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ABSTRACT

We examine valuation rings in prime characteristic from the lens of singular-

ity theory defined using the Frobenius map. We show that valuation rings are al-

ways F -pure, while the question of Frobenius splitting is more mysterious. Using

a characteristic-independent local monomialization result of Knaf and Kuhlmann

[KK05], we are able to prove that Abhyankar valuations of functions fields over

perfect ground fields are always Frobenius split. At the same time, we construct

discrete valuation rings of function fields that do not admit any Frobenius splittings.

Connections between F -singularities of valuation rings and the notion of defect of

an extension of valuations are established. Our examination reveals that there is

an intimate relationship between defect and Abhyankar valuations. We study tight

closure of ideals of valuation rings, establishing a link between tight closure and

Huber’s notion of f -adic valued fields. Tight closure turns out to be an interest-

ing closure operation only for those valued fields that are f -adic in the valuation

topology. We also introduce a variant of Hochster and Huneke’s notion of strong F -

regularity [HH89], calling it F -pure regularity. F -pure regularity is a better notion

of singularity in the absence of finiteness hypotheses, and we use it to recover an

analogue of Aberbach and Enescu’s splitting prime [AE05] in the valuative setting.

We show that weak F -regularity and F -pure regularity coincide for a valuation ring,

and both notions are equivalent to the ring being Noetherian. Thus, the various vari-

ants of F -regularity are perhaps reasonable notions of singularity only in the world

vii



of Noetherian rings. In the final chapter, we prove a prime characteristic analogue

of a result of Ein, Lazarsfeld and Smith [ELS03] on uniform approximation of valu-

ation ideals associated to real-valued Abhyankar valuations. As a consequence, we

deduce a prime characteristic Izumi theorem for real-valued Abhyankar valuations

that admit a common smooth center.
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CHAPTER I

Introduction

Notions of singularities defined using Frobenius—F -purity, Frobenius splitting

and the various variants of F -regularity—have played a central role in commutative

algebra and algebraic geometry over the last five decades. The primary goal of this

thesis is to systematically describe these so-called F -singularities in the novel, but

increasingly important non-Noetherian setting of valuation rings.

Valuation rings have a long history going back, at least, to the work of Hensel on

p-adic numbers. Later Zariski popularized the use of valuations in algebraic geometry

through his work on local uniformization, which is a local analogue of resolution of sin-

gularities [Zar40, Zar42, Zar44]. Moreover, although Hironaka in his ground-breaking

work [Hir64a, Hir64b] did not use valuations to resolve singularities in characteristic

0, the only partial results on the resolution problem over fields of prime character-

istic rely heavily on valuation-theoretic techniques [Abh56a, Abh66, CP08, CP09].

Valuations have been widely applied in number theory, model theory, birational al-

gebraic geometry [Cut04, FJ04, dBP12, Bou12, JM12, Blu18], differential geometry

[LL16, Liu16, Li17], tropical geometry [GRW], and various types of rigid geometries

such as Tate’s rigid analytic spaces [Tat71], Berkovich spaces [Ber90, Ber93] and

Huber’s adic spaces [Hub93, Hub94]. More recently, Berkovich and Huber’s deep

1
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valuation-theoretic techniques have served as foundations for Kedlaya and Liu’s rel-

ative p-adic Hodge theory [KL15] and Scholze’s perfectoid spaces [Sch12]. The latter

is already enjoying spectacular success in solving long-standing conjectures in geome-

try and algebra [Sch12, And16, Bha16, HM17, MS17]. Thus it is not an exaggeration

to say that valuations are at the forefront of contemporary research.

In this thesis, we are going to examine valuation rings through the lens of prime

characteristic singularity theory. Suppose R is a commutative ring of prime charac-

teristic p > 0. The Frobenius map is the ring homomorphism

F : R→ R

sending each element to its p-th power. While simple enough, this map reveals

deep structural properties of a Noetherian ring of prime characteristic, and it is

a powerful tool for proving theorems about rings containing an arbitrary field (or

varieties, say, over C) by standard reduction to characteristic p techniques. Theories

such as Frobenius splitting [MR85] and tight closure [HH90] are well-developed in

the Noetherian setting. Since classically most motivating problems were inspired

by algebraic geometry and representation theory, this assumption seemed natural

and not very restrictive. Now, however, good reasons are emerging to study F-

singularities in certain non-Noetherian settings as well. For example, one such setting

is cluster algebras [FZ02]. An upper cluster algebra over Fp need not be Noetherian,

but it was shown that it is always Frobenius split, and indeed, admits a “cluster

canonical” Frobenius splitting [BMRS15].

The starting point of the use of the Frobenius map to study singularities in prime

characteristic is the amazing discovery by Kunz that a Noetherian ring R is regular

precisely when R
F→ R is a flat map [Kun69]. In other words, the Frobenius map is

able to completely detect regularity of a Noetherian ring. Kunz’s result is also the
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main inspiration behind our thesis, since we show that

Theorem IV.2. The Frobenius map is always flat for a valuation ring of prime

characteristic.

Thus, a valuation ring of characteristic p might be interpreted as a “non-Noetherian

regular local ring”.

One can weaken the demand that Frobenius is flat and instead require only that

the Frobenius map is pure (see section 3.4). Hochster and Roberts observed that this

condition, which they called F -purity, is often sufficient for controlling singularities

of a Noetherian local ring, an observation at the heart of their famous theorem on the

Cohen-Macaulayness of invariant rings [HR74, HR76]. Flatness of Frobenius implies

that valuation rings of prime characteristic are always F -pure.

The most fundamental valuations in geometry, arising as orders of vanishing along

prime divisors on normal varieties (called divisorial valuations), have valuation rings

that are local rings of regular points of varieties. More generally, even though ar-

bitrary valuation rings of prime characteristic behave like regular local rings (as

evidenced by flatness of Frobenius), there are some that are decidedly more like local

rings of regular points of varieties than others. These are the valuation rings asso-

ciated to valuations ν of a function field K/k, with value group Γν and residue field

κν , such that

dimQ(Q⊗Z Γν) + tr. deg κν/k = tr. degK/k.

For such a valuation ν, called an Abhyankar valuation of K/k, the value group Γν

is a free abelian group of finite rank and κν is a finitely generated extension of k. A

divisorial valuation is a special case of an Abhyankar valuation, and the non-divisorial
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Abhyankar valuations are precisely those (see Example II.65(1)) for which

dimQ(Q⊗Z Γν) > 1.

In other words, Abhyankar valuations are analogues of divisorial valuations whose

value groups can have higher rational rank. We will spend a considerable effort

understanding Abhyankar valuations, proving, for example, that1

Theorem IV.30. The valuation ring of an Abhyankar valuation of function field

over a perfect ground field of prime characteristic is always Frobenius split.

Frobenius splitting has well-known deep local and global consequences for alge-

braic varieties; see subsection 3.5.1 for some global consequences. In the local case,

Frobenius splitting is said to be a “characteristic p analog” of log canonical singulari-

ties for complex varieties, whereas related properties correspond to other singularities

in the minimal model program [HW02, Sch09b, Smi97, Tak08]. For projective va-

rieties, Frobenius splitting is related to positivity of the anticanonical bundle; see

[BK05, MR85, Smi00, SS10].

Although Abhyankar valuation rings of function fields are Frobenius split, the

question of Frobenius splitting of valuation rings in general is quite subtle. For ex-

ample, it is not difficult construct Noetherian valuation rings that are not Frobenius

split (Example III.57). The obstruction to Frobenius splitting, at least in the Noethe-

rian case, is tied to Grothendieck’s notion of excellent rings (Definition III.13). We

show that

Corollary III.56. A Frobenius split Noetherian domain R with fraction field K such

that [K : Kp] <∞ must be excellent.

1Results in the introduction are often stated with simpler hypotheses than in the main body for better readability.



5

When [K : Kp] <∞, which is almost always satisfied in geometric situations, we

say K is F -finite, that is, the Frobenius map of K is finite. Thus Corollary III.56

can be rephrased as saying that a generically F -finite, Frobenius split Noetherian

domain has to be excellent. More generally, we are able to establish the following

Theorem III.50. Let R be a generically F -finite Noetherian domain of character-

istic p. The following are equivalent:

1. R is excellent.

2. R is F -finite.

3. The module HomR(F∗R,R) is non-trivial.

4. For all e > 0, HomR(F e
∗R,R) is non-trivial.

5. There exists e > 0 such that HomR(F e
∗R,R) is non-trivial.

Here F e
∗R denotes the ring R with R-module structure obtained by restriction of

scalars via the e-th iterate of Frobenius, F e : R→ R. 2

Finiteness of Frobenius is itself a very interesting constraint on valuation rings.

For example,

Proposition IV.4. A valuation ring V is F -finite if and only if F∗V is a free V -

module of finite rank.

As a consequence,

Corollary IV.5. F -finite valuation rings are always Frobenius split.

Proposition IV.4 would follow formally from flatness of Frobenius if finitely generated

modules over valuation rings were finitely presented. But this is not the case –

2Using this notation, a Frobenius splitting is just an R-linear map F∗R→ R that sends 1 7→ 1.
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the residue field of a non-Noetherian valuation ring of Krull dimension 1 is finitely

generated as a module over the ring, but not finitely presented because the maximal

ideal is not finitely generated. Thus Proposition IV.4 is not routine. In fact, its proof

easily adapts to yield a result that is even valid in mixed characteristic.

Proposition IV.9. A valuation ring of arbitrary characteristic is a direct summand

of every module finite ring extension.

Thus valuation rings, regardless of their characteristic, satisfy the conclusion of

Hochster’s direct summand conjecture (now a theorem by work of [And16, Bha16,

HM17, Hoc73]) which states that a regular ring is a direct summand of every mod-

ule finite ring extension. This further illustrates how similar valuation rings are to

regular rings.

Using the theory of extensions of valuations, we are able to prove other inter-

esting properties satisfied by F -finite valuation rings (see subsection 4.2.2). As an

illustration of the type of results obtained, we have the following:

Theorem IV.15. Let ν be a valuation of an F -finite field K of characteristic p with

value group Γν and residue field κν. If the valuation ring Rν is F -finite, then:

1. Γν is p-divisible or [Γν : pΓν ] = p.

2. If Γν is finitely generated and non-trivial, then ν is a discrete valuation (i.e. Γν

is isomorphic to Z).

As a partial converse, if [κν : κpν ] = [K : Kp], then Rν is F -finite.

There is also a close relationship between the notions of F -finiteness and defect of

an extension of valuations (see Definition IV.11 and [Kuh11] for a more general

discussion). Specializing to our situation, if ν is a valuation of an F -finite field K of
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characteristic p and νp denotes the restriction of ν to the subfield Kp ⊂ K, then the

extension ν/νp always satisfies

[Γν : pΓν ][κν : κpν ] ≤ [K : Kp].

If equality holds in the above inequality, we say ν/νp is defectless, and otherwise

ν/νp has defect.

Proposition IV.10. For a valuation ν of a field K, if the valuation ring of ν is

F -finite then the extension ν/νp is defectless. That is, the following equality holds:

[Γν : pΓν ][κν : κpν ] = [K : Kp].

Defect of the extension ν/νp also detects when a valuation is Abhyankar. More-

over, the relationship between defect and the Abhyankar condition even generalizes

to a non-function field setting. When a valuation ν of an arbitrary field K is cen-

tered on a Noetherian, local domain (R,mR, κR) such that Frac(R) = K, one has

the following beautiful inequality established by Abhyankar [Abh56b, Theorem 1]:

dimQ(Q⊗Z Γν) + tr. deg κν/κR ≤ dimR. (1.1)

When equality holds in (1.1), ν behaves a lot like an Abhyankar valuation of a

function field. For example, the value group Γν is then again a free abelian group of

finite rank, and the residue field κν is finitely generated over κR. However, whether a

valuation of a function field is Abhyankar is intrinsic to the valuation, while equality

in (1.1) with respect to a center depends, unsurprisingly, on the center as well (see

Example II.57(4) for an illustration). Bearing this difference in mind, we call a

Noetherian center R an Abhyankar center of ν, if ν satisfies equality in (1.1) with

respect to R.
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In practice one is often interested in centers satisfying additional restrictions.

For example, in the local uniformization problem for valuations of function fields,

one seeks centers that are regular. Similarly, in geometric applications centers are

usually local rings of varieties, and consequently essentially of finite type over the

ground field. Although satisfying equality in (1.1) is not intrinsic to a valuation, the

property of possessing Abhyankar centers from a more restrictive class of local rings

may become independent of the center. For example, when K/k is a function field

and C is the collection of local rings that are essentially of finite type over k with

fraction field K, then a valuation ν admits an Abhyankar center from the collection

C precisely when ν is an Abhyankar valuation of K/k, and consequently all centers

of ν from C are Abhyankar centers of ν (Proposition II.64). In other words, the

property of possessing Abhyankar centers that are essentially of finite type over k is

intrinsic to valuations of function fields over k.

Our investigation reveals that even in a non-function field setting, one can find

a broad class of Noetherian local domains such that the property of admitting an

Abhyankar center from this class is independent of the choice of the center.

Theorem IV.19. If a valuation ν of an F -finite field K of characteristic p is centered

on an excellent local domain R, then a necessary and sufficient condition for R to be

an Abhyankar center of ν is for ν/νp to be defectless.

Since the defect of ν/νp is intrinsic to ν, this implies

Corollary IV.22. For valuations of F -finite fields, the property of admitting excel-

lent Abhyankar centers is independent of the choice of the excellent center.

The analogue of Corollary IV.22 is false when K has characteristic 0, that is, the

property of admitting excellent Abhyankar centers for valuations of fields of charac-
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teristic 0 is not independent of the choice of excellent center; see Remark IV.28(2).

Theorem IV.19 does not claim that a valuation of an F -finite field K is necessarily

centered on an excellent local ring. In fact, the exact opposite situation is true since

we are able to use Theorem IV.19 to systematically construct valuations of F -finite

fields K that are not centered on any excellent domains with fraction field K.

Corollary IV.26. Suppose ν is a valuation of an F -finite field K with valuation

ring Rν that satisfies either of the following conditions:

1. Rν is F -finite, but not Noetherian.

2. dim(Rν) > s, where [K : Kp] = ps.

Then ν is not centered on any excellent local domain whose fraction field is K.

Specializing to the case of function fields, Theorem IV.19 shows that

Corollary IV.23. A valuation ν of a function field K/k of characteristic p is Ab-

hyankar if and only if ν/νp is defectless.

This has the following surprising consequence:

Corollary IV.25. If ν is a valuation of a function field K/k such that the valuation

ring Rν is F -finite, then ν is divisorial. Consequently, Rν is Noetherian.

Perhaps the most intriguing aspect of the defect of ν/νp is its relation to Frobenius

splitting. Since the valuation ring of an Abhyankar valuation of a function field K

over perfect ground field k of prime characteristic is Frobenius split, it follows by

Corollary IV.23 that defectless valuations of K/k are Frobenius split. On the other

hand, when ν/νp has maximal defect, then the valuation ring of ν is never Frobenius

split.
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Proposition IV.29. Let K be a non-perfect field of characteristic p and ν be a

valuation of K such that

[Γν : pΓν ][κν : κpν ] = 1,

that is, ν/νp has maximal defect. Then the valuation ring Rν is not Frobenius split.

Nevertheless, Frobenius splitting is not well-understood when the defect of ν/νp is

not one of two possible extremes.

Closely related to Frobenius splitting and F -purity are the various variants of

F -regularity. Strong F -regularity was introduced by Hochster and Huneke [HH89]

as a proxy for weak F -regularity — the property that all ideals are tightly closed

— because strong F -regularity is easily shown to pass to localizations. Whether

or not a weakly F -regular ring remains so after localization is a long-standing open

question in tight closure theory, as is the equivalence of weak F -regularity and strong

F -regularity. Strong F -regularity has found many applications beyond tight closure

[AL, BMRS15, Bli08, BK05, GLP+15, HX15, Pat08, ST12, Sch09a, SS10, SVdB97,

SZ15, Smi00], and is closely related to Ramanathan’s notion of “Frobenius split along

a divisor” [Ram91, Smi00].

Traditionally, strong F -regularity has been defined only for Noetherian F -finite

rings. To clarify the situation for valuation rings, we introduce a definition which we

call F -pure regularity (see Definition III.68) requiring purity rather than splitting of

certain maps. We show that F -pure regularity is better suited for arbitrary rings, in

the absence of finiteness conditions. Even in the world of Noetherian rings, regular

local rings are always F -pure regular, although there exists non-F-finite regular rings

that are not strongly F -regular. For example, any generically F -finite, non-excellent

regular local ring is not strongly F -regular (Theorem III.50).

F -pure regularity also agrees with another, more technical, generalization of
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strong F-regularity proposed by Hochster [Hoc07], using tight closure, in the lo-

cal Noetherian case (Proposition III.76). Given the natural interplay between tight

closure and F -regularity, we first examine tight closure in the setting of ideals of

valuation rings. Tight closure tends to be quite a lossy operation for valuation rings.

Lemma IV.40. Let V be a valuation ring of characteristic p, and I an ideal of V .

If Q is a non-zero prime ideal of V such that Q ( I, then the tight closure I∗ of I

equals V .

The existence of ideals of a valuation ring that do not properly contain a non-zero

prime ideal is closely related to Huber’s notion of an f -adic ring (Definition II.32).

Just as commutative rings are the local algebraic objects in scheme theory, f -adic

rings are the local algebraic objects in Huber’s approach to rigid analytic geometry,

which is witnessing a resurgence of interest because of its applications in Scholze’s

ground-breaking work on perfectoid spaces [Sch12].

By definition, f -adic rings are topological rings satisfying some additional natural

hypotheses. Any field K equipped with a valuation ν, henceforth called a valued

field, has a valuation topology induced by ν under which K becomes a topological

field. It is then natural to ask if K in its valuation topology is an f -adic field. In

prime characteristic, the f -adic valued fields are those fields for which tight closure

is an interesting operation.

Proposition IV.41. Let ν be a non-trivial valuation of a field K of prime charac-

teristic. The following are equivalent:

1. K is f -adic in the valuation topology induced by ν.

2. There exists a non-zero ideal I of the valuation ring Rν such that I∗ 6= Rν.
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A non-trivially valued field is f -adic in the valuation topology when its correspond-

ing valuation ring has a height 1 prime ideal (Theorem II.39), a condition which is

automatically satisfied for valuation rings of finite Krull dimension. In terms of this

height 1 prime, tight closure can be characterized as follows:

Theorem IV.42. Let ν be a non-trivial valuation of a field K of characteristic p

such that K is f -adic in the topology induced by ν. Let I be ideal of Rν and p be the

unique height 1 prime of Rν.

1. If p ( I, then I∗ = Rν.

2. If I ( p, then I∗ 6= Rν.

3. p∗ 6= Rν if and only if (Rν)p is a discrete valuation ring. In this case p∗ = p.

For the expert we note that (Rν)p is the ring of power bounded elements of the f -adic

valued field K, and p is the collection of topologically nilpotent elements of K.

As a consequence of Theorem IV.42, one can precisely say when a valuation ring

satisfies the defining property of weak F -regularity.

Corollary IV.44. Let ν be a valuation of a field K of characteristic p. The following

are equivalent:

1. All ideals of Rν are tightly closed.

2. The maixmal ideal mν is tightly closed.

3. Rν is Noetherian.

Despite a relatively simple definition, tight closure is devilishly difficult to compute

in practice for ideals of Noetherian rings. Valuation rings behave differently in this

aspect.
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Proposition IV.45. Let ν be a non-trivial valuation of a field K of characteristic

p such that K is f -adic in the valuation topology induced by ν. Let p be the height 1

prime ideal of the valuation ring Rν of ν, and

w : K× → R

be a valuation whose corresponding valuation ring is (Rν)p. For an ideal I ⊆ p, if

a := inf{w(i) : i ∈ I − {0}}.

then

I∗ = {x ∈ Rν : w(x) ≥ a} ∪ {0}.

In particular, I∗ = I if a /∈ Γw.

As a pleasing outcome of the previous proposition, we find that tight closure is

indeed a closure operation for ideals of valuation rings, a fact that is not obvious in

the non-Noetherian case.

Corollary IV.46. For any ideal I of a valuation ring V of prime characteristic,

(I∗)∗ = I∗, that is, I∗ is tightly closed.

Having obtained a fairly satisfactory picture of tight closure of ideals of valuation

rings, we turn our attention to F -pure regularity in the valuative setting. Our prior

considerations reveal that an analogue of Aberbach and Enescu’s splitting prime

in the Noetherian setting [AE05] exists for valuation rings of prime characteristic,

provided splitting of certain maps is replaced by purity.

Theorem IV.50. The set of elements c along which a valuation ring (V,mV , κV ) of

characteristic p fails to be F-pure is the prime ideal

⋂
e∈N

m
[pe]
V .
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Combined with observations on powers of ideals of valuation rings (see Section 2.6),

we are able to show that

Theorem IV.49. A valuation ring is F-pure regular if and only if it is Noetherian.

An amusing consequence of Theorem IV.49 and Corollary IV.44 is that weak F -

regularity and F -pure regularity coincide for valuation rings of prime characteristic,

and both are equivalent to the valuation ring being Noetherian.

We finally end our investigation of F -singularities of valuation rings by comparing

our generalization of strong F -regularity with the obvious competing generalization,

in which the standard definition in terms of splitting certain maps is naively extended

without assuming any finiteness conditions. To avoid confusion with the existing

definition of strong F -regularity, we call this split F-regularity. We characterize split

F-regular valuation rings of F -finite fields as precisely those that are Noetherian and

Frobenius split, or equivalently excellent; see Corollary IV.58.

Following our study of valuation rings in prime characteristic, we switch gears to

study the effect of valuation rings on Noetherian rings, concentrating, in particular,

on the interaction between real-valued Abhyankar valuations and their centers. A

real-valued valuation ν of a function field K/k centered on a variety X of K/k

determines, for any m ∈ R≥0, quasi-coherent ideal sheaves am, consisting of local

sections f of OX such that ν(f) ≥ m. When X = Spec(A), we use am(A) to denote

the ideal {a ∈ A : ν(a) ≥ m} of A.

For a natural number `, clearly

a`m ⊆ a`m.

Ein, Lazarsfeld and Smith proved the surprising fact that when X is a smooth variety

in characteristic 0, the ideal a`m is also contained in the `-th power of a shift, am−e,
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of am, where the shift e can be chosen independent of m or ` [ELS03]. In this thesis,

we prove the prime characteristic analogue of this result.

Theorem V.1. Let X be a regular (equivalently smooth) variety over a perfect field

k of prime characteristic with function field K. For any non-trivial, real-valued

Abhyankar valuation ν of K/k centered on X, there exists e ≥ 0, such that for all

m ∈ R≥0 and ` ∈ N,

a`m ⊆ a`m ⊆ a`m−e.

The proof of the characteristic 0 analogue of Theorem V.1 uses embedded reso-

lution of singularities. Since resolution of singularities is still open in prime char-

acteristic, we use a local monomialization result of Knaf and Kuhlmann, valid for

Abhyankar valuations of arbitrary characteristic.

Theorem II.69. [KK05] Let K be a finitely generated field extension of any field

k, and ν an Abhyankar valuation of K/k with valuation ring (Rν ,mν , κν). Suppose

d := dimQ(Q⊗ZΓν) and κν is separable over k. Then given any finite subset Z ⊂ Rν,

there exists a variety X of K/k, and a center x of ν on X satisfying the following

properties:

1. x is a smooth point of X/k and OX,x is a regular local ring of dimension d.

2. Z ⊆ OX,x, and there exists a regular system of parameters x1, . . . , xd of OX,x

such that every z ∈ Z admits a factorization

z = uxa11 . . . xadd ,

for some u ∈ O×X,x and ai ∈ N ∪ {0}.

When the ground field k is perfect, the residue field κν of any Abhyankar valuation of

K/k is always separable over k because finitely generated field extensions of perfect
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fields are separable. Thus every Abhyankar valuation over a perfect ground field

satisfies the conclusion of Theorem II.69.

The other key ingredient in the proof of the characteristic 0 version of Theorem

V.1 is the machinery of multiplier ideals, whose properties require deep vanishing

theorems that are not known in positive characteristic. More precisely, Ein, Lazars-

feld and Smith employ an asymptotic version of multiplier ideals, which was first

used by them in [ELS01] in order to prove a uniformity statement about symbolic

powers of ideals on smooth varieties. Over the years it has become clear that in

prime characteristic a test ideal is an analogue of a multiplier ideal. Introduced by

Hochster and Huneke in their work on tight closure [HH90], the first link between

test and multiplier ideals was forged by Smith [Smi00] and Hara [Har01], following

which Hara and Yoshida introduced the notion of test ideals of pairs [HY03]. Even

in the absence of vanishing theorems in positive characteristic, test ideals of pairs

were shown to satisfy many of the usual properties of multiplier ideals of pairs that

make the latter such an effective tool in birational geometry [HY03, HT04, Tak06]

(see also Theorem V.23).

Drawing inspiration from [ELS03], we use an asymptotic version of the test ideal

of a pair to prove Theorem V.1. However, instead of utilizing tight closure machin-

ery, our approach to asymptotic test ideals is based on Schwede’s dual and simpler

reformulation of test ideals using p−e-linear maps, which are like maps inverse to

Frobenius [Sch10, Sch11] (see also [Smi95, LS01]).

Asymptotic test ideals are associated to graded families of ideals (Definition V.25),

an example of the latter being the family of valuation ideals a• := {am}m∈R≥0
. For

each m ≥ 0, one constructs the m-th asymptotic test ideal τm(A, a•) of the family

a•, and then Theorem V.1 is deduced using
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Theorem V.2. Let ν be a non-trivial real-valued Abhyankar valuation of K/k, cen-

tered on a regular local ring (A,m), where A is essentially of finite type over the per-

fect field k of prime characteristic with fraction field K. Then there exists r ∈ A−{0}

such that for all m ∈ R≥0,

r · τm(A, a•) ⊆ am(A).

In other words,
⋂
m∈R≥0

(am : τm(A, a•)) 6= (0).

Finally, as in [ELS03], Theorem V.2 also gives a new proof of a prime characteristic

version of Izumi’s theorem for arbitrary real-valued Abhyankar valuations with a

common regular center (see also the more general work of [RS14]).

Corollary V.3. (Izumi’s Theorem for Abhyankar valuations in prime char-

acteristic) Let ν and w be non-trivial real-valued Abhyankar valuations of K/k,

centered on a regular local ring (A,m), as in Theorem V.2. Then there exists a real

number C > 0 such that for all x ∈ A− {0},

ν(x) ≤ Cw(x).

Corollary V.3 implies that the valuation topologies on A induced by two non-trivial

real-valued Abhyankar valuations are linearly equivalent.

The use of F -singularity techniques to study valuation rings in prime characteris-

tic began in work of the author and Karen Smith [DS16, DS17a]. Although a sizable

portion of this thesis will highlight our joint work, recent results obtained by the

author reveal that F -singularities of valuation rings are often best understood by

analyzing F -singularities of the Noetherian centers of such rings [Dat17a]. We will

focus more on describing this new perspective, often obtaining considerable general-

izations of prior results in [DS16, DS17a] in the process. In addition, there is a lot of
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new material – the discussion of tight closure in the valuative setting in Chapter 4

has not appeared in published form. Moreover the work on uniform approximation

of Abhyankar valuation ideals in Chapter 5 is independent of Chapter 4.



CHAPTER II

A glimpse of valuation theory

In this chapter we review those notions of valuation theory that will be used in

the rest of the thesis. Stated results will usually not be accompanied by proofs,

but appropriate references will be given. The material in Sections 2.6 and 2.8 are

somewhat non-standard. The basic reference for this chapter is [Bou89, Chapter VI].

2.1 Local rings

By a local ring we mean a ring with a unique maximal ideal which is not neces-

sarily Noetherian. Local rings will often be denoted (A,mA, κA). Here A is the local

ring, mA is its maximal ideal and κA = A/mA is the residue field.

A homomorphism of local rings ϕ : A → B is called a local homomorphism

if ϕ−1(mB) = mA. Note that a local homomorphism induces a map of residue fields

κA ↪→ κB.

Given local rings A and B, we say B dominates A if A is a subring of B, and the

inclusion A ↪→ B is a local homomorphism of local rings, that is, if mB ∩ A = mA.

If K is a field, then the relation of domination induces a partial ordering among

the collection of local subrings of K.

19
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2.2 Valuation rings

Throughout this section let K denote a field of arbitrary characteristic.

Definition II.1. A subring V of K is called a valuation ring of K if for all x ∈ K,

x ∈ V or x−1 ∈ V .

Note that K is trivially a valuation ring of itself, called the trivial valuation

ring. We collect some basic properties of valuation rings.

Proposition II.2. Let V be a valuation ring of a field K. Then we have the follow-

ing:

1. K is the fraction field of V .

2. V is a local domain.

3. V is integrally closed in K.

4. V is a maximal element of the collection of local subrings of K partially ordered

by the relation of domination.

5. The collection of ideals of V is totally ordered by inclusion.

6. There exists an algebraically closed field L and a ring homomorphism f : V → L

which is maximal among the collection of ring homomorphisms from subrings

of K to L ordered by the relation of extension of homomorphisms.

7. If A is a subring of K with fraction field K, then the integral closure A of A in

K is the intersection of all valuation rings of K that contain A. If A is local,

then A equals the intersection of those valuation rings of K that dominate A.

Proof. See [Bou89, Chapter VI] for proofs of these assertions.
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Remarks II.3.

(a) Conditions (4), (5) and (6) in Proposition II.2 are equivalent to the defining

property of a valuation ring.

(b) Condition (5) in Proposition II.2 implies that if x and y are two elements of K,

then xV ⊆ yV or yV ⊆ xV . Thus finitely generated ideals of a valuation ring

are principal, and so, the only non-trivial Noetherian valuation rings are local

principal ideal domains, also known as discrete valuation rings.

(c) If V is a valuation ring of a field K, then any subring B of K such that V ⊆

B ⊆ K is also clearly a valuation ring of K. Thus B is a local ring. If p is the

prime ideal mB ∩ V , then B dominates the local ring Vp. However, Vp is also a

valuation ring of K for the same reason B is. By part (4) of Proposition II.2,

we then get

B = Vp.

Thus localization at prime ideals induces a bijection between the underlying set

of Spec(V ) and the collection of subrings of K that contain V . In particular, if

V has Krull dimension 1, then V is maximal (with respect to inclusion) among

the collection of proper subrings of K.

(d) If A is a Noetherian subring of a field K, then the integral closure of A in

K equals the intersection of discrete valuation rings of K that contain A (c.f.

Proposition II.2, part 7).

2.3 Valuations

The simplest way to construct valuation rings is via the notion of a valuation,

which we now introduce. For this, recall that a totally ordered abelian group
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Γ is an ordered abelian group equipped with a total ordering ≤ such that for all

α, β, γ ∈ Γ, α ≤ β ⇒ α + γ ≤ β + γ. In other words, the total ordering on Γ is

compatible with the group structure. It is easy to verify that totally ordered abelian

groups are torsion-free.

Definition II.4. A valuation ν of a field K is a group homomorphism

ν : K× → Γ,

where Γ is a totally ordered abelian group, such that for all x, y ∈ K×, if x+ y 6= 0,

then ν(x + y) ≥ inf{ν(x), ν(y)}. The subgroup ν(K×) is called the value group

of ν, and denoted Γν . We say ν is trivial if Γν is the trivial group. If K is a field

extension of k, then ν is a valuation of K/k if ν is a valuation of K such that

ν(k×) = {0}. A field equipped with a valuation will be often called a valued field.

If ν is a valuation of K, then the set

Rν := {x ∈ K× : ν(x) ≥ 0} ∪ {0}

is a valuation ring of K with maximal ideal

mν := {x ∈ K× : ν(x) > 0} ∪ {0}.

The units of Rν are precisely those elements x ∈ K× such that ν(x) = 0. Thus

valuations of a field give rise to valuation rings in a natural way. Note that if ν is a

valuation of K/k, then the valuation ring Rν and the residue field κν are k-algebras.

Conversely, if V is a valuation ring of a field K, then one can give the group

K×/V × (V × is the group of units of V ) a total ordering as follows: for x, y ∈ K×,

define xV × ≤ yV × if and only if yV ⊆ xV . It is then straightforward to verify that

the projection map

π : K× � K×/V ×
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is a valuation of K whose associated valuation ring Rπ is precisely V . Hence there

is a canonical way to construct a valuation from a valuation ring.

Notation II.5. If ν is a valuation of K, then its valuation ring will always be denoted

(Rν ,mν , κν). The value group of ν will be denoted Γν .

Valuation rings of K are in one-to-one correspondence with valuations of K up to

equivalence of valuations. We say two valuations ν, w of a field K are equivalent if

there exists an ordered isomorphism of value groups ϕ : Γν
∼−→ Γw such that w = ϕ◦ν.

Lemma II.6. Let ν be a valuation of a field K. If x, y ∈ K× such that ν(x) 6= ν(y),

then

ν(x+ y) = inf{ν(x), ν(y)}.

Proof. Assume without loss of generality that ν(x) < ν(y). Then x+y = x(1+y/x),

where y/x ∈ mν . Thus, 1+y/x is a unit in Rν , and so ν(x+y) = ν(x), as desired.

Remark II.7. In this thesis, valuations will be written additively instead of multi-

plicatively in the sense that the binary operation on the value group will be written

as + instead ·. The use of multiplicative notation, even for valuations of rank > 1

(see Section 2.4 for a definition of rank), is common in rigid geometry.

2.4 Rank of a valuation

Definition II.8. The rank of a valuation ν of a field K, denoted rank(ν), is the

Krull dimension of the associated valuation ring Rν .

Remark II.9. The rank of ν equals the cardinality of the collection of non-trivial

convex/isolated subgroups of Γν [Bou89, Chapter VI, §4].
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Proposition II.10. Let ν be a valuation on a field K with value group Γν. If

dimQ(Q⊗Z Γν) <∞, then

rank(ν) ≤ dimQ(Q⊗Z Γν).

Proof. See [Bou89, Chapter VI, §10.2, Corollary].

Definition II.11. The number dimQ(Q⊗Z Γν) is usually called the rational rank

of ν.

Please note that despite the similar sounding terminology, the rank of a valuation is

usually very different from the rational rank of the valuation.

One has the following characterization of valuations of rank 1, which is a good

illustration of how small the rank of a valuation can be compared to its rational rank.

Proposition II.12. Let ν be a valuation of a field K with value group Γν. Then ν

has rank 1 if and only if Γν is order isomorphic to a non-trivial additive subgroup of

R.

Proof. This is proved in [Bou89, Chapter VI, §4.5, Proposition 8].

Thus the value group Γν of a rank 1 valuation ν is Archimedean, that is, for

any α, β ∈ Γν , there exists n ∈ N such that

nα > β.

Recall that a non-trivial Noetherian valuation ring of a field K is precisely a local

principal ideal domain. We can completely characterize Noetherian valuation rings

in terms of the value groups of their corresponding valuations.

