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PREFACE

From self-driving cars to facial recognition to AlphaGo, the suc-
cesses of big data have imprinted it upon the population imagination
as a wellspring of technological wonder. Much less obvious to the
public, but equally as important from an academic perspective, is the
fact that big data has led to a growing synergy amongst the fields of
statistics, computer science, and mathematics. In particular, many
ideas from both pure and applied mathematics have proved useful
in developing and understanding data analysis algorithms and algo-
rithmic frameworks. This dissertation is entirely in this spirit. It
has given me great joy to draw wield tools from high-dimensional
probability, stochastic processes, convex geometry, and even some
algebra to chisel out a modest niche in the growing edifice of math-

ematical data science.
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ABSTRACT

The reality of big data poses both opportunities and challenges to modern re-
searchers. Its key features — large sample sizes, high-dimensional feature spaces,
and structural complexity — enforce new paradigms upon the creation of effective
yet algorithmic efficient data analysis algorithms. In this dissertation, we illus-
trate a few paradigms through the analysis of three new algorithms. The first two
algorithms consider the problem of phase retrieval, in which we seek to recover a
signal from random rank-one quadratic measurements. We first show that an adap-
tation of the randomized Kaczmarz method provably exhibits linear convergence
so long as our sample size is linear in the signal dimension. Next, we show that
the standard SDP relaxation of sparse PCA yields an algorithm that does signal
recovery for sparse, model-misspecified phase retrieval with a sample complexity
that scales according to the square of the sparsity parameter. Finally, our third
algorithm addresses the problem of Non-Gaussian Component Analysis, in which
we are trying to identify the non-Gaussian marginals of a high-dimensional distri-
bution. We prove that our algorithm exhibits polynomial time convergence with

polynomial sample complexity.
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CHAPTER 1

Introduction

1.1 Big Data

We live in the age of big data. As early as 2013, Cukier and Mayer-Schoenberger offered

the following striking description for the size of our digital universe [30].

In the third century bc, the Library of Alexandria was believed to house the
sum of human knowledge. Today, there is enough information in the world to
give every person alive 320 times as much of it as historians think was stored
in Alexandria’s entire collection — an estimated 1,200 exabytes’ worth. If all
this information were placed on CDs and they were stacked up, the CDs would

form five separate piles that would all reach to the moon.

Since then, the sheer quantity of data that we possess has only gotten more ridiculous.
Indeed, the digital universe continues to grow at an exponential rate, and is widely projected
to double in size once every three years for the foreseeable future. This dizzying trend
has captured the popular imagination, and many books have been written investigating its
origins and consequences for society. It is not the place of this dissertation to add to this
literature. Instead, we offer here a brief sketch of what other people have already said.
The first question to ask is: Where does all of this data comes from? At least some
of it is the digitification of information that was previously stored in print or other analog
media. Think, for instance, of Google’s project to scan and render machine-readable all
of the world’s books. Similar to this is the migration of existing modes of communication
and record-keeping to electronic forms — where written correspondence once took place
through letters, they now occur via email. Both of these trends have resulted from the
power, convenience and accessibility of personal computers, and, more recently, the grow-
ing ubiquity of all manner of digital devices. Indeed, according to Statista, it is projected

that more than 36 percent of the world’s population will own a smartphone in 2018 [101].
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Yet, as “smart” devices increasingly penetrate our lives and integrate themselves into
our lifestyles, their effect has not merely been to render old forms of data digital, but
more consequentially, to create new kinds of data where there were none before. Take for
instance the growing proportion of financial transactions that now take place using credit
cards or other electronic payment methods. This allows transactions to be methodically
recorded, allowing companies to create electronic profiles of their customers in order to
pursue targeted marketing. The burgeoning use of social networks is another example.
Again in this case, previously unrecorded information — a person’s social contacts, and
her interactions with them — are recorded and “datafied”. Indeed, it seems that almost
everyday, new types of data are being created and lending themselves to novel applications.

An example from [30] is illustrative.

Appreciating people’s posteriors is the art and science of Shigeomi Koshimizu,
a professor at the Advanced Institute of Industrial Technology in Tokyo. Few
would think that the way a person sits constitutes information, but it can. When
a person is seated, the contours of the body, its posture, and its weight distribu-
tion can all be quantified and tabulated. Koshimizu and his team of engineers
convert backsides into data by measuring the pressure they exert at 360 differ-
ent points with sensors placed in a car seat and by indexing each point on a
scale of zero to 256. The result is a digital code that is unique to each individ-
ual. In a trial, the system was able to distinguish among a handful of people
with 98 percent accuracy. ... Koshimizu’s plan is to adapt the technology as an

anti-theft system for cars.

This explosion of data has presented enormous opportunities for researchers. From a
statistical point of view, big data means more covariates or more samples or both, leading
to better predictions when fitting traditional statistical models such as linear and logistic
regression. Meanwhile, in computer science, a decades-long paradigm shift in artificial
intelligence has reached maturity: instead of concocting algorithms directly for comput-
ers to perform certain tasks, more success can be attained by letting computers “learn”
the algorithms themselves through applying learning algorithms to massive amounts of
data. Here, the proliferation of data has been married with rapid advances in computing
power to make data- and computation-intensive algorithms like deep learning feasible. The
stunning success of deep learning has reverberated around academia as well as society as
large. Amongst other things, it has enabled self-driving cars, facial recognition, automatic
language translation, and Al for Go and other strategy games that can beat the very best

human players.



1.2 A new mathematics of data

While the most visible success of big data has been its technological applications, it has
also fertilized much mathematical research. First of all, the diversity of forms of data that
we collect behooves us to study new statistical models that model different types of data
better. Fitting these models then require new algorithms and strategies. The variety of ways
in which data is collected and stored also lends itself to different algorithmic set-ups. For
example, there has been much recent work on algorithms that work under the assumption
that data is streaming, or that it is distributed across a number of different servers.

In addition, the sheer size of data has posed many interesting theoretical questions. De-
spite advances in computational power and resources available on ever smaller computers,
there is sometimes more data than can be handled by traditional algorithms within a rea-
sonable time frame. As such, there is a need for algorithms that have running times that are
linear or even sublinear in their input parameters. In particular, this accounts for the heavy
use of gradient descent and stochastic gradient descent in machine learning, and there is
now a renewed emphasis on studying first order methods in optimization.

Another way to get around the computational bottleneck is by pre-processing the data
to make it more tractable. Two of the most common methods of doing so are (1) data
segmentation through clustering and (2) dimension reduction to reduce the number of co-
variates. Both of these areas continue to be rich topics of research. Furthermore, now that
data is often no longer the only scarce resource, it is useful and important to investigate the
trade off between the statistical and computational resources required to achieve a given
performance criterion for a given inferential problem.

Thus far, we have discussed questions arising from having data that has both too many
samples and too many covariates. In many situations, however, the problem with big data is
not simply computational, but also statistical in the sense that we have too many covariates
but 7oo few samples. This is the case, for instance, with genomic data. When trying to pre-
dict what genes are predictive of a higher risk for cancer, a researcher could have, say, tens
of thousands of candidate genes, but only a few hundred patients from which DNA samples
were taken. Attempting to find the genes naively using linear regression is impossible. The
problem, however, becomes feasible when we assert that the signal is sparse in the sense
that only a few genes are predictive for cancer. Using such prior knowledge allows one to
break sample complexity barriers, and there has been much progress in this direction over
the last decade using ¢, penalty techniques.

Researchers studying theoretical problems inspired by big data are scattered across

many different departments. However, there is a growing sense in the community that



the most rapid progress will come from combining expertise from statistics, computer sci-
ence, and other mathematical domains. There is even a place for pure mathematics. Dis-
tributional assumptions and the stochastic nature of many big data algorithms mean that
randomness is a central feature of the theoretical landscape, leading to heavy use of proba-
bilistic tools. Indeed, scalar and matrix concentration inequalities coming from the field of
high-dimensional probability are central to the analysis of many algorithms [113].

The usefulness of pure mathematics to big data is not limited to the field of probabil-
ity. Theorems from convex geometry are central to analyzing sparse subspace clustering
[98, 99]; Grothendieck’s inequality from functional analysis yields sharp guarantees for a
community detection algorithm [49]; concepts from Riemannian geometry and dynamic
systems shed new light on accelerated optimization methods as well as optimization in
non-convex settings [123, 71]; algebraic geometry can be used to prove results for learning
Gaussian Mixture Models and for filling in missing data [9, 83]; tensor decomposition has
emerged as a leading strategy for learning latent variable models [3]. These examples are
just a slice of the growing synergy between pure mathematics and data science.

My own research, as presented in this dissertation, has been in this spirit. One of the
algorithms we shall analyze was inspired by the theory of Fourier Analysis, while another is
analyzed using stochastic process theory, and is partially inspired by the theory of Brownian

Motion.

1.3 What this dissertation is about

In the last section, we saw how the field of mathematical data science has been developing
in an exciting manner. It is again not the place of this dissertation to be a textbook, or
even a survey of this emerging field. Instead, we will focus on a few new algorithms,
each of which tackles a data science problem in a way that is representative of some broad
paradigms for modern mathematical data science. In this section, we will serve a few small

appetizers from each of these topics.

1.3.1 Phase retrieval and first order optimization methods

The first problem that we consider is phase retrieval. Mathematically, phase retrieval is the

problem of solving systems of rank-1 quadratic equations in R™ or C™:

(a;, %)|* = b2, i=1,2,....N.



where a; € R” (or C") are known sampling vectors, b; > (0 are observed measurements,
and x € R" (or C") is the decision variable. This problem is well motivated by practical
concerns coming from optical imaging and has been a topic of study from at least the early
1980s [43, 96].

Early algorithms used in practice were based on alternating minimization, and hence
had few theoretical guarantees. The first provably polynomial time algorithm, PhaselLift,
was proposed by Candes et al in 2013 [22], and was based on semidefinite program-
ming. While this was a theoretical breakthrough, the algorithm is not feasible for high-
dimensional data. This is because the computational running time for even state-of-the-art
SDP solvers does not scale well with the dimension 7 of the underlying vector space. Al-
gorithms and their time complexity bounds are problem specific, so it is not possible to
give a precise description of the running time required. Nonetheless, popular solvers based
on interior point methods all have to perform multiple matrix factorizations at each step,
each of which require Q(n?) basic operations. Considering that even 300 by 300 images
are data points in a 90,000-dimensional space, it is clear that more efficient algorithms are
required for data coming from real applications.

To address this issue, there has been a growing body of work on first order methods for
phase retrieval applied to the natural objective functions associated with the phase retrieval
problem. These algorithms are proved to work despite the non-convexity of these objec-
tives, and yield rapid speed-ups over PhaseLift. In Chapter 3 of this dissertation, we will
discuss and prove a guarantee for a stochastic gradient scheme. We will prove that pro-
vided we start with an initial estimate X, that is within constant distance of the true signal
vector X,, then for any error tolerance ¢, O(n?/¢) basic operations are sufficient to obtain
an estimate X, that is within distance € of x,.. This is provided that we are given N = Q(n)
independent Gaussian measurements. A valid initial estimate X, can be provably obtained
using a spectral initialization method, but numerical experiments show that the algorithm
works from arbitrary initializations.

As mentioned in the previous section, first order methods have come to fore in recent
years because of the large number of covariates of modern data. In this new regime, sec-
ond order methods like Newton’s method are too expensive, thereby removing many of
the traditional tools in the optimization toolkit. Often, stochastic schemes such as subsam-
pling can also lead to rapid speed-ups, and in this way, our algorithm for phase retrieval is

representative of many successful algorithms for big data.



1.3.2 Sparsity and /; penalties

Sparsity is a major theme that runs through much of modern data science. This is the
case first of all because sparsity is a feature of many modern data sets and data analysis
problems. For instance, although we now have thousands or even millions of covariates
in regression problems, usually only a tiny fraction of them are predictive of the response
variable. In signal processing, we often have sparse signals in high dimensional vector
spaces and wish to linearly compress them into a vector space of much smaller dimension.
In some set ups, naturally occurring signals that are not themselves sparse, such as natural
images, become sparse when we use a carefully chosen basis or dictionary.

In addition, sparsity can be thought of as a statistical resource. By assuming that our
regression vector is small, we vastly reduce the search space for the regression problem.
This allows us to be able to estimate the regression vector with a number of samples that is
much smaller than the number of covariates. For instance, if we know that the regression
vector is s-sparse, then it is easy to prove that an exhaustive search over all subsets of s
coordinates will allow us to estimate the regression vector accurately, so long as we have
Q(slogn) samples. On the other hand, such an exhaustive search is not computationally
feasible, so this alone does not yield a scheme for making use of sparsity.

Fortunately, there is actually such a computationally feasible scheme. The idea is to
relax the sparsity constraint, which is combinatorial, to an ¢;-norm constraint, which is
geometric. Moreover, since ¢;-constraint is convex, the theory of convex optimization
tells us that it can be incorporated into the linear regression problem in a computationally
feasible manner. Finally, we need to be sure that this relaxation is tight, i.e. that the
solution to the ¢;-constrained problem remains the solution to the original sparse regression
problem. This turns out to be true when our data matrices satisfy the “restricted isometry
property”, which holds with high probability for data that satisfy reasonable distributional
assumptions, and when the number of samples is again of the order of {2(slogn).

This remarkable sequence of ideas was first discovered by Candes, Tao and Romberg
[23], and applies also to the signal processing setting we mentioned earlier: one can com-
press an s-sparse signal s by applying a known random projection A. The original signal
can then be recovered from the compressed vector X := As using the linear programming
method described above. Their work helped to found the modern field of compressed sens-
ing, which continues to be a highly active today.

It is natural to extend the theoretical framework of sparsity and ¢;-regularized optimiza-
tion to phase retrieval. The phase retrieval model differs from that of linear regression only
in the sense that linear measurements are replaced with quadratic measurements. Indeed

both models are instances of single index models, the study of which have a rich history in
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statistics. Furthermore, the signal vectors that arise in phase retrieval are often sparse [96].
As such, it is unsurprising that there is already a body of work on the problem of sparse

phase retrieval. For a brief overview of the literature, see Chapter 4.

1.3.3 Model misspecification in sparse phase retrieval

When trying to model real world data with parametric statistical models, it is also important
to account for the possibility that the model might be misspecified, or in other words, that
the true distribution does not lie in the parametric family that we have assumed. Whenever
this is likely, we need to have algorithms that are robust, i.e. that the estimate produced by
our algorithm continue to have good predictive power, however this is quantified.

In the case of linear regression, a common way in which model misspecification hap-

pens is that instead of having linear measurements, we receive measurements of the form
bi = f((ai,x*>), 221,2,7N

Here, f is an unknown, possibly random, link function. Indeed, real data is never precisely
linear. Nonetheless, naive linear regression continues to work well as an algorithm for
estimating X, (up to norm), and researchers have for some time been using Lasso and other
sparse linear regression algorithms for data in which the response variable is clearly non-
linear, as is the case when it is discrete.

Plan and Vershynin were able to justify this practice theoretically in their work on
the non-linear Lasso in 2016 [87]. They showed that, assuming that the measurement
vectors a;’s are independent Gaussians, then Lasso continues to work with the same sample
complexity guarantee so long as the link function f satisfies some regularity properties, and
such that it is “positively correlated” with a true linear function.

Again, it is natural to extend this framework to the setting of phase retrieval. Here, we
are concerned with having measurements that are not precisely quadratic. Note that the
earlier analysis for Lasso does not apply to this setting because our unknown link functions
should still be close in some sense to the square function, which is easily shown to be
“uncorrelated” with linear functions.

In order to overcome this, we propose combining the “lifting” procedure of PhaseLift
[22] with the “correlation maximization™ algorithm that Plan and Vershynin proposed to
solve the problem of 1-bit compressed sensing [85]. It turns out that the resulting algo-
rithm is essentially the convex relaxation of sparse PCA proposed some years earlier by
d’ Aspremont et al. [31]. We are able that our algorithm has sample complexity O(s* logn),

where s is again the sparsity parameter. This matches the performances of other algorithms



that have been proposed for sparse phase retrieval. Nonetheless, it is not information theo-
retic optimal, and it is an open question whether the optimal rate can be achieved. We will

pursue this discussion in much more detail in Chapter 4.

1.3.4 Learning with moments

One way to fit a parametric model is to use the method of moments. This method has a long
and venerable history, having been first proposed and used by no less than Karl Pearson in
1894. Pearson had a set of data comprising the ratio of forehead to body length for 1000
crabs, and believed the crabs to have come from two different species rather than one. As
such, he postulated that the forehead to body length ratio measurements could be modeled
by the sum of two Gaussian components, which he then fit by matching the first 6 moments
of the model with the empirical moments that he computed from the data [76].

More generally, the method of moments proceeds as follows: we estimate the parameter
0 to be the value such that the moments of the distribution 1y are “close” to the empirical
moments computed from sample data, which in the basic setting comprises independent
copies of a random variable drawn from the true distribution. Here, “closeness’ means
different things in different contexts. While Pearson first proposed the method to study
distributions on R, it can also be applied to distributions on R". It is important to note
that the moments of multivariate distributions are not scalars but tensors, and this adds an
additional layer of complexity.

Recently, the method has been successfully applied to provide polynomial time algo-
rithms for learning various latent variable models [54, 3], including topic models, hidden
Markov models, and high-dimensional Gaussian mixture models. There are two key ideas
that underpin these algorithms. First, the low-order moment tensors of the distributions
have low-rank decompositions, i.e. each of them can be written as the sum of a small num-
ber of pure tensors). The individual pure tensors summands the yield information about the
model parameter vector 8. Second, there is a robust polynomial time method for finding
these low-rank decompositions [3].

Another variant of the method of moments also yield a polynomial time algorithm for
solving the problem of Independent Component Analysis (ICA). ICA is a semi-parametric
model that has applications to blind source separation. In this model, the signal is a random
vector s in R™ with independent non-Gaussian entries, and the observations made by the
observer are of the form x = As, where A is an unknown n by n mixing matrix. The goal
of the problem is to learn the mixing matrix A. The algorithm, introduced by Frieze et al.

[44] and further studied by Arora et al. [4] is an iterative algorithm based on local search.



It exploits the fact that the columns of A are the local optima for the 4-th order moment

tensor, i.e. for the function f: S"~! — R defined by

In summary, we see that the method of moments is a useful tool for many learning

problems.

1.3.5 Dimension reduction through linear projections

The high-dimensional nature of many modern data sets make many otherwise useful data
analysis algorithms inefficient, especially those whose running time scales as a high degree
polynomial in the dimension of the ambient vector space. On the other hand, the intrinsic
dimension of the data is usually a lot smaller than its ambient dimension. For instance, it
is often the case the signal in the data is localized to a low-dimensional subspace. In such
a situation, one would like to do dimension reduction. We would like to project the data
to its “true” subspace, and run our algorithms on the projected data points instead, thereby
leading to potentially massive speedups.

There are many methods for dimension reduction in the literature. We will mention
two of the most basic here, both of which involve linear projections. Principal Compo-
nent Analysis (PCA) involves projecting the data points to a subspace of maximal vari-
ance. Practically, one forms the sample covariance matrix of the data, computes its eigen-
decomposition, and then projects the data to the subspace spanned by the top k eigenvec-
tors, where £ is an algorithmic parameter that is supplied using prior knowledge or through
model selection. The motivation for PCA is the assumption that the directions with more
variance have more “explanatory value”. This would be true, for example, if the data arises
from points lying on a subspace perturbed by a small amount of orthogonal noise.

Random projections have also turned out to be very useful. The celebrated Johnson-
Lindestrauss lemma tells us that the pairwise ¢, distances between N points are preserved
under a random projection to a vector space of dimension 2(log N). In this instance, by
random, we mean that the target subspace is drawn uniformly from the relevant Grassman-
nian. Indeed, random projections tend to preserve the “structure” of “data” so long as the
target space has large enough dimension.

One way to make this precise is in the setting of structured regression. Suppose we are
given the prior information that a signal x, lies in a compact set X C R"™. Then x, can
be estimated from a random projection Px, so long as the target subspace has dimension

larger than a constant multiple of w(K)?. Here w(K) denotes the Gaussian width of the set



K, and we see that square corresponds to the “statistical dimension” of the set [115]. This
has connections to the “AM* bound” and related theory in geometric functional analysis.
Apart from preserving information while simultaneously allowing us to work in a
lower-dimensional space, random projections are also cheap to compute. This is because
tall matrices with independent Gaussian entries are approximate isometries whose column
spans are drawn uniformly from the Grassmannian. Such matrices are easy to construct us-
ing pseudorandom number generators. This fact allows us to have speedups in computing
approximate matrix factorizations via random projections, thereby contributing to much of

the success of randomized numerical linear algebra [50].

1.3.6 NGCA and reweighted PCA

In the problem of Non-Gaussian Component Analysis (NGCA), we assume that we have
data points in a low dimensional subspace E that are perturbed by orthogonal Gaussian
noise. The goal is to estimate this structured subspace E. If the noise is a lot smaller than
the variance of the points within £/, we can solve this problem using PCA. If this is either
unknown or not the case, then new assumptions and ideas are needed.

A reasonable assumption to make is that the data points have non-Gaussian marginals
in the directions that lie in £. In this case, we can use moment information to determine
the non-Gaussian directions, thereby finding £. Indeed, this is what Vempala and Xiao
proposed in 2011 [112]. Their idea was to adapt the local search algorithm proposed for
solving ICA that we have discussed in a previous section [44]. Recall that this algorithm is
able to recover the columns of the mixing matrix A as the local optima of the fourth moment
tensor. In the NGCA case, we no longer assume that there are independent non-Gaussian
directions, so a much more delicate analysis is required. Furthermore, we no longer assume
that the non-Gaussian marginals differ from a Gaussian in the fourth moment. As such,
higher moment tensors have to be considered.

Although Vempala and Xiao’s algorithm comes with a polynomial running time and
sample complexity guarantee, it is fairly complicated and requires delicate parameter tun-
ing. Furthermore, it is rather computationally inefficient. In Chapter 6, we will show that
NGCA can also be solved by the far easier algorithm of reweighted PCA. To run this al-
gorithm, we first place the data points in isotropic position. Next, we attach to each data
point X; the weight exp(—a/||X;||3), where « is a parameter that can either be chosen with
prior knowledge, or found through the running of the algorithm. We next do PCA on the
reweighted sample, and then extract non-Gaussian directions as the eigenvectors to outlier

eigenvalues.
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Performing PCA with a reweighted sample has been applied successfully in several
other contexts [18, 48]. In our case, the reason why it works is because of a new character-
ization of multi-dimensional Gaussian distributions: we are able to tell whether a random
vector X is a standard Gaussian by inspecting the moments of its norm ||X||, and those
of its dot product with an independent copy (X, X’). This moment information can be ex-
tracted from the reweighted sample covariance matrix, as well as from an auxiliary matrix
that has be used in adversarial situations.

We will develop the characterization theorem further in Chapter 5. The theory turns out
to also be useful for proving several theorems on energy minimization for distributions on

the sphere.

1.4 Notes

Many of the results in this dissertation have been the result of joint work with my adviser,
Roman Vershynin. Each of the following chapters is based on work that is available as a
preprint or published paper. See [107, 108, 105, 106].
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CHAPTER 2

High-Dimensional Probability

2.1 What is high-dimensional probability?

High-dimensional probability is the study of random objects defined over R™ or C", where
n 1s a large but fixed number. Such objects include vectors, matrices, tensors, and graphs.
Despite its fundamental importance today, the reader may notice that there aren’t many text-
books on high-dimensional probability, the reason being that the field is still very young,
both in content and in name. Traditionally, probability theorists were interested in asymp-
totic results such as Central Limit Laws or in stochastic process theory. Many of the ideas,
techniques and theorems in what we now call high-dimensional probability were instead
developed to answer questions in geometric functional analysis, and later, non-asymptotic
random matrix theory.

In recent years, researchers studying algorithms either possessing internal randomiza-
tion or handling data with distributional assumptions naturally found themselves faced with
questions about high-dimensional random objects. Sometimes, these questions could be
answered with simple concentration inequalities such as Chernoff’s inequality, but often,
more sophisticated results are called for. As such, results from high-dimensional probabil-
ity have begun to garner more attention, and in a synergistic manner, the field has begun
to take on more independent research interest, emerging out of the shadow of geometric
functional analysis into a more cohesive whole.

In this chapter, we collate some results from high-dimensional probability that will be
used in the rest of this dissertation. These are collated from [70], [110], [113], [74], as well
as several other sources that will be mentioned where appropriate.

12



2.2 1, random variables

Definition 2.2.1 (Orlicz norms). Let ¢: R, — R, be a convex, increasing function with

¥ (0) = 0. Define the Orlicz norm of a random variable X with respect to 1) as
[ X = inf{A >0 E{p(|X[/A)} < 1}.

Equipped with this norm, the space of random variables with finite norm forms a Banach

space, called an Orlicz space.

We are especially interested in the Orcliz spaces corresponding to v, for a > 0. These
are defined as follows. When a > 1, we set ¢, (z) := exp(z®) — 1. When 0 < o < 1, this
function is no longer convex, so we convexify it by fiat, setting 1, (x) := exp(z®) — 1 for
x > z(a) large enough, and taking 1), to be linear on [0, z(«/)]. If some random variable

X has a finite 1), norm

| X{],,» we say that it is a v, random variable.

Readers may already be familiar with 5 and v, Orcliz spaces. These correspond to
subgaussian and subexponential random variables respectively (see [113] for more details).
For these two classes of random variables, we have the well-known Hoeffding’s and Bern-

stein’s inequalities.

Proposition 2.2.2 (Hoeffding’s inequality). Let X1, ..., X,, be independent, centered, sub-

gaussian random variables. Then for every t > 0, we have

t2
P{ } §26XP<—%>7
= Zz‘:l“XinQ

m
> X
=1
where ¢ > 0 is an absolute constant.

Proposition 2.2.3 (Bernstein’s inequality). Let X1, ..., X,, be independent, centered, subex-

ponential random variables. Then for every t > 0, we have

. 12 /
P < 2exp| —cmin — = 7
' S 1G], T max || X,

m
> X
=1
where ¢ > 0 is an absolute constant.

In subsequent chapters, however, it will be useful for us to consider Orlicz spaces in
full generality. This is because we will need to work with ¢, , random variables, for which
many of the standard concentration inequalities do not hold. Nonetheless, we still have the

following.
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Proposition 2.2.4 (Characterization of 1 ;» RVs). Let X be a real-valued random variable.
Then the following properties are equivalent. The parameters C; > 0 appearing in these

properties differ from each other by at most an absolute contant factor.

1. The tails of X satisfy
P{|X| > t} < 2exp(—/2/Ch).
2. The moments of X satisfy

1
1X1, = (BIX[")"" < Cop®.

3. The 1y norm of X satisfies
11, < C.

Proof. Same as in the case of ¢; and 1),. See [113]. O

We have the following further properties.

Proposition 2.2.5 (Products, Lemma 8.5 in [74]). Let X and Y be 1), random variables

for some o > 0. Then XY is a1 /o random variable with 1)/ norm satisfying
XYLy, , < Call X1y, [V,
Here, C,, is an absolute constant depending only on .
Proposition 2.2.6 (Centering). Let X be a 1), random variable for some o > 0. Then
IX —EX],. < 2X],,.

