subtract numeric values. An arrowhead directed 

students’ move on the hundred chart. A sequence of arrowheads formed an “arrow road.” For 

example, students started at 17 on the hundred chart and followed the directions of “arrows,” one 

arrow at a time. To move on the hundred chart from 17 to another number, students needed to 
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notice the direction of each arrowhead. The direction of the arrowhead told students to move one 

space, either up (-10), down (+10), to the right (+1) or to the left (-1). After completing the 

sequence of directional moves, students transformed an Arrow Road into symbolic equations, 

recording addition and subtraction of two-digit numbers. 

Another task was called Counting Collections. Research demonstrated that counting tasks 

supported students in developing more efficient and effective ways to count objects and keep 

track of those counts (Schwerdtfeger & Chan, 2007). This task was enacted three-to-four times 

with CLB and CLC students during the study to mediate the development of students’ cognitive 

structures essential for conservation of constancy. From a mathematical perspective, a counting 

collections task engaged students in oral counting, organizing sets of objects, determining 

cardinality of a set, recording numbers, and writing equations. Once students organized and 

counted their collections, students drew pictorial representations depicting the ways they 

organized their collections. Students’ pictorial representations revealed their existing abilities 

and skills to transfer enactive representations into iconic and symbolic forms (Bruner, 1966; 

Bryant et al., 2008) 

Other forms of implementation support that teachers were given were instructional 

resources. One important instructional resource was titled Number Talks: Helping Children Build 

Mental Math and Computation Strategies (Parrish, 2010). It included subitizing tasks and 

operation tasks. Subitizing tasks were provided to CLB and CLC Teachers to develop students’ 

number sense and flexibility using numbers and operations.  

Although the book’s author designed the collection of tasks specifically to increase 

students’ abilities to perform mental calculations, the researcher of this study hypothesized that 

teachers’ use of Number Talks would also mediate the development of students’ cognitive 
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structures: visualization, subitizing, quantification, and conservation of constancy. All were vital 

cognitive processes for mediating the development of students’ conceptual understanding and 

achievement in mathematics (Bryant, 2005; Geary, 2011b; Jordan et al., 2006).  

To support teacher’s implementation of the Number Talks resource, three tasks were 

modeled with CLB and CLC students. One task involved cards with dots or circles. Another task 

involved the use of base-ten blocks. A third task involved students analyzing number patterns. 

The first task involved “flashing” for approximately 3 to 5 seconds, a handmade dot card 

containing different groupings of circles or dots. Once a dot card was flashed, students utilized 

their perceptual and conceptual subitizing skills to mentally calculate the number of dots on the 

card (Clements & Samara, 2007). After the two experimental teachers observed the processes for 

implementing subitizing tasks, they replicated the same processes with their students using 

additional dot cards, base-ten blocks, and number patterns.  

In addition to the Number Talks book, other tasks and resources aided CLB and CLC 

Teachers’ alignment of their mathematics instruction to the conceptual framework of the 

instruction model. Table 3.1 provides the reader an overview of these resources. Garner’s work 

(2007) supported the correlation between specific tasks and the cognitive structures being 

mediated by those tasks. The unpacking of each task helped identify the associated mathematical 

concepts, skills, and Common Core Standards of Mathematical Practice (NGA & CCSSO, 2010). 

Both CLB and CLC Teachers were asked to use these games and tasks with their students; and, 

they often used them during the exploration segment of the lesson. An important caveat is that all 

lessons, tasks, and games used throughout the study were provided by the researcher or were 

found within Midwest School District’s standards-based (and research-based) mathematics 

program. Providing the same instructional resources to the two experimental teachers eliminated 



A “RE-ENVISIONED” INSTRUCTION MODEL  103 

 

 

confounding variables between CLB and CLC Teachers’ implementation of the instructional 

tasks.  
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Table 3.1 

Tasks Used to Mediate the Development of Students’ Number Sense and Cognitive Structures  

Mathematical Tasks Cognitive Structures Mathematics Skills and Concepts 

Number Talks (subitizing) 

 

Quantification/Subitizing 

Visualization 

Pattern recognition 

Conservation of Constancy 

Logical reasoning 

Memorization 

Subitize 

Compose and decompose number 

Basic facts 

Addition 

Subtraction 

Mental computation strategies – 

making ten, doubles, counting on, 

counting all 

Use number relationships to solve 

problems 

Reason abstractly and 

quantitatively 

Attend to precision 

Look for and making use of 

structure 

Look for and express regularity in 

repeated reasoning 

Counting Collections 

 

Problem solving 

Symbolic representation 

Quantification 

Number magnitude 

Conservation of constancy 

 

One to One correspondence 

Cardinality 

Quantification 

Adding groups of 1, 2, 5, 10 

Compose and decompose number 

Estimation 

Associative property 

Attend to precision 
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Represent a quantity in multiple 

ways –concrete, pictorial, and 

symbolic 

Reason abstractly and 

quantitatively 

Model with mathematics 

Look for and make use of 

structure 

Puzzles 

Number Lines 

 

Quantification 

Spatial orientation 

Pattern recognition 

Visualization 

Verbal reasoning 

Logical reasoning 

Spatial relationships 

Patterns 

Count 

Equivalence 

Part/whole relationships 

Make sense and persevere in 

problem solving 

Model with mathematics 

Use appropriate tools strategically 

Look for and make use of 

structure 

Games  

On/Off Game (subitizing, 

missing addend) 

Making Complements of 

Ten or Twenty (Card 

game using numerical 

values from 0 – 9. 

Students had a choice to 

place cards face up or 

place cards face down as 

in a memory game). 

Place Value Game 

Compatible Pairs 

 

Quantification/Subitizing 

Visualization 

Pattern recognition 

Conservation of Constancy 

Logical reasoning 

Memorization 

Subitize 

Compose and decompose number 

Basic facts 

Addition 

Subtraction 

Mental computation strategies – 

making ten, doubles, counting on, 

counting all 

Place value 

Estimation 

Use number relationships to solve 

problems 
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Commutative and identity 

properties of operations 

Pictorial and symbolic 

representations 

Attend to precision 

Reason abstractly and 

quantitatively 

Construct viable arguments and 

critique the reasoning of others 

Look for and make use of 

structure  

 

All three teachers were given autonomy and decision-making power to meet their 

students’ instructional needs daily. CLA Teacher, however, was restricted to use and teach her 

mathematics lessons as designed by the authors of her district’s mathematics program.  

Intervention. Teachers’ needs for instructional resources continued as gaps in students’ 

mathematical understanding became evident. When teacher’s content or pedagogical knowledge 

were challenged; and, as time drew near to administer Midwest school district’s Benchmark 

Assessments (BA), CLB and CLC Teachers requested additional consultation and 

implementation support.  

For example, in November 2014—two weeks prior to the first Benchmark Assessment’s 

administration (BA I)—CLB and CLC Teachers stopped using the mathematics tasks provided 

for this study. Instead, they used lessons featured in their district’s standards-based mathematics 

program. The two experimental teachers expressed anxiety for their students’ success on the 

district’s BA I. The lessons within their district’s program directly correlated to the assessment 

items found on the BA and teachers had yet to explicitly teach the content of the BA. Thus, they 

attempted to explicitly teach those concepts two weeks prior to administering the assessment. 



A “RE-ENVISIONED” INSTRUCTION MODEL  107 

 

 

Attending to teachers’ instructional concerns and attempting to reduce their anxieties, the 

researcher analyzed the assessment items found on BA I and BA II. Each item was unpacked for 

mathematical concepts and for the level of cognitive demand. Each item was linked to tasks and 

lessons taught prior to the first test’s administration. This analysis was provided to the two 

experimental teachers.  

To support teachers and students meeting the mathematical demands of the second 

quarter Benchmark Assessment, BA II, the researcher analyzed the next two units of study in 

their district’s mathematics program. The researcher identified specific lessons from their 

district’s mathematics program that aligned to BA I and BA II assessment items. These lessons 

were “re-designed” to meet the theoretical and conceptual frameworks of the instruction model. 

An example of a “re-designed” lesson is the Change-to-More lesson described later in this 

chapter.  

The “redesigned” lessons included unit goals, teacher directions and questions, specific 

representations intended to stimulate students’ cognitive structures, and identified tasks for the 

exploration segment of the lesson. The launch of a lesson was designed to bring students’ prior 

mathematical knowledge to the forefront by stimulating their cognitive structures and developing 

conceptual understanding for whole number and operations.  

These “re-designed” lessons engaged the experimental students in the analysis of the 

figural units embedded in the various mathematical representations. Figural units are the 

different elements or attributes of an object or representation a student “quickly recognizes as 

significant or informative” (Duval, 2014, p. 160). Students worked to construct and socially co-

construct their own understanding of the mathematical representations via memory, prior 
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experiences, visualization, and other sense-making tools, to give meaning to the figural units 

(Garner, 2007).  

All three teachers requested another intervention approximately mid-way through the 

study. Three to four students struggled learning specific mathematical concepts in each 

classroom. They struggled identifying a digit’s place value correctly. They were challenged by 

composing numbers in the hundreds. Naturally, teachers asked for support for identifying their 

students’ understanding and knowledge gaps relative to the numbers and operations learning 

continuum. Teachers also requested suggestions for instructional tasks to fill and bridge students’ 

knowledge gaps because they were unfamiliar with this learning continuum.  

To determine students’ number knowledge, an assessment protocol titled the Number 

Knowledge Test was conducted with students (Griffin, Clements, & Samara, 2015). This 

developmental test was designed to orally assess students’ conceptual understanding of 

foundational concepts for number and operations, as well as detect their sophistication for 

problem-solving. After analyzing student data, the researcher provided each teacher with student 

reports, including a personalized list of appropriate tasks and activities intended to “fill gaps” in 

students’ mathematical knowledge and understanding. Teachers did not use this information to 

support their students as reported by each teacher. 

In summary, all methods and procedures for conducting this study were designed to do 

the following: 

• expand experimental teacher’s pedagogical practices and conceptual understanding of 

mathematics 

• align experimental teachers’ instructional practices to the conceptual framework of 

the “re-envisioned” instruction model 
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• provide experimental teachers with tasks that:  

o stimulated and mediated the development of students’ cognitive structures 

o increased students’ conceptual understanding for numbers and operations 

• reduce teachers’ anxieties for supporting student success on their district’s 

Benchmark Assessment 

• reduce experimental teachers’ cognitive and instructional load due to their 

participation in this study 

• reduce variability in the experimental teachers’ implementation 

Research Questions 

Four research questions were posed in Chapter 1. The first three questions pertained to 

the effects the model had on students’ mathematics achievement, mathematical learning 

difficulties, and the development of students’ cognitive structures. The fourth research question 

pertained to students’ beliefs and practices about learning mathematics. All four research 

questions, accompanied by their null and alternative hypotheses, are presented below.  

1. To what extent did teacher implementation of the “re-envisioned” instruction model 

influence students’ mathematics achievement? 

H10: The change in students’ mathematics achievement scores between students 

who received treatment and students in the control group were not statistically 

different as determined by pre- to post to end i-Ready Universal Screener 

assessments (Curriculum Associates, 2015). 

H1a: The change in students’ mathematics achievement scores between students 

who received treatment and students in the control group were statistically 
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different as determined by pre- to post to end i-Ready Universal Screener 

assessments (Curriculum Associates, 2015). 

2. Did teacher implementation of the “re-envisioned” instruction model minimize 

students’ learning difficulties in mathematics? In other words, did teacher 

implementation of the model move students identified at Tier II and Tier III levels to 

Tier I and Tier II levels respectively as determined by the pre- to end tests from the i-

Ready Universal Screening Assessment (Curriculum Associates, 2015)?  

H20: When comparing students in the two treatment groups to students in the 

control group, there were no statistical differences in count patterns representing 

students’ decrease (improvement) in Tier Levels from pre- to end according to the 

i-Ready Universal Screener assessment data.  

H2a: When comparing students in the two treatment groups to students in the 

control group, there were statistical differences in count patterns representing 

students’ decrease (improvement) in Tier Levels from pre- to end according to the 

i-Ready Universal Screener assessment data.  

3. To what extent did teacher implementation of the “re-envisioned” instruction model 

influence the development of students’ cognitive structures, specifically spatial 

orientation and conservation of constancy? 

H30: When comparing the treatment groups’ development of their cognitive 

structures to the control group’s development of their cognitive structures, there 

were no statistical differences as determined by pre- to post- test scores on the 

Adapted Cognitive Structure Assessment results. 
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H3a: There were statistically significant differences in students’ development of 

their cognitive structures between students who received treatment and students 

who did not as determined by students’ pre- to post- test scores on the Adapted 

Cognitive Structure Assessment results. 

4. By the end of this study, to what extent did teacher implementation of the “re-

envisioned” instruction model influence students’ beliefs and practices for learning 

mathematics? 

H40: By the end of the study, qualitative differences in students’ beliefs and 

practices for learning mathematics did not exist between students who received 

treatment and students who did not as indicated by students’ and teachers’ 

qualitative data.  

 H4a: By the end of the study, qualitative differences in students’ beliefs and 

practices for learning mathematics existed between students who received 

treatment and students who did not as indicated by students’ and teachers’ 

qualitative data. 

Data Instruments, Methods of Collection, and Analyses 

To establish validity and reliability of the study’s findings, multiple assessment measures 

and concurrent methods for gathering quantitative and qualitative data were essential. Such 

methods and measures detected, isolated, and assessed confounding variables naturally occurring 

in authentic classrooms. Some of the measures, methods, and procedures used to reduce 

variability and validity threats were explained in previous sections in this chapter. Additional 

measures are detailed below. 
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Quantitative instruments: Methods of data collection and analyses. Students’ 

achievement levels pertaining to number and operations were assessed three times throughout the 

study, October 2014 (pre-), January 2015 (post-), and April 2015 (end-). The measurement 

instrument was Midwest School District’s i-Ready Screening Tool (Curriculum Associates, 

2015).  

The i-Ready Assessment is a criterion-referenced mathematics screening tool 

(Curriculum Associates, 2015) aligned to the Common Core State Standards for Mathematics 

(NGA & CCSSO, 2010). It is an online computer adaptive program that monitors students’ 

levels of mathematical proficiencies across five domains: (1) Overall Math Levels; (2) Number 

and Operations; (3) Algebra and Algebraic Thinking; (4) Measurement and Data; and (5) 

Geometry.  

The district’s main purpose for using the screener was to monitor students’ growth and 

achievement levels in reading and mathematics. The screener also identified students’ 

instructional Tier Levels and provided teachers with specific information prescribing 

instructional interventions. The principals and instructional support staff accessed this 

information to support their MTSS program. The researcher, however, used the i-Ready student 

results to provide statistical evidence of the effects the “re-envisioned” instruction model had 

upon students’ mathematics achievement and students’ needs for Tier II and Tier III 

interventions.  

 Pre-assessment data provided baseline data of students’ mathematics achievement. Post-

assessment data occurred at the end of treatment. The end data occurred late April 2015 which 

provided specific information four months after treatment. Pre- to post- and end data allowed for 
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comparisons within groups and between groups relative to students’ mathematics achievement 

and instructional Tier Levels.  

After pre-, post-, and end-of-school year data were gathered, paired t-tests and two-

sample t-tests were run to determine statistical correlations and variances within each group and 

between the treatment and control classrooms. The same tests were conducted to determine 

achievement growth amongst students (low-scorers) recommended for Tier II and Tier III 

interventions. Pearson Chi-Square Tests were conducted to compare patterns of students’ 

movement between Tier Levels, pre- versus end. This analysis helped determine if the “re-

envisioned” instruction model was effective for reducing the number of students identified at 

Tier II and Tier III levels of instruction.  

A modified version of Garner’s instrument (2007) was used to assess students’ 

development of their cognitive structures for spatial orientation and conservation of constancy 

(see Appendix B). This instrument was adapted from Garner’s (2007) Large Group Assessment 

of Basic Cognitive Structures and Square Search Assessment (see Appendix C). Three main 

sections comprised this assessment. The first section’s three test items assessed conservation of 

constancy. The second section’s three items again tested for conservation of constancy. The third 

section assessed students’ spatial orientation.  

The same assessment instrument was used pre- and post- with all three student groups. 

The pre-assessment was administered in September 2014. It established baseline data depicting 

the initial stages of development relative to spatial orientation and conservation of constancy. 

The post-assessment data was administered in January 2015. There was a three-month interval 

between pre- and post- administrations. This action diminished the threat of testing and 

instrumentation (Creswell, 2009).  
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Students’ responses were hand-scored and quantified by the researcher to detect and 

analyze statistical changes in students’ growth or development of their cognitive structures pre- 

to post. Wilcoxon Signed Rank Tests and Z-tests for two proportions were conducted for 

statistical analysis. Students’ pre- and post-scores within each group and between groups were 

analyzed and compared. The use of these statistical analysis instruments increased the study’s 

validity and reduced error in the final data analysis and inferences pertaining to students’ 

development of these cognitive structures (Johnson & Christensen, 2012).  

All three teachers administered two District Benchmark Assessments (BA) during the 

study. The district used student results to determine the effectiveness of teacher’s mathematics 

instruction, as well as measure and monitor students’ progress for understanding second-grade 

core content standards. Student results from the BAs were cross-referenced with student results 

from the i-Ready screening results. Cross-referencing students’ BA results with the i-Ready 

screening results indicated inconsistent student measures of mathematical understanding and 

achievement. Data from the BAs were not triangulated with the i-Ready data.  

Benchmark Assessment data was used to support the monitoring of students’ 

mathematics achievement for numbers and operations relative to district and teacher 

expectations. Data also provided an important forum for conversing with teachers about 

individual student achievement. These conversations provided a more comprehensive 

understanding of teachers’ perceptions of the BAs’ prominence in influencing their day-to-day 

decisions regarding the content focus of their mathematics lessons. Refer to Appendix G to view 

students’ Benchmark Assessment results and their i-Ready results.  

Qualitative instruments: Methods of data collection and analyses. All data were 

collected in efforts to create a full description of the processes and effects the “re-envisioned” 
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instruction model had upon second-grade students’ beliefs and practices for learning 

mathematics. Thus, the instruments, methods, and sources for gathering qualitative data were 

invaluable to this study’s findings. These sources included classroom observations followed by 

conversations containing thick descriptions of each teachers’ reflections. Teachers’ perceptions 

and reflections of their own learning, of student learning, and the challenges incurred by their 

participation in this study were noted on questionnaires and in semi-structured interviews that 

invited open and closed responses. Rich dialogues and interactions between students, between 

teacher and students, between teacher and researcher, and student and researcher were recorded 

in the researcher’s private field notebook. Lesson observations were also recorded in the 

notebook. Pages from students’ mathematician’s notebooks were photocopied and analyzed. 

Photographs of instructional artifacts were captured on a locked private cell phone. All 

qualitative documents representing teachers’ and students’ thinking and work relative to this 

study were collected concurrently throughout the study. See Appendix D for teachers and 

students interview questions, questionnaire, and surveys. 

Before data analysis and coding were conducted, transcriptions of the data were 

completed on the researcher’s locked and private computer. Teacher and student data were then 

transcribed using participants’ words, spelling, and punctuation. All qualitative data were 

manually coded by the researcher. Some data were analyzed for emerging themes. Initial 

readings and explorations of the transcriptions provided a general sense of the data and initial 

thoughts were recorded. Then, second and third readings necessitated the writing of memos, 

highlighting key words, and noting word repetitions. Patterns, similarities, and interrelated 

connections emerged and were used to reduce data into themes that were similar and diverse. 

Emerged themes and thick descriptions generated the narratives recorded in Chapters 4 and 5. 
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Other data were analyzed for specific content. For example, teachers’ mathematics 

lessons were coded for content using an analytic tool called the M-Scan Rubric (Berry III, 

Rimm-Kaufman, Ottmar, Walkowiak, & Merrit, 2012; Walkowiak, Berry III, Meyer, Rimm-

Kaufman, & Ottmar, 2014). The M-Scan Rubric was designated as a valid and reliable 

instrument for lesson analysis (Walkowiak et al., 2014). The methods and processes for 

analyzing teacher data are described next.  

Observations of teachers’ mathematics lessons were conducted multiple times throughout 

the study and used for analysis. This allowed for the detection of the confounding variables 

relative to the quality of teachers’ mathematics instruction and implementation of the “re-

envisioned” instruction model. The researcher had been trained in lesson observation while an 

employee at Midwest County Intermediate School District. This helped identify and reduce the 

influence of confounding variables relative to teacher’s instructional effectiveness.  

Lesson observations included many scripted details in the researcher’s field notebook. 

Once transcriptions of all lessons were complete, three lessons from each teacher were selected 

for analysis. These lessons correlated to the same mathematical concepts taught across all three 

classrooms. The reduction of lessons to those that addressed the same concepts was another 

attempt to control variability in interpretations of teachers’ quality of instruction. 

Lessons’ transcriptions were analyzed using nine dimensions identified by the M-Scan 

Rubric (Berry III et al., 2012). Each dimension represented a single practice of high-quality 

mathematics instruction (see Table 3.2). Authors of the M-Scan provided statistical evidence that 

their rubric was a valid instrument for observing and rating mathematics instruction (Walkowiak 

et al., 2014). Teachers’ lessons were coded using all nine dimensions. Thus, across three lessons, 

a teacher received three scores for each dimension. Once analysis was completed, the three 
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scores for each dimension were averaged to determine a mean score. All nine mean scores were 

used to describe and compare the quality of each teacher’s mathematics instruction (see Table 

3.2). 

Two protocols were used to determine and control for the variable of teacher’s practice 

relative to questioning. Once again, transcriptions of lesson observations provided important data 

regarding the types of questions teachers posed during mathematics instruction. Teacher’s 

question types constituted a vital part of mathematics instruction because they strongly influence 

the development of students’ mathematical understanding (Boaler & Brodie, 2004).  

The first protocol was sourced from Boaler and Brodie (2004). Boaler and Brodie’s 

research produced observations and thick descriptions of mathematics lessons leading to nine 

classifications of question-types. Each question type constituted a different purpose for inviting 

student participation. The nine classifications consisted of (a) gathering information; (b) using 

mathematical vocabulary; (c) exploring relationships and meanings; (d) inviting students to 

explain thinking; (e) generating discourse; (f) linking and applying concepts; (g) extending 

student thinking; (h) orienting and focusing students’ attention; and (i) establishing a context for 

learning mathematics.  

The second protocol for question-types was used to substantiate data findings from 

Boaler and Brodie’s (2004) protocol. This second protocol closely aligned to Bloom’s taxonomy 

(Way, 2001/2011). Question-types included the recalling of information, the transformation, 

interpretation and analysis of information. Descriptions also indicated questions that induced the 

cognitive processes of application, synthesis and evaluation. Identification and coding of 

teacher’s questions presented during instruction, as well as tracking frequencies of question-
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types, transformed qualitative data into quantitative data. Quantitative data triangulated with 

qualitative data provided plausible causational factors for student results.  

Lesson observations often revealed mathematical content teachers understood and did not 

understand. Informal conversations conducted after each lesson clarified the concepts and 

mathematical models the experimental teachers struggled in implementing (e.g. open-number 

line, arrow roads, etc.). Questions posed during informal conversations, on questionnaires, and in 

semi-structured interviews targeted teachers’ strengths and weaknesses for teaching 

mathematics. Teachers were also asked to provide demographic data, previous experience, and 

reflections on their learning due to their participation in this study.  

Teachers’ responses were triangulated with the numerically coded data derived from the 

M-Scan rubric (Berry III et al., 2012; Walkowiak et al., 2014) to substantiate inferences made. 

Teachers’ observations and insights relative to student learning was triangulated with students’ 

qualitative responses. The triangulation of data substantiated and augmented students’ 

achievement results.  

Additional Qualitative Measures and Analyses 

Throughout the study, students’ mathematical representations became windows into their 

mental processes, as well as personal mirrors for documenting their own mathematical growth 

(Woleck, 2001). In all three classrooms, students’ words, pictures, and drawings captured and 

represented their perceptions of mathematical representations depicting relationships amongst 

numbers, numerical patterns, mathematical properties, and other mathematical structures. 

Student notebook pages documented evidence of specific connections they made between their 

existing schema and the mathematical representations presented to them. Pages from these 

notebooks were collected, photocopied, and reviewed throughout and after the study. Thus, 
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students’ mathematician notebooks were integral resources for substantiating this study’s 

findings.  

Teachers’ mathematics lessons provided the researcher, as a participant, opportunities to 

conduct observations and unstructured open-ended interviews with students. As students worked 

through specific tasks, questions were posed, observations made, and scripted field notes of 

students’ communication were recorded in the researcher’s field notebook.  

Scripted conversations provided windows into the strategies students had for making 

sense and for constructing meaning throughout all three segments of the lesson: launch, 

exploration, and summary/reflection. Student data also provided key information for determining 

ways the mathematical tasks impacted student’s beliefs and practices for learning mathematics. 

This data was triangulated with teacher observation data and with student results from 

questionnaires and i-Ready Assessment Screening Tool (Curriculum Associates, 2015).  

Debriefings with each teacher regarding student’s mathematical understanding of 

concepts were conducted after each observed lesson. Teachers’ perceptions supported the 

narrative interpretations and descriptions of their students’ learning. The transcriptions of each 

teacher’s communications provided opportunities to look for consistencies and themes per 

teacher and between teachers.  

Classroom environments. Additional qualitative data collection pertained to the 

classroom environments teachers and students co-created. Classroom environments became 

important spaces for communicating the purposes for doing mathematics (Turner & Patrick, 

2004). To determine the socio-cultural environment within each classroom, data were collected 

by a variety of means: a teacher survey, student questionnaires, and teacher observations.  



A “RE-ENVISIONED” INSTRUCTION MODEL  120 

 

 

The teachers’ survey consisted of 14 observable student attitudes and behaviors. Such 

attitudes and behaviors exemplified important elements and variables represented within the six 

learning theories, as well as, the eight Standards of Mathematical Practices (NGA & CCSSO, 

2010). These included, but were not limited to, asking questions, using multiple representations, 

explaining and justifying mathematical thinking, making connections between and among 

concepts and representations, and self-selecting tools. Essentially, the indicators identified 

environmental conditions and behaviors necessary for implementing the “re-envisioned” 

instruction model (see Appendix E). Teachers were asked to complete the survey using a four-

point Likert scale: 

“1” indicated that a specific student behavior was observed all the time;  

“2” indicated that the behavior was observed some of the time; 

“3” indicated the behavior was observed occasionally; and,  

“4” indicated that the student behavior was not observed at all.  

Teachers recorded their observations and perceptions of their students’ behaviors three times 

throughout the study: September 2014, Mid-October 2014, and January 2015. Teacher 

perception data was then numerically recorded, totaled, and averaged. Numerical totals for each 

student behavior were then compared across all three student groups. 

To understand students’ beliefs toward learning mathematics, multiple questions were 

posed to them in January 2015, at the end of treatment. All three classrooms of students were 

asked to record individual responses to the following prompts, “What is a mathematician?” and 

“What is the work they do?” Students recorded their descriptions in their mathematician’s 

notebooks. These questions allowed for accurate inferences regarding their beliefs and 

conceptions about who mathematicians were and the work they did. Their responses were 
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collected, photocopied, and analyzed using an open-coding system. Within the first analytic pass, 

student responses revealed a list of common, yet specific words found in and across all three 

student groups. Key-words-in context and word frequencies generated the themes. Word 

frequencies were then calculated into percentages and used to compare the number of students 

expressing similar views across classrooms. 

A questionnaire was also used to determine students’ aspirations for learning 

mathematics. Students recorded all responses onto the questionnaire. For the first question, 

students had three choices to select from: “I don’t like math”; “Math is O.K.”; and “I love math.” 

After selecting their choice, students were required to justify their response. The second question 

asked students to reflect upon a concept or behavior they had learned that they felt good about. 