Lemma II.13. Let ν be a non-trivial valuation of a field K with value group Γν and

valuation ring Rν. Then Rν is Noetherian if and only if Γν is order isomorphic to

Z.
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Proof. If Rν is Noetherian and π is a generator of its maximal ideal, then Γν = Zν(π).

So Γν is clearly order-isomorphic to Z. Conversely, if Γν is order isomorphic to Z,

let γ ∈ Γν be a generator of Γν such that γ > 0. If x ∈ Rν such that ν(x) = γ, then

one can verify that every ideal of Rν is generated by some power of x, and so Rν is

Noetherian.

2.5 Torsion-free modules over a valuation ring

The next result will be crucial in our study of valuation rings in prime character-

istic.

Proposition II.14. Let V be a valuation ring and M be a finitely generated, torsion-

free V -module. Then M is a free V -module.

Proof. The proof is similar to the proof of Nakayama’s lemma. Since M is finitely

generated, let d ∈ N ∪ {0} be the smallest non-negative integer such that M is

generated by a set {m1, . . . ,md} of cardinality d. We claim that {m1, . . . ,md} is

linearly independent. If not, then there exists a non-trivial relation

x1m1 + · · ·+ xdmd = 0,

where the xi ∈ V are not all 0. By re-arranging the mi, we may assume without loss

of generality that x1 6= 0 and x1|xi, for all i ≥ 1. Since M is torsion free, this means

that m1 is in the linear span of {m2, . . . ,md}, contradicting our choice of d.

As a consequence, for torsion-free modules that are not necessarily finitely gener-

ated, we obtain the following result:

Corollary II.15. Any torsion-free module over a valuation ring is flat.

Proof. Any torsion-free module is a filtered direct limit of its torsion-free, finitely



26

generated submodules which are all free, hence flat by Proposition II.14. But a

filtered direct limit of flat modules is flat [Bou89, Chapter I, §2.3, Proposition 2].

Example II.16. Let R be a Dedekind domain. Using the results of this section we

recover the well-known fact that torsion free R-modules are flat. Indeed, flatness can

be checked locally, and if M is a torsion-free R-module, then for any prime ideal p

of R, Mp is a torsion-free module over the Noetherian valuation ring Rp. Hence Mp

is a flat Rp-module.

2.6 Ideals of valuation rings

Recall that any two ideals of a valuation ring are comparable under inclusion. This

property makes valuation rings special from algebraic and geometric viewpoints. For

instance, algebraically we see that any finitely generated ideal of a valuation ring is

principal, which from the geometric perspective means that any quasi-compact open

subset of the spectrum of a valuation ring is a distinguished open set (a set of the

form D(f)).

Another fun observation is that for ideals of a valuation ring, the axiom of being

closed under addition is redundant.

Lemma II.17. Let V be a valuation ring. Suppose I is a non-empty subset of V

such that for all x ∈ V and i ∈ I, xi ∈ I. Then I is an ideal of V .

Proof. The hypothesis implies 0 ∈ I (taking x = 0). Thus it suffices to show I

is closed under addition. Suppose i, j ∈ I, and assume that they are not both 0.

Without loss of generality we may suppose i|j. Then i + j = (1 + j/i)i ∈ I by

hypothesis because 1 + j/i is an element of V and i ∈ I.

In this remainder of this section we highlight some other interesting properties of



27

valuation rings.

2.6.1 Generators of prime ideals of valuation rings

We have seen that valuation rings are usually not Noetherian. A non-Noetherian

valuation ring must have a prime ideal which is not finitely generated, because Cohen

proved that when all prime ideals of a ring are finitely generated, then the ring is

Noetherian [Mat89, Theorem 3.4].

The next result shows that a non-maximal, non-zero prime ideal of a valuation

ring is never finitely generated.

Lemma II.18. Let (V,mV , κV ) be a valuation ring and p be a prime ideal of V . If

p is finitely generated, then p = (0) or p = mV .

Proof. Suppose p 6= (0), and let x ∈ V − p. To show that p = mV , it suffices to

show that x is a unit. Since any two ideals of V are comparable, we get p ( (x). As

finitely generated ideals of valuation rings are principal, let t 6= 0 be a generator of

p. Then there exists a ∈ V such that

t = ax.

But x /∈ p and p is prime. Thus, a ∈ p, that is, a = tu, for some u ∈ V , and so

1 = ux,

proving that x is a unit.

Valuation rings with finitely generated maximal ideals can be characterized in

terms of properties of their value groups.

Proposition II.19. Let ν be a non-trivial valuation of a field K with valuation ring

(Rν ,mν , κν) and value group Γν. Then the following are equivalent:
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1. mν is finitely generated.

2. Γν has a smallest element > 0.

3. mν 6= m2
ν.

Proof. Since ν is a non-trivial valuation of K, mν is not the zero ideal. Therefore

1 ⇒ 3 follows by Nakayama’s lemma. Suppose Γν has a smallest element > 0, say

γ. If t ∈ Rν such that ν(t) = γ, then mν = (t). This shows that 2 ⇒ 1. Thus to

finish the proof it suffices to show that 3 ⇒ 2. Assume for contradiction that Γν

does not have a smallest element > 0. Let x ∈ mν be a non-zero element. Then by

our assumption, there exists α ∈ Γν such that

0 < α < ν(x).

Furthermore, there must then also exist β ∈ Γν such that

0 < β < inf{α, ν(x)− α}.

Let y ∈ mν such that ν(y) = β. Then ν(y2) = 2β < α + (ν(x) − α) = ν(x). Thus

y2|x, that is, x ∈ m2
ν . This shows mν = m2

ν , a contradiction.

Examples II.20.

(a) The maximal ideal of any discrete valuation ring is finitely generated.

(b) Let Γ = Z ⊕ Zπ ⊂ R. Let ν be the unique valuation of Fp(X, Y ) with value

group Γ such that ν(X) = 1 and ν(Y ) = π. Then ν has rank 1, but Rν is not

Noetherian since Γ cannot be order isomorphic to Z. Therefore the maximal

ideal of Rν is not finitely generated. More generally, the maximal ideal of any

non-Noetherian valuation ring of Krull dimension 1 cannot be finitely generated.

If it is, then all prime ideals of such a valuation ring is finitely generated, and

the latter implies that the ring is Noetherian by [Mat89, Theorem 3.4].
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(c) Let Γ = Z ⊕ Z be ordered lexicographically. Let νlex be the unique valuation

of Fp(X, Y ) with value group Γ such that νlex(X) = (1, 0) and νlex(Y ) = (0, 1).

Then Rνlex is not Noetherian, but its maximal ideal is finitely generated since

Γ has a smallest element > (0, 0), namely (0, 1). Using (b) we must then

have rank(νlex) ≥ 2. On the other hand rank(νlex) ≤ 2 by Proposition II.10.

Therefore νlex has rank 2, and the unique height 1 prime ideal of Rνlex is the

only non-finitely generated prime ideal of Rνlex .

2.6.2 Powers of ideals of valuation rings

The goal of this section is to prove the following result:

Proposition II.21. Let V be a valuation ring and I be a proper ideal of V . Then⋂
n∈N I

n is a prime ideal of V .

We will show that
⋂
n∈N I

n is a radical ideal of V , hence also a prime ideal because

of the following lemma:

Lemma II.22. Any radical ideal of a valuation ring is either the unit ideal or a

prime ideal.

Proof of Lemma II.22. Suppose J is a radical ideal of a valuation ring V , and assume

that J is not the unit ideal. Then J is the intersection of the prime ideals containing

it, and the collection of such prime ideals is totally ordered by inclusion. It is easy

to verify that the intersection of a chain of prime ideals is prime.

Remark II.23. Lemma II.22 implies that any closed subset of the spectrum of a

valuation ring is irreducible.

Proof of Proposition II.21. Let I :=
⋂
n∈N I

n. Since I is a proper ideal of V , I is also

a proper ideal of V . By the previous lemma, it suffices to show that I is a radical
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ideal. Assume ν is a valuation of Frac(V ) whose associated valuation ring is V .

Let x ∈ V such that xm ∈ I, for some m ∈ N. We may assume x 6= 0. Then

for all n ∈ N, xm ∈ (In)m. Hence for all n ∈ N, there exists a finitely generated

ideal J ⊆ In such that xm ∈ Jm. Since finitely generated ideals of valuation rings

are principal, we see that im|xm, for some i ∈ In. Then i|x because mν(i) ≤ mν(x)

implies ν(i) ≤ ν(x). Thus for all n ∈ N, x ∈ In, that is, x ∈ I.

Corollary II.24. Let (V,mV , κV ) be a valuation ring and M :=
⋂
n∈N m

n
V . Then

M = mV (i.e. V/M = κV ) or V/M is a discrete valuation ring.

Proof. By Proposition II.21, M is a prime ideal of V . If M 6= mV , then m2
V 6= mV

and V/M is a non-trivial valuation ring of its fraction field. In particular, mV is a

non-zero, finitely generated ideal by Proposition II.19. So suppose π is a generator

of mV . The maximal ideal of V/M is generated by the class of π in V/M. Hence

to prove that V/M is a discrete valuation ring, it suffices to show that it has Krull

dimension 1.

Let P be a non-maximal prime ideal of V . Then π /∈ P , and so for all n ∈ N,

πn /∈ P . Since ideals of V are comparable, for all n ∈ N,

P ( (πn) = mn
V .

Thus, P ⊆M. This shows that there are no prime ideals P of V such that

M ( P ( mV .

Therefore V/M has Krull dimension 1.

Notation II.25. For an ideal I of a ring A and a non-negative integer n, I [n] will

denote the ideal of A generated by n-th powers of elements of I. Thus I [0] = A,

I [1] = I and I [n] ⊆ In, for n ≥ 2. If I is principal, then I [n] = In, for all n ≥ 0.
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Lemma II.26. If I is an ideal of a valuation ring V , then for all n ≥ 0, I [n] = In.

Proof. It suffices to show that In ⊆ I [n]. However, as observed in the proof of Lemma

II.22, if i ∈ In, then there exists a finitely generated ideal J of I such that i ∈ Jn.

Since finitely generated ideals of a valuation ring are principal, this implies that i

must be an element of J [n] ⊆ I [n].

2.7 The valuation topology

Let ν be a valuation of a field K with value group Γν . The valuation topology

on K induced by ν is the unique topology, making K into a topological field, such

that a basis of open neighborhoods of 0 ∈ K is given by sets of the form

K>γ := {x ∈ K : ν(x) > γ} ∪ {0},

for γ ∈ Γν . For instance, the topology induced by the trivial valuation is the discrete

topology.

The axioms of a valuation ring imply that sets of the form

K≥γ := {x ∈ K : ν(x) ≥ γ} ∪ {0}

are also open under the valuation topology. Thus the valuation ring Rν , which equals

K≥0, is an open subring of K in the topology induced by ν. It is easy to verify that

for γ ∈ Γν , K≥γ is the principal fractional ideal of Rν generated by any x ∈ K such

that ν(x) = γ.

Lemma II.27. Let K be a field equipped with a valuation ν.

1. The valuation topology induced by ν is Hausdorff.

2. If ν is not trivial, then the collection of non-zero principal ideals of Rν form a

basis of open neighborhoods of 0 ∈ K for the valuation topology induced by ν.
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Proof. 1 follows from the fact that
⋂
γ∈Γν

K>γ = {0}.

2. A non-zero principal ideal of Rν is a principal fractional ideal, hence open by

our above discussion. Because ν is not trivial (i.e. Γν is not the trivial group), for

any γ ∈ Γν there exists γ′ ∈ Γν such that γ, 0 < γ′. Then

K≥γ′ ⊆ K>γ,

and K≥γ′ is a principal ideal of Rν , generated by any element whose valuation equals

γ′. Thus the collection of non-zero principal ideals of Rν is a collection of open sets

cofinal to the sets of the form K>γ, completing the proof.

2.8 f-adic valued fields

Just as commutative rings are the local algebraic objects in the theory of schemes,

f -adic rings are the local algebraic objects in Huber’s theory of adic spaces [Hub93,

Hub94]. The theory of adic spaces forms the foundation for Scholze’s work on perfec-

toid spaces, which has been applied with great success to resolve long-standing open

questions in algebra and geometry [Sch12, And16, Bha16, HM17, MS17, And18]. In

this thesis, we will develop a connection between valued fields that are f -adic in

the valuation topology and the theory of tight closure for valuation rings in prime

characteristic.

2.8.1 Some topological algebra

In order to define f -adic valued fields, and more generally f -adic rings, we first

discuss the notion of adic rings.

Definition II.28. Suppose A is a topological ring and I is an ideal of A. Then A is

adic with ideal of definition I (or briefly, I-adic) if the set {In : n ≥ 0} is a basis

of open neighborhoods of 0.
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Examples II.29.

1. One can give any commutative ring A the discrete topology, and A is then adic

with ideal of definition (0).

2. Given any commutative ring A and ideal I, there exists a unique topology on

A (making A into a topological ring) such that {In : n ≥ 0} is a neighborhood

basis of 0.

3. Let K be a field equipped with a valuation of rank 1. Consider Rν as a topo-

logical ring with topology induced by the valuation topology on K (recall Rν is

an open subring of K). Then Rν is adic, and any principal ideal generated by

a non-zero element of the maximal ideal mν (such elements are called pseudo-

uniformizers) is an ideal of definition of Rν .

4. The completion of a Noetherian local ring (R,m) with respect to the maximal

ideal m, although admitting a purely algebraic definition, can also be interpreted

as the topological completion of R equipped with the m-adic topology.

Lemma II.30. Let I and J be two ideals of definition of an adic ring A. Then

√
I =
√
J . The converse holds if I and J are finitely generated.

Proof. The proof is straightforward, and we omit it.

Remarks II.31.

1. An adic ring A is Hausdorff if and only if for any ideal of definition I,

⋂
n≥0

In = (0).

2. The converse of Lemma II.30 fails if the ideals are not finitely generated. For

instance, suppose ν is a rank 1 valuation of a field K such that the valuation
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ring Rν is not Noetherian. This means that mν is not finitely generated, and so

mn
ν = mν for all n > 0 (Proposition II.19). For any non-zero element x ∈ Rν ,√
(x) = mν . However, mν is not an ideal of definition of Rν because the topology

on Rν is Hausdorff but
⋂
n≥0 m

n
ν 6= (0). On the other hand, (x) is an ideal of

definition of Rν .

Definition II.32. A topological ring A is f-adic or Huber if there exists an open

subring A0 of A (called a ring of definition of A) such that A0 in its induced

topology is adic and has a finitely generated ideal of definition (this is an ideal of

A0, not of A).

Remarks II.33.

1. The ‘f ’ in f -adic stands for finite because an f -adic ring has a ring of definition

which is adic with respect to a finitely generated ideal.

2. Following Scholze’s work on perfectoid spaces, the terminology ‘Huber rings’ is

becoming more common than ‘f -adic rings’. We prefer the latter terminology.

3. Any adic ring with a finitely generated ideal of definition is an f -adic ring.

Conversely, one can show that if an adic ring is f -adic, then it must have a

finitely generated ideal of definition (see Corollary II.38).

We introduced the notion of f -adic rings because we want to characterize those

valued fields that are f -adic in the valuation topology.

Definition II.34. Let A be a topological ring. A subset B ⊆ A is bounded if for

every open neighborhood U of 0, there exists an open neighborhood of V of 0 such

that the set V B := {vb : v ∈ V, b ∈ B} is contained in U .

Said differently, if `a : A → A denotes left-multiplication by an element a ∈ A,
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then a subset B of A is bounded if for every open neighborhood U of 0, the set

⋂
b∈B

`−1
b (U)

contains an open neighborhood of 0. Note that each `−1
b (U) is open in A because

`b is continuous. However, the above intersection may be infinite, and so not may

not be open. The reinterpretation of the concept of boundedness in terms of left-

multiplication maps also shows that any finite subset of a topological ring is bounded.

Examples II.35.

1. The valuation ring of a valued field is bounded in the valuation topology on the

field.

2. Any adic ring is bounded in its topology. Thus any ring of definition of an

f -adic ring is bounded.

Boundedness is easy to check on f -adic rings.

Lemma II.36. If A is a Huber ring with ring of definition A0, and I is an ideal of

definition of A0, then a subset B ⊆ A is bounded if and only if there exists n > 0

such that InB ⊂ I.

Proof. The proof follows by observing that {In : n > 0} is a collection of open

subgroups of A that is a neighborhood basis of 0.

The notion of boundedness clarifies which open subrings of a Huber ring are rings

of definition.

Proposition II.37. [Hub93] Let A be a Huber ring and A0 a subring of A. Then

A0 is a ring of definition of A if and only if A0 is an open and bounded subring of

A.
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Proof. Using Lemma II.36 it is clear that a ring of definition of A is an open and

bounded subring of A. Conversely, suppose A0 is an open and bounded subring of

A. Since A is a Huber ring, let B be a ring of definition with ideal of definition I.

As A0 is an open neighborhood of 0, there exists m > 0 such that

Im ⊂ A0.

Of course this does not imply that Im is an ideal of A0. However, the collection

{In : n ≥ m} is a basis of open neighborhoods of 0 contained in A0.

Since A0 is bounded, there exists n > 0 such that

InA0 ⊂ Im.

Suppose In is generated as an ideal of B by the set {x1, . . . , xn}. The xi are also

elements of A0, so let J be the ideal of A0 generated by {x1, . . . , xn}. Obviously J

is a finitely generated ideal of A0 and J ⊆ Im. Then J is an ideal of definitiion of

the induced topology on A0, if there exists some power of I which is contained in J .

But

Im+n = Im(Bx1 + . . . Bxn) = Imx1 + . . . Imxn ⊆ A0x1 + . . . A0xn = J,

and so the proof is complete.

This proposition has many useful applications in the theory of f -adic rings. For

example, it can be used to prove the following result, claimed in Example II.35(2).

Corollary II.38. Suppose A is a topological ring which is adic. If A is f -adic, then

A has a finitely generated ideal of definition.

Proof. The underlying set of an adic ring is always bounded. Thus if A is adic as

well as f -adic, then A is an open and bounded subring of itself. Then Proposition



37

II.37 implies that A is a ring of definition of itself, and so has a finitely generated

ideal of definition.

2.8.2 When are valued fields f-adic?

Throughout this subsection, we fix a valuation ν on a field K. We will always view

K as a topological field with topology induced by ν. Our goal will be to attempt to

give characterizations of when K is an f -adic ring in the valuation topology.

Regardless of whether K is f -adic, its valuation ring Rν is always an open and

bounded subring in the valuation topology. Therefore a necessary condition for K

to be f -adic is for Rν to be a ring of definition of K (Proposition II.37).

The case of the trivial valuation can be disposed immediately because if ν is

trivial that Rν = K has the discrete topology and (0) is a finitely generated ideal of

definition. When ν is not trivial, we have the following result:

Theorem II.39. Let ν be a non-trivial valuation of a field K with valuation ring

Rν. Equip K with the valuation topology induced by ν and let Rν have the induced

topology as an open subset of K. The following conditions are equivalent:

1. K is f -adic in the valuation topology.

2. Rν is a ring of definition of K.

3. Rν is an adic ring in the induced topology.

4. There exists a non-zero element a ∈ Rν such that
⋂
n≥0(an) = (0).

5. Rν has a prime ideal of height 1.

6. If Σ is the set of non-zero prime ideals of Rν, then
⋂

p∈Σ p 6= (0).
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Proof. We have already shown the equivalence of (1) and (2), and (2) implies (3) by

definition of a ring of definition.

Now assume (3) and suppose I is an ideal of definition of Rν . Then⋂
n≥0

In = (0) (2.1)

because the induced topology on Rν is Hausdorff. Since ν is not the trivial valua-

tion, the induced topology on Rν has a basis of open neighborhoods of 0 given by

the collection of non-zero principal ideals of Rν (Lemma II.27). As I is an open

neighborhood of 0 in Rν , this shows there exists non-zero a ∈ Rν such that (a) ⊆ I.

Moreover,
⋂
n≥0(an) = (0) because of (2.1), which proves (3) ⇒ (4). At the same

time, there must exist n > 0 such that In ⊆ (a). Otherwise, for all n > 0, (a) ⊆ In

(ideals of a valuation ring are always comparable), and so, (0) 6= (a) ⊆
⋂
n≥0 I

n,

contradicting (2.1). Thus (a) is also an ideal of definition of Rν , and consequently

(3)⇒ (2). Therefore (2) and (3) are equivalent.

Assuming (4), another comparability of ideals argument shows that the collection

of ideals {(an) : n ≥ 0} and the collection of non-zero principal ideals of Rν are

cofinal with respect to inclusion. Thus (4)⇒ (3), which establishes the equivalence

of (3) and (4).

The equivalence of (5) and (6) is straightforward. Indeed, if (6) holds then
⋂

p∈Σ p

is the unique height 1 prime of Rν (the intersection is a prime ideal because Σ is

totally ordered by inclusion). Conversely, since every non-zero prime ideal of Rν will

contain the height 1 prime if it exists, (5)⇒ (6).

To finish the proof, it suffices to show the equivalence of (4) and (5). Assume Rν

has a prime ideal q of height 1. Let a ∈ q be a non-zero element. Then
⋂
n≥0(an) is a

prime ideal of Rν (Proposition II.21) which is contained in q. Thus
⋂
n≥0(an) = (0) of⋂

n≥0(an) = q. If the latter equality holds, then q = (a), and then (a2) 6= (a) since a
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is not a unit. This contradicts (a) = q =
⋂
n≥0(an). So we must have

⋂
n≥0(an) = (0),

that is, (5)⇒ (4). Finally, if 4 holds, then the element a is not a unit. Thus
√

(a) is

a prime ideal of Rν since proper radical ideals are prime in a valuation ring (Lemma

II.22). Let p be a non-zero prime ideal of Rν . Then a ∈ p. Otherwise, for all n > 0,

an /∈ p and so p ( (an). But this means (0) 6= p ⊆
⋂
n≥0(an), contradicting (4). Thus

a ∈ q, and so
√

(a) ⊆ p. This shows that
√

(a) is the smallest non-zero prime ideal

of Rν with respect to inclusion, that is, it is the unique height 1 prime of Rν .

The following corollary is obvious from the proof of the above theorem.

Corollary II.40. Let ν be a non-trivial valuation of a field K such that K is f -adic

in the valuation topology. A finitely generated ideal I of Rν is an ideal of definition

of Rν if and only if I is generated by a non-zero element contained in the height 1

prime of Rν.

Remark II.41. The localization of Rν at its height 1 prime is the ring of power-

bounded elements of K, where an element a of a topological ring A is power-

bounded if {an : n > 0} is a bounded set. Moreover, the elements of the height 1

prime are precisely the topologically nilpotent elements of K, that is, these are

the elements x ∈ K such that xn → 0 (in the topology) as n→∞.

2.9 Extensions of valuations

Let K ⊆ L be an extension of fields. If w is a valuation of L, then its restriction

to K× is a valuation of K. This leads to the following definition.

Definition II.42. Let K ⊆ L be an extension of fields, and ν be a valuation of K

and w a valuation of L. Then w is an extension of ν if w|K× = ν.
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Here are some basic properties of extensions of valuations that are all straightfor-

ward to verify.

Lemma II.43. Let K ⊆ L be a field extension, ν be a valuation of K and w be an

extension of ν to L. Then we have the following:

1. Rν = K ∩Rw and mν = K ∩mw. In other words, Rw dominates Rν.

2. Γν is a subgroup of Γw.

3. κν is a subfield of κw.

Proof. For (1), we have x ∈ Rν if and only if ν(x) ≥ 0, and the latter holds if and

only if w(x) ≥ 0 and x ∈ K (because w extends ν). Therefore Rν = Rw ∩K. One

can similarly show that mν = mw ∩K. The proof of (2) is obvious, while (3) follows

from (1) since (1) implies that Rw dominates Rν .

In light of the previous lemma, we introduce the following invariants associated

to extensions of valuations.

Definition II.44. If w/ν is an extension of valuations, then the ramification index

of w/ν, denoted e(w/ν), is the order of the quotient group Γw/Γν . The residue

degree of w/ν, denoted f(w/ν), is the degree of the extension of residue fields

κν ↪→ κw.

2.9.1 Finite field extensions

We have the following fundamental inequality relating the ramification index and

residue degree of extensions of valuations to the degree of the field extension, when

the extension of fields is finite.
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Proposition II.45. Let K ⊆ L be a finite extension of fields, and ν be a valuation

of K. Suppose S is a collection of mutually inequivalent valuations that extend ν to

L such that any valuation of L that extends ν is equivalent to a valuation in S. Then

∑
w∈S

e(w/ν)f(w/ν) ≤ [L : K].

In particular, there are only finitely many valuations of L that extend ν up to equiv-

alence of valuations.

Proof. See [Bou89, Chapter VI, §8.3, Theorem 1].

Definition II.46. A collection S, as in the statement of Proposition II.45, is called

a complete system of extensions of ν to L.

Corollary II.47. Let K ⊆ L be a finite extension of fields, and w be a valuation on

L that extends a valuation ν on K. Then e(w/ν)f(w/ν) ≤ [L : K]. In particular,

e(w/ν) and f(w/ν) are both finite.

Proof. This is obvious from Proposition II.45 because ramification index and residue

degree of extensions is invariant under equivalence of extensions of valuations.

Remark II.48. More generally, if K ⊆ L is an algebraic extension and w is an

extension of ν to L, then one can show that Γw/Γν is a torsion abelian group and

κν ↪→ κw is an algebraic extension [Bou89, Chapter VI, §8.1, Proposition 1].

Definition II.49. An extension of valuations w/ν is unramified if e(w/ν) = 1, that

is, if w and ν have the same value groups. The extension is totally unramified

if e(w/ν) = 1 = f(w/ν), that is, if the value groups and residue fields of w and ν

coincide.

Let ν be a valuation of K, and S be a complete system of extensions of ν to a

finite field extension L of K. For our investigation of F -finiteness of valuation rings,



42

we need to understand when equality holds in the inequality

∑
w∈S

e(w/ν)f(w/ν) ≤ [L : K].

This is the content of the next result.

Theorem II.50. Let K ⊆ L be a finite extension of fields, and ν a valuation of K.

Let S be a complete system of extensions of ν to L. If A be the integral closure of

Rν in L, then the following are equivalent:

1. A is a finitely generated Rν-module.

2. A is a free Rν-module.

3. dimκν A⊗Rν κν = [L : K].

If these equivalent conditions hold, then

∑
w∈S

e(w/ν)f(w/ν) = [L : K].

Proof. See [Bou89, Chapter VI, §8.5, Theorem 2].

2.9.2 Transcendental field extensions

So far we have mainly discussed the behavior of extensions of valuations under

finite field extensions. We will also need to understand how valuations extend over

transcendental field extensions. Although we will not embark on an in-depth de-

scription of transcendental extensions of valuations, the basic case to consider is how

a valuation of a field K extends to a purely transcendental extension K(X) of tran-

scendence degree 1. A few obvious ways of extending valuations in this special case

are described in the next result.
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Proposition II.51. Let ν be a valuation of a field K with value group Γν. Suppose

Γν is a subgroup of a totally ordered abelian group Γ, and ξ is an element of the

larger group Γ.

1. There exists a unique valuation w of K(X) extending ν such that for all
∑

i aiX
i ∈

K[X],

w(
∑
i

aiX
i) = inf

i
{ν(ai) + iξ}.

2. Suppose the image of ξ in the quotient group Γ/Γν is torsion-free element. Then

there exists a unique valuation w of K(X) extending ν such that

w(X) = ξ.

Moreover, the residue field of w equals the residue field of ν and the value group

of w is the ordered subgroup Γν ⊕ Zξ ⊆ Γ.

3. There exists a unique valuation w of K(X) extending ν such that

w(X) = 0,

and the image t of X in the residue field κw is transcendental over κν. In this

case w and ν have the same value groups, and κw equals κν(t).

Proof. For (1) see [Bou89, Chapter VI, §10.1, Lemma 1]. The existence and unique-

ness of the valuations in (2) and (3) follows from (1). For a proof of the other

properties of (2) and (3) we refer the reader to [Bou89, Chapter VI, §10.1, Proposi-

tions 1 & 2].

2.10 Centers of valuations

Definition II.52. Let ν be a valuation of a field K, with valuation ring (Rν ,mν , κν).

Given a local subring (A,mA, κA) of K such that the fraction field of A is K, we say
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that ν is centered on A if Rν dominates A. In other words, ν is centered on A if

Frac(A) = K and for all a ∈ A, ν(a) ≥ 0, while ν(a) > 0, if a ∈ mA.

Globally, if X is an integral scheme with function field K, then ν is centered on

X if the canonical morphism Spec(K)→ X extends to a morphism Spec(Rν)→ X.

The image of the closed point of Spec(Rν) in X is called a center of ν on X.

Remarks II.53.

(a) ν is centered on X if and only if there exists a point x ∈ X such that ν is

centered on the local ring OX,x. A center of a valuation on X need not be a

closed point of X.

(b) Suppose X is an integral scheme which is locally of finite type over a field k. If

K is the function field of X and ν is a valuation of K centered on X, then ν is

necessarily a valuation of K/k.

(c) If X is as in (b), then a center of ν on X, if it exists, is unique provided that X

is separated over k. This follows from the valuation criterion of separatedness

[Har77, Chapter II, Theorem 4.3]. Moreover, any valuation of K/k will always

admit a center onX providedX is proper over k. This follows from the valuation

criterion of properness [Har77, Chapter II, Theorem 4.7]. Since proper schemes

are separated, if X is proper over k, then any valuation of K/k admits a unique

center on X.

2.10.1 Valuations centered on Noetherian local domains

For valuations centered on Noetherian local domains, we have the following fun-

damental inequality due to Abhyankar.
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Theorem II.54 (Abhyankar’s inequality). Let ν be a valuation of a field K

centered on a Noetherian local domain (A,mA, κA). Then

dimQ(Q⊗Z Γν) + tr. deg κν/κA ≤ dim(A).

If equality holds in the above inequality, then Γν is a free abelian group and κν is a

finitely generated field extension of κA.

Proof. See [Abh56b, Theorem 1] for the proof.

Corollary II.55. Any valuation centered on a Noetherian local domain has finite

rank, that is, its valuation ring has finite Krull dimension.

Proof. By the previous theorem, dimQ(Q⊗ZΓν) is finite. Therefore the result follows

from Proposition II.10.

Definition II.56. We will refer to the inequality appearing in Theorem II.54 as

Abhyankar’s inequality. Furthermore, if equality holds in Abhyankar’s inequality

for a Noetherian local center A, we will call A an Abhyankar center of ν.

Examples II.57. In the following examples, we have chosen our base field to be Fp.

However, the examples work over any base field of prime characteristic.

1. Let ν be a discrete valuation of a field K (i.e. ν has value group Z). Then the

valuation ring Rν is an Abhyankar center of ν.

2. If νlex is the lexicographical valuation of Fp(X, Y ) with value group Z⊕ Z (see

Example II.20(c)), then the local ring of the origin of A2
Fp is an Abhyankar center

of νlex.

3. There exists a valuation ν of Fp(X, Y, Z) with value group Γν = Z⊕Zπ ⊂ R such

that ν(X) = 1 = ν(Y ) and ν(Z) = π. Clearly ν is centered on A3
Fp at the origin.
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The Krull dimension of the local ring at the origin is 3, dimQ(Q⊗Z Γν) = 2 and

tr. deg κν/Fp is at least 1 since the class of X/Y in κν is transcendental over Fp.

Therefore Abhyankar’s inequality implies that the local ring of the origin of A3
Fp

must be an Abhyankar center of ν. Hence we also see that tr. deg κν/Fp = 1.

4. We want to emphasize that the property of a valuation admitting an Abhyankar

center depends on the center. To illustrate our claim, we construct a valuation

ν admitting two Noetherian local centers, only one of which is an Abhyankar

center of ν. Consider the Laurent series field Fp((t)) in one variable, with its

canonical t-adic valuation νt, whose corresponding valuation ring is the power

series ring Fp[[t]]. Since Fp((t)) is uncountable while the function field of A2
Fp is

countable, one can choose an embedding

Fp(X, Y ) ↪→ Fp((t))

that maps X 7→ t and Y 7→ q(t), where q(t) ∈ Fp[[t]] such that {t, q(t)} are

algebraically independent over Fp. Furthermore, we may assume that t|q(t).

The composition Fp(X, Y )× ↪→ Fp((t))×
νt−→ Z is a valuation of Fp(X, Y ). Let

us call this valuation νq(t) (the subscript is meant to indicate the dependence on

the trascendental power series q(t)). Then νq(t) is a discrete valuation, and the

maximal ideal of the discrete valuation ring Rνq(t) is generated by X. By our

discussion in example (1), Rνq(t) is an Abhyankar center of νq(t).

Since νq(t)(X) = 1 and νq(t)(Y ) = νt(q(t)) ≥ 1, νq(t) is also centered on the origin

of A2
Fp . However, the local ring Fp(X, Y )(X,Y ) is not an Abhyankar center of νq(t).

To see this note that by construction, the power series ring Fp[[t]] dominates

the valuation ring Rνq(t) . This induces a map of residue fields κνq(t) ↪→ Fp, which
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shows that κνq(t) = Fp. Thus,

tr. deg κνq(t)/Fp = 0,

and so, dimQ(Q⊗Z Γν) + tr. deg κνq(t)/Fp = 1 < 2 = dim
(
Fp(X, Y )(X,Y )

)
.

2.11 Valuations of function fields

Throughout this section, we fix a ground field k of arbitrary characteristic.

Definition II.58. A field extension K of k is called a function field over k if K

is a finitely generated field extension of k.

By a variety over k or a k-variety we will always mean an integral, separated

scheme of finite type over k. The field of rational functions of a variety is a function

field over k in the above sense, called the function field of the variety. If K/k is

a function field, then by a variety of K/k we mean a k-variety whose function field

is K.

Note that if K/k is a function field, then there always exists a projective variety

X/k whose function field is K. Moreover, X can be chosen to be normal.

Lemma II.59. Let X be an integral scheme of finite type over a field k with function

field K. Then for any x ∈ X,

dim(OX,x) + tr. deg κ(x)/k = tr. degK/k.

Proof. The proof follows by choosing an affine open neighborhood Spec(A) of x, and

using the well-known fact that for a prime ideal p of A, dim(Ap) + dim(A/p) =

tr. degK/k.

We will next prove a function field analogue of Theorem II.54.
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Proposition II.60 (Abhyankar’s inequality for function fields). Let K/k be a

function field and ν be a valuation of K/k with value group Γν and residue field κν.

Then

dimQ(Q⊗Z Γν) + tr. deg κν/k ≤ tr. degK/k. (2.2)

If equality holds in the above inequality then Γν is a free abelian group, and κν is a

finitely generated extension of k.

