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Abstract

High dimensional mixed effects generalized linear models extend the generalized

linear models (GLMs) by adding random effects to the linear predictors of the orig-

inal high dimensional GLMs. The high dimensional mixed effect logistic regression

is a typical example. These models are useful in analyzing categorical or discrete

data with group structure. Inference for these models is challenging because of the

intractable and generally non-convex negative log-likelihood function. In this disser-

tation, we propose and analyze four different algorithms to solve the high dimensional

mixed-effects logistic regression model.

The first two algorithms we develop are stochastic proximal gradient and second

order approximate algorithms, which are both proximal gradient based algorithms.

As the gradient of the loss function is intractable, the stochastic proximal gradient

algorithm uses a Markov chain Monte Carlo technique to approximate the gradient,

while the second order approximate algorithm approximates the objective function

based on Taylor expansion to the second order, and solves an approximate prob-

lem. We prove the convergence of the second order approximate algorithm using

the Kurdyka-Lojasiewicz (K-L) property based techniques. To analyze convergence

behavior of the stochastic proximal gradient algorithm, we expand this K-L based

technique to incorporate stochastic perturbations in the algorithm updates. We show

that the stochastic algorithm’s limiting points are the stationary points of the orig-

x



inal objective function. We illustrate the good performance of our algorithms in

several numerical examples. We also apply the two algorithms in a breast cancer

data analysis.

The next algorithm we consider is based on a “fixed effect approximation” of the

mixed effects models. Here we treat the random effects as unknown fixed effects coef-

ficients, and estimate them without penalty. The approximation reduces the original

problem to the usual high dimensional logistic regression with offset terms. Compu-

tational efficiency is a clear gain, non-convex problem is also replaced by a convex

one. We have derived a non-asymptotic estimation error bound for its solution with

respect to the true model parameters. In this effort, we have expanded the restricted

eigenvalue (RE) condition to a stochastic setting, which holds with high probability

in our problem. We have conducted extensive numerical study of this approximation

scheme, and compared its performance with the previous two algorithms. The same

breast cancer data is analyzed by this algorithm.

Our final algorithms are the iterated filtering algorithms. The core of this algo-

rithm is a novel “pseudo proximal map” which computes the mean of a constructed

log-likelihood function to approximate the optimum of the objective function. We

explore its connections to the proximal and gradient descent algorithms and focus

on its application in composite objective function optimization. We then devise

the iterated filtering algorithm and its block coordinate update version to solve the

high dimensional mixed effect logistic regression model. Under strong convexity as-

sumption, we derive new convergence results for the algorithm sharper than previous

results in the literature. We use numerical studies to demonstrate the effectiveness

of our algorithm.
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Chapter I

Introduction

In this dissertation, we try to solve the high dimensional mixed effects logistic

regression model. This model is very useful for modeling discrete data with hidden

group structures, for example in cross population genome wise association studies.

However, it has received scarce literature attention, especially in the theoretical front.

Estimation of this model is challenging because of the intractable and in general non-

convex model log-likelihood function. We have developed and analyzed four different

algorithms to tackle this problem.

Building on the popular proximal gradient algorithms (Combettes and Wajs

(2005); Parikh and Boyd (2013b)), we have used a Polya-Gamma Markov chain

Monte Carlo (MCMC) sampler (Polson et al. (2012)) and a Taylor series expansion

to approximate the intractable gradient of the log-likelihood function, these lead to

our stochastic proximal gradient and second order approximate algorithms. We have

used Kurdyka- Lojasiewicz (K-L) property (Kurdyka (1998)) based technique (At-

touch and Bolte (2009)) to analyze convergence of our algorithms in a non-convex and

non-smooth setting. We have expanded this technique to incorporate the stochas-
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tic perturbation in the updates of stochastic proximal gradient algorithm, and have

shown that the limiting points of the updates are all stationary points of the objec-

tive function. Our analysis and numerical evidence of stochastic proximal gradient

algorithm shows that proper Markov chain Monte Carlo techniques can be incor-

porated in the algorithm to exactly solve the maximum likelihood problem of high

dimensional mixed effects logistic regression model, which is a meaningful addition

to the previous literature results which use numerical techniques to approximately

solve the problem (Schelldorfer et al. (2014) and references therein).

In pursuit of efficient solutions, we have proposed to approximate the model

by taking the mixed effects as additional unknown fixed effects coefficients, this re-

duces the original non-convex and intractable problem to be convex and tractable,

and leads to our “fixed effects approximate algorithm”. An obvious gain of this

algorithm is computational efficiency. In addition to computational gains, we have

established a non-asymptotic estimation error bound to basically show that when

the random effects noise level (standard deviation) is reasonably small, with other

suitable conditions the solution of this approximation is close to the true model

parameters with high probability and the solution is consistent. To establish the er-

ror bound, we have extended the restricted eigenvalue (RE) condition (Bickel et al.