The third question asked students, “What do you wish you understood better in math?” Student 

responses conveyed their attitudes and interests for learning this academic subject. Again, 

common themes arose within each group. Each group’s responses were tabulated, calculated into 

percentages for comparisons and then transformed into narratives found in Chapters 4 and 5.  

 All three student groups were visited one final day in May 2015 four months after 

treatment ended. Students were asked to peruse their mathematician’s notebooks and describe, in 

words, pictures, and numbers, ways they had grown as mathematicians. This survey was 

conducted to determine students’ self-efficacy as mathematicians and identify their beliefs and 

practices for learning mathematics. Students scanned their notebooks noting their evidence onto 

paper and provided explanations. 

Student responses were collected and electronically transcribed using students’ exact 

words, spelling, and punctuation. Transcriptions were then manually coded for emerging and 

common themes. Once again, the frequencies of word repetitions within students’ explanations 
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were tabulated and calculated into percentage scores. Percentage scores and students’ exact 

descriptions provided explicit examples for ways teacher’s enactment of the instruction model, 

when compared to the control, impacted students’ beliefs and practices for learning mathematics. 

Teachers’ Mathematics Instruction as Enacted in the Study 

A total of 19 random and planned semi-structured classroom observations were 

conducted between October 2014 and January 2015 to obtain a clear understanding of the three 

teachers’ pedagogical skillsets and implementation of lessons and tasks. Lessons were scripted in 

the researcher’s private field notebook during each observation. Scripts included teacher’s 

enactment of the lesson, teacher questions, resultant student-teacher discourse, and mathematical 

representations used by teachers and by students. Descriptions of teachers’ pedagogical practices 

and representations used to launch lessons were captured in researcher’s field notes or through 

photographs taken on a private and locked cell phone. Photos of resulting student work were also 

obtained. Teachers’ levels of mathematical content knowledge were revealed through teacher’s 

classroom instruction and informal conversations and debriefings. 

Once electronic transcriptions of all nineteen lessons were accomplished, common 

mathematical conceptual themes were identified. For instance, in each classroom, lessons 

pertaining to multiplicative arrays were observed. The three lessons (one from each classroom) 

were analyzed and coded. Other mathematical concepts held in common were selected for 

analysis. These included pattern-recognition on the hundreds chart, composing and decomposing 

number, and the use of diagrams. This cross-referencing resulted in three lessons from each 

teacher being coded as part of the study’s data. Thus, a total of nine lessons were numerically 

coded using the M-Scan Rubric (Berry III et al., 2012; Walkowiak et al., 2014). 
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The M-Scan Rubric measured teacher’s use of nine pedagogical practices called 

Dimensions. Each Dimension represented a single practice of high-quality mathematics 

instruction. For example, the first Dimension or instructional practice focused on the structure of 

the lesson, specifically targeting a teacher’s logical sequencing of a lesson’s components, the 

coherency of those components, and the ways those components supported students developing a 

deeper understanding of mathematical concepts. Eight additional Dimensions were used to assess 

the quality and pedagogical skillsets of all three teachers’ relative to teaching mathematics. 

Each teacher’s lessons were analyzed using the descriptors articulated within the M-Scan 

Rubric (Berry III et al., 2012; Walkowiak et al., 2014); and, each lesson was coded using all nine 

dimensions. As a result, each teacher received three scores for each dimension which were 

calculated to determine a mean score for each dimension. Teachers received nine mean scores in 

all. Table 3.2 details the results of this analyses.  
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Table 3.2 

Mean Scores Representing Standards-Based Practices Exhibited in CLA, CLB, and CLC’s 

Mathematics Instruction across Three Lessons 

 

M-Scan Dimensions 

Scale is 1 to 7 

Low (1,2); Med (3, 4, 5); High (6, 7) 

Mean Score 

for three 

lessons for 

CLA 

(Control) 

Mean Score 

for three 

lessons for 

CLB 

(Experimental) 

Mean Score 

for three 

lessons for 

CLC 

(Experimental) 

 

Structure of Lesson 

• Logical sequence 

• Mathematical coherence 

• Promotion of deeper understanding 

 

 

4.33 

 

6.33 

 

5.67 

Multiple representations 

• Teacher use of multiple 

representations 

• Student use of multiple 

representations 

• Translation/explanation among 

representations. 

 

5.0 6.0 4.67 

 

 

Use of mathematical tools 

• Opportunity to use tools 

• Depth of use 

 

5.0 5.67 5.33 

Cognitive Demand 

• Task selection 

• Teacher enactment 

 

5.0 6.0 6.0 

Mathematical discourse community 

• Teacher’s use of discourse 

• Sense of mathematics community 

through student talk 

• Questions 

 

4.67 6.0 5.0 
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Explanation and justification 

• Presence of explanation/justification 

• Depth of explanation/justification 

 

5.33 6.33 4.67 

Problem solving 

• Students’ engagement with problems 

• Presence of multiple strategies 

• Student formulation of problems 

 

6.0 6.33 5.33 

Connections and Applications 

• Connections 

• Applications 

 

5.0 4.67 4.33 

Mathematical Accuracy 

• Accuracy in teacher presentation 

• Clarity of mathematical concepts 

• Responsiveness to students’ 

mathematical thinking 

4.33 6.0 6.0 

All three teachers obtained close mean scores on seven of the nine dimensions. Teachers’ 

mean scores ranged from a medium scale score of 4.33 to a high scale score of 6.33. The two 

dimensions exhibiting the greatest difference in mean scale scores between the two experimental 

groups and the control group were the Structure of the Lesson and Mathematical Accuracy. 

Structure of the Lesson referred to the logical sequencing of a lesson’s concepts, mathematical 

coherence, and the promotion of deeper understanding. The National Research Council (2012) 

defines “deeper learning” as a process whereby individuals can apply and transfer knowledge to 

new contexts and situations. For this dimension, CLA Teacher obtained the lowest mean score 

4.33. CLC Teacher’s mean score was 5.67 and CLB Teacher scored 6.33.  

The dimension for Mathematical Accuracy consisted of three descriptors: accuracy in 

teacher presentation, clarity of concepts, and teacher’s responsiveness to students’ thinking. 

Specifically, mathematical accuracy pertained to ways mathematical concepts were presented 
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throughout the lesson and the ways teachers addressed students’ understandings and 

misconceptions. It also involved whether the mathematical tasks enabled students to transfer 

mathematical concepts to future lessons, meaning students’ understanding embodied the creation 

of generalizations. CLA Teacher’s mean scale score was 4.33. CLB and CLC Teachers both 

obtained a mean scale score of 6.0. To illustrate teachers’ differences in their enactment of this 

dimension, all three teachers’ lessons pertaining to composition and decomposition of number 

are described over the next few pages. 

A CLA lesson: Composing and decomposing number. As identified in Midwest 

School District’s mathematics program, a lesson that addressed basic fact calculations 

(composing and decomposing number) specifically asked students to consider what happens 

when 0 or 1 are added to a given number. To launch her lesson, CLA Teacher asked students to 

create a variety of representations for 10 + 4 and record them in their mathematician’s 

notebooks. When looking at their notebooks, students recorded a plethora of different equivalent 

representations for that expression. Students used number lines, ten frames, tally marks, 

counters, coins, and dominos.  

Without asking students to share the representations they depicted, CLA Teacher asked 

students how they would use 9 + 1 to solve the sum for 9 + 2. Accepting one student’s accurate 

response of, “You can use the 9 + 1 = 10 and if you added one more then that equals eleven,” 

CLA Teacher attempted to extend students’ thinking by asking a second question, “If 6 + 1 = 7, 

how can this help you figure out 6 + 2?” To respond to the teacher’s question, a different student 

described hopping on a number grid, “You can make a hop. So, you can go to 6, then you can go 

to 7, then you hop 1, then you know to go one more.” CLA Teacher clarified student’s statement, 
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“If you know 6 + 1 is 1 hop then 6 + 2 is 2 hops.” The teacher’s rephrasing focused on the 

number of hops or physical movements on the number grid.  

CLA Teacher asked students to create a mental image of a number line in their minds to 

mentally calculate 20 + 1, 20 + 2, 20 + 3. While students were still processing these mental 

images, the teacher switched to a real-life context of a grocery store, which led a student to use 

place-value to find the sum of two addends rather than using a mental number line. 

During the exploration segment of the lesson, the teacher introduced a mathematical 

game to support students practicing their basic-fact calculations using cards, a calculator, and 

students’ mental math capabilities. This game came from the district’s mathematics program and 

was part of the lesson. Students played the game in trios. While students played the game, the 

teacher moved about the classroom, observing and listening to students’ conversations. As she 

observed three students struggling with their basic-fact knowledge, she asked the trio, “What 

would a strategy be if the caller flipped a 3 and a 7?” The students appeared puzzled by the 

teacher’s question. Noticing the puzzled looks and pauses of the students, CLA Teacher 

immediately followed up with another question, “What’s the difference between 3 + 7 and 7 + 

3?” At this point in the lesson, the teacher had not explicitly discussed the “counting on” strategy 

nor the commutative property of addition. To offer scaffolding support, the teacher then brought 

out a balance scale and asked the three students, “What can I do to figure this out? How can I use 

this balance, these dominos and these equations to figure it out?” The teacher and the three 

students unsuccessfully pursued these concepts. 

After the lesson ended, CLA Teacher expressed her perplexity regarding students’ 

responses. Thus, she asked the researcher, “What lesson do you think I should follow up with?” 

After searching through the unit of study in the district’s mathematics program, the suggestion 
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was to focus on patterns and rules for adding 0 and 1. She was advised to direct her students to 

complete a basic fact grid to notice the patterns when adding 0 and 1. CLA glanced at her teacher 

book and replied, “Students can write number stories for adding + 0 and + 1.”  

A CLB lesson: Composing and decomposing number. A corresponding lesson in 

CLB’s classroom focused on composing and decomposing a numeric quantity in different ways. 

CLB launched her lesson by drawing an iconic representation for 25 using one unit (long) of 10 

and 15 ones. She then focused students’ attention whereby they were asked to determine the 

value of the representation and create as many equivalent representations using iconic symbols in 

different ways. Students responded, “I changed the ten ones and traded them for 1 ten and kept 

the five ones.” “I traded in the ten for ten ones.” As the teacher depicted different students’ 

descriptions, one student noticed, “Hey, you have too many tens to make 25 now.” 

CLB Teacher used students’ language to focus students’ attention on the concept of 

trading. Precise language supported students understanding that the concept of trading meant that 

although the mathematical representation may change, the value remains the same. For example, 

regardless of how one represents 25 either by trading a ten for 10 cubes or 10 cubes for a ten, the 

value remains 25.  

Students used base-ten blocks to decompose 63 in a variety of equivalent ways to 

continue the concept of trading during the exploration segment of the lesson. Students arrived at 

generalizable mathematical ideas using concrete models and equivalent symbolic 

representations. For example, one student claimed that there were more than 3 ways to represent 

63. Another student added onto the first child’s thinking, “The more tens you have in the tens 

place, there are more ways to show 63.” A third student creatively represented 63 using 

benchmarks of 10 and turned three tens into three elevens, as in 10 + 10 + 10 + 11 + 11 + 11. As 
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this student shared his representation with classmates, another student responded, “He built 6 

tens and changed three tens to three elevens equaling 63. Because he needed three more.” 

Students made important connections and arrived at key informal generalizations. 

A CLC lesson: Composing and decomposing number. CLC’s lesson for composing 

and decomposing 25 was launched in a similar fashion as CLB’s lesson. However, CLC focused 

students’ attention using an enactive representation of base-ten blocks. The teacher placed one 

stick of 10 and 15 ones under the document camera. Before asking students to calculate the total 

number of blocks, she questioned and clarified student understanding of each block’s value. 

Once each block’s value was accurately identified, CLC asked her students to identify the total 

number of blocks in the set. Students identified three possible sums: 20, 25, and 26.  

Rather than correcting students’ errors or providing students with the correct answer, 

CLC asked a student to approach the document camera and make a trade using the blocks. She 

explained this instructional move supported students more readily identifying the correct total 

once all trades were made. After making the trades, one student commented about the different 

representations, “Just because they look different doesn’t mean that the number is different!”  

During the exploration segment, students composed and decomposed numbers using 

Place-Value Mats and base-ten blocks. Many students struggled in making trades and recording 

the correct values represented by the blocks on their mats. For instance, one student had 212 

represented on his place-value mat. When asked to read out loud his total value, he said, “Two 

hundred and two.”  

 To begin summary/reflection segment, CLC Teacher launched with the question, “Tell 

me some things you understand about a ten’s block and a one’s block. Anything.” Only a few 

students responded: “They help you build numbers”; “Ten and one more make eleven”; “I would 
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take eleven ones”; “If you have ten cubes, you could trade for a long.” As noted, students’ 

interpretations of the teacher’s question were literal as in one 10-block and one 1-block equaled 

eleven. Receiving literal feedback from her students, CLC Teacher interpreted students’ 

bewildered facial expressions as their lack of understanding of the lesson’s goals. After her 

lesson, CLC Teacher shared that her students still needed focused and explicit experiences for 

composing and decomposing number, reading numbers correctly, and making trades. CLC 

expressed these concerns during the debriefing of her lesson.  

Change-To-More lessons as enacted by each teacher. Another set of teachers’ lessons 

consisted of the same mathematical concepts, but were enacted very differently. In each of the 

three classrooms, teachers introduced a specific type of diagram, termed a Change-To-More 

diagram. This diagram was represented in their district’s mathematics program and on their 

district Benchmark Assessment II. It illustrated the relationships among quantities in addition 

and subtraction problems, as well as the meaning of the operations.  

Differences were noted between the control group and the two experimental groups when 

examining students’ representations and use of the Change-To-More diagrams within their 

mathematician’s notebooks. Photographs and Xeroxed copies of students’ mathematical 

representations and thinking were gathered for analysis. Thick descriptions emerged from 

students’ written work and from the analysis of students’ mathematical representations and 

recordings. Students’ use of mathematical language, models and representations, and the 

mathematical connections students made were evident within these invaluable documents. Such 

differences were reflections of the way each teacher launched her lesson of the diagram. 

CLA teacher’s lesson. CLA Teacher (control) was asked to follow the lesson as written 

in her district’s mathematics program. This teacher, however, was given permission to alter a 
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lesson per students’ needs. The following description and resulting student responses depicted 

the way CLA Teacher enacted her launch of the Change-To-More diagram with students and the 

ways students thought about the teacher’s representation. 

To launch the Change-to-More diagram, CLA Teacher posed the following number story 

and Change-to-More diagram for students to consider: “I have three cats. I got one more. How 

many all-together?” Students were then asked to think about how they might represent the 

number story using the Change-to-More diagram within their mathematician’s notebooks. CLA 

teacher’s model is represented in Figure 5 below. 

 

 

 

 

 

 

 

Table 3.3 contains CLA students’ responses to the teacher’s launch. Their writings and 

depictions within their mathematician’s notebooks capture their initial thinking relative to the 

story context and posted diagram. Students’ misspellings were corrected to make interpretation 

easier for the reader.  
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Table 3.3 

CLA Students’ Written Work and Mathematical Representations for Change-to-More Diagram 

A7: “The person now has four cats because she got one more. It is plus one so it is four!” 

[Student drew the diagram with the arrow beginning at 3 and ending at 4.]  

 

A12: “I noticed at the top it has a number story. And at the bottom of the number story it has 

two boxes and in the middle, it says + 1.” [Student drew the diagram accurately and 

labeled “start” in her diagram.] 

 

A8: “4 because 3 + 1 = 4” [Student drew the diagram and labeled the parts accurately.] 

 

A5: “I noticed that she started out with 3 and she got 1 more and all together it equals 4 and 

how I figured this out was I know that 3 + 0 = 3 because 0 is not a number you can use it 

is nothing and so if 3 + 0 = 3 I add one more and it will give me 4 and the change of that 

is it starts out with 3 and the change is you add one more and in the ending you will have 

4. Equation 3 + 1 = 4.” [Student drew diagram accurately, although student wrote only the 

word change.]  

 

A6: “I have 3 cats. I got 1 more. How many all-together.” [Student drew the diagram 

accurately and included 3 + 1 = 4.] 

 

A13: “She starts with 3 cats and she gets 1 more. Now she has 4 now 3 + 1 = 4” 

 

A11: “I know that if you have 3 cats + 1 more cats = 4 cats because when you have 3 + 1 is.” 

[Student ended without completing the sentence.] 

 

A3: “I notice that the number story sort of number story had a picture like this. I have 3 cats. I 

got 1 more. How many altogether? [Student drew the start/change/end model and labeled 

the parts of the model accurately: the beginning equation is 3, the change is the rule, and 

the equation ending is 4. Student recorded “full equation, but different.”] 

 

A9: “I noticed that it’s an equation. The equation is 3 + 1 = 4. And it’s a diagram.” 

 

A1: “I notice she has 3 cats and one gets one more. She has 4 cats in all.” [Student drew the 

start, change, end diagram accurately.] 

 

A2: “I notice that he has 4 cats all together because he had 3 and then he got 1 more and that 

equals 4.” [Student drew the start, change, end diagram accurately, but wrote “cha” for 

change.] 
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CLA Teacher launched the Change-to-More diagram using a simple story problem about 

owning three cats and acquiring one more using the Change-to-More diagram as depicted in 

Figure 3. Students used words, numbers, equations, and Change-to-More diagrams to represent 

their understanding of their teacher’s story and model. All CLA students (100%) made 

mathematical sense of the story context. Approximately 75% of the students connected the 

numeric values within the story and applied these to personally-drawn Change-to-More 

diagrams. Most students focused on the story context. Few CLA students (27%) explained or 

correctly interpreted the meaning of the diagram. Students who correctly interpreted the meaning 

of the diagram claimed it represented an equation or that the change was the rule. When 

examining A7’s depiction of the diagram, it appeared A7 may have misapplied the meaning of 

the word “change.” A7’s arrows bridged the start box to the end box. Rather than seeing “the 

change” as the quantifiable difference between the two numbers, his drawing suggested that the 

start number “changed” to the end number.  

As for making connections between the story context, the diagram, and the equation, 

almost half of CLA students (45%) made explicit connections. However, 9% of the students 

made connections to previously-learned mathematical diagrams or models that were different. 

Furthermore, 9% of students found, extended, or created patterns derived from the original 

representation. 
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CLB teacher’s lesson. To introduce the Change-to-More lesson and diagram to her 

students, CLB Teacher posed the following mathematical representation as represented in Figure 

6.  

 

 

 

 

 

 

 

After posting the diagram, CLB Teacher asked her students, “What do you notice? What sense 

can you make of this?” After students shared their initial thoughts about the model, the teacher 

recorded 35 in the start box and asked students to determine the end number by noticing the 

structure of the diagram. 

The information in Table 3.4 represent CLB students’ initial thinking found within their 

mathematicians’ notebooks. Students’ misspellings were corrected to make interpretation easier 

for the reader.  
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Table 3.4 

CLB Students’ Written Work and Mathematical Representations for Change-to-More Diagram 

B5: “You can put numbers in the start and end and the line and add Looks like an equation like 

a number rule. 35 + 5 = 40” [Student accurately drew the diagram using 35 + 5 = 40.]  

 

B8: “I noticed that it says start, change and end. I think that you have an equation and you take 

the first the change is your – or +. The end is your sum.” [Student accurately drew the 

diagram using 35 + 5 = 40.]  

 

B1: “What do you notice? It looks like an equation. Looks like a number rule.” [Student 

accurately drew the diagram using 35 + 5 =?]  

 

B2: “I noticed…that it has a start change and end and it was on our test [pre-assessment] and I 

think if you were stuck on an equation in then you would draw it. And it would help you 

figure it out. It means that…it’s kind of like a number rule the change is a rule the end is 

the answer and the start is the number you start with. The starting number is 35 + 5 = 40” 

[Student accurately drew a different diagram using 22 + 5 = 27.] 

 

B10: “What do you notice I think it’s 35 + 5 = 40. Jump + 5 or + 10” [Student accurately drew 

the diagram using 35 + 5 = 40.]  

 

B7: “I noticed the start means the beginning number Change means plus more. The end means 

the finishing number for the equal number.” [Student accurately recorded the start‒

change‒end model with an equation of her own: 13 + 6 = 19.] After the teacher presented 

35 as the start number, the student said, “I notice that the end is 40 because the start is 35 

the change is +5 and is 40 because the start change is an equation.” [Student then drew 

another start, change, end model using 22 + 5 = 27.] 

 

B12: “I think you use it like this… [Student drew the start, change, end model incorporating 

his own values 5 – 1 = 4] and it’s the same as a minus equation. I seen it on my pre-test 

yesterday and that goes like this…and it’s a start, change, end.” [Student recorded 35 + 5 

=? and rewrote the equation vertically 35 + 05 = 40.] 

 

B3: [Student accurately drew the diagram using 35 + 5 = 40.] “I had seen this in my math or 

BA test. It looks like a in and out box and you write. It is an in and out box!!! And that 

was what I was thinking of. 35 + 5 = 40” 
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B8: “It has two boxes. It has one line. It has one arrow. It says start change end. Like an in and 

out machine or function machine. The equation is 35 + 5 = 40.” [Student accurately drew 

the diagram using 35 + 5 =? And drew a second one for 22 + 5 = 27.]  

 

B13: [Student accurately drew the diagram using 35 + 5 = 40.] “I have seen this in our test.” 

CLB Teacher launched the Change-to-More diagram by asking two questions, “What do 

you notice? What sense can you make of this?” Students used words, numbers, equations, and 

their own hand-drawn Change-to-More diagrams to represent their understanding of the diagram. 

Next, they discussed their ideas in whole group. Like students in the control group, all students 

(100%) made sense of the diagram relative to the problem at hand. Most students (86%) 

correctly interpreted the meaning of the diagram claiming it was “an equation,” “like a number 

rule,” or made explicit connections to other diagrams. For example, one CLB student described 

his initial thoughts, 

I noticed…that it has a start change and end and it was on our test [pre-assessment] and I 

think if you were stuck on an equation in then you would draw it. And it would help you 

figure it out. It means that…it’s kind of like a number rule the change is a rule the end is 

the answer and the start is the number you start with. The starting number is 35 + 5 = 40.   

CLC teacher’s lesson. All three teachers were given permission to adapt or alter lessons 

per their students’ needs. To introduce the Change-to-More diagram to her students, CLC 

Teacher posted the following diagram as represented in Figure 7. 
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CLC Teacher asked her students, “What do you notice? What sense can you make of 

this?” Table 3.5 is presented below. It represents CLC students’ initial thinking found within 

their mathematician’s notebooks. As with other student entries, students’ misspellings were 

corrected to make interpretation easier for the reader.  

 

Table 3.5 

CLC Students’ Written Work and Mathematical Representations for Change-to-More Diagram 

C6: “I notice that there are three words start change and end and has a 10 in a box. There is a 

middle line and says 5 + and the other box we need to answer. I think the answer is 15.” 

[Student accurately drew the diagram using 10 + 5 = 15.] 

 

C3: “I think this is like part of equation adding and subtracting [[Student accurately drew the 

diagram without numbers] because it could be” [Student accurately drew the diagram 

using start 10 5+ end 15.] 

 

C1: “10 + 5 = 15” 

 

C5: “I think start with 10 part change + 5 end total 15.” [Student connected the first model 

with two more models of her own: 12 + 5 = 17 and start (also a part) 10 + 10 change (also 

a part) = total 20. She made explicit connections to the part/part/total model. Student 

accurately drew each model identifying start, change, end.] 
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C7: [Student extrapolated to three start, change, end diagrams. He labeled the end as “out.”] 

including using subtraction, for start, change, “out” diagrams: “30 + 10 = 30; 100 + 10 = 

110; 5000 – 5000 = 0” 

 

CLC Teacher launched the Change-to-More diagram using a starting value of 10 and the 

change value of 5. Students used words, numbers, equations, and Change-to-More diagrams to 

represent their understanding of the diagram. Here, CLC students (80%) made sense of the 

model relative to the given problem. Two students (40%) extended their thinking using 

additional rules and equations.  

Other instructional tasks implemented by CLB and CLC teachers. Vital resources 

for supporting student thinking in CLB and CLC classrooms were the “re-designed” tasks CLB 

and CLC Teachers and students engaged with throughout the study. The two experimental 

teachers appreciated the mathematical tasks provided to them because they afforded teachers and 

students opportunities to encounter novel mathematical representations focused on developing 

students’ understanding of number and number relationships, as well as cognitive structures. The 

following tasks and representations were used in CLB and CLC classrooms but not used in 

CLA’s classroom. 

One novel mathematical representation used with the two experimental groups was called 

Arrow Roads. Arrow Roads depicted movement on a hundred chart. One began at an initial 

value and ended up at a final sum or difference by following the direction of arrowheads, one 

arrowhead at a time. The direction of an arrowhead directed students to move one space, either 

up (-10), down (+10), to the right (+1) or to the left (-1). After completing the sequence of 

directional moves, students transformed an arrow road into symbolic equations, thereby 

performing addition and subtraction of two-digit numbers. CLB Teacher explained, “This is the 

first year we have focused on the concept of number relationships. We had always assumed that 
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first grade teachers had done that, but thinking about ten more and ten less, one more, one less, 

just the ideas of, we, as second-grade teachers, have never focused on.” 

To deepen student understanding of number relationships, CLB and CLC Teachers and 

students used specific enactive representations. Multi-link cubes were one type of enactive 

representation used early in the school year. These cubes introduced the concepts of inequalities 

and equivalencies. To draw students’ attention to these concepts, pairs of students were given 

three stacks of cubes: a stack of 2 cubes, a stack of 4 cubes, and a stack of 6 cubes. They were 

then asked to analyze the representations and record things (figural units) they noticed about the 

stacks in their mathematician’s notebooks.  

Many students first recorded that the stacks were different colors. However, students 

soon noticed that the stacks were different heights and claimed they looked like stairs. They 

noticed that each stack had two more or two less cubes than another stack and that one could 

begin with the shortest stack, count by twos to get to the next taller stack. A few students noticed 

that when they combined the stack of two cubes and the stack of four cubes, it equaled the 

number of cubes in the tallest stack (six). Other students noticed there were 12 cubes altogether.  

Students’ notebook entries depicted the figural units embedded in the stacks of cubes. 

Student entries were in the form of words, drawings, numbers, and equations. Teachers next 

posed the question, “If the pattern of cubes was to continue, what would the next three stacks 

look like and why?” Students got to work developing their hypotheses using enactive models and 

their mathematician’s notebooks to explain and justify their thinking. 

Another enactive model CLB and CLC Teachers used for the first time was a meter stick. 

A meter stick was an enactive representation used to introduce the concept of a number line up to 

100. Pairs of students were each given a meter stick to notice the figural units embedded within 
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the representation. Students noticed that the meter stick looked like a ruler that went up to 100. 

They noticed that there were 100 lines. One student noticed that he could go up to 1000. This 

student referred to the shortest increments representing millimeters. Other students predicted that 

they could count by fives and tens using the meter stick. They also predicted that the multiples of 

ten were bold because it takes ten tens to make 100. From prior knowledge, one student 

accurately described that the first centimeter meant 1 cm. Finally, students predicted that the 

meter stick started at 0 and ended at 100.  

After students’ insights were recorded on to chart paper, students were asked to place 

translucent counters on multiples of ten and then describe what they noticed. Students noticed 

that the counters were placed equal distance from each other. When asked why this was so, many 

students needed to count the spaces in between the multiples of ten to verify that there were ten 

spaces between 10 and 20, and again between 20 and 30, and so forth. Visually seeing the equal 

distances between these consecutive multiples of ten was new phenomenon for students to 

notice. Students also discussed that as the numbers increased [within a decade], the digit in the 

ten’s place stayed the same, while the digit in the one’s place increased by one. Seeing the equal 

distances of space between the decades and noticing digits that stayed the same and digits that 

changed were easier to see on the meter stick than on a number grid, so students claimed.  