Proof. Let X be a projective variety with function field K. Then ν admits a center x

on X, and consequently ν is centered on the local ring OX,x. Therefore Abhyankar’s

inequality (Theorem II.54) implies that

dimQ(Q⊗Z Γν) + tr. deg κν/κ(x) ≤ dim(OX,x). (2.3)

However, since

tr. deg κν/κ(x) = tr. deg κν/k − tr. deg κ(x)/k,

making this substitution in (2.3), we get

dimQ(Q⊗Z Γν) + tr. deg κν/k ≤ dim(OX,x) + tr. deg κ(x)/k = tr. degK/k, (2.4)

as desired. Here we are also using Lemma II.59 for the last equality.

If equality holds in (2.2), then using (2.3) we see that OX,x is an Abhyankar center

of ν. Hence Γν is free and κν is a finitely generated extension of κ(x) by another

application of Theorem II.54. Since κ(x)/k is finitely generated, it follows that κν is

a finitely generated extension of k, completing the proof.
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2.11.1 Abhyankar valuations

Definition II.61. Let K/k be a function field. A valuation ν of K/k is called an

Abhyankar valuation of K/k if

dimQ(Q⊗Z Γν) + tr. deg κν/k = tr. degK/k,

that is if equality holds in Abhyankar’s inequality for valuations of function fields

(Proposition II.60).

Remarks II.62.

(a) The notion of an Abhyankar valuation of function field is intrinsic to the valu-

ation, while the notion of an Abhyankar center of a valuation depends on the

center (see Example II.57(4)).

(b) The value group of an Abhyankar valuation of a function field is a free abelian

group of finite rank, and its residue field is finitely generated field extension of

the ground field.

There is a close relationship between Abhyankar valuations and valuations admit-

ting Abhyankar centers. To highlight this relationship, we recall that

Definition II.63. An A-algebra B is essentially of finite type over A if there

exists a finitely generated A-algebra C and a multiplicative set S ⊂ C such that

B ∼= S−1C.

Proposition II.64. Suppose ν is a valuation of a function field K/k. Then the

following are equivalent:

1. ν is an Abhyankar valuation of K/k.

2. ν admits an Abhyankar center which is essentially of finite type over k.
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3. Any center of ν which is essentially of finite type over k is an Abhyankar center

of ν.

Proof. Note there is always a Noetherian, local center of ν which is essentially of

finite type over k (just pick the local ring of the center of ν on a projective model of

K/k). Furthermore, while proving Proposition II.60, we showed that if ν admits a

center x on a variety X/k with function field K, then ν is an Abhyankar valuation

of K/k if and only if OX,x is an Abhyankar center of ν. This shows the equivalence

of (1) and (2). Since any Noetherian local ring which is essentially of finite type over

k with fraction field K is always the local ring of a variety of K/k, the equivalence

of (1) and (3) also follows.

Examples II.65. Suppose ν is a valuation of a function field K/k.

1. The quintessential example of an Abhyankar valuation is a divisorial valuation,

a notion that we now introduce.

Definition II.66. ν is a divisorial valuation of K/k if there exists a normal

variety X of K/k and a prime divisor E on X such that ν is equivalent to the

valuation ordE, the order of vanishing along E.

Thus divisorial valuations are discrete. If ν is divisorial, then it is an Abhyankar

valuation of K/k because dimQ(Q⊗ZΓν) = 1 and tr. deg κν/k = tr. degK/k−1.

Alternatively, a divisorial valuation is Abhyankar because it admits an Ab-

hyankar center which is essentially of finite type over k, namely its own valuation

ring (Proposition II.64).

2. Divisorial valuations are Abhyankar valuations with value groups of rational

rank 1. Conversely, Zariski showed that if dimQ(Q ⊗Z Γν) = 1 and ν is Ab-

hyankar, then ν is a divisorial valuation [ZS60, Chapter VI, §14, Theorem 31].
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Hence Abhyankar valuations are higher rational rank analogues of divisorial

valuations.

3. The valuations of examples (2) and (3) of II.57 are Abhyankar valuations of their

respective function fields since they admit Abhyankar centers that are locally

of finite type over the ground field. The value groups of both these Abhyankar

valuations have rational rank > 1, illustrating the philosophy that Abhyankar

valuations are higher rational rank analogues of divisorial valuations.

4. The discrete valuation νq(t) of Example II.57 (4) is not an Abhyankar valuation of

its fraction field Fp(X, Y ). There are multiple ways to verify this. For instance,

we showed in II.57 that even though νq(t) is centered on the local ring of the

origin of A2
Fp , the latter ring is not an Abhyankar center of νq(t). Therefore νq(t)

is not an Abhyankar valuation of Fp(X, Y )/Fp by Proposition II.64.

Alternatively, one can also use the result of Zariski mentioned in the second ex-

ample above to conclude that νq(t) is not Abhyankar. For if νq(t) is Abhyankar,

then Zariski’s result implies that νq(t) must be divisorial. However, the residue

field κνq(t) was shown to equal Fp in II.57, while we know that a divisorial valu-

ation of a function field of a surface must have a residue field of transcendence

degree 1 over the ground field.

Definition II.67. The transcendence degree of a valuation ν of a function field

K/k is the transcendence degree of the residue field κν/k.

The transcendence degree of ν is easily verified to be the maximal transcendence

degree of the residue field of a center of ν on some model of K/k.

Proposition II.68. Let K ⊆ L be a finite extension of finitely generated field exten-

sions of k, and suppose that w is valuation on L/k extending a valuation v on K/k.
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Then w is Abhyankar if and only if v is Abhyankar.

Proof. Since L/K is finite, L and K have the same transcendence degree over k. On

the other hand, the extension κ(v) ⊆ κ(w) is also finite by Corollary II.47, and so

κ(v) and κ(w) also have the same transcendence degree over k. Again by Corollary

II.47, since Γw/Γv is a finite abelian group, Q⊗Z Γw/Γv = 0. By exactness of

0→ Q⊗Z Γv → Q⊗Z Γw → Q⊗Z Γw/Γz → 0

we conclude that Γw and Γv have the same rational rank. The result is now clear

from the definition of an Abhyankar valuation.

2.11.2 Local monomialization of Abhyankar valuations

Throughout this section, we fix a function field K/k and a valuation ν of K/k.

The problem of local uniformization asks if one can always find a Noetherian local

center of ν which is essentially of finite type over k and regular. In other words, does

there exists a variety X of K/k such that ν is centered on a regular point of X?

Local uniformization is the local analogue of resolution of singularities. Indeed it is

easy to see that resolution of singularities implies local uniformization.

Long before Hironaka’s seminal work on resolution of singularities [Hir64a, Hir64b],

Zariski showed that valuations of function fields over ground fields of characteristic

0 can always be locally uniformized [Zar40, Theorem U3]. Later, de Jong’s work on

alterations revealed that local uniformization of a valuation is always possible up to a

finite extension of the function field K, regardless of the characteristic of the ground

field [dJ96] (see also [KK09] for a purely valuation theoretic proof). Moreover, the

finite extension of K can even be chosen to be purely inseparable [Tem13].

At present, local uniformization remains wide open when tr. degK/k > 3 and k

has positive characteristic. However, Knaf and Kuhlmann showed that Abhyankar
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valuations admit a strong form of local uniformization in any characteristic. Their

result will be crucial in our exploration of Frobenius splitting of valuation rings and

uniform approximation of valuation ideals associated to rank 1 Abhyankar valuations.

Theorem II.69 (Local monomialization). Let K be a finitely generated field

extension of any field k, and ν be an Abhyankar valuation of K/k with valuation

ring (Rν ,mν , κν). Suppose d := dimQ(Q ⊗Z Γν) and κν is separable over k. Then

given any finite subset Z ⊂ Rν, there exists a variety X of K/k, and a center x of ν

on X satisfying the following properties:

1. x is a smooth point of X/k and OX,x is a local ring of dimension d.

2. Z ⊆ OX,x, and there exists a regular system of parameters x1, . . . , xd of OX,x

such that every z ∈ Z admits a factorization

z = uxa11 . . . xadd ,

for some u ∈ O×X,x and ai ∈ N ∪ {0}.

Proof. See [KK05, Theorem 1].

Remark II.70. If the ground field k is perfect, then any Abhyankar valuation of

K/k admits a local monomialization. This is because the residue field κν is then

automatically separable over k since κν/k is finitely generated by Proposition II.60.

The presence of the finite set Z in the statement of Theorem II.69 allows us to

draw the following conclusion that will be important in the sequel.

Corollary II.71. [Dat17b, Proposition 2.3.3] Assume k is perfect, and ν is a non-

trivial Abhyankar valuation of K/k centered on an affine variety Spec(R) of K/k.

Suppose d = dimQ(Q⊗Z Γν). Then there exists a variety Spec(S) of K/k, along with

an inclusion of rings R ↪→ S satisfying the following properties:
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(a) Spec(S) is regular (equivalently smooth since k is perfect), and ν is centered at

x ∈ Spec(S) such that OSpec(S),x is a regular local ring of Krull dimension d.

Moreover, the sinduced map of residue fields κ(x) ↪→ κν is an isomorphism.

(b) There exists a regular system of parameters {x1, . . . , xd} of OSpec(S),x such that

ν(x1), . . . , ν(xd) freely generate the value group Γν.

Proof. Since the value group Γν is free of rank d (Theorem II.54), one can choose

r1, . . . , rd ∈ Rν such that ν(r1), . . . , ν(rd) freely generate Γν . Also, because κν is

a finitely generated field extension of k, there exist y1, . . . , yj ∈ Rν whose images

in κν generate κν over k. Let t1, . . . , tn ∈ K be generators for R over k. Then

t1, . . . , tn ∈ Rν because ν is centered on Spec(R). Defining

Z := {t1, . . . , tn, y1, . . . , yj, r1, . . . , rd},

by Theorem II.69 there exists a variety X over k with function field K such that ν

is centered on a regular point x ∈ X of codimension d, Z ⊆ OX,x, and there exists a

regular system of parameters {x1, . . . , xd} of OX,x with respect to which every z ∈ Z

can be factorized as

z = uxa11 . . . xadd ,

for some u ∈ O×Y,y, and integers ai ≥ 0. In particular, each ν(ri) is a Z-linear combi-

nation of ν(x1), . . . , ν(xd), which shows that {ν(x1), . . . , ν(xd)} also freely generates

Γν . Moreover, by our choice of Z, κ(x) ↪→ κν is an isomorphism.

Since t1, . . . , tn ∈ OX,x, we have an inclusion R ⊆ OX,x. Now restricting to an

affine neighborhood of x, we may assume X = Spec(S), where S is regular and

t1, . . . , tn ∈ S. By construction, R ⊆ S and parts (a) and (b) of the corollary are

satisfied.

Remarks II.72.
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1. Corollary II.71 holds more generally for non-perfect ground fields k as long as

the residue field of the valuation ring is separable over the ground field.

2. Any valuation of K/k is always centered on an affine variety of K/k. Hence

Corollary II.71 implies that when k is perfect, an Abhyankar valuation of K/k

is always centered on a regular local ring A which is essentially of finite type

over k such that A has a regular system of parameters whose valuations freely

generated Γν , and the residue field κA of A coincides with the residue field of

the valuation.

3. If ν is an arbitrary valuation of K/k centered on a variety X at a point x

of codimension equal to dimQ(Q ⊗Z Γν), then ν is necessarily an Abhyankar

valuation of K/k. Indeed, we then have

dimQ(Q⊗Z Γν) + tr. deg κν/k = dim (OX,x) + tr. deg κν/k

≥ dim (OX,x) + tr. deg κ(x)/k = tr. degK/k,

and so,

dimQ(Q⊗Z Γν) + tr. deg κν/k = tr. degK/k

by Abhyankar’s inequality for function fields (Proposition II.60).



CHAPTER III

Singularities in prime characteristic

3.1 The Frobenius endomorphism

Throughout this chapter, we fix a prime number p > 0. If R is a ring of charac-

teristic p, then the map of sets

F : R→ R,

mapping r 7→ rp, is a ring homomorphism called the (absolute) Frobenius map

of R. For a positive integer e, we also have the e-th iterate F e of the Frobenius map.

The image of F e is a subring of R that will be denoted Rpe .

If I is an ideal of R, then the expansion of I along F e is the ideal I [pe] generated

by pe-th powers of elements of I (see Notation II.25). The ideal I [pe] is called a

Frobenius power of I. If I is finitely generated, then every Frobenius power of I

contains an ordinary power of I, and so the I-adic topology on R coincides with the

topology on R generated by the filtered collection of Frobenius powers of I.

A ring of characteristic p is always an Fp-algebra. In particular, a local ring of

characteristic p is equicharacteristic (i.e. the ring and its residue field have the same

characteristic).

Globally, if X is a scheme over Fp, then the (absolute) Frobenius morphism

56
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of X, also denoted

F : X → X,

is the identity map on the underlying topological space of X, with the induced

morphism of sheaves OX → F∗OX given by raising local sections to their p-th powers.

Note that the endomorphism of Spec(R) induced by the Frobenius map of R is

precisely the Frobenius morphism of Spec(R). The Frobenius morphism of X is an

integral morphism.

Taking inspiration from notation for morphisms of schemes, if F e : R → R is

the e-th interate of the Frobenius map, then the target copy of R with R-module

structure induced by restriction of scalars via F e is denoted F e
∗R. In other words,

F e
∗R has the same underlying group as R, but the action of R is as follows: for r ∈ R

and x ∈ F e
∗R, r · x = rp

e
x. If X = Spec(R), then the sheaf F̃ e

∗R associated to the

R-algebra F e
∗R is precisely F e

∗OX .

Definition III.1. A scheme X over Fp is perfect if the Frobenius morphism of X

is an isomorphism. A ring R is perfect if Spec(R) is perfect.

Remark III.2. It is not difficult to show that the only perfect Noetherian rings of

prime characteristic are finite direct products of perfect fields. Hence the notion of

a perfect ring is not very interesting in the Noetherian world.

3.2 Miracles of Frobenius

3.2.1 Regularity vs. smoothness

The notion of regularity is defined under Noetherian hypotheses. Recall that a

Noetherian local ring (R,mR, κR) is regular if dim(R) = dimκR mR/m
2
R, that is,

if the maximal ideal of R can be generated by dim(R) elements, called a regular
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system of parameters of R. A regular system of parameters forms a regular

sequence on R, and any regular local ring is a unique factorization domain.

Globally, a locally Noetherian scheme X is regular if for all x ∈ X, OX,x is a

regular local ring. Regular schemes are reduced. We say X is singular if it is not

regular, that is, if there exists x ∈ X such that OX,x is not a regular local ring. A

Noetherian ring R (not necessarily local) is regular (resp. singular) if Spec(R) is

regular (resp. singular).

Regularity of a locally Noetherian scheme is an absolute notion. There is also

the related notion of smoothness for morphisms of schemes. To define smoothness,

we do not need any Noetherian hypotheses. We will see that the absolute notion of

regularity and the relative notion of smoothness often coincide for finite type schemes

over a field (Proposition III.6).

There are many equivalent ways to define smoothness. Here is one using the

Jacobian criterion.

Definition III.3. Let f : X → S be a morphism of schemes and x ∈ X. Then f is

smooth of relative dimension n at x if there exists an affine open neighborhood

U = Spec(B) of x and an affine open neighborhood V = Spec(A) of f(y) such that

f(U) ⊂ V and B is a quotient of a polynomial ring of the form

A[X1, . . . , Xn, Xn+1, . . . , Xn+r]/(f1, . . . , fr)

such that the Jacobian matrix(
∂fi
∂Xj

(x)

)
∈Mr×(n+r)(κ(x))

has full rank r. We say f is étale at x if it is smooth of relative dimension 0 at x,

and f is smooth (resp. étale) if it is smooth (resp. étale) at all x ∈ X.
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Smoothness and regularity are intimately related for schemes locally of finite type

over a field. To state this relation, recall

Definition III.4. A locally Noetherian scheme X over a field k is geometrically

regular over k if for all finite field extensions K of k, X⊗Spec(k) Spec(K) is regular.

Remark III.5. If X is locally of finite type over k, then X is geometrically regular

over k if and only if X ⊗Spec(k) Spec(k) is regular for an algebraic closure k of k.

However, the latter condition cannot be taken as a definition of geometric regular-

ity for arbitrary locally Noetherian schemes over fields, because for such schemes

X ⊗Spec(k) Spec(k) may not be locally Noetherian!

Proposition III.6. Let X be a scheme which is locally of finite type over a field k.

1. X is smooth if and only if X is geometrically regular.

2. If X is smooth then X is regular. The converse holds when k is perfect.

3. For a closed point x ∈ X with κ(x)/k separable, X is smooth at x if and only

if OX,x is regular.

Proof. See [BLR90, §2.2, Proposition 15] and [Poo17, Proposition 3.5.22].

Let X be a smooth variety of dimension n over a field k. The sheaf of Kähler

differentials ΩX/k is locally free of rank n, and so the top exterior power

ωX := ∧n(ΩX/k)

is a line bundle on X called the canonical bundle of X. A divisor KX on X

such that ωX ∼= OX(KX) is called a canonical divisor (Weil and Cartier divisors

coincide on X since X is locally factorial when it is smooth). The canonical bundle

is a dualizing sheaf in the sense of Grothendieck-Serre duality. We will have more to

say about this later (see subsection 3.6.3).
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3.2.2 Kunz’s theorem

An amazing fact is that the Frobenius map can detect if a ring is regular. Indeed,

it can already detect one of the most basic singularities of a ring.

Lemma III.7. Let R be a ring of characteristic p. Then R is reduced if and only if

the Frobenius map of R is injective.

Proof. An element r ∈ R is nilpotent if and only if there exists e > 0 such that

rp
e

= 0. The lemma now follows by using Frobenius and its iterates.

The following result, proved by Kunz, is the starting point of using the Frobenius

map to study how far a ring or locally Noetherian scheme is from being regular.

Theorem III.8 (Kunz’s theorem on regularity). Let R be a Noetherian ring of

characteristic p. Then R is regular if and only if the Frobenius map of R is a flat

ring map.

Proof. [Kun69, Theorem 2.1].

The various notions of singularities that have been proposed and studied since

Kunz’s result (such as F -purity, Frobenius splitting, F -regularity, F -rationality, etc.)

systematically weaken the flatness of the Frobenius map in order to study singular

rings in prime characteristic.

3.3 F -finiteness

In this section all rings have prime characteristic p and all schemes are Fp-schemes.

Usually these hypotheses will be repeated in the statements of results and definitions.

Definition III.9. A scheme X over Fp is F -finite if the Frobenius morphism of X

is a finite morphism. A ring R is F -finite if Spec(R) is F -finite.



61

Remark III.10. The Frobenius morphism F : X → X is finite if and only if some

iterate F e is a finite morphism. A ring R is F -finite if and only if there exists e > 0

such that R is a finitely generated Rpe-module.

F -finiteness is preserved under localization, quotients, finite type ring maps and

completions of Noetherian local rings (this follows using Cohen’s structure theorem).

Thus F -finite rings and schemes are ubiquitous. For example, any ring which is

essentially of finite type over an F -finite field (for instance a perfect field) is F -finite.

Therefore a scheme which is locally of finite type over an F -finite field is F -finite

since F -finiteness for schemes can be checked affine locally. Moreover, a quotient

of a power series ring over an F -finite field is also F -finite. This shows that most

schemes one is likely to encounter in geometric applications are going to be F -finite.

Kunz’s theorem has the following nice re-interpretation for F -finite, locally Noethe-

rian schemes.

Proposition III.11. Let X be an F -finite, locally Noetherian Fp-scheme. Then X

is regular if and only if F∗OX is locally free OX-module of finite rank. In particular,

the regular locus of an F -finite, locally Noetherian Fp-scheme is always open.

Proof. The equivalence follows from Kunz’s theorem on regularity (Theorem III.8)

and the fact that flatness coincides with being locally free for finitely presented

modules over a ring. The second assertion follows from the equivalence since the

locus of points at which F∗OX is locally free is always open.

Like varieties, many F -finite schemes also have finite Krull dimension.

Theorem III.12. An F -finite, Noetherian Fp-scheme has finite Krull dimension.

Proof. On reducing to the affine case, the result follows by [Kun76, Proposition

1.1].
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3.3.1 F -finiteness and excellence

Another reason why F -finiteness is robust from a geometric point-of-view is be-

cause of its close relation to Grothendieck’s notion of an excellent ring. A Noethe-

rian ring is excellent if it satisfies a list of axioms that ensures it behaves much like

a finitely generated algebra over a field (see Definition III.13 below). An arbitrary

Noetherian ring can be quite pathological. For instance, the integral closure of a

Noetherian domain in a finite extension of its fraction field can fail to be Noethe-

rian, and Noetherian rings can have saturated chains of prime ideals of different

lengths. But the class of excellent rings was introduced by Grothendieck to rule out

such pathologies. Excellent rings are also supposed to be the most general setting

to which one can expect the deep ideas of algebraic geometry, such as resolution of

singularities, to extend.

Before we explain the relationship between F -finiteness and excellence, we recall

the definition of an excellent ring.

Definition III.13. [DG65, IV2, Définition (7.8.2)] A Noetherian ring A is excellent

if it satisfies the following properties:

1. A is universally catenary. This means that every finitely generated A-algebra

has the property that for any two prime ideals p ⊆ q, all saturated chains of

prime ideals from p to q have the same length.

2. All formal fibers of A are geometrically regular. This means that for every

p ∈ Spec(A), the fibers of the natural map Spec(Âp) → Spec(Ap) induced by

completion along p are geometrically regular in the sense of Definition III.4.

3. For every finitely generated A algebra B, the regular locus of Spec(B) is open;
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that is, the set

{q ∈ Spec(B) : Bq is a regular local ring}

is open in Spec(B).

Just like F -finite rings, the class of excellent rings is closed under localizations,

homomorphic images and finite type ring maps. Moreover, a relatively recent (un-

published) result of Gabber shows that ideal adic completions of excellent rings are

also excellent. In particular, power series rings over excellent rings are excellent

[KS16, Corollary 5.5].

The following result of Kunz connects the notions of F -finiteness and excellence.

Theorem III.14 (Kunz’s theorem on excellence). A Noetherian F -finite ring

of characteristic p is excellent.

Proof. See [Kun76, Theorem 2.5].

3.3.2 Finiteness of module of absolute Kähler differentials

The difficult part of Theorem III.14 is to show that a Noetherian F -finite ring is

universally catenary. For this, Kunz exploits the observation that when R is F -finite,

the module of absolute Kähler differentials ΩR/Z is a finitely generated R-module.

The latter holds because

ΩR/Z = ΩR/Fp = ΩR/Rp

using the Leibniz rule.

Module finiteness of ΩR/Z has nice consequences. For example, it allows Kunz to

establish the following identity which will later play a key role in our investigation of

valuations of fields of prime characteristic that admit Abhyankar centers (Theorem

IV.19).
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Proposition III.15. Suppose (R,mR, κR) is a Noetherian local domain of charac-

teristic p. If R is F -finite, then

[Frac(R) : Frac(R)p] = pdim(R)[κR : κpR].

Sketch of proof. This is proved in [Kun76, Proposition 2.1]. Kunz uses the analogue

of Noether normalization for complete rings and finite generation of ΩR/Z to estab-

lish that when R is F -finite, then for any minimal prime ideal P of the mR-adic

completion R̂,

[Frac(R) : Frac(R)p] = pdim(R̂/P)[κR : κpR].

The identity shows that dim(R̂/P) is independent of P, or in other words that R̂ is

equidimensional. Since P is minimal, we then have

dim(R̂/P) = dim(R̂) = dim(R),

completing the proof.

Under mild additional hypotheses, finite generation of the module of absolute

Kähler differentials actually implies F -finiteness.

Theorem III.16. Let R be a Noetherian ring of characteristic p. Then the following

are equivalent:

1. R is F -finite.

2. The module of absolute Kähler differentials ΩR/Z is a finitely generated R-module

and for each maximal ideal m of R, Rm is universally Japanese (Definition

III.22).

Proof. See [Sey80, Théorème (1.1)].
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For a regular local ring, one can drop the universally Japanese hypothesis from

the previous theorem; finiteness of ΩR/Z is sufficient for F -finiteness.

Proposition III.17. Let R be a regular local ring of characteristic p. Then R is

F -finite if and only if ΩR/Z is a finitely generated R-module.

Proof. [Sey80, Proposition (3.1)].

Remark III.18. When a regular local ring R satisfies the equivalent conditions of

Proposition III.17, then ΩR/Z is a free R-module. If x1, . . . , xn ∈ R such that

dx1, . . . , dxn is a free R-basis of ΩR/Z, then {x1, . . . , xn} is a p-basis of R. This

means R = Rp[x1, . . . , xn] and R is a free Rp-module with basis

{xα1
1 . . . xαn1 : 0 ≤ αi ≤ p− 1}.

3.3.3 A partial converse of Kunz’s theorem on excellence

In [Kun76], Kunz proved a partial converse of Theorem III.14 in the local case.

Proposition III.19. Let R be a Noetherian local ring of characteristic p with F -

finite residue field. Then R is excellent if and only if R is F -finite.

Proof. [Kun76, Corollary 2.6].

Remark III.20. The hypothesis of Proposition III.19 ensures that the completion R̂

is F -finite, because by Cohen’s structure theorem a complete Noetherian local ring of

equal characteristic p is F-finite if and only if its residue field is F-finite. One implica-

tion of Proposition III.19 is essentially Theorem III.14. Therefore the new assertion

of the proposition is that when R is excellent, F -finiteness descends from R̂ to R.

Heuristically this should not be surprising because when R is excellent, the comple-

tion map R → R̂ is very well-behaved. For instance, this map has geometrically
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regular fibers (by the very definition of excellence) and can be expressed as a filtered

colimit of smooth maps by Neron-Popescu desingularization [Nér64, Pop90, Swa98].

In this subsection, we would like to highlight a partial converse of Theorem III.14

even in the non-local case. In other words, we want to show that an excellent ring

is also F -finite under relatively mild hypotheses. This result is probably well-known

to experts, but the precise statement is difficult to locate in the literature.

In order to state the converse, we need the following property satisfied by excellent

rings, often called the Japanese or N2 property.

Proposition III.21. [DG65, IV2, 7.8.3 (vi)] Let A be a Noetherian excellent domain.

The integral closure of A in any finite extension of its fraction field is finite as an

A-module.

Definition III.22. [DG64, IV0, Définition 23.1.1] A domain R is Japanese if it

satisfies the conclusion of Proposition III.21 with A replaced by R. A ring R (not

necessarily a domain) is universally Japanese if every finite type R-algebra which

is a domain is Japanese.

Remark III.23. Since excellence is preserved under finite type ring maps, excellent

rings are universally Japanese. Moreover, one can show that a ring R is univer-

sally Japanese and Noetherian if and only if R is Nagata, which means that R is

Noetherian and for every prime ideal p of R, R/p is Japanese [Sta18, Tag 0334].

Armed with the knowledge that excellent rings are Japanese, we have

Theorem III.24. (c.f. [DS17b]) Let R be a Noetherian domain of characteristic p

and fraction field K. Suppose R is generically F -finite, that is, K is F -finite. Then

the following are equivalent:

1. R is F -finite.
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2. The integral closure of Rp in K is a finitely generated Rp-module.

3. R is Japanese.

4. R is excellent.

Proof. (1)⇒ (4) follows from Theorem III.14 and (4)⇒ (3) from Proposition III.21.

Suppose (3) holds. Since Rp is isomorphic to R (Frobenius is injective because R

is reduced), Rp is also Japanese. The fraction field of Rp is Kp, and K is a finite

extension of Kp. Therefore by definition of the Japanese property, we see (3)⇒ (2).

To finish the proof, it suffices to show (2) ⇒ (1). Assume (2), and let S be the

integral closure of Rp in K. Then S is a Noetherian Rp-module by hypothesis, hence

since R is an Rp-submodule of S, it is also a finitely generated Rp-module.

Corollary III.25. [DS17b] Let R be a reduced, Noetherian ring of characteristic

p whose total quotient ring K is F-finite. Then R is excellent if and only if R is

F-finite.

Proof. The backward implication is again a consequence of Kunz’s Theorem III.14.

So assume that R is excellent. Let q1, . . . , qn be the minimal primes of R. We denote

the corresponding minimal primes of Rp by qpi . Let Ki be the fraction field of R/qi,

so that Kp
i is the fraction field of Rp/qpi . Then we have a commutative diagram

R �
� // R/q1 × · · · ×R/qn �

� // K1 × · · · ×Kn
∼= K

Rp
?�

OO

� � // Rp/qp1 × · · · ×Rp/qpn
?�

OO

� � // Kp
1 × · · · ×Kp

n
∼= Kp

?�

OO

where all rings involved are Rp-modules, and the horizontal maps are injections

because R is reduced. Since R is excellent, so is each quotient R/qi, and F-finiteness

of K implies that each Ki is also a finitely generated Kp
i -module. Thus, Theorem



68

III.24 implies that each R/qi is F-finite, that is, R/qi a finitely generated (R/qi)
p =

Rp/qpi -module. As a consequence,

Rp/qp1 × · · · ×Rp/qpn ↪→ R/q1 × · · · ×R/qn

is a finite map, and so is the map Rp ↪→ Rp/qp1 × · · · × Rp/qpn. This shows that

R/q1 × · · · × R/qn is a finitely generated Rp-module, and being a submodule of the

Noetherian Rp-module R/q1 × · · · ×R/qn, R is also a finitely generated Rp-module.

Thus, R is F-finite.

Theorem III.24 offers a simple way to think about excellence in prime character-

istic, at least for domains in function fields over F -finite ground fields.

Remark III.26. The results of this subsection may give the impression that it is

difficult to come up with examples of excellent rings that are not F -finite. But

this is not the case. Indeed, if k is a field of prime characteristic that is not F -

finite, then the polynomial ring k[x] is an excellent ring which is not F -finite. What

Theorem III.24 does demonstrate is that it is impossible to construct generically

F -finite excellent domains that are not F -finite.

3.3.4 Example of a generically F -finite, non-excellent regular ring

It is easy to construct examples of non-excellent rings, even among regular local

rings of dimension 1, also known as discrete valuation rings. A non-excellent discrete

valuation ring must have prime characteristic because all Dedekind domains whose

fraction fields have characteristic 0 are excellent [Sta18, Tag 07QW]. One of the

first examples of a prime characteristic non-excellent discrete valuation ring was

given by Nagata. He proceeds by taking a field k of prime characteristic such that

[k : kp] = ∞, and then forming the discrete valuation ring k ⊗kp kp[[t]], which he
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shows is not excellent. However, his example is not generically F -finite, that is, the

fraction field of k ⊗kp kp[[t]] is not F -finite.

Based on the material we have introduced so far, we show that one can also

construct examples of non-excellent discrete valuation rings even in the function

field of P2
Fp .

Recall that in Example II.57(4), we constructed a discrete valuation νq(t) of

Fp(X, Y ) which is centered on two different Noetherian local domains, only one of

which is an Abhyankar center of νq(t). We later saw that the same valuation is also

not an Abhyankar valuation of Fp(X, Y )/Fp (see Examples II.65). The residue field

κνq(t) coincides with Fp. Then

p
dim(Rνq(t) )

[κνq(t) : κpνq(t) ] = p 6= p2 = [Fp(X, Y ) : Fp(X, Y )p],

and therefore Rνq(t) is not F -finite by Proposition III.15, hence also not excellent

since F -finiteness and excellence coincide for generically F -finite Noetherian domains

(Theorem III.24). In particular, ΩRνq(t)/Z is not a finitely generated Rνq(t)-module by

Proposition III.17.

3.3.5 A curiosity

Non-excellent regular local rings exhibit other very interesting behavior. In this

subsection we highlight one such phenomenon, which also ties nicely with our dis-

cussion of finite generation of the module of absolute Kähler differentials for F -finite

rings (subsection 3.3.2).

A flat and unramified 1 ring homomorphism is always étale (and vice-versa) [Sta18,

Tag 08WD]. However, if we replace ‘unramified’ by ‘formally unramified’ and ‘étale’

1An unramified ring map for us has finite presentation by convention. Sometimes this is also called G-unramified
in the literature [Sta18].
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by ‘formally étale’ then the assertion no longer holds, even for extensions of reg-

ular local rings. Indeed, if Rνq(t) is the non-excellent discrete valuation ring from

subsection 3.3.4 above, then the canonical completion map

can : Rνq(t) → R̂νq(t)

is faithfully flat and formally unramified, but not formally étale, as we now explain.

Suppose, more generally, that (A,mA, κA) is a regular local ring of characteristic

p which is not excellent. Also suppose κA is F -finite. Note that Rνq(t) satisfies all of

these properties. We claim that the canonical map

A→ Â

is faithfully flat and formally unramified, but not formally étale. Faithful flatness is

obvious, and formal unramifiedness follows if ΩÂ/A = 0 [Sta18, Tag00UO].

By our assumptions, A is not F -finite (Theorem III.24), hence

ΩA/Z

is not a finitely generated A-module (Proposition III.17). On the other hand, the

completion Â is F -finite because κA is F -finite (use Cohen’s structure theorem).

Thus

ΩÂ/Z

is a finitely generated Â-module. Using the fundamental exact sequence

ΩA/Z ⊗A Â→ ΩÂ/Z → ΩÂ/A → 0 (3.1)

we conclude that ΩÂ/A must also be finitely generated Â-module. Tensoring the

above exact sequence by κÂ = κA, in order to show that ΩÂ/A = 0, it suffices to

establish by Nakayama’s lemma that

ΩA/Z ⊗A κÂ → ΩÂ/Z ⊗Â κÂ
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is surjective. But this follows from the 4-lemma applied to the following diagram

with exact rows

mA/m
2
A

=

��

// ΩA/Z ⊗A κA

��

// ΩκA/Z

=

��

// 0

mÂ/m
2
Â

// ΩÂ/Z ⊗Â κÂ // Ωκ
Â
/Z // 0

To summarize, we have proved so far that the canonical map A→ Â is faithfully

flat and formally unramified. However, this map cannot be formally étale. If it is,

then the exact sequence from (3.1) is also exact on the left, that is,

0→ ΩA/Z ⊗A Â→ ΩÂ/Z → ΩÂ/A → 0

is exact [Sta18, 031K]. Then ΩA/Z⊗A Â is a finitely generated Â-module since it is a

submodule of the finitely generated Â-module ΩÂ/Z. But this is impossible because

ΩA/Z is not a finitely generated A-module and finite generation of modules descends

over faithfully flat base change [Bou89, Chapter I, §3.6, Proposition 11].

3.4 F -purity

Since regularity of a Noetherian ring of prime characteristic is characterized by

flatness of the Frobenius map of the ring, a natural way to study singular rings is by

replacing flatness of Frobenius by some weaker property, and examining the resulting

class of rings satisfying this weaker property. For example, a necessary condition for

Frobenius to be flat is for Frobenius to be injective since faithfully flat maps are

injective. Therefore as a weakening of flatness of Frobenius, one may choose to

study rings for which Frobenius is injective. However, injectivity of Frobenius is too

general a notion of singularity since it characterizes reduced rings (Lemma III.7).