Proof. We have [| X —EX||,, <[ X[], +I[EX], . Now check the definition of the norm
to verify that [EX|,, <[ X[, . O

Proposition 2.2.7 (Sums, Theorem 6.21 in [70]). Let 0 < a < 1, and let X1, ..., X,, be a

sequence of independent, centered 1), random variables. Then
%)

<afe
'(pa

Here, C., is an absolute constant depending only on a.

m

>

i=1

m

>

i=1

+ || max | X;]|

1<i<m
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Proposition 2.2.8 (Maxima, Lemma 2.2.2 in [110]). Let 0 < o < 1, and let X1, ..., X,,

be independent, centered 1), random variables. Then

max |X;|

< - -
[max < Cathg (M) max [|Xill,

Yo
Here, C, is an absolute constant depending only on «.

Proposition 2.2.9 (Bernstein-type inequality for 112 RVs). Let X,,...,X,, be an in-
dependent, centered 1), random variables. There is an absolute contant C' such that
Sy 1= \/% Zzl X, is a 1y /2 random variable with 1), j, norm satisfying

1Smlly, , < C max [ Xill,, -

In particular, if maxy<ij<m||X;/| 415 8 bounded above by a constant, for every t = 0, we

have
P{|Sm| >t} < 2exp(—/1/C).

Proof. This follows more or less immediately from the last two propositions. First, notice

that
o\ 1/2

< Ovm max [ Xi],, ,

m

> X

i=1

m

> X

=1

E <|E

Here, the first inequality is an application of Jensen’s inequality, and the second uses the
moment bound in Proposition 2.2.4. Next, we compute 1, (m) = (log(m + 1))?, and use

Proposition 2.2.8, we get

max | X;|

< 2 AL
max [Xi||| < Cllogm)? max ||,

o

Finally, plug these two bounds into the inequality given by Proposition 2.2.7, and note
that log(m + 1)/y/m < 5. This completes the proof of the first statement. The tail bound
follows from Proposition 2.2.4. [

2.3 Subgaussian random vectors and random matrices

We say that a random vector X in R" is subgaussian if all one-dimensional marginals of
X are subgaussian. Furthermore, if all these marginals have subgaussian norm bounded
by a constant /, we abuse notation slightly and say that X has subgaussian norm [ X[,
bounded above by K.
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Theorem 2.3.1 (Concentration of norm for general sub-Gaussian vectors). Let X be a sub-
Gaussian random vector in R, with ||X||,, < K. There is a universal constant C' such

that for each positive integer r > 0, the moments of || X||, and (X,X') satisfy

E{|X|31Y" < CK(Vn+/r) 2.1)

(E{ (X, X)['}"/*" < CK(v/n + /7). 22)

Proof. The second bound follows from the first, since by Cauchy-Schwarz,
ry\1/2r T ry\1/2r r r
E{XX) D < EB{IXIIXED"Y = E{1X]5)"

To prove (2.1), pick a %—net N on 8™ 1. A volumetric argument shows that one may pick

N to have size no more than 5" (see [114]). We then have

IX[, = sup (X,v) < 2sup(X,v).

vesn—1 veN

By definition, there is a universal constant ¢ such that for any fixed unit vector v € S d=1
P{(X,v) >t} <2exp (—%) . Taking a union bound over the net thus gives

ct?
P{||IX|l, > 2t} < 2exp <n10g5 - F) (2.3)

Next, we integrate out the tail bound (2.3) to obtain bounds for the moments. Observe

ct?

that if <2 > nlog5, we have nlog5h — %Z < -4

2K?2
t > CK+/n, so we have

This condition on t is equivalent to

t<CKy\/n

PEIXI, > 2t} < P
2exp(—%> t>CKy\n

(2.4)

For any positive integer r, we integrate this bound to get

E{|X]}} = / T PLX]| > £

CK+y/n e’} Ct?
< / rt"tdt + / 2rt" ! exp (——2) dt
0 CK\i K

<C"K'™n"? + C”"Krr/ 2=t qt,
0

16



The integral in the last line is the gamma function, so in short, we have shown that
E{|X|[}} < C"K"(n"/? + T(r/2 +1)). (2.5)

Taking 7-th roots of both sides and using Holder, together with the fact that I'(z)'/* < x,
gives (2.1). ]

Lemma 2.3.2 (Covariance estimation for sub-Gaussian random vectors). Let X be a cen-
tered sub-Gaussian random vector in R"™ with covariance matrix ¥ and sub-Gaussian
norm satisfying || X||,, < K for some K > 1. Let Sy = %Zf\; X X! denote the
sample covariance matrix from N independent samples. Then there is an absolute con-
stant C' such that for any 0 < €,0 < 1, we have IP’{ Sy — 2) > 6} < 0 so long as
N > CK?*(n+ log(1/§))e 2.

Proof. This is essentially Theorem 5.39 in [114]. [

Lemma 2.3.3 (Moments of spherical marginals). Let 8 be uniformly distributed on the

sphere S"'. Then for any unit vector v € S™~! and any positive integer k, we have

1-3--(2k — 1)

E{(0,v)*} = n-(n+2)--(n+2k—2)

(2.6)

Proof. There are several ways to prove this identity. We shall prove this by computing
Gaussian integrals. Let g and g, denote standard Gaussians in 1 dimension and n dimen-

sions respectively. Then using the radial symmetry of g, we have

E{g™} = E{(g,, )"} = E{(llg.[,0.v)*"} = E{|lg, |3 YE{(6.v)*}.

Rearranging gives

E{g**}
E((0.v)*) =
E{llg.[l"}
We then compute
Efllg 2} = -t [ i @)
g5 = )2 J, rTrtT e T, .

where w, is the volume of the sphere S"~!. It is well known that

27Tn/2

T Tn/2)
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while we also have
/ 7,,2k7,nfl€77“2/2d7n — 2n/2+k71F(n/2 + k)
0

Substituting these back into (2.7) gives

2y _ e D024 K)oy ok

This yields the denominator in (2.6). A similar calculation for E{¢%*} yields the numerator.
[

2.4 Chaining

Many concentration inequalities for random vectors and random matrices make use of net
arguments. For example, consider Lemma 2.3.2 for bounding the operator norm of a ran-
dom matrix. To prove this, one makes use of the fact that the operator norm of an n by n
matrix A is defined as

|A[] = sup [|Av]]. (2.9)

vesn—1
The net argument is to approximate the supremum over the sphere by a maximum over an
e-net, that is, a collection of points A/ for which every other point on the sphere is e-close
to a point in V. The error is then controlled using continuity properties of the ¢, norm. In
this case, as in many others, such an argument produces optimal results. However, this is
not always the case.

To see why, it is insightful to view (2.9) as saying that ||A|| is the supremum of a
random process (X,) indexed by v over the index set S"~!. This supremum is bounded
by considering the process increments X, — X, at a scale of |[v — u|| ~ ¢, where ¢ is
the parameter of the net that we are using. In the matrix case, the choice of ewas not too
important, but on many occasions it is. Worse still is the situation where, because of the
non-uniformly of process increments, there is not a single choice of ¢ that works best, . In
this case, it is helpful to try to consider all scales simultaneously. One way to address this
is using the idea of generic chaining, which was first invented by Talagrand [70, 104]. We
shall use a variant of his approach which is appropriate for our purposes. This approach
was developed by Dirksen in [38].

Let (T, d) be a metric space. A sequence 7 = (T})rez, of subsets of T is called
admissible if |Ty| = 1, and |T},| < 22" forall k > 1. For any 0 < a < co, we define the ,

18



functional of (T, d) to be

o0

(T, d) := inf su okl q(t, Ty.). 2.10
Ya(T d) me?,; (1, T3) (2.10)

Let d; and d; be two metrics on 7. We say that a process (Y;) has mixed tail increments
with respect to (dy, do) if there are constants ¢ and C' such that for all s,¢ € T', we have the
bound

P(Y, — Yi| > e(Vads(s, 1) + udy(s,t))) < Ce™ @.11)

Remark 2.4.1. In [38], processes with mixed tail increments are defined as above but with
the further restriction that ¢ = 1 and C' = 2. This is not necessary for the result that we
need (Lemma 2.4.2) to hold. The indeterminacy of ¢ and C' gets absorbed into the final
constant in the bound.

Lemma 2.4.2 (Mixed tail processes, Theorem 5 in [38]). If (Y;)ier has mixed tail incre-

ments, then there is a constant C such that for any u > 1, with probability at least 1 — e™",

Stugh/% — Y| < C(72(T, d2) + (T, dy) + Vudiam(T, dy) + udiam(T', d, ).
S

At first glance, the v, and v, quantities seem mysterious and intractable. We will show
however, that they can be bounded by more familiar quantities that are easily computable
in our situation. First, given a set 7" with metric d, we define the covering number of T
at scale v to bethe smallest number of radius u balls needed to cover 7. We denote this
quantity by N (7T, d, u). Interchanging the supremum and the sum in (2.10), and then doing

a few usual tricks yields the famous Dudley inequality.

Lemma 2.4.3 (Dudley’s inequality). For each o > 0, there is an absolute constant C,, for

which for any metric space (T, d), one has

Yo(T,d) < C, / (log N(T, d, )" *du. (2.12)
0

2.5 Growth functions and VC dimension

Unlike most of the topics that we have discussed thus far, growth functions and VC dimen-
sion emerged not out of geometric functional analysis, but instead as part of an attempt
to proof uniform limit laws in statistics. The theory first started with Vapnik and Cher-

vonenkis’s foundational paper [111], and has since grown into an indispensable tool for
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theoretical machine learning, and in particular PAC theory. We state here some definitions
and standard results that will be required in 3.5. We refer the interested reader to [91] for a
more in-depth exposition on these topics.

Let X be a set and C be a family of subsets of X'. For a given set C' € C, we slightly
abuse notation and identify it with its indicator function 1: X — {0,1}. The growth
function I1z: N — R of C is defined via

[Ie(m) ;== max X|{(C’(x1),0(m2),...,C(mm)) . C e}l

Meanwhile, the VC dimension of C is defined to be the largest integer m for which
IIc(m) = 2™. These two concepts are fundamental to statistical learning theory. The key

connection between them is given by the Sauer-Shelah lemma.

Lemma 2.5.1 (Sauer-Shelah, Corollary 3.3 in [91]). Let C be a collection of subsets of VC

dimension d. Then for all m > d, have

Te(m) < (%)d.

The reason why we are interested in the growth function of a family of subsets C is
because we have the following guarantee for the uniform convergence for the empirical

measures of sets belonging to C.

Proposition 2.5.2 (Uniform deviation, Theorem 2 in [111]). Let C be a family of subsets of
a set X. Let i be a probability measure on X, and let i, := % Yo, dx, be the empirical
measure obtained from m independent copies of a random variable X with distribution .

For every u such that m > 2 /u?, the following deviation inequality holds:

P(sup|fin(C) — a(C)| > u) < 4l1e(2m) exp(—mu?/16). (2.13)
ceC

We now state and prove two simple claims.

Claim 2.5.3. Let C be the collection of all hemispheres in S"~'. Then the VC dimension of
C is bounded from above by n + 1.

Proof. It is a standard fact from statistical learning theory [91] that the VC dimension of
half-spaces in R™ is n + 1. Since S™~! is a subset of R", the claim follows by the definition
of VC dimension. O
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Claim 2.5.4. Let C and D be two collections of functions from a set X to {0, 1}. Using

to denote symmetric difference, we define
CAD:={CAD|CeC,D e D}. (2.14)

Then the growth function Ilcap of CAD satisfies lleap(m) < Ile(m) - Hp(m) for all
m € Z+.

Proof. Fix m, and points x1, . .., z,, € X. Then every possible configuration (f(x1), f(z2),
., f(x,)) arising from some f € CAD is the point-wise symmetric difference

(f(x1)7 f(l’z), SRR f(l’m)) = (C(Il)ﬂ O(xZ)a s ,C(.Tm))A(D(.Tl), D<x2)7 Tt ,D(l‘m))

of configurations arising from some C' € C and D € D. By the definition of growth
functions, there are at most [1o(m) - IIp(m) pairs of these configurations, from which the
bound follows. ]

Remark 2.5.5. There is an extensive literature on how to bound the VC dimension of con-
cept classes that arise from finite intersections or unions of those from a known collection
of concept classes, each of which has bounded VC dimension. We won’t require this much

sophistication here, and refer the reader to [17] for more details.
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CHAPTER 3

Phase Retrieval and the Randomized Kaczmarz
Method

3.1 Introduction

The mathematical phase retrieval problem is that of solving a system of quadratic equations
[(a;,z)%| = b2, i=1,2,....m (3.1)

where a; € R” (or C") are known sampling vectors, b; > 0 are observed measurements,
and z € R” (or C") is the decision variable. The solution to the problem, x,, is called
the signal vector. It is customary to use terminology from signal processing in the phase
retrieval, since the mathematical problem is inspired by practical applications to do with
signal recovery.

One such application is Coded Diffraction Imaging (CDI). In this procedure, a small
two-dimensional object is illuminated by a coherent wave, and its far field diffraction in-
tensity pattern is observed. The intensity function so derived corresponds roughly to the
squared magnitude of the 2D Fourier transform of the object’s transmittance function. The
problem of recovering the transmittance function then fits into the framework of our math-
ematical model (3.1). x, is now the discretized transmittance function, while the a;’s are
2D DFT vectors. Generally, the high frequency spectrum of light waves makes it impossi-
ble for optical detection devices to measure their phase. Having to recovery a signal from
the amplitudes of its Fourier transform is thus a central feature of optical imaging. Phase
retrieval also arises naturally in many other settings in science and engineering, including
electron microscopy, crystallography, and astronomy.

In line with the development of optical imaging, researchers have proposed and studied
algorithms to address phase retrieval since at least the 1970s. The first algorithms, such

as those proposed by Gerchberg-Saxton and Fienup were based on alternating projections
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Loss function Name Papers
m

f(z) = z:(|<a,-7 z)|> — b%)* | Squared loss for intensities | [20, 103]

=1
m

f(z) = Z(|<ai, z)| — b;)* | Squared loss for amplitudes | [119, 126]

i=1
f(z) = ZH(ai’ z>|2 — b22| /1 loss for intensities [42, 40, 35]
i=1

Table 3.1: Non-convex loss functions for phase retrieval

[43, 96]. These were shown to exhibit empirical convergence to a global minimum in
the noise-free oversampled setting, but were not robust to noise, and had few theoretical
guarantees.

Over the last half a decade, there has been great interest in constructing and analyzing
algorithms with provable guarantees given certain classes of sampling vector sets. One
line of research involves “lifting” the quadratic system to a linear system, which is then
solved using convex relaxation (PhaseLift) [22]. A second method is to formulate and
solve a linear program in the natural parameter space using an anchor vector (PhaseMax)
[47, 6, 52]. Although both of these methods can be proved to have near optimal sample
efficiency, the most empirically successful approach has been to directly optimize various
naturally-formulated non-convex loss functions, the most notable of which are displayed in
Table 3.1.

These loss functions enjoy nice properties which make them amenable to various op-
timization schemes [103, 42]. Those with provable guarantees include the prox-linear
method of [40], and various gradient descent methods [20, 26, 119, 126, 35]. Some of
these methods also involve adaptive measurement pruning to enhance performance.

In 2015, Wei [121] proposed adapting a family of randomized Kaczmarz methods for
solving the phase retrieval problem. He was able to show using numerical experiments that
these methods perform comparably with state-of-the-art Wirtinger flow (gradient descent)
methods when the sampling vectors are real or complex Gaussian, or when they follow the
coded diffraction pattern (CDP) model [20]. He also showed that randomized Kaczmarz
methods outperform Wirtinger flow when the sampling vectors are the concatenation of
a few unitary bases. Unfortunately, [121] was not able to provide adequate theoretical
justification for the convergence of these methods (see Theorem 2.6 in [121]).

In this chapter, we attempt to bridge this gap by showing that the basic randomized
Kaczmarz scheme used in conjunction with truncated spectral initialization achieves lin-

ear convergence to the solution with high probability, whenever the sampling vectors are
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drawn uniformly from the sphere' S"~! and the number of measurements m is larger than
a constant times the dimension n.

It is also interesting to note that the basic randomized Kaczmarz scheme is exactly
stochastic gradient descent for the Amplitude Flow objective, which suggests that other

gradient descent schemes can also be accelerated using stochasticity.

3.1.1 Randomized Kaczmarz for solving linear systems

The Kaczmarz method is a fast iterative method for solving systems of overdetermined lin-
ear equations that works by iteratively satisfying one equation at a time. In 2009, Strohmer
and Vershynin [102] were able to give a provable guarantee on its rate of convergence, pro-
vided that the equation to be satisfied at each step is selected using a prescribed randomized
scheme.

Suppose our system to be solved is given by

Ax = b, (3.2)
where A is an m by n matrix. Denoting the rows of Aby al ... al we can write (3.2) as
the system of linear equations

<ai,X>:bi, Z:1,,m

The solution set of each equation is a hyperplane. The randomized Kaczmarz method
is a simple iterative algorithm in which we project the running approximation onto the
hyperplane of a randomly chosen equation. More formally, at each step k£ we randomly
choose an index r(k) from [m] such that the probability that (k) = i is proportional to

|a,]|2, and update the running approximation as follows:

br(k) - <ar(k)7xk71>

Xp = Xg—1 + ar(k)-

[Ew s
Strohmer and Vershynin [102] were able to prove the following theorem:

Theorem 3.1.1 (Linear convergence for linear systems). Let k(A) = ||A|| /0min(A). Then
for any initialization x to the equation (3.2), the estimates given to us by randomized
Kaczmarz satisfy

Bl —x.3 < (1= 5(4)2)" oo — .5

I'This is essentially equivalent to being real Gaussian because of the concentration of norm phenomenon
in high dimensions. Also, one may normalize vectors easily.
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Note that if A has bounded condition number, then x(A) =< /n.

3.1.2 Randomized Kaczmarz for phase retrieval

In the phase retrieval problem (3.1), each equation
(i, X.)| = b;

defines two hyperplanes, one corresponding to each of =z. A natural adaptation of the
randomized Kaczmarz update for this situation is then to project the running approximation
to the closer hyperplane. We restrict to the case where each measurement vector a; has unit

norm, so that in equations, this is given by

Xg i= Xgp—1 1 Mer(k); (3.3)

where

M = sign({@r ), Xe—1))br) — (r(r), Xe—1)-

In order to obtain a convergence guarantee for this algorithm, we need to choose x; so
that it is close enough to the signal vector x,. This is unlike the case for linear systems
where we could start with an arbitrary initial estimate x, € R", but the requirement is par
for the course for phase retrieval algorithms. Unsurprisingly, there is a rich literature on
how to obtain such estimates [22, 26, 126, 119]. The best methods are able to obtain a good

initial estimate using O(n) samples.

3.1.3 Main results

The main result of this chapter guarantees the linear convergence of the randomized Kacz-
marz algorithm for phase retrieval for random measurements a; that are drawn indepen-

dently and uniformly from the unit sphere.

Theorem 3.1.2 (Convergence guarantee for algorithm). Fix e > 0, 0 < §; < 1/2, and
0 < 0,05 < 1. There are absolute constants C, ¢ > 0 such that if

m > C(nlog(m/n) 4 log(1/6)),

then with probability at least 1 — , m sampling vectors selected uniformly and indepen-
dently from the unit sphere S™~' form a set such that the following holds: Let x € R"™ be a
signal vector and let x, be an initial estimate satisfying ||xo — x.||, < c\/01|x.|,. Then for
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any € > 0, if
K > 2(log(1/€) + log(2/d2))n,

then the K -th step randomized Kaczmarz estimate X i satisfies ||xx — x.||5 < €|lxo — x.|/
with probability at least 1 — 6, — 0.

Comparing this result with Theorem 3.1.1, we observe two key differences. First, there
are now two sources of randomness: one is in the creation of the measurements a;, and the
other is in the selection of the equation at every iteration of the algorithm. The theorem
gives a guarantee that holds with high probability over both sources of randomness. Theo-
rem 3.1.2 also requires an initial estimate X,. This is not hard to obtain. Indeed, using the
truncated spectral initialization method of [26], we may obtain such an estimate with high
probability given m = n. For more details, see Proposition 3.7.1.

The proof of this theorem is more nontrivial than the Strohmer-Vershynin analysis of
randomized Kaczmarz algorithm for linear systems [102]. We break down the argument in
smaller steps, each of which may be of independent interest to researchers in this field.

First, we generalize the Kaczmarz update formula (3.3) and define what it means to take
a randomized Kaczmarz step with respect to any probability measure on the sphere S™ !
we choose a measurement vector at each step according to this measure. Using a simple
geometric argument, we then provide a bound for the expected decrement in distance to
the solution set in a single step, where the quality of the bound is given in terms of the
properties of the measure we are using for the Kaczmarz update (Lemma 3.2.1).

Performing the generalized Kaczmarz update with respect to the uniform measure on
the sphere corresponds to running the algorithm with unlimited measurements. We utilize
the symmetry of the uniform measure to compute an explicit formula for the bound on
the stepwise expected decrement in distance. This decrement is geometric whenever we
make the update from a point making an angle of less than 7 /8 with the true solution, so
we obtain linear convergence conditioned on no iterates escaping from the “basin of linear
convergence”. We are able to bound the probability of this bad event using a supermartin-
gale inequality (Theorem 3.3.1).

Next, we abstract out the property of the uniform measure that allows us to obtain lo-
cal linear convergence. We call this property the anti-concentration on wedges property,
calling it ACW for short. Using this convenient definition, we can easily generalize our
previous proofs for the uniform measure to show that all ACW measures give rise to ran-
domized Kaczmarz update schemes with local linear convergence (Theorem 3.4.3).

The usual Kaczmarz update corresponds running the generalized Kaczmarz update with

respect to fip 1= % > i—1 0a;. We are able to prove that when the a;’s are selected uniformly
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and independently from the sphere, then p5 satisfies the ACW condition with high prob-
ability, so long as m 2 n (Theorem 3.5.7). The proof of this fact uses VC theory and a
chaining argument, together with metric entropy estimates.

Finally, we are able to put everything together to prove a guarantee for the full algorithm
in Section 3.6. In that section, we also discuss the failure probabilities §, ; and 5, and

how they can be controlled.

3.1.4 Notes

This chapter is adapted from the paper “Phase Retrieval via Randomized Kaczmarz: The-
oretical Guarantees” [107]. During the preparation of that manuscript, we became aware
of independent simultaneous work done by Jeong and Giintiirk. They also studied the ran-
domized Kaczmarz method adapted to phase retrieval, and obtained almost the same result
that we did (see [61] and Theorem 1.1 therein). In order to prove their guarantee, they use
a stopping time argument similar to ours, but replace the ACW condition with a stronger
condition called admissibility. They prove that measurement systems comprising vectors
drawn independently and uniformly from the sphere satisfy this property with high prob-
ability, and the main tools they use in their proof are hyperplane tessellations and a net
argument together with Lipschitz relaxation of indicator functions.

After submitting the first version of the manuscript, we also became aware of indepen-
dent work done by Zhang, Zhou, Liang, and Chi [126]. Their work examines stochastic
schemes in more generality (see Section 3 in their paper), and they claim to prove linear
convergence for both the randomized Kaczmarz method as well as what they called Incre-
mental Reshaped Wirtinger Flow. However, they only prove that the distance to the solution
decreases in expectation under a single Kaczmarz update (an analogue of our Lemma 3.2.1
specialized to real Gaussian measurements). As we will see in this chapter, this bound
cannot be naively iterated.

3.2 Computations for a single step

In this section, we will compute what happens in expectation for a single update step of the
randomized Kaczmarz method. It will be convenient to generalize our sampling scheme

slightly as follows. When we work with a fixed matrix A, we may view our selection of a

random row a, ;) as drawing a random vector according to the measure jis := = > " | 0,

We need not restrict ourselves to sums of Dirac delta functions. For any probability measure
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p on the sphere S"~!, we define the random map P = P, on vectors z € R" by setting
Pz :=z + na, 3.4)

where

n = sign((a,2))|(a,x.}| — (a,2) and a~ . (3.5)

Note that as before, x, is a fixed vector in R (think of x, as the actual solution of the
phase retrieval problem). We call P, the generalized Kaczmarz projection with respect to
w. Using this update rule over independent realizations of P, Py, P, . . ., together with an
initial estimate X, gives rise to a generalized randomized Kaczmarz algorithm for finding

X,: set the k-th step estimate to be
X = Pk:Pk:—l tee P1X0. (36)

Fix a vector z € R™ that is closer to X, than to —x,, i.e. so that (x,,z) > 0, and suppose
that we are trying to find x,. Examining the formula in (3.5), we see that P projects z onto
the right hyperplane (i.e., the one passing through x, instead of the one passing through
—x,) if and only if (a, z) and (a, x,) have the same sign. In other words, this occurs if and

only if the random vector a does not fall into the region of the sphere defined by
Wion i={v € 5" |sign((v,x,)) # sign({v,z))}. 3.7)

This is the region lying between the two hemispheres with normal vectors X, and z. We
call such a region a spherical wedge, since in three dimensions it has the shape depicted in
Figure 3.1.

Figure 3.1: Geometry of Wy, ,
When a ¢ W, ,, we can use the Pythagorean theorem to write
lz - x.J2 = 1Pz — x| + (2 — x..2)" (3.8)
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H_ [[(7) H+

Figure 3.2: Orientation of x,, z, and Pz when a € W_, and when a ¢ W_,. H, and
H_ denote respectively the hyperplanes defined by the equations (y,a) = b and (y,a) =
—b. Hy denotes the hyperplane defined by the equation (y,a) = 0. The left diagram
demonstrates the situation when a € Wy, ,, thereby justifying (3.8). The right diagram
demonstrates the situation when a ¢ Wx_,, thereby justifying (3.11).

Rearranging gives
1Pz — x|, = ||z — x.[[5(1 - (z.2)°). (3.9)

where z = (z — X,)/||z — X.|,-

In the complement of this event, we get
Pz=z+ (a,(—x.)—z)a=z— (a,z—X,) + (a, —2x,),
and using orthogonality,
Pz —x. |2 = |z — x.|> — (a,z — x.)” + (a,2x,)". (3.10)

Since z gets projected to the hyperplane containing —x,, it may move further away from
x,.. However, we can bound how far away it can move. Because (a, X,) has the opposite
sign as (a, z), we have

(a2 +x.)| < [{a,z —x.)],

and so
(a,2x.)| = [(a, (z — x.) — (z+x.))| < 2[{a,z —x,)].

Substituting this into (3.10), we get the bound
1Pz — x5 < llz = x5+ 3(a,z — x.)" = |lz = x.|5(1 + 3(z,2)"), (3.11)

where z is as before.

29



We can combine (3.9) and (3.11) into a single inequality by writing

1Pz — x5 < [lz = x.J5(1 = (Z.2) ) lwg , (a) + [z = x]5(1 + 3(2,2)") s, ()
= ||z — x.[l5(1 — (1 =4 1w, (a))(z,2)°)
= ||z — x.|5(1 — (z, (1 =4 1w, (a))aa"2)).