As the lesson ended, one student, a very shy and low-performer (as identified by the i-

Ready Screener, Curriculum Associates, 2015), approached the teacher and asked if she could do 

more work using the meter stick the following day. The teacher asked, “Did the meter stick help 

you think about numbers?” Without speaking, the student nodded her head in a positive manner. 

During the following two weeks of teachers’ instruction, CLB and CLC students made 

connections between the meter stick, a number line, and a thermometer. 
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Teachers’ question-types. Another potential variable between teachers pertained to the 

types of questions teachers asked during mathematics instruction. Two different classification 

systems for coding were used to identify differences in teacher question-types. The first 

classification system was Boaler and Brodie’s (2004) nine question-types. The second 

classification system was derived from the University of Cambridge (Way, 2001/2011). It 

consisted of seven question-types aligned to Bloom’s taxonomy.  

Differences between CLB and CLC Teachers’ questioning and CLA’s questioning was 

found under three categories: (a) exploring mathematical meanings and/or relationships, (b) 

synthesis, and (c) extending thinking. The classification of exploring mathematical meanings 

and/or relationships was identified under Boaler and Brodie’s (2004) system of nine question-

types. These researchers defined this classification as linking mathematical ideas to respective 

representations. During CLA’s lessons, 13% of her questions fell under this category. Whereas, 

21% of CLB’s questions and 24% of CLC’s questions fell under this category. 

Questions pertaining to the classification of synthesis fell under the University of 

Cambridge’s system (Way, 2001/2011). Synthesis questions asked students to solve a problem 

necessitating students’ original and creative thinking. For example, “Who has a different 

solution?” Ten percent of CLA Teacher’s questions pertained to this category. Whereas, 20% of 

CLB’s questions and 18% of CLC’s question-types fell under this category. In both categories, 

the two experimental teachers scored at least eight percentage points higher than the control 

teacher.  

Extending thinking was a classification found under Boaler and Brodie’s (2004) system 

for question-types. Extending thinking questions supported students making connections 

between mathematical concepts and real-world contexts. CLA Teacher asked twice as many 
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questions under this classification than CLB and CLC Teachers did. About 22% of CLA’s 

question-types were identified as extending thinking, whereas, only 8% of CLB and 11% of 

CLC’s question-types pertained to this category. CLA Teacher believed her questioning 

techniques had improved over the course of the year because they supported student inquiry. 

However, she also claimed that her district’s curriculum didn’t support her asking the types of 

questions that engaged students in thinking more deeply about mathematics.  

Additional Qualitative Analyses 

Time allotted for mathematics instruction. Data collected by a questionnaire and semi-

structured interviews revealed similarities between teachers and their instructional practices not 

captured by the M-Scan Rubric (Berry III et al., 2012). Each teacher reported they taught 

mathematics for 60 to 75 minutes per school day. All teachers reported they consistently used 

games to support the development of students’ mathematical understanding and skills. Likewise, 

students were expected to first make sense of mathematical tasks before whole group discussions 

took place; and, the same types of mathematics tools were used across all three classrooms on a 

regular basis (e.g. cards, counters, number grid, base-ten blocks, etc.). One tool used exclusively 

in the two experimental classrooms was the number line. 

One noted difference between teachers consisted of the amount of time it took for 

teachers to plan their mathematics lessons. CLA reported she spent 1.5‒2.0 hours per week 

preparing for her weekly lessons. For the two experimental teachers, they spent 3.0–5.0 hours per 

week preparing for their weekly lessons. This was double the amount of preparation time they 

indicated for preparing literacy instruction.  

Teacher use of students’ mathematician’s notebooks. To detect additional variances in 

teacher’s instructional practices and processes not explicitly screened for in the M-Scan Rubric 



A “RE-ENVISIONED” INSTRUCTION MODEL  143 

 

 

(Berry III et al., 2012; Walkowiak et al., 2014), yet vital for implementing the “re-envisioned” 

instruction model with fidelity, this researcher used three to four students’ mathematician’s 

notebooks from each classroom as data sources.  

From September 8, 2014 to January 21, 2015, each teacher’s instruction incorporated the 

use of students’ notebooks. Students’ entries revealed the mathematical concepts teachers 

addressed, as well as the number of times students recorded their mathematical thinking. Upon 

analysis, every notebook entry involved some form of symbolic representation using words, 

numbers, or signs; however, not every depiction revealed students’ engagement with enactive 

representations. Also detected were variances in students’ record of dates and the number of 

summary/reflections. Table 3.6 presents the data generated by analyzing student representations 

(artifacts) recorded in their entries. 

 

Table 3.6 

Mathematical Concepts and Instructional Processes in CLA, CLB, and CLC’s Classrooms as 

Represented in Students’ Mathematician’s Notebooks, September 9, 2014 – January 21,2015 

 

Group 

Total Note-

book Entries 

by 

Students 

Percentage of 

Entries 

Involving 

Reflection 

Lessons 

Involving 

Enactive 

Representation 

Lessons 

Focused on 

Patterns and 

Relationships 

Number of 

Lessons Modeled 

by this 

Researcher 

 CLA     38 66% 26% 50% 3 

 

 CLB     54 Undetermined 57% 63% 13 

 

 CLC     51 39% 63% 65% 13 
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To determine the number of summary/reflection entries in CLB’s classroom, additional 

mathematician’s notebooks were reviewed. The variances continued to exist across additional 

students’ notebooks. Lacking consistency between notebooks, the number of reflection entries 

remained undetermined for CLB.  

Furthermore, each teacher described the purpose and their perceptions of students’ 

mathematician’s notebooks. CLA Teacher reported that her students “used their notebook every 

single day. They also work in them.”  

CLB Teacher explained,  

It’s a place to share their [students] ideas, get their thinking in writing. I launch using 

correct vocabulary. I also use them [notebooks] as formative assessment. I look at what 

they wrote and use it for instruction the next day.  

CLC Teacher described, “I use them to record [student] thinking, beginning of a lesson, middle of 

a lesson, and end of the lesson.” 

Methodological Assumptions and Reduction of Threats  

Whereas all three teachers had an existing professional relationship with the researcher; 

and, the teachers in the two experimental groups utilized a synthesis of learning theories and 

evidence-based practices, while the teacher in the control group utilized an evidence-based 

mathematics program, several methodological assumptions were made. These assumptions 

included the following: 

• The application of a synthesis of learning theories could counteract the historical 

trends of low-student achievement in mathematics 
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• A control group was necessary to detect and isolate the confounding variables, and 

compare the effects the instruction model had upon students’ mathematics 

achievement to students’ achievement in the control group 

• The survey and questionnaire questions reflected existing research regarding best 

instructional practices, and thus, provided validity to inferences made 

• The study’s participants provided honest responses to all questions 

• Data triangulation between qualitative and quantitative data provided reliability and 

validity to inferences made 

• The study’s findings provided petite generalizations for ways to improve student 

achievement and minimize students’ learning difficulties in mathematics 

• This research would invite further investigations for how students’ cognitive 

structures influenced their learning of mathematics 

Naturally, external and internal threats to validity compromised the reliability of 

inferences made (Creswell, 2009). External threats existed relative to replication and 

generalization of the “re-envisioned” instruction model to a larger population. All three teachers 

experienced elements of the instruction model the previous school year before the study began. 

Additionally, all three teachers possessed similar and defining characteristics. They had 

experience in teaching elementary students. They were thoughtful, reflective practitioners and 

used constructivist and socio-constructivist principles to promote student learning. Due to these 

similar traits, conducting additional studies under different conditions before generalizing the 

instruction model to a larger K-12 population is advised. Key variables found in this study need 

to be considered before replication and generalization is considered.  
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Four internal threats to validity also existed. Internal validity threats impacted the ability 

to draw accurate and reliable inferences regarding students’ mathematics achievement (Creswell, 

2009). Such threats included student maturation, diffusion of treatment, resentful demoralization, 

testing, and instrumentation. However, these threats were mitigated through intentional decisions 

and actions. 

To mitigate the threat of differences in student maturation, all three student groups were 

considered second-graders and, therefore, received second-grade mathematics instruction. 

Exceptions to this condition were students who attended third grade mathematics instruction, one 

student who received special education services, and three students who needed ELL support. To 

reduce this threat, these students were not included in this study’s data collection. 

 The two experimental teachers (CLB and CLC) were asked to stop planning 

mathematics instruction with their colleague who was the teacher of the control group (CLA). 

This reduced the threat of diffusion of treatment. The two experimental teachers were also 

directed not to share or discuss the instructional tasks, or anything related to mathematics 

instruction with CLA Teacher during treatment. All three teachers agreed to these conditions. 

Midwest Elementary School’s principal and CLA Teacher were promised that she and 

her students would receive instructional support upon completion of treatment with CLB and 

CLC. Remember that for CLA Teacher’s daily mathematics instruction, she used the district’s 

mathematics program, along with other resources prepared by their district’s mathematics 

curriculum team. This helped reduce the threat of resentful demoralization. 

Finally, to reduce threats to validity due to testing and instrumentation, the same 

measurement instruments were used to test all students’ mathematics achievement and 

development of their cognitive structures, pre- and post. Classroom instruction did not explicitly 
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inculcate the items of the Adapted Cognitive Structure Assessment during the study. 

Accordingly, at least three months passed between the administration of the pre-and post-

assessments. The longer time interval reduced the threat of testing.  

Limitations to the Study 

 Several limitations existed in this study. Although all three teachers worked with this 

researcher the previous school year, the two experimental teachers were not prepared to 

implement the model. Full implementation of the instruction model integrated complex theories 

and design. Successful implementation necessitated teachers’ mathematical and pedagogical 

content knowledge. The two experimental teachers needed time and requested implementation 

support to learn specific content and pedagogy to enact the instruction model with fidelity.  

Another limitation involved using a small convenience sample of teachers with whom 

this researcher already had existing relationships. CLA Teacher of the control group knew 

enough to taint or invalidate the study’s findings. She was challenged to stay true to her district’s 

mathematics program and resources. 

Another limitation to the study was the lack of random assignment of student subjects to 

both experimental and control groups. Students were placed into classrooms by the principal and 

staff which may have introduced confounding variables that were uncontrolled. Additionally, 

this study was conducted with second-grade students only. Therefore, the inferences derived 

from this study cannot be generalized to a larger population of K-12 students and teachers. The 

conditions necessary for replication must be further explored to consider application to a wider 

population.  

A fourth limitation to this study involved the data instruments used to collect, code and 

quantify data. Some of the data collection instruments were generated and used for the first time 
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by the researcher. Although data instrumentation aligned to the research articulated in the 

literature review, these instruments had not been tested for validity nor reliability prior to this 

study.  

A fifth limitation was that most of the data results were analyzed solely by one person, 

the researcher. Although a learning theorist, educational colleagues, committee co-chair, a 

statistician, and participating teachers were consulted, most data analysis and inferences 

incorporated one perspective. Such inferences may result in biased interpretations of the data. 

Chapter Summary  

Two main hypotheses were prominent throughout this study. The first hypothesis was 

that a single learning theory could not counteract the historical trends for low student 

achievement in mathematics. Thus, a synthesis of learning theories permeated the conceptual 

framework of the instruction model. The instruction model provided teachers and students with a 

design for Tier I core instruction, as well as instructional tasks for stimulating students’ cognitive 

structures, an essential cognitive process for learning abstract concepts like mathematics. The 

second hypothesis proposed that teachers’ and students’ effective implementation of the “re-

envisioned” instruction model could mediate the development of students’ cognitive structures, 

thereby minimizing students’ learning difficulties in mathematics.  

Design-based research provided the theoretical backdrop for conducting this study (Barab 

& Squire, 2004; Brown, 1992; Cobb et al., 2003). This study included and focused on teachers 

and students. The study occurred in three authentic settings in second-grade classrooms. The 

instruction model was implemented by two of the second-grade teachers and their students. The 

third second-grade teacher and her students functioned as the control.  
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A quasi-experimental concurrent mixed-methods study, with pre- and post-test, non-

equivalent, three-group time series design was used to answer the four research questions 

presented by this study. Selected measures, methods, and processes helped identify causational 

factors for how and why teacher’s implementation of the “re-envisioned” instruction model 

impacted students’ mathematics achievement and their beliefs and practices for learning 

mathematics (Cook & Campbell, 1979).  

Multiple measures, methods, and processes were used to gather quantitative and 

qualitative data to determine the model’s impact upon student achievement when comparing the 

two treatment groups to the control group. Surveys, questionnaires, personal interviews, semi-

structured observations, informal conversations, photocopies of student work, and instructional 

artifacts became the primary sources for qualitative data. The primary sources for quantitative 

data were the i-Ready Screening Measures (Curriculum Associates, 2015) and the adapted 

Cognitive Structure Assessments.  

The “re-designed” tasks and lessons students in the two treatment groups engaged with 

supported them in making sense of the figural units within a vast array of physical, iconic, and 

symbolic representations. CLB and CLC students continuously created, transposed, and 

transformed their visualized perceptions of mathematical concepts using words, signs, and 

symbols. Students’ transformations from physical representations into iconic and symbolic forms 

supported their development of visual and mathematical literacy.  

Limitations were encountered due to the convenience and non-equivalent groupings of 

the sample population, as well as to the authenticity of the study’s context. However, attempts 

were made to control specified threats to internal validity. Time constraints limited the ability to 

generalize the study’s results to other populations and academic subjects.  
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Chapter 4 provides statistical details that answer the research questions. These questions 

help to determine the effects the instruction model had upon students’ mathematics achievement, 

beliefs, and practices. Thick descriptions of narratives, statistical analyses, tables and figures 

describe this study’s results and findings in the next chapter.  
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Chapter 4: Results of Findings 

Within recent years, mathematics education researchers have identified pedagogical 

practices that, when used effectively, increase student learning and achievement in mathematics 

(Ball, 2001). This study proposed four research questions to support these efforts. The research ‒

questions led to the design, implementation, testing, and analysis of an innovative instruction 

model used with two of three second-grade teachers and their students at Midwest Elementary 

School during the school year 2014‒2015. One second-grade teacher and her classroom served 

as the control group. 

Teachers and students provided quantitative and qualitative data that was collected 

concurrently over a four and a half month period, and one day at the end of the school year, 

2015. Standardized instruments, as well as surveys, interviews, instructional artifacts, and 

researcher’s field notes documented vital information detailing the efficacy of the “re-

envisioned” instruction model. Statistical analysis and thematic coding of the data, including data 

triangulation, answered the four research questions.  

Chapter 4 presents the study’s statistical and qualitative findings. It is organized into five 

main sections that describe the effects the instruction model had upon student learning. The first 

section consists of descriptive comparisons of the study’s participants. The second section 

describes the methodological approaches and procedures applied to testing the research 

questions. The third section presents each research question followed by data and data analyses 

to respond to that question. The fourth section reports additional qualitative analyses. The fifth 

section, the summary, concludes this chapter.
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Descriptive Statistics 

  As an active participant, the researcher collaborated with an elementary principal, three 

second-grade teachers, and fifty-four second-graders for the duration of the study (DeWalt & 

DeWalt, 2011). Two teachers (identified as CLB and CLC) implemented the “re-envisioned” 

instruction model and respective tasks designed to mediate the development of students’ 

cognitive structures. A third teacher (identified as CLA) and her students served as the control 

group. This teacher implemented Midwest Elementary School’s district mathematics program 

with her students.  

A non-equivalent group design was used to conduct the study. Midwest Elementary 

School’s principal identified the classroom of students who acted as the control and the two 

classrooms of students who received treatment. This designation was based upon the principal’s 

knowledge of teachers and students in each classroom. Furthermore, during the previous spring 

of 2014, first-grade teachers generated student placement lists for the following 2014‒2015 

school year. Student placements were based upon students’ needs and teachers’ strengths.  

The school site and the study’s participants formed a convenience sample. The researcher 

worked with all K-5 teachers at Midwest Elementary the previous school year, 2013‒2014. The 

second-grade teachers were strategically selected and given approval to participate in this study by 

their school principal and their district’s Executive Director of Instruction, Technology, and 

Assessment.  

All three teachers were considered highly qualified by Midwest State and tenured by 

Midwest School District. All three teachers held Bachelor’s and Master’s degrees in education. 

Each teacher taught approximately the same number of years and taught second-graders for at 

least five years. Table 4.1 provides specific self-reported data per teacher. 



A “RE-ENVISIONED” INSTRUCTION MODEL  153 

 

 

Table 4.1 

Descriptive Data of Teacher’s Educational Background and Instructional Experiences 

Teacher 

Bachelor 

Degree 

and 

Endorsement 

Master 

Degree 

Focus 

 

Number of 

Years 

Teaching 

Number of 

Years 

Teaching  

Second-Grade 

Self-Reported 

Strengths 

for Teaching 

Mathematics 

 

CLA 

Control 

 

Elementary 

Education: 

Early 

Childhood 

 

 

 Reading 

 Specialist 

 

11 

 

5 

 

Questioning that 

encourages 

students to think 

deeply. 

CLB 

Experimental 

Elementary 

Education: 

Social 

Studies and 

Science 

 

 Reading 

 Specialist 

10 9 Desire to learn 

math for self and 

for students. 

Growth mindset. 

CLC 

Experimental 

Elementary 

Education: 

Language 

Arts 

Curriculum 

and  

Practice 

10 9 Presenting 

information 

using a 

constructivist 

approach. 

Teacher’s descriptive similarities proved to be important controls for the many variables in this 

study. Teachers’ prior education and teaching experiences were similar. All specialized in 

literacy instruction, while none held degrees or specific endorsements for teaching mathematics.  

Demographic composition of second-grade students consisted of student group, gender, 

socio-economic status as measured by free/reduced lunch eligibility, students receiving special 

education services, and English Language Learners (ELL). The total population for all three 

classrooms were 63 students at the beginning of the study. Table 4.2 provides specific 

demographic data regarding students who populated each classroom. 

  



A “RE-ENVISIONED” INSTRUCTION MODEL  154 

 

 

Table 4.2. 

Descriptive and Demographic Data of Students in Control and Experimental Groups 

Student 

Group 
Frequency Male Female 

Free/Reduced 

Lunch 

Special 

Education 

English 

Language 

Learners 

CLA 

Control 

 

21 13 8 5 0 3 

CLB 

Treatment 

 

21 12 9 6 0 0 

CLC 

Treatment 

 

21 12 9 7 1 0 

Totals 63 36 25 18 1 3 

 

Approximately 44% of Midwest Elementary Schools’ entire student population were 

eligible for government-funded free and reduced lunch program during the school year 2014–

2015. This school was under a targeted assistance plan for Federal Title I. As evident across the 

three second-grade classrooms, approximately 22%–33% of students were eligible for free and 

reduced lunch.  

An exclusion criterion consisted of students who received alternative or additional 

instructional supports for mathematics instruction during the school day. This criterion controlled 

for regression and confounding variables regarding student participants. Students who received 

instructional services such as special education services, resource-room teacher support, ELL 

support, or who received mathematics instruction beyond their grade level were excluded from 

this study.  

Special cases, as described, existed in all three classrooms. Three CLA students were 

eliminated from the study due to needing ELL support during mathematics instruction. Three 
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CLB students were eliminated due to attending third grade mathematics instruction. One CLC 

student was eliminated because he received mathematics instruction through special education 

services. Two CLC students moved prior to the end of the study. Thus, the final composition of 

this study’s second-grade participants is depicted in Table 4.3 below. Due to participation 

criteria, total number of student participants in this study decreased from 61 to 54.  

Table 4.3  

Final Count of Student Participants at Midwest Elementary School, 2014–2015 

 

Student 

Group 
Frequency Male Female 

Free/Reduced 

Lunch 

CLA  

(Control) 

18 11 7 4 

CLB 

(Treatment) 

18 9 9 6 

CLC 

(Treatment) 

18 10 8 6 

Totals 54 30 24 16 

 

Methodological Approaches 

A concurrent collection of quantitative and qualitative data and triangulation of results 

strengthened the validity of inferences made. Electronic reports of students’ mathematics 

achievement scores were generated by Midwest School District’s i-Ready Screening Tool 

(Curriculum Associates, 2015). The i-Ready criterion-referenced mathematics screening tool was 

designated as a valid and reliable online computer adaptive program. The National Center on 

Intensive Intervention established this tool’s validity and reliability by following the established 

guidelines outlined in the Standards for Education and Psychological Testing, as well as Rasch 

and Item Response Theory (Curriculum Associates, 2015). This tool is used by schools and 
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districts to monitor students’ levels of mathematics achievement and growth across five domains: 

(1) Overall Math Levels; (2) Number and Operations; (3) Algebra and Algebraic Thinking; (4) 

Measurement and Data; and (5) Geometry.  

Students’ i-Ready’s quantitative dataset was generated by this online tool and spanned 

6.5-month time interval from pre- to end of study. Students’ mathematics achievement scores 

from each classroom were gathered three times throughout the study: pre-test, October 2014; 

post-test, January 2015; and end test, April 2015. Quantitative assessment measures established 

students’ mathematics achievement levels, as well as MTSS instructional Tiers levels before, 

during, and after treatment. The end-of-year assessment measured the extent to which the results 

of treatment persisted three months after treatment.  

Printed copies of each classroom’s i-Ready computer-generated reports were made 

available to determine and compare students’ overall development of mathematics proficiencies 

encompassing four domains (Curriculum Associates, 2015). Paired t-tests were performed to 

determine statistical differences between students’ pre-assessment to post-assessment measures, 

and then again from post to end of study measures. Two-sample t-tests were conducted to 

compare students’ mathematics achievement results between those who received treatment and 

those who did not. For each group, Pearson Chi-Square tests were conducted to compare count 

patterns of movement in students’ Tier Levels, pre- versus end.  

Other statistical analyses involved a pre- (Fall, 2014) and post-assessment (Winter, 2015) 

to determine the developmental functioning of students’ cognitive structures for spatial 

orientation and conservation of constancy. A modified version of Garner’s Large Group 

Assessment of Basic Cognitive Structures and Square Search Assessment was administered to 

detect and analyze students’ cognitive growth relative to two classes of cognitive structures: 
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spatial orientation and conservation of constancy (see Appendix B). Student responses were 

hand-scored. Data results were analyzed using Wilcoxon signed rank tests and Z-tests for two 

proportions. The Wilcoxon signed rank test was the statistical analysis tool used to detect growth 

differences in the development of students’ cognitive structures for conservation of constancy. 

The same assessment was used pre- and post in each classroom. The two proportion Z-test was 

used to compare pre- to post student data for spatial orientation because more than 30 data points 

existed for each classroom of students. 

To substantiate quantitative findings, qualitative data was collected, transcribed, and 

coded for emerging themes. Data collection instruments consisted of teacher and student 

interviews, participant questionnaires of quantifiable and open-ended response questions, and 

Xeroxed copies and photographs of student work. Photographs were captured by the researcher’s 

locked and private cell phone. Xeroxed copies of students’ drawings and writings depicted their 

thinking and work and their notions for what a mathematician is. Student writings also captured 

their impressions of the work mathematicians do. Students were prompted to reflect upon their 

writings and drawings and the ways they grew as mathematicians throughout the school year.  

Both teacher and student qualitative data were transcribed and coded using an open 

coding system (Miles & Huberman, 1994). For both teachers and students, the unit of qualitative 

analysis was an individual’s responses, as well as themed responses from each classroom. This 

system illuminated common and differing themes that emerged amongst participants. Relative to 

teacher participants, themes specific to each teacher, as well as comparable themes were 

identified. Patterned responses captured teachers’ perceptions, conceptions, and values 

influencing the results in this study (DeWalt & DeWalt, 2011). For students, common themes 

and different themes emerged across all three student-groups and were compared.  
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Key-words-in-contexts and word repetitions or frequencies were transformed into 

numerical data while other qualitative data was kept thematic. Themes were then analyzed to 

establish valid inferences. Qualitative data results were triangulated with multiple data sources to 

substantiate or challenge quantitative results thereby reducing errors in inferences.  

Testing the Four Research Questions 

A synthesis of six learning theories and evidence-based pedagogy (See Section 5 in 

Chapter 2) framed the two experimental teachers’ implementation of the “re-envisioned” 

instruction model to teach mathematics to their second-grade students. The quantitative and 

qualitative data was collected concurrently throughout the study. The use of statistical analysis 

measures, thematic coding, and researcher’s analysis of results provide insights for how the “re-

envisioned” instruction model effected students’ mathematics achievement levels, instructional 

Tier Levels, and perceptions for learning mathematics. Four research questions, including their 

respective null and alternative hypotheses, subsequent data, and data analysis offer a structure for 

presenting the results from this study. To guide the reader, each question is presented and 

followed by corresponding data and data analysis. The first research question is presented here. 

Quantitative analyses and comparisons: Research question 1. To what extent did 

teacher implementation of the “re-envisioned” instruction model influence students’ mathematics 

achievement? 

H10: The change in students’ mathematics achievement scores between students who 

received treatment and students in the control group were not statistically different as 

determined by pre- to post to end i-Ready Universal Screener assessments (Curriculum 

Associates, 2015). 
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H1a: The change in students’ mathematics achievement scores between students who 

received treatment and students in the control group were statistically different as 

determined by pre- to post to end i-Ready Universal Screener assessments (Curriculum 

Associates, 2015). 

To identify and monitor students’ levels of mathematics achievement and instructional 

needs in mathematics, Midwest School District established teacher and student use of the i-

Ready criterion-referenced computer-adaptive mathematics screening tool during the 2014–2015 

school year (Curriculum Associates, 2015). Teachers were trained on its administration late 

September and early October 2014.  

Student data generated by this screening tool consisted of quantitative assessment 

measures for pre-, post-, and end-of-school-year. The data was used to identify students’ 

mathematics achievement and instructional Tier Levels throughout the study, as well as three 

months after treatment. The pretest measure was administered early October 2014. The posttest 

measure was administered January 2015. The end-of-school-year measure was administered late 

April 2015. The end-of-school-year data determined whether students maintained, increased, or 

decreased their rate of mathematics growth and levels of proficiencies (Tier Levels) after 

treatment. 

Students’ overall mathematics achievement scores were determined using the following 

sub-categories as defined by Curriculum Associates (2015): (1) Number and Operations; (2) 

Algebra and Algebraic Thinking; (3) Measurement and Data; and (4) Geometry. Only students’ 

overall mathematics achievement scores were used to calculate and compare individual and 

aggregated student results. This allowed for variances between the scope and sequence of 
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mathematics concepts presented by Midwest School District’s mathematics program and the 

scope and sequence of mathematics concepts presented by the two experimental teachers.  

Statistical analyses were conducted to establish, verify, and compare students’ aggregate 

mean scores for mathematics achievement before and after treatment. A paired t-test was used to 

detect statistical similarities and differences between the pre-, post- and end- aggregate mean 

scores from each student group. Using an alpha level of 0.05 to argue for significance, test 

results indicated that all student groups experienced statistically significant increases in mean 

scores from pre- to post- and from post- to end. Paired t-test analysis identified each student 

group’s aggregate mean scores before treatment, at the end of treatment, and after treatment. 

Student group’s scores are listed in Table 4.4.  

 

Table 4.4 

 

i-Ready Mathematics Achievement Aggregate Mean Scores for CLA, CLB, and CLC from Pre- to 

Post- to End 

Group Pre-Assessment 

(Fall) 

Post-Assessment 

(Winter) 

After Treatment 

(Spring or End) 

CLA (n=18) 414.78 424.22 437.89 

Control 

 

CLB (n=18) 

Experimental 

 

 

 

420.89 

 

 

440.39 

 

 

454.67 

 

CLC (n=18) 

Experimental 

 

398.00 

 

417.00 

 

430.39 

As evident by the repeated measures of the i-Ready Assessment results, CLA students 

(n=18) remained the mid-achieving group throughout the study. They were also designated as the 

control group. Paired t-test analysis suggested that from pre- to post-, students’ aggregate mean 

scores increased from 414.78 to 424.22, with an overall increase of 9.44, significant with t = 
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2.16, SD = 18.52, p-value < 0.05. Students’ post- to end aggregate mean scores increased from 

424.22 to 437.89, significant with t = 3.54, SD = 16.37, p-value < 0.05.  