Hence we want to restrict our attention to studying those rings for which Frobenius

satisfies a property that is weaker than flatness, but not as general as injectivity.
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This leads naturally to the notion of F -purity, which is based on the notion of pure

map of modules. Therefore we discuss pure maps first.

3.4.1 Pure maps of modules

Definition III.27. Let A be a ring (of arbitrary characteristic). A map of A-modules

ϕ : M → N is pure if for all A-modules P ,

ϕ⊗ idP : M ⊗A P → N ⊗A P

is injective. A ring homomorphism A → B is pure, if it is pure as a map of A-

modules. Here B is considered as an A-module by restriction of scalars.

Remark III.28. By taking P = A in the definition of purity, we see that a pure map

of modules is always injective.

We gather some basic properties of pure maps of modules for the convenience of

the reader.

Lemma III.29. Let A be an arbitrary commutative ring A, not necessarily Noethe-

rian nor of characteristic p.

(a) If M → N and N → Q are pure maps of A-modules, then the composition

M → N → Q is also pure.

(b) If a composition M → N → Q of A-modules is pure, then M → N is pure.

(c) If B is an A-algebra and M → N is pure map of A-modules, then B ⊗AM →

B ⊗A N is a pure map of B-modules.

(d) Let B be an A-algebra. If M → N is a pure map of B-modules, then it is also

pure as a map of A-modules.
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(e) An A-module map M → N is pure if and only if for all prime ideals p ⊂ A,

Mp → Np is pure.

(f) A faithfully flat map of rings is pure.

(g) If (Λ,≤) is a directed set with a least element λ0, {Nλ}λ∈Λ is a direct limit

system of A-modules indexed by Λ and M → Nλ0 is an A-linear map, then

M → lim−→λ
Nλ is pure if and only if M → Nλ is pure for all λ.

(h) A map of modules A → N over a Noetherian local ring (A,mA, κA) is pure if

and only if E ⊗A A → E ⊗A N is injective where E is the injective hull of the

residue field of R.

Proof. Properties (a)-(d) follow easily from the definition of purity and elementary

properties of tensor product. As an example, let us prove (d). If P is an A-module,

we want to show that P ⊗AM → P ⊗A N is injective. The map of B-modules

(P ⊗A B)⊗B M → (P ⊗A B)⊗B N

is injective by purity of M → N as a map of B-modules. Using the natural A-module

isomorphisms (P ⊗AB)⊗BM ∼= P ⊗AM and (P ⊗AB)⊗BN ∼= P ⊗AN, we conclude

that P ⊗AM → P ⊗A N is injective in the category of A-modules.

Property (e) follows from (c) by tensoring with Ap and the fact that injectivity of

a map of modules is a local property. Property (f) follows from [Bou89, Chapter I,

§3.5, Proposition 9(c)]. Properties (g) and (h) are proved in [HH95, Lemma 2.1].

Example III.30. If (R,mR, κR) is a Noetherian local ring, and R̂ is the mR-adic

completion of R, then R→ R̂ is faithfully flat, hence pure.
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3.4.2 Definition of F -purity

Definition III.31. A ring R of characteristic p is F -pure if the Frobenius map

F : R→ F∗R is a pure map of R-modules.

Remark III.32. If R is F -pure, then the Frobenius map of R is injective. Thus F -pure

rings are reduced. If the Frobenius map of R is flat, then it is faithfully flat, hence

pure (Lemma III.29). Therefore F -purity sits in-between injectivity and flatness of

Frobenius. In particular, a regular ring of prime characteristic is always F -pure.

The notion of F -purity first appeared in Hochster and Roberts’s work in invariant

theory on the Cohen-Macaulayness of rings of invariants of linearly reductive groups

acting on regular rings [HR74]. Further evidence that F -purity is a good notion

of singularity stems from the fact that it implies nice cohomological properties. For

instance, by studying the action of Frobenius on local cohomology modules, Hochster

and Roberts showed that F -purity greatly simplifies the structure of local cohomology

modules of Noetherian rings [HR76].

The following criterion, established by Fedder, allows one to construct non-regular

examples of F -pure rings.

Theorem III.33 (Fedder’s criterion). Let (R,mR, κR) be a regular local ring of

characteristic p and let S := R/I, for an ideal I of R. Then S is F -pure if and only

if (I [p] : I) * m
[p]
R .

In particular, if I is generated by a single element f , then S is F -pure if and only

if fp−1 /∈ m
[p]
R .

Proof. [Fed83, Theorem 1.12].

Example III.34. Let k be a field of characteristic p and R = k[X, Y, Z](X,Y,Z).

Suppose f = XY − Z2. Then one can use Fedder’s criterion to see that S = R/(f)
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is F-pure. Indeed, it is not difficult to verify that

(XY − Z2)p−1 /∈ (Xp, Y p, Zp).

Remark III.35. For a non-local version of Fedder’s criterion, we refer the reader to

[Fed83, Theorem 1.13]. Also, contrast Fedder’s criterion with Remark III.66.

3.5 Frobenius splitting

Strengthening purity of Frobenius leads one to the notion of Frobenius splitting,

a term first coined by Mehta and Ramanathan in [MR85]. Recall that a map of

A-modules M → N is split if it admits a left inverse in the category of A-modules.

Definition III.36. A ring R of prime characteristic is Frobenius split if the Frobe-

nius map F : R → F∗R admits a left inverse, called a Frobenius splitting, in the

category of R-modules.

In other words, R is Frobenius split if there exists an R-linear map F∗R → R that

maps 1 7→ 1. Note that a Frobenius splitting exists if there is a surjective R-linear

map F∗R→ R.

Since split maps of R-modules are clearly pure, a Frobenius split ring is F -pure.

However, the converse is false even for regular local rings. Indeed, we will see later

that the discrete valuation ring constructed in Example II.57(4) is not Frobenius

split, even though every regular ring of prime characteristic is F -pure (Remark

III.32). This will follow from the more general observation that a Frobenius split,

generically F -finite Noetherian domain has to be excellent, whereas the aforemen-

tioned discrete valuation ring is not excellent (see subsection 3.3.4).

Despite this cautionary observation, Frobenius splitting and F -purity are equiva-

lent for most rings which arise in geometry, which is why they are often used synony-
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mously in the literature. This follows from the following beautiful result of Hochster

and Roberts.

Theorem III.37. Let A be a ring, not necessarily Noetherian or of prime charac-

teristic. Suppose ϕ : M → N is a map of A-modules such that coker(ϕ) is finitely

presented. Then ϕ is pure if and only if it splits.

Proof. [HR76, Corollary 5.2]

Corollary III.38. Let R be a Noetherian F -finite ring of characteristic p. Then R

is F -pure if and only if R is Frobenius split.

Proof. The hypothesis implies that the cokernel of the Frobenius map is always a

finitely presented R-module.

3.5.1 Global Frobenius splitting and consequences

Definition III.39. Let X be a scheme over Fp. Then we say X is (globally)

Frobenius split if the morphism OX → F∗OX has a left-inverse in the category of

OX-modules.

The existence of a global Frobenius splitting has strong consequences for the

geometry of X. In order to highlight some of these consequences, we will repeatedly

use the following two results.

Lemma III.40. Let X/Fp be a scheme. Then the following are equivalent:

1. X is Frobenius split.

2. There exists e > 0 such that the morphism OX → F e
∗OX splits in the category

of OX-modules.

3. For all e > 0, the morphism OX → F e
∗OX splits in the category of OX-modules.
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Proof. This is a simple consequence of the observation that the morphism OX →

F e
∗OX factors as OX → F∗OX → F e

∗OX , for any e > 0. Here the morphism F∗OX →

F e
∗OX is obtained by applying the functor F∗ to the morphism OX → F e−1

∗ OX ,

induced by the (e− 1)-th iterate of Frobenius.

Proposition III.41 (Projection formula). Let f : X → Y be a morphism of

ringed spaces. Let F be an OX-module, and E be a locally free OY -module of finite

rank. Then there exists a canonical isomorphism

f∗F ⊗OY E ∼= f∗(F ⊗OX f ∗E).

Proof. This is [Har77, Exercise II.5.1], so we omit the proof.

Applying the projection formula when f is an iterate of Frobenius and E is a line

bundle gives us the following

Corollary III.42. If X is a scheme over Fp, F is an OX-module and L is a line

bundle on X, then

F e
∗F ⊗OX L ∼= F e

∗ (F ⊗OX L⊗p
e

).

Proof. By the projection formula, F e
∗F ⊗OX L = F e

∗ (F ⊗OX (F e)∗L). Thinking of

line bundles in terms of transition functions, we see that the pullback (F e)∗ raises

transition functions of L to their pe-th powers. Therefore (F e)∗L ∼= L⊗pe .

The first consequence of the existence of a Frobenius splitting we want to highlight

is a strong form of Serre-vanishing.

Theorem III.43 (Strong Serre-vanishing). Let X be a Frobenius split projective

variety over a field k of prime characteristic. If L is an ample line bundle on X,

then for all i > 0,

H i(X,L) = 0.
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Proof. Ordinary Serre-vanishing implies that for n� 0, H i(X,L⊗n) = 0 for all i > 0.

Since OX → F e
∗OX splits, so does the map

L → F e
∗OX ⊗OX L,

upon tensoring by L. By Corollary III.42, F e
∗OX ⊗OX L = F e

∗ (L⊗p
e
). Therefore

H i(X,L) is a direct summand of H i(X,F e
∗ (L⊗p

e
)) for all i ≥ 0. Since F e is an

affine morphism, H i(X,F e
∗ (L⊗p

e
)) = H i(X,L⊗pe), and this latter cohomology group

vanishes when e� 0 and i > 0. Hence H i(X,L) must also vanish for i > 0.

Remark III.44. The proof of Theorem III.43 shows, more generally, that if X is a

Frobenius split scheme and L is a line bundle on X such that for some i ≥ 0 and all

n� 0, H i(X,L⊗n) = 0, then H i(X,L) = 0.

The other surprising consequence of Frobenius splitting is that Kodaira vanishing

holds for Frobenius split smooth projective varieties, even though Kodaira vanishing

is known to fail in general in prime characteristic [Ray78].

Theorem III.45 (Kodaira vanishing). Let X be a smooth projective variety of

dimension d over a field k of prime characteristic with canonical bundle ωX . If X is

Frobenius split, then for any ample line bundle L on X and for all i > 0,

H i(X,ωX ⊗OX L) = 0.

Proof. By Serre duality we know that hi(X,ωX ⊗OX L) = hd−i(X,L−1). Since L is

ample and ωX is coherent, Serre vanishing implies that for all n� 0 and i > 0,

hi(X,ωX ⊗OX L⊗n) = 0.

Therefore for all n� 0 and for all i > 0,

hd−i(X,L⊗−n) = 0.
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Since X is Frobenius split, Remark III.44 implies that for all i > 0,

hd−i(X,L−1) = 0.

A second application of Serre duality then shows that for all i > 0, hi(X,ωX⊗OXL) =

0.

Remark III.46. The reader will notice that the proof of Kodaira vanishing holds

more generally for a Frobenius split projective k-scheme which is Cohen-Macaulay

and equidimensional. Indeed, Serre duality holds in this setting.

3.6 p−e-linear maps

The previous section shows that the existence of a non-trivial OX-linear map

F∗OX → OX that maps 1 7→ 1 has strong consequences for the geometry of a scheme

X over Fp. In this section we will study more general maps of this type, so we give

them a special name.

Definition III.47. [BB11, BS13] Let X be a scheme over Fp. A p−e-linear map is

an additive map

ϕ : OX → OX

such that for local sections r, s ∈ OX(U),

ϕ(rp
e

s) = rϕ(s).

Equivalently, a p−e-linear map can be specified by a map of OX-modules F e
∗OX →

OX . If X = Spec(R), then we will also call an R-linear map F e
∗R→ R a p−e-linear

map.

Example III.48. A Frobenius splitting is a p−1-linear map that maps 1 7→ 1.
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Remark III.49. One can define the notion of p−e-linear maps more generally (in an

obvious way) for maps between sheaves of OX-modules. However, in this thesis by

a p−e-linear map we always means a p−e-linear self map of the structure sheaf OX ,

or equivalently, an OX-linear map F e
∗OX → OX . Thus when we say X has no non-

trivial p−e-linear maps, we mean it has no non-trivial OX-linear maps F e
∗OX → OX .

We are also going to be sloppy and frequently refer to OX-linear maps F e
∗OX → OX

as p−e-linear maps.

Our first goal in this section will be to explain why the existence of non-trivial

p−e-linear maps is closely related to excellence and F -finiteness. This is based on

joint work with Karen Smith [DS17b].

3.6.1 p−e-linear maps, excellence and F -finiteness

The main result of this subsection is the following:

Theorem III.50. [DS17b] Let R be a Noetherian domain of characteristic p whose

fraction field is F -finite. The following are equivalent:

1. R is excellent.

2. R is F -finite.

3. The module HomR(F∗R,R) is non-trivial.

4. For all e > 0, HomR(F e
∗R,R) is non-trivial.

5. There exists e > 0 such that HomR(F e
∗R,R) is non-trivial.

Conditions (3)-(5) in Theorem III.50 can be stated using Hochster’s notion of a

solid algebra.
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Definition III.51. An R-module M is solid if there exists a non-trivial R-module

map M → R. An R-algebra A is a solid algebra if it is solid as an R-module.

Thus condition (3) above precisely states that F∗R is a solid R-algebra via Frobe-

nius, or equivalently, that R is a solid Rp-algebra. Similarly conditions (4) and (5)

deal with the solidity of R over Rpe . The theorem states that if R is a domain whose

fraction field is F-finite, then R is a solid algebra via Frobenius if and only if R is

excellent.

The proof of Theorem III.50 requires the following lemma, which is independent

of the characteristic of rings.

Lemma III.52. [DS17b] Let R
f→ S be an injective ring homomorphism of Noethe-

rian domains such that the induced map of fraction fields Frac(R) ↪→ Frac(S) is

finite. If the canonical map

S → HomR(HomR(S,R), R)

is injective, then f is also a finite map.

Proof. Note that if M is a finitely generated R-module, then so is HomR(M,R).

Thus the lemma follows by Noetherianity if we can show that HomR(S,R) is a finitely

generated R-module. Let n be the degree of the field extension Frac(S)/Frac(R).

Then there exists a basis x1, . . . , xn of Frac(S) over Frac(R) such that xi ∈ S [AM69,

5.1.7].

Let T be the free R-submodule of S generated by the xi. It is clear that S/T is

a torsion R-module. Then applying HomR(−, R) to the short exact sequence

0→ T → S → S/T → 0

we get the exact sequence

0→ HomR(S/T,R)→ HomR(S,R)→ HomR(T,R).
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Since S/T is a torsion R-module and R is a domain, HomR(S/T,R) = 0. Thus,

HomR(S,R) is a submodule of HomR(T,R), and the latter is free of rank n. But R

is a Noetherian ring, and so HomR(S,R) is also finitely generated.

A necessary condition for the injectivity of S → HomR(HomR(S,R), R) in the sit-

uation of the previous lemma is for the module HomR(S,R) to be non-trivial. If only

non-triviality of this module is assumed, injectivity of S → HomR(HomR(S,R), R)

follows for a large class of examples as shown in the following result:

Proposition III.53. [DS17b] Let R
f
↪→ S be an injective ring homomorphism of

arbitrary domains such that the induced map Frac(R) ↪→ Frac(S) is algebraic. If S

is a solid R-algebra, then the canonical map S → HomR(HomR(S,R), R) is injective.

If, in addition, R and S are Noetherian and f is generically finite, then f is a finite

map.

Proof. By non-triviality of HomR(S,R), there exists an R-linear map S
φ→ R such

that φ(1) 6= 0, and so, for all non-zero r ∈ R, φ(r) = rφ(1) 6= 0. For the injectivity

of

S → HomR(HomR(S,R), R),

it suffices to show that for each non-zero s ∈ S, there exists ϕ ∈ HomR(S,R) such

that ϕ(s) 6= 0. Now since s is algebraic over Frac(R), there exists
∑n

i=0 aiT
i ∈ R[T ]

such that a0 6= 0, and

ans
n + an−1s

n−1 + . . . a1s+ a0 = (ans
n−1 + an−1s

n−2 + · · ·+ a1)s+ a0 = 0.

Suppose `λ is left multiplication by λ, where λ := ans
n−1 + an−1s

n−2 + · · ·+ a1 ∈ S.

Then φ ◦ `λ ∈ HomR(S,R), and

φ ◦ `λ(s) = φ(−a0) = −a0φ(1) 6= 0,



83

which proves injectivity of S → HomR(HomR(S,R), R).

If R
f→ S is a generically finite map of Noetherian domains, then f is a finite map

by Lemma III.52 and what we just proved.

Remark III.54. As a special case of Proposition III.53, we obtain the following result:

Let R be any domain and K be any field containing R. If the integral closure R of

R in K is a solid R-algebra, then the canonical map R → HomR(HomR(R,R), R)

is injective. In particular, a Noetherian domain R is Japanese precisely when the

integral closure of R in any finite extension of its fraction field is a solid R-algebra.

Proof of Theorem III.50. We already know (1) and (2) are equivalent from Theorem

III.24.

For (2) implies (3), assume F∗R is a finitely generated R-module. Let K be the

fraction field of R, and denote by F∗K the fraction field of F∗R, again emphasizing

the K-vector space structure via Frobenius. Note F∗K = F∗R⊗R K. Since

HomR(F∗R,R)⊗R K ∼= HomK(F∗K,K) 6= 0,

it follows that HomR(F∗R,R) 6= 0.

We now show (3) implies (4). If HomR(F∗R,R) is non-trivial, then there exists

φ : F∗R→ R such that

φ(1) = c 6= 0.

By induction, suppose there exists ϕ ∈ HomR(F e−1
∗ R,R) such that ϕ(1) 6= 0. Then

the p−e-linear map

F e
∗R

F e−1
∗ (φ)−−−−→ F e−1

∗ R
ϕ−→ R

maps c(pe−1−1)p 7→ cϕ(1) 6= 0, showing that HomR(F e
∗R,R) is non-trivial.

Obviously, (4) implies (5). We finish the proof by proving that (5) implies (2). By

assumption, F e
∗K is a finite extension of K. We now apply Proposition III.53, taking
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taking S = F e
∗R and f = F e. The proposition implies that F e is a finite map. Thus,

also F is a finite map, and we have proved (5) implies (2).

Corollary III.55. [DS17b] If R is a non-excellent domain of characteristic p > 0

which is generically F -finite, then HomR(F e
∗R,R) = 0 for all e ∈ N.

Corollary III.56. A generically F -finite, Frobenius split Noetherian domain is F -

finite (equivalently excellent).

Example III.57. Since the discrete valuation ring of Fp(X, Y ) constructed in Exam-

ple II.57(4) is not excellent (subsection 3.3.4), this ring has no non-trivial p−e-linear

maps by Theorem III.50. On the other hand, the ring is F -pure since it is regular.

This provides an example of an F -pure ring that is not Frobenius split, which shows

that F -purity is a more general notion of singularity in prime characteristic than

Frobenius splitting.

3.6.2 Some open questions

Theorem III.50 and Example III.57 raise the following interesting questions.

• Do excellent domains of prime characteristic admit non-trivial p−e-linear (self)

maps? Stated differently, if R is an excellent domain of prime characteristic, is

F e
∗R always a solid R-algebra?

• Is every excellent regular ring of prime characteristic Frobenius split? More

generally, is every excellent F -pure ring also Frobenius split?

The results of this section provide affirmative answers to both questions for Noethe-

rian domains whose fraction fields are F -finite, that is, in the generically F -finite

setting. Moreover, as we now explain, the questions also have affirmative answers for
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complete local rings (such rings are always excellent). For complete rings, Hochster

gave a very useful criterion to check if a module is solid using local cohomology.

Proposition III.58. [Hoc94, Corollary 2.4] Let (R,mR, κR) be a complete local

Noetherian ring of Krull dimension d. Then an R-module M is solid if and only

if Hd
mR

(M) 6= 0.

When R is a complete local Noetherian ring of characteristic p,

Hd
mR

(F e
∗R) = Hd

m
[pe]
R

(R) = Hd
mR

(R),

for any e > 0. A result of Grothendieck implies that Hd
mR

(R) 6= 0 [ILL+07, Theorem

9.3], therefore allowing us to conclude using Proposition III.58 that F e
∗R is a solid

R-algebra. In other words, complete local Noetherian rings always have non-trivial

p−e-linear maps for any e > 0.

The fact that complete local Noetherian F -pure rings are Frobenius split follows

from the following result:

Proposition III.59. Let (R,mR, κR) be a Noetherian local ring of characteristic p

and R̂ denote its mR-adic completion. The following are equivalent:

1. R is F -pure.

2. There exists an R-linear map F∗R→ R̂ that maps 1 7→ 1.

Proof. Assume (2) and let ϕ : F∗R→ R̂ be an R-linear map that maps 1 7→ 1. The

composition

R
F−→ F∗R

ϕ−→ R̂

is then easily verified to be the canonical map from a Noetherian local ring to its

completion. Since this canonical map is faithfully flat, hence pure, Lemma III.29(b)
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implies that F : R → F∗R is also pure. In other words, R is F -pure, and so,

(2)⇒ (1).

Conversely, suppose R is F -pure and let E = ER(κR) denote the injective hull of

the residue field of R. Then F ⊗R idE : E → F∗R ⊗R E is injective. Applying the

Matlis dual HomR( , E) to this injective map gives a surjection

HomR(F∗R⊗R, E, E) � HomR(E,E).

Matlis duality implies that HomR(E,E) ∼= R̂, while Hom-⊗ adjunction shows

HomR(F∗R⊗R, E, E) ∼= HomR(F∗R,HomR(E,E)) ∼= HomR(F∗R, R̂).

Therefore purity of Frobenius induces a surjection

χ : HomR(F∗R, R̂) � R̂,

which using the canonical isomorphisms from above can be verified to be evaluation

at 1, that is, if ϕ ∈ HomR(F∗R, R̂), then

χ(ϕ) = ϕ(1).

But surjectivity of χ is equivalent to (2).

Corollary III.60. A complete local Noetherian ring of characteristic p is F -pure if

and only if it is Frobenius split.

Proof. Apply Proposition III.59 with R = R̂.

Despite these partial results, the relationship between F -purity and Frobenius

splitting and the existence of non-trivial p−e-linear maps remain mysterious for ar-

bitrary excellent rings. In fact, to the best of our knowledge, it is not known if an

excellent discrete valuation ring of prime characteristic is always Frobenius split.
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3.6.3 Grothendieck duality and the divisor correspondence

Throughout this subsection, we assume X is a smooth variety over an F -finite

field k of characteristic p. Our aim is to show that a p−e-linear map ϕ : F e
∗OX → OX

roughly corresponds to an effective divisor ∆ϕ on X such that

∆ϕ ∼ (1− pe)KX .

In other words, p−e-linear maps correspond to global sections of the invertible sheaf

OX((1 − pe)KX) = ω
⊗(1−pe)
X (Corollary III.65), which should further convince the

reader of the geometric nature of such maps.

The divisor correspondence is a formal consequence of Grothendieck duality for

proper morphisms, so we briefly review what we need from duality first.

Theorem III.61 (Grothendieck duality for proper morphisms). Let g : Y →

Z be a proper morphism of Noetherian schemes.

1. There exists a functor

g! : D+
Coh(Z)→ D+

Coh(Y )

such that if D is a dualizing complex of Z then g!(D) is a dualizing complex of

Y .

2. There is a a natural transformation

Trg : Rg∗ ◦ g! → Id,

called the trace of g, which induces an isomorphism

Θg : Rg∗RHom •OY (F , g!(G))→ RHom •OZ (Rg∗(F),G),

for all F ∈ Db
Coh(Y ) and for all G ∈ Db

Coh(Z).2

2Hom here means sheaf-Hom.
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3. If g is finite, Trg induces an isomorphism

Θg : g∗RHom •OY (F , g!(G))→ RHom •OZ (g∗(F),G),

for all F ∈ Db
Coh(Y ) and for all G ∈ Db

Coh(Z).

Proof. The first and second assertions follow from [Har66, Chapter VI, Corollary 3.5]

and [Har66, Chapter VII, Corollary 3.4]. The third assertion follows from the second

because when g is finite, g∗ : QCoh(Y)→ QCoh(Z) is exact since g is affine, and so

g∗ and Rg∗ are naturally isomorphic as functors from DQCoh(Y )→ DQCoh(Z) [Sta18,

Tag 08D7].

Specializing to the case of interest for us, suppose X is a smooth variety of di-

mension n over an F -finite field k, and let f : X → Spec(k) be the the structure

morphism. Then X has a normalized dualizing complex [Har66, Chapter V, Theorem

8.3]

ω•X = f !(OSpec(k)[0]) = (∧nΩX/k)[n] = ωX [n],

where ωX = ∧nΩX/k is the canonical bundle of X introduced in subsection 3.2.1. By

assumption, the Frobenius map F of X is a finite morphism. Therefore F !(ω•X) is

also a dualizing complex of X by the above duality theorem. In this situation F !(ω•X)

and ω•X are actually isomorphic in D+
Coh(X), as we now show.

Proposition III.62. Let X be a smooth variety over an F -finite field k with structure

morphism f : X → Spec(k). Let ω•X = f !(OSpec(k)[0]) be the normalized dualizing

complex of X.

1. If F is the Frobenius map of X, then F !(ω•X) ∼= ω•X in D+
Coh(X).

2. For any coherent sheaf F on X, F∗HomOX (F , ωX) ∼= HomOX (F∗(F), ωX).
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Proof. (1) We have a commutative diagram

X

f
��

FX // X

f
��

Spec(k)
Fk // Spec(k)

where the horizontal maps are Frobenius (subscripts are chosen to distinguish the

Frobenius of X and the Frobenius of Spec(k) for the reader’s convenience). Now

F !
X(ω•X) = F !

X(f !(OSpec(k)[0])) ∼= (f ◦ FX)!(OSpec(k)[0]) = (Fk ◦ f)!(OSpec(k)[0]) ∼=

f !(F !
k(OSpec(k)[0])). However, k is F -finite, and using the definition of ( )! for a finite

morphism and duality for finite morphisms [Har66, Chapter III, §6], we get

F !
k(OSpec(k)[0]) ∼= OSpec(k)[0].

Thus, F !
X(ω•X) ∼= f !(F !

k(OSpec(k)[0])) ∼= f !(OSpec(k)[0]) = ω•X .

(2) Suppose F is a coherent sheaf on X. Since Frobenius of X is a finite mor-

phism, Grothendieck duality for proper/finite morphisms (Theorem III.61(3)) gives

an isomorphism in the derived category

ΘF : F∗RHom •OX (F [0], F !(ω•X))→ RHom •OX (F∗(F [0]), ω•X).

From (1) we have

F !(ω•X) ∼= ω•X = ωX [n],

and we know F∗ is exact. Taking cohomology in degree −n and using the fact that

Ri Hom •OX (G,H) ∼= HomDQCoh(X)(G,H[i])

gives the desired isomorphism

F∗HomOX (F , ωX)
∼−→HomOX (F∗(F), ωX),

which completes the proof of (2).
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Remarks III.63.

1. Proposition III.62 clearly also holds for the iterates F e of Frobenius.

2. Let X be a smooth variety over an F -finite field. Taking F = ωX , Proposition

III.62 gives an isomorphism of sheaves

F∗HomOX (ωX , ωX)
∼−→HomOX (F∗ωX , ωX).

Passing to global sections under the above isomorphism, the image of the iden-

tity morphism id : ωX → ωX corresponds to an OX-linear map F∗ωX → ωX .

This map is called the trace of Frobenius. It features prominently in F -

singularity theory (see [BST15, ST14]).

We now have all the tools needed to prove the correspondence between p−e-linear

maps on X and global sections of OX((1 − pe)KX) = ω
⊗(1−pe)
X alluded to in the

beginning of this subsection. In fact, we are able to prove a more general result.

Theorem III.64. [MR85, SS10, BS13] Let X be a smooth variety over an F -finite

field k of characteristic p. Then for any divisor Weil D on X,

HomOX (F e
∗OX(D),OX) ∼= F e

∗OX((1− pe)KX −D).

Thus, HomOX (F e
∗OX(D),OX) is in one-to-one correspondence with the global sec-

tions of OX((1− pe)KX −D).
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Proof. We have

HomOX (F e
∗OX(D),OX) ∼= HomOX (F e

∗OX(D)⊗OX ωX , ωX)

∼= HomOX
(
F e
∗ (OX(D)⊗OX ω

⊗pe
X ), ωX

)
∼= F e

∗ HomOX
(
OX(D + peKX),OX(KX)

)
∼= F e

∗ HomOX
(
OX ,OX((1− pe)KX −D))

)
∼= F e

∗OX((1− pe)KX −D).

Here the first and fourth isomorphisms follow from elementary properties of invertible

sheaves, the second isomorphism follows from Corollary III.42 and the third isomor-

phism from Proposition III.62 applied to the iterate F e instead of F (the proof is

exactly the same).

Corollary III.65. Let X be a smooth variety over an F -finite field k of characteristic

p with function field K. Then there exists a one-to-one correspondence p−e − linear maps

F e
∗OX → OX

←→
 rational functions f ∈ K such that

div(f) + (1− pe)KX ≥ 0


Proof. Apply Theorem III.64 with D = 0.

Remark III.66. Corollary III.65 puts restrictions on when smooth varieties over F -

finite fields can have non-trivial p−e-linear maps. For instance, if X is a smooth

projective variety over an F -finite k and X has a non-trivial p−e-linear map for e > 0,

then the canonical bundle ωX cannot be ample because ω
⊗(1−pe)
X has non-trivial global

sections. Thus a smooth hypersurface X of Pnk defined by a homogeneous polynomial

of degree d > n+ 1 has no non-trivial p−e-linear maps because its canonical bundle

ωX ∼= OPnk (d− n− 1)|X
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is ample. In particular, smooth hypersurfaces of large degree in Pnk are never (glob-

ablly) Frobenius split (see [Smi00]).

3.7 F-regularity

An important class of Frobenius split rings are the strongly F-regular rings. Orig-

inally, strongly F-regular rings were defined only in the Noetherian F-finite case.

Definition III.67. A Noetherian F-finite ring R of characteristic p is strongly

F-regular if for every non-zero-divisor c, there exists e > 0 such that the map

R→ F e
∗R sending 1 7→ c

splits in the category of R-modules [HH89].

In this section, we show that by replacing the word “splits” with the words “is

pure” in the above definition, we obtain a well-behaved notion of F-regularity in a

broader setting. Hochster and Huneke themselves suggested, but never pursued, this

possibility in [HH94, Remark 5.3].

Strong F-regularity first arose as a technical tool in the theory of tight closure;

Hochster and Huneke made use of it in their deep proof of the existence of test

elements [HH94]. Indeed, the original motivation for (and the name of) strong F-

regularity was born of a desire to better understand weak F-regularity, the prop-

erty of a Noetherian ring that all ideals are tightly closed. In many contexts, strong

and weak F-regularity are known to be equivalent (see e.g. [LS99] for the graded

case, [HH89] for the Gorenstein case) but it is becoming clear that at least for many

applications, strong F-regularity is the more useful and flexible notion. Applications

beyond tight closure include commutative algebra more generally [AL, Bli08, ST12,

Sch09a, SZ15], algebraic geometry [GLP+15, HX15, Pat08, SS10, Smi00], represen-

tation theory [BK05, MR85, Ram91, SVdB97] and combinatorics [BMRS15].
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3.7.1 F-pure regularity

We propose the following definition, intended to be a generalization of strong F-

regularity to arbitrary commutative rings of characteristic p, not necessarily F-finite

or Noetherian.

Definition III.68. [DS16] Let c be an element in a ring R of prime characteristic

p. Then R is said to be F-pure along c if there exists e > 0 such that the R-linear

map

λec : R→ F e
∗R sending 1 7→ c

is a pure map of R-modules. We say R is F-pure regular if it is F-pure along every

non-zerodivisor.

A ring R is F-pure if and only if it is F -pure along the element 1. Thus F-pure

regularity is a substantial strengthening of F-purity, requiring F-purity along all

non-zerodivisors (for sufficiently large iterates of Frobenius) instead of just along the

unit.

Remarks III.69.

(i) If R is Noetherian and F-finite, then the map λec : R→ F e
∗R is pure if and only

if it splits (by Theorem III.37). So F-pure regularity for a Noetherian F-finite

ring is the same as strong F-regularity.

(ii) If c is a zerodivisor, then the map λec is never injective for any e ≥ 1. In

particular, a ring is never F -pure along a zerodivisor.

(iii) The terminology “F-pure along c” is chosen to honor Ramanathan’s closely

related notion of “Frobenius splitting along a divisor” [Ram91]. See [Smi00].
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The following proposition gathers some basic properties of F-pure regularity for

arbitrary commutative rings.

Proposition III.70. [DS16] Let R be a commutative ring of characteristic p, not

necessarily Noetherian or F-finite.

(a) If R is F-pure along some element, then R is F-pure. More generally, if R is

F -pure along a product cd, then R is F -pure along the factors c and d.

(b) If R is F -pure along some element, then R is reduced.

(c) If R is an F-pure regular ring with finitely many minimal primes, and S ⊂ R is a

multiplicative set, then S−1R is F-pure regular. In particular, F-pure regularity

is preserved under localization in Noetherian rings, as well as in domains.

(d) Let ϕ : R → T be a pure ring map which maps non-zerodivisors of R to non-

zerodivisors of T . If T is F-pure regular, then R is F-pure regular. In particular,

if ϕ : R→ T is faithfully flat and T is F-pure regular, then R is F-pure regular.

(e) Let R1, . . . , Rn be rings of characteristic p. If R1 × · · · × Rn is F-pure regular,

then each Ri is F-pure regular.

Proof. (a) Multiplication by d is an an R-linear map, so by restriction of scalars also

F e
∗R

×d−→ F e
∗R

is R-linear. Precomposing with λec we have

R
λec−→ F e

∗R
×d−→ F e

∗R sending 1 7→ cd,

which is λecd. Our hypothesis that R is F-pure along cd means that there is some e

for which this composition is pure. So by Lemma III.29(b), it follows also that λec

is pure. That is, R is F-pure along c (and by symmetry, also along d). The second
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statement follows since F-purity along the product c × 1 implies R is F-pure along

1. So some iterate of Frobenius is a pure map, and so F-purity follows from Lemma

III.29(b).

(b) By (a) we see that R is F-pure. In particular, the Frobenius map is pure and

hence injective, so R is reduced.

(c) Note R is reduced by (b). Let α ∈ S−1R be a non-zerodivisor. Because

R has finitely many minimal primes, a standard prime avoidance argument shows

that there exists a non-zerodivisor c ∈ R and s ∈ S such that α = c/s (a minor

modification of [Hoc, Proposition on Pg 57]). By hypothesis, R is F-pure along c.