(2009); Koltchinskii (2009)) to a stochastic setting. This development shows that in

some cases, the challenging high dimensional mixed effects logistic regression can be

highly efficiently solved by treating the relatively weak random effects as unknown

fixed effects coefficients, moreover, the solutions of this approximation are statisti-

cally sound under suitable conditions.

Finally, we explore and apply the novel iterated filtering algorithm recently
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proposed in the statistical literature (Ionides et al. (2006, 2011, 2015)). In our devel-

opment, we have removed a redundancy in the original iterated filtering algorithm

(Ionides et al. (2006, 2011)) by leveraging a result showing that the “pseudo proximal

map” - the core of iterated filtering algorithm, is close to the gradient map under rea-

sonable conditions (Doucet et al. (2013)). We have also related this algorithm more

closely to well-known stochastic gradient methods, and with strongly convexity as-

sumption derived sharper convergence results than those of Ionides et al. (2011). By

incorporating a usual importance sampling technique, we have successfully applied

this algorithm to solve the high dimensional mixed effect logistic regression model.

While we have not spelled out the details, it is not hard to see the convergence anal-

ysis done for stochastic proximal gradient algorithm can be adapted to show that in

our case the limiting points of the iterated filtering updates are also stationary points

of the objective function. This development assures us that simple importance sam-

pling Monte Carlo, versus the advanced MCMC methods like Polya-Gamma sampler,

can come in handy to exactly solve the high dimensional mixed effect logistic regres-

sion model.

In the following, we give a comprehensive introduction of the background, liter-

ature, and other details of our problem, algorithms, their analysis and application.

We also give more details of our contributions and the organization of the disserta-

tion toward the end of this chapter.

The high dimensional generalized linear models (GLMs) (McCullagh and Nelder

(1989)), and linear mixed effects models (LMMs) (Rosenberg (1973) as one of the

early references) are well known and widely applied in nearly every field of data anal-

ysis. While the GLMs assume independent observations, and LMMs are applicable

3



only to continuous observations, there are many cases in practice where the obser-

vations are correlated as well as discrete or categorical. Any common longitudinal

study with binary response serves a simple example. The generalized linear mixed ef-

fects models (GLMMs) (McCullagh and Nelder (1989); Breslow and Clayton (1993);

McCulloch and Searle (2005); Molenberghs and Verbeke (2005)), which add random

effects to the linear predictors in the GLMs, are likely candidate models for these sit-

uations, the mixed effects logistic regression is a typical example. GLMMs have been

widely applied in fields like genomics, genetics, biology, ecology, medicine, pharma-

ceutical science, just to name a few (Yu (2006); Jiang (2007); Atwell (2010); Zhang

(2010b); Yang (2011); Zhou et al. (2013); Bühlmann et al. (2014); Aulchenko (2007)).

The building blocks of GLMMs are fixed effects covariates with a corresponding

p-dimensional parameter vector, and random effects with a q-dimensional random

effect parameter vector. To define such a model in mathematical terms, suppose

that condition on a random effects vector u ∈ Rq, the observations y1, . . . , yn are

conditionally independent such that the conditional distribution of yi given u is a

member of the exponential family with probability density function

fi(yi|u) = exp

{
yiξi − b(ξi)
ai(φ)

+ ci(yi, φ)

}
(1.1)

where b(·), ai(·), ci(·, ·) are known functions, and φ is a dispersion parameter which

may or may not be known. The quantity ξi is associated with the conditional mean

µi = E (yi|u), µi is in turn associated with a linear predictor ηi = x′iβ + z′iu through

a specified link function g(·) such that g(µi) = ηi, where xi, zi ∈ Rn are known fixed

effects data and random effects loading vectors. β ∈ Rp is a vector of fixed unknown

parameters. Under canonical link functions (McCullagh and Nelder (1989), pp. 32),
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we have ξi = ηi. Furthermore, it is assumed that random effect u ∼ N (0,Σ). From

general frequentist model inference point of view, the unknown parameters in the

model are β, Σ, and possibly an error variance term σ2
ε , for example in linear mixed

effects models, which is a special case of GLMMs.