CLB students (n=18) were one of the two treatment (experimental) groups. The i-Ready 

Assessment results indicated that this group remained the highest-achieving group throughout 

the study. Paired t-test data results for this group demonstrated that from pre- to post-, students’ 

aggregate mean scores increased from 420.89 to 440.39, with an overall increase of 19.50, 

significant with t = 6.26, SD = 13.21, p-value < 0.05. Students’ post- to end aggregate mean 

scores increased from 440.39 to 454.67, significant with t = 4.63, SD = 13.08, p-value < 0.05. 

CLC students (n=18) were the second of the two treatment (experimental) groups; and, 

relative to i-Ready Assessment results (Curriculum Associates, 2015), remained the lowest-

achieving group throughout the study. Paired t-test data results indicated, pre- to post-, students’ 

aggregate mean scores increased from 398.00 to 417.00, with an overall increase of 19.00, 

significant with t = 5.90, SD = 13.66, p-value < 0.05. Students’ post- to end aggregate mean 

scores increased from 417.00 to 430.39, significant with t = 3.47, SD = 16.39, p-value < 0.05. 

Two sample t-tests were conducted to compare the differences of mean scores between 

the two treatment groups and between the control group and treatment groups. Note that the 

mean increase from pre- to post- Assessment for CLA was 9.44, while CLB and CLC student 

groups mean increases were 19.50 and 19.00 respectively. Although CLB was the highest 

performing group and CLC was the lowest performing group of all three groups, CLB and CLC 

groups experienced comparable statistical increases in mean scores pre- to post. 

Another two-sample t-test tested for differences relative to students’ mean increases in 

mathematics achievement scores between the two experimental groups pre- to post. As shown in 

Figure 4.1, there appeared to be no real teacher effect. The sample t-test, with a t-value = 0.11, 
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SD = 13.44, p-value > 0.05, indicated no evidence of differences in students’ mean increases in 

achievement scores between CLB and CLC groups. Figure 8 is presented on the next page. 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

These statistical findings justify the appropriateness for combining the experimental 

groups when looking at their mean increases in achievement scores. Comparing the combined 

experimental groups’ pre- to post differences in mean scores to the control groups’ differences in 

mean scores, two-sample t-test analysis indicated that the experimental groups experienced 

significantly higher increases in their mathematics achievement scores than the control group. 

When combined, experimental groups’ (n=36) mean increase in scores was 19.3, while CLA 

 

 

       N  Mean St Dev SE Mean 

Diff-CLB   18   19.5   13.2    3.1 

Diff-CLC   18   19.0   13.7    3.2 

 

T-Test of difference = 0; (vs ≠): T-Value = 0.11; p-value > 0.05 

DF = 34 

 

Figure 8. Comparing i-Ready mean difference scores between CLB and 

CLC, post to pre-. Statistical evidence proving that the two experimental 

groups made comparable increases in mean scores. This justifies 

combining the two experimental groups into one large group (n=36). 

 

 

 

 

 

 

Two-Sample t-Test for Diff – CLB vs Diff-CLC 

      N Mean StDev SE Mean 

 

Diff-CLB 18 19.5 13.2   3.1 

Diff-CLC 18 19.0 13.7   3.2 

T-Test of difference = 0 (vs ≠): T-Value = 0.11  

P-Value = 0.912 DF = 34 
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group’s (n=18) mean increase in scores was 9.4, with t = 2.00, SD = 13. 2 and 18.5 respectively, 

p-value < 0.05.  

From post to end, a different statistical outcome occurred (see Figure 9). Two sample t-

tests indicated no real differences in students’ differences in the increases in mean scores 

between the two experimental groups and between the two experimental groups and the control 

group. The slopes indicating students’ growth in mathematics achievement were comparable 

across all three classrooms. When combined, experimental groups’ (n=36) mean increase in 

scores was 13.8, while the mean increase in scores for CLA students was 13.7, with t = 0.04, SD 

= 14.6 and 16.4 respectively, p-value > 0.05.  

Additional two-sample t-tests were conducted to establish statistical comparisons 

between all three student groups’ mathematics achievement at pre-, at post-, and at end, with the 

group’s mean score being the unit of analysis. With alpha levels set at 0.05 for significance, 

results indicated there were no statistical differences between CLA’s (control) pre- mean score of 

414.78 and CLB’s pre-mean score (the highest-performing experimental group) of 420.89, with 

t-value = 0.90, SD = 20.43, p-value > 0.05.  

When comparing groups’ mean scores at end of treatment (post), close significant 

differences between CLA’s and CLB’s mathematics achievement scores were manifested. 

CLA’s mean score of 424.2 compared to CLB’s mean score of 440.4 revealed differences with t 

= 2.01, SD = 24.13, p-value = 0.052 at the end of treatment. By the end of the study, however, 

CLA’s mean score of 437.9 and CLB’s mean score of 454.7 indicated significant differences 

three months after treatment, with t = 2.23, SD = 22.55, p < 0.05. View Figure 9 on the following 

page. 
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Whereas with CLA’s (control) pre- mean score of 414.8 and CLC’s pre- mean score of 

398.0 (the lowest-performing experimental group), there were statistical differences at the onset 

of the study. The control group’s mean score was statistically significantly higher than CLC’s 

mean score, with t = 2.12, SD = 23.78, p-value < 0.05. While there were statistical mean 

differences at the beginning of the school year between CLA and CLC, these statistical 

differences ceased to exist by January’s post-assessment (see Figure 9). Comparing CLA’s post 

mean score of 424.2 to CLC’s post mean score of 417.0, a two-sample t-test analysis indicated 

no significant differences, with t = 0.83, SD = 25.97, p-value > 0.05. The differences or gap 

between CLC students’ and CLA students’ mean scores decreased from 16.8 (Pre) to 7.2 (Post). 

Two-sample t-tests indicated that CLA’s mean score of 437.9 was not significantly different 

from CLC’s mean score of 430.4, with t-value = 0.81, SD = 27.9, p-value > 0.05 post to end.  

 

 

Figure 9. CLA, CLB, CLC i-Ready mean scores at pre-, post, end; school 

year 2014–2015. Statistical analysis of each classroom’s mean scores 

indicating mathematics achievement. 
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Students in all three groups experienced statistically significant increases in their 

respective mathematics achievement from pre- to post and post to end. Students in the two 

experimental groups experienced greater statistical differences from pre- to post than students in 

the control group during that timeframe. The increase in the experimental groups’ mean scores 

doubled that of the control group. The null hypothesis for Research Question 1 was rejected.  

Quantitative analyses and comparisons: Research question 2. In Chapter 1’s glossary 

of terms and definitions, proponents of MTSS claimed that Tier I general core instruction should 

meet the instructional needs of 80% of the students in the classroom. To determine the effects 

teacher implementation of the “re-envisioned” instruction model had upon students’ Tier Levels 

of instruction, the following question was posed: 

Research question 2. Did teacher implementation of the “re-envisioned” instruction 

model minimize students learning difficulties in mathematics? In other words, did 

implementation of the model move students identified at Tier II and Tier III levels to Tier I and 

Tier II levels respectively as identified by the pre- to end tests from the i-Ready Screening 

Assessment (Curriculum Associates, 2015)?  

H20: When comparing students in the two treatment groups to students in the control 

group, there were no statistical differences in count patterns representing students’ 

decrease (improvement) in Tier Levels from pre- to end according to the i-Ready 

Universal Screener assessment data.  

H2a: When comparing students in the two treatment groups to students in the control 

group, there were statistical differences in count patterns representing students’ decrease 

(improvement) in Tier Levels from pre- to end according to the i-Ready Universal 

Screener assessment data.  
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The i-Ready Screening results was the data source (Curriculum Associates, 2015) to 

determine how CLA, CLB, and CLC Teachers’ mathematics instruction (“re-envisioned 

instruction model” compared to Midwest School District’s mathematics program) affected 

students’ instructional Tier Levels. Utilizing teachers’ i-Ready reports, students’ instructional 

Tier Levels were tabulated into a table indicating Tier I, II, or III. These tabulations informed 

aggregated percentages of students in each class at each instructional Tier pre-, post-, and end of 

study. Table 4.5 identifies the percentage of students at each instructional Tier level in each 

classroom throughout the school year, 2014–2015. 

Table 4.5 

i-Ready Instructional MTSS Tier- Levels for Mathematics Instruction for CLA, CLB, and CLC 

Students, Pre- to Post- to End 

 

Group 

(N=18) 

Pre-Assessment 

(Fall) 

Post-Assessment 

(Winter) 

After Treatment 

(Spring or End) 

 

CLA (Control) 

Tier Level I 28% 56% 61% 

Tier Level II 61% 33% 39% 

Tier Level III 11% 11% 0% 

 

CLB (Experimental) 

Tier Level I 28% 72% 89% 

Tier Level II 72% 28% 11% 

Tier Level III 0% 0% 0% 

 

CLC (Experimental) 

Tier Level I  17% 39% 50% 

Tier Level II 44% 44% 44% 

Tier Level III 39% 17% 6% 

 Over the course of treatment, from pre- to post-, the number of CLA students who 

improved in instructional Tier Levels was 7 (i.e. moved from a Tier II or Tier III to a Tier II or 

Tier I); while the number of students who regressed in instructional Tier Levels were 2. One 
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CLA student moved from a Tier I to a Tier II instructional level. The second student moved from 

a Tier II to a Tier III instructional level.  

From pre- to post-, the number of CLB students who improved in Tier Levels were 8. No 

students regressed in Tier Levels during treatment. For CLC students, the number of students 

who improved in Tier Levels was 7. Again, for this treatment group, no students regressed in 

Tier Levels during treatment.  

To statistically test for significant differences in count patterns for each student group, 

Pearson’s Chi-Square tests were used to compare patterns of movement in Tier Levels, pre- 

versus end. Pre-assessment measures established baseline data of all students’ Tier Levels for 

instruction. End assessment measures established the effects teacher instruction had upon 

students’ instructional Tier Levels. Students included in this study did not experience additional 

instructional supports during the school day.  

 All three groups demonstrated significant differences in count patterns pre- vs. end. Most 

students moved from a Tier II to a Tier I or from a Tier III to a Tier II or I instructional level. 

Due to low counts, the number of CLA students in Tiers II and III had to be combined for testing 

purposes. CLA group’s data results suggested significant differences in count patterns with a 

Chi-Square = 4.050, p-value < 0.05.  

For CLB and CLC, combining Tier Levels was not necessary. CLB’s count patterns for 

pre- versus end were also significantly different, with a Chi-Square = 13.829, p-value < 0.05. 

CLC’s count patterns, pre- versus end, were also significantly different, with a Chi-Square = 

7.500, p-value < 0.05.  

When comparing CLA students to CLB students’ mathematics achievement scores at the 

end of the study, CLB’s end was significantly higher. Yet, relative to students’ instructional Tier 
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Levels, the Chi-Square test for differences in patterns, Pearson Chi-Square = 3.704, DF = 1, p-

value = 0.054. These measures demonstrated only mild significance. The p-value of 0.054 was 

just outside the range of significance. This was possibly due to the small sample sizes for each 

classroom. 

The number of students who achieved at least one year’s worth of growth in mathematics 

achievement in each classroom during the 6.5 months of the study was vastly different. The 

authors of the i-Ready Assessment tool (Curriculum Associates, 2015) identified students’ 

individual Scale Scores relative to chronological grade levels and independent of instructional 

levels. According to Curriculum Associates (2015) established measures, four students in CLA 

group achieved one year’s worth of growth in mathematics achievement. Ten students in CLB 

group and nine students in CLC group achieved one year’s worth of growth in mathematics 

achievement. Both experimental groups experienced more than twice the number of students 

achieving at least one year’s growth relative to this measure when compared to students in the 

control group. Appendix G provides individual classroom lists of students’ i-Ready Mean Scores 

for 2014-2015 and District Benchmark Assessment I & II Results.  

Analysis of low-scorers’ mean scores. A main goal for this study was to design an 

instruction model that reduced the number of students needing Tier II and Tier III interventions. 

Consistent with i-Ready reports, any student who scored ≤ 429 was designated at Tier II or Tier 

III instructional levels. To determine how low-scoring students faired in each classroom during 

and after treatment, paired t-tests with an alpha level of 0.05 to argue for significance were 

conducted. When following all original low scorers across the three classrooms, all three student 

groups demonstrated statistically significant improvements from pre- to post- and again, from 

post- to end.  
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In CLA’s classroom (n=18), thirteen students were considered low-scorers needing 

instructional interventions at the beginning of the school year. By post, eight students were 

identified as low scorers; and by the end of the school year, seven students were considered low 

scorers. Paired t-test results indicated that CLA students’ post- mean score of 416.46 was 

significantly higher than their pre- mean score of 405.08, with t = 2.17, SD = 18.89, and p-value 

< 0.05. From post- to end, their mean score of 428.92 was significantly higher than their post- 

mean score of 416.46, having t = 2.45, SD = 18.36, p-value < 0.05. 

In CLB’s classroom (n=18), thirteen students were identified as low-scorers needing 

instructional interventions at the beginning of the school year. By post, five students were 

identified as low scorers; and, by the end of the school year, two students were identified as low 

scorers. Low-scorer’s post mean score of 433.00 was significantly higher than their pre- mean 

score of 412.38, with t = 5.40, SD = 13.76, and p-value < 0.05. End mean score was 445.77, 

which was significantly higher than the post mean score of 433.00, t = 3.16, SD = 14.59, p-value 

< 0.05.  

In CLC’s classroom (n = 18), fifteen students were identified as low-scorers needing 

interventions at the beginning of the school year. By post, eleven students were identified as low 

scorers; and, by the end of the school year, nine students were identified as low scorers. Post 

mean score 410.40 was significantly higher than their pre- mean score of 389.47, with t = 5.88, 

SD = 13.79, and p-value < 0.05. End mean score was 421.27, which was statistically 

significantly higher than the post mean score of 410.40, t = 2.54, SD = 15.56, p-value < 0.05.  

Similarly, all three classrooms of low scorers experienced improvements in instructional 

Tier Levels. Between pre- and post-assessments, however, two students in CLA classroom 

experienced regression in instructional Tier Levels, whereas no students in the experimental 
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groups regressed. Patterns were clearly different. To answer Research Question 2, however, the 

statistical analyses of count patterns in students’ movement of instructional Tier Levels justify 

the acceptance of the null hypothesis. Proof indicating statistical differences in count patterns 

between the experimental groups and the control group was insufficient. Results may be due to 

small sample sizes.  

Quantitative analysis and comparisons: Research question 3. In Chapter 2, all six 

learning theorists described students’ cognitive structures as essential neurocognitive systems 

that support students’ learning of mathematics. The two experimental teachers used the “re-

envisioned” instruction model, along with “re-designed” mathematics tasks, to activate and 

mediate the development of students’ cognitive structures. The following data and data analysis 

answered Research Question 3. 

Research question 3. To what extent did teacher implementation of the “re-envisioned” 

instruction model influence the development of students’ cognitive structures, specifically spatial 

orientation and conservation of constancy? 

H30: When comparing the treatment groups’ development of their cognitive structures to 

the control group’s development of their cognitive structures, there were no statistical 

differences as determined by pre- to post- test scores on the Adapted Cognitive Structure 

Assessment results. 

H3a: There were statistically significant differences in students’ development of their 

cognitive structures between students who received treatment and students who did not as 

determined by students’ pre- to post- test scores on the Adapted Cognitive Structure 

Assessment results. 
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To assess the level of development of students’ cognitive structures relative to 

conservation of constancy and spatial orientation, a modified version of Garner’s Large Group 

Assessment of Basic Cognitive Structures and Square Search Assessment was utilized. The same 

assessment was administered to all three student groups for pre- and post. This assessment 

comprised three sub-tests and was conducted in whole group settings (refer to Appendix B). 

Student responses on the assessments were hand-scored and quantified. The first section 

contained three test items assessing for conservation of constancy. The first question required 

students to look at two markers that were the same brand, type, width, and length. The markers 

were placed side by side so that students perceived they were equivalent in length. When the 

second marker was moved to the left of the first marker, students were asked to determine if one 

marker was now longer than the other or if the two markers were still the same length 

(conservation of length). The other tasks in the first section were similar in nature, meaning that 

equivalency was first established between two balls of clay having the same mass and two plastic 

bottles holding the same amount of liquid. When one of two clay balls were flattened, and one of 

the two bottles of water was tipped upside down, students were asked to determine if the ball’s 

mass was still the same or if it had changed, and if the amount of liquid in the bottle remained 

the same or if it had changed.  

When conducting Wilcoxon Signed Rank Tests using a test of median = 0.000 versus 

median > 0.000, only the control group, CLA, provided statistically convincing evidence that 

they improved on this set of test items. In CLA’s classroom, eleven students improved over the 

treatment period with a statistical value at 56.0, p-value <0.05, and estimated median set at 

1.000. The two experimental groups’ results did not indicate statistical differences pre- to Post.  
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For the second set of tasks testing for conservation of constancy, students drew three 

pictorial representations of half-filled glasses of water. The first glass was positioned on its base, 

the second half-filled glass of water tipped to the right, and the third half-filled glass of water 

tipped to the left. Analyzing the total correct responses from each classroom pre- to post-, slight 

changes were evident in CLA’s students, but not enough to test for significant differences. No 

changes were evident from pre- versus post- in both treatment groups. See Table 4.6 on the next 

page for the results from all three classrooms relative to students’ development for conservation 

of constancy. 

Table 4.6 

Adapted Cognitive Structure Assessment Results with Wilcoxon Signed Rank Test for 

Conservation of Constancy 

 

Class N N for Test 
Wilcoxon 

Statistic 

p- 

Value 

Estimated 

Median 

CLA 17 11 56.0 0.023 1.000 

CLB 18 11 46.0 0.133 0.000 

CLC 16 9 30.0 0.203 0.000 

For the final portion of the cognitive structure assessment, students used their spatial 

orientation skills to depict 12 different configurations for squares and 12 different configurations 

for triangles by connecting sets of small dots. Z-Tests were conducted to determine statistical 

changes in students’ responses pre- to post. With statistical analysis of student results, each 

student group provided statistically significant evidence that they developed their cognitive 

structures involving spatial orientation. 

CLA students increased by 14 percentage points, with a confidence level of at least 8 

percentage points, Z = 3.77, p-value < 0.05. CLB students increased by 38 percentage points, 
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with a confidence level of at least 31 percentage points, Z = 8.79, p-value < 0.05. CLC students 

increased by at least 10 percentage points, with a confidence level of 4 percentage points, Z = 

2.70, p-value < 0.05. 

Students’ development of their cognitive structures varied. CLA student group 

demonstrated statistical differences in their development of their cognitive structures for 

Conservation of Constancy. The two experimental groups did not. All student groups 

demonstrated differences for their cognitive structures for spatial orientation. Therefore, the null 

hypothesis for Research Question 3 was rejected and the alternative hypothesis was accepted. 

There were statistical differences between the control group and the two experimental groups 

relative to their development of their cognitive structures. 

Qualitative analysis and comparisons: Research question 4. The fourth and final 

question pertained to teacher implementation of the model and the effects this had upon students’ 

beliefs and practices for learning mathematics. Multiple sources of qualitative data were 

gathered. Qualitative data were triangulated with other data sources to establish validity of 

quantitative results and reliability of inferences made. Data from each classroom of students 

were collected, transcribed, analyzed for content, coded for emerging themes, and reduced for 

data manageability. Interviews, questionnaires, surveys, researcher’s observations, and scripted 

field notes of teacher’s mathematics lessons generated thick descriptions of teachers’ and 

students’ beliefs and practices for teaching and for learning mathematics. Thick descriptions 

originated in students’ mathematics work recorded in their mathematicians’ notebooks. Student-

to-student and student-to- teacher dialogues provided rich contexts offering insights into ways 

students made sense of the “re-designed” tasks teachers presented. Students’ pictures and written 

and oral descriptions illustrated their beliefs and practices for learning mathematics 
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Research question 4. By the end of this study, to what extent did teacher implementation 

of the “re- envisioned” instruction model influence students’ beliefs and practices for learning 

mathematics? 

H40: By the end of the study, qualitative differences in students’ beliefs and practices for 

learning mathematics did not exist between students who received treatment and students 

who did not as indicated by students’ and teachers’ qualitative data.  

H4a: By the end of the study, qualitative differences in students’ beliefs and practices for 

learning mathematics existed between students who received treatment and students who 

did not as indicated by students’ and teachers’ qualitative data. 

Classroom Environments 

 To determine the quality of each classroom’s environment, all three teachers were asked 

to complete surveys indicating fourteen specific beliefs and practices they observed in their 

students. Beliefs included students’ self-perceptions as mathematicians and understanding their 

roles in the learning process. Learning practices included: asking questions, using multiple 

representations, explaining and justifying mathematics thinking, making connections between 

and among concepts and representations, and self-selecting tools. 

The survey utilized a four-point Likert scale rating: 

“1” indicated that a specific student behavior was observed all the time;  

“2” indicated that the behavior was observed some of the time; 

“3” indicated the behavior was observed occasionally; and,  

“4” indicated that the student behavior was observed not at all.  
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Utilizing classroom observations of their students, each teacher scored the fourteen student 

beliefs and practices three times during treatment: September 2014, Mid-October 2014, and in 

January 2015.   

All three teachers claimed their students perceived themselves as mathematicians. 

Throughout the study, each teacher put forth intentional efforts for creating environments where 

all students’ self-efficacy for learning mathematics was enhanced. Each teacher questioned her 

students about their roles and their work as mathematicians and created hallway bulletin boards 

posting each student’s photo accompanied by students’ corresponding responses. Each teacher 

also charted students’ collective responses onto chart paper and posted it in their classrooms. 

Time after time, teachers consistently referred to their students as mathematicians. By post-

study, each teacher indicated that their students consistently perceived themselves as 

mathematicians. In fact, CLA Teacher described that when comparing her current students to 

students from previous years, she claimed that this year’s group believed they were 

mathematicians more intensely than previous groups.  

 City and colleagues (2009) argued that to increase student achievement, the student’s role 

must change in the learning process. When comparing CLB and CLC Teacher responses to CLA 

Teacher responses on the survey, one student belief was markedly different. This indicator 

referred to students understanding that their roles were to think deeply about mathematics during 

instruction. At the beginning of the study, all three teachers indicated that their students did not 

see their roles as thinking deeply about mathematics. By the end of the study, both experimental 

teachers indicated their students explicitly understood their role was to think about math, and 

think about math deeply. CLA Teacher recorded that her students understood this role “some of 

the time.” To verify teacher’s perceptions, we turn to data indicating students’ beliefs. 
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Students’ Beliefs  

To accurately infer students’ perceptions about mathematicians and the work they do, all 

three classrooms of students were asked to record individual responses to the following prompts, 

“What is a mathematician?” and “What is the work they do?” Students’ replies to these open-

response questions were recorded at the end of treatment in January 2015. Students recorded 

their perceptions in their mathematician’s notebooks using words, drawings, and symbols. Their 

responses were collected, photocopied, and analyzed using an open-coding system. Within the 

first analytic pass, student responses revealed a list of common, yet specific words found in and 

across all three student groups.  

Next, student responses were reduced to fourteen different codes. Codes included 

“thinking,” “smart,” “learner,” “knows math,” “a reader,” “a writer,” “uses tools,” etc. Repetition 

of these codes amongst student groups generated frequency patterns. These codes were reduced 

one more time to specific themes to calculate the percentages of student responses within each 

class. These percentages were used to create a common definition or theme representing each 

student population.  

CLA students’ written descriptions were wide and varied. No single code or common 

theme emerged in at least 50% of students’ responses. In other words, no common description 

emerged from at least half the respondents. When 40% of respondents were needed to generate a 

common description, then CLA students described mathematicians as “someone who is smart 

and they solve problems.” When 30% of students’ responses were needed to create their 

common definition of a mathematician, CLA group’s description was, “Mathematicians use their 

brains to think. They are smart and they solve problems. They are readers and writers. I am a 

mathematician!”  



A “RE-ENVISIONED” INSTRUCTION MODEL  177 

 

 

Following the same themes and percentage criteria for developing a common definition 

from CLB’s class, more than half (> 50%) of CLB respondents claimed, “Mathematicians use 

their brains to think. They share and explain their thinking. They use tools and make 

connections.” Between 40 to 49% of CLB students’ responses remained the same, meaning there 

was no change in student descriptions. At least 30% of student respondents claimed, 

“Mathematicians use their brains to think and to learn. They know math so they share and 

explain their thinking. They write to solve problems and operate with numbers. They use tools 

and make connections.”  

According to CLC student respondents, at least 50% of CLC students described 

mathematicians as, “Mathematicians use their brains to think. They are readers and writers which 

help them solve problems. They also use tools and make connections. I am a mathematician!” 

Like CLB, there was no additional change in student descriptions when 40%–49% was the range 

for defining mathematicians and their work. When 30% or more students’ responses generated a 

common definition, then CLC students reported, “Mathematicians use their brains to think and to 

learn. They are readers and writers which helps them solve problems. They also use tools and 

make connections. I am a mathematician!” The difference between 40% and 30% responses 

involved the word learn. 

Students’ Self-Reflections of their Learning 

Each teacher believed her actions and words in the classroom supported students 

developing self-efficacy as mathematicians. Experimental teacher’s implementation of the “re-

envisioned” instruction model supported students becoming consciously aware of one’s self as 

knower relative to learning, reasoning, and specific practices. Thus, near the end of the school 

year in May 2015, each classroom was visited a final time. Students were invited to look through 
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their mathematician’s notebooks and describe, using words, pictures, and numbers, the ways they 

grew as mathematicians throughout the school year. 

In whole group, yet working individually, students responded to the following prompts, 

“Looking at your mathematician’s notebook, how have you grown as a mathematician? What are 

things you notice? You can use words, pictures, numbers, whatever you need to describe how 

you’ve changed as a mathematician.” As students leafed through their notebooks, giggles, 

smiles, and expressions of wonderment erupted. Some students verbalized it was hard to read 

their initial entries from the beginning of the year, or that their writing at the beginning of the 

year didn’t make sense to them now. All three student groups noticed changes in their 

handwriting and spelling abilities from the beginning of the year to the end of the school year.  

 Most CLA students focused on certain aspects of their handwriting, including neatness, 

spelling, punctuation, and their ability to read and make sense of their writing. Some students 

also focused on their changes in learning specific mathematics content. For example, one CLA 

student compared what he did at the beginning of the year to the ways he changed over the 

course of the year (spelling has been corrected).  

This CLA student recorded,  

Before: It was about Base 10 Blocks and games. Doesn’t make sense my writing. Missing 

stuff in my writing; Reflect a lot more. After: Now it is about subtraction; now it makes 

sense; now I don’t leave stuff out of my writing; now I don’t have time to reflect. 

Another CLA student wrote, “I noticed none of the words are spelled correctly. I learned how to 

tell [time]. I was smart. I learned how to count money.” A third example from a CLA student 

included,  
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At the beginning I could not read my writing. I notice that we glued number stories in our 

note book. We wrote about mathematicians. I notice at the beginning I spelled words 

wrong and added more punctuation at the end.  

Finally, another CLA student’s response focused on specific mathematics models represented in 

her mathematician’s notebook. She wrote, “I learned Start and Change End. I know a long time 

ago my writing was funny now it is good. I learned Partial Sums. I learned Part, Part, Total.” 

While both CLB and CLC students noted changes in their reading and writing 

capabilities, they also noted increases in their mathematics learning and understanding, in the 

amount of writing needed to explain their thinking, and their inclusion of evidence. One CLB 

student observed,  

I noticed that I used to not have as much words as now. I do more math than I used to do. 