Hence there exists e > 0 such that the map λec : R→ F e
∗R is pure. Then the map

λec/1 : S−1R −→ F e
∗ (S

−1R) sending 1 7→ c/1

is pure by III.29(e) and the fact that S−1(F e
∗R) ∼= F e

∗ (S
−1R) as S−1R-modules (the

isomorphism S−1(F e
∗R) ∼= F e

∗ (S
−1R) is given by r/s 7→ r/sp

e
). Now the S−1R-linear

map

`1/s : S−1R→ S−1R sending 1 7→ 1/s

is an isomorphism. Applying F e
∗ , we see that

F e
∗ (`1/s) : F e

∗ (S
−1R)→ F e

∗ (S
−1R) sending 1 7→ 1/s

is also an isomorphism of S−1R-modules. In particular, F e
∗ (`1/s) is a pure map of

S−1R-modules. So purity of

F e
∗ (`1/s) ◦ λec/1

follows by III.29(a). But F e
∗ (`1/s) ◦ λec/1 is precisely the map

λec/s : S−1R→ F e
∗ (S

−1R) sending 1 7→ c/s.
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(d) Let c ∈ R be a non-zerodivisor. Then ϕ(c) is a non-zero divisor in T by

hypothesis. Pick e > 0 such that the map λeϕ(c) : T → F e
∗T is a pure map of

T -modules. By III.29(f) and III.29(a),

R
ϕ−→ T

λe
ϕ(c)−−−→ F e

∗T

is a pure map of R-modules. We have commutative diagram of R-linear maps

R T

F e
∗R F e

∗T

ϕ

λec λe
ϕ(c)

F e∗ (ϕ)

The purity of λec follows by III.29(b). Note that if ϕ is faithfully flat, then it is

pure by III.29(f) and maps non-zerodivisors to non-zerodivisors.

(e) Let R := R1 × · · · ×Rn. Consider the multiplicative set

S := R1 × · · · ×Ri−1 × {1} ×Ri+1 × · · · ×Rn.

Since S−1R ∼= Ri, it suffices to show that S−1R is F-pure regular. So let α ∈ S−1R

be a non-zerodivisor. Note that we can select u ∈ R and s ∈ S such that u is a

non-zerodivisor and α = u/s. So we can now repeat the proof of (c) verbatim to see

that S−1R must be pure along α.

Remark III.71. It is worth observing in Definition III.68, that if the map λec is a pure

map, then λfc is also a pure map for all f ≥ e. Indeed, to see this note that it suffices

to show that λe+1
c is pure. We know R is F-pure by III.70(a). So Frobenius

F : R→ F∗R

is a pure map of R-modules. By hypothesis,

λec : R→ F e
∗R
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is pure. Hence III.29(d) tell us that

F∗(λ
e
c) : F∗R→ F∗(F

e
∗R)

is a pure map of R-modules. Hence the composition

R
F−→ F∗R

F∗(λec)−−−→ F∗(F
e
∗R) sending 1 7→ c

is a pure map of R-modules by III.29(a). But F∗(F
e
∗R) as an R-module is precisely

F e+1
∗ R. So

λe+1
c : R→ F e+1

∗ R.

is pure.

Example III.72. The polynomial ring over Fp in infinitely many variables (localized

at the obvious maximal ideal) is an example of a F-pure ring which is not Noetherian.

3.7.2 Relationship of F-pure regularity to other singularities

We show that our generalization of strong F-regularity continues to enjoy many

important properties of the more restricted version.

Theorem III.73. (C.f. [HH94, Theorem 3.1(c)]) A regular local ring, not necessarily

F-finite, is F-pure regular.

Proof. Let (R,m) be a regular local ring. By Krull’s intersection theorem we know

that ⋂
e>0

m[pe] = 0.

Since R is a domain, the non-zerodivisors are precisely the non-zero elements of R.

So let c ∈ R be a non-zero element. Choose e such that c /∈ m[pe]. We show that the

map

λec : R→ F e
∗R; 1 7→ c
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is pure.

By Lemma III.29, it suffices to check that for the injective hull E of the residue

field of R, the induced map

λec ⊗ idE : R⊗R E → F e
∗R⊗R E

is injective, and for this, in turn, we need only check that the socle generator is not

in the kernel.

Recall that E is the direct limit of the injective maps

R/(x1, . . . , xn)
x−→ R/(x2

1, . . . , x
2
n)

x−→ R/(x3
1, . . . , x

3
n)

x−→ R/(x4
1, . . . , x

4
n) −→ · · ·

where x1, . . . , xn is a minimal set of generators for m, and the maps are given by

multiplication by x = Πd
i=1xi [HK71]. So the module F e

∗R⊗R E is the direct limit of

the maps

R/(xp
e

1 , . . . , x
pe

n )
xp
e

−→ R/(x2pe

1 , . . . , x2pe

n )
xp
e

−→ R/(x3pe

1 , . . . , x3pe

n )
xp
e

−→ · · ·

which remains injective by the faithful flatness of F e
∗R. The induced map λec ⊗ idE :

E → F e
∗R ⊗ E sends the socle (namely the image of 1 in R/m) to the class of c in

R/m[pe], so it is non-zero provided c /∈ m[pe]. Thus for every non-zero c in a regular

local (Noetherian) ring, we have found an e, such that the map λec is pure. So regular

local rings are F-pure regular.

Proposition III.74. [DS16] An F-pure regular ring is normal, that is, it is integrally

closed in its total quotient ring.

Proof. Take a fraction r/s in the total quotient ring integral over R. On clearing

denominators in an equation of integral dependence, we have r ∈ (s), the integral

closure of the ideal (s). This implies that there exists an h such that (r, s)n+h =
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(s)n(r, s)h for all n [Mat89, page 64]. Setting c = sh, this implies crn ∈ (s)n for all

large n. In particular, taking n = pe, we see that class of r modulo (s) is in the

kernel of the map induced by tensoring the map

R→ F e
∗R sending 1 7→ c (3.2)

with the quotient module R/(s). By purity of the map (3.2), it follows that r ∈ (s).

We conclude that r/s is in R and that R is normal.

3.7.3 Connections with Tight Closure

In his lecture notes on tight closure [Hoc07], Hochster suggests another way to

generalize strong F-regularity to non-F-finite (but Noetherian) rings using tight clo-

sure. We show here that his generalized strong F-regularity is the same as F-pure

regularity for local Noetherian rings.

Although Hochster and Huneke introduced tight closure only for Noetherian rings,

we can make the same definition in general for an arbitrary ring of prime charac-

teristic p. Let N ↪→ M be R-modules. The tight closure of N in M is an R-

module N∗M containing N . By definition, an element x ∈M is in N∗M if there exists

c ∈ R, not in any minimal prime, such that for all sufficiently large e, the element

c⊗ x ∈ F e
∗R⊗RM belongs to the image of the module F e

∗R⊗RN under the natural

map F e
∗R⊗R N → F e

∗R⊗RM induced by tensoring the inclusion N ↪→M with the

R-module F e
R. We say that N is tightly closed in M if N∗M = N .

Definition III.75. Let R be a Noetherian ring of characteristic p. We say that R

is strongly F-regular in the sense of Hochster if, for any pair of R-modules

N ↪→M , N∗M = N .

The next result compares F -pure regularity with strong F -regularity in the sense
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of Hochster:

Proposition III.76. [DS16] Let R be an arbitrary commutative ring of prime char-

acteristic. If R is F -pure regular, then N is tightly closed in M for any pair of R

modules N ⊂M . The converse also holds if R is Noetherian and local.

Proof. Suppose x ∈ N∗M . Equivalently the class x of x in M/N is in 0∗M/N . So there

exists c not in any minimal prime such that c⊗ x = 0 in F e
∗R⊗RM/N for all large

e. But this means that the map

R→ F e
∗R sending 1 7→ c

is not pure for any e, since the naturally induced map

R⊗M/N → F e
∗R⊗M/N

has 1⊗ x in its kernel.

For the converse, let c ∈ R be not in any minimal prime. We need to show that

there exists some e such that the map R → F e
∗R sending 1 to c is pure. Let E be

the injective hull of the residue field of R. According to Lemma III.29(i), it suffices

to show that there exists an e such that after tensoring E, the induced map

R⊗ E → F e
∗R⊗ E

is injective. But if not, then a generator η for the socle of E is in the kernel for every

e, that is, for all e, c ⊗ η = 0 in F e
∗R ⊗ E. In this case, η ∈ 0∗E, contrary to our

hypothesis that all modules are tightly closed.

Remarks III.77.

1. We do not know whether Proposition III.76 holds in the non-local case. Indeed,

we do not know if F -pure regularity is a local property: if Rm is F -pure regular
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for all maximal ideals m of R, does it follow that R is F -pure regular? If this

were the case, then our argument above extends to arbitrary Noetherian rings.

2. A Noetherian ring of characteristic p is weakly F-regular if N is tightly closed

in M for any pair of Noetherian R modules N ⊂ M. Clearly F -pure regular

implies weakly F -regular. The converse is a long standing open question in the

F -finite Noetherian case. For valuation rings, however, we will show that weak

and F -pure regularity are equivalent (and both are equivalent to the valuation

ring being Noetherian); see Corollary IV.53.

3.7.4 Elements along which F-purity fails

We now observe an analog of the splitting prime of Aberbach and Enescu [AE05];

See also [Tuc12, 4.7].

Proposition III.78. [DS16] Let R be a ring of characteristic p, and consider the

set

I := {c ∈ R : R is not F-pure along c}.

Then I is closed under multiplication by R, and R− I is multiplicatively closed. In

particular, if I is closed under addition, then I is a prime ideal (or the whole ring).

Proof. We first note that I is closed under multiplication by elements of R. Indeed,

suppose that c ∈ I and r ∈ R. Then if rc /∈ I, we have that R is F-pure along rc,

but this implies R is F-pure along c by Proposition III.70(a), contrary to c ∈ I.

We next show that the complement R \ I is a multiplicatively closed set (if non-

empty). To wit, take c, d /∈ I. Because R is F-pure along both c and d, we have that

there exist e and f such such the maps

R
λec−→ F e

∗R sending 1 7→ c, and R
λfd−→ F f

∗ R sending 1 7→ d
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are both pure. Since purity is preserved by restriction of scalars (Lemma III.29(d)),

we also have that

F e
∗R

F e∗ (λfd)
−→ F e

∗F
f
∗ R = F e+f

∗ R

is pure. Hence the composition

R
λec−→ F e

∗R
λfd−→ F e

∗F
f
∗ R sending 1 7→ cp

e

d

is pure as well (Lemma III.29(a)). This means that cp
e
d is not in I, and since I is

closed under multiplication, neither is cd. Note also that if R \ I is non-empty, then

1 ∈ R \ I by Proposition III.70(a). Thus R \ I is a multiplicative set.

Finally, if I is closed under addition (and I 6= R), we conclude that I is a prime

ideal since it is an ideal whose complement is a multiplicative set.

Remarks III.79.

1. If R is a Noetherian local ring, then the set I of Proposition III.78 can be

checked to be closed under addition. Indeed, suppose c1, c2 ∈ I. Then for any

e > 0, the maps

λeci : R→ F e
∗R sending 1 7→ ci

are not pure for i = 1, 2. In particular, if E is the injective hull of the residue

field of R, then

λeci ⊗R idE : E → F e
∗R⊗R E

is not injective for i = 1, 2. However, any two non-zero submodules of E have a

non-empty intersection since the submodules must contain the residue field κR

of R. This shows that

λec1+c2
⊗R idE = (λec1 + λec2)⊗R idE = (λec1 ⊗R idE) + (λec2 ⊗R idE)
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is not injective since the kernel of this map contains ker(λec1⊗R idE)∩ker(λec2⊗R

idE). Therefore λec1+c2
is not pure for any e > 0, that is, c1 + c2 ∈ I. Thus when

R is a Noetherian local ring, the set I of elements along which R is not F -pure

is a prime ideal (if R is F -pure) or the whole ring.

2. Likewise, we will see in the next chapter that for valuation rings, the set I is

also an ideal (Theorem IV.50). However, for an arbitrary ring, I can fail to be

an ideal. For example, under suitable hypothesis, the set I is also the union of

the centers of F-purity in the sense of Schwede. Hence, in this case I is a finite

union of ideals but not necessarily an ideal in the non-local case; see [Sch10].



CHAPTER IV

F -singularities of valuation rings

In this chapter we study valuation rings through the lens of F -singularity theory

introduced in Chapter III. Thus, we work with valuation rings of prime characteristic

p, unless specified otherwise, and frequently switch between the language of valua-

tions and valuation rings. Many of the results in this chapter were obtained in joint

work with Karen Smith [DS16, DS17a]. Chapter II contains a fairly detailed account

of the necessary background from valuation theory.

Before embarking on a discussion of F -singularity theory in the setting of valuation

rings, we make some preliminary observations.

Let ν be a valuation of a field K of characteristic p. We denote the restriction

of ν to the subfield Kp by νp. The following properties of the extension ν/νp are

straightforward to verify.

Lemma IV.1. The extension of valuations ν/νp satisfies the following properties:

1. The valuation ring Rνp of νp is the subring Rp
ν of Rν.

2. ν is the unique extension (up to equivalence) of νp to K.

3. Rν is the integral closure of Rνp in K.

4. mνpRν = m
[p]
ν .

104
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5. The map of residue fields κνp ↪→ κν maps κνp isomorphically onto κpν. Thus the

residue degree f(ν/νp) equals [κν : κpν ].

6. If Γν is the value group of ν, then the value group of νp is pΓν. Thus the

ramification index e(ν/νp) of the extension ν/νp equals [Γν : pΓν ].

Proof. Property (1) follows from the observation that

Rνp = Kp ∩Rν .

For (2), let w be a valuation of K that extends νp. Then using (1),

Rp
ν = Rνp = Kp ∩Rw. (4.1)

Since Rw is integrally closed in K, it is in particular closed under taking p-th roots.

Hence (4.1) implies Rν = Rw, which is another way of saying that ν and w are

equivalent. The remaining properties follow from (1), and we leave their verification

to the reader.

4.1 Flatness of Frobenius

The starting point of my joint work with Karen Smith on the use of F -singularity

techniques in valuation theory was the observation that, like for regular local rings,

Frobenius is always flat for a valuation ring of prime characteristic.

Theorem IV.2. [DS16] Let V be a valuation ring of characteristic p. Then the

Frobenius map F : V → F∗V is a flat map. Hence V is always F -pure.

Proof. Clearly F∗V is a torsion-free V -module, hence flat since torsion-free modules

over valuation rings are flat (Corollary II.15). Since the Frobenius map induces the

identity map on Spec, it follows that F∗V is a faithfully flat V -module. Thus F is

pure (that is, V is F -pure) by Lemma III.29(f).
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Remarks IV.3.

1. The above theorem shows that all valuation rings of prime characteristic are

‘close’ to being Frobenius split, since F -purity satisfies many of the good prop-

erties of Frobenius splitting.

2. In the world of Noetherian rings, flatness of Frobenius characterizes regularity

(Theorem III.8). Thus one may think of valuation rings, at least in prime

characteristic, as non-Noetherian analogues of regular local rings.

3. The V -algebra F∗V is a filtered colimit of its finitely generated V -subalgebras

(with V itself being the minimal such subalgebra with respect to inclusion). Any

such subalgebra B is a free V -module of finite rank (Proposition II.14), hence

has a V -basis containing the element 1. In particular, the ring homomorphism

V → B then splits. Thus F : V → F∗V is a filtered direct limit of split ring

homomorphisms. This provides another proof of the F -purity of V using Lemma

III.29(g).

4. There is no reason for the Frobenius map of a valuation ring to be split, even

though this map is a filtered direct limit of split maps. Indeed, Example III.57

shows that Frobenius splitting of valuation rings can fail even for generically

F -finite discrete valuation rings.

4.2 F -finite valuation rings

A necessary condition for a domain of prime characteristic to be F -finite is for

its fraction field to also be F -finite. Hence in our investigation of F -finiteness of

valuation rings, we assume that rings are generically F -finite to begin with. Note

that if ν is a valuation of an F -finite field K, the residue field of ν is also F -finite.
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This follows from the inequality (see Corollary II.47)

e(ν/νp)f(ν/νp) ≤ [K : Kp],

because the residue degree f(ν/νp) coincides with the degree of the field extension

κν/κ
p
ν according to Lemma IV.1.

4.2.1 The basics

The basic result on F -finiteness of valuation rings is the following.

Proposition IV.4. [DS16] Let K be an F-finite field. A valuation ring V of K is

F-finite if and only if F∗V is a free V -module.

Proof. First assume F∗V is free over V . Since K⊗R F∗V ∼= F∗K as K-vector spaces,

the rank of F∗V over V must be the same as the rank of F∗K over K, namely the

degree [F∗K : K] = [K : Kp]. Since K is F -finite, this degree is finite, and so F∗V

is a free V -module of finite rank. In particular, V is F -finite.

Conversely, suppose that V is F -finite. Then F∗V is a finitely generated, torsion-

free V -module. Hence it is free by Proposition II.14.

Corollary IV.5. [DS16] An F-finite valuation ring is Frobenius split.

Proof. One of the rank one free summands of F∗V is the copy of V under F , so

this copy of V splits off F∗V . Alternatively, since V → F∗V is pure, we can use

Theorem III.37: the cokernel of V → F∗V is finitely presented because it is finitely

generated (being a quotient of the finitely generated V -module F∗V ) and the module

of relations is finitely generated (by 1 ∈ F∗V ).

Remark IV.6. Since a valuation ring of prime characteristic is always F -pure, The-

orem III.37 implies that any valuation ring whose Frobenius endomorphism has a
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finitely presented cokernel is also Frobenius split. However, since the Frobenius map

of a valuation ring is injective, its cokernel is finitely presented if and only if the valu-

ation ring F -finite. Thus Theorem III.37 gives no extra information about Frobenius

splitting of valuation rings over Corollary IV.5.

An argument similar to that of Corollary IV.5 can be used to establish a stronger

characteristic independent result. To state this result, we introduce the notion of a

splinter.

Definition IV.7. [Bha12, Definition 1.2] A ring R (of arbitrary characteristic) is a

splinter if given a finite ring homomorphism ϕ : R→ S such that the induced map

Spec(ϕ) is surjective, ϕ admits a left inverse in ModR.

Remark IV.8. If R is reduced (in particular, a domain), then R is a splinter if and

only if any finite ring extension R ↪→ S splits in ModR. This is because a ring

homomorphism from a reduced ring induces a surjective map on Spec precisely when

the homomorphism is injective.

Hochster’s famous direct summand conjecture, now a theorem by work of [Hoc73,

And16, Bha16] (see also [HM17]), may be rephrased as saying that all regular rings

are splinters. It turns out that like regular local rings, valuation rings in all char-

acteristics are also splinters, providing further evidence that valuation rings behave

like regular rings.

Proposition IV.9. A valuation ring of arbitrary characteristic (including mixed) is

a splinter.

Proof. Let V be a valuation ring (of any characteristic). Suppose ϕ : V → S is a

ring homomorphism such that Spec(ϕ) is surjective. Choose a prime ideal p of S
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which contracts to the zero ideal of V . Then the induced homomorphism

V
ϕ−→ S � S/p

is also finite and injective. Moreover, S/p is a torsion-free V -module. Again us-

ing Proposition II.14 one may then conclude that S/p is a free V -module, and

Nakayama’s lemma shows that there exists a free V -basis of S/p containing the

element 1 ∈ S/p. Therefore there exists a V -linear map

τ : S/p→ V

that maps 1 7→ 1. The composition S � S/p
τ−→ V now gives a splitting of ϕ.

4.2.2 A numerical criterion and consequences

Proposition IV.10 (Numerical criterion for F -finiteness). Suppose ν is a val-

uation of an F -finite field K of characteristic p with valuation ring (Rν ,mν , κν).

Then the following are equivalent:

1. Rν is F -finite.

2. dimκpν Rν/m
[p]
ν = [K : Kp]

If these equivalent conditions hold, then [Γν : pΓν ][κν : κpν ] = [K : Kp].

Proof. Consider the extension of fields Kp ⊂ K. Lemma IV.1 shows that Rν is

the integral closure of Rνp = Rp
ν in K, ν is the unique extension of νp to K up

to equivalence, κpν is isomorphic to the residue field κνp , and the expansion of the

maximal ideal of Rνp in Rν is m
[p]
ν . Moreover, the ramification index of the extension

ν/νp equals [Γν : pΓν ] and the residue degree of ν/νp equals [κν : κpν ]. Thus the

present proposition follows upon applying Theorem II.50 to the field extension K/Kp

and the (unique) extension of valuations ν/νp.
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Definition IV.11. [Kuh11, Page 281] Let K ⊂ L be a finite field extension of fields

of characteristic p. Suppose ν is a valuation of K that admits a unique extension w

(up to equivalence) to L (for example, ν could be Henselian). Then the defect of

w/ν is the integer δ ∈ N ∪ {0} such that

pδe(w/ν)f(w/ν) = [L : K].

The extension w/ν is defectless if

e(w/ν)f(w/ν) = [L : K],

that is, if δ = 0, and w/ν has maximal defect if e(w/ν) = f(w/ν) = 1, that is, if

w/ν is totally unramified.

Remarks IV.12.

1. In the language of defect of unique extensions of valuations, Proposition IV.10

implies that if a valuation ν has an F -finite valuation ring, then the extension of

valuations ν/νp is defectless. The converse is false in general – any non-discrete

Abhyankar valuation of an F -finite function field gives a counter-example (this

will be established in Corollaries IV.23 and IV.25). Nevertheless, the converse

does hold for discrete valuation rings as we will see soon (Corollary IV.14).

2. The non-trivial implication in the equivalence of Proposition IV.10 is (2)⇒ (1).

Here we provide a direct proof of this fact, independent of the proof in [Bou89]

of Theorem II.50. Suppose

dimκp(Rν/m
[p]
ν ) = [K : Kp] = n.

Choose x1, . . . , xn ∈ Rν such that the images of xi in Rν/m
[p]
ν form a κpν-basis,

and let

L := Rp
νx1 + · · ·+Rp

νxn.
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The module L is a finitely generated, torsion free Rp
ν-module, hence free over

Rp
ν since finitely generated torsion-free modules over valuation rings are free.

To prove (1), it suffices to show that

L = Rν .

The rank of the free Rp
ν-module L equals dimκpν L/mνpL, and it is easy to see

that the images of x1, . . . , xn in L/mνpL form a κpν-basis of L/mνpL. Thus, L is

a free Rp
ν-module of rank n with basis {x1, . . . , xn}.

Observe that the Kp-linearly independent set {x1, . . . , xn} is also a Kp-basis of

K. Let s ∈ Rν be a non-zero element, and r1, . . . , rn ∈ Kp such that

s = r1x1 + · · ·+ rnxn.

Clearly L = Rν if we can show that all the ri are elements of Rp
ν . By renumbering

the xi, we may assume without loss of generality (because Rp
ν is a valuation ring)

that r1 6= 0 and

rir
−1
1 ∈ Rp

ν ,

for all i ≥ 2. If r1 ∈ Rp
ν , then the ri are already in V p. If not, r−1

1 is an element

of the maximal ideal of Rp
ν , and then the equation

r−1
1 s = x1 + r2r

−1
1 x2 + · · ·+ rnr

−1
1 xn,

contradicts κp-linear independence of the images of x1, . . . , xn in Rν/m
[p]
ν . Hence

all the ri are elements of Rp
ν , showing that s ∈ L.

The previous proposition demonstrates that the dimension of the κpν-vector space

Rν/m
[p]
ν reflects F -finiteness of Rν . A closer analysis of dimκpν Rν/m

[p]
ν reveals the

following:
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Lemma IV.13. [DS17a] Let (V,mV , κV ) be valuation ring of characteristic p. Then

the dimension of V/m
[p]
V over κpV equals

(a) [κV : κpV ] if mV is not finitely generated.

(b) p[κV : κpV ] if mV is finitely generated.

Proof. Consider the short exact sequence of κpV -vector spaces

0→ mV /m
[p]
V → V/m

[p]
V → κV → 0. (4.2)

If mV is not finitely generated, then Proposition II.19 and Lemma II.26 imply that

mV /m
[p]
V = mV /m

p
V = 0,

and (a) follows. Otherwise, mV is principal, and we have a filtration

mV ) m2
V ) · · · ) mp−1

V ) m
[p]
V = mp

V .

Since mi
V /m

i+1
V
∼= κV , we see that

dimκpV
(mV /m

[p]
V ) = (p− 1)[κV : κpV ].

From the short exact sequence (4.2), dimκpV
(V/m

[p]
V ) = p[κV : κpV ], proving (b).

Corollary IV.14. Let ν be a discrete valuation of an F -finite field K of character-

istic p (i.e. Γν is order isomorphic to Z). Then Rν is F -finite if and only if ν/νp is

defectless.

Proof. The ‘only if’ assertion follows readily from Proposition IV.10 and the defini-

tion of defect. Coversely, suppose ν/νp is defectless. Since the maximal ideal of Rν

is finitely generated, Lemma IV.13 shows that

dimκpν Rν/m
[p] = p[κν : κpν ] = [Γν : pΓν ][κν : κpν ] = [K : Kp].
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Here the final equality follows by our assumption that ν/νp is defectless. Proposition

IV.10 can again be used to conclude that Rν is F -finite.

Theorem IV.15. [Dat17a] Let ν be a valuation of an F -finite field K of character-

istic p. If the valuation ring Rν is F -finite, then the following hold:

1. [Γν : pΓν ][κν : κpν ] = [K : Kp].

2. Γν is p-divisible or [Γν : pΓν ] = p.

3. If Γν is finitely generated and non-trivial, then ν is a discrete valuation.

As a partial converse, if [κν : κpν ] = [K : Kp], then Rν is F -finite.

Proof. Let us first prove the three properties assuming Rν is F -finite. (1) was already

mentioned in Proposition IV.10, and the same proposition also implies that

dimκpν Rν/m
[p]
ν = [K : Kp] = [Γν : pΓν ][κν : κpν ].

Lemma IV.13 shows that [Γν : pΓν ][κν : κpν ] = [κν : κpν ] or [Γν : pΓν ][κν : κpν ] = p[κν :

κpν ] depending on whether mν is finitely generated. Thus,

[Γν : pΓ] = 1 or [Γν : pΓν ] = p,

proving (2).

For (3) note that a non-trivial finitely generated ordered abelian group is free,

hence never p-divisible. Then (2) shows that [Γν : pΓν ] = p, and if

Γν ∼= Z⊕s,

we get ps = p, that is, s = 1. This implies Γν is order isomorphic to Z, as desired.

In order to prove the second assertion of the theorem, if f(ν/νp) = [κν : κpν ] =

[K : Kp], then Corollary II.47 implies that

[Γν : pΓν ] = e(ν/νp) = 1.
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In other words, the value group is p-divisible, and so, the group does not possess a

smallest element > 0. This means that the maximal ideal mν is not finitely generated

(Proposition II.19). By Lemma IV.13, we then have

dimκpν Rν/m
[p]
ν = [κν : κpν ] = [K : Kp].

Therefore Rν is F -finite using Proposition IV.10.

Examples IV.16.

1. The perfection Fp[[t1/p
∞

]] :=
⋃
e∈N Fp[[t1/p

e
]] of the power series ring Fp[[t]] is a

non-Noetherian, F -finite valuation ring of its fraction field Fp((t1/p
∞

)). More

generally, a non-trivial valuation ring of any perfect field of prime characteristic

is not Noetherian, but F -finite because Frobenius is an isomorphism for such a

ring. Rings of prime characteristic for which Frobenius is an isomorphism are

called perfect rings. Such rings have been extensively investigated of late since

finding applications in Scholze’s work on perfectoid spaces [Sch12].

2. While perfect rings are trivially F -finite, there exist non-Noetherian, F -finite

valuation rings that are not perfect. Suppose L is a perfect field of prime

characteristic equipped with a non-trivial valuation ν with value group Γν . For

instance L can be a perfectoid field, or the algebraic closure of a field which has

non-trivial valuations. Then the residue field κν of the associated valuation ring

is also perfect. Now consider the group

Γ′ := Γν ⊕ Z

ordered lexicographically, and the field L(X), where X is an indeterminate.

There exists a unique extension w of the valuation ν to L(X) with value group
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Γ′ such that for any polynomial f =
∑n

i=0 aiX
i in L[X], we have

w(f) = inf{(ν(ai), i) : i = 0, . . . , n}.

The residue field κw of w equals the residue field κν (see Proposition II.51),

hence is also perfect. Also, Γ′ has a smallest element > 0 in the lexicographical

order, namely (0, 1). Thus, if (Rw,mw) is the valuation ring of w, the maximal

ideal mw is principal, and in fact generated by X. Using Proposition IV.10 we

see that

dimκpw(Rw/m
[p]
w ) = p[κw : κpw] = p = [L(X) : L(X)p]. (4.3)

Then Rw is F -finite by Proposition IV.10, not Noetherian because Γ′ = Γν ⊕ Z

has rational rank at least 2, and not perfect because the field L(X) is not perfect.

Curiously, if instead of taking Γ′ = Γν ⊕ Z ordered lexicographically we take

Γ′ = Z ⊕ Γν ordered lexicographically in the above construction, the resulting

extension w of ν to L(X) (with obvious modifications to the definition of w)

does not have an F -finite valuation ring Rw. Indeed, then the maximal ideal of

Rw is not finitely generated, while the residue field κw still coincides with κν ,

which is perfect. Thus dimκpw(Rw/m
[p]
w ) = [κw : κpw] = 1 6= [L(X) : L(X)p].

3. We will later see that if K is a function field over an F -finite ground field k,

then the only F -finite valuation rings of K/k are those associated to divisorial

valuations (Corollary IV.25).

4.2.3 Behavior under finite extensions

We have observed that the property of a valuation of a function field being Ab-

hyankar is preserved under finite field extensions (Proposition II.68). The goal of

this subsection is to prove an analogous result for F -finiteness.
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Proposition IV.17. [DS16, DS17a] Let K ↪→ L be a finite extension of F-finite

fields of characteristic p. Let ν be a valuation of K and w be an extension of ν to L.

Then:

(i) The ramification indices e(ν/νp) and e(w/wp) are equal.

(ii) The residue degrees f(ν/νp) and f(w/wp) are equal.

(iii) Rν is F -finite if and only if Rw is F -finite.

For the proof of this proposition, we will need the following lemma about behavior

of maximal ideals of valuation rings under finite extensions.

Lemma IV.18. [DS17a] With the hypothesis of Proposition IV.17, the maximal ideal

of the valuation ring of ν is finitely generated if and only if the maximal ideal of the

valuation ring of w is finitely generated.

Proof of Lemma IV.18. For ideals of a valuation ring, finite generation is the same

as being principal, and principality of the maximal ideal is equivalent to the value

group having a smallest element > 0 (Proposition II.19). Thus, it suffices to show

that the value group Γν of ν has this property if and only if Γw does.

Assume Γw has a smallest element g > 0. We claim that for each t ∈ N, the

only positive elements of Γw less than tg are g, 2g, . . . , (t − 1)g. Indeed, suppose

0 < h < tg. Since g is smallest, g ≤ h < tg, whence 0 ≤ h − g < (t − 1)g.

So by induction, h − g = ig for some i ∈ {0, 1, . . . , t − 2}, and hence h is among

g, 2g, . . . , (t− 1)g.

Now, because e(w/ν) = [Γw : Γν ] ≤ [L : K] < ∞ by Corollary II.47, every

element of Γw/Γν is torsion. Let n be the smallest positive integer such that ng ∈ Γν .

We claim that ng is the smallest positive element of Γν . Indeed, the only positive
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elements smaller than ng in Γw are g, 2g, . . . , (n − 1)g, and none of these are in Γν

by our choice of n.

Conversely, if Γν has a smallest element h > 0, then the set

S := {g ∈ Γw : 0 < g < h}

is finite because for distinct g1, g2 in this set, their classes in Γw/Γν are also distinct,

while Γw/Γν is a finite group. Then the smallest positive element of Γw is the smallest

element of S, or h if S is empty.

Proof of Proposition IV.17. By Corollary II.47, we have

e(w/ν)f(w/ν) = [Γw : Γν ][κw : κν ] ≤ [L : K],

so both e(w/ν) and f(w/ν) are finite. Of course, we also know that the ramification

indices e(w/wp) = [Γw : pΓw] and e(ν/νp) = [Γν : pΓν ] are finite, as are the residue

degrees f(w/wp) = [κw : κpw] and f(ν/νp) = [κν : κpν ].

(i) We need to show that [Γw : pΓw] = [Γν : pΓν ]. Since Γw is torsion-free,

multiplication by p induces an isomorphism Γw ∼= pΓw, under which the subgroup

Γν maps to pΓν . Thus [pΓw : pΓν ] = [Γw : Γν ]. Using the commutative diagram of

finite index abelian subgroups

Γw Γν?
_oo

pΓw
� ?

OO

pΓν ,? _oo
� ?

OO

we see that [Γw : pΓw][pΓw : pΓν ] = [Γw : Γν ][Γν : pΓν ]. Whence [Γw : pΓw] = [Γν :

pΓν ].

(ii) We need to show that [κw : κpw] = [κν : κpν ]. We have [κpw : κpν ] = [κw : κν ], so

the result follows from computing the extension degrees in the commutative diagram
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of finite field extensions

κw κν?
_oo

κpw
� ?

OO

κpν .? _oo
� ?

OO

(iii) By Proposition IV.10, a necessary and sufficient condition for the F-finiteness

of a valuation ring (V,mV , κV ) with F-finite fraction field K is that

dimκpV
V/m

[p]
V = [K : Kp]. (4.4)

Lemma IV.13 gives a formula for dimκpV
V/m

[p]
V in terms of [κV : κpV ] that depends

on whether the maximal ideal is finitely generated, which is the same for ν and

w by Lemma IV.18. Also (ii) tell us that [κν : κpν ] = [κw : κpw], and similarly

[K : Kp] = [L : Lp]. Thus Lemma IV.13 and equation (4.4) guarantee that the

valuation ring of ν is F-finite if and only if the valuation ring of w is F-finite.

4.3 Valuations centered on prime characteristic Noetherian local do-
mains

Recall that if ν is a valuation of a field K centered on a Noetherian local ring

(R,mR, κR) such that Frac(R) = K, then

dimQ(Q⊗Z Γν) + tr. deg κν/κR ≤ dim(R),

and if equality holds in the above inequality then R is called an Abhyankar center of

ν (Theorem II.54 and Definition II.56).

We have verified (Example II.57(iv)) that the property that a valuation admits an

Abhyankar center depends on the choice of the center, that is, it is not an intrinsic

property of a valuation. However, if additional restrictions are imposed on the class

of centers, then the property of possessing these more restrictive Abhyankar centers
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becomes intrinsic to ν. This happens, for example, if we require centers to be essen-

tially of finite type over a field k; ν admits an Abhyankar center that is essentially

of finite type over k if and only if ν is an Abhyankar valuation of the corresponding

function field K/k (see Proposition II.64), in the sense that

dimQ(Q⊗Z Γν) + tr. deg κν/k = tr. degK/k.