Taking expectations, we can remove the role that z plays by bounding this as follows.

Elllz — x.[5(1 — (z, (1 — 4 1y,_,(a))aa"Z))]
= |z — x.[l3(1 — (Z.E[(1 — 4 1y, ,(a))aa"]z))
< ||z — x| [1 — Amin(Eaa” — 4Eaa” 1y, (a))].

We may thus summarize what we have obtained in the following lemma.

Lemma 3.2.1 (Expected decrement). Fix vectors x.,z € R", a probability measure | on
S"=1 and let P = P, W,. . be defined as in (3.4) and (3.7) respectively. Then

E[[Pz — x.|2 < [1~ Ain(Baa” — 4Eaa" 1y, _(@))]]lz — x.|I%

Let us next compute what happens for i = o, the uniform measure on the sphere. It is
easy to see that Eaa’ = 1I,,, so it remains to compute Eaa’ 1y, _,(a). To do this, we make
a convenient choice of coordinates: Let 6 be the angle between z and x,. We assume that
both points lie in the plane spanned by e; and e, the first two basis vectors, and that the

angle between z and x, is bisected by ey, as illustrated in Figure 3.3.

€2

S
.N

o

Figure 3.3: Choice of coordinates

For convenience, denote M := IE‘Eaale,mz (a). Let Q denote the orthogonal projection
operator onto the span of e; and e;. Then Q(W, ,) is the union of two sectors of angle

6, which are respectively bisected by e, and —e,. Recall that all coordinate projections of
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the uniform random vector a are uncorrelated. It is clear that from the symmetry in Figure
3.3 that they remain uncorrelated even when conditioning on the event that a € Wy, ,. As
such, M is a diagonal matrix.

Let ¢ denote the anti-clockwise angle of Qa from e, (see Figure 3.3). We may write

(a,e1)” = [|Qall2(Qa/|[Qall, 1) = [[Qalsin’ .

Note that the magnitude and direction of Qa are independent, and a € W_, if either ¢
or ¢ — 7 lies between —f /2 and /2. We therefore have

My, = E[(a,e1) 1w, ,(a)] = E[[|Qa|[3E sin® ¢1(_g/2,6/2)(¢ or ¢ — 7)].

By a standard calculation using symmetry, we have E||Qal|3 = 2/n. Since ¢ is distributed

uniformly on the circle, we can compute

1[92 1[92 1 — cos(2t 0 — sind
Esin® ¢1(_gy2,02)(¢ or p — 1) = = / sin? tdt = = / cos(21) 0 —sinb
T J-0/2 ™ J—6/2 2 27

As such, we have My; = (0 — sinf)/nm, and by a similar calculation, My, = (6 +

sin #) /nm. Meanwhile, for i > 3 we have

TI'(M) — MH — M22

M;; =
n—2
_ Efja— Q)a>lw,, ,(a)]
n— 2
_ E|[(1—Q)all5EL o202 (¢ or 6 — 7)

n—2

(n=2)/n-0/7 6

B n oo

This implies that
0 in@
A (M) = 27 (3.12)
nmw

We have now completed proving the following lemma.

Lemma 3.2.2 (Expected decrement for uniform measure). Fix vectors x,z € R" such that
(z,x.) > 0, and let P = P, denote the generalized Kaczmarz projection with respect to o,
the uniform measure on the sphere. Let 0 be the angle between z and x.. Then

1 —4(0 +sinb) /7w
O LSO/ 1 — 2

E|lPz x|} < [1-
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Remark 3.2.3. By being more careful, one may compute an exact formula for the expected
decrement rather than a bound as is the case in previous lemma. This is not necessary for
our purposes and does not give better guarantees in our analysis, so the computation is

omitted.

3.3 Local linear convergence using unlimited uniform mea-

surements

In this section, we will show that if we start with an initial estimate that is close enough
to the ground truth x,, then repeatedly applying generalized Kaczmarz projections with
respect to the uniform measure o gives linear convergence in expectation. This is exactly
the situation we would be in if we were to run randomized Kaczmarz given an unlimited
supply of independent sampling vector a;, a,, . . . drawn uniformly from the sphere.

We would like to imitate the proof for linear convergence of randomized Kaczmarz for
linear systems (Theorem 3.1.1) given in [102]. We denote by X, the estimate after £ steps,
using capital letters to emphasize the fact that it is a random variable. If we know that X},
takes the value x; € R", and the angle 6 that z makes with x;, is smaller than 7/8, then,

Lemma 3.2.2 tells us

E[|Xer1 — x.J2 ] X = %] < (1= g /n)llxe — x. 2 (3.13)

where a, 1= 1/2 — 4sin(7/8)/m > 0.

The proof for Theorem 3.1.1 proceeds by unconditioning and iterating a bound similar
to (3.13). Unfortunately, our bound depends on x;, being in a specific region in R™ and does
not hold arbitrarily. Nonetheless, by using some basic concepts from stochastic process
theory, we may derive a conditional linear convergence estimate. The details are as follows.

For each £, let F, denote the o-algebra generated by a,a.,...,a;, where a; is the
sampling vector used in step k. Let B C R" be the region comprising all points making
an angle less than or equal to 7 /8 with x,. This is our basin of linear convergence. Let us

assume a fixed initial estimate xo € B. Now define a stopping time 7 via

7:=min{k : X; ¢ B}. (3.14)

For each k, and x;, € B, we have
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E[||Xk+1 — X*H§17>k+1 | Xi = xi) < E[||Xp41 — X*H§17>k | X\ = xg]
= E[|[ X1 — XI5 Lo | Xi = xi, Fi]
= E[||Xer1 — X5 | Xi = X5, Fil Lo,

< (1= o /n)llxe — %21

Here, the first inequality follows from the inclusion {7 > k+ 1} C {7 > k}, the
first equality statement from the Markov nature of the process (X}), the second equality
statement from the fact that 7 is a stopping time, while the second inequality is simply

(3.13). Taking expectations with respect to X then gives

E[Xks1 — Xl [51rsri1] = E[E[[Xps1 — Xe[l3 Lokt | Xal]
< (1= ap/n)E[|IXk — X[l 3154

By induction, we therefore obtain
E 2 < k 2
[1IXk = Xu[[5150] < (1= ap/n)"[|x0 — X5

We have thus proven the first part of the following convergence theorem.

Theorem 3.3.1 (Linear convergence from unlimited measurements). Let x. be a vector
in R", let § > 0, and let x, be an initial estimate to x. such that ||xo — x.||, < x|,
Suppose that our measurements ay, as, . . . are fully independent random vectors distributed
uniformly on the sphere S"~'. Let X), be the estimate given by the randomized Kaczmarz
update formula (3.6) at step k, and let T be the stopping time defined via (3.14). Then for
everyk € 7.,

ElXe — £.]2Lroc] < (1= ap/n)F[lxo — .12 (3.15)

where a, = 1/2 — 4sin(n/8)/m > 0. Furthermore, P(T < co) < (8/sin(7/8))%

Proof. In order to prove the second statement, we combine a stopping time argument with
a supermartingale maximal inequality. Set Yy := || X \x — X*Hg We claim that Y}, is a

supermartingale. To see this, we break up its conditional expectation as follows:

E{Yit | Fil = Bl Xongen) — % 2Lren | Fil + EIXragein — %2 | Fil
= E{Xons — % 3L | Fi + E[Xer — %3 Leo | Fil
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Since || X-ax — X. |5 is measurable with respect to Fy, we get
E[|Xak = Xell31rr | Fil = KXok = Xel51rak = Yilrsh,
Meanwhile, on the event 7 > k, we have X, € B, so we may use (3.13) to obtain
E[l[ X1 = Xell31rsk | Fil = E[Xpi1 = %elly | Fillror < (1= a0 /m)| X = Xe[l5151-
Next, notice that
X — X*H§17>k = || Xak — X*H§17>k =Yl
Combining these calculations gives
E[Yii1 | Fi] < Yili<p + (1 — ap/n)Yilsp < Vi

Now define a second stopping time 7" to be the earliest time & such that || X — x|/, >

sin(7/8) - [|X.|[,. A simple geometric argument tells us that 7" < 7, and that 7" also satisfies
T = inf{k | Yy > sin®(7/8)||x.||3}.
As such, we have

P(r < 00) < P(T < o0) = IP’( sup Yy > sin2(7r/8)HX*H§).

1<k<oo

Since (Y}) is a non-negative supermartingale, we may apply the supermartingale maximal

inequality to obtain a bound on the right hand side:

EYy . 5
0/ sin(m :
Rl - )

This completes the proof of the theorem. [

IP’( sup YkZSiDQ(W/E%)HX*H;) < —
sin®(

1<k<oo

Corollary 3.3.2. Fixe > 0,0 < 6; < 1/2,and 0 < 6y < 1. In the setting of Theorem 3.3.1,
suppose that ||xo — x.||, < /01 sin(7/8)||x.],. Then with probability at least 1 — §; — s,
if k > (log(2/€) +1log(1/8))n/cty then | Xy, — x5 < ellxo —x. 5.

Proof. First observe that

V0 sin(r/8) 2_
P(r < >0) < (—sin(ﬂ/S) ) =0 <1/2.
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Next, since

E[lX5, — X.l31r—cc] = E[[Xx — %.[l3 | 7 = o] P(7 = 00) +0 - P(r < 0)

1
> SE[|[X; = xl; | 7 = o],
applying Theorem 3.3.1 gives
E[lX5 — %[l | 7= 00] < 2(1 — aq/n)*|x0 — x5

Applying Markov’s inequality then gives

(X5 — x.[l5 | 7 = 0]

E
P(IX; — x.]l5 > €llxo — x.]I5 | 7 = 00) < 5
€llxo — X.||5

< 2(1 - ag/n)k‘

€

Plugging our choice of k into this last bound shows that it is in turn bounded by d,. We

therefore have

P(|Xx — X. 15 < €llxo — x.]15) = P(IIXk — X.[5 < €llxo — x.]|5 | 7 = 00)P(7 = o0)
> (1—42)(1—6y)
>1—01— 0

as we wanted. L]

3.4 Local linear convergence for ACW (6, o) measures

We would like to extend the analysis in the previous section to the setting where we only
have access to finitely many uniform measurements, i.e. when we are back in the situation
of (3.1). When we sample uniformly from the rows of A, this can be seen as running
the generalized randomized Kaczmarz algorithm using the measure py = % Yo, 0 as
opposed to 4 = o.

If we retrace our steps, we will see that the key property of the uniform measure
o that we used was that if W C S™"! is a wedge® of angle ¢, then we could make

Amax(Esaa’ 1y (a)) arbitrarily small by taking 6 small enough (see equation (3.12)). We

ZRecall that a wedge of angle 6 is the region of the sphere between two hemispheres with normal vectors
making an angle of 6.
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do not actually need such a strong statement. It suffices for there to be an absolute constant
a such that

Amin(Eaa” — 4Eaa” 1y, (a)) > (3.16)

3|e

holds for 6 small enough.

Definition 3.4.1 (Anti-concentration). If a probability measure ;1 on S™~! satisfies (3.16)
for all wedges W of angle less than 6, we say that it is anti-concentrated on wedges of

angle 0 at level o, or for short, that it satisfies the ACW(6, «v) condition.

Abusing notation, we say that a measurement matrix A is ACW(0, «) if the uniform
measure on its rows is ACW (6, «). Plugging in this definition into Lemma 3.2.1, we im-

mediately get the following statement.

Lemma 3.4.2 (Expected decrement for ACW measure). Let 1w be a probability measure on
the sphere S™* satisfying the ACW (0, a) condition for some o > 0 and some acute angle
0 > 0. Let P = P,, denote the generalized Kaczmarz projection with respect to . Then for

any x,,z € R" such that the angle between them is less than 0, we have
E[[Pz —x.[2 < (1 - a/n)|z —x.]% (3.17)

We may now imitate the arguments in the previous section to obtain a guarantee for
local linear convergence for the generalized randomized Kaczmarz algorithm using such a

measure (.

Theorem 3.4.3 (Linear convergence for ACW measure). Suppose p is an ACW (0, o) mea-
sure. Let x, be a vector in R™, let 6 > 0, and let xy be an initial estimate to x, such that
X0 — x|, < d|jx.||,. Let X), denote the k-th step of the generalized randomized Kaczmarz
method with respect to the measure |1, defined as in (3.6). Let €) be the event that for every
k € Z., Xy makes an angle less than 0 with x... Then for every k € 7.,

E[[[Xx — x.[l310] < (1 — a/n)*lro —x.l5. (3.18)

Furthermore, P(Q2¢) < (§/sin ).

Proof. We repeat the proof of Theorem 3.3.1. Let B, C S™! be the region on the sphere
comprising all points making an angle less than or equal to 7/8 with x,.. Define stopping
times 7, and T}, as the earliest times that X;, ¢ B, and ||X; — Xo||, > sin(6)||x.||, re-
spectively. Again, Y} := Xy,,, 1s a supermartingale, so we may use the supermartingale
inequality to bound the probability of €2°. Conditioned on the event {2, we may iterate the
bound given by Lemma 3.4.2 to obtain (3.18). 0
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Corollary 3.44. Fixe > 0,0 < 6; < 1/2, and 0 < §y < 1. In the setting of Theorem 3.4.3,
suppose that ||xo — x|, < /01 sin(0)]|x.]|,. Then with probability at least 1 — §; — &, if
k> (log(2/e) + log(1/6))n /e then | Xy — x.|2 < elivo —x.J1

3.5 ACW(6,a) condition for finitely many uniform mea-

surements

Following the theory in the previous section, we see that to prove linear convergence from
finitely many uniform measurements, it suffices to show that the measurement matrix A is
ACW (6, «v) for some 6 and .

For a fixed wedge W, we can easily achieve (3.16) by using a standard matrix concen-
tration theorem. By taking a union bound, we can guarantee that it holds over exponentially
many wedges with high probability. However, the function W 5 .. (FEaa’ 1y (a)) is not
Lipschitz with respect to any natural parametrization of wedges in S"~1, so a naive net ar-
gument fails. To get around this, we use VC theory, metric entropy, and a chaining theorem
from [38].

First, we will use the theory of VC dimension and growth functions to argue that all
wedges contain approximately the right fraction of points. This is the content of the next

lemma.

Lemma 3.5.1 (Uniform concentration of empirical measure over wedges). Fix an acute
angle 0 > 0. Let W, denote the collection of all wedges of S"~! of angle less than 0.
Suppose A is an m by n matrix with rows a; that are independent uniform random vectors
on S™L, and let iy = = 3" 65, Then if m > (47/0)%(2nlog(2em/n) +log(2/6)), with
probability at least 1 — 0§, we have

sup ua(W) < 20/7.
wew

Proof. Using VC theory (Proposition 2.5.2), we have

P(sup |pa(W) — a(W)| > u) < 41y, (2m) exp(—mu?/16) (3.19)
Wew
whenever m > 2/u?. Let S be the collection of all sectors of any angle, and let  denote
the collection of all hemispheres. By Claim 2.5.3 and the Sauer-Shelah lemma (Lemma
2.5.1) relating VC dimension to growth functions, we have I13(2m) < (2em/n)™.
Next, notice that using the notation in (2.14), we have W = HAH. As such, we may
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apply Claim 2.5.4 to get
Iy (2m) < (2em/n)*".

We now plug this bound into the right hand side of (3.19), set u = /7, and simplify to

get

P(sup [ia (1Y) = o(W)| = 6/7) < 4exp(2nlog(2em/n) = m(6/)*/16).

Our assumption implies that m > 2/(6/m)? so the bound holds, and also that the bound
is less than 6. Finally, since Wy C W, on the complement of this event, any W € W,

satisfies
pa(W) <o(W)+0/m < 20/m

as we wanted. O]

For every wedge W € W), we may associate the configuration vector

swa = (lw(ai), lw(az),. .., lw(an)).
We can write |
Amax(E a2 1y (a)) = EAmaX(ATSWAA), (3.20)

where Sy 4 = diag(swa). Swa is thus a selector matrix, and if we condition on the good
event given to us by the previous theorem, it selects at most a 20 /7 fraction of the rows of

A. This means that sy 5 € Sy, where we define
S, ={de{0,1}"|(d,1) < 7-m}.

We would like to majorize the quantity in (3.20) uniformly over all wedges 11 by the
quantity %‘)\min(E“AaaT). In order to do this, we define a stochastic process (Y ) indexed

by s € S/ and v € B, setting

Yy = nv' A" diag(s)Av = ) " s;(v/na;,v)*. (3.21)

=1

If we condition on the good set in Lemma 3.5.1, it is clear that

1 ’ 1
Sup _)\max(A SW,AA) < — sSup }/S,Vy
Wew, M NI s€859/,vEBY

so it suffices to bound the quantity on the right. We will do this using Theorem 2.4.2, which
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requires us to show that our process (Y;y) has mixed tail increments.

Lemma 3.5.2 ((Y; ) has mixed tail increments). Let (Y;,) be the process defined in (3.21).
Define the metrics dy and dy on Sy x By using the norms ||(w,v)||; = max{||w|| . [[v|l,}
and ||(w,v)||, = max{||wl|,, \/2m8/7|[v|,}. Then the process has mixed tail increments
with respect to (dy, ds).

Proof. The main tool that we use is Bernstein’s inequality [114] for sums of subexponential
random variables. Observe that each /na; is a subgaussian random vector with bounded
subgaussian norm ||/na;|| v, < C, where C' by an absolute constant. As such, for any
v € By, (\/na;, V>2 is a subexponential random variable with bounded subexponential
norm ||<\/ﬁai,v>2|]¢1 < C?*[114].

Now fix v and let s, s’ € So9/~. Then

}/;,v - }/;’,v = Z(Sl - 5;’)<\/ﬁai7v>2-
i=1
Using Bernstein, we have
P(|Yow — Yool > u) < 2exp(—cmin{u?/|ls — |3, u/lls — ']l })- (3.22)

Similarly, if we fix s € Sop/- and let v, V' € B, then

m

K,V - }/;,v’ = Z Si(<\/ﬁai7 V>2 - <\/ﬁai7 V/>2)

i=1
m
— Z si{(v/na;, v —v'){(v/na;, v+v).
i=1
We can bound the subexponential norm of each summand via

Isi(vnai, v — V) (vnai, v + V)|, < sill (Vnai, v = V), - [{(Vnai, v + v)l,,

< Csi||lv = V'],

As such,

Y llsilv/nai, v —v) (Vi v+ V)|[;, < Clv = V3 st < C20/m)mllv = v'||3.
=1 =1
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Applying Bernstein as before, we get
B(|Yy — Yow| > u) < 2exp(—cmin{u®/(20/m)mllv — V|2 u/v = V[,}).  (323)
Now, recall the simple observation that for any numbers a, b € R, we have
max{|al, [b[} < |af +[b] < 2max{]al, [b]}.

As such, for any u > 0, given s, s’ € Syp/x, V, V' € By, we have

1
Vall(s,v) = (8 V)l + ull(s,v) = (8" V)l = 5 (Vulls = $'ll; + Vuy/2mb/wllv =V,
+ulls =8l +ullv =V,

1
> S max{ Vs =, + ulls 5

oo’

Vur/2ml/m||s —§'||, 4+ ul|lv — V|, }.

Since
|Y;,V - i/s’,v’| S |Y;,V - }/s’,v| + |Y;’,v - Y;’,V’|7

we have that if

Yo = Yol = c(Vaull(s,v) = (8, V)l + wll(-v) = (8", V)l ).

then either
c
Yoy — Yoo > Z(\/EHS - S,||2 + ul|s — S/Hoo)

or
C
Vo = Yol 2 5 (Vav/2m0/fallv = v, + ullv = v,).

We can then combine the bounds (3.23) and (3.22) to get
B(|Yo — Yol 2 e(Vall(s.v) = (8, V)l + ull(s.v) = (8, V)lI,)) < de ™

Hence, the process (Y;y) satisfies the definition (2.11) for having mixed tail increments.
[

We next bound the ; and v, functions for Sy /. X B3

Lemma 3.5.3. We may bound the -y, functional of S/~ x By by

M(S20/x X By, [llll) < C((20/7) log(w/20)m + n).
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Proof. The proof of the bound uses metric entropy Dudley’s inequality. Recall that Sy,
is the set of all {0, 1} vectors with fewer than 26/ ones. For convenience, let us assume

that 2m6 /7 is an integer. We then have the inclusion

329/7r - U[Oa 1]17

1€l

where 7 is the collection of all subsets of [m] of size 2m@/x, and [0, 1]’ denotes the unit

cube in the coordinate set /. We may then also write

Sase x By | J([0,1]" x By).

1€l

Note that a union of covers for each [0, 1]' x Bj gives a cover for Syy/» x By. This,

together with the symmetry of ||-|| . with respect to permutation of the coordinates gives
N(Soo/m % By, Il w) < |21 - N ([0, 1) x By, [I1[Il w)

for some fixed index set /.

We next generalize the notion of covering numbers slightly. Given two sets 7" and K,
we let N(T, K') denote the number of translates of K needed to cover the set 7. It is easy
to see that we have N (7T',d,u) = N(T,uB,), where By is the unit ball with respect to the

metric d. Since the unit ball for ||-|||, is Bl x Bj, we therefore have

N([0,1)" < By, [I-lly,u) = N([0,1]" x By, u(BZ x By))
< N(BE/mm « B w(BE/™m  BIY).

o0 o0

Such a quantity can be bounded using a volumetric argument. Generally, for any cen-

trally symmetric convex body K in R", we have (see Corollary 4.1.15 in [5])
N(K,uK) < (3/u)". (3.24)
This implies that
log N ([0, 1] > S, [I:[l;, w) < log(3/u)((20/m)m + n).
Finally, observe that

log|Z| = log ( (20/m)mlog(em /26).

<297jr>m) :
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We can thus plug these last two bounds into Dudley’s inequality with o = 1 (Lemma

2.4.3), noting that the integrand is zero for v > 1 to get

71 (S29/= % By, [|-]ll;) < C’/O (20 /m)mlog(em/20) 4 log(3/u)((20/m)m + n)du
< C((20/7)log(m/20)m + n)

as was to be shown. L]

Lemma 3.5.4. We may bound the -y, functional of S/~ x By by

12(Saasn x B3 [Ily) < C/20]m(m + v/mn).

Proof. Since o = 2, we may appeal directly to the theory of Gaussian complexity [113].
However, since we have already introduced some of the theory of metric entropy in the

previous lemma, we might as well continue down this path. In this case, the Dudley bound

states that -
(T, d) < C’/ Vd1og N(T,d,u)du (3.25)
0

for any metric space (7', d).
Observe that the unit ball for [|-[|, is By* x (2m#/m)~1/2BY. On the other hand, we

conveniently have
Sag/r X By C \/2mb/nBy" x By
As such, we have
N(Sz0/x % By, [|Illp;w) < N(v/2mb/nBy" x By, ||- |||27 u)

= N(\/2m0/7By" x By, u(By x (2mf/m)~/*By))
= N(T, (2m8 /7))~ /*uT),

where T' = /2m0 /7 BY* x BY.
Plugging this into (3.25) and subsequently using the volumetric bound (3.24), we get

Y2(Sa9/= % By, [|]ll5) / \/logN (2m0 /)1 2uT)du
— C/ambfx [ \/log N T uT)du
0
< C\/2mb/mv/m +n,
which is clearly equivalent to the bound that we want. 0
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At this stage, we can put everything together to bound the supremum of our stochastic

Process.

Theorem 3.5.5 (Bound on supremum of (Ysy)). Let (Y;,) be the process defined in (3.21).
Let 0 < 6 < 1/e, let 0 be an acute angle, and suppose m > max{n,log(1/0)n/20}. Then

with probability at least 1 — 0, the supremum of the process satisfies

sup Yy, <C/20/m-m (3.26)

SESQQ/W ,VEB;

Proof. It is easy to see that we have
diam(Sag/x X By, [|l{ll,) = 2,

and
diam(Sgg/7r x By, H||||2) =24/2mb/x.

Also observe that we have Y5y = 0 for any s € Syg/5.
Using these, together with the previous two lemmas bounding the v, and 7, functionals,

we may apply Lemma 2.4.2 to see that

sup Yoy < C(((20/7) log(m/20)m~+n)+ /20 /m(m+v/mn) +u+/u\/2mb /7).

56829/7\' 7VEBS

with probability at least 1 — e™".

Using our assumptions on m, we may simplify this bound to obtain (3.26). 0
Finally, we show that - """ a;al is well-behaved.

Lemma 3.5.6. Let 6 > 0. Then if m > C(n + +/log(1/4)), with probability at least 1 — 0,

we have
n m
H— E aal —1I,
m <
=1

Proof. Note, as before, that the y/na;’s are isotropic subgaussian random variables with

<0.1

subgaussian norm bounded by an absolute constant. The claim then follows immediately

from covariance estimation (Lemma 2.3.2). ]

Theorem 3.5.7 (Finite measurement sets satisfy ACW condition). There is some 6y > 0
and an absolute constant C' such that for all angles 0 < 0 < 0, for all dimensions n, and

any 6 > 0, if m satisfies
m > C(7/20)*(nlog(m/n) + log(1/5)), (3.27)
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then with probability at least 1 — 0, the measurement set A comprising m independent

random vectors drawn uniformly from S™"~1 satisfies the ACW (0, ) condition with o =
1/2.

Proof. Fix n,d > 0. Choose 6 such that the constant C' in the statement in Theorem 3.5.5
satisfies C' \/m < 0.1. Fix 0 < 6 < 6, and let €24, €25, and €23 denote the good events
in Lemma 3.5.1, Theorem 3.5.5, and Lemma 3.5.6 with this choice of 8. Whenever m
satisfies our assumption (3.27), the intersection of these events occurs with probability at
least 1 — 34 by the union bound.

Let us condition on being in the intersection of these events. For any wedge W € W
(i.e of angle less than #), Lemma 3.5.1 tells us that its associated selector vector satisfies
sw,a € Sag/x (i.e. that it has at most 2mo /m ones,). By Theorem 3.5.5 and our assumption

on 6y, we then have

1 0.1
max( E a;4a; 1W a; ) < sup }/S,v < .
n

M s€8y9/ vEBY

On the other hand, Lemma 3.5.6 guarantees that

rmn ( Z a;a > > —
Combining these, we get

Amin(%iai i __Zaza ]-W q; > Z%v

=1

which was to be shown. O]

3.6 Proof and discussion of Theorem 3.1.2

We restate the theorem here for convenience.

Theorem 3.6.1. Fixe > 0,0 < 0; < 1/2, and 0 < 6,09 < 1. There are absolute constants
C,c > 0 such that if
m > C(nlog(m/n) + log(1/§)),

then with probability at least 1 — , m sampling vectors selected uniformly and indepen-
dently from the unit sphere S"~! form a set such that the following holds: Let x € R"™ be a
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signal vector and let x, be an initial estimate satisfying ||xo — x.||, < c\/01]x.||,. Then for
any € > 0, if
K > 2(log(1/e) +log(2/5)n,

then the K -th step randomized Kaczmarz estimate X i satisfies ||xx — x.||5 < ¢|lxo — x./
with probability at least 1 — §; — 0.