I didn’t really get math really good but now I do. I don’t get what I used to write. I 

changed as a math mathematician because I do more things and in different ways and 

more ways than later. I used to call tens blocks. I trade now and I never did that, Wow. I 

work more with money. I think at the beginning of the year I was a 1, but now I changed 

to 5s and 3s. I used to think ¼ was three parts shaded.  

This student’s 5’s and 3’s referred to the teacher’s system of engaging students in self-reflection 

for understanding. At the end of a lesson, CLB Teacher asked her students to reflect upon their 

understanding of the specific mathematics concepts taught that day. A fist of five indicated that 

the student could teach another student about the mathematics concepts they learned. 

Another CLB student noted,  

I noticed that I am using more harder [words] than before. I noticed that we have changed 

the subject of math a lot. I noticed that in the past I didn’t use too much precise math 
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words. I noticed that I used to just work to find the answer and now I just show evidence. 

I noticed that I don’t remember the lesson until I actually see it with my own eyes. I 

noticed that my now work in the past it doesn’t make sense but the present does make 

sense. I noticed that I barely had any thinking and now I have a butload of thinking on 

my page. 

Likewise, a CLC student recorded, “At the beginning I had only 1 or 2 ideas. But now I 

have all most 5 or 6 ideas. At the beginning I didn’t understand.” Similarly, another student 

wrote, “I did not have much on my paper before. I use strategies more now. My stuff did not 

make sense before. I can do a lot more stuff and strategies. Better handwriting. I understand 

things more. We did reflections.” Still, another CLC student observed, “I use more evidence. My 

writing makes more sense. I did not understand a lot of my words in the beginning of the year. I 

used pictures. My writing has increased.” Finally, one CLC student noticed she made fewer 

mistakes as the year progressed. She recorded, “I do more words now. Now I do more evidence. 

I do more explaining now than back then. I had to do more crossing out back then. I didn’t solve 

one of my equations. I made a wrong answer.” 

Looking beyond students’ handwriting capabilities, students’ responses were analyzed 

from a mathematics perspective. Seven common themes emerged pertaining to learning 

mathematics across all three groups of students. Table 4.7 represents the percentage of student 

responses from each classroom aligning with these seven themes.  
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Table 4.7 

Common Themes for How Students Grew as Mathematicians 

Class 

Understanding 

Sense Making 

Thinking 

Learning Explaining 
Showing 

Evidence 

Using 

Strategies/ 

Properties of 

Mathematics 

Using 

Tools 

Specific 

Math 

Content 

 

CLA 

(Control) 

 

 

50% 

 

35% 

 

15% 

 

25% 

 

35% 

 

10% 

 

35% 

CLB 

(Exp.) 

 

63% 81% 63% 63% 54% 25% 50% 

CLC 

(Exp.) 

67% 67% 33% 56% 22% 65% 30% 

When comparing student responses from the control group to student responses from the 

two experimental groups, the percentages that were double the control group were ways students 

grew as mathematicians. These involved an increase in student learning, in the amount and depth 

of their written explanations for explaining their thinking, in the amount of evidence they 

provided, and their use of tools.  

Utilizing an open-response survey, students were also asked about the concepts they 

wanted to better understand in mathematics. All three student groups responded. Student 

responses were coded for key-words-in-contexts and word repetitions or frequencies.  

The majority of CLA students reported they wanted to understand more about the 

operations of multiplication and division. One CLA student recorded, “Devison 6 ÷ 2 = 3.” 

Another student reported, “Divsen and really hard problems and using base-ten block.” A third 

student claimed, “Do times because there yougly hard for me in math.” Others wrote, “That I can 

know every math eqagun”; “Paper and pesor”; “Wene there’s a adish pamol I don’t get it”; and 

“Math game’s. Because I do not understand the deirecttions.” Finally, four CLA students 
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reported that they had learned all they needed to learn. When asked what they wished they 

understood better in math, three of the four students responded, “Nothing” or “Really nothing,” 

while the fourth student responded, “I think I get it all?”  

CLB students’ responses focused upon a wide variety of concepts. Students reported they 

wanted to learn more about measurement, quantity, arrays, benchmark numbers, odds and evens, 

and using the number line to solve problems. Others reported that they wanted to improve their 

understanding of meanings for multiplication and division. One CLB student recorded, 

“Maltiplacashon because I can’t understand Maltaplacashon is all about I mean what’s the point 

if you don’t know.” Another student wrote, “÷ because I do not really understand it. I do not 

really now the mening of it.” Two students expressed their desires to better understand how to 

explain their thinking because it was challenging for them. Two more students responded, 

“Megerment becase I don’t think I know most of the megemet words. But I want to know most 

of them”; and, “I do not no all the ansers yet.” None of the CLB students expressed there was 

nothing more to learn in this classroom. Overall, CLB students sought to gain a better 

understanding of a variety of mathematics concepts. 

Similarly, CLC students’ responses focused upon a wide range of concepts as well. 

Students reported that they wanted to better understand numbers and number relationships, 

equations, jumping on the number line, addition, multiplication, division, and fractions. One 

student recorded, “Fractions and devitoin because I want to cathch up with other kids and I want 

to be smart.” Another student wrote, “Number relashonship’s because it is hard to explan.” A 

third student reported that he wanted to understand division because his grandmother taught him 

division, but he still didn’t understand it. A student had high expectations for herself. She 
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reported, “Tines colleage math.” Only one CLC student claimed there was nothing more for her 

to learn in this classroom.  

Teachers’ Reflections of Students’ Practices for Learning Mathematics 

 Teachers’ qualitative data was triangulated with student data to confirm the above 

inferences relative to students’ beliefs and practices for learning mathematics.  

CLA Teacher reported,  

I don’t think I got the digging deeper questions like I got from you and our [school’s 

math coach]. These were too challenging to do. The lessons don’t dig deep, don’t have 

the same types of questions. The district has some good lessons, good parts of lessons, 

but they do not have the same quality for when we do the new workshop.  

Teachers’ implementation of the “re-envisioned” instruction model and “re-designed” 

mathematics tasks enabled the two experimental teachers to observe and compare students’ 

mathematics skills, mathematics thinking, beliefs, and practices relative to student groups from 

prior years.  

CLB Teacher recorded,  

Students are truly thinking like mathematicians. They are talking about math more during 

the lesson and while playing games. They are more engaged. They are trying things at 

home on their own. Questioning more. Finding more connections. Beginning to 

understand the relationship between numbers. Better understanding that math learning is 

thinking. More cooperative learning. Writing! The amount and quality of their math 

writing is far more substantial than past years.  

CLC Teacher claimed,  
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I see students thinking more deeply, making more connections between math ideas than 

before. Students are linking equations to games, writing more about math, explaining 

their mathematics thinking and drawing visual representations to explain thinking. 

Students add onto other students’ thinking, making sense of each other’s ideas and 

thoughts. 

Given the triangulation between teachers’ and students’ qualitative data, differences were 

evident in students’ beliefs and practices for learning mathematics between students in the 

control group and students who received mathematics instruction via the “re-envisioned” 

instruction model. Students’ differences in their responses for what it means to be a 

mathematician, the work mathematicians do, and students’ beliefs for future learning of 

mathematics provide justification for rejecting the null hypothesis relative to Question 4.  

Chapter Summary  

The results from this study addressed four critical questions pertaining to increasing 

students’ mathematics achievement and for minimizing their learning difficulties in mathematics. 

Quantitative results from Midwest School District’s i-Ready Universal Screening Measure 

(Curriculum Associates, 2015) indicated greater significant differences in mean increases in the 

experimental students’ mathematics achievement scores when compared to the control students’ 

mean increases in achievement scores. Students who experienced the instruction model and “re-

designed” tasks demonstrated increases in mean scores doubling the increase of students’ mean 

scores in the control group. The experimental students also experienced comparable mean 

increases pre- to post even though the two experimental groups were widely divergent in their 

mathematics achievement levels. Statistical analyses provided justification for rejecting the null 

hypothesis related to Research Question 1. 
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CLA Teacher reunited with her two grade-level colleagues to plan mathematics 

instruction after treatment. From post- to end of school year, i-Ready results revealed a different 

outcome than the one experienced during treatment (Curriculum Associates, 2015). There were 

no statistical differences in students’ increase of mean scores when comparing the two 

experimental groups to the control group. Students’ mean increases in mathematics achievement 

scores were comparable in all three classrooms.  

Screener results at the beginning of the school year indicated there were no statistical 

differences when comparing CLA group’s mean scores to CLB group’s mean scores. By the end 

of the study, however, there were statistically significant differences between CLA’s and CLB’s 

mean scores in mathematics achievement. The achievement gap between CLA and CLB students 

statistically widened from post to end of study. 

Opposite results occurred between CLA group and the lowest-performing experimental 

group, CLC. Where there were statistical differences in students’ mean scores between these two 

student populations at the beginning of the study, test measures revealed that the achievement 

gap between CLC students’ mathematics achievement and CLA students’ achievement narrowed 

by the end of treatment. When compared to CLA students, CLC students’ learning gap or 

achievement gap was no longer significantly different by post-assessment and remained non-

existent till the end of the study.  

The above results corresponded to the number of students achieving at least one year’s 

worth of growth in mathematics achievement. As indicated by students’ individual Scale Scores 

relative to chronological grade levels and independent of instructional levels, the i-Ready 

measures indicated four CLA students achieved one year’s worth of growth in mathematics 

achievement from pre- to end of study. Ten students in CLB group and nine students in CLC 
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group achieved one year’s worth of growth in their mathematics achievement during the same 

timeframe when applying the same statistical criteria. This data suggested that teacher’s 

enactment of the “re-envisioned” instruction model and “re-designed” tasks more than doubled 

the number of students experiencing at least one year’s worth of growth in their mathematics 

achievement scores when comparing the experimental groups to the control group. 

Further analysis was conducted to determine whether the “re-envisioned” instruction 

model was effective in reducing the number of students identified at Tier II and Tier III levels of 

instruction. This analysis addressed Research Question 2. Pearson Chi-Square Tests were 

conducted to compare count patterns of students’ movement between Tier Levels, pre- versus 

end. Although pre- to post data from i-Ready Assessment indicated two CLA students regressed 

in instructional Tier Levels, students’ count patterns of movement from pre- to end in all three 

classrooms demonstrated convincing statistical evidence that students improved in instructional 

Tier Levels.  

 The low-scorers’ analysis for any student who achieved a mean score ≤ 429 at the 

beginning of the school year on their overall mathematics achievement was designated as a Tier 

II or Tier III student. Statistical analysis indicated that low-scoring students in each classroom 

demonstrated statistically significant differences when comparing their increases in mean scores 

pre- to Post. Furthermore, when comparing students in the two treatment groups to students in 

the control group, no statistical differences in students’ count patterns representing students’ 

improvement in Tier Levels pre- to end were displayed. The null hypothesis for Research 

Question 2 was accepted.  

A Wilcoxon Signed Rank Test and Z-Test for Two Proportions were applied for 

statistical analysis to assess whether teacher’s enactment of the “re-envisioned” instruction 
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model mediated the development of students’ cognitive structures for conservation of constancy 

and spatial orientation. Only CLA students provided statistically convincing evidence that they 

furthered their development of their cognitive structures for conservation of constancy. Eleven 

students improved over the treatment period with a statistical value at 56.0, p-value < 0.05, and 

estimated median set at 1.00. The two experimental groups’ findings were not statistically 

different pre-to post. When analyzing the second set of tasks for conservation of constancy, 

slight changes were evident in CLA’s students, but not enough to show significant differences. 

No changes were evident from pre- versus post in both treatment groups with the second set of 

tasks for conservation of constancy. This variance in data between task types suggests more data 

should be collected. 

To test for students’ development of the cognitive structures for spatial orientation, 

statistical changes in students’ responses pre- to post were manifested for each student group. 

Each student group made statistically significant increases pre- to post. For Research Question 3, 

the null hypothesis was rejected. CLA students did mediate the development for their cognitive 

structures for conservation of constancy. Thus, there were statistical differences between groups. 

Multiple sources of qualitative data were collected, analyzed, and triangulated with these 

results to substantiate or challenge students’ quantitative results from the i-Ready Assessment 

Screener (Curriculum Associates, 2015). Differences were manifested when comparing student 

beliefs and practices in CLA’s classroom to the two experimental groups. CLA students were 

often expected to create equivalent representations. CLB and CLC students engaged with novel 

tasks that focused their attention on the figural units within varied representations. Students in 

the experimental classrooms were expected to interpret the meaning of the representations, make 

connections to other mathematics concepts previously learned; or, extend the original problem. 



A “RE-ENVISIONED” INSTRUCTION MODEL  188 

 

 

Differences in CLB and CLC student’s definitions for mathematicians and the work they 

do were demonstrated when compared to CLA students. CLA students (40%) believed 

“Mathematicians are smart and they solve problems.” More than 50% of CLB students 

described, “Mathematicians use their brains to think. They share and explain their thinking. They 

use tools and make connections.” At least half of CLC students claimed, “Mathematicians use 

their brains to think. They are readers and writers which help them solve problems. They also use 

tools and make connections. I am a mathematician!” 

Qualitative differences in student’s descriptions and perceptions for ways they grew 

mathematically during the school year were found amongst students who experienced the “re-

envisioned” instruction model when compared to students who did not. A greater number of 

students in CLB and CLC’s classrooms recorded they observed increases in their learning, in the 

amount and depth of their written explanations, in the amount of evidence they provided, and in 

their abilities to use tools. This data provides justification to reject the null hypothesis for 

Research Question 4.  

To conclude this chapter, all three student groups statistically increased their quantitative 

mean scores from pre- to post- to end. However, there were stark statistical differences in 

students’ measures across groups relative to students’ mathematics achievement. Students in 

both experimental groups outperformed students in the control group. The number of students in 

CLB and CLC classrooms who achieved one year’s worth of growth in mathematics 

achievement were more than twice the number of students in the control group.  

All three student groups statistically improved in instructional Tier Levels from pre- to 

end of study. Regarding cognitive structure development for conservation of constancy, only 
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CLA students demonstrated a statistical difference. All three student groups demonstrated 

statistical increases for their cognitive structures related to spatial orientation.  

Qualitative differences were noted in students’ beliefs and practices for learning 

mathematics. Students in the experimental groups recognized that their roles for learning 

mathematics was to think deeply about mathematics. CLB and CLC students worked to provide 

evidence of their thinking, share their thinking with others, make connections, and use tools to 

learn mathematics.  

Contrastingly, the control classroom of students explained that mathematicians were 

smart and solved problems. Four students from CLA classroom believed they knew everything 

there was to know about mathematics. If students were to learn a new concept, it related to 

multiplication and division. Students in the two experimental groups expressed they wanted to 

learn a wide variety of mathematics concepts, including understanding how to explain their ideas 

more effectively, apply mathematics concepts, and understand the meanings of the operations.  

The triangulation between the quantitative data and the multiple sources and analyses of 

teachers’ and students’ qualitative data supported justification of these differences between CLA, 

CLB, and CLC student groups. The null hypotheses for Research Questions 1, 3, and 4 were 

rejected. The null hypotheses for Research Question 2 regarding students’ movement in 

instructional Tier Levels was accepted. Interpretations of the data, conclusions, and 

recommendations for future research are presented in the next and final chapter, Chapter 5.
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Chapter 5: Interpretations, Conclusions, and Recommendations 

 The first four chapters culminate in Chapter 5 where the “re-envisioned” instruction 

model’s effectiveness for increasing students’ mathematics achievement is discussed. This 

instruction model is grounded in a synthesis of six learning theories and current research from 

mathematics education, cognitive and educational psychologies, and the neurosciences. During 

the 2014–2015 school year, two second-grade teachers and their students attending Midwest 

Elementary School implemented the instruction model in their classrooms. The model structured 

second-grade teachers’ implementation of Tier I core instruction—the primary prevention 

component within a Multi-Tiered System of Support (MTSS; Fuchs et al., 2012; Fuchs et al., 

2010).  

Students in the two experimental groups (or classrooms) received Tier I core instruction 

using “re-designed” tasks. These tasks focused on mediating the development of students’ 

mental cognitive structures and numeracy which are vital constructs for learning mathematics. 

Another second-grade teacher and her students functioned as the control group. Students in the 

control group were instructed by their teacher using Midwest School District’s mathematics 

program and curricular resources.  

Chapter 5 encompasses a short summary of the study, a discussion of the findings, 

conclusions, implications, limitations, recommendations for future research, and suggestions for 

implementing this model at scale. Closing remarks conclude this chapter and dissertation.
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Summary of the Study 

Researchers claim that low student achievement in mathematics contribute to students’ 

failures as they reach adulthood. Students’ future employability, rates of promotion, and their 

annual income levels are at stake (Geary, 2013; Geary et al., 2009; Jordan et al., 2009). The 

mathematical skills and competencies learned in elementary school form a critical foundation for 

students’ full adult- participation in a technologically-oriented and information-rich society 

(Baroody & Ginsburg, 1990). To improve average to below-average students’ mathematics 

achievement, design-based research became the theoretical backdrop for designing an effective 

Tier I model of instruction and intervention that minimized students’ learning difficulties in 

mathematics (Barab & Squire, 2004; Cobb et al., 2003). 

To conduct this study, origins of learning difficulties were reviewed. This was followed 

by a reexamination of the cognitive mechanisms that support learning. Next, key theoretical 

constructs and evidence-based processes for teaching and for learning mathematics were 

identified. All informed the design, implementation, and testing of the conceptual framework 

known as the “re-envisioned” instruction model. Data analysis revealed that implementing the 

model in second-grade classrooms statistically improved students’ mathematics achievement 

scores above the mean scores achieved by the control group.  

Qualitative and quantitative data were concurrently collected over a four and a half 

month period (from September 2014–January 2015), as well as one day in May 2015. 

Quantitative measures consisted of students’ pre-, post, and end i-Ready Universal Screening 

Assessment data (Curriculum Associates, 2015). Data results originated from the three non-

equivalent student groups involved in the study.  



A “RE-ENVISIONED” INSTRUCTION MODEL  192 

 

 

The control teacher and her classroom of students (n=18) are referenced as CLA. The two 

experimental teachers and their classrooms of students (n=18 each) are referenced as CLB and 

CLC. Quantitative data and statistical analyses determined each group’s mean increase in 

mathematics achievement scores and enabled the comparison of mean scores across classrooms. 

Additionally, Pearson Chi-Square tests were used to detect statistical differences in count 

patterns representing students’ improvement or regression in instructional Tier Levels from pre- 

to end of school year. Other statistical analysis measures (Wilcoxon Signed Rank Test; Z tests; 

CI for Two Proportions) identified changes in students’ development for two specific classes of 

cognitive structures: conservation of constancy and spatial orientation. 

Qualitative instruments for gathering data included semi-structured observations of 

teacher’s mathematics instruction, teacher and student interviews, questionnaires, and surveys 

utilizing quantifiable and open-ended response questions. Xeroxed copies and photographs of 

instructional artifacts were also collected. A researcher’s personal field notebook captured 

observations and interactions between teacher and students, between researcher and students, and 

between researcher and teachers. Qualitative measures were used for analysis. Thick descriptions 

emerged from teachers’ and students’ qualitative data which were coded for themes and 

transformed into narratives. Some qualitative data were quantified and transformed into 

numerical codes and percentages.  

Data triangulation between multiple data sources established validity of empirical 

evidence when the following research questions were applied: 

1. To what extent did teacher implementation of the “Re-Envisioned” Instruction Model 

influence students’ mathematics achievement? 
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2. Did teacher implementation of the “re-envisioned” instruction model minimize 

students’ learning difficulties in mathematics? Specifically, did implementation of the 

model move students identified at Tier II and Tier III levels to Tier I and Tier II levels 

respectively as identified by the pre- to end i-Ready Universal Screening Assessments 

(Curriculum Associates, 2015)?  

3. To what extent did teacher implementation of the “re-envisioned” instruction model 

influence the development of students’ cognitive structures, namely spatial 

orientation and conservation of constancy? 

4. To what extent did teacher implementation of the “re-envisioned” instruction model 

influence students’ beliefs and practices for learning mathematics? 

According to quantitative data results, all three classrooms experienced increases in 

students’ aggregate mean scores from pre- to post, and from post- to end of study. Statistical 

comparisons between the two experimental groups and the control group revealed statistically 

greater increases in students’ mean achievement scores. Teacher implementation of the “re-

envisioned” instruction model proved successful for increasing students’ mean mathematics 

achievement scores, doubling the increase in mean scores experienced by the control group. 

Qualitative data also revealed differences in student thinking, beliefs, and practices when 

comparing the control group to the two experimental groups. 

Discussion of Quantitative Findings 

A diverse collection of teachers’ and students’ data were collected concurrently 

throughout the study. Students’ quantitative results from the i-Ready Universal Screening 

Assessment (Curriculum Associates, 2015) were analyzed using multiple statistical measures. 

Results from these analyses were classified as significant, interesting, and puzzling.  
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Significant findings resulted from the analytical comparisons of pre- to post assessment 

results from the control group and the two experimental groups. To argue for significance, alpha 

levels were set at 0.05 for the following test measures. Two-sample t-tests revealed that the two 

experimental groups’ mean increases from pre- to post doubled that of the control group. 

Another significant finding revealed that the two experimental groups’ increases in 

mathematics achievement scores were comparable. Even though CLB remained the highest 

achieving group throughout the study and CLC remained the lowest achieving group throughout 

the study, students in both experimental groups experienced similar increases in mean scores pre- 

to post. Data suggested that it did not matter whether students were high or low achievers in 

mathematics. The number of students in each experimental group who demonstrated at least one-

year’s growth from pre- to end of study were more than twice the number of CLA students as 

determined by the i-Ready Diagnostic Assessment student growth measures (Curriculum 

Associates, 2015). 

One more significant finding pertained to the statistical data representing achievement 

gaps between groups. At the beginning of the school year, statistical analyses of students’ 

mathematical achievement data revealed an achievement gap between the control group (CLA) 

and the lowest-performing experimental group of students (CLC). By post-assessment, this gap 

statistically closed and remained non-existent till the study’s end. While there were no statistical 

differences in achievement at the beginning of the school year between the control group of 

students (CLA) and the highest-preforming group of students (CLB), CLB students’ mean scores 

moved ahead of CLA students’ mean scores demonstrating a statistically significant difference 

by post-assessment. This achievement gap expanded from post- till end of study.  
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An interesting finding resulted from students’ movement in instructional Tier Levels. The 

school district’s i-Ready Assessment data (Curriculum Associates, 2015) and the analysis from 

Pearson’s Chi-Square Tests indicated students in all three groups experienced statistical 

differences in count patterns from pre-to-end of school year. Upon closer analysis of i-Ready 

pre- to post- results, two CLA students regressed in instructional Tier Levels, whereas no 

students from either experimental classroom regressed in instructional Tier Levels pre- to post.  

Other interesting and unexpected findings resulted after treatment. As previously stated, 

the two experimental groups’ increases in mean achievement scores were twice the mean 

increase of the control group. Three months later, from post- to end of study, two-sample t-test 

analyses of students’ achievement data indicated that statistical increases in CLA, CLB, and 

CLC’s mean achievement scores were comparable. From post- to end, students’ similarities in 

their growth rate may have been influenced by teachers’ collaborative planning for mathematics 

instruction after the study was completed.  

Another interesting finding occurred when CLB and CLC students’ pre-to post- 

achievement results were compared to their post- to end achievement results. CLB and CLC 

students did not maintain the same growth rate in mathematics achievement as experienced 

during the first half of the school year during treatment. This phenomenon may have resulted 

from lack of coaching support, lack of “re-designed” tasks as instructional tools, or teachers’ lack 

of mathematical understanding of concepts taught during the second half of the school year.  

More interesting findings came from the control group CLA. Students increased their 

mean scores by a greater growth rate during the second half of the school year when comparing 

their pre- to post- to post- to end results. These findings suggest that, again, teachers’ 
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collaborative planning of mathematics instruction may have influenced CLA Teacher’s practice, 

leading to the rate increase in her students’ mean scores. 

 Finally, puzzling findings originated from the statistical analyses of CLA, CLB, and CLC 

students’ pre-to- post- assessment results relative to the development of two classes of cognitive 

structures: spatial orientation and conservation of constancy. Teachers’ implementation of the 

“re-envisioned” instruction model was intentionally designed to mediate the development of 

these two mental structures. Wilcoxon Signed Rank Tests and Z tests indicated that only CLA 

students demonstrated convincing evidence for furthering their development of conservation of 

constancy. CLB and CLC student data provided no statistical evidence for the same claim. 

However, all three student groups demonstrated statistical evidence for developing their 

cognitive structure for spatial orientation.  

What were the defining factors influencing statistical differences in CLA, CLB, and CLC 

students’ quantitative results? Qualitative data analyses detected variations in teachers’ strengths 

and their practices for implementing mathematics instruction. Implementation support, especially 

the “re-designed” tasks and the content of those tasks used by the experimental groups, appeared 

to be contributing factors. Data pertaining to each classroom’s learning environment also 

presented notable differences. Thus, pedagogical, cognitive, biological, and socio-cultural factors 

influenced CLB and CLC students’ learning and achievement in significant ways when 

compared to CLA students.  

The upcoming sections discuss plausible causational factors for why these significant, 

interesting, and puzzling findings may have occurred. Interpretations and inferences target the 

design of the “re-envisioned” instruction model, teachers’ implementation of mathematics 

instruction, the “re-designed” instructional tasks, and the learning environments of each 
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classroom. Data triangulation between qualitative and quantitative sources were essential for 

establishing reliability of inferences made.  

Discussion of Qualitative Findings 

Comparing teachers’ implementation of mathematics instruction. Qualitative data 

revealed that all three teachers had been teaching for approximately the same number of years 

and were familiar with teaching second-grade students. In fact, each teacher had taught at this 

grade level for a minimum of 5 years. All teachers in this study held equitable education degrees 

and certifications for teaching literacy, but did not possess strong backgrounds for teaching 

mathematics. During the previous school year, all three collaborated in lesson design to engage 

students in sense-making of mathematical ideas. Similarities existed amongst teachers at the 

onset of the study. Teachers also had defining differences. 

Differences in teachers’ strengths. Teachers’ reflections regarding personal strengths 

for teaching mathematics highlighted differences amongst teachers. CLA Teacher believed her 

personal strength for teaching mathematics was in posing thought-provoking questions. CLA 

reported that her professional growth plan focused on questioning her students. She claimed her 

questions made students think beyond the classroom. The question-type analyses verified CLA’s 

claim. CLA Teacher asked more extending-thinking questions than either CLB or CLC Teacher. 

CLA Teacher’s questions inspired her students to make real-world connections beyond their 

school walls. 

CLB Teacher described her strength as wanting to know more about mathematics. She 

explained that she was willing to commit time and effort to learning mathematics, as well as 

work to increase student learning by integrating mathematics with other subject areas. When 

describing her participation in this study, CLB Teacher recorded, “This whole process has been a 
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learning curve. I am learning in a conceptual way. I need to adjust my schema so much it is a 

struggle. Not in a bad way. I’m proud I get to do this.” Despite her apparent struggles in learning 

mathematics, CLB Teacher’s strength was embracing a growth mindset to learn mathematics for 

herself and improve her instruction to benefit her students (Dweck, 2006).  

CLC Teacher professed her instructional strength was through the various ways she 

presented mathematical concepts, allowing students to discover concepts and talk about their 

discoveries. She also encouraged students to use multiple solution strategies. Classroom 

observations of CLC Teacher’s instruction suggested that her educational experiences in 

curriculum and practice enabled her to embrace constructivist and socio-constructivist principles 

to enhance student learning. Her education enabled her to reconsider the structure of her lessons, 

implement lessons in ways that met students’ needs, particularly those who struggled learning 

mathematics. As evidence, at the beginning of the school year, only three students in CLC 

Teacher’s classroom were identified for Tier I core instruction, while fifteen students were 

identified at Tiers II and III. By the end of the school year, half her students were identified for 

Tier I core instruction.  