Note that the above equality is independent of any properties of a center, which is

why we can conclude that admitting Abhyankar centers that are essentially of finite

type over a field is intrinsic to a valuation.

The interplay between Abhyankar valuations and valuations admitting Abhyankar

centers raises the natural question of whether there is a class of admissible centers,

even in a non-function field setting, such that the property of a valuation admitting

an Abhyankar center from this class is independent of the choice of the center. The

next result provides an affirmative answer for a broad class of Noetherian centers in

prime characteristic.

Theorem IV.19. [Dat17a] Let (R,mR, κR) be an excellent local domain of charac-

teristic p. Let K be the fraction field of R, and assume [K : Kp] <∞. Suppose ν is

a non-trivial valuation of K centered on R with value group Γν and valuation ring

(V,mν , κν). Then R is an Abhyankar center of ν if and only if

[Γν : pΓν ][κν : κpν ] = [K : Kp],

that is ν/νp is defectless.

We will prove Theorem IV.19 by first developing a connection between the in-

equality

dimQ(Q⊗Z Γν) + tr. deg κν/κR ≤ dim(R)
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and the quantities [Γν : pΓν ] and [κν : κpν ]. This will also shed light on precisely

where F -finiteness is used in the proof of Theorem IV.19.

In order to achieve the above goal, we recall some general facts about torsion-free

abelian groups and F -finite fields.

Lemma IV.20. [DS16, Dat17a] Let p be a prime number, K an F -finite field of

characteristic p, and Γ a torsion-free abelian group such that dimQ(Q⊗Z Γ) is finite.

We have the following:

1. If L is an algebraic extension of K, then

[L : Lp] ≤ [K : Kp],

with equality if K ⊆ L is a finite extension. In particular, L is then also F -finite.

2. If L is field extension of K of transcendence degree t, then

[L : Lp] ≤ pt[K : Kp],

with equality if L is finitely generated over K.

3. If s = dimQ(Q⊗Z Γ), then

[Γ : pΓ] ≤ ps,

with equality if Γ is finitely generated.

Proof of Lemma IV.20. (1) To show that [L : Lp] = [K : Kp] when K ⊆ L is finite,

one may repeat the argument of the proof of Proposition IV.17(ii) verbatim by

replacing κw by L and κν by K. So suppose K ⊆ L is algebraic, and [K : Kp] <∞.

It suffices to show that if a1, . . . , an ∈ L are linearly independent over Lp, then

n ≤ [K : Kp].
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Let

L̃ := K(a1, . . . , an).

Since L is algebraic over K, L̃ is a finite extension K, and so by what we already

established,

[L̃ : L̃p] = [K : Kp].

On the other hand, since a1, . . . , an are linearly independent over Lp, and L̃p ⊆ Lp,

it follows that a1, . . . , an are also linearly independent over L̃p. Thus,

n ≤ [L̃ : L̃p] = [K : Kp],

as desired.

(2) By hypothesis, L is algebraic over a purely transcendental extension F := K(X1, . . . , Xt).

Then (1) shows that

[L : Lp] ≤ [F : F p] = pt[K : Kp],

with equality when L is finitely generated over K because then L is a finite extension

of F .

(3) If Γ is finitely generated, then Γ ∼= Z⊕s, where s = dimQ(Q⊗Z Γ). Then

[Γ : pΓ] = [Z⊕s : pZ⊕s] = ps.

To finish that proof it suffices to show that, even if Γ is not necessarily finitely

generated, Γ/pΓ is a vector space over Z/pZ of dimension ≤ s. So let t1, . . . , tn be

elements of Γ whose classes modulo pΓ are linearly independent over Z/pZ. Then

we claim that the ti are Z-independent elements of Γ. Assume on the contrary that

there is some non-trivial relation a1t1 + · · ·+ antn = 0, for some integers ai. Since Γ

is torsion-free, we can assume without loss of generality, that at least one aj is not

divisible by p. But now modulo pΓ, this relation produces a non-trivial relation on
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classes of the ti in Γ/pΓ, contrary to the fact that these are linearly independent.

This shows that any Z/pZ-linearly independent subset of Γ/pΓ must have cardinality

at most s.

Using the previous lemma, we can now relate the ramification index (i.e. [Γν :

pΓν ]) and residue degree (i.e. [κν : κpν ]) of the extension of valuations ν/νp to the

inequality dimQ(Q⊗Z Γν) + tr. deg κν/κR ≤ dim(R).

Proposition IV.21. [Dat17a] Let ν be a valuation of a field K of characteristic

p with valuation ring (V,mν , κν), centered on Noetherian local domain (R,mR, κR).

Suppose

[κR : κpR] <∞.

We have the following:

1. [Γν : pΓν ][κν : κpν ] ≤ pdim(R)[κR : κpR].

2. R is an Abhyankar center of ν if and only if [Γν : pΓν ][κν : κpν ] = pdim(R)[κR : κpR].

Proof of Proposition IV.21. Throughout the proof, let

s := dimQ(Q⊗Z Γν) and t := tr. deg κν/κR.

(1) Abhyankar’s inequality (II.54) implies

s+ t ≤ dim(R).

In particular, s and t are both finite. Using Lemma IV.20(3), we get

[Γν : pΓν ] ≤ ps.

On the other hand, since κR is F -finite by hypothesis, and κν has transcendence

degree t over κR, Lemma IV.20(2) shows

[κν : κpν ] ≤ pt[κR : κpR].
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Thus,

[Γν : pΓν ][κν : κpν ] ≤ ps+t[κR : κpR] ≤ pdim(R)[κR : κpR]. (4.5)

(2) Suppose R is an Abhyankar center of ν, that is,

s+ t = dim(R).

By Theorem II.54, Γν is a free abelian group of rank s, and κν is a finitely generated

field extension of κR of transcendence degree t. Again using Lemma IV.20, we get

[Γν : pΓν ] = ps and [κν : κpν ] = pt[κR : κpR],

and so

[Γν : pΓν ][κν : κpν ] = ps+t[κR : κpR] = pdim(R)[κR : κpR],

proving the forward implication.

Conversely, if

[Γν : pΓν ][κν : κpν ] = pdim(R)[κR : κpR]

then

pdim(R)[κR : κpR] = [Γν : pΓν ][κν : κpν ] ≤ ps+t[κR : κpR] ≤ pdim(R)[κR : κpR],

where the inequalities follow from (4.5). Thus, dim(R) = s + t, which by definition

means that R is an Abhyankar center of ν.

Theorem IV.19 now follows readily from Proposition IV.21.

Proof of Theorem IV.19. Assume R is an excellent local domain with fraction

field K such that[K : Kp] < ∞. Then R is F -finite (Theorem III.24), and as a

consequence,

[κR : κpR] <∞.
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In particular, R satisfies the hypotheses and conclusion of Proposition IV.21. There-

fore it suffices to show that

[K : Kp] = pdim(R)[κR : κpR]. (4.6)

But this follows from Proposition III.15.

Theorem IV.19 has many interesting consequences.

Corollary IV.22. [Dat17a] Let ν be a valuation of an F -finite field K of character-

istic p. If ν admits an excellent center which is Abhyankar, then any other excellent

center of ν is also an Abhyankar center of ν.

In other words, the property of possessing excellent Abhyankar centers is intrinsic

to a valuation.

Proof. The proof follows easily from Theorem IV.19 using the observation that the

identity [Γν : pΓν ][κν : κpν ] = [K : Kp] (that is, whether ν/νp is defectless) is

independent of the choice of a center.

Moreover, we also obtain a significant generalization of Proposition II.64.

Corollary IV.23. [DS16, Dat17a] Let ν be a valuation of a function field K/k over

an F -finite ground field k of characteristic p. The following are equivalent:

(1) ν is an Abyankar valuation of K/k.

(2) ν admits an Abhyankar center which is an excellent local ring.

(3) ν/νp is defectless.

If the equivalent conditions hold, then Γν is a free abelian group of finite rank and κν

is a finitely generated extension of k.
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Proof. The hypotheses imply that K is F -finite. The final assertion is a consequence

of ν being an Abhyankar valuation (Proposition II.60), and assertions (2) and (3) are

equivalent because of Theorem IV.19. For (1) ⇒ (2), any center of an Abhyankar

valuation ν which is essentially of finite type over k (hence excellent) is an Abhyankar

center of ν by Proposition II.64. It remains to show that (3) ⇒ (1). Suppose ν/νp

is defectless, that is,

[Γν : pΓν ][κν : κpν ] = [K : Kp].

Let n := tr. degK/k, s := dimQ(Q ⊗Z Γν) and t := tr. deg κν/k. Then n is finite by

hypothesis, and s, t are finite because

s+ t ≤ n (4.7)

according to Abhyankar’s inequality for valuations of function fields (2.2). Lemma

IV.20 implies

[K : Kp] = pn[k : kp], [Γν : pΓν ] ≤ ps and [κν : κpν ] ≤ pt[k : kp].

Therefore

pn[k : kp] = [Γν : pΓν ][κν : κpν ] ≤ ps+t[k : kp],

and hence n ≤ s+ t. Combining this inequality with (4.7) gives n = s+ t, that is,

dimQ(Q⊗Z Γν) + tr. deg κν/k = tr. degK/k.

But this precisely means ν is an Abhyankar valuation of K/k (Definition II.61).

Another surprising consequence is that non-Noetherian F -finite valuation rings

are not very common in geometric situations.

Proposition IV.24. [Dat17a] Let ν be a non-trivial valuation of an F -finite field

K centered on an excellent local domain A. Then Rν is F -finite if and only if Rν is

a discrete valuation ring and A is an Abhyankar center of ν.
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Proof. If Rν is F -finite, then ν/νp is defectless (Remark IV.12(1)). Thus Corollary

IV.22 shows that A is an Abhyankar center of ν, and so, the value group Γν is

a finitely generated abelian group (Theorem II.54). Since ν is non-trivial, using

Theorem IV.15 we conclude that Rν must be a discrete valuation ring. This proves

the forward implication.

Conversely, if Rν is a discrete valuation ring and A is an Abhyankar center of

ν, then Theorem IV.19 shows that ν/νp is defectless. But for Noetherian valuation

rings with F -finite fraction fields, lack of defect of ν/νp is equivalent to Rν being

F -finite (see Corollary IV.14).

Corollary IV.25. [DS17a] Let ν be a non-trivial valuation of a function field K

over an F -finite ground field k of characteristic p. Then Rν is F -finite if and only

if ν is divisorial.

Proof. The backward implication is trivial because when ν is divisorial, Rν is essen-

tially of finite type over k, hence F -finite. For the forward implication, note that

ν is always centered on some excellent local domain A of K/k. Then Proposition

IV.24 shows that Rν is a discrete valuation ring and A is an Abhyankar center of ν.

Moreover, Corollary IV.23 implies that ν is an Abhyankar valuation of K/k. How-

ever, any rank 1 Abhyankar valuation of a function field is divisorial (see Example

II.65(2)).

We are also able to easily construct valuations that are not centered on any

excellent domains.

Corollary IV.26. Suppose ν is a valuation of an F -finite field K with valuation

ring Rν that satisfies either of the following conditions:

1. Rν is F -finite, but not Noetherian.
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2. dim(Rν) > s, where [K : Kp] = ps.

Then ν is not centered on any excellent local domain whose fraction field is K.

Proof. Suppose ν satisfies (1). As Rν is not Noetherian, Proposition IV.24 implies

that ν cannot be centered on any excellent local domain with fraction field K.

If A is an excellent local domain with fraction field K, then recall that we have

the identity (Proposition III.15)

pdim(A)[κA : κpA] = [K : Kp] = ps,

because A is F -finite. In particular, dim(A) ≤ s, where s is as above. If ν is centered

on A, then Abhyankar’s inequality (Theorem II.54) shows in particular that

dimQ(Q⊗Z Γν) ≤ dim(A) ≤ s.

However, the Krull dimension of Rν is at most dimQ(Q ⊗Z Γν) (Proposition II.10).

Thus dim(Rν) ≤ s, which contradicts the hypothesis of (2). Hence ν cannot be

centered on any excellent local domain with fraction field K.

Example IV.27. Let w be the valuation of L(X) (where L is a perfect field) con-

structed in Example IV.16(ii). The valuation ring Rw satisfies conditions (1) and

(2) of Corollary IV.26. We have already observed that Rw satisfies (1). To see

that Rw satisfies (2), observe that the value group of w has a proper, non-trivial

isolated/convex subgroup because it is constructed as a direct sum of two ordered

groups with lexicographical order. Thus Rw has Krull dimension at least 2 [Bou89,

§4.5], while [L(X) : L(X)p] = p.

Although Rw is a valuation ring of a function field, it does not contain the ground

field L. So even though w/wp is defectless, this example does not contradict Corollary

IV.23, or the problem of local uniformization in prime characteristic.
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Remarks IV.28.

1. The analogue of Corollary IV.23 is false for valuations of function fields over

algebraically closed ground fields of characteristic 0. That is, whether such

valuations admit excellent Abhyankar centers depend on the excellent centers.

For instance, by imitating the construction of Example II.57(4) using the fields

C(X, Y ) and C((t)) instead, one can show that there exists a discrete valuation ν

of C(X, Y )/C centered on C[X, Y ](X,Y ) such that the latter is not an Abhyankar

center of ν (see [ELS03, Example 1(iv)] for more details). However, ν is also

trivially centered on its own valuation ring that is an excellent Abhyankar center

of ν, because any discrete valuation ring whose fraction field has characteristic

0 is excellent [Sta18, Tag 07QW].

2. The pathologies highlighted in Corollary IV.26 do not arise for valuations of

function fields that are trivial on the ground field. Indeed, if K/k is an F -finite

function field, and ν is a valuation of K/k, then Corollary IV.25 shows that

Rν cannot simultaneously be F -finite and non-Noetherian, while Abhyankar’s

inequality (for function fields)

dimQ(Q⊗Z Γν) + tr. deg κν/k ≤ tr. degK/k

shows that Rν cannot satisfy the second part Corollary IV.26 because

dim(Rν) ≤ dimQ(Q⊗Z Γν) ≤ tr. degK/k ≤ logp([K : Kp]).

Here the last inequality follows from Lemma IV.20(2).

4.4 Frobenius splitting

Valuation rings of prime characteristic are always F -pure, hence very close to

being Frobenius split. Nevertheless, it is natural to ask which valuation rings ad-



129

mit a Frobenius splitting. This very question, which arose in conversations of Karl

Schwede, Zsolt Patakfalvi and Karen Smith, inspired the author’s joint work with

Karen Smith on using F -singularity techniques to probe the structure of valuation

rings.

We have seen that F -finite valuation rings are always Frobenius split (Corollary

IV.5). However, as is evident from the results of the previous sections, F -finiteness

imposes strong restrictions on valuation rings, and there are many non-F -finite val-

uation rings even in function fields. This makes Frobenius splitting a significantly

more difficult notion of singularity to penetrate in the non-Noetherian and, usually,

non-F-finite world of valuation rings. Nevertheless, our work indicates that Frobe-

nius splitting is related to the defect of the extension of valuations ν/νp, and it is

this relationship that we hope to highlight in this section.

We begin by proving a negative result in the case that the extension of valuations

ν/νp has maximal defect. Note that if R is a domain of characteristic p, then the

existence of a Frobenius splitting F∗R → R is equivalent to the existence of an Rp-

linear map R → Rp that maps 1 7→ 1. We will also call a map of the latter type a

Frobenius splitting of R.

Proposition IV.29. [DS17a] Let K be a non-perfect field of characteristic p and ν

a valuation of K. If ν/νp is totally unramified (i.e. ν/νp has maximal defect), then

the valuation ring Rν is never Frobenius split.

Proof. Recall that ν/νp is totally unramified if e(ν/νp) = [Γν : pΓν ] = 1 and

f(ν/νp) = [κν : κpν ] = 1 (Definition II.49). This means that the value group of

ν is p-divisible and the residue field of ν is perfect. The p-divisibility of Γν shows

that

mν = m[p]
ν .
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Then any Frobenius splitting

ϕ : Rν → Rp
ν

maps the maximal ideal mν of ν into the maximal ideal of Rp
ν , thereby inducing a

Frobenius splitting of residue fields

ϕ̃ : κν → κpν .

However, κν is perfect, so that ϕ̃ is just the identity map. Since K is not perfect,

ϕ has a non-trivial kernel, that is, some non-zero x ∈ Rν gets mapped to 0. By

p-divisibility of Γν , one can write

x = uyp,

for a unit u in V , and y 6= 0. Then 0 = ϕ(x) = ypϕ(u), which shows that ϕ(u) =

0. But this contradicts injectivity of ϕ̃, proving that no Frobenius splitting of Rν

exists.

Our main result of this section is that in contrast to Proposition IV.29, when K

is a function field over a perfect ground field k and ν is a valuation of K/k such

that ν/νp is defectless (equivalently ν is Abhyankar by Corollary IV.23), then Rν is

Frobenius split. In fact, we prove a more general result.

Theorem IV.30. [Dat17a] Let K be a function field of an F -finite field k of char-

acteristic p. If ν is an Abhyankar valuation of K/k such that κν is separable over k,

then Rν is Frobenius split.

The key ingredient in our proof of Theorem IV.30 is the local monomialization

result of Knaf and Kuhlmann for Abhyankar valuations (Theorem II.69). A conse-

quence of local monomialization yields the following ‘special’ regular local center of

any Abhyankar valuation with separable residue field.
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Lemma IV.31. Let ν be an Abhyankar valuation as in Theorem IV.30. Suppose d :=

dimQ(Q⊗ZΓν). Then there exists a regular local ring (A,mA, κA) which is essentially

of finite type over k with fraction field K satisfying the following properties:

1. Rν is centered on A, and κA ↪→ κν is an isomorphism.

2. A has Krull dimension d, and there exist a regular system of parameters {x1, . . . , xd}

of A such that {ν(x1), . . . , ν(xd)} freely generates the value group Γν.

Proof of Lemma IV.31. This is a special case of Corollary II.71.

Remark IV.32. For a valuation ν of K/k, the existence of a center which is an

essentially of finite type k-algebra of Krull dimension equal to dimQ(Q⊗ZΓν) implies

that ν is Abhyankar (see Remark II.72(3)). Thus, only Abhyankar valuations admit

centers satisfying the hypothese of Lemma IV.31.

From now on, A will denote a choice of a regular local center of ν that satisfies

Lemma IV.31, and {x1, . . . , xd} a regular system of parameters of A whose valuations

freely generate Γν . Observe that A is F -finite since it is essentially of finite type over

an F -finite field. Then Theorem III.8 implies that A is free over its p-th power

subring Ap of rank equal to [K : Kp] = [k : kp]pn, where

n := tr. degK/k.

For

f := [κν : κpν ] = [k : kp]pn−d,

if we choose

1 = y1, y2, . . . , yf ∈ A,

such that the images of yi in κA = κν form a basis of κν over κpν , then it is well-known
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that

B := {yjxβ11 . . . xβdd : 1 ≤ j ≤ f, 0 ≤ βi ≤ p− 1},

is a free basis of A over Ap. Note the elements yj are units in A.

With respect to the basis B, A has a natural Frobenius splitting

ηB : A→ Ap,

given by mapping 1 = y1x
0
1 . . . x

0
d 7→ 1, and all the other basis elements to 0. Ex-

tending ηB uniquely to a Kp-linear map

η̃B : K → Kp

of the fraction fields, we will show that the restriction of η̃B to Rν yields a Frobenius

splitting of Rν , or in other words, η̃B|Rν maps into Rp
ν .

Claim IV.33. For any a ∈ A, either ηB(a) = 0 or ν(ηB(a)) ≥ ν(a).

Theorem IV.30 follows from the claim using the following general observation.

Lemma IV.34. Let ν be a valuation of a field K of characteristic p with valuation

ring Rν, and A a subring of Rν such that Frac(A) = K. Suppose ϕ : A→ Ap
e

is an

Ap
e
-linear map, for some e ≥ 1. Consider the following statements:

(i) For all a ∈ A, ϕ(a) = 0 or ν(ϕ(a)) ≥ ν(a).

(ii) For all a, b ∈ A such that ν(a) ≥ ν(b), if ϕ(abp
e−1) 6= 0, then ν(ϕ(abp

e−1)) ≥

ν(bp
e
).

(iii) ϕ extends to an Rpe

ν -linear map Rν → Rpe

ν .

(iv) ϕ extends uniquely to an Rpe

ν -linear map Rν → Rpe

ν .

Then (ii), (iii) and (iv) are equivalent, and (i) ⇒ (ii). Moreover, if ϕ is a Frobenius

splitting of A satisfying (i) or (ii), then ϕ extends to a Frobenius splitting of Rν.
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Proof of Lemma IV.34. For the final assertion on Frobenius splitting, note that the

extension of a Frobenius splitting remains a Frobenius splitting since 1 7→ 1 also in

the extension.

(i) ⇒ (ii): If ϕ(abp
e−1) 6= 0, we have

ν(ϕ(abp
e−1)) ≥ ν(abp

e−1) ≥ ν(bp
e

),

where the first inequality follows from (i), and the second inequality follows from

ν(a) ≥ ν(b).

(ii) ⇒ (iii): Extending ϕ to a Kpe-linear map ϕ̃ : K → Kpe , it suffices to show

that ϕ̃|Rν maps into Rpe

ν . Let r ∈ Rν be a non-zero element. Since K is the fraction

field of A and Rν , one can express r as a fraction a/b, for non-zero a, b ∈ A. Note

ν(a) ≥ ν(b).

Then

ϕ̃(r) = ϕ̃

(
a

b

)
=

1

bpe
ϕ(abp

e−1). (4.8)

If ϕ(abp
e−1) = 0, then ϕ̃(r) = 0, and r maps into Rpe

ν . Otherwise by assumption,

ν(ϕ(abp
e−1)) ≥ ν(bp

e

),

and so,

ν(ϕ̃(r)) = ν(ϕ(abp
e−1))− ν(bp

e

) ≥ 0,

that is ϕ̃(r) is an element of Kpe ∩Rν = Rpe

ν .

(iii) ⇒ (iv): Since A and Rν have the same fraction field, any extension of ϕ to

Rν is obtained as a restriction to Rν of the unique extension of ϕ to a Kpe-linear map

ϕ̃ : K → Kpe . Thus, uniqueness follows. See (4.8) above for a concrete description

of how ϕ extends to Rν .
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To finish the proof of the lemma, it suffices to show (iv) ⇒ (ii). But this also

follows from (4.8).

Proof of Claim IV.33. Recall that

B = {yjxβ11 . . . xβdd : 1 ≤ j ≤ f, 0 ≤ βi ≤ p− 1}

is a basis of A over Ap, where the xi and yj are chosen such that {ν(x1), . . . , ν(xd)}

freely generates the value group Γν , and the images of 1 = y1, y2, . . . , yf in κν form

a basis of κν over κpν . The Ap-linear Frobenius splitting ηB is given by

ηB

( f∑
j=1

∑
0≤βi≤p−1

cpj,β1,...,βdyjx
β1
1 . . . xβdd

)
= cp1,0,0,...,0.

Thus, we need to show that either cp1,0,0,...,0 = 0 or

ν(cp1,0,0,...,0) ≥ ν

( f∑
j=1

∑
0≤βi≤p−1

cpj,β1,...,βdyjx
β1
1 . . . xβdd

)
.

Assuming without loss of generality that
∑f

j=1

∑
0≤βi≤p−1 c

p
j,β1,...,βd

yjx
β1
1 . . . xβdd 6= 0,

we will prove the stronger fact that

ν

( f∑
j=1

∑
0≤βi≤p−1

cpj,β1,...,βdyjx
β1
1 . . . xβdd

)
= inf{ν(cpj,β1,...,βdyjx

β1
1 . . . xβdd ) : cpj,β1,...,βd 6= 0}.

(4.9)

For two non-zero terms cpj,α1,...,αd
yjx

α1
1 . . . xαdd and cpk,β1,...,βdykx

β1
1 . . . xβdd in the above

sum,

ν(cpj,α1,...,αd
yjx

α1
1 . . . xαdd ) = ν(cpk,β1,...,βdykx

β1
1 . . . xβdd ) (4.10)

if and only if

pν(cj,α1,...,αd)+α1ν(x1)+· · ·+αdν(xd) = pν(ck,β1,...,βd)+β1ν(x1)+· · ·+βdν(xd). (4.11)

By Z-linear independence of ν(x1), . . . , ν(xd), for all i = 1, . . . , d, we get

p|(αi − βi).
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Since 0 ≤ αi, βi ≤ p− 1, this means that αi = βi for all i. Moreover, then

ν(cpj,α1,...,αd
) = ν(cpk,β1,...,βd).

Thus, (4.10) holds precisely when ν(cpj,α1,...,αd
) = ν(cpk,β1,...,βd) and αi = βi, for all

i = 1, . . . , d.

For ease of notation, let us use α as a shorthand for α1, . . . , αd, and xα for

xα1
1 . . . xαdd . Then for a fixed non-zero term cpj1,αyj1x

α, consider the set

{cpj1,αyj1x
α, cpj2,αyj2x

α, . . . , cpji,αyjix
α}

of all non-zero terms of
∑f

j=1

∑
0≤βi≤p−1 c

p
j,β1,...,βd

yjx
β1
1 . . . xβdd having the same valu-

ation as cpj1,αyj1x
α. In particular, by the above reasoning we also have

ν(cpj1,α) = ν(cpj2,α) = · · · = ν(cpji,α).

Adding these terms of equal valuation, in the valuation ring Rν one can write

cpj1,αyj1x
α + cpj2,αyj2x

α + · · ·+ cpji,αyjix
α =(

yj1 +

(
cj2,α
cj1,α

)p
yj2 + · · ·+

(
cji,α
cj1,α

)p
yji

)
cpj1,αx

α,

where

yj1 +

(
cj2,α
cj1,α

)p
yj2 + · · ·+

(
cji,α
cj1,α

)p
yji

is a unit in Rν by the κpν-linear independence of the images of yj1 , . . . , yji in κν and

the fact that (cj2,α/cj1,α)p, . . . , (cji,α/cj1,α)p are units in Rp
ν . Thus, the valuation of

the sum

cpj1,αyj1x
α + · · ·+ cpji,αyjix

α

equals the valuation of any of its terms. Now rewriting

f∑
j=1

∑
0≤βi≤p−1

cpj,β1,...,βdyjx
β1
1 . . . xβdd
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by collecting non-zero terms having the same valuation, (4.9), hence also the claim,

follows.

Corollary IV.35. Valuation rings of Abhyankar valuations of function fields over

perfect ground fields of prime characteristic are always Frobenius split.

Proof. Knaf and Kuhlmann’s local monomialization result holds unconditionally un-

der these hypotheses because the residue field of the Abhyankar valuation is auto-

matically separable over the perfect ground field by Proposition II.60.

Examples IV.36.

(a) A valuation ring of a function field of a curve over an F -finite ground field is

always Frobenius split. Indeed, such a valuation ring is an F -finite discrete valuation

ring since it is always centered on some normal affine model of dimension 1 of the

function field.

(b) For a positive integer n, consider Z⊕n with the lexicographical order. That is, if

{e1, . . . , en} denotes the standard basis of Z⊕n, then

e1 > e2 > · · · > en.

There exists a unique valuation νlex on Fp(X1, . . . , Xn)/Fp such that for all i ∈

{1, . . . , n},

νlex(Xi) = ei.

The valuation νlex is clearly Abhyakar since dimQ(Q ⊗Z Z⊕n) = n, which coincides

with the transcendence degree of Fp(X1, . . . , Xn)/Fp. One can also show that the

valuation ring Rνlex has Krull dimension n and residue field Fp. The valuation

is centered on the regular local ring Fp[X1, . . . , Xn](X1,...,Xn) such that the valua-

tions of the obvious regular system of parameters of this center freely generate
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Z⊕n and the residue field coincides with the residue field of νlex. Then a Frobe-

nius splitting of Rνlex → Rp
νlex

is obtained by extending the canonical splitting on

Fp[X1, . . . , Xn](X1,...,Xn) with respect to the basis

{Xβ1
1 . . . Xβ

n : 0 ≤ βi ≤ p− 1}.

This splitting of Fp[X1, . . . , Xn](X1,...,Xn) maps

Xα1
1 . . . Xαn

n 7→


Xα1

1 . . . Xαn
n if p|αi for all i,

0 otherwise.

(c) Let Γ = Z⊕Zπ ⊂ R. Consider the valuation ν (Example II.57(2)) of Fp(X, Y, Z)/Fp

given by

ν(X) = ν(Y ) = 1, ν(Z) = π.

As verified before, dimQ(Q⊗Z Γ) = 2 and tr. deg κν/Fp = 1 and so ν is an Abhyankar

valuation. Although ν is centered on the regular local ring Fp[X, Y, Z](X,Y,Z), no reg-

ular system of parameters of this center can freely generate the value group because

the center has dimension 3, whereas the value group is free of rank 2. However,

blowing up the origin in A3
Fp , we see that ν is now centered on the regular local ring

Fp
[
X,

Y

X
,
Z

X

]
(X,Z/X)

,

and the valuations of the regular system of paramaters {X,Z/X} freely generate

Γν . Furthermore, the residue field of Fp[X, Y/X,Z/X](X,Z/X) can be checked to

coincide with the residue field of the valuation ring. Relabelling Y/X and Z/X as

U,W respectively, a Frobenius splitting of Rν is obtained by extending the Frobenius

splitting of Fp[X,U,W ](X,W ) given by the same rule as in example (a) with respect

to the transcendental elements X,U,W over Fp.
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Remarks IV.37.

1. We expect any Abhyankar valuation ring of an F -finite function field to be

Frobenius split. However, at present we do not know how to remove the sepa-

rability hypothesis on the residue field of the valuation since we use Knaf and

Kuhlmann’s local monomialization result which also requires this additional

assumption.

2. As is the case in algebraic geometry, our investigation reveals that Frobenius

splitting is quite mysterious for valuation rings. We have made some headway

into understanding this notion of singularity when the defect of ν/νp is one of

two possible extremes, that is, when ν/νp is totally unramified and when ν/νp

is defectless. However, we do not really understand how Frobenius splitting

behaves for intermediate defect.

4.5 Tight closure of ideals

A preliminary investigation of tight closure in the setting of valuation rings was

started in [DS16]. The few tight closure related results obtained in [DS16] stem

organically from the authors’ focus on understanding F-regularity for valuation rings.

In this section, we present a more systematic treatment of tight-closure of ideals of

valuation rings. In doing so we discover that tight closure is intimately related to

valued fields which are f -adic in the valuation topology.

Recall that if R is domain of prime characteristic (not necessarily Noetherian),

then the tight closure of an ideal I or R, denoted I∗, consists of elements r ∈ R

for which there exist c 6= 0 such that for all e� 0,

crp
e ∈ I [pe].
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An ideal I is tightly closed if I∗ = I.

Here are some basic properties of tight closure.

Proposition IV.38. Let I be an ideal of a domain R of characteristic p.

1. I∗ is an ideal of R that contains I.

2. I∗ 6= R if and only if
⋂
e∈N I

[pe] = (0).

3. If ϕ : R ↪→ S is an injective ring homomorphism of domains, then I∗S ⊆ (IS)∗.

Proof. The proof of (1) is easy, so we omit it. For the proof of (2), note that I∗ = R

if and only if 1 ∈ I∗. Looking back at the definition of tight closure, this is equivalent

to the existence of a non-zero c ∈ R such that for all e� 0,

c = c · 1 ∈ I [pe].

But such a c is precisely a non-zero element in the intersection
⋂
e∈N I

[pe]. For (3)

note that I [pe]S = (IS)[pe] for all e ∈ N, and if i ∈ I∗, then using the injectivity of ϕ

it follows that ϕ(i) ∈ (IS)∗. Since I∗S is generated as an ideal of S by elements of

the form ϕ(i) for i ∈ I∗, we get the desired inclusion.

Remark IV.39. It is not clear if I∗ is tightly closed in the setting of arbitrary domains

of prime characteristic. The proof in the Noetherian case uses finite generation of I∗

in an essential way. We will later see that although valuation rings are highly non-

Noetherian, tight closure is a closure operation on ideals of such rings (Corollary

IV.46).

Proposition IV.38 implies that valuation rings of Krull dimension > 1 have many

proper ideals whose tight closure is the whole ring.

Lemma IV.40. Let V be a valuation ring of characteristic p, and I an ideal of V .

If Q is a non-zero prime ideal of V such that Q ( I, then I∗ = V .
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Proof. By hypothesis there exists i ∈ I such that i /∈ Q. Since Q is prime, for all

e > 0,

ip
e

/∈ Q.

Because any two ideals of a valuation ring are comparable, it follows that for all

e > 0,

0 6= Q ( I [pe],

and therefore I∗ = V by Proposition IV.38(2).

Tight closure is an interesting operation only for those valued fields that are f -adic

in the valuation topology.

Proposition IV.41. Let ν be a non-trivial valuation of a field K of prime charac-

teristic. The following are equivalent:

1. K is f -adic in the valuation topology induced by ν (see Definition II.32).

2. There exists a non-zero ideal I of Rν such that I∗ 6= Rν.

Proof. Theorem II.39 shows that K is f -adic in the valuation topology if and only

if there exists a non-zero element a ∈ Rν such that

⋂
e∈N

(ap
e

) =
⋂
n∈N

(an) = (0).

The existence of such a non-zero element is clearly equivalent to the existence of an

ideal I of Rν such that I∗ 6= Rν by Proposition IV.38(2).

In light of Proposition IV.41, we will assume in our discussion of tight closure

that valued fields are f -adic in the valuation topology. Recall, this implies that the

corresponding valuation rings then have a height 1 prime ideal (when the valuation

is non-trivial) by Theorem II.39.
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Theorem IV.42. Let ν be a non-trivial valuation of a field K of characteristic p

such that K is f -adic in the topology induced by ν. Let I be ideal of Rν and p be the

unique height 1 prime of Rν.

1. If p ( I, then I∗ = Rν.

2. If I ( p, then I∗ 6= Rν.

3. p∗ 6= Rν if and only if (Rν)p is a discrete valuation ring.

Proof. We already proved (1) in Lemma IV.40. To prove (2) we need to show that

if I ( p, then
⋂
e∈N I

[pe] = (0). Lemma II.26 implies that for all e > 0,

I [pe] = Ip
e

,

and so, ⋂
e∈N

I [pe] =
⋂
n∈N

In

is a prime ideal of Rν by Proposition II.21. However
⋂
e∈N I

[pe] is properly contained

in p, which is the height 1 of Rν . This forces
⋂
e∈N I

[pe] to be the zero ideal.

(3) Suppose (Rν)p is a discrete valuation ring. Consider the injective localization

map Rν ↪→ (Rν)p. By part 3 of Proposition IV.38, we have

p∗(Rν)p ⊆ (p(Rν)p)
∗.

If (Rν)p is a discrete valuation ring, (p(Rν)p)
∗ = p(Rν)p 6= (Rν)p, and so p∗ cannot

equal Rν .