Proof. Let A be our m by n measurement matrix. By Theorem 3.5.7, there is an angle 6,
and a constant C' such that for m > C(nlog(m/n) + log(1/0)), A is ACW(6y, 1/2) with
probability at least 1 — 9.

We can then use Corollary 3.4.4 to guarantee that with probability at least 1 — 6; — 0o,

running the randomized Kaczmarz update K times gives an estimate Xy satisfying
2 2
X =%l < €llxo = %[5

This completes the proof of the theorem. 0

Inspecting the statement of the theorem, we see that we can make the failure probability
0 as small as possible by making m large enough. Likewise, we can do the same with 9,
by adjusting K. Proposition 3.7.1 shows that we can also make J, smaller by increasing
m. However, while the dependence of m and K on § and 5 respectively is logarithmic, the
dependence of m on 6, is polynomial (we need m 2> 1/46%). This is rather unsatisfactory, but
can be overcome by a simple ensemble method. We encapsulate this idea in the following

algorithm.

Algorithm 1 ENSEMBLE RANDOMIZED KACZMARZ

Input: Measurements by, ..., b,,, sampling vectors ay, ..., a,,, relative error tolerance e,
iteration count K, trial count L.
Output: An estimate X, for x,.
1: Obtain an initial estimate X, using the truncated spectral initialization method (see
Section 3.7).
2: for ! =1,..., L, run K randomized Kaczmarz update steps starting from X, to obtain
an estimate xg?.
3: fori=1,...,L,do
it | Bx'Y 2/ n {xV, .. xP} > L2

- l
return x, := XEK).

AN

Proposition 3.6.2 (Guarantee for ensemble method). Given the assumptions of Theorem
3.6.1, further assume that 61 + 9 < 1/3. For any ' > 0, there is an absolute constant
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C' such that if L > C'log(1/¢"), then the estimate X, given by Algorithm 1 satisfies ||¥, —
x. |2 < 9€llxo — x.||5 with probability at least 1 — §'.

Proof. For 1 <1 < L, let x; be the indicator variable for ||x§? —x. |2 < €||xo — X.||>. Then
X1, - - -, X1 are i.i.d. Bernoulli random variables each with success probability at least 2/3.
Let I be the set of indices [ for which x; = 1. Using a Chernoff bound [113], we see that
with probability at least 1 — e~“, |I| > L/2. Now let I’ be the set of indices for which
|B(X§?, 2¢) N {xﬁ?, . ,X%)}‘ > L/2. Observe that for all [, [’ € I, we have

! 4 l U
X% = x&l, < %2 — x|, + [l — x&[l, < 2/

This implies that I C I’, so I’ # (). Furthermore, for all I’ € I’, there is [ € I for which
HX([? — xgl(l)H2 < 24/e. As such, we have

v v I I
Ixie’ = xllo < %" = %1l + 1) =%, < 3V
Now, observe that the estimate X, returned by Algorithm 1 is precisely some x%) for which
I' € I'. This shows that on the good event, we indeed have ||X, — x. > < 9¢[xo — x.]|3. By

our assumption on L, we see that the failure probability is bounded by ¢'. 0

In practice however, the ensemble method is not required. Numerical experiments show
that the randomized Kaczmarz method always eventually converges from any initial esti-

mate.

3.7 Initialization

Several different schemes have been proposed for obtaining initial estimates for Phase-
Max and gradient descent methods for phase retrieval. Surprisingly, these are all spectral
in nature: the initial estimate X, is obtained as the leading eigenvector to a matrix that
is constructed out of the sampling vectors ay, ..., a,, and their associated measurements
by, ..., by, [20, 26, 126, 119].

There seems to be empirical evidence, at least for Gaussian measurements, that the best
performing method is the orthogonality-promoting method of [119]. Nonetheless, for any
given relative error tolerance, all the methods seem to require sample complexity of the
same order. Hence, we focus on the truncated spectral method of [26] for expositional

clarity, and refer the reader to the respective papers on the other methods for more details.
The truncated spectral method initializes Xy := \gXg, Where \g = 4/ # Z:ll b2, and X
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is the leading eigenvector of
1 m
Y =—) blaa; 1(b; < 3)\).
- ; raga; 1(bi < 3X)

Note that when constructing Y, we sum up only those sampling vectors whose correspond-
ing measurements satisfy b; < 3)g. The point of this is to remove the influence of unduly
large measurements, and allow for good concentration estimates, as we shall soon demon-
Strate.

Suppose from now on that the a;’s are independent standard Gaussian vectors. In [26],
the authors prove that with probability at least 1 — exp(—£2(m)), we have |[X) — X, ||, <
€||x.]|, for any fixed relative error tolerance € (see their Proposition 3). They do not, how-
ever, examine the dependence of the probability bound on e. Nonetheless, by examining
the proof more carefully, we can make this dependence explicit. In doing so, we obtain the

following proposition.

Proposition 3.7.1 (Relative error guarantee for initialization). Let a1, ..., @, by, ..., by,
Y and x, be defined as in the preceding discussion. Fix ¢ > 0 and 0 < § < 1. Then with
probability at least 1 —§, we have ||xo—x.]||, < €|jx.]|, so long asm > C(log(1/8)+n)/e.

Proof. We simply make the following observations while following the proof of Propo-
sition 3 in [26]. First, since all quantities are 2-homogeneous in ||X.||,, we may assume
without loss of generality that ||x,|, = 1. Next, there is some absolute constant ¢ such
that if we define Y; and Ys by choosing v = 3 + ce, 72 = 3 — ce, we have the bound
|IEY; — EY.|| < Ce. Note also that the deviation estimates |[Y; — EY,||, ||[Y2 — EY;|| are
bounded by C'e given our assumptions on m. This implies that with high probability,

1Y - BIX*X*T — Bol,|| < Ce.

Adjust our constants so that C' in the last equation is bounded by 5, — 5. We may then
apply Davis-Kahan [34] to get

_ T _
HY ﬁlx*x* BQInH S €
B — B2

as we wanted. ]

X0 — x|, <

By examining the proof carefully, the astute reader will observe that the crucial proper-
ties that we used were the rotational invariance of the a;’s (to compute the formulas for EY;

and EY5) and their subgaussian tails (to derive the deviation estimates). These properties

47



also hold for sampling vectors that are uniformly distributed on the sphere. As such, a more
lengthly and tedious calculation can be done to show that the guarantee also holds for such
sampling vectors. If the reader has any residual doubt, perhaps this can be assuaged by
noting that a uniform sampling vector and its associated measurement (a;, b;) can be turned
into an honest real Gaussian vector by multiplying both quantities by an independent y?

random variable with n degrees of freedom.

3.8 Comments and open questions

3.8.1 Arbitrary initialization

In order to obtain a convergence guarantee, we used a truncated spectral initialization to
obtain an initial estimate before running randomized Kaczmarz updates. Since the number
of steps that we require is only linear in the dimension, and each step requires only linear
time, the iteration phase of the algorithm only requires O(n?) time, and furthermore does
not need to see all the data in order to start running.

The spectral initialization on the other hand requires one to see all the data. Forming
the matrix from which we obtain the estimate involves adding m rank 1 matrices, and
hence naively requires O(mn?) time. There is hence an incentive to do away with this step
altogether, and ask whether the randomized Kaczmarz algorithm works well even if we
start from an arbitrary initialization.

We have some numerical evidence that this is indeed true, at least for real Gaussian
measurements. Unfortunately, we do not have any theoretical justification for this phe-

nomenon, and it will be interesting to see if any results can be obtained in this direction.

3.8.2 Complex Gaussian measurements

We have proved our main results for measurement systems comprising random vectors
drawn independently and uniformly from the sphere, or equivalently, for real Gaussian
measurements. These are not the measurement sets that are used in practical applications,
which often deal with imaging and hence make use of complex measurements.

While most theoretical guarantees for phase retrieval algorithms are in terms of real
Gaussian measurements, some also hold for complex Gaussian measurements, even with
identical proofs. This is the case for PhaseMax [22] and for Wirtnger flow [20]. We believe
that a similar situation should hold for the randomized Kaczmarz method, but are not yet

able to recalibrate our tools to handle the complex setting.
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It is easy to adapt the randomized Kaczmarz update formula (3.3) itself: we simply
replace the sign of (a, ), X,_1) with its phase (i.e. m—z’;:&) Numerical experiments
also show that convergence does occur for complex Gaussian measurements (and even
CDP measurements) [121]. Nonetheless, in trying to adapt the proof to this situation, we
meet an obstacle at the first step: when computing the error term, we can no longer simply
sum up the influence of “bad measurements” as we did in Lemma 3.2.1. Instead, every

term contributes an error that scales with the phase difference

(ai,z)  (ai,x.)
(i, z)|  [(ai, x|

Since the argument of Jeong and Giintiirk also heavily relies on the decomposition of
the measurement set into “good” and “bad” measurements, their method likewise does
not easily generalize to cover the complex setting. We leave it to future work to prove
convergence in this setting, whether by adapting our methods, or by proposing completely

new ones.

3.8.3 Deterministic constructions of measurement sets

The theory that we have developed in this chapter does not apply solely to Gaussian mea-
surements, and generalizes to any measurement sets that satisfy the ACW condition that
we introduced in Section 3.5. It will be interesting to investigate what natural classes of

measurement sets satisfy this condition.
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CHAPTER 4
Sparse, Misspecified Phase Retreival

4.1 Introduction

4.1.1 Sparse phase retrieval

Recall that the phase retrieval problem is that of solving a system of quadratic equations
[(a;,x)°| = i, i=1,2,...,m 4.1

where a; € R” (or C") are known sampling vectors, y; > 0 are observed measurements,
and x € R"” (or C") is the decision variable.

In the previous chapter, we saw that there has been much recent theoretical success in
the studying this problem. There has also been some work on this problem in the high-
dimensional regime. In this setting, it is assumed that the true signal x, is s-sparse, and
one would like to estimate x, accurately with much fewer measurements than the ambient
dimension, in analogy with what is possible for sparse linear regression. Work in this di-
rection has mostly comprised straightforward adaptations of algorithms for unconstrained
phase retrieval: Both PhaseLift and PhaseMax have been be adapted by adding [; regu-
larizers to their respective objective functions [82, 52]. Meanwhile, the gradient descent
schemes Truncated Wirtinger Flow and Truncated Amplitude Flow have been adapted to al-
ternate gradient steps with either soft- or hard-thresholding [109, 120, 97]. These methods
have been mostly shown to accurately recover X, with sample complexity m = O*(s?).

4.1.2 Single index models and model agnostic recovery

Phase retrieval is an example of a single index model. In this more general setting, the

measurements and the sampling vectors are related by the formula

fa;, x,)) = v, 1=1,2,...,m 4.2)
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where f is a (possibly random) link function. Such models have been studied for some time
in the statistics community (see [69] and the references therein). Classically, it is assumed
that the link function f is unknown to the observer, and it is of interest to estimate both
X, (the index parameter) and f. Standard theoretical results in this body of work include
asymptotic minimax rates of various estimators.

In this chapter, we take a slightly different approach to the problem. We continue to
assume that f is unknown, but now treat x,. as the only parameter of interest. On the other
hand, we are interested in algorithms that are provably efficient from both a statistical as
well as a computational point of view. Furthermore, we want our algorithms to be able to
exploit a sparsity prior and thus work in the high-dimensional regime. The motivation for
such an approach comes from the observation that real data almost never obeys a precise
algebraic relationship. In other words, the neat relationships we postulate, such as (4.1),
are often misspecified.

Recently, Plan and Vershynin [87] made significant progress on this problem in the
setting of misspecified linear regression. They showed that if Cov(g, f(g)) # 0, then the
standard Lasso algorithm for sparse linear regression is able to estimate x, accurately up to
scaling, and with a sample complexity of O(slogn), the same order as that in the case of
no model misspecification. Here, g ~ N(0, 1) is a standard Gaussian random variable.

In the misspecified phase retrieval (MPR) setting, the first work was done by Neykov,
Wang and Liu [81]. They proposed a two stage algorithm that works as follows. First, they

form the reweighted sample covariance matrix

m

m;y(aaz ) (43)

and apply the standard SDP relaxation of Sparse PCA to this matrix. Next, they use the
leading eigenvector of the solution to formulate a Lasso-type program. The solution to this

program is their final estimate. The assumptions they make are that

= ulg, f) = Cov(g®, f(9)) > 0, [If(a)l, <C, (Arg)

under which, they were able to prove that the algorithm recovers x, accurately when given
m = O*(s®) independent standard Gaussian sampling vectors. Again, this is the same

order as the guarantees for sparse phase retrieval in the case of no misspecification.
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4.1.3 Chapter summary and notes

This chapter is based on the paper “Sparse Phase Retrieval via Sparse PCA Despite Model
Misspecification: A Simplified and Extended Analysis” [106]. The goal is twofold. First,
we prove that Sparse PCA, the first step of the algorithm proposed in [81], suffices to
recover the signal vector x, accurately with the same sample complexity as the full two-
step algorithm given in their paper. We provide a simplified and more flexible analysis that
is adapted from [85]. This analysis has the further benefit of generalizing to the case where
the prior assumption on X, is not that it is sparse, but that it lies in a geometric set .
Second, we provide a guarantee for Sparse PCA to recover x, accurately when the sam-
pling vectors are not Gaussian, but are instead drawn from distributions with independent
subgaussian entries. In particular, we show that the method works for Rademacher ran-
dom variables. Although this is a realistic sampling model, to our knowledge, it has not
been analyzed in any prior work on phase retrieval. This guarantee requires two conditions.
Unsurprisingly, we require the link function f to satisfy a correlation condition similar to
(Ay,), but adapted to the given subgaussian distribution. Second, we require X, to have
entries of equal magnitude over its support. This second condition is relatively stringent,

but can probably be relaxed in future work.

4.2 Main results

We shall work with the single index model (4.2). We assume that the sampling vectors
ai,...,a, are independent copies of a random vector a satisfying the following distribu-

tional assumption:

Assumption 4.2.1 (Sampling vector distribution). The coordinates of a are independent
copies of a random variable Z that is centered, symmetric, of unit variance, and with sub-

gaussian norm || Z|[,,, bounded by an absolute constant C.

For convenience, we shall hide the dependence on C' in our results and in our analysis.
We do not assume that we know the link function f. The algorithm we propose to estimate

X, is the following.
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Algorithm 2 SPARSE PCA FOR MPR
Input: Measurements yq, . . ., ¥,,, Sampling vectors ay, . . ., a,,, sparsity level s.

Output: An estimate X for x,.
1: Compute 3 as defined in 4.3).
2. Let X be the solution to

~

max (X,X) subjectto Tr(X)=1, |X]|; <s. (4.4)

3: Let x be the leading eigenvector to X.

This program is precisely the SDP relaxation of Sparse PCA proposed by d’ Aspremont
et al. [31] and later analyzed by Amini and Wainwright [2] and Berthet and Rigollet [11].
These two papers analyzed the performance of the algorithm as applied to sparse principal
component detection in the spiked covariance model. Since the matrix 3 does not follow
this model a priori, one requires further analysis to show that the algorithm succeeds.

In [81], the authors propose using the Lagrangian version of this program as the first
step of their algorithm. Their analysis (see Lemma C.1. therein) shows that when the sam-
pling vectors follow a Gaussian distribution, one can obtain a constant error approximation
to x, using O(s?logn) samples. Using our methods, we prove a stronger version of this

guarantee.

Theorem 4.2.2 (Sparse recovery for Gaussian measurements). Suppose a is a standard
Gaussian in R", and suppose Assumption (Ay ) holds. Then there is an absolute constant
C such that for any s-sparse, unit norm signal x,. and any €,6 > 0, the output x to Algorithm

2 satisfies | X —x. ||, < e with probability at least 1 —§ so long as the sample size m satisfies

m > Cmax{ all (log(n/é) + 10g4(s/5)) S log(n/d) }

p(f, g)%et "7 log®m
Although this result is not entirely novel, we prove it in a different way compared to
[81]. This method is simple and amenable to generalization to the situation where the
sampling vectors are not Gaussian. In the non-Gaussian case, we first fix the sparsity
parameter s. Let Z, := 1 %% | Zyandr, ;.= (Z1 — Z,,...,Z, — Z,) denote the mean of

s independent copies of Z and the vector of residuals respectively. With this notation, we
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make the assumption:

uf. Z,s) = Cov((V'sZ,)*, f(V'sZs)) > 0, (Ayz,:s)
o(f. Z.5) == Cov(|rszl5 f(V5Z,) <0, | f(VsZ)ll,, <C.

Furthermore, we say that a unit norm signal vector X, is admissible if it has entries
of equal magnitude across its support. In other words, there is a index set I C [n] of

cardinality |7| < s, such that

+-L jelr
(x.); =4 VM g
0 otherwise.

Using this definition, we have the following analogue of Theorem 4.2.2.

Theorem 4.2.3 (Sparse recovery for non-Gaussian measurements). There is an absolute
constant C' such that the following holds. Fix a sparsity parameter s, suppose X, is ad-
missible and suppose Assumption (Ay z ) holds. Then for any €,6 > 0, the output x to
Algorithm 2 satisfies ||x — x|, < € with probability at least 1 — ¢ so long as the sample

size m satisfies

- Cs?(log(n/d) +log*(s/6)) N Cs N C'log(n/d)
- wu(f, Z, s)%et 4] log?m

. 4.5)

Note that when Z is standard Gaussian, Assumption (A 7 ) reduces to Assumption
(Ay,). To see this, observe that for any s, \/sZ is a standard Gaussian random variable,
while o(f, g, s) = 0 by the independence property of orthogonal Gaussian marginals. This
fact points to the assumption being the right generalization of (Ay ;).

Furthermore, it is intuitive that the second condition should hold whenever Z has a
reasonable distribution and when u(f, Z,s) > 0: if f is positively correlated with the
magnitude of Z, then it should be negatively correlated with the norm of the residual vector.
Indeed, this can be shown to be true whenever Z is a Rademacher random variable. We

thus have a simpler result for Rademacher random variables:

Corollary 4.2.4 (Sparse recovery for Rademacher measurements). There is an absolute
constant C' such that the following holds. Fix a sparsity parameter s, suppose X, is ad-
missible, let Z denote a Rademacher random variable. Suppose p(f,Z,s) > 0 and
Hf(\/EZS)le < C. Then forany €, > 0, the output X to Algorithm 2 satisfies ||x —x.||, <
€ with probability at least 1 — 0 so long as the sample size m satisfies (4.5).
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In the Gaussian setting, the recovery guarantee continues to hold even if we relax our
constraint on X, slightly and instead assume that ||x,||; < /s. This condition is geometric:
it can equivalently expressed as x, € K, where L = /sBY" is the [; norm ball. It is thus
an interesting theoretical question to ask whether one can construct efficient algorithms for
estimating X, that exploit prior knowledge that x, € K for a general convex set K.

There has been some work on proving statistical efficiency guarantees for various al-
gorithms. In the misspecified linear regression setting, Plan and Vershynin showed that the
K-Lasso succeeds whenever the number of measurements m is of the order w(K)?, where
w(K) denotes the Gaussian width of C [87]. In the phase retrieval setting, Soltanolkotabi
showed that Projected Amplitude Flow also succeeds whenever m > w(K)2. On the other
hand, it is hard to remark on the computational efficiency of these methods, because this
depends on the properties of the set .

The final main result of this chapter is a guarantee of a similar spirit.

Theorem 4.2.5 (Recovery using general geometric constraints). Suppose x,x1 € K, where
KC is a convex subset of the space of unit trace PSD matrices in R"*"™. Suppose a is a
standard Gaussian in R", and suppose Assumption Ay , holds. Then for any €, > 0, the
output X to Algorithm 3 satisfies |x — x. ||, < e with probability at least 1 — ¢ so long as

the sample size m satisfies

C(w(K)? +log"(1/6) + log m(vi (K, ||-[]) +log(1/4)))
pu(f,9)%

C
Here, w(K) and v, (K, ||-||) respectively denote the Gaussian width of IC and its ~y, -functional

with respect to the operator norm, while C'is a universal constant.

Organization of chapter and outline of proof strategy

We prove Theorem 4.2.2 and Theorem 4.2.3 in Section 4.3. The strategy we take comprises
two steps. First, we compute the expected objective function used in Algorithm 2, and show
that it has sufficient curvature on the feasible set around the ground truth matrix, x,x_ . This
shows that feasible solutions having large expected objective value must also be close to
X*xf. This computation is done in Section 4.4.

Next, we argue that the empirical objective function is uniformly close to the expected
objective function with high probability, so that a solution to the SDP program actually has
large expected objective value. This is proved in Section 4.5. Finally, we use the same
strategy for Theorem 4.2.5, but replace the objective function concentration analysis with

a more sophisticated chaining argument. Due to its more technical nature, we defer the
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details to Section 4.7.

4.3 Proof of results for sparse recovery

Proof of Theorem 4.2.2. Let X be the solution to Algorithm 2. Since x,x_ is also feasible
for the program, we have by optimality that

0<(X—xx,3) = (X—xx" )+ (X —xx/, 2 - %), 4.7)

Using Lemma 4.4.3, the first term satisfies the bound

(X — X*XZ, 3 < _M(J; g)

2
Ixx? = XI2.
For the second term, we use Holder’s inequality to write

X —xx,3 - %) < X —xxT]],|= - 2.

Next, we have by assumption that

X*X*T

L= IEDix)s] =[xl < s

i.j=1

Meanwhile, by construction, we also know that ||X||; < s. Rearranging (4.7), we therefore
get
Ixax! = X7 < 25|~ S

*

u(f,9)
2

Using Proposition 4.5.1 to bound the right hand side, we get

Cs (\ /log(n/3) + log*(s /5))
u(f,9)v/m '

If x denotes the leading eigenvector of X, we use Davis-Kahan’s eigenvector perturba-

] — X[ <

tion theorem [34] to conclude that ||% — x,||> satisfies the same bound. Finally, we plug in

our assumption on m to show that this bound is less than 2. U

Proof of Theorem 4.2.3. Exactly the same as for the Theorem 4.2.2. [
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Proof of Corollary 4.2.4. Observe that ||r, z||> + (v/5Z.)* = ||a]|3 = s. We have

o(f, Z,s) = Cov(f(\/52,), Hl‘szHg)
= Cov(f(\/52,),5 — (V/sZs)?)
= —COV( (\/EZS), (\/_23)2) = N(f? Z7 S)‘

The corollary now follows from Theorem 4.2.3. [

4.4 Objective function in expectation

In this section, we compute expressions for the expected reweighted covariance matrix

> = E3. Note that we may also write
3 = Ey(aa’ —1,,).

Lemma 4.4.1 (Expected covariance for Gaussian distribution). Suppose a ~ N(0,I,,).

Then for any x,, € S™, we have

= pu(f, g)x.xl.

Proof. Decompose a = (a, X, )X, + a*, where a* is the projection of a to the orthogonal

complement of x,. Using this, we write

E{yaa’} = E{f((a,x.))((a,x.)x. +2a")((a,x)x, +2a")"}
=E{f((a,x.))(a x.)"x.x[} + E{f((a,x.))a" (a")"}
+E{f((a,x.))(a,x.)x.(a7)"} + E{f((a,x.)) (2, x.)a"x, }.

Because a is a standard Gaussian, (a,x,) and al are independent. This means that the
third and fourth terms in this sum are zero. Furthermore, the second term can be written
as the product of two expectations E{ f((a, x,))} and E{a'(a')”}. We now use standard

computations for Gaussians to continue writing

E{y(aa” —L,)} = E{f(9)¢’}x.x) + E{f(9)}(T, — z.x)) + E{f(9)}1L
= M(f? g>X*XZ'

This completes the proof. 0
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Lemma 4.4.2 (Expected covariance for non-Gaussian distributions). Suppose a is a ran-
dom vector in R" that satisfies Assumption 4.2.1. Let 2 < s < n be an integer, and let x,
be an admissible signal vector. We have

f’ Z? 8)

S = u(f, Z,speaT + 2

P, —xxD).

Proof. Let P; and P; denote the orthogonal projections to the coordinates in / and I°
respectively. Then P;a and P;a are independent. Using a similar calculation as in the
previous lemma, we see that P;Y>P; = P;¥P; = PyYP; = 0. We may hence assume
WLOG that s = n and I = [n]. By the symmetry of the distribution of a, we may also

assume that x, = ——, where 1 is the all ones vector.

n’

Next, notice that (a, x,) is invariant to permutation of the coordinate indices. Mean-
while, the distributions of a* and a are both symmetric with respect to such transforma-

tions. Let Q be a permutation matrix. Then

Q=Q" = E{f((a,x.))Qa(Qa)"}
= E{f((Qa,x,))Qa(Qa)"}
=E{f((a,x.))a(a)"}.

In other words, we have
QxQ! = 3. (4.8)

One can check that a matrix satisfying (4.8) for all permutation matrices Q must have the
same value for all diagonal entries, and the same value for all off-diagonal entries. In other

words, > must be of the form

1
> =174 53, — —117) 4.9)
n n

for some values of o and [3.

Let us now compute the values of a and [ using the fact that x,, = \/Lﬁ We have

a=x"3x, = u(f, Z,n).
Next, we apply traces to (4.9) to get

a+ (n—1)8 =Tr(E) = E{f((a,x.))Tr(aa” —I,,)}.
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Observe further that

E{f({a,x.))Tr(aa” — L)} = E{f((a.x.))(lall; — n)} = o(f, Z,n) + pu(f. Z.n).

(f,2,n)
-1

As such, we have f = 7 : as we wanted. ]

Lemma 4.4.3 (Curvature of objective function). Suppose the hypotheses of Lemma 4.4.1
(respectively Lemma 4.4.2) hold. For any X = 0 such that Tr(X) = 1, we have

(S, x0T — X) > %Hx*x*T —X|2, (4.10)

where p = pu(f, g) (respectively i = j(f, Z, s)).

Proof. We shall prove the case where the hypotheses of Lemma 4.4.2 hold. The other case

is similar and even easier. First, observe that
y Ry ) — y Ly xRy Rx &y ) — y Ly * ;1
(B, x.x7) = ulf, Z, ) (%X, x.X0) = p(f, Z, s)||x.|

We also have

(2.X) = (.29l X) + T2 e, xr x)
= ulf. 2 )l X) + TP x|

< u(f.Z,s)(xx; . X).

Here, the last inequality follows from the fact that X is positive semidefinite, which implies
that any partial trace has to be non-negative.
Now, the assumptions on X also imply that ||X||, < 1 = ||x,]||,. We can thus combine

our calculations to get

(x.x] = X) 2> ulf, Z,9) %Nl — n(f, Z,8)(xx], X)

u(f, 2, s)
> = (ex s + X1 — 203, X))
A
S EZ) X
This completes the proof. 0
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4.5 Concentration of objective function

The goal of this section is to prove the following concentration theorem for the reweighted

sample covariance matrix ..

Proposition 4.5.1 (Concentration of sample matrix). There is a universal constant C' so
that the following holds. Fix a sparsity parameter s, let a be defined using Assumption
4.2.1. Suppose Assumption (Ay z ) holds, and let x, be a unit norm vector. If a is non-

Gaussian, further assume that x,, is admissible. Then for any § > 0, we have

o C(y/log(n/9) + log®(s/9))
1% -3, < Jm

with probability at least 1 — 6, provided m > C max{s/§,1og(n/§)log® m}.