Differences in teachers’ implementation of instruction. Experimental teachers’ 

implementation of the “re-envisioned” instruction model drew heavily upon six learning theories. 

Jean Piaget, Lev Vygotsky, Jerome Bruner, David Geary, Reuven Feuerstein, and Betty Garner’s 

theories explicated neurological networks of cognitive structures strongly influencing student 

cognition, cognitive growth, and their learning of mathematics. Thus, theorists’ and researchers’ 

contributions became important constructs in the design of the model, in teacher implementation 

of mathematics instruction, and for student engagement with mathematical concepts.  
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Feuerstein et al.’s (2006) Mediated Learning Theory (MLE) influenced the overall design 

of the “re-envisioned” instruction model. Feuerstein’s mental actions of input, elaboration, and 

output provided the iterative processes for students’ mental processing of information during the 

three instructional segments of the model: launch, exploration, and summary/reflection. Input, 

elaboration, and output supported students’ internal thoughts and analysis and externalized 

actions (e.g. intentional discourse, mathematical modeling, and written records) whereby the 

experimental students mentally engaged with the same mathematical concepts multiple times 

throughout a lesson.  

Piaget’s (1964) constructivist theory proposed philosophical and scientific justifications 

for utilizing an inquiry-based approach for teaching mathematics. Teachers’ instruction was not 

about telling students how to think about a concept. Nor did teachers model a mathematical 

procedure. Instead, teachers worked to activate students’ existing structures (or schema) and 

invite their mental reflections and cognizing of mathematical ideas.  

To accomplish this, the experimental teachers utilized specific mathematical 

representations as sensory input, activating their students’ cognitive structures for memory, 

visual scanning, perception, comparative thinking, and pattern finding. Students were then given 

time to mentally code these concepts by making sense of them and elaborating upon the sensory 

data. Following elaboration, students constructed iconic and symbolic mathematical 

representations of their own (output) and recorded them in their mathematicians’ notebooks. 

Students’ choice of words, pictures, numbers, and symbols became personal transformations and 

externalizations of the original sensory input. For the two experimental groups, the figural units 

within teachers’ and students’ representations exemplified mathematical structure, numeric 
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patterns and relationships, the meanings of operations, mathematical properties, and connections 

between concepts.  

The students in the treatment groups consistently worked to make sense of the vast array 

of physical, iconic, and symbolic representations CLB and CLC Teachers used in their lessons. 

CLB and CLC students created, transposed, and transformed their visualized perceptions of 

mathematical concepts using words, signs, and symbols. Students’ actions for transforming 

physical representations into iconic and symbolic forms supported their development of visual 

literacy. Diezmann and English (2001) described visual literacy as one’s ability to read, write, 

use, think, and learn relative to iconic images. This assertion held true for all three student 

groups, but especially for students in the two experimental groups. Bruner’s (1966) 

representational learning theory, including his notions of power and economy, were actualized in 

both experimental classrooms. 

Garner (2007) termed students’ transformations of mathematical representations 

“metability,” or “the ongoing, dynamic, interactive cycle of learning, creating, and changing” (p. 

xv). CLB and CLC students often needed to mentally accommodate the information within novel 

representations to make sense of them and produce their own external representations. 

Unfamiliar or novel representations incited students’ mental disequilibrium (Fox & Riconscente, 

2008). To re-establish mental equilibrium, students used principles from Vygotsky’s socio-

constructivist theory to make sense of information. Through teacher facilitation of mathematical 

discourse, students worked to mentally accommodate their thoughts and mathematical 

interpretations. Theoretically, accommodation requires students’ construction of new 

neurological networks, thereby generating new neuronal nodes and linking existing mental 

pathways (Ifenthaler et al., 2011; Piaget, 1964). The stronger and more integrated CLB and CLC 
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students’ mental networks became, the more accessible mathematical concepts became (Wood et 

al., 1976).  

Thus, Garner’s theory of metability strongly corresponds to Piaget’s constructivism. To 

readily perceive how learning theorists’ suppositions influenced the experimental teachers’ 

philosophical stances and instructional practices, see Figure 10.  

 

 

             

           

            

                                                                                              

 

                  

 

 

Figure 10. The “re-envisioned” instruction model’s essential instructional practices. A 

description of essential elements and instructional practices necessary for activating students’ 

cognitive structures. 
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• Facilitate whole group 

discussion around 

student ideas. 

• Expect students to 

make connections 

between concepts and 

all forms of 

representations. 

• Engage students in 

reflective awareness of 

their mathematical  

thinking, sense-making,   

and solution strategies. 
  strategies, and effects of  
  understanding 
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Differences between teachers’ mathematics instruction were further substantiated through 

lesson observations. A fine-grained analysis of M-Scan results (Berry III et al., 2012; Walkowiak 

et al., 2014) suggested that the two experimental teachers’ implementation of the “re-envisioned” 

instruction model strongly affected two dimensions of their instruction: Mathematical Accuracy 

and the Structure of the Lesson. CLB and CLC Teachers scored higher than CLA Teacher on 

both dimensions. 

According to the authors of the M-Scan rubric (Berry III et al., 2012), the structure of a 

lesson relates to a teacher’s propensity to lead students to deeper understandings of mathematical 

concepts within a lesson. The National Research Council (2012) defined “deeper learning” as a 

process whereby individuals can apply and transfer knowledge to new contexts and situations. 

The transcribed and coded analyses of all three teachers’ implementation of lessons pertaining to 

Composing and Decomposing Numbers and the Change-to-More Diagram (as described in 

Chapter 4) indicates that CLB and CLC Teachers engaged their students in deeper learning 

during those lessons, more so than CLA Teacher.  

CLB and CLC students recorded mathematical connections to previously-learned models, 

and their extensions of models provided evidence of their deeper, transferrable learning to other 

mathematical problems and concepts. Mathematical connections were represented in students’ 

writing and drawings of visual representations. Connections were also evidenced in their 

classroom discussions when they explained and elaborated upon their own mathematical 

thinking and the thinking of their classmates.  

Triangulating these claims to students’ qualitative responses, supporting evidence was 

found in students’ mathematicians notebooks. Analyzing their own work, CLA, CLB, and CLC 

students noted evidence of specific ways they grew as mathematicians throughout the school 



A “RE-ENVISIONED” INSTRUCTION MODEL  203 

 

 

year. Words, numbers, drawings, depictions of mathematical models, and symbolic 

representations within students’ notebooks became windows into their own minds (Woleck, 

2001).  

When comparing CLA students’ analyses to CLB and CLC students’ analyses, greater 

percentages of CLB and CLC students noted increases in their learning and understanding, in the 

amount and depth of their written explanations, and in the amount of evidence they provided.  

One CLB student reported,  

I noticed that I am using more harder [words] than before. I noticed that we have changed 

the subject of math a lot. I noticed that in the past I didn’t use too much precise math 

words. I noticed that I used to just work to find the answer and now I just show 

evidence…I noticed that I barely had any thinking and now I have a butload of thinking 

on my page. 

A CLC student described, “At the beginning I had only 1 or 2 ideas. But now I have all most 5 or 

6 ideas [on a page].” 

Data triangulation substantiates students’ analyses. CLC Teacher witnessed her students 

making more connections between mathematical ideas than students from previous years. She 

claimed that these students linked equations to games and added on to another students’ thinking. 

CLC Teacher reported, “This is the first year I have focused on the concept of visualization in 

math. Getting students to talk about what they see in their heads helps them talk about 

mathematics.”  

CLB Teacher described that her students were now making connections and perceiving 

relationships between mathematical models. For example, she witnessed students making 

connections between the number grid, a number line, and arrow roads. CLB Teacher stated, “It is 
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like students are connecting the dots. The visual of the number line is helpful. It makes you see 

that everything is connected.” 

CLB and CLC Teachers’ launches and summary/reflections of their lessons “made 

serious use of students’ thinking” (Ball, 2001, p. 11). The experimental teachers first expected 

their students to make sense of the mathematical representations. Students focused their attention 

upon the figural units embedded in novel mathematical representations (enactive, iconic, or 

symbolic forms), in student-generated solutions, and in the problem-solving strategies students 

employed. Figural units are defined as the different elements or attributes a student “quickly 

recognizes as significant or informative” (Duval, 2014, p. 160).  

CLB and CLC Teachers provided students time to construct meaning by attending to the 

informative “figural units” using their perceptions, memory, and comparative thinking structures. 

Students then recorded their “noticings” in their mathematician’s notebooks. Afterwards, 

teachers encouraged students to publicly discuss their noticings and interpretations with each 

another and collectively with the entire class. In both CLB and CLC classrooms, mathematical 

discussions increased in substance over time and often highlighted similarities and differences 

between students’ interpretations and representations of their thinking (Diezmann & English, 

2001).  

During summary/reflections of lessons, the two experimental teachers expected students 

to re-engage with the lesson’s concepts. They encouraged students to reflect upon their learning 

by comparing different solution strategies, addressing students’ misconceptions, and clarifying 

mathematical vocabulary. These observations corroborated with the analyses of teachers’ 

question-types. CLB and CLC Teachers asked more “exploring mathematical meanings and 

relationships” and “synthesis” type questions than CLA Teacher. CLB and CLC Teachers’ 
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questions prompted students to make sense of underlying concepts, connect meanings of 

operations to diagrams, and perceive numeric relationships. Teacher questions and novel tasks 

provided students’ more opportunities to reflect and solve problems requiring students’ original 

and creative thinking.  

Contrastingly, during CLA Teacher’s launches for her lessons, she often asked students 

to focus on making sense of familiar mathematical representations in the form of story contexts 

and real-world examples. Students then constructed drawings and used symbols representing 

equivalent variations of the original stimulus. CLA’s representations of real-world contexts 

aligned to current brain-based research which asserts that the more background or familiarity 

students have with the subject matter, the quicker they cognitively process new concepts (Jensen, 

2000).  

During lesson observations of CLA Teacher’s summary/reflections, students often 

reflected upon their learning by recording their personal perceptions and representations in their 

mathematicians’ notebooks, but they did not share their insights publicly. Although student data 

indicated that CLA Teacher conducted a greater percentage of summary/reflection segments than 

CLC Teacher, lesson analyses revealed that very little time was dedicated to support and sustain 

student-generated generalizations in CLA’s classroom. CLA Teacher explained,  

I have looked at the lessons and now realize that the lessons in this program are not 

engaging enough. I don’t think I got the ‘digging deeper’ questions like I got from you 

and [our math coach]. These were too challenging to do.  

Facilitating student discourse relative to mathematical concepts is a vital process for 

students learning mathematics (Vygotsky, 1930/1978). These experiences afford students 

opportunities to acquire more sophisticated language, glean new insights, and gain conceptual 
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understandings of complex ideas such as mathematical operations, numbers, and place value 

(Kozulin, 2002; Rubenstein et al., 2004). 

Differences in instructional practices influencing cognitive structure development. 

The review of learning theories and origins of students’ learning difficulties suggested that 

students’ underdeveloped cognitive structures were a significant reason for students’ low 

achievement in mathematics (Feuerstein et al., 2006; Garner, 2007, 2013, Geary, 1995). Pre- to 

post- data analyses from all three classrooms suggested that many students statistically increased 

their development for spatial orientation. Statistical results indicating students’ development for 

conservation of constancy were different. Only CLA student data indicated statistical differences 

for conservation of constancy, pre- to post. For CLB and CLC student groups, pre- to post- 

statistical increases were not evident.  

Possible factors for CLA students making gains relative to conservation of constancy, 

when both experimental groups did not, may be attributed to CLA teacher’s emphasis on 

constructing equivalent representations. Frequent constructions of representations that are 

equivalent, yet different in structure or appearance, may have supported CLA students’ 

understanding that iconic representations can look different, yet still depict the same concept and 

maintain the same meaning. Another probable cause for these differences may be attributed to 

CLA Teacher’s continual practice of introducing mathematical concepts using simple story 

contexts. This practice afforded students’ familiarity when learning new concepts. Theoretically, 

familiarity with concepts incites mental assimilation (von Glasersfeld, 1990). Mental 

assimilation involves students’ repeated experiences with familiar representations, strengthening 

existing mental networks, and creating more efficient flows of electrical current within their 

minds (Devlin, 2010; Ifenthaler et al., 2011).  
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As for their mathematical tasks, CLB and CLC students consistently engaged with a 

variety of novel representations. Novel representations necessitate mental work for 

accommodating new information (Dehaene, 2010; von Glasersfeld, 1990). Theoretically, 

accommodation is a more challenging mental activity than assimilation. New neuronal nodes and 

networks are created during accommodation to re-establish mental equilibrium (Ifenthaler et al., 

2011). To accommodate concepts, students needed time to reflect, and work, and reflect again to 

gain a deeper, transferable, and lasting understanding of mathematical concepts.  

Another reason for this difference in students’ outcomes may be attributed to students 

developing their cognitive structures at different rates. However, one may conjecture that the 

students who obtained the highest mathematics achievement scores would have increased their 

development of conservation of constancy. This was not the outcome in this study. Perhaps 

student development is not necessarily related to maturation, but to the types of experiences 

students engage in (Bruner, 1966; City et al., 2009; Henningsen & Stein, 1997). This hypothesis 

would require a fine-grained analysis of the “re-designed” tasks. An analysis may reveal that the 

experimental students needed additional opportunities to engage with representations by noting 

the figural units that remained constant and compare them to the figural units that changed, 

which is the essence for conservation of constancy (Garner, 2007). Mathematical tasks and the 

ways students engage with those tasks do make a difference in student learning and in students’ 

cognitive development. 

Differences in instructional tasks and mathematical content. The instructional tasks 

used by the two experimental groups during the four-and-a-half months of treatment appeared to 

influence the statistical differences in student achievement when compared to the control group. 

Instructional materials such as “re-designed” tasks and Number Talks (Parrish, 2010) provided 



A “RE-ENVISIONED” INSTRUCTION MODEL  208 

 

 

the experimental teachers and students opportunities to focus on developing students’ sense of 

number and operations. “Re-designed” tasks were used exclusively by CLB and CLC Teachers 

and students.  

NCTM (2000) defined number sense as having a fluidity and flexibility for thinking 

about and working with number and operations, including “moving from initial development of 

counting techniques to more-sophisticated understandings of the size of numbers, number 

relationships, patterns, operations, and place value” (p. 79). Developing number sense in young 

students requires numerous opportunities to visualize quantities in a variety of contexts, compose 

and decompose numbers flexibly, subitize, estimate, count, and solve basic arithmetic 

combinations and story problems. (Bryant, 2005; Jordan et al., 2006; Muldoon et al., 2012). 

Number sense concepts and skills defined the content of the “re-designed” tasks’ that CLB and 

CLC Teachers engaged their students with. 

“Re-designed” tasks were selected or designed based upon Geary’s (1995) theoretical 

notions for mediating the development of students’ biologically secondary structures. This was 

accomplished by considering Vygotsky’s (1978/1930) zone of proximal development and 

Bruner’s (1966) three modes of representations. For example, some mathematical representations 

involved task cards comprised of specific quantities of dots, as well as specific patterns of dots 

signifying numeric relationships. These cards were used to activate students’ existing 

biologically primary structures for memory, visual scanning, subitizing, spatial orientation, and 

language. Activating and engaging primary structures furthered students’ development for 

number sense while inducing higher-levels of cognitive thought processes 

requisite for learning advanced mathematics (Clements & Samara, 2009; Devlin, 2010; Geary, 

1995).  
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Bruner’s (1966) representational learning theory also influenced the design of tasks 

implemented in the two experimental classrooms. CLB and CLC students used enactive 

representations such as meter sticks and translucent counters, multi-link cubes, and base-ten 

blocks to visualize mathematical concepts. Base ten blocks supported students composing and 

decomposing a quantity in equivalent ways. Many students identified numeric relationships and 

“saw” mathematical structure when engaging with these materials. After multiple 

decompositions of a specified quantity, one student generalized, “The more tens you have in the 

tens place, there are more ways to show 63 [that number].”  

Bruner’s (1966) ideas for power and economy of a representation, regardless of the level 

of abstraction, was represented in enactive recognizable forms students interpreted, understood, 

and generalized. Meter sticks and counters facilitated students visualizing equal-distance (or 

differences) between multiples of ten and twenty. They identified numeric relationships and 

developed a deeper understanding of the patterns within the base-ten number system. Students 

also made explicit connections between a meter stick, a thermometer, and an open number line. 

Multi-link cubes supported students visualizing and exploring concepts of equalities and 

inequalities, addition and subtraction, repeating and growing patterns, and enabled students to 

generate new patterns by identifying algebraic rules. 

According to Vygotsky’s (1978/1930) zone of proximal development, teachers’ artful 

scaffolding from enactive, to iconic, to symbolic representations enabled CLB and CLC students 

to go beyond their own natural cognitive endowments (Wink & Putney, 2002). For example, 

reflective engagement with a hundred-chart game and an arrow road task supported students 

adding and subtracting two- and three- digit numbers even before teachers formally introduced 

these concepts. The meter stick and open number line models assisted students rounding to the 
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nearest benchmark number and extrapolating to adding greater numbers. This example is further 

illustrated when a student used a hundred chart to think about adding 5 + 3. The student then 

mentally calculated the sum for 50 + 30. As a final connection, she successfully extrapolated that 

pattern for adding 150 and 130. As research studies demonstrate, young students’ use of enactive 

and iconic (visual) representations of mathematical concepts enable them to transfer concepts to 

other problems, and master and maintain mathematical competencies in later years (L.S. Fuchs & 

D. Fuchs, 2001).  

CLB Teacher reported,  

This is the first year we focused on the concept of number relationships. We had always 

assumed that first grade teachers had done that, but thinking about ten more and ten less, 

one more, one less, just the ideas of more or less, we, as second-grade teachers, have 

never focused on. 

Number sense concepts and skills supported CLB and CLC students acquiring a deeper 

understanding of numbers and operations. The experimental groups’ qualitative data suggested 

they assimilated and accommodated concepts and transferred their understandings to concepts 

not yet formally introduced.  

Contrastingly, CLA Teacher engaged her students with instructional tasks derived from 

the school district’s mathematics program, their district’s Benchmark Assessments, and Midwest 

School District’s second-grade mathematics units of study. Students’ daily tasks involved 

participating in mathematics games using decks of cards, reading information from their 

student’s reference manuals, using enactive tools such as base ten blocks, counters, and hundred 

charts. Mathematical concepts consisted of composing and decomposing number, computing 
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basic facts, solving problems using money, measuring temperature, and using different models 

and strategies to add, subtract, multiply, and divide, including the use of traditional algorithms.  

Ultimately, when comparing tasks, CLA Teacher’s explanation accurately justifies the 

statistical differences in students’ mean achievement scores between the control group and the 

two experimental groups:  

The lessons don’t dig deep, don’t have the same types of questions. The district has some 

good lessons, good parts of lessons, but they do not have the same quality for when we 

do the new workshop [“re-envisioned” instruction model].  

Henningsen and Stein (1997) claimed, “the nature of tasks can potentially influence and 

structure the way students think” (p. 525). Doyle (1988) argued that the tasks students engage 

with are the “proximal causes” of their learning. Meaningful mathematical tasks cause students 

to think more deeply about mathematical concepts and structure. They support students in 

developing conceptual understanding and procedural knowledge and assist them in making 

connections between concepts and models. Quality tasks fall within students’ zone of proximal 

development and, therefore, are central to deepening and extending students’ conceptual 

understanding.  

Differences in the socio-cultural environments of classrooms. A third variable 

influencing student achievement between classrooms were the classrooms’ socio-cultural 

environments (Cobb, 1994; Fuson, 2009; Mooney, 2013; Nelson et al., 2001). All three teachers 

promoted constructivist and socio-constructivist principles within their classrooms to some 

degree. Importantly, they considered all students as mathematicians; and, all three teachers 

maintained that their students perceived themselves as mathematicians.  
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CLA Teacher’s analysis of student behaviors within her classroom, however, indicated 

her students held differing beliefs for learning mathematics than the students in the two 

experimental classrooms. Student data substantiated CLA Teacher’s inferential analyses. One 

significant difference between CLA students and CLB and CLC students involved their 

definitions of mathematician’s and the work they do. When coding and comparing students’ 

qualitative responses, the majority of CLA students described, “Mathematicians are smart and 

they solve problems.” Dweck (2006) explained that students who hold fixed mindsets attribute 

their success with smartness, not effort. 

 Alternatively, when describing mathematicians and the work they do, over 50% of CLB 

and CLC students used comments like, “Mathematicians use their brains to think. They share and 

explain their thinking. They use tools and make connections.” CLB and CLC students’ collective 

responses suggested that their environments fostered growth mindsets. A growth mindset is not 

about smartness, but about one’s effort at thinking (Dweck, 2006). 

Correspondingly, differences in teacher’s perceptions about the purposes for students’ 

mathematician’s notebooks also existed. For example, the two experimental teachers viewed 

students’ mathematician’s notebooks as a record of student thinking and as a resource to share 

students’ thinking with others. In fact, CLB and CLC Teachers’ statements suggested that 

learning mathematics was all about thinking! The teacher of the control classroom (CLA) viewed 

the notebook as a daily repository of student work.  

Another distinguishing difference between socio-cultural environments in each classroom 

revealed that the types of instructional tasks teachers engaged their students with significantly 

influenced students’ perceptions for what it means to know and do mathematics. For instance, 

when asked what they wanted to better understand relative to learning mathematics, most CLA 
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students responded that they wanted to learn more about operations, specifically multiplication 

and division. Four CLA students reported that they already knew everything and that there was 

nothing more to learn. Scardamalia and Bereiter (2006) argued that “students in regular 

classrooms tend to say that the more they learn and understand, the less there remains to be 

learned and understood” (p. 104).  

Students in knowledge-generating classrooms lean toward the opposite view. Students in 

knowledge-generating classrooms realize that the more they learn, the more information they do 

not know. Accordingly, CLB students recorded they wanted to learn more about measurement, 

quantity, arrays, benchmark numbers, odds and evens, and how to use the number line to solve 

problems. Not only did CLB students want to learn more, but they expressed they were seeking 

understanding and meaning of concepts. Similarly, CLC students claimed they wanted to learn 

how to explain numbers and number relationships, learn equations, use an open number line, tell 

time, learn addition and multiplication, understand division and fractions. Only one student in 

CLC’s classroom reported there was nothing more to learn.  

Thus, with only one exception between the two experimental groups, the students who 

experienced the “re-envisioned” instruction model, exemplified growth mindsets. Students 

desired to gain a deeper understanding of mathematical concepts. Their responses revealed their 

personal awareness (or metacognition) of where they were on the learning continuum: “Number 

relationship’s because it is hard to explan”; “Like expaning your thinking becase sometimes it is 

hard for me”; “Maltaplacashon because I can’t understand what Maltaplacashon is all about I 

mean what’s the point if you don’t know”; and “÷ because I do not really understand it. I do not 

really now the mening of it.”  

As the school year ended, teachers provided a final reflection. CLB Teacher reported,  
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We feel we are stronger mathematicians as adults going through this process; and, when 

you delve deeper into number sense and Number Talks books, you understand more. 

Looking at the distance between numbers on the number line for subtraction, making 

students think about what they know, talking through the process out loud, listening to 

what each other is saying. How limitless it can be!  

CLC Teacher testified,  

The data you shared with us shows us that no matter where kids are in math, they can 

make gains and close the gap. I’ve never had a class of seven outliers before that were 

really low. The connections we’ve built as mathematicians like making connections with 

the number grid, number relationships, inverse operations, and place value. They [low-

performers] are now more willing to try something because they have that schema to fall 

back on. I really see them making connections now. 

CLA Teacher claimed,  

I think I would have gotten similar results [CLB and CLC] had my class been part of the 

study. I have kids who performed between the two classrooms. I did do the math 

workshop technique, but I did not do Number Talks [2010] and no Van de Walle [2014]. 

I did follow the games but not any that were not from our [mathematics program]. I 

would find myself resorting to the [Re-Envisioned Instruction Model], then I would have 

to think again. Our district’s lessons do not have the same quality as the new workshop. 

Addressing Four Origins of Students’ Learning Difficulties 

At the beginning of this study, it was hypothesized that the following make a difference 

in students’ achievement outcomes: 

• the ways teachers activate and engage students’ existing cognitive structures 
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• the ways teachers’ design, select, or modify mathematical tasks 

• the ways teachers’ and students engage with those tasks 

• the ways teachers and students structure their learning environment 

When comparing qualitative and quantitative data results between the two experimental groups 

and the control group, stark differences were revealed in students’ mean increases in 

mathematics achievement scores from pre- to Post, which were then validated by teachers and 

students’ qualitative coded responses. The qualitative analyses indicated that CLB and CLC 

students’ beliefs and practices for learning mathematics were greatly influenced by: 

• teacher’s implementation of the “re-envisioned” instruction model; 

• the mathematical tasks they used (Henningsen & Stein, 1997); 

• student use of higher-level cognitive processes such as visualization, analysis, 

evaluation, and generalization; 

• teachers’ question-types (Boaler & Brodie, 2004); 

• students’ expectations for seeking meaning and justifying one’s thinking in visible 

and public ways; 

• the quantity and focus of mathematical discourse (Herbel-Eisenmann, 2009; 

Vygotsky 1978/1930); and  

• the classrooms’ socio-cultural learning environments that supported a growth mindset 

(Dweck, 2006; Haberman, 1991).  

The above practices and cultural beliefs address four of the five origins of students 

learning difficulties. These include biological, cognitive, socio-cultural, and pedagogical. Tasks 

that fell within students’ zone of proximal development were used to increase students’ readiness 

to learn mathematics. ZPD addresses the biological origin of students’ learning difficulties. “Re-
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designed” tasks often took students beyond their current level of understanding as in adding and 

subtracting multi-digit numbers before formal introduction of the algorithms.  

The cognitive origin of students’ learning difficulties was targeted through tasks that 

focused on developing students’ sense of number. Number Talks were used to increase students’ 

abilities to visualize quantities in a variety of contexts. The use of enactive tools engaged 

students in discussing numerical magnitude and composing and decomposing numbers in 

flexible ways.  

The socio-cultural origin was addressed by providing all students time to make sense of 

novel representations. Students made connections between models and concepts. They also 

recorded, explained, and justified their thinking in their notebooks and discussed their insights, 

understandings, and misconceptions with classmates. As teachers recorded students’ ideas onto 

chart paper, students’ ideas were honored, accepted, and acknowledged.  

Coaching support addressed the pedagogical origin of students’ learning difficulties. The 

two experimental teachers requested implementation support for the instruction model and 

mathematical tasks. Most often, teachers were unfamiliar with the novel representations and 

requested implementation support for the first lesson. Teachers then implemented subsequent 

lessons using the model. In coaching meetings, discussions often pertained to teacher’s 

mathematical understanding of specific concepts. Lesson plans were also provided to assist 

teachers in making important shifts in instructional practices. 

Conclusions: Answering the Research Questions 

The first research question was, “To what extent did teacher implementation of the ‘re-

envisioned’ instruction model influence students’ mathematics achievement?” Statistical 

differences in students’ increases in mean achievement scores pre- to post between the students 
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in the two experimental groups and students in the control group were evident. One needs to first 

return to the definition for learning established back in Chapter 1 to support rejecting the null 

hypothesis.  

Direct sensory exposure to environmental stimuli and mediated exposures to social 

knowledge support students creating, learning, and altering the neurological structures within 

their own minds (Garner, 2007). Theoretically and neuro-scientifically, creating and 

strengthening one’s own mental neurological structures signifies learning has occurred (Devlin, 

2010; Ifenthaler et al., 2011). Outward signs of learning include, but are not limited to, one’s 

ability to “make connections with prior knowledge and experiences, identify patterns [and 

relationships], identify predictable rules, and abstract generalizable principles” that are then 

applied to additional contexts and conditions (Garner, 2007, p. xiii).  