For the converse, if p∗ 6= Rν , then

(0) =
⋂
e∈N

p[pe] =
⋂
n∈N

pn.
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This shows that p 6= p2, and so there exists a ∈ p − p2. Since ideals of Rν are

comparable, we get p2 ( aRν . Thus for all non-zero x ∈ p,

ν(x2) = 2ν(x) > ν(a). (4.12)

The local ring (Rν)p is a valuation ring of K of Krull dimension 1. Thus there exists

a real-valued valuation (see Proposition II.12)

w : K× → R,

whose corresponding valuation ring is (Rν)p. The localization map

Rν ↪→ (Rν)p

induces an order-preserving group homomorphism ϕ : Γν → R such that the following

diagram commutes

K× Γν

R

w

ν

ϕ

Then (4.12) shows that for all x ∈ p,

2w(x) = ϕ(2ν(x)) ≥ ϕ(ν(a)) = w(a) > 0,

where the last inequality holds because a is a non-zero element of the maximal ideal

of (Rν)p. Hence for all x ∈ p,

w(x) ≥ w(a)

2
> 0, 1 (4.13)

and so (Rν)p is a discrete valuation ring using the following group-theoretic observa-

tion.
1Division by 2 makes sense because w takes values in R.
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Lemma IV.43. Let Γ be a non-trivial subgroup of R. If

inf{γ ∈ Γ : 0 < γ} > 0,

then Γ is order isomorphic to Z.

Proof of Lemma IV.43. Let ` := inf{γ ∈ Γ : 0 < γ}. By hypothesis, ` > 0. We first

show that ` ∈ Γ. If not, then there exists α, β ∈ Γ such that

` < β < α < `+ ε,

for ε = `/2. Then α− β ∈ Γ (since Γ is a group) and

0 < α− β < `,

contradicting the definition of `. Therefore ` ∈ Γ, and then a similar argument shows

that Γ = Z`.

The proof of the theorem follows because we know that every element of the maximal

ideal p(Rν)p has valuation at least w(a)/2 by (4.13), which means that

0 < w(a)/2 ≤ inf{γ ∈ Γw : 0 < γ}.

The lemma then allows us to conclude that Γw is order isomorphic to Z.

Corollary IV.44. Let ν be a valuation of a field K of characteristic p. The following

are equivalent:

1. All ideals of Rν are tightly closed.

2. mν is tightly closed.

3. Rν is Noetherian.
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Proof. A Noetherian valuation ring is either a field or a discrete valuation ring, hence

always regular. Thus (3) ⇒ (1) is well-known. For the converse, we may assume ν

is non-trivial as otherwise the implication is trivial. Then Proposition IV.41 implies

that K is f -adic in the valuation topology induced by ν. Let p be the unique height

1 prime of Rν . Since all ideals of Rν are tightly closed, Theorem IV.42 implies that

there does not exist an ideal I 6= Rν such that

p ( I.

Therefore p must be the maximal ideal of Rν . Moreover since p∗ = p 6= Rν , Theorem

IV.42 again implies that Rν = (Rν)p is a discrete valuation ring. Thus (1) and (3)

are equivalent.

The implication (3)⇒ (2) is also clear. To finish the proof, it suffices to show (2)

⇒ (3). If m∗ν = mν , then Proposition IV.38(2) implies

⋂
e∈N

m[pe]
ν = 0.

Hence by Lemma IV.40, there is no non-zero prime ideal Q of Rν such that

Q ( mν .

Therefore dim(Rν) ≤ 1, and a similar argument as in the previous paragraph again

shows that Rν is Noetherian.

4.5.1 Probing deeper

The above results imply that only ideals contained in the height 1 prime of a

valuation ring (if such a prime exists) have interesting tight closure. We now provide

a more precise characterization of the tight closure of such ideals.
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Proposition IV.45. Let ν be a non-trivial valuation of a field K of characteristic

p such that K is f -adic in the valuation topology induced by ν. Let p be the height 1

prime ideal of Rν, and

w : K× → R

be a valuation whose corresponding valuation ring is (Rν)p. For an ideal I ⊆ p, if

a := inf{w(i) : i ∈ I − {0}},

then

I∗ = {x ∈ Rν : w(x) ≥ a} ∪ {0}.

In particular, I∗ = I if a /∈ Γw.

Proof. As in the proof of Theorem IV.42, there exists an ordered group homomor-

phism

ϕ : Γν → R

such that ϕ ◦ ν = w.

Since I [pe] is generated by pe-th powers of elements of I, it follows that

inf{w(j) : j ∈ I [pe] − {0}} = pea. (4.14)

Let x ∈ I∗. Then there exists a non-zero element c ∈ Rν such that for e� 0,

cxp
e ∈ I [pe].

Assume for contradiction that w(x) < a. Then for e� 0,

pe(a− w(x)) = pea− w(xp
e

) > w(c).

Thus for e� 0,

pea > w(cxp
e

),
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which contradicts cxp
e ∈ I [pe] because of (4.14). Thus,

I∗ ⊆ {x ∈ Rν : w(x) ≥ a} ∪ {0}.

Conversely, if x ∈ Rν such that w(x) ≥ a, then for any non-zero element c ∈ p and

e > 0,

w(cxp
e

) > pea,

because w(c) > 0. By definition of infimum, there exists i ∈ I such that

w(c)

pe
+ w(x) > w(i) ≥ a,

and so w(cxp
e
) > w(ip

e
). Since w = ϕ ◦ ν, we see that

ϕ(ν(cxp
e

)) > ϕ(ν(ip
e

)),

which, because ϕ is order preserving, implies that

ν(cxp
e

) > ν(ip
e

).

Hence, for all e > 0, there exists i ∈ Rν such that

cxp
e ∈ ipeRν ⊆ I [pe],

that is, x ∈ I∗. This proves

{x ∈ Rν : w(x) ≥ a} ∪ {0} ⊆ I∗,

thereby demonstrating that I∗ = {x ∈ Rν : w(x) ≥ a} ∪ {0}.

For the second part of the proposition, it suffices to show I∗ ⊆ I, if a /∈ Γw. Using

what we just proved,

I∗ = {x ∈ Rν : w(x) ≥ a} ∪ {0} = {x ∈ Rν : w(x) > a} ∪ {0}.



147

However, for any x ∈ Rν such that w(x) > a, there exists i ∈ I − {0} satisfying

w(x) > w(i) > a,

by the definition of infimum. Again using w = ϕ ◦ ν this shows ν(x) > ν(i), that is,

x ∈ iRν ⊆ I. Thus I∗ ⊆ I.

Proposition IV.45 confirms that tight closure is indeed a closure operation for

ideals of a valuation ring (c.f. Remark IV.39).

Corollary IV.46. Let ν be a valuation of field K of characteristic p. Then for any

ideal I of Rν, I∗ is tightly closed.

Proof. We may assume K is f -adic in the topology induced by ν as otherwise the

tight closure of every non-zero ideal of Rν is Rν itself (Proposition IV.41), and Rν is

clearly tightly closed. If w is the valuation as defined as in Proposition IV.45, then

for any ideal I of Rν , I
∗ = {x ∈ Rν : w(x) ≥ a} ∪ {0}, where

a := inf{w(i) : i ∈ I − {0}}.

Clearly a is also the infimum of {w(j) : j ∈ I∗ − {0}}, which shows (I∗)∗ = I∗.

Corollary IV.47. If V is a valuation ring of Krull dimension 1, then for any ideal

I of V , I∗ = I or I∗ is a principal ideal.

Proof. The associated valuation of V can be chosen to be real-valued, and so calling

this valuation w is consistent with the notation of Proposition IV.45. Let I be an

ideal of V , and suppose a is the infimum as in Proposition IV.45. If a ∈ Γw, then I∗

is the principal ideal generated by any element x ∈ V such that w(x) = α. Otherwise

I∗ = I by the second assertion of Proposition IV.45.
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Corollary IV.48. Let ν be a non-trivial valuation of a field K of characteristic p

such that K is f -adic in the valuation topology. Let p be the height 1 prime of Rν.

Then the following are equivalent:

1. p∗ 6= Rν.

2.
⋂
e∈N p

[pe] = (0).

3. (Rν)p is a discrete valuation ring.

4. p∗ = p.

Proof. (1) is equivalent to (2) by Proposition IV.38, and (1) is equivalent to (3) by

Theorem IV.42. Thus it suffices to show that (1) and (4) are equivalent. Clearly (4)

implies (1). Conversely, if p∗ 6= Rν , then p∗ cannot properly contain p. Otherwise the

tight closure of p∗ would equal Rν by Theorem IV.42(1), contradicting (p∗)∗ = p∗.

4.6 F -regularity of valuation rings

In our discussion of F -regularity in Chapter 3, we introduced the notion of F -

pure regularity which mimics the definition of strong F -regularity, but replaces the

splitting of certain maps by purity. The present chapter exhibits that purity is a

more tractable notion in the non-Noetherian world than splitting. Indeed, valuation

rings are always F -pure, while there exist even Noetherian valuation rings that are

not Frobenius split. Thus it is natural to focus on F -pure regularity when studying

the various variants of F -regularity in the valuative setting.

4.6.1 F -pure regularity and valuations

The main result is:
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Theorem IV.49. [DS16] A valuation ring of characteristic p is F-pure regular if

and only if it is Noetherian. Equivalently, a valuation ring is F-pure regular if and

only if it is a field or a discrete valuation ring.

A key ingredient in the proof is the following characterization of the set of elements

along which a valuation ring fails to be F-pure (see Definition III.68):

Theorem IV.50. [DS16] The set of elements c along which a valuation ring (V,mV , κV )

of characteristic p fails to be F-pure is the prime ideal

⋂
e∈N

m
[pe]
V .

Proof of Theorem IV.50. Recall
⋂
e∈Nm

[pe]
V is a prime ideal because it equals

⋂
n∈N

mn
V

(see Lemma II.26), and the latter is prime by Proposition II.21.

Let I be the set of elements along which V fails to be F -pure2. First, take any

c ∈
⋂
e∈N m

[pe]
V . We need to show that V is not F-pure along c, that is, the map

λec : V → F e
∗V sending 1 7→ c

is not pure for any e. Because c ∈ m[pe],

λec ⊗ idκV

is the zero map. Therefore λec is not pure for any e, which means V is not F-pure

along c, that is, c ∈ I.

2One can show independently of establishing the equality

I =
⋂
e∈N

m
[pe]
V

that I is a prime ideal. Indeed, I is an ideal of V since I is closed under multiplication by elements of V (Proposition
III.78), and any subset of a valuation ring which is closed under multiplication by elements of the ring is an ideal
(Lemma II.17). Moreover, since V is F -pure, 1 /∈ I and so I is a prime ideal by again applying Proposition III.78.
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For the other inclusion, let c /∈ m[pe] for some e > 0. We claim that λec : V → F e
∗V

is pure. Apply Lemma III.29(g) to the set Σ of finitely generated submodules of F e
∗V

which contain c. Note Σ is a directed set under inclusion with a least element, namely

the V -submodule of F e
∗V generated by c, and F e

∗V is the colimit of the elements of

Σ. It suffices to show that if T ∈ Σ, then

λT : V → T sending 1 7→ c

is pure. But T is free since it is a finitely generated, torsion-free module over a

valuation ring (Proposition II.14). Since c /∈ m[pe] = mF e
∗V , by the V module

structure on T , we get c /∈ mT . By Nakayama’s Lemma, we know c is part of a free

basis for T . So λT splits, and is pure in particular.

Remark IV.51. The prime ideal
⋂
e∈N m

[pe]
V is a valuation theoretic analogue of Aber-

bach and Enescu’s splitting prime [AE05] in the Noetherian setting.

Proof of Theorem IV.49. A Noetherian valuation ring is regular and so F -pure reg-

ular (Theorem III.73). Conversely, suppose V is F -pure regular. We may assume V

is not a field, that is, mV 6= (0). Let

M :=
⋂
e∈N

m
[pe]
V .

By Theorem IV.50, M = 0. In particular,

M 6= mV ,

and so V = V/M is a discrete valuation ring by Corollary II.24.

Corollary IV.52. [DS16] For a valuation ring (V,mV , κV ) of characteristic p, let

M :=
⋂
e∈Nm

[pe]
V . Then the quotient V/M is a F-pure regular valuation ring. Fur-

thermore, V is F-pure regular if and only if M is zero.
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Proof. The second statement follows immediately from Theorem IV.50. For the first,

observe that V/M is a domain since M is prime. Thus ideals of V/M inherit a total

ordering under inclusion from V , and so V/M is a valuation ring whose maximal

ideal η (which is the image of mV ) satisfies
⋂
e∈N η

[pe] = 0. So V/M is F -pure regular

by Theorem IV.50.

Corollary IV.53. [DS16] For a valuation ring V of prime characteristic, the fol-

lowing are equivalent:

1. V is F -pure regular.

2. All ideals of V are tightly closed.

3. The maximal ideal of V is tightly closed.

4. V is Noetherian.

Proof. The equivalence of (2), (3) and (4) is precisely the content of Corollary IV.44,

and (1) and (4) are equivalent by Theorem IV.49.

Remark IV.54. An outstanding open problem in tight closure theory of Noetherian

rings is whether strong F -regularity (more generally F -pure regularity) is equivalent

to all ideals being tightly closed, also known as weak F -regularity. Corollary IV.53

confirms this conjecture in the setting of valuation rings.

Remark IV.55. Theorem IV.49 indicates that F -regularity is perhaps a useful notion

of singularity only for Noetherian rings. Nevertheless, there do exist non-Noetherian

rings that are F -pure regular. For example, a polynomial ring in infinitely many

variables over Fp is F -pure regular, but in this example the fraction field is not

F -finite. Perhaps a reasonable conjecture is that any F -pure regular domain with

F -finite fraction field has to be Noetherian.
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4.6.2 Split F-regularity

Of course, there is another obvious way3 to adapt Hochster and Huneke’s definition

of strong F -regularity to arbitrary rings of prime characteristic p.

Definition IV.56. A ring R is split F -regular if for all non-zero divisors c, there

exists e ∈ N such that the map R→ F e
∗R sending 1 to c splits as a map of R-modules.

Since split maps are pure, a split F -regular ring is F -pure regular. Thus a split

F -regular valuation ring must be Noetherian. Split F -regular rings are also clearly

Frobenius split. On the other hand, Example III.57 shows that a discrete valuation

ring need not be Frobenius split, so split F -regularity is strictly stronger than F -pure

regularity. In particular, not every regular local ring is split F -regular, so split F -

regularity is perhaps not the correct notion of singularity even for Noetherian rings

in a non-F -finite setting.

Remark IV.57. Nevertheless, split F-regularity usually coincides with F -pure reg-

ularity in geometric situations. For example, if R is an F -pure regular Noetherian

domain whose fraction field is F -finite, then the only obstruction to split F -regularity

is the splitting of Frobenius. This is a consequence of Corollary III.56, which tells

us that R is F -finite if it is Frobenius split, and Theorem III.37, which implies that

splitting and purity are the same in F -finite Noetherian rings.

Corollary IV.58. For a discrete valuation ring V of characteristic p whose fraction

field K is F -finite, the following are equivalent:

(i) V is split F -regular;

(ii) V is Frobenius split;

(iii) V is F -finite;
3This generalization is used for cluster algebras in [BMRS15] for example.
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(iv) V is free over V p;

(v) V is excellent.

(vi) p[κV : κpV ] = [K : Kp].

(vii) dimκpV
V/mp

V = [K : Kp].

Moreover, if K is a function field over an F-finite ground field k, and V is a valuation

of K/k, then (i)-(vii) are equivalent to V being a divisorial valuation ring.

Proof. All this has been proved already. Recall that a discrete valuation ring is a

regular local ring, so it is always F-pure regular and hence split F-regular if it is

F-finite. Also, the final statement is equivalent to the others by Corollary IV.25.



CHAPTER V

Uniform approximation of Abhyankar valuation ideals in
prime characteristic

We have seen so far that Abhyankar valuations of function fields, which are higher

rational rank analogues of divisorial valuations, satisfy many desirable properties.

For example, the value group of an Abhyankar valuation is a free abelian group of

finite rank and the residue field is a finitely generated extension of the ground field.

Moreover, under a mild hypothesis on the residue field, an Abhyankar valuation al-

ways admits a local monomialiation in any characteristic (Theorem II.69). Using

this local monomialization result, we even established in Chapter IV that the valu-

ation rings associated to Abhyankar valuations over perfect ground fields of prime

characteristic are always Frobenius split. In this chapter we provide further evidence

in favor of the geometric nature of these valuations. We begin by introducing the

main result (Theorem V.1) and providing an indication of our strategy of proving it.

5.1 The main result

Let X be a variety over a field k of prime characteristic, with function field K.

Suppose ν is a real-valued valuation of K/k centered on X. Then for all m ∈ R, we

have the valuation ideals

am(X) ⊆ OX ,

154
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consisting of local sections f such that ν(f) ≥ m. When X = Spec(A), we use am(A)

to denote the ideal {a ∈ A : ν(a) ≥ m} of A.

The goal of this chapter is to use the theory of asymptotic test ideals in positive

characteristic to prove the following uniform approximation result for Abhyankar

valuation ideals established in the characteristic 0 setting by Ein, Lazarsfeld and

Smith [ELS03].

Theorem V.1. Let X be a regular (equivalently smooth) variety over a perfect field

k of prime characteristic with function field K. For any non-trivial, real-valued

Abhyankar valuation ν of K/k centered on X, there exists e ≥ 0, such that for all

m ∈ R≥0 and ` ∈ N,

am(X)` ⊆ a`m(X) ⊆ am−e(X)`.

Thus, the theorem says that the valuation ideals a`m associated to a real-valued

Abhyankar valuation are uniformly approximated by powers of am. Thus even though

the associated graded ring ⊕
m∈R

am

is usually very far from being finitely generated, Theorem V.1 provides some measure

of control over it.

In [ELS03] (see also [Blu18]), Theorem V.1 is proved over a ground field of charac-

teristic 0 using the machinery of asymptotic multiplier ideals, first defined in [ELS01]

in order to prove a uniformity statement about symbolic powers of ideals on regular

varieties. It has since become clear that in prime characteristic a test ideal is an

analogue of a multiplier ideal. Introduced by Hochster and Huneke in their work on

tight closure [HH90], the first link between test and multiplier ideals was forged by

Smith [Smi00] and Hara [Har01], following which Hara and Yoshida introduced the
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notion of test ideals of pairs [HY03]. Even in the absence of vanishing theorems in

positive characteristic, test ideals of pairs were shown to satisfy many of the usual

properties of multiplier ideals of pairs that make the latter such an effective tool in

birational geometry [HY03, HT04, Tak06] (see also Theorem V.23).

We employ an asymptotic version of the test ideal of a pair to prove Theorem

V.1, drawing inspiration from the asymptotic multiplier ideal techniques in [ELS03].

However, instead of utilizing tight closure machinery, our approach to asymptotic

test ideals is based on Schwede’s dual and more global reformulation of test ideals

using p−e-linear maps, which are like maps inverse to Frobenius [Sch10, Sch11] (see

also [Smi95, LS01]).

Asymptotic test ideals are associated to graded families of ideals (Definition V.25),

an example of the latter being the family of valuation ideals a• := {am(A)}m∈R≥0
.

For each m ≥ 0, one constructs the m-th asymptotic test ideal τm(A, a•) of the family

a•, and then Theorem V.1 is deduced using

Theorem V.2. Let ν be a non-trivial real-valued Abhyankar valuation of K/k, cen-

tered on a regular local ring (A,m), where A is essentially of finite type over the per-

fect field k of prime characteristic with fraction field K. Then there exists r ∈ A−{0}

such that for all m ∈ R≥0,

r · τm(A, a•) ⊆ am(A).

In other words,
⋂
m∈R≥0

(am : τm(A, a•)) 6= (0).

The proof of the characteristic 0 analogue of Theorem V.2 in [ELS03] uses reso-

lution of singularities, which is not known in prime characteristic. For our purpose,

Knaf and Kuhlmann’s local monomialization of Abhyankar valuations suffices in-

stead. Local monomialization allows us to reduce Theorem V.2 to the case where
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the valuation ideals are monomial ideals in a polynomial ring, allowing us to use a

very concrete characterization of asymptotic test ideals of monomial ideals (Example

V.24). Thus we can bypass the otherwise difficult problem of computing asymptotic

test ideals of graded families.

Finally, as in [ELS03], Theorem V.2 also gives a new proof of a prime characteristic

version of Izumi’s theorem for arbitrary real-valued Abhyankar valuations with a

common regular center (see also the more general work of [RS14]).

Corollary V.3 (Izumi’s Theorem for Abhyankar valuations in prime char-

acteristic). Let ν and w be non-trivial real-valued Abhyankar valuations of K/k,

centered on a regular local ring (A,m), as in Theorem V.2. Then there exists a real

number C > 0 such that for all x ∈ A− {0},

ν(x) ≤ Cw(x).

Thus, Corollary V.3 implies that the valuation topologies on A induced by two non-

trivial real-valued Abhyankar valuations are linearly equivalent. We also show that

Theorem V.1, Theorem V.2 and Corollary V.3 fail in general when the real-valued

valuations are not Abhyankar (Examples V.39)

5.2 Valuation ideals

We are primarily interested in valuations whose value groups are ordered sub-

groups of R, a condition that is equivalent to the valuation rings having Krull di-

mension 1 (Proposition II.12). For any such real-valued valuation ν with center x

on X and any m ∈ R, one has the valuation ideal am(X) ⊆ OX , where locally

Γ(U, am(X)) =


{f ∈ OX(U) : ν(f) ≥ m}, if x ∈ U ,

OX(U), if x /∈ U .
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Note am(X) = OX when m ≤ 0. If X = Spec(A), we use am(A) to denote the ideal

{a ∈ A : ν(a) ≥ m} of A, and when X or A is clear from context, we just write am.

An important feature of valuation ideals implicitly used in the rest of the chapter

is the following:

Lemma V.4. [Dat17b] Given an affine variety Spec(A), if p is the prime ideal of

A corresponding to the center of a real-valued valuation ν on Spec(A), then for all

real numbers m > 0, the ideal am(A) is p-primary. Moreover, am(Ap) = am(A)Ap.

Proof. For b ∈ A, if ν(b) > 0, then by the Archimedean property, nν(b) = ν(bn) ≥ m,

for some n ∈ N. This shows that p is the radical of am(A). If ab ∈ am(A) and

a /∈ am(A), then ν(b) > 0, so that for some n, bn ∈ am(A), as we just showed. Hence

am(A) is p-primary.

Note if s /∈ A − p, ν(s) = 0. Thus, the inclusion am(A)Ap ⊆ am(Ap) is clear.

Conversely, if a/s ∈ am(Ap), since ν(a/s) = ν(a) − ν(s) = ν(a), we get a ∈ am(A),

proving am(Ap) ⊆ am(A)Ap.

Remark V.5. The argument in Lemma V.4 can be easily modified to see that val-

uation ideals are quasicoherent. One can extend the definition of valuation ideals

to valuations that are not necessarily real-valued. However, when the Archimedean

property of real numbers does not hold for the value group, these ideal sheaves may

no longer be quasicoherent.

We now show that as a consequence of local monomialization of Abhyankar val-

uations (Theorem II.69) one can always choose a regular center of any real-valued

Abhyankar valuation whose valuation ideals are monomial in an appropriate sense.

Theorem V.6. [DS17b] Assume k is perfect, and ν is a non-trivial, real-valued

Abhyankar valuation of K/k of rational rank d, centered on an affine variety Spec(R)
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of K/k. Then there exists an affine variety Spec(S) of K/k, along with an inclusion

of rings R ↪→ S such that

1. S is regular and ν is centered at a point x ∈ Spec(S) d of codimension d.

2. The valuation ideals of OSpec(S),x are generated by monomials in a regular system

of parameters of OSpec(S),x.

Proof. Recall that our hypotheses imply that the value group Γν is a free abelian

group of rank d. By Corollary II.71, there exists S satisfying (1) and a regular system

of parameters {x1, . . . , xd} of OSpec(S),x such that ν(x1), . . . , ν(xd) freely generate Γν .

Note this implies that distinct monomials in x1, . . . , xd have distinct valuations.

Suppose p is the maximal ideal of OSpec(S),x. We want to show that the valuation

ideals am of OSpec(S),x are monomial in {x1, . . . , xd}. For m > 0, since am is p-

primary, we know that pn ⊆ am for some n ∈ N. Note pn has a monomial generating

set {xα1
1 . . . xαdd : α1 + · · · + αd = n}. Modulo pn, any non-zero element t ∈ am can

be expressed as a finite sum s of monomials of the form xβ11 . . . xβdd , with

0 < β1 + · · ·+ βd ≤ n− 1,

and where the coefficients of the monomials are units in OSpec(S),x. Then expressing

t = s+ u,

for u ∈ pn, we see that

ν(s) ≥ m

because ν(t), ν(u) ≥ m. However, ν(s) equals the smallest valuation of the monomi-

als xβ11 . . . xβdd appearing in the sum since monomials have distinct valuations. Thus,

each such xβ11 . . . xβdd ∈ am, completing the proof.



160

Example V.7. Let νπ be the valuation on Fp(X, Y, Z)/Fp with value group Z ⊕

Zπ ⊂ R such that νπ(X) = 1 = νπ(Y ), νπ(Z) = π, and for any polynomial∑
bαβγX

αY βZγ ∈ Fp[X, Y, Z],

νπ(
∑

bαβγX
αY βZγ) = inf{α + β + πγ : bαβγ 6= 0}.

One can verify that νπ is Abhyankar with Q ⊗Z Γνπ = 2 and tr. deg νπ = 1. For

example Y/X is a unit in the valuation ring Rνπ whose image in the residue field

is transcendental over Fp. Note νπ is centered on A3
Fp = Spec(Fp(X, Y, Z)) at the

origin. However, the system of parameters X, Y, Z of the local ring at the origin

do not freely the generate the value group. On the other hand, blowing up the

origin and considering the affine chart Spec(Fp[X, YX ,
Z
X

]), we see that νπ is centered

on Fp[X, YX ,
Z
X

] with center (X,Z/X), and now the regular system of parameters

X,Z/X of the local ring Fp[X, YX ,
Z
X

](X, Z
X

) do indeed freely generate the value group.

Thus the valuation ideals of Fp[X, YX ,
Z
X

](X, Z
X

) are monomials in X and Z/X.

5.3 Test Ideals

Beginning with a review of test ideals, the goal is to construct an asymptotic

version that plays a role similar to asymptotic multiplier ideals in characteristic 0.

We also examine how asymptotic test ideals transform under étale and birational

ring maps. We will work with a dual reformulation of the theory of test ideals due to

Schwede using p−e-linear maps, rather than using tight closure theory. An excellent

source describing this dual approach to test ideals and its relation to tight closure

theory is the survey [ST12].
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5.3.1 Uniformly F -compatible ideals

The construction of test ideals is based on the existence of certain distinguished

ideals that are ‘compatible’ with respect to p−e-linear maps in the following sense:

Definition V.8. Let R be a ring of characteristic p and ϕ : F e
∗R → R a p−e-linear

map. An ideal I of R is ϕ-compatible if

ϕ(F e
∗ (I)) ⊆ I.

In other words, ϕ maps elements of J back into J , or equivalent, ϕ induces a p−e-

linear map

ϕ : F e
∗ (R/I)→ R/I

such that the following diagram commutes

F e
∗R R

F e
∗ (R/I) R/I

ϕ

F e∗ (π) π

ϕ

where the vertical maps are the obvious projections. An ideal I ⊆ R is uniformly

F -compatible if for all e ∈ N and for all ϕ ∈ HomR(F e
∗R,R),

ϕ(F e
∗ (I)) ⊆ I.

We collect some basic properties of compatible ideals.

Proposition V.9. Let R be a ring of characteristic p and ϕ : F e
∗R→ R an R-linear

map, for e > 0.

1. Arbitrary sums and intersections of ϕ-compatible ideals are ϕ-compatible.

2. Finite products of ϕ-compatible ideals are ϕ-compatible.

3. If I is a ϕ-compatible ideal, then any prime ideal associated to I (i.e. an element

of AssR(R/I)) is uniformly ϕ-compatible.
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4. If R is Noetherian and I is a ϕ-compatible ideal, then so is its radical
√
I.

All the above properties hold when ϕ-compatible is replaced by uniformly F -compatible.

Proof. Properties (1) and (2) are clearly from the definition of ϕ-compatibility and

the fact that ϕ is an additive map. For (3), suppose p is an associated prime of I.

Then there exists an element a /∈ I such that

(I : a) = p.

Thus

I ⊇ ϕ(F e
∗ (I)) ⊇ ϕ(F e

∗ (a
pep)) = aϕ(F e

∗ (p)),

and so ϕ(F e
∗ (p)) ⊆ (I : a) = p, as desired. Assertion (4) follows from (1) and (3)

because in the Noetherian case
√
I is the intersection of the prime ideals associated

to I.

Finally all four assertions also hold for uniformly F -compatible ideals because ϕ

is an arbitrary p−e-linear map in this proposition.

Lemma V.10. Let R be a Frobenius split ring. Then any ideal of R which is com-

patible with respect to a Frobenius splitting is a radical ideal. Hence all uniformly

F -compatible ideals of a Frobenius split ring are radical.

Proof. Let ϕ : F∗R → R be a Frobenius splitting, and I be an ideal of R which is

ϕ-compatible. Then ϕ induces a Frobenius splitting

ϕ : F e
∗ (R/I)→ R/I

of R/I which means that the Frobenius map of R/I is injective. Thus R/I is reduced,

and so I is a radical ideal. The second assertion follows easily from the first and the

definition of uniform F -compatibility.
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Remark V.11. If R is a split F -regular domain, then the only uniformly F -compatible

ideals of R are the zero ideal and the unit ideal. Indeed if I is uniformly F -compatible

and non-zero, then for an non-zero element i ∈ I, there exists ϕ : F e
∗R → R that

maps i 7→ 1. Then I ⊇ ϕ(F e
∗ (I)) = R.

5.3.2 F -compatible ideals in valuation rings

Drawing inspiration from our considerations in Chapter IV, let us try to figure

out which ideals of valuation rings are uniformly F -compatible. In fact, Lemma V.10

immediately implies

Proposition V.12. If V is a Frobenius split valuation ring, then any ideal of V

which is compatible with respect to a Frobenius splitting is prime ideal. In particular,

all uniformly F -compatible ideals of V are prime or the whole ring.

Proof. Apply Lemma V.10 along with the fact that radical ideals of valuation rings

are prime or the whole ring.

Corollary V.13. Let K/k be a function field over an F -finite ground field k, and

ν be an Abhyankar valuation of K/k such that κν is separable over k. Then any

uniformly F -compatible ideal of Rν is a prime ideal or the whole ring.

Proof. Rν is Frobenius split by Theorem IV.30 and so we may apply the previous

proposition.

For an ideal a of a valuation ring V , the ideal⋂
e∈N

a[pe]

featured prominently during our investigation of tight closure and F -regularity for

valuation rings in the previous chapter. Unsurprisingly, these intersections are also

related to uniform F -compatibility.
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Lemma V.14. Let R be a ring of characteristic p and a be an ideal of R. Then the

ideal ⋂
e∈N

a[pe]

is uniformly F -compatible.

Proof. Let ϕ be a p−e-linear map. Then for any f > 0,

ϕ(F e
∗ (a

[pe+f ])) ⊆ a[pf ]

because a[pe+f ] is generated by elements of the form (xp
f
)p
e
, for x ∈ a, and

ϕ((xp
f

)p
e

) = xp
f ∈ a[pf ].

Therefore,

ϕ
(
F e
∗ (
⋂
f∈N

a[pf ])
)

= ϕ
(
F e
∗ (
⋂
f∈N

a[pe+f ])
)
⊆
⋂
f∈N

a[pf ],

as desired.

Theorem V.15. If (V,mV , κV ) is a valuation ring of characteristic p, then any non-

maximal prime ideal of V is uniformly F -compatible. In addition, mV is uniformly

F -compatible when it is not finitely generated.

Proof. Let p be a non-maximal prime ideal of V and define

Σ := {a ∈ V : a ∈ mV − p}.

Note Σ is non-empty because p is not maximal. We claim that

p =
⋂
a∈Σ

⋂
e∈N

ap
e

V.

First observe that the claim shows that p is uniformly F -compatible since
⋂
e∈N a

peV

is uniformly F -compatible (Lemma V.14), and arbitrary intersections of uniformly

F -compatible ideals are uniformly F -compatible by Proposition V.9(1).
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If a /∈ p, then for all e ∈ N, ap
e
/∈ p. By comparability of ideals of a valuation

ring, it follows that p ⊆
⋂
e∈N a

peV , and hence,

p ⊆
⋂
a∈Σ

⋂
e∈N

ap
e

V.

The ideal ⋂
a∈Σ

⋂
e∈N

ap
e

V

is prime because it is an intersection of the prime ideals
⋂
e∈N a

peV (Proposition

II.21). To finish the proof of the claim it suffices to show that for any prime ideal q

such that p ( q, we have

q 6=
⋂
a∈Σ

⋂
e∈N

ap
e

V. (5.1)

Now by hypothesis, there exists a ∈ q − p. Thus a ∈ Σ, and in order to establish

(5.1) it is enough to prove that ⋂
e∈N

ap
e

V 6= q.

If q is not generated by a then this is obvious. If q is generated by a (this is impossible

unless q is the maximal ideal by Lemma II.18), then

apV 6= aV = q,

and we are again done.

For the second assertion of the theorem, if mV is not finitely generated, then for

all n ∈ N,

m
[n]
V = mn

V = mV ,

where the first equality follows from Lemma II.26 and the second equality from

Proposition II.19 (see also Notation II.25 for the meaning of m
[n]
V ) . Thus,

mV =
⋂
e∈N

mpe

V =
⋂
e∈N

m
[pe]
V

is uniformly F -compatible using Lemma V.14.
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5.3.3 Absolute test ideals and test ideals of pairs

From now we assume rings are Noetherian and F -finite. Without these hypotheses

it is not clear if test ideals, as we will define them, exist (Remark V.22). For simplicity

all definitions will be made for domains, since this is the only setting we will need.

Moreover, although test ideals can be patched affine locally to give global test ideals

of Noetherian, F -finite schemes, we will work exclusively in the affine setting.

The notion of the (absolute) test ideal of a Noetherian, F -finite domain ties in

naturally with our discussion of F -compatible ideals in the previous subsection.

Definition V.16. If R is a Noetherian, F -finite domain of characteristic p, then the

(absolute) test ideal of R, denoted τ(R), is the unique minimal element (with

respect to inclusion) of the collection of non-zero, uniformly F -compatible ideals of

R.

It is not obvious why the collection of non-zero, uniformly F -compatible ideals

of R has a unique minimal element with respect to inclusion. The existence of this

minimal element is a consequence of a deep result of Hochster and Huneke on the

existence of (completely stable) test elements in tight closure theory [HH94, Theorem

5.10] (see also [ST12] and Theorem V.21).

Before introducing completely stable test elements, we define the more general

notion of test ideals of pairs. The absolute test ideal τ(R) can be interpreted as a

test ideal of a suitable pair.