The exponential families in model 1.1 can be binomial, multinomial, negative-

binomial, Poisson, Gaussian etc. The Gaussian and binomial cases lead to the Linear

mixed effects models and mixed effect logistic models, which are two popular special

cases of GLMMs. In linear mixed effects models, for all i = 1, . . . , n, with ai(φ) ≡

σ2
ε , b(ηi) = η2

i /2, ci(yi, φ) = − log(2πσ2)/2 − y2
i /2σ

2, and the mixed effects linear

predictor being ηi = x′iβ + z′iu, (1.1) becomes,

fi(yi|u) =
1√

2πσ2
ε

exp

(
(yi − x′iβ − z′iu)2

2σ2
ε

)
(1.2)

While in mixed effect logistic regression models, for all i = 1, . . . , n, with yi ∈ {0, 1},

ai(φ) ≡ 1, b(ηi) = log (1 + exp(ηi)) , ci(yi, φ) ≡ 0, and ηi = x′iβ+z′iu, (1.1) becomes,

fi(yi|u) =
exp [yi (x

′
iβ + z′iu)]

1 + exp(x′iβ + z′iu)
(1.3)

The problem of regularized maximum likelihood based estimation of the fixed

effects coefficients β in high dimensional mixed effects logistic regression model is

of our interest. The LMM likelihood function of β given Σ and σε is concave, thus

estimation of the fixed effect coefficients of LMMs given the variance components

remains a convex problem. However, the likelihood functions of other GLMMs, in-

cluding the mixed effect logistic regression model, are in general non-convex in both

the fixed effects parameter β ∈ Rp and variance-covariance matrix Σ. In this thesis,

we will assume the random effects variance-covariance matrix Σ is given as known.
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In fact, in applied studies, Σ is often estimated with data or a-priori knowledge of

the random effects before model fitting and is treated as a given parameter subse-

quently. In our real data analysis in Chapters II and III, we will illustrate one way of

estimating the random effect variance-covariance matrix when GLMMs are applied

in breast cancer study with gene expression information.

Most of the existing literature dealing with mixed effect generalized linear mod-

els are low-dimensional and classical in nature (Schelldorfer et al. (2014)). Some

works focus on regularization driven variable selection procedures in GLMMs with

low dimensional data: Ibrahim et al. (2011); Groll and Tutz (2014). The high dimen-

sional scenario typically refers to the case when number of fixed effects coefficients p

is large (larger than the sample size N), but the dimension of the random effects fac-

tor, for instance in terms of the rank q of its variance-covariance matrix Σ, is small.

In this setting, we can again apply various sparsity penalties to the log-likelihood

function to obtain the regularized MLEs:(Bühlmann et al. (2014))

β̂λ = arg min
β∈Rp

{−`n(β; Y ) + g(β)} (1.4)

Where g is the regularization function. We will focus on `1 Lasso and elastic-net

penalties in this thesis.

The difficulties of the estimator in (1.4) lie mainly in two aspects: first in the

log-likelihood −`n(β; Y ) being a non-convex function in the unknown parameters in

general, second in the log-likelihood function being intractable and generally hard to

access.
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In the non-convex log-likelihood aspect, our problem is non-convex in the loss

function, while well studied non-convex problem examples in statistical literature

focused on cases where non-convex penalty functions sum with convex loss functions

(Fan and Li (2001); Zhang (2010a); Loh and Wainwright (2017)). Recently a few

literatures have focused on the non-convex loss functions. Schelldorfer et al. (2011)

have devised algorithms to solve the high dimensional linear mixed effects models

for both fixed effects parameters β and the variance-covariance component Σ + σ2
ε I,

although it is non-convex solving for the the variance components, it remains a con-

vex problem solving for β. There are some algorithms commonly used in solving

non-convex objective functions, for example the proximal gradient algorithm, the

EM algorithm, the alternating direction method of multipliers (ADMM), and the

iterated filtering algorithms. We will consider developing our algorithms based on

the proximal gradient algorithms in chapter II and the iterated filtering algorithms in

chapter IV. Our initial numerical experiments showed that one ADMM we developed

performs similar in estimation to our other algorithms, but converges much slower

and takes significant longer time, so we will not pursue it further in this disserta-

tion. The EM algorithm applied to our problem, which will be very different from

gradient based algorithms we consider, can be an interesting independent research

in the future. There is in general no guarantee of algorithm convergence for the

proximal gradient and iterated filtering algorithms applied to solve non-convex prob-

lems. Recently, Bolte et al. (2006); Attouch and Bolte (2009); Attouch et al. (2010,

2013) have proposed an framework of analyzing proximal gradient algorithms solv-

ing for possibly non-convex optimization problems, based on a Kurdyka-Lojasiewicz

(K-L) property of the loss function, which we will use and extend to a case involving

stochastically perturbed gradient. We observe that this analysis can be adapted in

iterated filtering algorithm to show similar convergence results as in proximal gradi-

7



ent based algorithms, the difference amounts to distinct stochastic approximations

for the gradient step. We will also consider using a misspecified model to approxi-

mate the original model, and use a usual high dimensional logistic regression convex

problem as a surrogate to the original non-convex problem, we elaborated this in

chapter III.