When compared to the students in the control classroom, the triangulation of quantitative 

and qualitative data suggests that the experimental teachers’ implementation of the “re-

envisioned” instruction model and “re-designed” tasks advanced students’ mathematics 

achievement in statistically significant ways pre- to post-. The analysis of teacher and student 

qualitative data indicated that the experimental groups were expected to make connections with 

prior knowledge, visualize the figural units within novel representations, identify patterns and 

mathematical structures, record their own perceptions using multiple representations, make 

connections to other concepts, and abstract generalizable principles.  

Kamii, Kirkland, and Lewis (2001a) explained that when teachers and textbooks focus 

and foster children’s higher levels of abstraction, “high levels of representation will follow” (p. 

32). Thus, CLB and CLC students’ external abstractions often exemplified their perceptions, 

connections, and level of understanding and exhibited their high levels of abstraction (Kamii, 
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Kirkland, & Lewis, 2001a). Theoretically, the mathematical connections the experimental 

students made imitated the neuronal connections within their minds (Van de Walle et al., 2012). 

These webs of connected concepts became essential building blocks for developing CLB and 

CLC students’ cognition and cognitive growth relative to number and operations (Clements & 

Samara, 2009).  

The i-Ready Assessment measures (Curriculum Associates, 2015) also indicated that the 

number of CLB and CLC students in each classroom who experienced at least one year’s worth 

of growth in mathematical understanding were more than twice the number of students in the 

control group. Theoretically, the “re-designed” tasks and mathematical content met CLB and 

CLC students’ instructional needs for numbers and operations. Through the intentional selection 

of enactive, iconic, and symbolic representations representing abstract concepts, CLB and CLC 

Teachers prepared and nurtured their students’ readiness for conceptually understanding abstract 

concepts before they were formally introduced (Bruner, 1977; Wink & Putney, 2002). 

Employing Bruner’s (1966) power and economy of representations and Vygotsky’s ZPD, 

prompts, open-ended questions, and mathematical representations supported students going 

beyond their own natural abilities (Wink & Putney, 2002). For instance, various enactive and 

iconic representations enabled students to successfully add and subtract multi-digit numbers 

before teachers taught these formal algorithmic procedures.  

Furthermore, the fact that each segment of the instruction model facilitated the cognitive 

processes of input, elaboration, and output, CLB and CLC students engaged and re-engaged in 

cognizing abstract concepts multiple times within the same lesson. During the 

summary/reflection of the lesson, the higher-level of mathematical discourse that the 

experimental students participated in supported students becoming self-regulators of their own 
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learning. It is plausible that these strategic elements of design supported CLC’s students closing 

the achievement gap between themselves and the control group and CLB’s students widening the 

achievement gap between themselves and the control group. 

By the study’s end, each teacher was grateful for her participation in the study and was 

ready to independently apply the practices she learned. CLA Teacher looked forward to rejoining 

her colleagues to collaboratively plan mathematics instruction. CLB and CLC Teachers were 

ready to collaborate with her. Due to their co-planning of mathematics instruction from post- to 

end, CLB and CLC’s experiences with the model appeared to have influenced CLA Teacher’s 

instructional practices. Collaborative planning may have contributed to the increase in CLA 

students’ mean scores for mathematics achievement during the second half of the school year. 

Alternatively, CLB and CLC students’ mean increases post to end were less than previously 

experienced. To maintain a similar increase or growth rate in mathematics achievement during 

the second half of the school year, the data suggests that the two experimental teachers may have 

benefitted from additional implementation support, including “re-designed” tasks.  

Research Question 2: 

“Did teacher implementation of the “re-envisioned” instruction model minimize students’ 

learning difficulties in mathematics? Specifically, did implementation of the model move 

students identified at Tier II and Tier III levels to Tier I and Tier II levels respectively as 

identified by the pre- to end i-Ready Universal Screening Assessments (Curriculum 

Associates, 2015)?  

According to the statistical analyses of the i-Ready Assessment data for comparing the 

control classroom and the two experimental classrooms’ count patterns relative to reducing 

students’ needs for Tier II and Tier III interventions, individual classroom count patterns were 



A “RE-ENVISIONED” INSTRUCTION MODEL  220 

 

 

not statistically different from each other. Count patterns in all three classrooms demonstrated 

positive movement in instructional Tier Levels. From pre- to post-, however, the data analyses 

indicated two students in the control group regressed to Tier II and III instruction levels. No 

students in the two experimental groups experienced this same regression. This data answers the 

second question in the research study. The null hypothesis is accepted because, although each 

classroom’s count patterns changed significantly pre- to post-, the count patterns were not 

significantly different in the experimental classrooms vs. the control classroom.  

Research Question 3 was, “To what extent did teacher implementation of the “re-

envisioned” instruction model influence the development of students’ cognitive structures, 

namely spatial orientation and conservation of constancy? The statistical analysis of students’ 

cognitive structure assessment results supports rejecting the null hypothesis for this question. 

Data analyses suggests that only CLA students statistically advanced their development of 

cognitive structure for conservation of constancy. This was most likely due to CLA students’ 

continuous engagement with creating equivalent mathematical representations. It is plausible that 

students mentally noted the elements that stayed constant and those that changed while 

representing multiple representations of the same concept. For the cognitive structure of spatial 

orientation, students in all three classrooms experienced statistical increases in their advancement 

for this cognitive structure. These findings present a puzzling aspect of this study. 

  To respond to Research Question 4, “To what extent did teacher implementation of the 

“re-envisioned” instruction model influence students’ beliefs and practices for learning 

mathematics?,” we turn to qualitative results and analyses. Although CLA Teacher claimed her 

students saw themselves as mathematicians, her students did not necessarily perceive their 

responsibilities as thinking deeply about mathematics. CLA Teacher attributed this phenomena 
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to her district’s mathematics program, to the lessons she was required to teach, and the questions 

she developed autonomously because she did not receive coaching support nor support from her 

colleagues.  

To verify CLA Teacher’s claims, three CLA students claimed they needed harder 

problems or paper and pencil problems, while four CLA students claimed there was nothing 

more to learn. These students believed they knew everything they needed to know about the 

mathematics they were learning in CLA’s classroom. Perhaps CLA Teacher’s instructional 

practice for generating equivalent representations and simple story problems may have 

undermined students’ higher levels of thinking, representation, and abstraction.  

Essentially, teachers and students who implemented the “Re-Envisioned” Instruction 

model and “redesigned” tasks experienced key pedagogical practices and processes necessary for  

• developing conceptual understanding of number and operations; 

• cognitively engaging students beyond their natural abilities; 

• supporting students’ sense-making of novel representations; 

• visualizing and making mathematical sense of the figural units within representations; 

• analyzing and abstracting generalizable principles; 

• engaging young students in high-levels of discourse; 

• fostering students’ growth mindsets; 

• influencing students’ beliefs and practices for thinking deeply about mathematics; and 

• supporting students becoming self-regulators of their own learning. 

The null hypothesis for Research Question 4 was rejected. Data analysis revealed qualitative 

differences in students’ beliefs and practices between students who experienced the “re-

envisioned” instruction model and students who did not. 



A “RE-ENVISIONED” INSTRUCTION MODEL  222 

 

 

Implications 

Barab and Squire (2004) explained, “Design-based research that advances theory but 

does not demonstrate the value of the design in creating an impact on learning in the local 

context of the study has not adequately justified the value of the theory” (p. 6). The “re-

envisioned” instruction model was implemented in authentic classrooms to provide insights to 

school districts and staffs implementing MTSS programs. Authentic settings assist researchers in 

determining causational factors for why and how an intervention or treatment works (Barab & 

Squire, 2004; Brown, 1992; Cobb et al., 2003). 

Implementing this innovative instruction model to minimize students’ learning 

difficulties displayed the complex and intricate nature for teaching and learning mathematics. 

Identifying, isolating, and controlling the many variables impacting this study’s findings was 

challenging. It is not surprising that researchers study only one aspect relative to effective 

instruction or student learning.  

The synthesis and coordination of all six theories and the evidence-based instructional 

practices led to the creation of several conceptual frameworks represented by the “re-envisioned” 

instruction model and its implementation. Two conceptual frameworks were depicted and 

explained near the end of Chapter 2. For example, MLE’s constructs of input, elaboration, and 

output are represented within each learning segment, respectively: the launch, exploration, and 

summary/reflection. Through iterative engagements with input, elaboration, and output, teachers 

and students mentally engage and reengage with a lesson’s mathematical concepts multiple times 

throughout a lesson.  

The literature review also highlighted specific design elements that guided the “re-

design” of instructional tasks used by teachers to support Tier I core instruction. Bruner’s (1966) 
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theoretical concept of power and economy guided the strategic selection of enactive, iconic, and 

symbolic representations that CLB and CLC Teachers used with their students. Several of the 

“re-designed” tasks embodied key figural units pertaining to mathematical structures, patterns, 

and meanings of operations and equalities. Dependent upon where students were on the learning 

trajectory for number sense and number and operations, students’ attention was focused on vital 

concepts and skills such as subitizing, visualizing, counting and comparing quantities, 

identifying number magnitudes, composing and decomposing number, observing numeric 

patterns and relationships, and making sense of operations and mathematical properties. CLB 

and CLC Teachers reported that the quality of the tasks they used with their students made a 

difference in their students’ mathematical thinking and understanding. 

The efficacy of teachers’ open-ended questions, such as: “What do you notice?”; “What 

sense can you make of this?”; “What information do you know for sure?” cannot be undervalued. 

Not only did these questions invite all students to activate their cognitive structures, they were 

also an effective scaffolding tool. These questions invited students to “notice,” think, reflect, and 

make sense of the figural units and mathematical structures within the representations. All 

students noticed something. Thus, open-ended questions became powerful and economic tools 

for meeting each student at his or her individual cognitive level in CLB and CLC classrooms 

(Bruner, 1966).  

Constructivism and socio-constructivism were also vital philosophical stances that 

supported CLB and CLC Teachers and students constructing understanding of concepts, as 

compared to about concepts. Novel mathematical representations necessitated students’ mental 

accommodation of mathematical concepts, resulting in the creation of more powerful and 

memorable ideas (Nelson, Warfield, & Wood, 2001). Theoretically, the mental processes for 



A “RE-ENVISIONED” INSTRUCTION MODEL  224 

 

 

accommodating information supported students expanding their existing mental networks or 

schema, not just filling their minds with rote-memorized procedures. More research is needed to 

identify mathematical tasks that mediate students’ cognitive structures for conservation of 

constancy.  

Implementing the “Re-Envisioned” Instruction Model at Scale 

American schools are under extreme scrutiny and pressure for increasing student 

achievement (City et al., 2009; Cobb & Jackson, 2011). Researchers have intensified their efforts 

to identify ways students learn, provide evidence-based practices, document learning 

progressions, and create research-based instructional materials (Cobb & Jackson, 2011). 

According to Stigler and Hiebert (1999), these initiatives have had limited effects upon teachers’ 

classroom instruction.  

City and her colleagues (2009) argue that to improve student achievement at scale, 

improvement can only occur by focusing on the following:  

• expand teacher’s knowledge and skills for teaching mathematics;  

• increase the rigor of the content; and  

• change the role of the student when engaging with mathematical content.  

These three elements comprise the instructional core. If one attempts to “change any single 

element of the instructional core,” the other two must also change if student achievement is to 

improve (City et al., 2009, p. 25).  

Teachers’ implementation of the “re-envisioned” instruction model and tasks required 

attention to all three elements found in the instructional core. CLB and CLC Teachers 

consistently worked to increase their content and pedagogical knowledge to implement the 

instruction model and “re-designed” tasks with fidelity. Novel tasks often created cognitive 
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dissonance for CLB and CLC Teachers and challenged and expanded the limits of their existing 

content and pedagogical knowledge. Therefore, the instructional modeling of lessons scaffolded 

the experimental teachers’ implementation of the open number line, arrow roads, etc. Informal 

interviews and collaborative meetings provided time for teachers to reflect upon the effectiveness 

of the model, their implementation and instructional practices, as well as student understanding. 

Coaching support addressed teacher questions and feedback. Teachers and students were given 

instructional resources that focused on developing students’ conceptual understanding for 

number and operations and for mediating the development of their cognitive structures.  

Students who experienced the “re-envisioned” instruction model and “re-designed” tasks 

were engaged in learning mathematics differently than the control group. As one student 

recorded, “I noticed that we have changed the subject of math a lot.” Novel representations 

pressed students to accommodate abstract information. To support students’ mental 

accommodation of these concepts, time was essential. Students needed time to become 

reflectively aware of the sensory data and use their existing schema to make sense of that data. 

Students were encouraged to focus upon the figural units embedded within enactive, iconic, and 

symbolic representations through open-ended prompts. They worked to visualize these concepts 

within their minds. Students’ entries in their mathematicians’ notebooks presented evidence of 

students’ observations, perceptions, transformations, and reflective thinking. Students’ 

verbalizations and depictions of solution strategies and mathematical representations enabled 

students to make connections between their own and their classmates’ ideas. Collectively, these 

practices enhanced CLB and CLC students’ abilities to connect to previously-learned models, 

diagrams, symbols, and generalize abstract concepts.  
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Cobb and colleagues (2003) explained that educational improvement is a generative 

process. For the two experimental groups at Midwest Elementary, teacher participation in this 

study helped teachers develop pedagogical toolkits of essential practices they still use today. The 

mathematical experiences students encountered help them generate growth mindsets for learning 

mathematics and minimize their learning difficulties. 

Cobb and Jackson (2011) suggest five components that delineate a theory of action when 

implementing a program, treatment, or intervention on a grander scale: 

• provide a blend of support for teachers, including professional development and job-

embedded experiences; 

• create teacher cohorts or networks that offer collegial support; 

• provide job-embedded coaching support that is timely; 

• train school leaders to become instructional leaders; and 

• build school-level capacities to support instructional improvement. 

Time is essential for theories and pedagogical practices represented by the “re-

envisioned” instruction model to become the norm for practice in teachers’ classrooms. Teachers 

need ongoing support to become effective and efficient implementers of the model. Coaching 

can support teachers becoming reflective practitioners. Students need time and support to 

become deep thinkers of mathematics to realize the lasting effects of the model. It is likely that 

successful implementation of this instruction model may require a one- to two-year 

implementation period. This implies that the greatest influence of teachers’ and students’ 

implementation of the model relative to student achievement has yet to be realized at Midwest 

Elementary School.  
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Limitations 

There were several limitations which may have influenced this study’s findings. The first 

limitation was the complex theoretical design of the instruction model. The instruction model’s 

synthesis of six learning theories and evidence-based research demanded that the theoretical 

constructs, processes, and instructional practices be implemented simultaneously, subsequently, 

or iteratively. It was challenging to isolate and detect if teacher’s enactment of specific processes 

from one theory strongly impacted students’ learning relative to processes from a different 

theory. 

A second limitation was that all three teachers learned about the instruction model the 

previous school year. Due to CLA Teacher’s responsibility as the control group, she was 

instructed to use her district’s instructional resources to teach her students mathematics. This led 

to CLA Teacher comparing the efficacy of her district’s program to the efficacy of the “re-

envisioned” instruction model. Through her comparisons, this teacher realized her district’s 

mathematics program did not contain the cognitively-challenging tasks that supported students’ 

development of deeper mathematical thinking.  

Naturally, CLA Teacher struggled in philosophically staying true to the design of her 

district’s mathematics program. She implemented the three instructional segments (launch, 

explore, summary/reflection) even though these were not part of her written curriculum. She 

used mathematical representations from her district’s program to activate student thinking and 

their reflective awareness, and facilitated student dialogue in her classroom during the launch 

and exploration segments of her lessons. Subsequently, CLA Teacher was not a pure control 

classroom relative to all aspects of the study. She was a pure control classroom with respect to 

the “re-designed” tasks and she did not receive coaching support for teaching her curriculum.  
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Had all three teachers not experienced implementation support the previous school year, 

it is logical to predict the possibility of two scenarios: (a) a starker contrast between the control 

population and the experimental populations regarding students’ mean increases in their 

mathematics achievement scores; (b) the two experimental teachers may have experienced an 

even greater challenge implementing the instruction model and “re-designed” tasks during the 

study. 

A third limitation relates to implementation support provided to the two experimental 

teachers. Although these teachers received some implementation support the previous school 

year, they were not ready to independently implement the model and “re-designed” tasks at the 

beginning of the study. Lesson plans and resources that guided their implementation had not 

been established. Coaching, instructional tasks, and modeling of lessons were provided to 

teachers as they requested. As a result, the researcher’s presence at the school site and the 

implementation support provided to teachers may have influenced students’ outcomes thereby 

limiting Grande generalizations to other contexts and age-groups (Barab & Squire, 2004). 

A fourth limitation to this study pertained to the small sample size of teachers and 

students. At the beginning of the school year, each classroom consisted of 21 students. Due to 

specific needs of some students, not all students participated in the study. For the quantitative 

portion of this study, n=54 students across all three classrooms. For the qualitative portion of the 

study, n = 33 across all three classrooms. A small sample size limited the potential for making 

inferences and generalizations that could be attributed to a larger population (Johnson & 

Christensen, 2012).  

A fifth limitation was that true experimental studies require random sampling (Creswell, 

2009). Since this study was conducted in authentic classroom settings, the study used non-
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equivalent groupings. Prior to this study’s commencement, the school’s principal and first grade 

teachers predetermined student placement with specific second-grade teachers. The principal 

independently selected the classrooms of students who received treatment and the classroom who 

served as the control. For these reasons, this study is considered a “quasi-experimental” study. 

A sixth limitation pertained to the quantitative and qualitative instruments used to gather 

data. The only valid and reliable quantitative measure was the i-Ready Assessment measure 

(Curriculum Associates, 2015). The district’s Benchmark Assessments aligned to the district’s 

mathematics program, not to Common Core State Standards. This limited the ability to 

triangulate and validate students’ growth data pertaining to mathematics achievement. 

Regarding qualitative data, additional samples of student work across all three classrooms 

would have supported additional comparisons of students’ mathematical thinking between the 

control group and the two experimental groups. Conducting more student interviews as follow-

ups to their work would have provided additional insights to students’ sense-making processes.  

Highly-sensitive and reliable instruments to detect students’ development of conservation 

of constancy and spatial orientation would have improved the triangulation of data relative to 

cognitive structure analysis. Additionally, the instruments used to measure each classroom’s 

learning environment were created by the researcher and utilized for the first time. These were 

not tested for validity nor reliability prior to this study.  

A seventh and final limitation pertains to data analyses. Although a learning theorist, a 

committee co-chair, a statistician, educators, and participating teachers were consulted during the 

study, most of the qualitative data were analyzed by one person. Rather than containing differing 

perspectives and orientations to underlying phenomena, some results may contain specific biases 

towards mathematics education, teaching, and learning.  
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Recommendations for Future Research 

Learning theorists and neuro-scientists emphasized that the development of students’ 

cognitive structures enhance their abilities to learn. CLB and CLC student groups demonstrated 

the greatest increase in mathematics achievement from pre- to post- assessments. As such, it is 

expected that these two groups would have demonstrated an increase in their cognitive structure 

development for conservation of constancy. This was not the case. Only CLA students improved 

their development of conservation of constancy.  

The first recommendation for future research is to determine the type of mathematical 

tasks and instructional practices that mediate students’ development of conservation of 

constancy. Although a plausible causational factor was proposed, additional research is still 

recommended. According to learning theorists and neuro-scientists, these insights will benefit all 

students in their learning (Duval, 2006; Ifenthaler, 2011; Sweller, 2008).  

A second recommendation involves Tier II and III interventions. By the end of the school 

year, the i-Ready Universal Screening Assessment (Curriculum Associates, 2015) results 

indicated that some students (in all three classrooms) still required Tier II interventions and one 

CLC student required Tier III interventions. The i-Ready Assessment data provided teachers 

important information regarding students’ positions on the learning continuum and identified 

targeted interventions. Teachers did not utilize the program’s data. Nor did they use the 

suggested tasks identified by the researcher. Teachers expressed their uncertainty for how to best 

implement the suggested interventions to students during Tier I core instruction.  

Implementing interventions during Tier I core instruction is challenging work for 

teachers to do. Teachers’ limited content and pedagogical knowledge also constrains their 

abilities to determine and implement appropriate interventions. Teachers expressed they need 
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specific training on how to use the data to implement interventions during Tier I core instruction. 

Further research can assist teachers in this implementation process. 

  A fourth suggestion for future research focuses on the “re-designed” tasks used to focus 

students’ attention and engage them in mathematical thinking. CLB and CLC Teachers struggled 

in creating tasks like the ones provided. One recommendation for future research is to conduct a 

fine-grain analysis of the “re-designed” mathematical representations and tasks. This analysis 

would identify key features and concepts. The tasks’ features can then be generalized to create a 

wider range of mathematical tasks for K-12 students.  

The fifth recommendation aligns to the observed changes in teachers’ pedagogical 

practices. The two experimental teachers became more student-responsive during the study. 

Rather than following a mathematics program page by page, these teachers began attending to 

students’ mathematical thinking during the three instructional segments. Teachers listened to 

students and attended to student reasoning, including their misconceptions. Students’ external 

representations provided important data teachers used to plan their next steps of instruction.  

The sources for change and the processes that supported teacher’s shifting their practices 

can be identified through additional interviews and focused conversations. Mathematics 

education researchers, mathematics teacher educators, and professional development providers 

will benefit from teachers’ insights (Ball, 1990; Stigler & Hiebert, 1999). 

A sixth recommendation relates to a limitation in this study. All three teachers 

experienced implementation support the previous school year. Still, the two experimental 

teachers required additional support to implement the model and tasks with fidelity. Additional 

research is needed to identify teachers’ specific needs relative to implementation process. This 
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data informs schools and districts when designing their own theories of action for increasing 

student achievement.  

The final recommendation extends to all academic contexts and populations. 

Implementing the “re-envisioned” instruction model across a variety of contexts and subjects 

with students of all ages can illuminate the full efficacy of the “re-envisioned” instruction model. 

The findings from this study can be realized by a larger population.  

Closing Remarks 

The “re-envisioned” instruction model was designed to mediate the development of 

students’ cognitive structures because, as Sweller (2008) claimed, teachers’ instructional 

practices that fail to consider student’s existing cognitive structures and their development are 

likely to be haphazard in their effectiveness. Learning theorists, mathematics education 

researchers, neuroscientists, and cognitive psychologists all agree with Sweller. However, when 

comparing students’ results from the cognitive structure assessment, all three student groups in 

this study increased their cognitive development for spatial orientation. Whereas only CLA 

students (control group) demonstrated statistical evidence for increasing their cognition for 

conservation of constancy.  

Suggestions were offered as to why this occurred. These suggestions included CLA 

students’ frequent constructions of representations that were equivalent and CLA teacher’s use of 

simple story contexts to introduce mathematical concepts. Furthermore, students, at this age, may 

develop conservation of constancy at different rates, even in “normal” children at this age. 

Another possible reason is that the “re-designed” tasks needed to offer students more 

opportunities to create equivalent representations, as well as identify the figural units that stayed 

the same and compare them to those that changed.  
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Two other factors may have attributed to these surprising results. These included the 

small sample sizes of study subjects and utilizing less sensitive tools for assessing students’ 

developmental levels of cognitive structures. Larger sample sizes increase the likelihood of 

drawing correct conclusions from the data (Johnson & Christensen, 2012); and, the use of highly 

sensitive instruments that measure students’ levels of development may have provided different 

results. Clearly, further research is needed to investigate and identify the causational factors for 

why teachers’ implementation of the “re-envisioned” instruction model did not mediate the 

development of students’ cognitive structure for conservation of constancy, whereas CLA 

Teacher’s mathematics instruction appeared to accomplish this.  

Still, teachers’ and students’ implementation of the “re-envisioned” instruction model 

prompted systems of change for the experimental teachers and their students. Their 

implementation affected distinct positive effects upon students’ learning and understanding of 

mathematics when compared to the control classroom of students. Students in the two 

experimental groups increased their mean mathematics achievement scores, doubling that of the 

control group’s mean increase. When compared to the control group, a significant number of 

students in the two experimental groups embraced growth mindsets for learning and 

understanding mathematics. These students perceived mathematics as concepts to be understood 

and identified a variety of concepts they wanted to continue to learn.  

Consistently, students in the two experimental groups understood that learning 

mathematics was about deep thinking. Thus, a greater number of CLB and CLC students 

proclaimed that they grew in their abilities to make sense of mathematics, explain their thinking, 

and provide evidence of that thinking using tools and representations. Analysis of qualitative 

data indicated that these two student groups made important connections to other models, to 
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classmates’ solution strategies, and arrived at informal generalizations through student-to-student 

groups’ mathematical discussions.  

Experimental teachers’ implementation of the “re-envisioned” instruction model 

supported their shifting from traditional and historical practices of teacher-led lectures and 

demonstrations to practices that strategically targeted more authentic ways students learned. 

Students in the two experimental groups became active participants in their learning - able to 

create, learn, and change their thinking of mathematical concepts individually, and importantly, 

as a learning community (Bruner, 1966; Garner, 2007; Piaget, 1964; Vygotsky, 1978/1930). 

CLB and CLC teachers’ questions required students to explore mathematical meanings and 

relationships and synthesize their learning. Teachers and students collectively shared 

responsibilities for applying constructivist and socio-constructivist principles to generate 

knowledge and cultivate productive environments that led to sense-making and mathematical 

generalizations. 

Teachers also learned how to implement “re-designed” novel tasks, transforming student 

and teacher engagement with mathematical concepts. The novel tasks and teacher’s open-ended 

questions focused students’ attention, encouraging them to analyze, visualize, and synthesize the 

figural units and mathematical structures embedded within enactive, iconic, and symbolic 

representations. The novel features of the representations generated cognitive opportunities to 

mentally engage with and make sense of abstract concepts. The use of the “re-designed” tasks 

enhanced teachers’ content knowledge for teaching mathematics.  

Accordingly, teacher and student implementation of the “re-envisioned” instruction 

model addresses four of the five origins for students’ learning difficulties (biological, cognitive, 

socio-cultural, and pedagogical) because it supports generative processes. These processes 
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include socio-cultural environments that inspire growth mindsets for teachers and for students. It 

delineates a superior and effective framework for implementing mathematics lessons and tasks 

that increase students’ sense-making abilities. It strongly supports teachers engaging students in 

thinking deeply about mathematical concepts enabling them to move beyond their natural 

cognitive endowments. The model structures teachers’ strategic pedagogical actions that 

facilitate students’ conceptual understanding of mathematical content, thereby changing 

traditional purposes for instruction. Teachers can influence these four origins by infusing the 

synthesis of learning theories and evidence-based practices into their Tier I core instruction.  

Decades of low student performance and achievement in mathematics continue to 

challenge our nation, businesses, communities, schools, families and their students (National 

Research Council, 2001; NCES, 2015a; NCES, 2016). Researchers and teachers must strive to 

improve our students’ numerical literacy in the United States. Our students’ active participation 

in an ever-changing, information and technologically-dependent world is critical for the 

environmental, economic, and political health of our country. Mathematical principles underlie 

everything we do.  

The synthesis of viable learning theories and evidence-based practices, as represented by 

the “re-envisioned” instruction model, increases students’ achievement. The model inspires the 

necessary and crucial shifts in beliefs and practices for teaching and for learning mathematics. 

Teachers engage in pedagogical practices that minimize students’ learning difficulties in 

mathematics. Students become the confident, reflective, and dynamic change-agents of their own 

intelligence. Together, researchers and teachers can become effective stewards of our students’ 

futures by “re-envisioning” ways children authentically learn mathematics.  
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Appendix A: Detailed Work Schedule Throughout Research Study 

Dates and Days 

of 

Implementation 

Description of Work and Researcher 

Contacts 

Researcher Observations, 

Notes, and Communications 

5/13/2014 

(none) 

Gained approval to conduct study from 

school district. Executive Director of 

Instruction, Technology and Assessment for 

WLCSD) via email approved this research 

project at the school site for school year 

2014-2015.  