Definition V.17. Let R be an F-finite Noetherian domain, a ⊆ R a non-zero ideal,

and t > 0 a real number. The test ideal1 of the pair (R, at) is defined to be the

1In tight closure literature, this is usually called the big or non-finitistic test ideal of the pair (R, at).
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smallest non-zero ideal I of R such that for all e ∈ N, and φ ∈ HomR(F e
∗R,R),

φ(F e
∗ (Ia

dt(pe−1)e)) ⊆ I.

It is denoted τ(R, at), or τ(at) when R is clear from context.

Remark V.18. The absolute test ideal τ(R) is the test ideal of the pair (R,R).

We now explain why test ideals of pairs (hence absolute test ideals) exist in our

setting.

Definition V.19. [TW15, Definition 5.1] A non-zero element c of a domain R of

characteristic p is called a test element2 if for all non-zero d ∈ R, there exists e ∈ N,

and φ ∈ HomR(F e
∗R,R), such that φ(F e

∗ (d)) = c.

The following result demonstrates that test elements exist in geometric settings.

Proposition V.20. Let R be a Noetherian F -finite domain of characteristic p.

1. Suppose c is a non-zero element of R such that the localization Rc is strongly

F-regular3. Then some power of c is a test element. Thus, test elements always

exist for F-finite Noetherian domains.

2. If R is essentially of finite type over an F-finite field k, and J(R/k) is the

Jacobian ideal of R, then every non-zero element of J(R/k) is a test element.

Indication of proof. (1) follows from the proof of [HH89, Theorem 3.4] and (2) from

[Hoc04, Corollary 8.2].

Armed with the knowledge that test elements exist for Noetherian F -finite do-

mains, one can verify that test ideals of pairs exist via the following observation:

2This is usually called a completely stable test element in tight closure literature.
3Such a c always exists since the regular locus of R is non-empty (R is generically regular) and open by Proposition

III.11.



168

Theorem V.21. Let R be a F -finite Noetherian domain of characteristic p. If c ∈ R

is a test element, then

τ(R, at) =
∑
e∈N

∑
φ

φ(F e
∗ (ca

dt(pe−1)e)),

where φ ranges over all elements of HomR(F e
∗R,R).

Proof. See [HT04, Lemma 2.1].

Remark V.22. Definition V.17 is a reformulation, due to Schwede, of a notion that

was originally defined via tight closure theory. Despite the myriad applications of

test ideals defined via F -compatible ideals, it should be emphasized that Schwede’s

approach relies crucially on the existence of non-trivial p−e-linear maps. While such

maps are always guaranteed in the F -finite setting, the author’s work with Karen

Smith (see Section 3.6) demonstrates that we cannot expect to develop a theory of

test ideals for non-excellent rings that uses the ideas of uniform F -compatibility.

5.3.4 Properties of test ideals of pairs

Having addressed the issue of the existence of test ideals, we now collect most of

their basic properties, in part to highlight their similarity with multiplier ideals.

Theorem V.23. Suppose R is an F-finite Noetherian domain of characteristic p

with non-zero ideals a and b. Let t > 0 be a real number.

1. If a ⊆ b, then τ(at) ⊆ τ(bt).

2. If the integral closures of a and b coincide, then τ(at) = τ(bt).

3. If s > t, then τ(as) ⊆ τ(at).

4. For any m ∈ N, τ((am)t) = τ(amt).
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5. There exists some ε > 0 depending on t such that for all s ∈ [t, t + ε], τ(as) =

τ(at).

6. τ(R) defines the closed locus of prime ideals p such that Rp is not strongly

F-regular. Thus, τ(R) = R if and only if R is strongly F-regular.

7. We have τ(R)a ⊆ τ(a). Hence, if R is strongly F-regular (in particular regular),

a ⊆ τ(a).

8. If W ⊂ R is a multiplicative set, then τ(W−1R, (aW−1R)t) = τ(R, at)W−1R.

9. If (R,m) is local and R̂ is the m-adic completion of R, then τ(R̂, (aR̂)t) =

τ(R, at)R̂.

10. (Briançon–Skoda) If R is regular and a can be generated by r elements, then

for all integers m ≥ r, τ(am) = aτ(am−1).

11. If R is regular, x ∈ R a regular parameter and R := R/xR, then τ(R, (aR)t) ⊆

τ(R, at)R.

12. (Subadditivity) If R is regular and essentially of finite type over a perfect field,

then for all n ∈ N, τ(ant) ⊆ τ(at)n.

Indication of proof. For proofs and precise references for all statements, please con-

sult [ST12, Section 6], or [SZ15, Theorem 4.6] when the ring is regular (the setting

of this paper).

Example V.24 (Test ideals of monomial ideals). Let a be a non-zero monomial

ideal of the polynomial ring R = k[x1, . . . , xn], where k is an F -finite field character-

istic p > 0. For any real number t > 0, consider the convex hull P (ta) in Rn of the

set

{(ta1, . . . , tan) : xa11 . . . xann ∈ a},
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and let Int(P (ta)) be the points in the topological interior of this convex hull. Then

Hara and Yoshida show [HY03, Theorem 4.8] that test and multiplier ideals of a

coincide, and so using a computation by Howald [How01]

τ(at) = 〈xb11 . . . xbnn : bi ∈ N ∪ {0}, (b1 + 1, . . . , bn + 1) ∈ Int(P (ta))〉.

5.3.5 Asymptotic test ideals

Asymptotic test ideals are defined for graded families of ideals, which we introduce

first.

Definition V.25. Let Φ be an additive sub-semigroup of R, and R be a ring. A

graded family of ideals of R indexed by Φ is a family of ideals {as}s∈Φ such

that for all s, t ∈ Φ,

as · at ⊆ as+t.

We also assume as 6= 0, for all s.

Examples V.26.

1. If a is a non-zero ideal of a domain R, then {an}n∈N∪{0} is a graded family of

ideals.

2. If R is a Noetherian domain, the symbolic powers {a(n)}n∈N∪{0} of a fixed non-

zero ideal a is an example of a graded family that was studied extensively in

[ELS01, HH02].

3. Let ν be a non-trivial real-valued valuation of K/k centered on a domain R over

k with fraction field K. Then the collection of valuation ideals {am(R)}m∈R≥0

is a graded family of ideals by properties of a valuation (since v is non-trivial,

the ideals am are all non-zero).
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Now suppose R is an F-finite Noetherian domain of characteristic p, and {am}m∈Φ

is a graded family of ideals of R indexed by some sub-semigroup Φ of R. Then for

any real number t > 0, m ∈ Φ and ` ∈ N, we have

τ(atm) = τ((a`m)t/`) ⊆ τ(a
t/`
`m).

Here the first equality follows from Theorem V.23(4), and the inclusion follows from

Theorem V.23(1) using the fact that a`m ⊆ a`m.

Thus, for a fixed m ∈ Φ, the set {τ(a
1/`
`m )}`∈N is filtered under inclusion (τ(a

1/`1
`1m

)

and τ(a
1/`2
`2m

) are both contained in τ(a
1/`1`2
`1`2m

)). Since R is a Noetherian ring, this

implies that {τ(a
1/`
`m )}`∈N has a unique maximal element under inclusion, which will

be the m-th asymptotic test ideal.

Definition V.27. For a graded family of ideals a• = {am}m∈Φ of an F-finite Noethe-

rian domain R of characteristic p, and for any m ∈ Φ, we define the m-th asymp-

totic test ideal of the graded system, denoted τm(R, a•) (or τm(a•) when R is

clear from context), as follows:

τm(R, a•) :=
∑
`∈N

τ(a
1/`
`m ).

By the above discussion, τm(R, a•) equals τ(a
1/`
`m ) for a sufficiently divisible `� 0.

Asymptotic test ideals satisfy appropriate analogues of properties satisfied by

test ideals of pairs (Theorem V.23), since they equal test ideals of suitable pairs. We

highlight a few properties that will be important for us in the sequel.

Proposition V.28. [Har05, SZ15] Suppose R is a regular domain, essentially of

finite type over a perfect field of characteristic p, with a graded family of ideals

a• = {am}m∈Φ.

1. For any m ∈ Φ, am ⊆ τ(am) ⊆ τm(a•).
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2. For any m ∈ Φ and ` ∈ N, a`m ⊆ τ`m(a•) ⊆ τm(a•)
`.

Proof. We get (1) using Theorem V.23(7), and the definition of asymptotic test

ideals.

Property (2) is crucial, and is a consequence of the subadditivity property of test

ideals (Theorem V.23(11)). The first inclusion a`m ⊆ τ`m(a•) follows from (1). For

the second inclusion, for a sufficiently divisible n� 0, we have

τ`m(a•) = τ(a
1/n
n`m) = τ(a

`/n`
n`m),

and by subadditivity, τ(a
`/n`
n`m) ⊆ τ(a

1/n`
n`m )`. But if n is sufficiently divisible, τ(a

1/n`
n`m )` =

τm(a•)
`, completing the proof.

5.3.6 (Asymptotic) test ideals and étale maps

We study a transformation law for test ideals under essentially étale maps. Recall

that an essentially étale map of rings A → B is a formally étale map [DG64, IV0,

Définition 19.10.2] such that B is a localization of a finitely presented A-algebra. For-

mally étale maps of Noetherian rings are automatically flat [DG64, IV0, Théorème

19.7.1]. The main example of essentially étale maps for us will be a local homomor-

phism of Noetherian local rings ϕ : (A,mA, κA)→ (B,mB, κB) that is flat, unramified

(mAB = mB, κA ↪→ κB is finite separable), and essentially of finite type. Such a ϕ is

essentially étale by [Sta18, Tag 025B].

Proposition V.29. [Stä16] Let R be a Gorenstein (in particular, regular) domain

essentially of finite type over an F -finite field. If R→ S is an essentially étale map,

then for any non-zero ideal a of R and a real number t > 0,

τ(S, (aS)t) = τ(R, at)S.
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Indication of proof. Note R→ S is injective since R is a domain and R→ S is flat.

Therefore aS is a non-zero ideal of S, and τ((aS)t) makes sense. Now for a proof, see

[Stä16, Corollary 6.19], where the result is stated in terms of Cartier algebras.

A key point in the proof of [Stä16, Corollary 6.19] is the fact that for an essentially

étale map of rings A → B of characteristic p, the functor F e
∗ commutes with base

change. Although this fact is well-known, in F -singularity literature it is often stated

with restrictive hypotheses on A on B that are not needed. Thus, we include a proof

here of the general version.

Lemma V.30. Let A → B be an essentially étale map of rings of characteristic p

(A, B are not necessarily Noetherian). Then the relative Frobenius map

FB/A : F e
∗A⊗A B → F e

∗B. (5.2)

is an isomorphism.

Proof. The isomorphism (5.2) is well-known when A → B is étale [Gro77, XV,

Proposition 2(c)(2)]. Since we know F e
∗ commutes with localization, (5.2) will follow

when B is an essentially étale A-algebra if one can show that B is a localization of an

étale A-algebra. Let C be a finitely presented A-algebra, and S ⊂ C a multiplicative

set such that

B = S−1C.

Since 0 = ΩB/A = S−1ΩC/A and C is finitely presented, there exists f ∈ S such

that

ΩC[1/f ]/A = f−1ΩC/A = 0,

that is, C[1/f ] is an unramified A-algebra.
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For any prime ideal q of C that does not intersect S, we know that Cq =

(S−1C)S−1q is formally smooth over A. Then the Jacobian criterion of local smooth-

ness shows that there exists

gq ∈ C − q

such that C[1/gq] is a smooth A-algebra. Here the main point is that formal smooth-

ness of Cq ensures ΩCq/A is free of the ‘correct’ rank for a presentation of C (see for

example [Hoc07, Theorem on pg. 33]). Since {gq : q ∩ S = ∅} generates the unit

ideal in S−1C, there is some h ∈ S such that

h ∈
∑

q∩S=∅

gqC.

Then D(h) ⊂ Spec(C) is smooth on an open cover, and so, C[1/h] is a smooth

A-algebra. This shows

C[1/fh]

is an étale A-algebra, and because B is a further localization of C[1/fh], we are

done.

Proposition V.29 has the following consequence for asymptotic test ideals:

Corollary V.31. Let R
ϕ−→ S be an essentially étale map, where R is a Gorenstein (in

particular, regular) domain, essentially of finite type over an F -finite field. Suppose

a• = {am}m∈Φ is a graded family of non-zero ideals of R, and consider the family

a•S = {amS}m∈Φ.

1. For all m ∈ Φ, τm(S, a•S) = τm(R, a•)S.

2. If
⋂
m∈Φ(am : τm(R, a•)) 6= (0), then

⋂
m∈Φ(amS : τm(S, a•S)) 6= (0).
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Proof. Again, by the injectivity of ϕ, a•S is a graded family of non-zero ideals of S.

Then

τm(S, a•S) :=
∑
`∈N

τ
(
(a`mS)1/`

)
=
∑
`∈N

τ(a
1/`
`m )S =

(∑
`∈N

τ(a
1/`
`m )

)
S = τm(R, a•)S,

where the second quality follows from Proposition V.29. This proves (1).

For (2), if r is a non-zero element in
⋂
m∈Φ(am : τm(R, a•)), then using (1), ϕ(r)

is a non-zero element in
⋂
m∈Φ(amS : τm(S, a•S)).

5.3.7 (Asymptotic) test ideals and birational maps

We now examine the behavior of test ideals under birational ring maps. The

main result (Proposition V.33) is probably known to experts, but we include a proof,

drawing inspiration from [HY03, BS13, ST14].

Setup V.32. Let k be an F -finite field of characteristic p. Fix an extension R ↪→ S

of smooth, integral, finitely generated k-algebras such that Frac(R) = Frac(S) = K.

Let Y = Spec(S), X = Spec(R), and

π : Y → X

denote the birational morphism induced by the extension R ⊆ S. Choose canonical

divisors KY and KX that agree on the locus where π is an isomorphism, and let

KY/X := KY − π∗KX .

Define ωS/R := Γ(Y,OY (KY/X)). Then ωS/R is a locally principal invertible fractional

ideal of S, with inverse ω−1
S/R = Γ(Y,OY (−KY/X)).

We use the following fact implicitly in the results of this subsection: Under Setup

V.32, if I is a non-zero fractional ideal of S, then R ∩ I is a non-zero ideal of R.
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This follows by clearing denominators because any element of S can be written as a

quotient of two elements of R since R and S have the same fraction field.

Proposition V.33. Under the hypotheses of Setup V.32, if a is a non-zero ideal of

S and ã denotes the contracted ideal a ∩R, then for any real t > 0,

τ(R, ãt) ⊆
(
ωS/R · τ(S, (ãS)t)

)
∩R ⊆

(
ωS/R · τ(S, at)

)
∩R.

Proof. The inclusion
(
ωS/R · τ((ãS)t)

)
∩ R ⊆

(
ωS/R · τ(at)

)
∩ R is a consequence of

the containment τ((ãS)t) ⊆ τ(at) (Theorem V.23(1)).

By definition, τ(R, ãt) is the smallest non-zero ideal (under inclusion) I of R such

that for all e ∈ N, φ ∈ HomR(F e
∗R,R),

φ
(
F e
∗ (I ã

dt(pe−1)e)
)
⊆ I. (5.3)

Thus to prove

τ(R, ãt) ⊆
(
ωS/R · τ(S, (ãS)t)

)
∩R,

it suffices to show that I = (ωS/R · τ((ãS)t)) ∩R satisfies (5.3).

Extending φ to a K-linear map

φK : F e
∗K → K,

it is enough to show that

φK

(
F e
∗
(
ωS/R · τ((ãS)t) · ãdt(pe−1)e)) ⊆ ωS/R · τ((ãS)t). (5.4)

Our strategy will be to obtain an S-linear map F e
∗S → S from φK , and then use the

defining property of τ((ãS)t) to prove (5.4).

Using the correspondence between divisors and p−e-linear maps (Theorem III.64),

φ corresponds to a section

g ∈ Γ(X,OX((1− pe)KX)),
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whose pullback

g = π∗g

is a global section of

OY ((1− pe)π∗KX) = OY ((1− pe)(KY −KY/X)).

Using Theorem III.64 again, g = π∗g corresponds to a p−e-linear map of OY -modules

F e
∗OY

(
(1− pe)KY/X

)
→ OY ,

which, taking global sections, induces an S-linear map

ϕg : F e
∗ (ω

⊗1−pe
S/R )→ S.

Algebraically, the map ϕg can be constructed from φ in a natural way. For ease of

notation, let

M := F e
∗
(
ω⊗1−pe
S/R

)
.

We claim that ϕg is obtained by restricting φK to the S-submodule M of F e
∗K. This

needs some justification because φK |M is a priori an S-linear map from M → K,

whereas ϕg maps into S. Choose a non-zero f ∈ R such that

Rf ↪→ Sf

is an isomorphism. Localizing at f , the extensions ϕg[f
−1] of ϕg and φK |M [f−1] of

φK |M agree on the S-module

Mf = F e
∗ (Sf ) = F e

∗ (Rf )

with the map φ[f−1]. Since the localization map M → Mf is injective, it follows

that

ϕg = φK |M ,
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as desired.

Since the inclusion τ(R, ãt) ⊆ ωS/R ·τ((ãS)t) can be checked locally on S, one may

assume that ω−1
S/R is principal, say ω−1

S/R = cS. Then left-mutiplication by F e
∗ (c

pe−1)

induces an S-linear map F e
∗S →M , yielding the element

φ̃ := F e
∗S

F e∗ (cp
e−1)·−−−−−−→M

φK |M−−−→ S

of HomS(F e
∗S, S). Finally, we get

φK

(
F e
∗
(
ωS/R · τ((ãS)t) · ãdt(pe−1)e)) = c−1 · φK

(
F e
∗
(
cp
e−1τ((ãS)t) · ãdt(pe−1)e)) =

c−1 · φ̃
(
F e
∗
(
τ((ãS)t) · ãdt(pe−1)e)) ⊆ c−1τ((ãS)t) = ωS/R · τ((ãS)t),

where the inclusion follows by the defining property of τ((ãS)t), and the fact that

φ̃ ∈ HomS(F e
∗S, S). This proves (5.4), hence the proposition.

Corollary V.34. Suppose in Setup V.32, we are given a graded family a• = {am}m∈Φ

of non-zero ideals of S. Denote by ã• the family {am ∩R}m∈Φ. Then

1. For all m ∈ Φ, τm(R, ã•) ⊆ (ωS/R · τm(S, a•)) ∩R.

2. If
⋂
m∈Φ(am : τm(S, a•)) 6= (0), then

⋂
m∈Φ(am ∩R : τm(R, ã•)) 6= (0).

Proof. Clearly ã• is a graded family of non-zero ideals of R. Now (1) follows from

Proposition V.33 by choosing a sufficiently divisible ` � 0 such that τm(ã•) =

τ((a`m ∩R)1/`) and τm(a•) = τ(S, a
1/`
`m ).

For (2), let J denote the non-zero ideal
⋂
m∈Φ(am : τm(a•)) of S. Note J ·ω−1

S/R∩R

is a non-zero ideal of R because J · ω−1
S/R is a non-zero fractional ideal of S, and R

and S have the same fraction field. Then for all m ∈ Φ,

(J · ω−1
S/R ∩R) · τm(ã•) ⊆ (J · ω−1

S/R ∩R) ·
(
(ωS/R · τm(a•)) ∩R

)
⊆
(
J · ω−1

S/R · ωS/R · τm(a•)
)
∩R = (J · τm(a•)) ∩R ⊆ am ∩R.
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Thus, (0) 6= J · ω−1
S/R ∩R ⊆

⋂
m∈Φ(am ∩R : τm(ã•)).

Remark V.35. The proofs of Proposition V.33 and Corollary V.34 globalize in a

straightforward manner. We work at the affine level since this is sufficient for our

purposes, and also because we have defined test ideals of pairs only in the affine

setting.

5.4 Proof of Theorem V.2

For a ring A of K/k admitting a center of ν, we will say A satisfies Theorem

V.2 for ν if ⋂
m∈R≥0

(am : τm(A, a•)) 6= (0),

where am are the valuation ideals of A associated to ν.

To prove Theorem V.2 we need the following general fact about primary ideals of

a Noetherian domain, which in particular implies that if Theorem V.2 holds for the

local ring of the center x of a variety X of K/k, then it also holds on any affine open

neighborhood of x.

Lemma V.36. Let A be a Noetherian domain and p be a prime ideal of A.

1. For any p-primary ideal a of A, aAp ∩ A = a.

2. Let {ai}i∈I , {Ji}i∈I be collections ideals of A such that each ai is p-primary.

Then ⋂
i∈I

(aiAp : JiAp) =

(⋂
i∈I

(ai : Ji)

)
Ap.

Thus,
⋂
i∈I(aiAp : JiAp) 6= (0) if and only if

⋂
i∈I(ai : Ji) 6= (0).

Proof of Lemma V.36. (1) follows easily from the definition of a primary ideal. For
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(2), the containment
(⋂

i∈I(ai : Ji)
)
Ap ⊆

⋂
i∈I(aiAp : JiAp) is easy to verify. Now let

s̃ ∈
⋂
i∈I

(aiAp : JiAp),

and choose t ∈ A− p such that ts̃ ∈ A, noting that ts̃ is also in the ideal
⋂
i∈I(aiAp :

JiAp). Then for all i ∈ I,

(ts̃) · Ji ⊆ (ts̃) · (JiAp ∩ A) ⊆ aiAp ∩ A = ai,

where the last equality comes from (1). Thus, ts̃ ∈
⋂
i∈I(ai : Ji), and so s̃ ∈(⋂

i∈I(ai : Ji)
)
Ap, establishing the other inclusion. Since A → Ap is injective, the

final statement is clear.

Using Lemma V.36, Theorem V.2 is proved as follows:

Proof of Theorem V.2. Let (A,mA, κA) be the regular local ring ν is centered on,

where A is essentially of finite type over the perfect field k with fraction field K.

Suppose dimQ(Q ⊗Z Γν) = d and tr. degK/k = n. Let R be a finitely generated,

regular k-subalgebra of K with a prime ideal p such that A = Rp. Using local

monomialization of real-valued valuations (Theorem V.6), choose a finitely generated

regular k-subalgebra S of K along with an inclusion R ↪→ S such that ν is centered

on the prime q of S, and Sq has Krull dimension d and a regular system of parameters

{x1, . . . , xd} such that ν(x1), . . . , ν(xd) freely generate the value group Γν .

Note that if {bm}m∈R≥0
is the set of valuation ideals of S, then {bm ∩R}m∈R≥0

is

the set of valuation ideals of R. If Sq satisfies Theorem V.2, then so does S (Lemma

V.4 and Lemma V.36), hence R (Corollary V.34), hence also Rp = A because p is

the center of ν on R (using Lemma V.36 again). Thus, it suffices to prove Theorem

V.2 for A = Sq.
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The valuation ideals a• = {am}m∈R≥0
of A are then monomial in the regular system

of parameters x1, . . . , xd (see proof of Proposition V.6). Because A has dimension d,

its residue field κA has transcendence degree n− d over k. Now using the fact that k

is perfect, choose a separating transcendence basis {t1, . . . , tn−d} of κA/k, and pick

y1, . . . , yn−d ∈ A such that

yi ≡ ti mod mA.

By [Bou89, VI, §10.3, Theorem 1], {x1, . . . , xd, y1, . . . , yn−d} is algebraically indepen-

dent over k, and we obtain a local extension

j : k[x1, . . . , xd, y1, . . . , yn−d](x1,...,xd) ↪→ A,

of local rings of the same dimension that is unramified by construction. Moreover, j

is also flat [Mat89, Theorem 23.1], essentially of finite type, hence essentially étale.

Let

Ã := k[x1, . . . , xd, y1, . . . , yn−d](x1,...,xd).

It is easy to see that a• ∩ Ã := {am ∩ Ã}m∈R≥0
is the collection of valuation ideals

of Ã with respect to the restriction of ν to Frac(Ã). Moreover, if S is a set of

monomials in x1, . . . , xd generating am, and Im is the ideal of Ã generated by S, then

Im = ImA ∩ Ã = am ∩ Ã, where the first equality follows by faithful flatness of j.

Thus, each am ∩ Ã is generated by the same monomials in x1, . . . , xd that generate

am. Then to prove the theorem, it suffices to show by Corollary V.31 that

⋂
m∈R≥0

(am ∩ Ã : τm(a• ∩ Ã)) 6= (0).

But now we are in the setting of Example V.24 since we are dealing with monomial

ideals in the localization of a polynomial ring. We claim that

x1 . . . xd ∈
⋂

m∈R≥0

(am ∩ Ã : τm(a• ∩ Ã)).
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Choose ` ∈ N such that τm(a• ∩ Ã) = τ((a`m ∩ Ã)1/`). Since a`m ∩ Ã is generated

by
{
xa11 . . . xadd :

∑
aiν(xi) ≥ `m

}
, and test ideals commute with localization, we

conclude using Example V.24 that τm(a• ∩ Ã) = τ((a`m ∩ Ã)1/`) is generated by

monomials xb11 . . . xbdd such that (b1 +1, . . . , bd+1) is in the interior of the convex hull

of {(
a1

`
, . . . ,

ad
`

)
: ai ∈ N ∪ {0},

∑ ai
`
ν(xi) ≥ m

}
.

Then clearly
∑

(bi+1)ν(xi) ≥ m, that is, (x1 . . . xn) ·xb11 . . . xbdd ∈ am∩ Ã. This shows

that for all m ∈ R≥0,

(x1 . . . xn) · τm(a• ∩ Ã) ⊆ am ∩ Ã,

as desired.

Remark V.37. The transformation law for test ideals under essentially étale maps

(Proposition V.29) and its asymptotic version (Corollary V.31) are results of inde-

pendent interest. However, their use in the proof of Theorem V.2 can be avoided.

Indeed, after reducing the proof of Theorem V.2 to the case of a regular local center

(A,mA, κA) with a regular system of parameters {r1, . . . rd} whose valuations freely

generate the value group, the behavior of test ideals under completion gives another

way of proving Theorem V.2. Briefly, using the structure theory of complete local

rings, identify Â with a power-series ring

κA[[x1, . . . , xd]],

where ri 7→ xi under this identification. Since the graded family of valuation ideals a•

of A are monomial in {r1, . . . , rd} (Proposition V.6), the graded family a•Â consists

of ideals monomial in x1, . . . , xd. Explicitly, amÂ is generated by

{xα1
1 . . . xαdd : α1ν(r1) + · · ·+ αdν(rd) ≥ m}.
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As the formation of test ideals commutes with completion (Theorem V.23 (9)), for

any m ∈ R≥0, τm(Â, a•Â) = τm(A, a•)Â, and so by faithful flatness of the canonical

map A→ Â, to prove that Theorem V.2 holds for A, it suffices to show that

x1 . . . xd ∈
⋂

m∈R≥0

(amÂ : τm(Â, a•Â)). (5.5)

However, κA[[x1, . . . , xd]] is also the (x1, . . . , xd)-adic completion of the local ring

κA[x1, . . . , xd](x1,...,xd),

and so we are reduced to analyzing test ideals of monomial ideals in a polynomial ring

(Example V.24). Now the argument in the final paragraph of the proof of Theorem

V.2 can be repeated verbatim in order to obtain (5.5).

5.5 Consequences of Theorem V.2

Throughout this section k is a perfect field of prime characteristic, X a regular

variety over k with function field K, and ν a non-trivial, real-valued Abhyankar

valuation of K/k centered on x ∈ X.

5.5.1 Proof of Theorem V.1

Our goal is to show that there exists e ≥ 0 such that for all m ∈ R≥0, ` ∈ N,

am(X)` ⊆ a`m(X) ⊆ am−e(X)`.

From now we also assume m > 0, as otherwise all the ideals equal OX .

Let (a•)x := {am(OX,x)}m∈R≥0
denote the graded system of valuation ideals of the

center OX,x. Using Theorem V.2, fix a nonzero s̃ ∈ OX,x such that

s̃ ∈
⋂

m∈R≥0

(
am(OX,x) : τm((a•)x)

)
.
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Define e := ν(s̃).

Since a• is a graded family of ideal sheaves, the inclusion a`m ⊆ a`m follows. Thus

it suffices to show that for the above choice of e,

Γ(U, a`m) ⊆ Γ(U, a`m−e), (5.6)

for all m ∈ R≥0, ` ∈ N, and affine open U ⊆ X. Furthermore, we may assume U

contains the center x of ν, as otherwise Γ(U, a`m) and Γ(U, a`m−e) both equal OX(U).

We use (a•)U to denote the collection {am(U)}m∈R≥0
of valuation ideals of OX(U).

Utilizing Lemma V.4 and Lemma V.36(2), express s̃ as a fraction sU/t, for some

non-zero

sU ∈
⋂

m∈R≥0

(
am(U) : τm((a•)U)

)
,

and t ∈ OX(U) such that tx ∈ O×X,x. Then ν(sU) = ν(s̃) = e, and it follows that for

all m ∈ R≥0,

τm
(
(a•)U

)
⊆ am−e(U).

Proposition V.28(2) implies that Γ(U, a`m) ⊆ τm
(
(a•)U

)`
, and we obtain (5.6) by

observing that

Γ(U, a`m) ⊆ τm
(
(a•)U

)` ⊆ am−e(U)` = Γ(U, a`m−e).

5.5.2 Proof of Corollary V.3

We want to prove that if ν, w are two non-trivial real-valued Abhyankar valuations

of K/k, centered on a regular local ring (A,m) essentially of finite type over k with

fraction field K, then there exists C > 0 such that for all x ∈ A,

ν(x) ≤ Cw(x).

Our argument is similar to [ELS03], and is provided for completeness.
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We let a• = {am}m∈R≥0
denote the collection of valuation ideals of A associated

to ν, and b• = {bm}m∈R≥0
the collection associated to w. Since A is Noetherian,

there exists a non-zero x ∈ m such that for all non-zero y in m,

w(x) ≤ w(y).

Otherwise, one can find a sequence (xn)n∈N ⊂ m such that w(x1) > w(x2) > w(x3) >

. . . , giving us a strictly ascending chain of ideals bw(x1) ( bw(x2) ( bw(x3) ( . . . . For

the rest of the proof, let

δ := inf{ν(x) : x ∈ m− {0}}.

Claim V.38. There exists p > 0 such that for all ` ∈ N, a`p ⊆ b`δ.

Assuming the claim, let C := 2p/δ, and suppose there exists x0 ∈ m such that

ν(x0) > Cw(x0). Now choose ` ∈ N such that

(`− 1)δ ≤ w(x0) < `δ. (5.7)

Such an ` exists by the Archimedean property of R, and moreover, ` ≥ 2 since

w(x0) ≥ δ. Clearly, x0 /∈ b`δ, and multiplying (5.7) by C, we get

2(`− 1)p ≤ Cw(x0) < 2`p.

But ` ≥ 2 implies `p ≤ 2(` − 1)p ≤ Cw(x0) < ν(x0). Then x0 ∈ a`p, contradicting

a`p ⊆ b`δ. This completes the proof of Izumi’s theorem (Corollary V.3) modulo the

proof Claim V.38.

Proof of Claim V.38: By our choice of δ, bδ = m. Thus, for all ` ∈ N, m` ⊆ b`δ.

Since by Theorem V.2 ⋂
m∈R≥0

(
am : τm(a•)

)
6= (0), (5.8)
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there must exist some p > 0 such that τp(a•) ⊆ m. Otherwise, for all m ∈ R≥0,

τm(a•) = A, which would imply that any s ∈
⋂
m∈R

(
am : τm(a•)

)
is also an element

of
⋂
m∈R≥0

am = (0), contradicting (5.8). Then by Proposition V.28(2), for all ` ∈ N,

a`p ⊆ τp(a•)
` ⊆ m` ⊆ b`δ.

Examples V.39.

1. Uniform approximation of valuation ideals (Theorem V.1) fails in general for

real-valued valuations that are not Abhyankar. The discrete valuation νq(t) of

Fp(X, Y ) constructed in Example II.57, among other things, also provides a

counter-example to Theorem V.1. Recall that νq(t) is obtained as the composi-

tion

Fp(X, Y )× ↪→ Fp((t))×
t−adic−−−→ Z,

by mapping X 7→ t and Y 7→ q(t) such that t, q(t) are algebraically independent

over Fp. We can choose

q(t) = a1t+ a2t
2 + a3t

3 + . . . ,

such that a1 6= 0. Then νq(t) is centered on

A := Fp[X, Y ](X,Y ).

Now for any m ∈ N, the valuation ideal am of the center A contains the ideal

(Xm, Y − a1X + a2X
2 + · · ·+ am−1X

m−1).

Therefore A/am has length ≤ m.

Suppose there exists e as in Theorem V.1. Fixing m ∈ N such that

m > e,
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we see that for all ` ∈ N, the length of A/a`m is ≤ `m. In other words, for a

fixed m, the length of A/a`m grows as a linear function in `. On the other hand,

a`m−e ⊆ (X, Y )`.

Thus the length of A/a`m−e is at least the length of A/(X, Y )`, and the latter

grows as a quadratic function in `. Hence a`m cannot possibly be contained in

a`m−e when `� 0, thereby providing a counter-example to Theorem V.1. Since

Theorem V.1 is a formal consequence of Theorem V.2, we also see that Theorem

V.2 must be false for non-Abhyankar real-valued valuations.

2. Izumi’s theorem (Corollary V.3) also fails in general when the valuations ν and

w are not both Abhyankar. To see this, we take one valuation to be the unique

valuation νπ on Fp(X, Y ) such that

νπ(X) = 1 and νπ(Y ) = π.

Note νπ is an Abhyankar valuation of Fp(X, Y )/Fp since

tr. degFp(X, Y )/Fp = 2 = dimQ(Q⊗Z Γνπ).

Choose the other valuation to be of the form νq(t), where, specifically,

q(t) =
∞∑
i=1

ti!.

It is not difficult to check that t, q(t) are algebraically independent over Fp (see

also [Bou89, Chapter VI, §3, Exercise 1]), so that the valuation νq(t) is indeed

well-defined.

Both νπ and νq(t) are centered on Fp[X, Y ](X,Y ). For all n ∈ N, defining

xn := Y −
n∑
i=1

X i!,
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we see that,

νπ(xn) = 1 and νq(t)(xn) = (n+ 1)!.

Clearly there does not exist a fixed real number C > 0 such that for all n ∈ N,

νq(t)(xn) = (n+ 1)! ≤ C = Cνπ(xn).

Thus, Izumi’s theorem fails when the real-valued valuations are not Abhyankar.
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theory, Birkhäuser Boston, 2005.

[Bli08] M. Blickle, Minimal γ-sheaves, Algebra and Number Theory 2 (2008), no. 3, 347–368.

[BLR90] S. Bosch, W. Lütkebohmert, and M. Raynaud, Néron models, A Series of Modern Sur-
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[DG65] , Eléments de géométrie algébrique: IV, seconde partie, Publications
Mathématiques de l’IHÉS 24 (1965), 5–231.
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