Proof. Without loss of generality, assume that the support of x, is contained in the first s

coordinates. Let P, denote the projection to the first s coordinates. We write
15 =5, = max{[P.(S - SR, [P(S ~ S, [PHE - SR}, @i

and bound each of the terms on the right separately.

For the first term, we shall use the fact that each entry is the mean of m i.i.d. 1,/ ran-
dom variables (see Section 2.2). This tail decay gives us a relatively strong large deviation
inequality, which we can use together with a union bound. In more detail, let 1 < k,[ < s.
Then

(£ =D = 3 [ @@ (%)) — B @ @) (o, x)}.

We now use Proposition 2.2.6 followed by Proposition 2.2.5 twice to get

I(@)r(a)if ((a,x.)) — E{(a)r(a)cf ((a, %))}, S [(@)k(a)if (@, x )y, ,
S l@)k@)lly, 1 (Ca, x))ll,
S @)kl y, @)l y, [ (2% Ly, -

Each of the terms in the product on the right hand side is bounded by an absolute constant
by assumption. As such, the quantity on the left is also bounded by an absolute constant.

We may thus use Proposition 2.2.9 to see that

P{|(2 — Z)u| > t/yv/m} < 2exp(—cv/)
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for ¢t > 0 large enough. Pick ¢ ~ log*(s/d). Then we can take a union bound over all s

choices of k and [ to get )
IP.(5 - 2P 5 <2 o)
with probability at least 1 — /4.

We next bound the other two quantities in (4.11) via a conditioning argument similar to
that in [81]. The key idea is to condition on the probability 1 — §/4 event over which the
three statements in Lemma 4.5.3 hold, and to observe that this event is independent of the
random variables (a;); for 1 < i < m, s < k < n. Hence, conditioning on the event does
not alter the joint distribution of this set of random variables.

We consider a typical entry in P,(3 — 3)PL, which is of the form

m

%Z(ai)k(ai)lf“ai,x*)), l<k<s s<l<n. .12)

i=1

Fixing all randomness apart from (a;), for all indices 1 < i < m, s < | < n, we can use
Hoeftding’s inequality (Proposition 2.2.2) to conclude that for each /, (4.12) is a subgaus-
sian random variable with variance -5 > | (a;)7 f((a;, X)) By the second statement of
Lemma 4.5.3, this is bounded by C'/m, so that

|

Choosing t ~ y/log(n/J) and taking a union bound over s < | < n gives

%Z@)k(ai)lmau X))

> \/%} < 2exp(—ct?) 4.13)

. 1 o
(8~ SppL, $ 2
m
with probability at least 1 — /4.
Finally, each entry of Pﬁ(ﬁ — )P is of the form
1 m
— > flanx)[(as(a) — E{(as(a}], s <hl<n. (4.14)
i=1
We again fix all randomness apart from (a; ); for all indices 1 < i < m, s <[ < n. Observe
that (a;)x(a;);—E{(a;)x(a;);}, s < k,l < n, are centered subexponential random variables.

We may thus use Bernstein’s inequality (Proposition 2.2.3) together with the second and
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third statements of Lemma 4.5.3 to obtain the tail bound:

1m
P{
m

— 3 (@i %)) [(a) k(@) — B{ (ai)x()i}]

=1

> \/%} < 9 {55} 45)

Once again, choosing ¢ ~ 4/log(n/J) and taking a union bound over s < k,l < n gives

. 1 J
(8 - DR, 5 )
m
with probability at least 1 — & /4 provided that m > log(n/d) log® m. O

Remark 4.5.2. When a is a standard Gaussian, [81] gave the bound

- C'y/log(n/o)
1% =%, < —

with roughly the same tail probability. Hence, the only price to having more distributional

generality is the additional log?(s/6) term in the numerator.

Lemma 4.5.3. Let the hypotheses of Proposition 4.5.1 hold. There is an absolute constant
C such that the following holds. Let I denote the support of x.. Then for any 6 > 0, so
long as m > Cs/d, the following three statements hold simultaneously with probability at
least 1 — § /4.

m

1Y f(laix.)* < Cm.

i=1

2. max ;(ai)if«amx*))? < Cm.
3. max f((a;,x.)) < Clogm.

1<i<m

Proof. By Assumption (Ay 7 s), we know that || f((a;, X.))l|,, is bounded by an absolute
constant. As such, Proposition 2.2.4 implies that both its second and fourth moments are

also bounded. Furthermore, we have

Var(f(<aivx*>)2) < E{f(<ai7x*>)4} < C?

where C' is an absolute constant. Using Chebyshev’s inequality together with the second
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moment bound, we thus get

P{;m; f(ai, x.))* > m(0+t)} < (4.16)
We can use the same argument together with a union bound over k € I to get
]P’{max Y (a;)2f ((a;, X)) > m(C’+t)} < ﬁ (4.17)
kel = mt?
Finally, we again use the union bound and the subexponential tail bound to get
P{@?fn f{a;,x,)) > tlogm} < 2mexp(—ctlogm) = 2m' =, (4.18)

Choose t to be any fixed constant in (4.16) and (4.17), and choose ¢ to be a constant
larger than 2/c in (4.5). Then each of these probability bounds is of the order O(1/m), so
that m = s/¢ suffices for all three statements to hold with probability at least 1 — §/4. [

4.6 Comments and open questions

In this chapter, we have analyzed the problem of misspecified phase retrieval, and improved
upon the work of Neykov et al. in [81]. In particular, we have shown that the first stage of
their algorithm suffices for signal recovery with the same sample complexity, and extended
the analysis to non-Gaussian measurements. Furthermore, we showed how the algorithm
can be generalized to recover a signal vector x, efficiently given geometric prior informa-
tion other than sparsity.

Experts in compressed sensing may have observed that while the sample complexity for
algorithms for misspecified linear regression scales linearly with the sparsity parameter, our
sample complexity bounds for misspecified phase retrieval scale instead with the square
of the parameter. In [81], the authors showed numerical evidence that this discrepancy
is due to the statistical inefficiency of the algorithm, and not merely a slackness in the
mathematical analysis.

This s? scaling is also observed in all other efficient algorithms for sparse phase re-
trieval, and it is an open question whether there exist computationally efficient algorithms
that can do better. The authors of [81] conjecture that the answer is in the negative. This is
supported by results by Berthet and Rigollet, who show that computationally efficient al-
gorithms for the related problem of detecting sparse principal components, using O(s*7¢)
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samples for any € > 0, will lead to computationally efficient algorithms for solving hard
instances of the planted clique problem [11, 10]. This is widely conjectured to be impossi-
ble.

It will also be interesting to investigate whether there is slackness in the sample com-
plexity bound for signal recovery using general geometric constraints (Theorem 4.2.5). In
particular, I do not know how to bound 7, (/C, ||-||) where K is the set of unit trace PSD
matrices X with ||X]|; < s. Hence, it is not yet clear whether Theorem 4.2.2 can be derived
from Theorem 4.2.5.

Finally, the literature on high-dimensional signal recovery from non-Gaussian measure-
ments is still fairly limited. In this work, we have proved a recovery guarantee for admissi-
ble signal vectors in the case of misspecified phase retrieval. Hopefully, this guarantee can

be extended to larger classes of signal vectors in the near future.

4.7 Recovery using general geometric signal constraints

The goal of this section is to prove Theorem 4.2.5, and to collate the necessary theoretical
apparatus for doing so. First, we state the algorithm we propose for estimating x, given

general geometric constraints. We call this algorithm KC-PCA.

Algorithm 3 X-PCA FOR MPR

Input: Measurements ¥, . . ., ¥, Sampling vectors ay, . . ., a,,.

Output: An estimate X for x,.
1: Compute 3 as defined in (4.3).
2: Let X be the solution to

~

max (X,¥) subjectto X € K. (4.19)
X0

3: Let x be the leading eigenvector to X.

This can be seen as a tensorized version of the 1-bit sensing algorithm proposed in
[85]. Our analysis will be also be similar to that in [85], but we will require a more general
concentration result (Lemma 4.7.2) that is derived via chaining. In particular, we will
make use of the bound on the suprema of mixed tail processes that we used in the previous
chapter.

We have a subset K of unit trace PSD matrices in R"*". Fix x,x’, and real numbers

21, ..., 2m. We define a process on the set K as follows. Let a;, ..., a,, be standard Gaus-
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sians. For each X € K, we set
Yy = (30 zi(aal — 1), X —x.x]).

We claim the following.

Lemma 4.7.1 (Process increments). The process Yx has mixed tail increments with respect
to (dy, ds), where dy(X, X') = (31 2)Y2| X —X'|| o and dy (X, X') = max; |z | X —X||.

i=1 z

Proof. Fix X, X’ € K, and for convenience, denote H = X — X'. Then

Yx — Yy = > z(a/Ha; — E{a/ Ha,})

where H = Y~ | \,v;v! is the eigendecomposition of H. Next, observe that by the inde-
pendence of orthogonal Gaussian marginals, {((a;,v;)> — 1) : 1 <i <m, 1 < j < n}
are independent, centered subexponential random variables with bounded subexponential

norm. We may thus apply Bernstein’s inequality to get

t2 t
P{|Yx — Yx/| >t} <2exp| —cmin .
Doy D jon ZAT max |z

Finally, observe that 3 7| 27 = H||%, and max; < j<,|z;| = |[H||. One can now check that
(2.11) is satisfied with respect to our chosen d; and ds. ]
Lemma 4.7.2 (Uniform deviation bound). Let a4, ... ,a,, be independent standard Gaus-

sians, and suppose that Assumption (A; ) holds. Let KC be a convex subset of the space of
unit trace PSD matrices in R"*". For any €¢,0 > 0, if m satisfies the lower bound (4.6),
then with probability at least 1 — 6, we have

sup (f] — 3 X —xxl)| <&,
Xek

Proof. The proof of this concentration bound follows the same strategy as that in [87]. A
priori, the process we are trying to control has heavy tails. To overcome this, we will use a

decoupling argument together with conditioning.
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For each X € K, denote H = X — X*X*T for convenience. Let Py, and PX*L denote

projection onto x, and its orthogonal complement respectively. We can then write

(X~ 3 H) = (P, (2~ Z)P, H) +2(P, (X — )P, H) + (P, (X — )P, H)
(X - X)P,,H) +2(P,. 3P, H) + (P, 3P, H). (4.20)

We shall bound the three terms on the right separately.

Recalling that P,, = x.x”, we see that the first term can be written as

~

Py (2 — )P, H) =x" (2 — =)x,x Hx,

) [% > willanx)? = 1)~ B{ylGax.)* = )} 5 Hx..

Notice that x:{Hx* < 1. Meanwhile, the term in the square brackets is the average of inde-
pendent, centered, 1/, random variables. Using Proposition 2.2.9, we have a probability
at least 1 — /4 event over which the following bound holds:

A

(s - D, 1| < TS

Jm

sup
Xek

(4.21)

For the third term in (4.20), we write

. 1 —
P.YP,. = — J((Pea)(Pea)l —P1).
Since y; and Py.a; are independent, we may decouple them. In other words, we replace

each a; with a fully independent copy a;. We can therefore write

(P 3Py H) = (5307 i (P @) (P a)” — Py, ) H)
= (L0, wi(@a,” - 1,), Py HP,, )

m

Fix the randomness with respect to ay, ..., a,,, Y1, .- ., Ym, conditioning on the proba-
bility 1 — §/4 event that the three statements in Lemma 4.7.3 hold. With respect to the a;’s,
Lemma 4.7.1 shows us that this process indexed over X € K has mixed tails. Furthermore,
since K is a subset of the nuclear norm ball, its diameter with respect to both the Frobenius
and operator norms is bounded by 2. Lemma 2.4.2 then gives us another probability 1—4§/4

66



event over which

sup| (P Py H)| < —( > )" (el 1) + Viog(1/9))

XeK
+ max [y (1 (K, [|-]) + 1og<1/5>>)

. C(wc, )+ VST, logmins L) + log<1/<s>>> |

(4.22)
Finally, for the second term in (4.20), we again decouple, writing
(P3P H) = (L 37 yi(ay, x.)x. (P a) ", H)
= <% Z:ily’b <ai7 X*>X* (Px*iﬁ’»Ta H>
= (£ 327 yifa, x.)a;, Py HX,). (4.23)
Again, fix the randomness with respect to ai,...,a,,, Y1, - - -, Ym, and remember that

we have conditioned on the event that the three statements in Lemma 4.7.3 hold. Then with
respect to the a;’s, the quantity on the right in (4.23) is a centered Gaussian random variable
with variance

Cl|H
Zyz ()P < I I

Therefore ((Py1 3P, H)), is a process indexed by X which has subgaussian incre-
ments with respect to the operator norm. We use an analogue of Theorem 2.4.2 (see Theo-

rem 3.2 in [38]) to obtain a probability 1 — §/4 event over which

. Y (IC, ||-l|5) + v/log(1/6)
P3P, H)| <C . 4.24
;1612< o 2Py, >‘ ( N ) (4.24)

Combining the bounds (4.21), (4.24), and (4.22) gives us the statement we want. ]

Lemma 4.7.3. Let ay, ..., a,, be independent standard Gaussians, and suppose that As-
sumption (Ay ) holds. Then for any 6 > 0, so long as m > C/6, the following three
statements hold simultaneously with probability at least 1 — ¢ /4.

m

LY f({ai,x.))* < Cm.

=1
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m

2. ) yif({aix.))? < Om.

=1

3. max f((a;,x.)) < Clogm.

1<i<m

Proof. Exactly the same as in Lemma 4.5.3. [

Proof of Theorem 4.2.5. We repeat the argument of Theorem 4.2.2, but replace the Holder’s
inequality bound of (f] — ¥, X — x,x%) therein with the uniform deviation bound supplied
by Lemma 4.7.2. [
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CHAPTER 5

Moment Methods and Energy Minimization

5.1 Introduction

Amongst all Borel probability measures ;¢ on R"™ having the same radial distribution, we

seek a minimizer for the energy integral

) = [ e dudaty) 5.1)

In this chapter, we will introduce a tensorization trick, thereby proving that the integral is
minimized by the rotationally invariant measure, 1,..;. More precisely, for any integer k, we
define the k-th eccentricity tensor of a measure p. The gap between [ (u) and Iy (o) is
then given by the squared Euclidean norm of this tensor. Specializing to Borel probability
measures on the sphere, we see that (5.1) is minimized by the uniform measure. Moreover,
we may also adapt the proof to obtain an analogous result for the uniform measure on the
sphere in C".

These facts have several interesting applications, the first of which concerns the well-
known Welch bounds in the signal processing literature. Using the complex case of our
result, we recover the original Welch bounds, while using the real case, we are able to
improve upon them for collections of real vectors. In our opinion, this proof is more illu-
minating than the existing ones. It shows one view the Welch bounds as saying that the
average cross-correlation of signal sets cannot beat that of the uniform distribution.

Next, we are able to obtain new proofs of Bjorck’s theorem from the 1950s and the
recent theorem by Bilyk-Dai-Matzke. These theorems characterize optimizers of two one-
parameter families of energy integrals, and were proved using methods from potential the-
ory and spherical harmonics. Our methods have the benefit of being more elementary.
Furthermore, our proof scheme for both theorems is very similar, and sheds light on the

phase transition phenomenon discussed in [14]. Indeed, we are able to show why the phase
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transition occurs, and why it happens for different parameter values for the two families.

Finally, we use the theory to establish a new method of testing multi-dimensional Gaus-
sian distributions: Given a random vector in R,,, we are able to test whether it follows a
normal distribution by considering the moments of its norm and those of the dot product of
the random vector with an independent copy. Since Gaussian vectors are usually character-
ized in terms of their marginal moments, this reduces the problem of testing an uncountable
family of one-dimensional distributions to that of testing just two one-dimensional distri-
butions. This will be the basis for a new algorithm for Non-Gaussian Component Analysis
(NGCA), which we will analyze and discuss in the next chapter.

The plan of the rest of this chapter is as follows. In Section 4.2, we define the eccen-
tricity tensors and use the tensorization trick to prove the energy minimization property of
rotationally invariant measures. In Section 4.3, we discuss the Welch bounds, show how
they may be improved, and present some consequences of this improvement. In Section
4.4, we show how our results imply the two theorems on energy optimization on the sphere,
and discuss their relevance to the phase transition phenomenon. We will consider Gaussian

testing in Section 5.5.

5.2 Eccentricity tensors and the tensorization trick

In this section, we shall introduce the tensorization trick, define eccentricity tensors, and
prove that rotationally invariant measures minimize (5.1). For notational as well as intuition
purposes, however, it is more convenient to work with random vectors than with measures.
We hence do so for the rest of this chapter, being careful to assert the independence of
collections of random vectors where necessary.

The tensorization trick is to write the integral (5.1) as the squared Euclidean norm of

the k-th moment tensor of f.

Notation 5.2.1. Let X be a random vector in R". For any positive integer k, let
M; .= EX®*

denote its k-th moment tensor if all entries are finite.

Recall the following fact from linear algebra. For any positive integer k, we may iden-
tify the k-th tensor product 7%*(R") = R" ® --- ® R" with R by picking as a basis the

vectors {e;, @ e, @ -~ @ e, },; . . With this choice, the Euclidean inner product
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between any two pure tensors u; ® - - - @ u; and v; @ - - - ® v can be written as

k
W AU,V ® - @ V) :H<“z‘7Vz‘>'

=1

In particular, for power tensors u®* and v®*, we have the formula
k @k k
(W, V) = (u, )", (5.2)

Now if X and Y are two independent random vectors, we may rewrite the k-th moment
of their inner product as an inner product between their £-th moment tensors. Namely, we

have
E(X,Y)") = E(X®F Y*F) = (EX®F EY®F) = (M, M), (5.3)

where the first equality follows from equation (5.2). For independent copies X and X' of

the same random vector having distribution g, ML = M’§<,, SO
I(n) = E((X,X)") = [ME[*. (5.4)

Here and in the rest of this chapter, we will use ||-|| to denote the vector Euclidean norm.
No other norms are used, so there should be no risk of confusion.

We next introduce the notion of the rotation symmetrization of a random vector.

Definition 5.2.2. For any random vector X in R"”, let X,.,; denote a random vector that is in-
dependent of X, has the same radial distribution as X, and whose distribution is rotationally
invariant (i.e. QX, 4 X, ot for all Q € O(n)). We call X,.,; the rotational symmetrization
of X.

Comparing the moment tensors of a random vector and those of its rotational sym-

metrization give rise to what we shall call eccentricity tensors.

Definition 5.2.3. Let X be a random vector in R™ with finite moments of all orders. For

any positive integer k, define its k-th eccentricity tensor to be
E{ :=M§ — M% . (5.5)

. d . . . . . . ..
Since X = X, if and only if X is rotationally invariant, we see that the eccentricity
tensors of X are quantitative measures of how far its distribution is from being rotationally

invariant. This interpretation is further supported by the following observation.
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Lemma 5.2.4 (Orthogonality). Let X be a random vector in R™ with finite moments of
all orders. Its eccentricity tensors are orthogonal to the moment tensors of its rotational

symmetrization. In other words, for any positive integer k,
(Ey, My ) =0 (5.6)
and

I ]|” = [l | + BRI (57)

rot

Proof. Let Q be a random orthogonal matrix chosen according to the Haar measure on
O(n). For any fixed vector v € R"™, Qv is uniformly distributed on the sphere of radius

|v||, so if Y is any random vector independent of Q, applying Q to Y preserves its radial

distribution but makes QY rotationally invariant.

Now choose Q to be independent of X and X,.,;. Our previous discussion implies that
Q"X £ X, £ QX1
We use this to compute
E((X, X,0)") = E((X, QXor)") = E(Q"X, Xy0t)") = E((X/00. Xoo)"),  (5:8)

where X/, is an independent copy of X,.,;. We may then apply identities (5.3) and (5.4) to

rewrite the above equation as

<M§’ Ml;(mt> = <M§r0t ) M;C(rot > : (59)

Subtracting the right hand side from the left hand side gives (5.6), from which (5.7) is an

immediate corollary. [

The fact that the integral (5.1) is minimized by rotationally invariant measures is then
an easy consequence of the previous lemma. To show that these are the unique minimizers,
we need further assumptions on our random vectors to ensure that they are determined by
their moment tensors. A sufficient condition is that of being subexponential (see Section
2.2).

Lemma 5.2.5. Let X be a subexponential random vector in R™. Then the distribution of X

is determined by its moment tensors.
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Proof. By the definition of being subexponential, we have the following moment growth
condition [114]:
ElUX. v)|" 1/r
sup limsupM < 00. (5.10)
vesn—1 r—oo r

Let ¢x(v) = Ee!®") denote the characteristic function of X. The above condition im-
plies that for each v € S™~!, the function ¢t — Ee™*) can be written as a power series
with coefficients Mi—’!vy [12], so ¢x(v) is determined by the moments E(X,v)". By (5.3),
E(X,v)" = (MY, v®"), so these are functions of the moment tensors. Finally, it is a fact
from elementary probability that a random vector in R" determined by its characteristic

function (see exercise 2.36 in [28]). ]
We can thus summarize our results so far in the following theorem.
Theorem 5.2.6. Let X be a random vector in R". Then

a) (Minimization) If X' is an independent copy of X, and X,.,X..,, are independent

copies of its rotational symmetrization, we have
]E(<X7X,>k) Z E(<Xr0t7X;*ot>k) (511)

for any positive integer k so long as X has finite k-th moment.

b) (Uniqueness) Furthermore, if equality holds in (5.11) for all k and we assume that X

has a subexponential distribution, then X is rotationally invariant.

Proof. Using identity (5.4), we rewrite the first claim as

2

Y

Mg > [

rot

and this follows immediately from equation (5.7).
If equality holds for all positive integers k, then by (5.7), EX = 0 for all &, imply-
ing that X and X,,; have the same moment tensors of all orders. If we assume that X is

subexponential, Lemma 5.2.5 implies that X and X,.; have the same distribution. U]

For the remainder of this chapter, we specialize to the case of distributions on the

sphere. Using Lemma 2.3.3, we immediately get the following bound.

Corollary 5.2.7. Let @ have the uniform distribution on the sphere S™ ', and let X be any

random vector taking values on the sphere. Let 8" and X' be independent copies of 6 and
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X respectively. Then

13- (2% — 1)
n-(n+2)---(n+2k—2)

E((X,X)*") > E((0,0')") = (5.12)
for any positive integer k. Furthermore, if equality holds for all k, X has the uniform

distribution.

Proof. Clearly 0 2 X, o, and is subexponential. The inequality and the characteriza-
tion statement then follows immediately from Theorem 5.2.6. By uniformity, we have
E((0,0')*") = E((6,v)*) for any unit vector v € S"~!, and the explicit computation for
E((0,v)**) is the content of the next lemma. O

5.3 Applications to dictionary incoherence and the Welch

bounds

Given a collection of m unit vectors Z = {z, 2o, . .., Z,} in C", we are often interested in
the quantity

Cmaz = Max|(z;, Z;)|.
i#£]

If we think of the vectors as dictionary elements, then c¢,,,, measures the coherence or
maximum cross-correlation of the dictionary. It is well known in the sparse approximation
literature that the larger the value of c¢,,,., the worse the collection Z performs when we
try to recover a sparse representation of a vector as a linear combination of the z;’s [39].
As such, it is an important question in the design of communication systems to know how
well we can do theoretically, and how we may find collections that achieve the theoretical
minimum value of ¢,,,.

In 1974, Welch gave a family of lower bounds on ¢,,,,, in terms of m and n.

Theorem 5.3.1 (Welch, 1974 [122]). Let Z and c,,., be defined as above. Then for each

positive integer k, we have

o2k 1 m
(Cmaa:) Z m—1 <(n+/]z—1> - 1) . (513)

Welch proved this theorem by bounding the average cross-correlation (also sometimes

called the p-frame potential, with p = 2k [41]).
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Lemma 5.3.2 (Welch). Let {z1,22, - - .,2m } be unit vectors in C", then

1 « 2% n+k—1 -1
— 2_1&z)l 2( A ) . (5.14)

ij=1

By separating the diagonal terms from the sum and rearranging the summands, it is
easy to see how (5.14) implies (5.13). Welch’s original proof of (5.14) was combinatorial
in nature. In 2003, Alon [1] provided a geometric proof based on examining the Gram
matrix associated to Z and dimension counting. The proof was reproduced by Datta et al.
[32] in 2012, who were apparently unaware of the earlier paper.

Both arguments are agnostic to whether the vectors are real or complex, and it is a
natural question whether one may improve the bound when we restrict to the case of real
vectors. Using the energy minimization property of rotationally invariant distributions, we

are able to show that this is indeed the case.

Lemma 5.3.3. Let {x1,xs,...,X,,} be unit vectors in R". Then
1 « 2% 1-3---(2k—1)

X > ) 5.15

mQZKx %) n-(n+2)---(n+2k—2) (5.15)

1,7=1

Remark 5.3.4. Since

n+k—1\"" 1-2k
k n-(n+1)---(n+k-1)
we see that the new bound (5.15) is equal to the old one (5.14) for £ = 1, and is strictly
larger for £ > 1.

Proof. Let X be uniformly distributed on the set {Xx;,Xs, . ..,X,,}. Corollary 5.2.7 applies
and we have

- 1-3---(2k—1)
E((X,X') )Zn.(n+2)...(n+2k—2)

for any positive integer k. On the other hand, we also have

m

E(XX)™) = o S )™ =

ij=1

Remark 5.3.5. This result stated by Ehler and Okoudjou in [41], and they attribute it to
Venkov. The proof in [41], however, proceeds via spherical harmonics and not the ten-

sorization machinery we have used here.
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Let us illustrate the improved bound by revisiting an example from [32].

Example 5.3.6. Let x1, X5, ..., X7 be the columns of

099 0.14 056 —-0.68 093 —0.86 0.30
0.08 0.99 0.83 0.73 —0.36 —0.50 0.95|

This collection achieves the k = 1 Welch bound (5.14), and its energy'

7

> I(xi,x;)[° = 15.3128

ij=1

was experimentally observed to be minimal over all collections of 7 unit vectors in R?.
However, the £ = 3 Welch bound gives a lower bound of 12.25 for the energy, so there was
a gap between theory and experiment. Using our improved bound (5.15), we get 15.3125,
thereby bridging this gap completely.

Although the improved bounds do not hold for complex collections of vectors, we are
nonetheless able to recover the original Welch bounds using the same circle of ideas and

making a few adjustments.

Definition 5.3.7. For any random vector X in C", let X,,,,; denote a random vector that is
independent of X, has the same radial distribution as X, and whose distribution is invariant

under unitary transformations. We call X,,,,; the unitary symmetrization of X.
With this definition, we can state the following complex version of Theorem 5.2.6.

Theorem 5.3.8. Let X be a random vector in C™ with finite moments of all orders. Then

if X' is an independent copy of X, and X, X.,,; are independent copies of its unitary

)

symmetrization, we have
E|[(X, X')[** > B|(Xuni, Xpn)| ™ (5.16)

for any positive integer k.