 

Week 1 

9/1/14-9/6/15 

(W) 

- Met with Principal and teachers to 

describe study.  

- IRB Board at University of Michigan 

gave permission to conduct research 

study 

- Submitted electronic versions of teacher, 

parent, student and administration 

consent forms to principal. 

Relative to Principal’s 

selection of the teachers 

(CLB and CLC Teachers) 

who received the 

intervention and the teacher 

who was the control (CLA 

Teacher), Principal shared 

that CLC Teacher has the 

greatest number of struggling 

students in all three 

classrooms. She wants this 

classroom to receive the 

intervention. As for the other 

two classrooms, she 

mentioned that CLA Teacher 

was the strongest 

pedagogically of the three, so 

she believed she would be 

the best to function as the 

control. The CLA Teacher 

has worked at the district 

level for supporting second 

grade math. Thus, CLB and 

CLC will serve as the 

intervention groups as 

designated by the principal. 



A “RE-ENVISIONED” INSTRUCTION MODEL  260 

 

 

Week 2 

9/7/14-9/14/14 

(M, T, W) 

- All three teachers and principal signed 

consent forms for participation. 

- Presented research study to parents at 

curriculum night. Answered parent 

questions and provided parent consent 

forms. 

- Observed teachers’ math lessons in CLA 

and CLC classrooms. 

- Received 17 parent consent forms across 

three classrooms. 

- Interviewed 16 students to gain their 

consent for participation.  

When interviewing 

individual students, the 

protocol was followed. 

During the interview, most 

students were very trusting. 

All but one agreed to 

participate in this study. 

However, rather than looking 

at the researcher, five 

students’ eyes darted around, 

and their hands rubbed their 

legs or other body parts.  

Week 3 

9/15/14- 

9/21/14 

(M, T, W) 

- Modeled a Number Talk using Ten 

Frames (Parrish, 2010, p. 92‒93). 

- Administered How Many Squares Task 

to all students, (see Russell, 2007). 

- Each teacher rated their students using 

the Student-Centered Mathematics 

Classroom Indicators. 

- Received remaining parent consent 

forms for a total of 14 students in CLA; 

11 students in CLB; and 10 students in 

CLC gave permission for their child to 

be part of the study. 

- Completed student assent interviews 

with remaining students to gain their 

consent for participation.  

 

Analyzed student results 

from How Many Squares 

task. Majority of students did 

not sort, nor recognize 

number relationships with 

the Square Task. They also 

struggled in the number 

relationships Number Talk 

tasks. Teachers commented 

that these were different 

types of tasks that the 

teachers nor students had 

encountered before. 

Week 4 

9/22/14- 

9/28/14 

(M, T) 

- Met with CLB and CLC Teachers to 

discuss the types of tasks students 

needed to be engaged with given the 

data. 

- Modeled Cube Task and Arrow Road 

Tasks in CLC classroom (see Chapter 3 

in Dissertation.)  

- Modeled Cube Task and Arrow Road 

Tasks in CLB classroom. 

- Observed the teacher teaching the lesson 

in CLA’s classroom.  

Discussed with CLC Teacher 

how to take student’s 

misconceptions and use them 

as a launch for the next 

lesson. Teachers explained 

this was the first time this 

year students asked for more 

time to record their ideas 

during the launch of a lesson. 

I wonder if it was because 

they had the physical cubes 

right in front of them and 

they could touch them? 
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Week 5 

9/29/14- 

10/5/14 

(M, W) 

- Administered Adapted Cognitive 

Structure Assessment to students in all 

three classrooms.  

- Conversed with all three teachers and 

asked how they would feel to be the 

opposite of what they are doing in the 

study (i.e. If you were the control rather 

than the treatment and if you were the 

treatment rather than the control.) 

- Observed math lessons in CLB and in 

CLC classrooms (Arrow Roads and 

Number Grids). 

Most students struggled with 

finding the triangles and 

square within the task. 

Spatial reasoning is a 

cognitive structure we will 

need to develop. After 

discussions with the two 

experimental teachers and 

hearing their feelings 

regarding the work load of 

preparing lessons that meet 

the cognitive demand for the 

“Re-Envisioned” Instruction 

Model, some Base Ten Block 

activities were provided, (see 

Steward, Walker, & Reak, 

1995.) 

Week 6 

10/6/14- 

10/12/14 

(W) 

- Observed I-Ready Assessment Measure 

administered to 4th grade students. 

- Administered Pre-assessment of the 

Number line task in all three second 

grade classrooms. 

- Wrote 12 lesson plans for CLB and CLC 

Teachers to use with their students for 

this study. Used District’s Mathematics 

Program and Van de Walle, Karp, Lovin, 

& Bay-Williams (2014) to create lesson 

plans. Articulated the following Big 

Ideas for all 12 lessons.  

Due to the two teachers in 

the experimental groups 

feeling overwhelmed and not 

being able to see where their 

work was headed, 12 lessons 

for CLB and CLC Teachers 

were created to use for 

instructional purposes. Some 

lessons were in EDM and 

were modified or “re-

designed” to align to the 

“Re-Envisioned” Instruction 

Model. These lessons were 

designed to activate students’ 

cognitive structures and 

develop their sense of 

number and number 

relationships (i.e. Counting 

Collections which teachers 

did not implement until I 

modeled it for them with 

their students). 

Week 7 - I-Ready screener administered to all 

second-graders. 

CLB and CLC Teachers 

asked students to take their 

time and use blank sheets of 
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10/13/14- 

10/19/14 

(T, Th) 

 

- Conducted a face-to-face interview with 

each teacher. 

- Each teacher rated their students using 

the Student-Centered Mathematics 

Classroom Indicators  

- Met with both CLB and CLC Teachers 

in the morning for a math planning 

meeting to discuss the cognitive 

structures the 12 lessons attended to and 

discussed a possible place value lesson. 

- Modeled “Quick Images” using Base 

Ten Blocks in CLB and in CLC 

classrooms. Task was created by the 

researcher. 

- Observed the I-Ready Screener being 

administered to 3rd graders. 

 

paper to think about the 

questions on the I-Ready 

screener. Teachers did this 

because they wanted their 

students to think about the 

knowledge they knew to 

solve problems. They also 

wanted students to slow 

down their thought 

processes. 

 

Week 8 

10/20/14- 

10/26/14 

(M, T) 

- Observed lessons in all three classrooms  

Week 9 

10/27/14- 

11/2/14 

(M) 

- Checked with CLB and CLC Teachers to 

ensure they had sufficient lesson 

materials. Asked all three teachers for 

questions they might have. All teachers 

were notified that the researcher would 

be out of town but would return on 

November 10th. Teachers could contact 

the researcher by email.  

Teachers shared they needed 

to stop teaching the lessons 

given them and focus on 

using lessons that prepared 

students to take the district’s 

first Quarter Benchmark 

assessment. What was 

interesting is that CLB and 

CLC Teachers used two 

weeks to prepare students to 

take this test. They did not 

make the connection that the 

lessons provided them would 

prepare students for the 

assessment. Students’ 

Benchmark Assessment 

performance scores were 

reported on students’ report 

cards and used for teacher 

evaluation purposes.  

Week 10 - No visits made  
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11/2/14 – 

11/9/14 

(none) 

- All three teachers administered District’s 

Benchmark Assessment I to students. 

Week 11 

11/10/14- 

11/16/14 

(M, T, W) 

 

- Modeled lesson looking for Patterns 

using puzzle pieces in CLB and CLC 

classrooms.  

- Taught second lesson this week re: 

looking for patterns. 9 + 9 + 2 =; 8 + 8 + 

4 =; 7 + 7 + 6 =; etc.…  

- Taught third lesson this week modeling 

for teachers the use of the double ten 

frame, Number Talks, (Parrish, 2010, p. 

104) 

- Met with CLB and CLC Teachers for 30 

minutes to discuss EDM Unit 4 Addition 

and Subtraction and Mental Arithmetic. 

- Conducted an item analysis of District’s 

Benchmark Assessment II for math 

content before writing next unit’s lesson 

plans for teachers CLB and CLA.  

- Used EDM resource and Van de Walle, 

Karp, Lovin, & Bay-Williams (2014) to 

create 15 more lessons to activate 

students’ cognitive structures for 

Addition/subtraction and Mental 

Arithmetic. Big Ideas included: 

o Addition and subtraction 

involves composing and 

decomposing numbers and 

quantities 

o Addition and subtraction are 

inverse operations, one “undoes” 

the other. 

o Addition and subtraction can be 

represented in different ways. 

 

Used EDM as a resource to 

create additional lessons 

because teachers are 

comfortable with that 

program and format. Asked 

teachers if they had ever 

done an item analysis on 

their benchmark assessments 

to inform their instruction 

before giving assessments to 

their students in their 

classroom. They replied no. 

 

 

 

Week 12 

11/17/14- 

11/23/14 

(W, F) 

- Analyzed student results from the first 

Benchmark Assessment. 

- Conducted mid-study interviews with 

participating students in all three 

classrooms. 

- Modeled Counting Collections for CLB 

and CLC Teachers with students (see 

Schwerdtfeger & Chan, 2007).  
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Week 13 

11/24/14- 

11/30/14 

(M, T) 

- Observed lessons in all three classrooms.  

- All three teachers had great concerns for 

a small group of students in each class. 

Met with teacher-selected students from 

all three classrooms and assessed each 

student using the Number Knowledge 

Assessment. Generated specific 

directions for each teacher regarding 

additional math supports in the form of 

tasks and interventions they could 

provide each student they were 

concerned about. 

 

 

Week 14 

12/1/14- 

12/7/14 

(W) 

- Modeled how to teach and use an open 

number line representation with CLB 

and CLC Teachers and students. 

- Met with CLB and CLC Teachers to 

discuss their concerns about the study. 

- Asked CLB and CLC Teachers to reflect 

upon the following:  

o Changes they made in their 

instruction 

o Changes in students’ thinking 

and/or skills/Behaviors from 

Previous Years of teaching. 

 

The open number line 

representation was new to 

both CLB and CLC 

Teachers. 

Week 15 

12/8/14-

12/14/14 

(M, T) 

- In both CLB and CLC classrooms, 

modeled a lesson using a meter stick to 

focus on equal intervals between whole 

numbers and multiples of ten preparatory 

to using the open number line as a 

representation to add and subtract. 

- Conducted second lesson by asking 

students to compare their meter stick 

experience to an open number line and to 

the thermometer. 

- Prepared all three teachers for the site 

visit in a different school district. 

 

CLC Teacher asked how the 

meter stick, the open number 

line and the thermometer 

could be the same. She had 

never thought about all three 

representations being a type 

of number line. 

 

 

Week 16 

12/15/14- 

12/21/14 

(T) 

- All three teachers and researcher visited 

another district to observe two second-

grade teachers’ mathematics instruction.  

Teachers observed two 

teachers implementing the 

“Re-Envisioned” Instruction 

Model with their students. 

Teachers appreciated visiting 

two other second-grade 

teachers’ classrooms. 
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Teachers commented they 

were amazed at the types of 

higher-cognitive tasks 

students engaged in. They  

Week 17 

12/22/14- 

12/28/14 

- Holiday Break  

Week 18 

12/29/14- 

1/4/15 

- Holiday Break  

Week 19 

1/5/15- 

1/11/15 

(M, T) 

- Observed lessons in all three classrooms 

to determine if student’s mathematical 

understanding needed additional review 

due to the two-week holiday break. 

Teacher were surprised at 

how much students retained 

regarding math concepts and 

classroom routines. Both 

CLB and CLC Teachers 

stopped using the “re-

designed” lessons provided 

and began using their 

district’s mathematics 

program to prepare students 

for success on Benchmark 

Assessment II. 

Week 20 

1/12/15- 

1/18/15 

(M, T) 

- Met with CLB and CLC Teachers to 

answer their questions and provide 

feedback of their instruction and student 

learning. 

- Observed teachers’ lessons in all three 

classrooms 

- Observed student choices during indoor 

recess in all three classrooms. 

During recess, CLA and 

CLC students were engaged 

in conversations, drawing or 

coloring, playing school, 

playing games. Students in 

CLB classroom were 

engaged with puzzles, mind-

benders, Legos, 

conversations, and math 

manipulatives. 

Week 21 

1/19/15- 

1/25/15 

(W) 

- Each teacher administered District 

Benchmark Assessment II. 

- Copied all students’ district benchmark 

assessment to analyze data results. 

- Administered the Post-assessment for the 

Number Line Task 
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- Collected data from three to four 

students regarding the math topics 

recorded in their mathematician’s 

notebooks. 

 

Week 22 

1/26/15-

1/28/15 

(M, T, W) 

- Post i-Ready Screening Measure was 

administered to majority of second grade 

students. Some students in CLA and 

CLB classrooms did not complete the 

screener until a later date. 

- Each teacher rated their students using 

the Student-Centered Mathematics 

Classroom Indicators  

- Continued to copy student data from 

student’s mathematicians’ notebooks 

- Administered Cognitive Structure 

Assessment to students in all three 

classrooms 

- Taught lesson in CLA, CLB, and CLC 

classrooms using Tangrams to support 

spatial reasoning and introduced the 

Game “Capture 5” to students. 

- Provided Capture 5 game to all three 

teachers for students to play to continue 

to develop mathematical proficiencies 

with number and operations. 

- Conducted debriefing with CLB 

Teacher. 

 

CLA and CLB Teachers did 

not notice they had a few 

students who did not finish 

their i-Ready screening 

assessment. This was brought 

to teachers’ attention. 

Teachers provided additional 

time for these students to 

finish their assessment. 

4/2014 - End i-Ready Screening Measure was 

administered to all students. 

 

 

5/19/14 

(T) 

- Teachers provided students’ End data 

results from the i-Ready Screening 

Measure with researcher. 

- Conducted face-to-face interviews with 

each teacher to understand their 

perceptions re: assessment results 
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Teacher and Student Interactions with the Researcher 

22 weeks for the research study spanning September 4, 2014 until January 28, 2015 

This researcher was at the school site for 36 days during that time frame. 

Researcher’s direct interactions with students consisted of the following: 

- solicitation of students’ consent to participate in research study: a 5-6-minute interview 

per student at the beginning of the school year; 

- modeled (or taught) 13 lessons with CLB Teacher’s students;  

- modeled (or taught) 13 lessons with CLC Teacher’s students;  

- modeled (or taught) 3 lessons with CLA Teacher’s students;  

- assessed students for Cognitive Structures (no explicit instruction was done relative to 

this assessment (2 days in each classroom); 

- assessed students for number sense using the Number Line task and Tile Task (2 days 

each in each classroom); and 

- conducted conversations with participating students regarding their understanding of 

mathematical concepts. After teachers launched their math lessons, students discussed 

their ideas with the researcher. (3 days in each classroom.) 

 

Teacher and Researcher Interactions 

Observed Teacher’s implementation of lessons 

- CLA: 6 times 

- CLB: 5 times 

- CLC: 7 times 

Number of times this researcher met with each teacher throughout the course of the study 

• All three teachers together: 4 times approximately 30-45 minutes in length 

In addition to the above meetings, the following indicate additional meetings lasting from 5 

minutes to 25 minutes in length depending upon the purpose and content of the meeting. 

• CLB and CLC Teacher together: 5 times 

• CLA Teacher individually: 4 times 

• CLB Teacher individually: 4 times 

• CLC Teacher individually: 4 times 
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Infrequent brief discussions occurred with teachers in the hallway as students lined up to use the 

restrooms. Most discussions occurred with CLB Teacher when she wanted to share an 

observation she made regarding her students or inquire about an upcoming lesson.  
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Appendix B: Adapted Cognitive Structure Assessment 

 

Student Name_______________________  Date_____________________ 

Please circle only one answer: 

 

1. Which piece of clay has more, or do they have the same amount? 

 

 Clay Ball     Clay Pancake   Same 

 

2. Which bottle has more water or are they the same amount? 

 

 Right side up   Upside down   Same 

 

3. Which is longer? The one on the top? The one on the bottom? Or are they the 

same? 

 Top      Bottom     Same 

 

Drawing a Glass of Water 

 

4. Draw a glass of water         5. Draw a glass of water       6. Draw a glass of water 

standing straight up half full.     tipped to the right half full.         tipped to the left half full.  

 

 

 

 



A “RE-ENVISIONED” INSTRUCTION MODEL 270 

 

 

 

 
 

 

Excerpted from Putting the Pieces Together by Kim D. Ellis. Copyright 2004 by 

aha! Process, Inc. All rights reserved. Published by aha! Process, Inc. 

www.ahaprocess.com  

 

 

 

 

 



A “RE-ENVISIONED” INSTRUCTION MODEL 271 

 

 

 

Appendix C: Original Cognitive Structure Assessment 
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Appendix D: Teacher and Student Semi-Structured Interviews, Questionnaires, and 

Surveys 

Teacher Semi-Structured Interview Questions Conducted at the Beginning of Study 

1. How many years of teaching? 

2. Number of years teaching in second grade? 

3. Degree(s)? 

4. On average, how much time per week do you spend preparing for reading lessons? 

5. On average, how much time per week do you spend preparing for math lessons? 

6. What is challenging for you while preparing math lessons? 

7. On average, how much time per day is spent teaching math? 

8. What are some of your strengths for teaching math? 

9. What is challenging for you when teaching math? 

10. What normally drives your mathematics instruction of concepts: based on a calendar, 

based on student needs, based on a program, based on __________________________ 

11. What was a significant change for you teaching math last year?



A “RE-ENVISIONED” INSTRUCTION MODEL 273 

 

 

 

11. What do you owe that change to? 

12.  In what ways has your math instruction changed already this year? 

13.  What do you owe that change to? 

14.  In what ways do you utilize students’ mathematicians’ notebooks? 

15.  What else would you like to share with me? 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  



A “RE-ENVISIONED” INSTRUCTION MODEL  274 

 

 

Teacher Reflection at the End of Study (Teacher completed this questionnaire individually) 

1. Write a brief definition for the following: 

 

a. Teaching is… 

b. Learning is… 

c. Cognitive structures are… 

2. How do students learn mathematics? 

3. Describe changes you’ve made in your math instruction this year. Use a   to 

indicate changes that were caused by your participation in this study. 

 

 

4. Describe differences in students’ mathematical thinking, skills and/or behaviors this year 

from previous years. 

 

 

 

 

5. What were the most challenging math concepts and/or tasks for your students to 

understand during this study? Please explain. 

 

 

 

 

6. What were the most challenging math concepts and/or tasks for you, as a teacher, to 

understand during this study? Please explain. 
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Indicate the level of implementation of the following by circling the corresponding value. 

7. On average, the days per week a math lesson was taught: 

  

0 < 1 1 2 3 4 5 

  

8. On average, the number of instructional minutes per day devoted to math instruction: 

0 Less than 30  30-45  46-60  61-75  76-90   91 +  

 

9. On average, the days per week a math game was used to support student learning: 

  

0 < 1  1 2 3 4 5  

 

10.  On average, the days per week a form of Number Talks was implemented? 

  

0 < 1 1 2 3 4 5  

 

11.  On average, the days per week students were required to first make sense of a math task 

before whole group discussion occurred:  

 

0 < 1 1 2 3 4 5  

 

12.  On average, the days per week students used their Student Reference Book as a 

resource to make sense of mathematical ideas:   

 

0 < 1 1 2 3 4 5 

 

13.  On average, the days per week students used math tools to make sense of mathematical 

ideas: 

 

0 < 1 1 2 3 4 5 

 

14.  List the math tools students used on a regular basis in your classroom:  

 

 

15.  On average, the days per week the SIPP information/instructional strategies provided by 

the researcher were used as intervention support for struggling students: Please explain. 

0 <1 1 2 3 4 5 

 

16.  Please list other forms of math instruction you provided your students and indicate how 

often they were used (i.e. morning work packets, homework packets, drills in the 

hallways, etc.…)  

 

 

18. The number of times your students did Counting Collections for their math lesson:  

 

19.  On average, how many minutes per day did you spend planning a math lesson? 
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20.  What were the most challenging aspects for you while participating in this study? Please 

explain. 

 

21.  Please provide suggestions to the researcher for how to improve the overall design of the 

research study. 
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Student Questionnaire Conducted at Post Treatment 

 

Name______________________________   Date__________________________ 

 

Circle the way you feel about learning math. 

I don’t like math.   Math is O.K.    I love math. 

Explain your thinking. 

______________________________________________________________________________

______________________________________________________________________________

______________________________________________________________________________ 

What is something you’ve learned in math you feel really good about? 

______________________________________________________________________________

______________________________________________________________________________

______________________________________________________________________________ 

What do you wish you understood better in math? 

______________________________________________________________________________

______________________________________________________________________________

______________________________________________________________________________ 
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Appendix E: Student-Centered Classroom Indicators 

Focusing on student outcomes, indicate the level in each of the following behaviors you 

have observed in your students in math class. Use the following scale: (1) All the time; (2) Some 

of the time; (3) Once-in-a-while; (4) Not at all. 

______ a. Students see themselves as mathematicians. 

______ b. Students incorporate the five talk moves within their classroom dialogue. 

______ c. Students ask one another questions to support each other’s learning about 

mathematics. 

______ d. Students understand their role is to think about math.  

______ e. Students understand they are expected to make sense of complex mathematical ideas.  

______ f. Students demonstrate their understanding of ideas using multiple representations. 

______ g. Students use self-talk to support themselves solving a math problem. 

______ h. Students generate their own questions about mathematical ideas. 

______ i. Students notice details embedded within various mathematical representations. 

______ j. Students make connections between and among mathematical ideas from prior lessons. 

______ k. Students explain and justify their mathematical reasoning and thinking. 

______ l. Students critique the mathematical reasoning of their peers. 

______ m. Students self-select math tools to support their own mathematical reasoning and 

thinking. 

______ n. Students attempt to construct meaning of multiple solution strategies by making 

connections between them. 



A “RE-ENVISIONED” INSTRUCTION MODEL 279 

 

 

 

Indicator Learning Theories 

Connected to Indicator 

Standards of 

Mathematical Practices 

Connected to Indicator 

a. Students see themselves as 

mathematicians. 
• Self-efficacy # 1 – Make sense of 

problems and persevere in 

solving them. 

b. Students incorporate the five 

talk moves within their 

classroom dialogue. 

• Social Constructivist 

• Mediated  

# 1 – Make sense of 

problems and persevere in 

solving them. 

# 3 – Construct Viable 

arguments and critique the 

reasoning of others 

# 6 – Attend to precision 

c. Students ask one another 

questions to support each 

other’s learning 

mathematics. 

• Constructivist 

• Social Constructivist 

• Mediated  

 

# 1 – Make sense of 

problems and persevere in 

solving them. 

# 2 – Reason abstractly and 

quantitatively 

# 3 – Construct Viable 

arguments and critique the 

reasoning of others 

# 6 – Attend to precision 

d. Students understand their 

role is to think about math. 
• Self-efficacy  # 1 – Make sense of 

problems and persevere in 

solving them. 

e. Students understand they are 

expected to make sense of 

complex mathematical ideas.  

• Constructivism # 1 – make sense of 

problems and persevere in 

solving them. 

# 2 – Reason abstractly and 

quantitatively 

# 6 – attend to precision 

f. Students demonstrate their 

understanding of ideas using 

multiple representations. 

• Representational 

• Constructivism 

• Evolution-based 

• Metability 

# 1 – make sense of 

problems and persevere in 

solving them  



A “RE-ENVISIONED” INSTRUCTION MODEL  280 

 

 

# 2 – Reason abstractly and 

quantitatively 

# 4 – Model with 

mathematics 

# 5 – Use appropriate tools 

strategically 

# 6 – Attend to precision 

g. Students use self-talk to 

support themselves solving a 

math problem. 

 

• Constructivism 

• Evolution-based 

 

# 1 – Make sense of 

problems and persevere in 

solving them. 

# 6 – Attend to precision 

# 7 – Look for and make 

use of structures 

# 8 – Look for and express 

regularity in repeated 

reasoning 

h. Students generate their own 

questions about 

mathematical ideas. 

• Constructivism 

• Metability 

• Mediated  

# 1 – Make sense of 

problems and persevere in 

solving them 

# 3 – Construct Viable 

arguments and critique the 

reasoning of others 

# 6 – Attend to precision 

i. Students notice details 

embedded within various 

mathematical 

representations. 

• Evolution-based 

• Representational 

• Mediated  

• Metability 

# 1 – Make sense of 

problems and persevere in 

solving them. 

# 6 – Attend to precision 

# 7 – Look for and make 

use of structures 

# 8 – Look for and express 

regularity in repeated 

reasoning 
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j. Students make connections 

between and among 

mathematical ideas from 

prior lessons. 

• Constructivism  

• Social Constructivism 

• Representational  

• Evolution-based 

• Mediated 

• Metability 

# 1 – Make sense of 

problems and persevere in 

solving them. 

# 2 – Reason abstractly and 

quantitatively 

# 4 – Model with 

mathematics 

# 6 – Attend to precision 

# 7 – Look for and make 

use of structures 

# 8 – Look for and express 

regularity in repeated 

reasoning 

k. Students explain and justify 

their mathematical reasoning 

and thinking. 

• Constructivism  

• Social Constructivism 

• Representational  

• Evolution-based 

• Mediated 

• Metability 

# 1 – Make sense of 

problems and persevere in 

solving them. 

# 2 – Reason abstractly and 

quantitatively 

# 3 – Construct Viable 

arguments and critique the 

reasoning of others 

# 4 – Model with 

mathematics 

# 5 – Use appropriate tools 

strategically 

# 6 – Attend to precision 

# 7 – Look for and make 

use of structures 

#8 – Look for and express 

regularity in repeated 

reasoning 

l. Students critique the 

mathematical reasoning of 

their peers. 

• Constructivism  

• Social Constructivism 

• Representational  

• Evolution-based 

# 1 – Make sense of 

problems and persevere in 

solving them. 
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• Mediated 

• Metability 

# 2 – Reason abstractly and 

quantitatively 

# 3 – Construct Viable 

arguments and critique the 

reasoning of others 

# 4 – Model with 

mathematics 

# 5 – Use appropriate tools 

strategically 

# 6 – Attend to precision 

# 7 – Look for and make 

use of structures 

#8 – Look for and express 

regularity in repeated 

reasoning 

m. Students self-select math 

tools to support their own 

mathematical reasoning and 

thinking. 

• Constructivism  

• Social Constructivism 

• Representational  

• Evolution-based 

• Mediated 

• Metability 

# 1 – Make sense of 

problems and persevere in 

solving them. 

# 2 – Reason abstractly and 

quantitatively 

# 4 – Model with 

mathematics 

# 5 – Use appropriate tools 

strategically 

 

 

n. Students attempt to construct 

meaning of multiple solution 

strategies by making 

connections between them. 

• Constructivism  

• Social Constructivism 

• Representational  

• Evolution-based 

• Mediated 

• Metability 

# 1 – Make sense of 

problems and persevere in 

solving them. 

# 2 – Reason abstractly and 

quantitatively 

# 3 – Construct Viable 

arguments and critique the 

reasoning of others 
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# 4 – Model with 

mathematics 

# 6 – Attend to precision 

# 7 – Look for and make 

use of structures 

#8 – Look for and express 

regularity in repeated 

reasoning 

 

• All fourteen indicators require making sense of problems.  

• Those that require all eight Standards are: 

o Students explain and justify their mathematical reasoning and thinking. 

o Students critique the mathematical reasoning of their peers. 

o Students attempt to construct meaning of multiple solution strategies by making 

connections between them. 
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Appendix F: Open Number Line Formative Assessment Task 
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Appendix G: CLA, CLB, CLC, Students’ i-Ready Results and District Benchmark Test 

Results 

 

CLA Results 
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CLB Results 
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CLC Results 

 

 