Proof. By considering the moment tensors

My = EX®* @ (X*)%*,

"To compute this value, we renormalized the vectors X1, . . ., X7 in order to reduce roundoff error.

76



we may define a complex version of eccentricity tensors. Next, we replace Q ~ Haar(O(n))
with U ~ Haar(U(n)) in Lemma 5.2.4 to prove an orthogonality result analogous to (5.7).
With this result, (5.16) follows immediately. [

We are now able to complete the proof of (5.14) with the help of the following version
of Lemma 2.3.3.

Lemma 5.3.9 (Moments of complex spherical marginals). Let @ be uniformly distributed
on the complex sphere S**~1 C C". Then for any unit vector v € S*"~! and any positive

integer k, we have

-1
Bl = (") 6.7

Proof. Let v and g denote standard complex Gaussians in 1 dimension and n dimensions

respectively. Then

2%k E|7|2k

E = .
O g

Since || is the norm of a two-dimensional standard real Gaussian, while ||g|| is the norm of
a 2n-dimensional standard real Gaussian, (5.17) follows from the calculations of Gaussian

integrals done in Lemma 2.3.3. U

Remark 5.3.10. Given Z = {z;,2,, ...,Z,} a set of unit vectors in a Hilbert space H, k£ a
positive integer, define the set

ZW = {g8% 25 . 2%F) C Sym*(H).
Datta et al.’s paper [32] characterized sets Z achieving equality in the k-th Welch average
cross-correlation bound (5.14) as those for which Z®* forms a tight frame for Sym” (H).
Since our results show that this bound is not tight when H is a real Hilbert space and £ > 1,
we have proved that tight frames of the form Z(¥) do not exist for symmetric spaces of real

tensors with £ > 1. Indeed, this also holds true for generalized frames as defined by the

same authors.

Remark 5.3.11. Datta et al. [32] showed that the analogous statement for complex vector
spaces is false. In fact, if @ is distributed uniformly on the complex sphere S*"~! c C",
then

-1
E0° @ (67)°F — (n—i—k—l)

k ISymk (Cn)-
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5.4 Applications to energy optimization on the sphere

In two recent papers [13, 14], Bilyk et al. presented a theorem characterizing probability
measures minimizing geodesic distance energy integrals. This is an analogue of Bjorck’s
theorem from 1956 which characterized probability measures minimizing energy integrals
based on Euclidean distance [15]. Bjorck proved his theorem by considering Riesz poten-
tials, while Bilyk et al. proved their result using spherical harmonic expansions and the
hermisphere Stolarsky principle. In this section, we show how to derive both results using
the tensorization trick and the energy minimization property of the uniform distribution on

the sphere.

Theorem 5.4.1 (Bilyk-Dai-Matzke, 2016). For 6 > 0, define the geodesic energy integral

Giln) = / / ey dux)dn(y) (5.18)

where d(x,y) denotes the geodesic distance between x and y. The maximizers of this energy
integral over Borel probability measures on S™' can be characterized as follows:
a) 0 < 9 < 1: the unique maximizer of Gs(1) is p = o, the uniform measure.

b) § = 1: Gs(p) is maximized if and only if 11 is centrally symmetric.

¢) 0 > 1: Gs(p) is maximized if and only if 1 = (0, + 0_p), i.e. the mass is supported
equally by two antipodal points.

Proof. Observe that the geodesic distance d(x,y) is simply the angle between x and y. As

such, we have d(x,y) = arccos((x,y)). We may thus rewrite (5.18) as
Gs(p) = Earccos((X, X))’

where X and X' are independent random vectors with distribution .
Let us start by proving part b). It is an exercise to show that the even derivatives of
arccos vanish at 0, while the odd derivatives are strictly negative at 0. For —1 < ¢ < 1 may

hence write arccos as its Taylor series

arccos(t) = g — Z Aoy 12T (5.19)
k=0

where as 1 > 0 for all k. We claim that in fact, the above formula holds for all ¢ in the

closed interval [—1, 1], and furthermore that the series is absolutely convergent. This is the
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content of Lemma 5.4.2 to come. As a result, we may use Fubini to interchange sums and

expectations, thereby writing

o0

Za2k+1E X X/ 2k5+1

k=0

Earccos((X,

w|>1

Since E(X, X' )%Jrl > 0 for each £ by identity (5.4), this last expression is maximized
if and only if E(X, X' >2k+1 = 0 for every non-negative integer k. By the same identity,
this happens if and only if all odd moments of X are zero, i.e. if and only if X is centrally
symmetric. This proves the case § = 1.

Now let 0 < 6 < 1. We claim that for —1 < ¢ < 1, we may write

arccos(t)’ = (E)(; - i axt” (5.20)

2
k=1

where a;, > 0 for all £ > 0, and that the series is absolutely convergent. Lemma 5.4.3
(to come) tells us that the Taylor series of arccos(t)® has this form, which combined with

Lemma 5.4.2 proves this claim. As such, we may again use Fubini to write

Earccos((X, X))’ = (g)5 Y wEX X" (5.21)
k=1

By identity (5.4), E(X, X' )k > 0 for any distribution, while by Corollary 5.2.7, the uniform
measure uniquely minimizes all of these moments simultaneously. As such, we see that it
is the unique maximizer of Gs(u).

The remaining case where 6 > 1 is easy and does not require a proof using our methods.

s

For completeness, we repeat the proof given by the original authors [14]. Since d(x,y) < §

G < (3) [ dosyintany) < (3)"

The first inequality is tight whenever d(x,y) only takes the values 7 and 0, while by part

we have

b), the second inequality becomes equality when p is centrally symmetric. Together, these
imply that yo = 5(6, + 0_p) for some p € S™ 1. O

Lemma 5.4.2. Let [ be a function that is continuous on |—1, 1] and that agrees with its
Taylor series at 0 on the open interval (—1,1). Suppose further that all but finitely many
of its derivatives at 0 have the same sign. Then the series is absolutely convergent over the

closed interval |—1, 1], and agrees with f over the interval.

Proof. By subtracting off polynomials and negating the function if necessary, we may as-
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sume without loss of generality that the Taylor series for f(t) is given by > _p- , cxt* where

¢, > 0 for all k. By the monotone convergence theorem, together with our assumptions on

f, we have
E lm E t* = lim 1).

As such, the series ) /-, ¢ is absolutely convergent, and the Taylor series is also absolutely
convergent on the closed interval [—1, 1]. Finally, we can apply the dominated convergence
theorem to see that f(—1) = > 7 cx(—1)". O

Lemma 5.4.3. Let f be a function that has derivatives of all orders at 0 and let 0 < o < 1.
Suppose f(0) > 0 and f'(0) < 0, while all higher derivatives f at 0 are non-positive, then

all derivatives of f* at 0 are strictly negative.

Proof. Let F(t) = f(t)*. By induction, one may observe that for any positive integer &,

F®)(t) is a sum of 25~ terms of the form

= s (o) (I 0.

where 1 < j < k, and 77 = (ng,n1,...,nj_1) is a vector of positive integers. If there is
some index 7 such that f(")(0) = 0, then gz(0) = 0. Otherwise, [[/_y £(0) is a product
of j negative numbers and so has sign (—1)’. On the other hand, our assumption on «
imply that <H o — z)) is a product of one positive number and j — 1 negative numbers,
and so has sign (—1)’~1. As such, g;z(0) < 0.

Finally, notice that F(*)(0) always contains the term

gua,.(0) = (1) (Hm - z‘>> 70

1=0

Since we have assumed that f/(0) < 0, this term is strictly negative. As such, F*)(0) is

also negative, as was to be shown. O]

In the course of proving the previous theorem, we have in fact proved the following

more general result.

Theorem 5.4.4. Let F' be a function on on [—1, 1] that is given by the power series

F(t)=ao— Y axt*, (5.22)
k=1
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where ay, > 0 for all k > 0. Then the energy integral

— [ Pl dutduty (5.23)
Sn—l Sn—l

is maximized over all Borel probability measures on S"~! by the uniform measure. Fur-

thermore, if a;, > 0 for all k > 0, then the maximizer is unique.

Let us see how we may apply this more general theorem to recover Bjorck’s original

result.

Theorem 5.4.5 (Bjorck, 1956). For 6 > 0, define the energy integral

— [ e slPdudut). (5.24)
Snfl Snfl

The maximizers of this energy integral over Borel probability measures on S"~' can be

characterized as follows:

1. 0 < § < 2: the unique maximizer of Es(p) is p = o, the uniform measure.
2. 0 = 2: Es(p) is maximized if and only if the center of mass of p is at the origin.

3. 0 > 2: Es(p) is maximized if and only if 11 = 5(8, + 6_p), i.e. the mass is supported
equally by two antipodal points.

Proof. We rewrite (5.24) as
Es(p) = E[IX = X/|°

where X and X' are independent random vectors with distribution . The easy case § > 2
is proved exactly as in Theorem 5.4.1. The case 6 = 2 is also clear, for we may write
X — X'||* = 2 — 2(X, X'), and by identity (5.4),

Ex(p) =2 - E(X,X') = 2 — ||[EX]|",

This is maximized if and only if EX = 0.

For 0 < § < 2, we set f(t) = 2 — 2t and F(t) = f(t)%2 Then f and (5.7) = §/2
satisfy the hypotheses of Lemma 5.4.3, so F*)(0) < 0 for all positive integers k. This,
together with Lemma 5.4.2, implies that F' satisfies the hypothesis of Theorem 5.4.4. Since

/S/S = 2(x,y))"*dpu(x) /S/S ((x, y))dp(x)duly),

we can conclude that Fs(11) is uniquely maximized by the uniform measure. O
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Remark 5.4.6. In their paper [14], Bilyk et al. remarked that while the Euclidean and
geodesic distances are both metrics on the sphere, the phase transition for the behavior of
their energy integrals is different. In the Euclidean case, Bjorck’s theorem shows that it
occurs at 9 = 2, while in the geodesic case, Bilyk et al.’s theorem shows that it occurs at
0 = 1. This peculiar phenomenon is explained by our unified proof of both results.

In both cases, the existence of a phase transition as we let § decrease to 0 is asserted by
Lemma 5.4.3 and Theorem 5.4.4. If the integrand satisfies the hypotheses of Lemma 5.4.3
for some dy, then for all 0 < § < o, the integrand will satisfy the hypothesis of Theorem
5.4.4, from which we can conclude that the unique maximizer is the uniform measure. For

the Euclidean integral, we have oy, = 2, while for the geodesic integral, we have ¢y = 1.

Remark 5.4.7. Bilyk et al. were also interested in understanding continuous functions F'
for which the uniform measure o is the unique minimizer of / as defined in (5.23). They
managed to characterize these functions as those for which all non-constant Gegenbauer

coefficients are strictly positive, i.e.

A

F(k,\)>0

for all positive integers k, and where A = 2 — 1. On the other hand, by flipping signs,
Theorem 5.4.4 implies that a sufficient condition for this to happen is to require all non-

constant Taylor series coefficents to be strictly positive.

5.5 Testing multi-dimensional Gaussian distributions

Theorem 5.5.1 (First Gaussian test). Suppose X has the same radial distribution as g, i.e.
| X||2 and ||g||2 are identically distributed. If (X,X') has the same distribution as (g,g’),

then X has the same distribution as g, i.e. the standard Gaussian distribution.

Proof. If X has the same radial distribution as g, then g is the rotational symmetrization of

X. The claim is then a direct application of the uniqueness portion of Theorem 5.2.6. [

By considering more carefully the orthogonal decomposition of moment tensors, we
can make this characterization theorem quantitative. This will be useful if we seek to
use the characterization for learning problems in which we only have access to empirical
estimates of the moment tensors. For instance, this will be the case for our analysis in
Chapter 6.

Lemma 5.5.2. Let X be a random vector in R™. Let @ be uniformly distributed on the
sphere S"~. Then the following hold for any positive integer r:

82



a) My, = E{|X|;}M5,

b) |Exl; = (B{(X,X)}") — (E{|XI[3})*(E{(6,0')}").
c) For any unit vector v € R",

B}~ E{le. )} < [E{IXI5) ~ E(lgl5HE(0.07) (5.25)
+ (BLxx)) - B E0.0)7)

d) In particular, when r is odd,

E{(X,»)"} —E{(g.»)"}| < E{X.X)"D)"* = |[E{(X.X)"} — (E{(g.&)"})|"*.
(5.26)

Proof. For the first statement, observe that X,.,, = ||X||,6, with ||X]|, and € independent.
We thus have

My, = E{(IX],6)""} = E{|IX|;33E{0°"} = E{|IX|];} M.

Next, rewrite (5.7) as |[Exll; = [Mk|l; — M, [l5- By definition, we have |[Mg][; =
E{(X,X')"} and using a), we get M |2 = (E{|X[;})°E{(6.")"}.
To prove part c), fix v and write

E{<X7 V>T} - E{<g7 V>T} = <MTX - M;: V®T> = <M;(mt - M;: V®T> + <E§7 V®T>'
We use a) to write

(M., — Mg, o) = (E{|[X]|,}M} — E{||g||;}Mp, v*")
= (E{IIXI15} — E{llgll;})E{(0,v)"}.

Notice that E{(0,v)"} = E{(0,6')"}. We then combine the last two equations with

b) and Cauchy-Schwarz to get (5.25). Finally, to get the last claim, we use the fact that
E{(0,0")"} = E{(g,g')"} = 0 whenever r is odd. O

By balancing the two terms on the right hand side in part c), we obtain the following

lemma, which will again be useful in Chapter 6.

Lemma 5.5.3. Let X be a random vector in R" for n > 2. Suppose there is a unit

vector v € S™1, an even integer r > 2, and a positive number 0 < § < 1 such that
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E{(X,v)"} — E{(g,v)"}| > 0E{(g,v)"}. Then either

ECIX12} — E{lgllz} = ?E{@', v)'}, or

2

50 1\ 2
“E(E{(g )]

E(X X)) - E{lg.8))] >
Proof. Observe that (5.25) gives the bound
SE{(g.v)"} < [EIXI5) ~ B{ g} [E{(6,0)") (527
+ (LK XYY~ BOXIEE(0.0)7)

Suppose [E{[X[;} —E{|lgl}}| < ZE{(g,v)"}. Then the second term on the right in
equation (5.27) has to be large. Indeed, since § < 1 and E{(0,0")"} < 1/2 for r,n > 2,

we have

(BXX)) — BOXIE(0.0)7)) > E{(gv)") ~ S E{(0.0))E((g.v)')

> DE{(gv)).

Now, applying the fact that E{(g, &')"} = (E{|lg||5})°E{(6, 8')"}, we use the reverse tri-

angle inequality and the above bound to write
E{(X.X)"} ~ E{(g.g)'} > [E{X.X)"} - (X[} E{0.0)
- &0 b’ - el et0.0)

> (FE(ev))
- |EOXIE? - E(els)?

(0,6)"}.  (5.28)

Next, notice that

= [ELIXI5} — E{llgllHEX2} + E{lgll})

= [E{IIXII2} — E{llgll;} - 2E{[lgll}
+ (E{IXI5} — E{llell5})’,

E{IX]5)° — E{llgl3})’
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so by the assumption on |E{||X||5} — E{||g||5}|, we have

E{IX]5)° — E{llel;})*[E{(6.6)"} < %QE{@;, v)'} - 2E{(lgll3} - E{(0,0')"}

+<§E«gﬂ@yﬁﬂaaV}
o

- CE{E V)
+(SEtew)) EC0.07)
< Bl v 5.2
We can now substitute (5.29) into (5.28) to get
E{(X.X)"} ~ E{(g &)} > o (B{(g )"}
[

5.6 Comments and open questions

This chapter is based on the paper “Energy optimization for distributions on the sphere and
improvement to the Welch bounds” [105]. After submitting the first version of that paper, I
became aware that a partial version of Corollary 5.2.7 was proved by Ehler and Okoudjou
in [41] (see Theorem 4.10 therein). Their result gives the inequality portion of the corollary
but not the uniqueness part of it. They also do not prove any other part of Theorem 5.2.6,
which applies to more general random vectors, and for all positive integer moments (as
opposed to just even integer moments).

Like Bilyk et al., Ehler and Okoudjou obtained their result using spherical harmonics,
and in particular, by considering the Gegenbauer coefficients of monomial functions. This
is more evidence that there should be a close relationship between the theory of eccen-
tricity tensors and that of spherical harmonics, and it will be interesting to investigate this

connection further.

85



CHAPTER 6

Non-Gaussian Component Analysis

6.1 Introduction

6.1.1 Non-Gaussian Component Analysis

Dimension reduction is a necessary step for much of modern data analysis, the principle
being that the structure or “interestingness” of a collection of data points is contained in a
geometric structure which has much lower dimension than the ambient vector space. We
consider the case where the geometric structure in question is a linear subspace. In other
words, we are in the situation where the variation of the data points within this subspace
contains some information which we would like to extract, while their variation in the
complementary directions constitute mere noise.

In many cases, it is reasonable to think of the noise as being Gaussian. Formally, we
then have the following generative model. Let E be an unknown d-dimensional subspace
of R", and let £ be the orthogonal complement of £. Let X be a random vector in R”,
which we can decompose into two independent components: a non-Gaussian component
X that takes values in E, and a Gaussian component g that takes values in E*. In other
words, we let X = (X,g) € E @ E*.!

Our goal is to recover the subspace F from a sample of independent realizations of
X. This is precisely the framework of the problem of Non-Gaussian Component Analy-
sis (NGCA). We make no assumption on the relative magnitudes of X and g. When the
noise component is much smaller, which is a reasonable assumption in some real world
applications, £ can be recovered using the standard Principal Component Analysis (PCA).
However, PCA manifestly fails when the signal to noise ratio is small, i.e. when X has

lower magnitude than g.

'Tt is not necessary to assume that the Gaussian and non-Gaussian subspaces are perpendicular. They
automatically become perpendicular if we apply a whitening transformation.
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With mild distributional assumptions, applying a whitening transformation to the data
points can be done efficiently with sample size linear in the dimension (see [114]). As such,
we might as well assume that the distribution is already whitened (i.e. isotropic). In other

words, for the rest of this chapter, we work with the model:

Definition 6.1.1 (Isotropic NGCA model).
X=X,g)c E®@EY, EX=0 EXX'=I,. (6.1)

The NGCA problem is closely related to the problem of Independent Component Anal-
ysis (ICA), but generalizes it in a crucial way. ICA assumes the existence of a latent vari-
able s with independent coordinates, whereas in our case, the distribution of X is allowed

to have any manner of dependencies amongst its entries.

6.1.2 Quantifying ‘“non-Gaussianness”

In order to provide a guarantee for an algorithm for NGCA, one needs to quantify the

deviation of X from being Gaussian. We will do so in terms of its moments.

Definition 6.1.2. We say that X is (m, n)-moment-identifiable along a unit vector v € F if

there is some 1 < r < m for which
E{(X,V)"} = 7| > . (6.2)

Here 7, := (2r — 1)!! is the r-th moment of a N/ (0, 1) random variable. The r-th moment

distance of X from a standard Gaussian is defined as the quantity

Dy, = sup }]E{(X, v} =%l (6.3)
vesSn—INE

There are three reasons why we take such an approach. First, it allows us to analyze
our proposed algorithm more easily, since the algorithm is a moment method, and second,
it allows us to quantify the “non-Gaussianness” of distributions that possibly do not have
densities. This would not be possible had we chosen a notion like the total variation dis-
tance for instance. Finally, by the classical moment problem, if Dy, = 0 for all positive

integers 7, then X has the standard Gaussian distribution.
Nonetheless, readers may be concerned about how the moment-identifiability condition
squares with other notions of distribution distance. This was investigated somewhat by

[112], who proved the following result for log-concave distributions on RR.

87



Fact 6.1.3 (Lemma 1 in [112]). Let G be the density of a standard Gaussian random vari-

able, F the density of an isotropic log-concave distribution. Suppose G is not (m,n)-

moment-identifiable, i.e. forr = 1,...,m,|Ep{X"} — ~.| < n. Then there is a universal
constant C' such that |
ogm "
IF =G|, < CW +nme™.

We note that the log-concave assumption is simply to obtain a tail bound for the charac-
teristic function for F'. Hence, the result also holds for any distribution with a C! density,
albeit with possibly a different constant in the bound. Furthermore, the method for proving

the result can easily be generalized to multivariate distributions.

6.1.3 Notes

This chapter is based on the paper [108]. As far as we know, the NGCA problem was first
formulated and studied by [16]. They observed that whenever X satisfies the NGCA model

(6.1), then for any smooth function /, we have
B(h) = E{Xh(X)} —E{Vh(X)} € E. (6.4)

This suggests that if we can find a rich enough collection of functions H, then one should be
able to recover E as the span of {3(h): h € H}. Hence, the authors proposed first forming
empirical estimates B(h) using the given i.i.d. samples of X, and then running PCA on this
collection of vectors. Inspired by the FastICA algorithm of [57], they suggested picking
test functions of the form ., (X) = he((X,w)) where w € S and {h,: a € R} is a one-
parameter family of smooth functions. They called this approach Multi-index Projection
Pursuit.

Subsequent papers have built upon this in several ways. [64] investigated the situation
when the contrast functions h;’s are chosen to be radial kernel functions, and when these
are adapted to the data in an iterative fashion. [37, 36] replaced the PCA step with a
semidefinite program, thereby yielding an approach they call Sparse NGCA.

All the papers in this line of research suffer from the defect that the performance of
the algorithms all depend experimentally and theoretically on some “good” behavior of
the 3(h)’s. Clearly, how “good” the 3(h)’s are depends intimately on how the chosen
contrast functions interact with the particular way in which X deviates from being Gaussian.
None of these papers are able to quantify this dependence theoretically, and instead simply
assume the “good” behavior (see for instance Assumption 1 in [36]), so their proposed

algorithms cannot be said to have polynomial time and sample complexity guarantees.
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Indeed, prior to our work, the only algorithm with such guarantees was proposed and
studied by [112]. Their strategy was to adapt [44]’s work on ICA to higher moments. For
each positive integer 7, they defined the marginal moment function f,.(v) := E{(X,v)"},
and noted that the strict local optima of f,. would have to lie in £. Furthermore, for each
r, the r-th moment tensors of X defining f,. can be approximated up to ¢ accuracy in each
of its entries with enough samples. These therefore yield empirical estimates f, that have
local optima that are close to those of f,.. Finally, they showed how to identify a local
optima of fT using a 2nd order local search. The samples are then projected onto the
orthogonal complement of this direction, and the algorithm is applied recursively on the
projection. They were able to prove that whenever X is (m, n)-moment-identifiable along
all unit vectors v € [, then their algorithm recovers a subspace E close enough to £ with
time and sample complexity polynomial in n, 1, 1/¢, and log(1/§), where ¢ is the failure
probability. The degree of the polynomial however grows linearly in m and d. 2

Other work on NGCA include [63, 64, 65, 94]. These papers have limited theoretical

analysis, and we omit a discussion of these because of space constraints.

6.2 Main results

The principle that underlies our approach to NGCA is the new characterization of multi-
variate Gaussian distributions developed in Section 5.5 of the previous chapter. Throughout
this section, X denotes a random vector in R” and g is a standard Gaussian random vector
in R”. By X’ we will always denote an independent copy of X.

Theorem 5.5.1 tells us how to identify non-Gaussian distributions. This result by itself
does not address the NGCA problem, in which we are looking to identify non-Gaussian
directions in the distribution of X. To this end, we propose a matrix version of the first

Gaussian test. Pick a parameter o > 0 and consider the fest matrices

1 1 ’
Bxo = — E{e XEXXTY and Wy, := — E{e *®XIX(X)7}, (6.5)
’ Zg ’ Zw
where the normalizing quantities Zg = Zgx(a) := E{e XI5} and Zy = Zgx(a) :=
E{e~XX)1 resemble partition functions in statistical mechanics.

For a standard Gaussian random vector g, a straightforward computation (see Lemma

2We are of course omitting numerous details of their work. In addition, their statement of their guarantee
(see Theorem 1 in their paper) is also somewhat different from how we have stated it here: they have both a
slightly weaker assumption on X ((m, n)-moment-distinguishability) and a slightly weaker conclusion on E
(in terms of moment distance). We believe there is a mistake in their proof of the theorem, but nonetheless,
their intermediate results are sufficient to prove the version that we have stated in the main text.
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6.8.3) shows that both test matrices are multiples of the identity, namely
®,,=(2a+1)""I, and ¥,,=a(a®-1)"L, (6.6)

Our second test guarantees that the non-Gaussianness of X is captured by one of the test

matrices, and moreover that their eigenvectors reveal the non-Gaussian directions of X.

Theorem 6.2.1 (Second Gaussian test). Consider a random vector X which follows the
isotropic NGCA model (6.1). Then, for any |«| small enough, either ®x ., has an eigenvalue
not equal to (2ac+ 1)~ or Wy, has an eigenvalue not equal to (o — 1), Furthermore,

all eigenvectors corresponding to such eigenvalues lie in E.’

In Section 6.3, we will show how to derive the second Gaussian test from the first using
a block diagonalization formula for each of the matrices ®x , and Wx ,. Again, itis easy to
see that @y ,, is not sufficient by itself to identify non-Gaussian directions: Take X = ||g||0
as before, and this time that assume that @ is uniform on {:I:ei}]lvzl. The symmetry implies
that ®x , is a scalar matrix, and computing its trace shows that it is equal to (2ac 4+ 1)7'L,.

Both the first and second Gaussian tests for population rather than for finite samples;
they involve taking expectations over the entire distribution of X which is typically un-
known in practice. However, both tests are quite robust and work provably well on finite
(polynomially large) samples. Robust versions of Gaussian tests can be formulated in terms

of our definition of moment distance (see (6.3)).

Theorem 6.2.2 (First Gaussian test, robust). There is a universal constant ¢ > 0 such that

for each positive integer r, we have either

E{IXI12} — E{lgllo} = en?/5 or [E{(X.X)"} —E{(g.&")"} > en;.

Here 7, = E{|g|"} is the r-th absolute moment of a standard Gaussian random variable,

and n, = min{Dx ., 7, }.

Proof. If r is odd, then the statement follows from (5.26). If r is even, set 6 = E?g% in

Lemma 5.5.3. L]

There is a similar robust version of the second Gaussian test, which we will skip here

but state and prove in Section 6.3.

3The matrix ®x , always exists, but when X is not sub-Gaussian (i.e. can be rescaled so that marginals
have tails lighter than a standard Gaussian), ¥x , may not be well-defined even for small «. In that case,
|X]|,, has a different distribution from |g||,., so that @x , has non-Gaussian eigenvalues. We can hence think
of ®x , as the primary test matrix, and $x ., being an auxiliary that is only required in hard (effectively
adversarial) cases.
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Robustness allows us to use finite sample averages instead of expectations in the Gaus-
sian tests, which is critical for practical applications. Indeed, consider a sample X1, . .., Xy,
X),..., Xy of 2N i.i.d. realizations of a random variable X. We can then define the sample

versions of the test matrices in (6.5) in an obvious way:

N N
. 1 2 - 1 /
Oxo =z ) ¢ NEXXT and Wx, = o ) e ®MX(X)T + XX,

@ =1 Zv 5

(6.7)
with the normalizing quantities Zg := Zf\il e=IXill> and Zg := 2 Zf\;l e~ X Xq),

The second Gaussian test leads to the following straightforward algorithm for solving
NGCA problem based on a finite sample: Use the sample to compute the test matrices (i)X,a
and \i’xya; select the eigenspaces corresponding to the eigenvalues that significantly deviate
from the Gaussian eigenvalues. Then all vectors in both eigenspaces will be close to the
non-Gaussian subspace £ which we are trying to find. Let us state this algorithm and its

guarantee precisely.

Algorithm 4 REWEIGHTED PCA(X,1,a2,01,02)

Input: Data points Xy, ..., Xy, X}, ..., Xy, scaling parameters a;,as € R, tolerance

parameters 31, By > 0.
Output: Two estimates Eq, and Eq, for E.
1: Compute test matrices (i)X,oq and \ilxm.
2: Compute the eigenspace Eg of ‘i’x,al corresponding to the nonzero eigenvalues that
are farther than 3; from the value (2c;; + 1)71.
3: Compute the eigenspace Eg of \ilxm corresponding to the nonzero eigenvalues that

are farther than (3, from the value a (a2 — 1)L,

Theorem 6.2.3 (Finding one non-Gaussian direction). Let X be a sub-Gaussian® ran-

dom vector which follows the isotropic NGCA model (6.1), and with sub-Gaussian norm
bounded above by K > 1. Let r be the minimum integer for which the r-th moment
distance Dy, =: D > 0. Then for any d,¢ € (0,1), with probability at least 1 —
0, if we run Reweighted PCA with a choice of parameters oy, oo, 31, B2 that is optimal
up to constant multiples, at least one of Eg and Eg is non-trivial, and any unit vec-
tor in their union is e-close to one in E, so long as the sample size N is greater than
poly,.(n,1/e,log(1/5),1/D, K). Here, poly, is a polynomial whose total degree depends

linearly on r.

“4For a formal definition of sub-Gaussian random vectors and an introduction to their properties, please
see [114].
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The idea of the proof is to use eigenvector perturbation theory from [34]. The robust
version of the second Gaussian test exerts the existence of a gap between Gaussian and
non-Gaussian eigenvalues. By bounding the deviation of the test matrix estimators ‘i'x,a
and \ifxa from their expectation, we can thus show that their eigenstructures are similar.
We will prove this theorem formally in Section 6.4.

The next step is to obtain a good estimate for the entire non-Gaussian subspace. To
do so, we follow [112]’s strategy of projecting the sample points onto the orthogonal com-
plement of the found directions, and recursing our algorithm on the new sample. After a
set number of iterations, we collate all the found directions into a basis spanning candi-
date subspace E. To state our guarantee for this procedure, we use the following notion of

distance between subspaces. Note that this is equal to the sin(®) distance of [34].

Definition 6.2.4 (Subspace distance). Let F' and F’ be subspaces of R™ of dimensions m.
Let U and U’ be matrices whose columns form an orthonormal basis for F' and F’ respec-
tively. The distance between F and F” is defined to be d(F, F') := ||[UU" — U'(U")T| ..

Theorem 6.2.5 (Finding all non-Gaussian directions). Let X be a sub-Gaussian random
vector which follows the isotropic NGCA model (6.1), and with sub-Gaussian norm bounded
above by K > 1. Suppose that X is (m, n)-moment-identifiable along all unit vectors v €

E. Then running Reweighted PCA recursively (i.e. Algorithm 5) produces an estimate E

such that d(E, E) < € so long as the sample size N is greater than poly,, 4(n,1/€,log(1/9),

1/D, K). Here, poly,, 4 is a polynomial whose total degree depends linearly on m and d.

We shall prove this theorem in Section 6.11. The theorem gives a polynomial time and
sample complexity guarantee that REWEIGHTED PCA solves the NGCA problem, so long
as m and d are assumed to be constants, while making exactly the same assumptions as
[112]. This means that theoretically, both algorithms do just as well. On the other hand,
REWEIGHTED PCA is a simple spectral algorithm, which is easier and faster to implement
than local search.

Furthermore, while local search discovers one non-Gaussian direction at a time, the al-
gorithm REWEIGHTED PCA possibly discovers multiple directions in each iteration. Most
importantly, there is hope that all non-Gaussian directions can be discovered in the very
first iteration. This is probably what will happen in practice with real data, and we may
moreover prove that this is the case for special distributions. For instance, we can prove the

following guarantee for finding a planted sphere.

Corollary 6.2.6 (Finding a sphere). Let X be uniformly distributed on the scaled unit sphere
VdS? ' in E. Suppose we are given a sample of size N > dn?(n + log(1/6))/€%, then
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running the first two steps of REWEIGHTED PCA with a choice of a € [¢1/n, cy/n], and
B = «/3 yields a subspace Fs so that d(Eq), E) < e Here, ¢, and cy are absolute

constants.

6.2.1 Reweighted PCA in other contexts

The name of the algorithm stems from the first test matrix, which can be seen as a PCA
matrix for the reweighted sample obtained when each point X; is given the weight eelXill3,
As mentioned in the previous section, ®x , reveals at least one non-Gaussian direction in
all but adversarial situations, and so can be considered the primary test matrix.

The idea of doing PCA with weight functions that are non-linear in the sample points
can be traced back at least as far as [18]. In that paper, the authors similarly use Gaussian
weights, but do so in order to handle clustering for Gaussian mixture models that are highly
non-spherical. In a later paper, [48] used Fourier weights to handle ICA. While our analysis

is radically different, the idea for the algorithm was directly inspired by these two papers.

6.2.2 Organization of chapter and notation

In Section 6.3, we will prove the second Gaussian test and state a robust version needed
for proving our guarantee for Reweighted PCA. The guarantee for finding one direction
is proved in Section 6.4. The guarantees for finding all directions, and the special case of
finding a sphere are proved in Sections 6.11 and 6.12 respectively. To enhance the flow of
the chapter, many technical details are also deferred to the later sections. Throughout the
chapter, scalars are denoted in standard font, while vectors and matrices are denoted with
bold font. C' and ¢ denote absolute constants whose value may change from line to line.
We let g, denote the standard Gaussian vector in R". The subscript is omitted whenever
the dimension is obvious. In addition, for each r, we let v, and 7, denote the r-th moment

and r-th absolute moment of a standard Gaussian random variable.

6.3 Proof of the second Gaussian test

In this section, we return to the setting where X follows the NGCA model (6.1). We further
assume that the non-Gaussian component X is a sub-Gaussian random vector with sub-
Gaussian norm bounded by K. In order not to break the flow of the chapter, most of the
proofs are deferred to Section 6.7.

The first step in proving the test is to notice that the independence of the Gaussian and

non-Gaussian components allows us to block diagonalize the test matrices.
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Lemma 6.3.1 (Block diagonalization for ®x , and Wx ,). Assume E is spanned by the
first d basis vectors. Then the test matrices ®x , and Py , decompose into blocks in the

following manner:

P 0 v 0
Py, = [ —22 o Wy, = X : (6.8)
0 <I>g,a 0 \Ilg,a

We then observe that the trace of the test matrices are conveniently equal to the negated

log derivatives of their respective partition functions.

Lemma 6.3.2 (Trace of ®y , and Wy ,). Let Y be any random vector in R". Then Tr(®y ) =
—(log Zs y)' (o) and Tr(¥y,,) = —(log Zw y) ().

Our next lemma shows that for o small enough, the partition functions themselves
differentiate between Gaussian and non-Gaussian random vectors. This is obvious once we
realize that they are just the moment generating functions of ||X||5 and (X, X’), and that

these are analytic in a small neighborhood around 0.

Lemma 6.3.3 (Partition functions characterize Gaussian distributions). The following hold
for any sub-Gaussian random vector Y:
a) If Ze y(ou) = Zs g(ou) for a sequence of values oy, converging to 0, then Y has the
same radial distribution as g.
b) If in addition, Zw y(Br) = Zwg(Pk) for a sequence of values [}, converging to 0,

then X has the standard Gaussian distribution.
We are now in a position to prove the second Gaussian test.

Proof of Theorem 6.2.1. Let g; denote the standard Gaussian in R?. By Lemma 6.3.3, ei-
ther Zg 3(a) # Zag,() for |af small enough, or Zyg z(a) # Zgg,(a) for |a| small
enough. As such, either (log Zg 5)' () # (log Za g,) (@) or (log Zg )" (@) # (log Zw g,)' ().
Assume the former holds, and let Ay, . .., A,, denote the eigenvalues of ®x ,. Since we may

write ®x , in a block form, these eigenvalues are either those of @ , or ®, ,. Without loss

of generality, we may assume that A, . .., A4 are the eigenvalues of ®¢ ,, and Agy1,..., An
are those of ®, .

Lemma 6.8.3 tells us that \gy; = --- = A\, = (2a + 1)~!. On the other hand, by
Lemma 6.3.2,

Z A =Tr(®g,) = —(log Zg x)' ().
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By Lemma 6.8.2, —(log Zg g, ) (a) = d(2a + 1)71, so we have -0 \; # d(2a + 1)7",
Dividing through by d, we get %l Zle A\ # (2 + 1)71, which implies that at least one ),
differs from this value for 1 < ¢ < d.

If it were the case that (log Zy, 5)' (o) # (log Zw g,)'(«v), a similar argument involving

Wy ., gives the alternate conclusion. O

It is tedious but not too difficult to make the second Gaussian test quantitative. We
do this by tracking how the non-Gaussian moments for ||X||, and (X, X') contribute to
the power series expansions for —(log Zg )’ and —(log Zy, )" around 0. This yields the

following theorem.

Theorem 6.3.4 (Second Gaussian test, robust). Let r be the integer such that Dy, > 0 and
Dy ,. = 0 forallr" <. Then either

a) for|al < n?r/(CK?*)"(d' + (r + 1)!), we have

d

1 a cny r—1

=S () - > Ik .

d = A¥ia) a?—1| — d(r— 1)!| ™ ©9)

b) orfor |a| < n?r/(CK?)?3,(d"/* + (r/2 + 1)!), we have

1 & 1 cn?
= T Ni(@g,) - - e 6.10
d; (®xa) = 301| Z a2 -, (6.10)

Here 7, = E|(g,v)|" for an arbitrary vector v € S"~! and n, = min{Dx., ¥, }.

6.4 Proof of guarantee for Reweighted PCA

The second Gaussian test tells us how we can recover non-Gaussian directions from ®x ,,
and Wy ,. Our guarantee for Reweighted PCA algorithm shows that we can do the same
with the plug-in estimators <i>x,a and \i’xﬂ. To this end, we first provide concentration

bounds for these estimators, whose proofs can be found in Section 6.9.

Theorem 6.4.1 (Concentration for i)x,a). There is an absolute constant C such that for
any 0 < ¢,6 < 1, and any 0 < o < 1/CK?*n, we have IP’{H@X@ — By, || > e} < 4 so0
long as N > CK?*(n +log(1/4))e 2

Theorem 6.4.2 (Concentration for lilxya). There is an absolute constant C' such that for
any 0 < €,6 < 1, if N > CK?*(n + log(1/6))e 2 and |a| < 1/CK*r(n + 7), we have
]P’{H\il;m Wy > e} < 6. Here, 7 = log"/>(N/ min{4, K¢}).
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Lemma 6.4.3 (Guarantee for Eg). Suppose the moments of | X||5 and g, agree up to
order r — 1, but there is a number A > 0 such that ‘E{HXH;T} - E{Hgngr}‘ > A. For any
d,€ € (0,1), pick oy such that 0 < oy < min{Ar/(CK*)"(d"™ + (r + D)!),1/CK?n},
and B, = Aa7'/4d(r — 1). Then with probability at least 1 — 5, Reweighted PCA
with 2N > CK?d*?(n + log(1/6))/B%e* samples together with this choice of o, and 3
produces a nontrivial estimate E@ of dimension 1 < dq, < d, such that there is a dq;.-
dimensional subspace Eg C E satisfying d(E¢, Es) <e

Proof. Combining Lemmas 6.3.1, 6.3.2, and 6.8.3 tells us that in the right coordinates,
®x o, block diagonalizes as

Dy, | 0
Py = : : (6.11)
0 | (20+1) T, 4
Next, label the eigenvalues of ®x ,, as Ay > Ao > --- > \,. Wecanfind0 < p < ¢ <
n such that the eigenvalues corresponding to the @ ,, blockare A1, Ag, ..., Ay, Agya, -+ An

Using Theorem 6.7.4, we then have

1 A
— > =2 12
(ZAjLZA) 200 +1| = 2d(r — )1 b ©12)
1=q+1
In particular, we have Ai—1/(200+1) = 261, and 1/ (200 +1)— = D DD

2[3;. Since at least one of these sums of eigenvalues is non-empty, truncating the eigenval-
ues of ®x ,, at the 3, level gives us a non-trivial subspace of E.

In order to show that our empirical estimate @Xm also has an approximation to this
property, we will need to use the eigenvector perturbation theory explained in Section 6.10.
First, we need to bound from below the “eigengap” in ®x ,,. Suppose first that p > 1, i.e.
that there are eigenvalues larger than (2a;+1) 1. Then by the pigeonhole principle, one can
find 7 such that (2a;+1) "1 +5,/2 > A1 > (2aq+1)"Land \; — N1 > (31/2d. Similarly,
if ¢ <n — 1, then we can find j such that (205 +1)™' > X\;_1 > (204 +1)"! — 3;/2 and
Nji—1— Aj > Br/2d.

Now let F' be the span of the eigenvectors of ®x , corresponding to Ay, ..., A, Aj, ..., Ay,
and let £ be the eigenvectors of Py ., corresponding to Mo N 5\ ) By Theorem
6.4.1, with probability at least 1 — §, we have

516
4\/§d3/2.

We may then use Theorem 6.10.4 to see that d(F, F) < ¢

| ®x.0 — Bxal < (6.13)
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We are not yet done, because we do not have access to F. Nonetheless, we can show
that £ contains Ee. Using eigenvalue perturbation inequalities together with equation
(6.13) tells us that we have

3 Bre —1 B Bie -1 26,
<\ — < (2 1 — 4+ — < (2 1 — .14
)‘l+1_)‘z+1+2d_(041+) +2+2d_(@1+) +3, (6.14)
and similarly that
3 pre -1 o pre -1 26
<A —E=< e - = .
/\]—1 =~ )\]_1 od = (20(1 + 1) 9 o (20(1 + 1) 3 (6 15)

Let o = {i : |A; — (1 — 2a;) | > f1}. We see that this set does not contain any index
between ¢ + 1 and 57 — 1, so Eg, which comprises the span of the eigenvectors to these
eigenvalues, does not contain any eigenvector that F' does not contain, as was to be shown.
The inclusion then implies that we may find a subspace F'¢ C F' such that d(EAQ, Es) <e

Finally, we observe that dim E4> > 1, since

1<« 1 1 <& Bre 1
=N — papat N P A > By, 6.16
p; 200 +1 = p & 2d  2a; + 1 b (©.16)
and
1 1 & . 1 1 O Bre
— N > — N — == > 6. 6.17
201 + 1 n—qZ 201 +1 n—qAZ 2d b ( )

i=q+1 i=q+1

]

Lemma 6.4.4 (Guarantee for ). Suppose the moments of (X,X') and (g.g') agree up
to order r — 1 but |[E{(X,X')"} —E{(g,g')"}| > A. For any d,¢,7 € (0,1), pick 0 <
ay < min{Ar/(CK?)"(d"*' + (r + D), 1/CK*n'*7}, and By = Aab™'/4d(r — 1)L,
Then with probability at least 1 — §, Reweighted PCA with sample size 2N satisfying
exp(n?") min{0, Ke} > 2N > CK?d*?(n + log(1/8))/52€% together with this choice of
ag and (B9 produces a nontrivial estimate E\I, of dimension 1 < Ciq; < d, such that there is

a dg-dimensional subspace Fg C E satisfying d(E\I,, Ey) <e

Proof. The proof is completely analogous to that for the previous theorem, except that we

replace our estimates and identities for ®x ,, with those for ¥x ,, wherever necessary. [

Proof of Theorem 6.2.3. Combine the last two lemmas with Theorem 6.3.4 from the last

section. O]
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Remark 6.4.5 (Selecting optimal parameters). If the problem parameters d, n, r, K and Dy .
were known before hand, then in principle, one could compute the optimal tuning param-
eters aip, g, 1, Bo. In practice, however, one rarely is in this situation, so one would have
to estimate the problem parameters as a first step to solving the NGCA problem. Nonethe-
less, one can do this by the doubling/halving trick. In other words, we start with some
fixed initial choice of o and as. Using Theorems 6.4.1 and 6.4.2, we can detect whether
there are any outlier eigenvalues with high probability. If there are none, we halve «; and
a9 and try again, repeating this process until outliers show up. The number of iterations is
then the base 2 logarithm of the final o and a», plus an additive constant. This is at most

polynomial in all the problem parameters, so the algorithm remains efficient.

6.5 Comments and open questions

We have presented and analyzed an algorithm that is guaranteed to return at least one
non-Gaussian direction efficiently, with sample and time complexity a polynomial in the
problem parameters for a fixed r, where r is the smallest order at which X has positive
r-th moment distance from a standard Gaussian. Furthermore, if X is (m,7)-moment-
identifiable, then the algorithm estimates the d-dimensional non-Gaussian subspace effi-
ciently with polynomial time and sample complexity for fixed m and d.

Since the degree of the polynomial increases linearly in 7, it would seem that the algo-
rithm is practically useless if r is larger than a small constant. However, note that having all
third and fourth moments equal those of a Gaussian is a condition that is already stringent
in one dimension, and which becomes even more so in higher dimensions. As such, unless
X has some kind of adversarial distribution,  will be either 4 or 3, depending on whether
X is centrally symmetric or not.

The algorithm also often delivers much more than is guaranteed for several reasons.
First, in order to bound the subspace perturbation by ¢, we used a very crude estimate of the
eigengap, bounding it from below using the pigeonhole principle, which in the worst case
assumes that the eigenvalues are spread out at regular intervals. This should not happen in
practice, and we expect the non-Gaussian eigenvalues to instead cluster relatively tightly
around their average. If this happens, the sample complexity requirement can be relaxed
by a factor of d.

Second, just as it is extremely unlikely for r to be higher than 4, for a general non-
Gaussian X and a small, random o, it is extremely unlikely for any of the non-Gaussian
values of ®x ,, to be equal to the Gaussian one on the dot. This means that even though the

guarantee for a single run of the base algorithm is for one direction, in practice we most
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probably can recover the entire subspace £ simultaneously with just ‘i’X,a alone (as in the

case in Corollary 6.2.6), albeit with a more sophisticated truncation technique.

6.5.1 Conjectures

We conjecture that REWEIGHTED PCA actually recovers the entire non-Gaussian subspace
E with in polynomial time and sample complexity if we fix m, but now allow d to vary.
This would improve upon both our result and that of [112]. The first Gaussian test for a
random vector X using the distribution of its norm and dot product pairing also leads to
further questions. For a fixed nonzero real number ¢, both of these appear in the formula
for ||Y, g where we set Y, := X + ¢tX/, so it is natural to ask whether Reweighted PCA

works with ®y, , alone for some ¢. In particular, does it work for ¢ = —1? It is also an

open question whether (X, X’) alone is sufficient to test whether X is standard Gaussian.

6.6 Equivalence of NGCA models

In this section, we note the equivalence of several formulations of the NGCA model used

in the literature. First, the isotropic NGCA model (6.1.1) can be written equivalently as
F(x) = H(Pp(x))G(Pp.(x)),

where I’ is the distribution of X, H is the distribution of f(, and G is the standard normal
distribution. This is the way in which [112] stated the NGCA model.
Next, consider the model
X=X+g,

where now X € F as before, but g is a centered Gaussian in R” with arbitrary covariance.
As a special case of this, we have X = (X, g) € E®FE’, where E and E' are complementary
but not necessarily orthogonal. Let ¥ = Cov(X), and consider the whitened distribution
»-12X = »-1/2X + £-1/2g. Now the non-Gaussian subspace is X~ /2E, which we
assume without loss of generality to be the span of the first d coordinate vectors. This
means that Cov (XY 25() only has nonzero entries in its top left d by d block. Since we can

decompose

I, = Cov(X7Y2X) = Cov(Z~2X) + Cov(X~1/2g),
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this in turn implies that we can write

Al O
Cov(X~'/%g) = :
0 Infd

where A is a PSD matrix such that A = I, — 3~/ 2X. Because of this structure, we have
¥-12g = (h,h) € E®E*, withh ~ N (0,A) and h ~ N(0,1,_,). Since these two Gaus-
sian components have zero correlation, they are independent. Since a non-Gaussian distri-
bution remains non-Gaussian after convolution with a Gaussian, if we set Y =2 12X +h
to be our new non-Gaussian component, we see that we have again produced an instance
of (6.1.1).

This additive model seems to be the most common formulation of NGCA in the litera-

ture (see [16, 64], etc.). It can also be equivalently written as
F(x) = H(Pp(x))G(x), (6.18)

where G is now a centered Gaussian density with arbitrary covariance, and H is now just

some function. See Lemma 1 in [16] for more details.

6.7 Details for Section 6.3

Proof of Lemma 6.3.1. The decompositions follow easily from the independence of the two
components of the mixed vector, X and g, as well as the unconditional symmetry of the
Gaussian component. Let us illustrate this by proving the decomposition for ®x . First,
note that e=@IXlz = ¢—elXlEc—oalel’ 5o that Zg x (o) = Zgx(a) Zg g(c). The top left d by
d block is hence given by

E{e-IXEXXTY Z@’g(a)E{e—auxngxxT} E{e—oIXIZXXT}
Zox(a) Zax(a) C Zgxle)

The bottom right d’ by d’ block is also computed similarly. Finally, any entry outside these
two blocks is of the form

E{efauxnéxigj} ]E{efauxuéxi(_gj)} E{efauxnéf(igj} .

Z<1>7x(04) Zly,x(a) Zq;x(&)
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Proof of Lemma 6.3.2. We have

E[X|2eIXE  —Zpy(a)

Tr(®x o) = N
1(Px0) Feo—clXI3 Zpx(a)

—(log Zg x)' ().

The calculation for Wy , is similar. ]

In order to prove Lemma 6.3.3, we first need to establish the analyticity for the two

partition functions.

Lemma 6.7.1 (Analyticity for Zg x and Zy x). Let X be a sub-Gaussian random vec-
tor in R"™ with sub-Gaussian norm bounded by K > 1. The functions Zg x and Zy x
are both analytic on (—1/CK? 1/CK?). They are given by the formulae Zgx(a) =
S B{IXI Y (—a) /r! and Zg x(a) = 3200 B{(X, X)) }(—)"/r\. Furthermore, by
choosing C sufficiently large, on this interval they satisfy the bounds

CK?|a

7 A < CKzn‘Od _
Za x(@)], | Ze x(a)| < € Tz CK2|a|

(6.19)

Proof. Let us first prove the bounds in (6.19). Observe that
E{c-olXI3} < E{elolIXI3) — Z E{”X” }‘ " (6.20)

Here, Tonelli allows us to interchange the sum and expectation. We next use Lemma 2.3.1

to bound the terms of this series. Indeed, using the equivalent estimate (2.5), we have
E{|IX[5"} < C"K* (n" 4 r!)

for some universal constant C'. Substituting this into (6.20) and using |a| < 1/CK?, we

have
(CK®H (n" +7rl), .
Tl

(CK?nlaf)’

r!

E{e—IX¥I3} <

WK

r=0

[
[M]#

Z(CK2|aI)

T r=1
6CK2n|oz\ OK2|Oé|
1 - CK?a|

Il
o

One may prove the bound for Zg x by doing the same computation but using (2.2) instead
of (2.1).
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We next handle analyticity of Zg x. We shall prove by induction on r that we may

differentiate under the integral sign to get the formula
T T T _—o 2
Zak(a) = (=1 E{X[[y"e ¥z}, (6.21)

Assume the formula is true for all v’ < r. Then

i ' X |27 2= (a+n)X[5 _ ||x |22 e—alXI3
255(@) = (-1 iy (1 o oo
‘ e ] — eI
= (—1 lim B{|X3" % eINE——=——} 23

Next, note that the integrand is positive and by the mean value theorem, for a fixed value

of ||X||2, we have
1 — e—hIXI3

h
for some A’ € [0, h] if h > 0 and A’ € [h, 0] otherwise. As such, we have

= XX

B 1 — e hIXI3
X2 2, ~allX|3 eh < Hngre(lhlfa)IIXH%

For |h| — a < 1/CK?, one can easily show that this is integrable by expanding this as a
power series in ||X||5 and bounding the growth of the coefficients as above. As such, we
may apply the Dominated Convergence Theorem to push the limit inside the expectation in
(6.22), thereby yielding (6.21).

In particular, differentiating Zg x at 0, we see that its Taylor series at O is given by

Zax(a) ~ > w(—a)r. (6.24)

r!
r=0

The formula above shows that the Taylor series is absolutely convergent on our chosen
interval. We next need to show that Zg x agrees with its Taylor series on this interval,
meaning we have to show that the remainder term for the r-th Taylor polynomial goes to
zero pointwise. The Lagrange form of the remainder term is written as

r+1
- Ze()

Rzaxrl@) = (r+1)! ™
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where 0 < |o/| < |a|. Applying Cauchy-Schwarz to the formula (6.21), we get

1/2

1253 (0)] < (E{IX]3) " (Bfe >Ny (625)

Lemma 2.3.1 again allows us to compute
(EQIXI52) 7 < (OB (04 + (r + 1)),
This implies that for any C" > 2C,

R ||Z¢(r+1)||
I | < X MNLoo([=1/C"K?,1/C'K?))
Za X7 | Loo ([-1/C'K2,1/C'K?)) = (C'K2)r+1(r +1)!

(CR2)™ (™! + (r + 1)) X e\ 2
< (C'K2)+1(r + 1) <E{@ IX[3/C }>

CANBRVAR s .20/
= (C’) ((r—l—l)! + )(e + 1—20/0')

Using the fact that r! ~ (g)T, this last expression decays to zero as r tends to oo. Finally,

to prove the claim for Zy x, we repeat the same arguments. O

Note that in the course of proving the last lemma, we have also proved the following

result to be used elsewhere in the chapter.

Lemma 6.7.2 (Taylor remainder terms for Zg x and Zg x). Let X be a sub-Gaussian ran-
dom vector in R" with sub-Gaussian norm bounded above by K > 1. There is an absolute
constant C such that for all 0 < o < 1/CK?, on the interval [—a, o], the remainder terms

for the r-th degree Taylor polynomials for Zg x and Zy x at 0 satisfy the uniform bound

r+1 CK?%a
Rz rlloor 1 Bzg rlloo < (CE2)H a1 (2 L) ((eCrem 4 ==
H Za& X, ||oo’ H 2w X, ”oo = ( ) o (T + 1)! + € + 1—-CK2q

(6.26)

Proof of Lemma 6.3.3. By Lemma 6.7.1, all four functions are analytic in a neighborhood
of 0. Now recall that two different analytic functions cannot agree on a sequence with an

accumulation point. [

We now move on to proving Theorem 6.3.4. This requires the following technical

lemma.

Lemma 6.7.3. Let X be sub-Gaussian random vector in R"™ with sub-Gaussian norm

bounded above by K > 1. Suppose the moments of | X||; and |g||3 agree up to order
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r — 1, but there is a number A > 0 such that ‘E{HXH;T} - E{||g||gr}| > A, then there is
an absolute constant C' such that for || < Ar/(CK?)"(n"™ ™ + (r + 1)!), we have

A _
|(log Za x)' () — (log Za g) ()] > mlal* g (6.27)

Similarly, suppose the moments of (X, X') and (g, g') agree up to order r — 1 but
E{(X,X)"} —E{(g,g")" } > A, then for |a| < Ar/(CK?)"(n" ™ + (r + 1)!), we have

A _
|(log Zw x)'(a) — (log Zw )" ()| > m!ar g (6.28)

Proof. Let us first prove (6.27). For every positive integer k, let

pxk(a) = ZE{HXH?}O/U!

denote the k-th Taylor polynomial of Zg x, and define pg ;, analogously. For convenience,

also denote the k-th Taylor remainder term as Rx j, := Rz4 x k- For any «, we then have

Zox(@)  Zgg ()

log Zs x) () — (log Zs ) (o) = — , (6.29)
( g @,X)( ) ( g tb,g)( ) Z<I>,X(CO Z@,g(@)
which we can then bound using
Zox(0)  Zag@)| | Phol@) @) | |Zaxle)  p(0)
Zex(a) Zagla)| ~ |pxr-1(a) pgr1(a) Zex(a)  px,—1(a)
' (« Z5 (o
. pgﬂ"( ) - @,g( ) ' (630)
Pgr-1(®)  Zag(a)

We now bound each of these three terms individually. First, we need upper and lower
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bounds for px ;(c). Using the || X||5 moment bound (2.5), we have

27 J
1< Z E{IIXIIQ Hel

|PX k

2 7 J

k ; k
CK? J .
:Z ( 7'1|a|) +Z(OK2|Q|)j
=1 J: i=1
CK?|a|

< CK?nla| _ 14— =1
= 1- CK?|q

By sharpening the constant C' in our assumption on |« if necessary, we may thus ensure
that

1
[pxp(e) = 1] < 3 (6.31)
By the same argument, we can also ensure that
1
Pk () — EIX[5] < 5 (6.32)

By our assumptions on the moments of ||X||> and ||g||3, we have px, 1 = pg,_1. Fur-
thermore, only the leading terms of py . and p, . differ. This, together with (6.31) implies
that

(@) Pl
pX,rfl(OO pg,rfl(a)

2 / /
> Z[rh (@) =y ()]

2!
il bt I 6.33
— 3(r—1)! (-3
Next, we have
‘Z&,x(a) _ Pxe(o) < ‘Zfﬁ,x(a)  Pxela) N Pxr(0)  Px(a) | (6.34)
Zex(a) pxroa(@) Zox(a)  pxs(a) pxr(@)  pxr-1(a)

Again we bound these two terms individually. Using the identity px () = px r—1(@)+
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E[X]|2'(~a)"/rl, we get

pg{,r(a> . pg{,r(a) _ pg(,r<a) ’1 o PX,r(Oé)
pX,r(a) pXm—l(O‘) px,r(Oé) pX,r—l(a)
Px,r (@) E|XJ3|a|"

(6.35)

pX,r(a)pX,rfl(a) T!

Using the bounds on px , and py . (6.31) and (6.32), together with the ||X||> moment bound
(2.5), we get

/ 2r r XNr /[ r | r
px,r(@)pxr—1(@) 7! 8 7!
For the first term in (6.34), we write
Zpx(a)  px.(a)
: - = = |(log Z (lo .
T - B g Za)) - (o @)
o d Zgx(a
B dO{ pXT
d RXT(Oé )'
log| 1+ 6.37
‘d g( pXT‘(a) ( )
Using Lemma 6.7.2 together with our assumptions on |«|, we observe that
r+1 9 CK2|CY|
Rx., < CK2 r+1)  |r+1 n 1 CK*?|aln
Rxelo)] < (K)ol ™ (g 1) (7 + 1= aray
2\r+1) -+l n't!
< (CK?)" T ——=+1]. 6.38
< Ryl (o 1) (639

In particular, by sharpening the constant C' in our assumption on |« if necessary, we can
ensure that this quantity is less than %. In this case, we have

1
<

_27

‘Rxxa)
px. ()
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so that

s+ )| = o (1 2| (Rt)

<)

«o Rx ,(a)pk ..(a
<[ k() /| (ks >). 639)
pXT<05) pX,r(a)
By our bounds on these functions (6.31), (6.32), and (6.38), we have
Rxr(2)px (@) n !
’ 4 < (CK?)r+t 7”+1< +1>. 6.40
S R A (e (040

Furthermore, by using the moment bounds (2.5) as before, one can show that

nrJrl
B @l < (Rl (U + 1),
so that the first term is also bounded according to

’ Ry ()
px()

nr—i—l
< (CK2)r|ay’“< . +r+1). (6.41)

As such, combining (6.37) and (6.39) tells us that

Z&»x(a) pg( (a) 9 (nr+1 ) 2 1 nt
’ — =0 < (CK*)|al" +r+1)+(CK»Hal™ (—+1>
‘Z@,xm) Py < GVl (CE™ al™ |
r+1
§(C’K2)T|a|r<nr! +r—|—1). (6.42)

We can now use this estimate together with (6.36) to continue (6.34), writing

Z% x(a e r+l CK?)"(n" +r|al"
ax(@)  px,(a) < (CKg)T|a|r(n +T+1> n (CK?)"(n" 4 r!)|of
Zq>7x(()é) var_l(oz) r! 7!
nr+1
< (CK2)T|oz|T( —tr+ 1). (6.43)
rl
Notice that same methods also give us
Per(@)  Zgg(a) 2 r<n”1 )
: — = < (CK?)"a +r+1). (6.44)
por i) Zaglo)| = I

We may therefore finally substitute these last two bounds, together with (6.33), into (6.30).
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This yields

2A]a]r71 n’tt

(log Za x)() — (log Za ' (0)] = 57 =57

- C’(CKQ)T|a|T( 4 1). (6.45)

7l
We now claim that with our assumptions on |/, the first term dominates the second. This is
a simple calculation, thereby competing the proof of (6.27). To prove (6.28), we repeat the

entire argument, but using the relevant estimates for Zg x instead of those for Zg x. OJ

Applying the previous lemma in the setting of our NGCA model, we get the following

result.

Theorem 6.7.4 (Robustness for non-Gaussian eigenvalues). Let X be a sub-Gaussian ran-
dom vector satisfying the NGCA model (6.1), and with sub-Gaussian norm bounded above
by K > 1. Let \\(®g,,),- -, Aa(®g,) denote the eigenvalues of ®g . Suppose the mo-
ments of | X||5 and ||g,||5 agree up to order v — 1, but there is a number A > 0 such
that [E{||X|5} — E{|lgalls'}| > A then there is an absolute constant C' such that for
la| < Ar/(CK*)"(d™ + (r + 1)!), we have

A

> r=1 6.46
Z Sar— 1! (6.46)

1 1
— (P _
dz Z( X,Oz) 20[+1

Similarly, let \\(Wg,), ..., \a(¥g,) denote the eigenvalues of Wy ,, and suppose the
moments of (X, X') and (g,g') agree up to order r—1 but |[E{(X, X")"} — E{(g,g")" }| > A.
Then for |a| < Ar/(CK?*)"(d™™ + (r + 1)!), we have

S A
— 2d(r —1)!

«

d
(W s _
iz:; Z( X,a) (Jé2—1

a1 (6.47)

IsHN

Proof. This is simply a translation of the previous theorem with the help of Lemma 6.3.2,
which tells us that the log derivatives of the partition functions are equal to the traces of
®x , and Px ., and that of Lemma 6.8.3, which tells us what the Gaussian eigenvalue
is. 0

Proof of Theorem 6.3.4. Combine the previous Corollary with Theorem 6.2.2. U

6.8 Identities for Gaussian test matrices

In this section, we let g denote a standard Gaussian random variable, and g, , a standard

Gaussian random vector in R". First, notice that independence gives Zg 5 () = Zg 4(a)"
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and Z‘I’,gn (a) = Z\I,’g(&)n.

Lemma 6.8.1. We have the identities Zg g (1) = (200 + 1)™"% when o > —1/2 and
Zwg (o) =(1— a2>—n/2 when |a| < 1.

Proof. By the remarks above, it suffices to prove the formula when n = 1. These are then

simple exercises in calculus. Notice that

o 2
Zpg(a) = E{fe™9"} = ooy -

T

Now substitute v = /2a + 1 - ¢ to arrive at the formula for Zg 4. For the next formula, we

use conditional expectations to write
Zg 4(0) = E{e™'} = E{E{e~**|g}}. (6.48)

The inner expectation can be computed as

(ag)?

2
_ _tZ
e Me T dt =€ 2

/ 1 o

B(e |} = —— |
oy =7 |

Substituting this back into (6.48) and using the same technique as above gives us what we

want. O]

Lemma 6.8.2. We have the identities —(log Za g )'(o) = n(2ac+ 1)~ when o > —1/2
and

—(log Zw ) (o) = na(a® — 1)~ when |a| < 1.

Lemma 6.8.3. We have the identities ®, o = (2oc+1)"'I,, when o > —1/2 and ¥, ., =
a(a? — 1), when |a| < 1. Here, 1,, is the n-dimensional identity matrix.

Proof. By rotational symmetry, we know that both matrices are multiples of the identity.

To compute these scalars, it hence suffices to find the trace of both matrices. But

To(®, ) = E{eleli|g, |2 } _
En o E{eollel3}

—(log Zag,)'(a).

Dividing by n and using the previous lemma gives us what we want. 0

6.9 Concentration of sample test matrices

Proof of Theorem 6.4.1. Let Y = e~eIXI3X. Then Y is a sub-Gaussian random vector

with [[Y[[,, < K. Let X and 3. denote its covariance and empirical covariance matrices
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respectively. Then ||| < 1 and by Lemma 2.3.2, we have || — 3| < ¢/2 with probability
at least 1 — §/2. Next, observe that ®x , = Zg x(«) '3 and ‘i’x,a = Zpx(a)™'3, where
Zgx(a) = Z;V:1 e=IXil3 /N As such, we have

1®x.0 — Pxall < [Zex(a) I~ 2| + [ Zox(@) " — Zax(@) IS (6:49)

Combining our lower bound on « with the power series formula for Zg from Lemma
6.7.1, we have Zg x(a) > 1/2. Furthermore, we may apply Hoeffding’s inequality to see
that | Zg x(a) — Ze x(c)| < €/2 with probability at least 1 — § /2. We can now combine all
of this together to get the probability bound. [

Proof of Theorem 6.4.2. First, define

> = E{e *®XIX(X)"}, and

N
=) e ®X XX + XIXT) /2N,

i—1
so that ¥x , = Zg x(a)'X and ‘i’x,a = Zq,7x(oz)*1f3. As in the previous theorem, we

can write
1Tx0 — Oxal < [Zox(@)|Z = 2| + | Zex(a) ™ — Zex(@)'|Z].  (6.50)

This time however, we cannot immediately invoke Lemma 2.3.2 because we can no
longer view ¥ and 3 as the covariance and empirical covariance matrices of a random
vector. Nonetheless, we can follow the same proof scheme with a few adjustments.

The basic idea is to use a net argument to transform the operator deviation bound into a
scalar bound for random variables. Let \ be a }l—net on S™~!. By a volumetric argument,
we may pick A to have size no more than 9" (see [114]). For any n by n real symmetric

matrix M, we then have

IM|| = sup |[(v,Mv)| < 2sup]<v Mv)|. (6.51)

venl

As such, by taking a union bound, we can hope to bound |3 — 3| by bounding |(v, (% —
3)v)| for a fixed unit vector v € S™ 1. Let us do just this. We have

1 N
= NZ X1>V><X;’V>7
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so that
. 1 X
(v,(2— =5 ; (Y; — EY;), (6.52)

where
Y; = e XX (X, vH(X], V). (6.53)

Observe that the Y;’s are 1.i.d. random variables. At this point in the proof of covariance
estimation, one observes that the resulting random variables are subexponential, so one may
apply Bernstein’s inequality. Unfortunately, our Y;’s are not subexponetial because of the
e~XiXi) factor. The way we overcome this is to condition on the size of these factors
being uniformly small. Indeed, by Lemma 6.9.1 to come, we have e~*X:Xi) < ¢ for all
samples ¢ with probability at least 1 — . We call this event A.

Next, define f/, = Y;14. The ffi’s are i.i.d random variables with subexponential norm

bounded by eK?. We can then apply Bernstein and our assumption on the sample size N

1
Pl =
Ik

Conditioning on the set A, we have Y; = f/z for each 7. We can also rewrite the bound on

to get

>

> e} < g NE/OKY o 7 (6.54)

the right hand side using our assumption on /N. Doing this gives us

|

We would like to replace EY; with EY;, but the two quantities are not necessarily equal.

1 N

~ > (¥ - EY))

i=1

> € ‘ A} <2 (6.55)

Nonetheless, we can bound their difference as follows. We have
EY; — EY; = E{Y 14} = E{e X0 (X, v)(X], v)1 4} (6.56)

We apply generalized Holder to write

1/4

P{A}2,
(6.57)

BN (X v (X L} < (BLe ™50 (B ) X))
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We now use the moment bounds for sub-Gaussian random variables and Lemma 6.9.2 to

bound the first two multiplicands on the right. This gives us
IE{e XX (X;, v)(X], V)14 }| < CKPP{A}2 (6.58)

Next, we use Lemma 6.9.1 together with our assumption on |« /|, tightening the constant
if necessary, to see that P{A°} < ¢2/C*K*. We combine this together with the last few
equations to obtain |[EY; — EY/Z| < ¢, and combining this with (6.55), we obtain

|

Recall that Y;’s were defined for a fixed v € A/. We can take a union bound over all vectors
in V to get

> 2¢

1 N
N Z(Yi - EY))
=1

)
A} < o (6.59)

P{sup|<v, (2 — Z)v)| > 2 A} <. (6.60)
veN
Combining this with (6.51) then gives

P{Hﬁ: ~ 8 > de ‘ A} <. 6.61)

Let us continue to bound the other terms in (6.50) conditioned on the set A. Notice
that on this set, Zq,,x(a) is an average of terms that are each bounded in absolute value
by e. Using Hoeffding’s inequality together with a similar argument as above to bound

IEZg x()14 — Zg x(a)|, one may show that
P{|Zux(0) ~ Zox(a)| > ¢/2| A} <4, (6.62)

We may also use the power series formula for Zg x from Lemma 6.7.1 together with our
bound on |« to show that Zg x(a) > 3.
It remains to bound ||X||. To do this, we let v again be an arbitrary unit vector, and use

the Cauchy-Schwarz inequality to compute
—a(Xi X)) / Coarxi X)) 2 2t A27)1/2
[E{e XXX, v)(X!,v)}] < (Ee oX; ) (E{(X;, V)2 (X, w22 (6.63)
We have already seen that moment bounds and Lemma 6.9.2 imply that this is bounded by

an absolute constant C'. In fact, we can take C = 3.
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Putting everything together, we see that on the set A, we can continue writing (6.50) as

[Wx o — Txall <[ Zex(@)|IZ = 2| + [Zex(a) ™! = Zex(a) |||
< (Ce.

Using our bound for P{ A}, we can therefore uncondition to get
P{H\ifxﬂ — Wy, > C’e} < 5+ P{A} < 20, (6.64)

Finally, note that we can massage the constants so that the multiplying constants in front of
€ and ¢ disappear. O

Lemma 6.9.1. Forany (0 < 6 < 1and N € N, if a satisfies

jof < (OK*/1os(N/5)(v/1 + v/ 1os(N/5)))

then we have the probability bound

IP’{ sup e XX e} < 4. (6.65)

1<i<N

Proof. Without loss of generality, assume that & > (. Using the union bound, it suffices to

prove that
P{(X X’) < —1/04} = ]P{e (X.X) > 6} < —. (6.66)
Y g N

To compute this, we first condition on X’ and use the sub-Gaussian tail of X to get

1
P{(X,X) < -1/a| X} <exp| ————— |,
{(X.X) < ~1/a|X} < p< CK%Z”X,H;)
and integrating out X', then gives

P{(X,X) < —1/a} < E{e (K% IXIE) "y (6.67)

To compute this expectation, let A be the event that || X'||, < CK(y/n + y/log(N/9)).
Then by equation (2.4) in Theorem 2.3.1, we have P{A°} < §/N. As such, we can break
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up the expectation into the portion over A and the the portion over A¢ to obtain

Ee~(CR*?IX12) ™" — f{e~ (@K% IXI) ™ | AVP{A} + E{eCF**IXID ™ | g4c1p{A4°)
< B{e (CK* XD | 4} 4 P{A)
1 )

S exp <_CK4a2(n n 1og(N/5))) Ty (6.68)

As such, we just need the first term to be less than § /N, which corresponds to the require-

ment that
L > log(N/5)
0 .
CK*a?(n +log(N/d)) — &
This is simply a rearrangement of our assumption on |a|. [

Lemma 6.9.2 (Better bound for Zg). There is an absolute constant C' such that if |a| <
1/CK?\/n, then Zg x(a) < 3.

Proof. The idea of the proof is similar to that of the previous lemma. We first condition on

X' and use the sub-Gaussian nature of X to bound its Laplace transform, thereby obtaining
E{e—a(X,X’> | X’} < eCK2a2||X/H;
Integrating out X' gives

Zex(a) < E{GCK%ZIIX/HE}

:/ P{60K2Q2IIX’II§ > t}dt
0

[e.o]
<et / P{eINE > ¢ Ly (6.69)
€
Next, we use our assumption on |«/| to write

242(1X112 y 10gt
P{eCK IX13 < t} _ [[D{HX I, > —CVK|a|
< ]P’{||X’H2 > \/logtC’K\/ﬁ}. (6.70)

For t > e, we have v/logt > 1, so we may apply (2.4) to get

IP’{HX’||2 > MlogtOKﬁ} < e logtCn — 4=Cn, 6.71)
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Plugging this into (6.69) gives

Z\p7x(05) S e+

<3 (6.72)

if we choose C' to be large enough. [

6.10 Eigenvector perturbation theory

If two n by n matrices are close in spectral norm, one can use minimax identities to show
that their eigenvalues are also close. It is less trivial to show that their eigenvectors are also

close, which is the case in the presence of an “eigengap”. This was addressed by [34].

Definition 6.10.1. Let F and E be two subspaces of R" of dimension d. Let V and V be
n by d matrices with orthonormal columns forming a basis for £ and E respectively. Let
01 > 09 > --- > 04 be the singular values of VTV. We define the principal angles of F
and E to be 0;(F, E) = arccoso; for 1 <3 <d.

Lemma 6.10.2. Let E, E, V and V be as in the previous definition. We have

d
VWV —VVT|[5 =2 sin® 6,(E, E). (6.73)

i=1
In particular, the quantity depends only on E and E and not the choice of bases.

Proof. We expand

IVVE — V|2 = |[VVT|1Z + [ VVT )5 — 2(VVE vvT), (6.74)
Observe that

IVVT|3 = Te(VVIVVT) = Tre(VIVVTY) = Tr(1,) = d. (6.75)

Similarly, we have
IVVT||3 = d. (6.76)

Next, we compute
(VVT YV = Tr(VVIVVT) = Te(VIVVIV) = |[VIV|3. (6.77)
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Next, we use the fact that the squared Frobenius norm of a matrix is the sum of squares of

its singular values to write
d d
IVIVI[Z =D 07 => cos’6,(E, E). (6.78)
i=1 i=1
We may then combine these identities to write
d d
IVVT = VVT|2 =2) (1 —cos®6;(E, E)) =2 sin®6,(E, E). (6.79)
i=1 i=1

as was to be shown. L]

Using the previous lemma, it is easy to see that the distance between subspaces is

preserved under taking orthogonal complements.

Lemma 6.10.3. Let I and F' be subspaces of R" of dimensions m, and let F' and F'*
denote their orthogonal complements. We have d(F, F') = d(F*, F'*).

We can now use these observations to state Theorem 2 from [125] in a convenient form.

Theorem 6.10.4. Let 3 and 3 be two n by n symmetric real matrices, with eigenvalues
Al > e >N, and5\1 > 0 > 5\n Fix 1 < r < s < n, and assume that min{\, —

Ari1, As — As1} > 0, where we define \y = oo and Ny = —o0. Letd =1+ n — s,
and let V = (V1,V2, N 29 U P ,Vn) and'V = (f’l,f’g,. .. 7‘37“7‘35—&-1, c. ,lj'n) be n by d
matrices whose columns are orthonormal eigenvectors to A1, \o, ..., A\py Asi1, ..., Ay and

5\1, 5\2, cee S\T, ;\3+1, cee 5\n respectively. Then

2v/2d||2 — 3|

W — vV, < :
H HF - min{>\r - )\r+17 )‘s - >\s+1}

(6.80)

6.11 Proof of Theorem 6.2.5

Before we prove the guarantee, we state our proposed algorithm more formally.
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Algorithm 5 ITERATED REWEIGHTED PCA(X,d,a1,05,31,32)

Input: Data points X = [Xy, ..., Xy, X], ..., X/y], scaling parameters o, o € R, toler-
ance parameters (3, 2 > 0.
Output: Output E for E.
1: Initialize E := 0.
2: fork=1,...,ddo:
3:  Fy, F, := REWEIGHTED PCA(PELX,agk),aé’“),BY"),BS“)).
4 ifFy #0,then E = F @ F,.
5. else £ :=E® Fs.
6: if dim(E) = d return £ := E.

Proof. We provide an outline of the proof, omitting details that are similar to those in the
proof of Theorem 6.2.3. Suppose we are at Step 3, having just completed £ iterations, and
have found F so that dim(E) = dj and d(E, E;) < ¢, for some subspace F;, C E. Call
Y: =P, X, and Y :=P; X

By Lemma 6.11.2, the remaining non-Gaussian part of Y is either (m, cn?/7,,)-norm-
moment-identifiable or it is (m, cn?)-product-moment-identifiable (see Definition 6.11.1
below). Let us assume that the former holds since the other case is similar. For convenience,
we denote v = agkﬂ), B = EYCH) to be the scaling and tolerance parameters for the £+1-th
iteration.

By Theorem 6.7.4, we observe the existence of non-Gaussian eigenvalues in the ®
matrix for Y for a small enough (specifically, « < min{cn?*r/(CK?)"3,,(d" " + (r +
N, 1/CK?*n}):

1 d 1 cn?
M(®poya) — > m—1 6.81
d—doiz1 (Prova) =577 2 dtm — 1) (6.81)

It remains to see that this signal is not destroyed by the noise stemming from our esti-

mation of @y , by ‘i)sz' Note that we have

Efe M} —E{e MR} < E{(emME + e NE) a3 — of Y51}
< aE{|[ Y[ ~ V]3]
= aB{|X" Py — Pz )XI}
< af[ Py — Py [E{IX]5}

< noeg.
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Here, the first inequality follows from Lemma 6.11.3, while the last one follows from the
fact that
Prs — Pyl < [Ppy — Pyl = d(E, Ey).

By doing several computations similar to the above, we obtain
[®@y.0 — Pyl < poly,,(n)e. (6.82)
Meanwhile, Theorems 6.4.1 and 6.4.2 imply that with high probability,
@y, — Pyl < e (6.83)
We may combine (6.82) and (6.83) to get

[Py — Pyl < | Pyo — Pyl + [Py, — Pyl
< poly,,(n)ex + €.

Suppose €, and €, are small enough so that

2

U m-
poly,, (n)ex + € S -5 g (6.84)

Then the non-Gaussian eigenvalues continue to be outlier eigenvalues of @Y@, and can be
discovered via truncation. One can formalize this using same argument as in the proof of
Lemma 6.4.3. Finally, we again imitate the proof of Lemma 6.4.3 and appeal to Theorem
6.10.4. This tells us that the eigenspace F; corresponding to the found eigenvalues is ¢’

close to that of the “true” eigenspace F” in E if

pe

poly,.(n)ex + €0 < B (6.85)
where we pick 3 < n?a™ 1 /d(r — 1)!3,. If this is the case, we have have
d(E D FlaEk @D F/) = HPE -+ PF1 — PEk +PF/HF S €r + E/ = €kt1-

Suppose the algorithm terminates in [ steps. Then [ < d, and if we fix a desired ¢; < 1,

then iterating the inequalities (6.84) and (6.85) shows us that we just require

eo < €/poly,,(n)* = € /poly,, 4(n).
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By Theorem 6.4.1, this condition can be met with a sample size that grows according to

pOIYm,d (n> u

Definition 6.11.1. Let X be an isotropic random vector in R?. For any positive integer m,

v, > 1 > 0, we say that X is (m, 1)-norm-moment-identifiable if

[ELIXIS"} — E{llell }| > »

for some integer < m /2. Similarly, we say that X is (m, ;1)-product-moment-identifiable
if
E{((X.X)"} ~E{(g.&)"}| > u

for some integer r < m.

Lemma 6.11.2. In the NGCA model (6.1.1), suppose X is (m, n)-moment-identifiable along
every direction v € E for some n € (0,1). Then for any proper subspace E of FE,
PEka( is either (m, cn?/9,)-norm-moment-identifiable or it is (m, cn?)-product-moment-
identifiable.

Proof. Note that P Eka( is still (m, n)-moment-identifiable along every direction in ENE;L.
As such, we may apply Theorem 6.2.2 to conclude. [

Lemma 6.11.3. For any real numbers a and b, we have |e® — | < (e® + €)|b — al.

Proof. Use the fact that ¢”(z — 1) + 1 > 0 for all real x. O

6.12 Proof of Corollary 6.2.6

Proof. By symmetry, we know that <I>,~(7a = coly is a scalar matrix. To compute ¢j, we

write

1 B 1 E{e—IXI3 || X2} _lemdg |

Co = ETI‘(QX,Q) - d ]E{e_o‘”XH%} d e_ad

Combining this with Lemma 6.8.3 and 6.3.1 allows us to write

o _ (1] 0
ool ), )

By our choice of a, this gives an eigengap of

>« E
1+ 20 — n
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Our assumption that N 2> dn?(n + log(1/4))/€* together with Theorem 6.4.1 then guaran-

tees that
ce

Vidn

with high probability. We may now apply Theorem 6.10.4 to see that d(F, E') < € where

[@x .0 — Pxall < (6.86)

F'is the subspace spanned by the top d eigenvectors of &)X@.
It remains to see that /' is discovered by the algorithm. But then (6.86) implies that

A 1 1 ce a
_ _ > _
1+ 2a dn — 2

. 1 1 ce «
< \i(®xa) — <Z
< Ai(@xa) [ +20  Vin "1

for d + 1 < i < n. The final inequality in both lines holds after choosing c to be small
enough. We therefore see that the top d eigenvalues are indeed those that are identified by

truncating at level 8 = «/3. N
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