In the intractable log-likelihood aspect, computation of the log-likelihood func-

tion and its gradient in GLMMs is a notorious challenge even in low dimensional cases

(Jiang (2007)). Except only in the case of linear mixed effect models, the GLMMs’

negative log-likelihood functions are in general intractable integrations. There were

various numerical integration techniques applicable to this problem, for instance the

Laplace method applied in Schelldorfer et al. (2014), on which their GLMMLasso

algorithm was built. However, it is known that when the dimension of the intractable

integration is high, numerical techniques like Laplace approximation typically break,

and Monte Carlo methods are possibly unavoidable in these situations. Atchadé

et al. (2017) has demonstrated in an numerical example using a Markov chain Monte

Carlo based algorithm fits a logistic mixed effect model very well. Iterated filtering is

another stochastic algorithm which in many cases uses only simple importance sam-

pling Monte Carlo to effectively approximate the intractable integration we have.

We will develop algorithms using different Monte Carlo techniques to build these

stochastic algorithms in chapters II and IV. We will also develop deterministic ap-

proximate based benchmark algorithm in chapter II. In chapter III, we will use a

convex and tractable problem as a surrogate of the original intractable problem, and

use highly efficient algorithms like glmnet to solve the surrogate problem, this helps

us to bypass the computation of intractable integrations. Exsisting softwares exist

to fit the mixed effects logistic regression models, among them lme4 in R, NLMIXED

8



in SAS are applicable for low dimensional GLMMs, while in high dimensional cases,

the glmmixedlasso Schelldorfer et al. (2014) available from R-Forge is a recent de-

velopment.

Our contribution in this dissertation can be described in three aspects: method-

ology, theory, and application.

For methodology contribution, we have first proposed and analyzed the stochas-

tic proximal gradient algorithm, which applies the Polya-Gamma MCMC sampler to

approximate the loss gradient. In addition, we have developed and analyzed a deter-

ministic approximate algorithm based on a second order Taylor approximation of the

conditional log-likelihood, these two algorithms in chapters II are both solving non-

convex and non-smooth optimization problems. The stochastic proximal gradient

algorithm does exact likelihood based inference while the second order approximate

algorithm is solving an approximate problem. We have also developed and analyzed

a ”fixed effect approximate” algorithm in chapter III, which solves a high dimensional

logistic regression model as a convex surrogate to the original non-convex problem.

In chapter IV, we have explored and applied a block coordinate update version of

iterated filtering algorithm to also exactly solve the original model. we have demon-

strated the performance of all the developed algorithms in numerical studies and

have applied some to a real data analysis.

Theoretically, we have analyzed the convergence behavior of the stochastic prox-

imal gradient algorithm in the non-convex and non-smooth setting for the first time

to our knowledge. We have extended the Kurdyka- Lojasiewicz (K-L) property based

technique to incorporate stochastic perturbations in the updates to analyze the con-

9



vergence behavior of the stochastic proximal gradient algorithm. The algorithm

convergence analysis for deterministic approximation algorithm is done by adapt-

ing arguments of Attouch and Bolte (2009); Attouch et al. (2010). The fixed effect

approximation algorithm is solving a convex surrogate of the original non-convex

optimization problem. We ask the question of how close its solution is to the true

fixed effects parameters of the original non-convex problem, and we answer it by

deriving a high dimensional non-asymptotic estimation error bound between the so-

lution and the truth with high probability. This is done for the first time in high

dimensional mixed effect logistic regression model to our knowledge. For our block

update version of iterated filtering algorithm in chapter IV, we have related this

algorithm closer to well-known stochastic gradient methods like in those of Atchadé

et al. (2017). These new connections allow us to derive sharper algorithm convergence

results than those of Ionides et al. (2011), assuming strong convexity of objective

function. We also point out, without detailed proof, that the same technique used

in convergence analysis of stochastic proximal gradient algorithm can be applied to

analyze the convergence behavior of iterated filtering algorithms applied to possibly

non-convex problems in chapter IV, and reach the same convergence analysis con-

clusion.

For applications of our developed algorithms and corresponding theory, we have

conducted numerous simulation studies of our algorithms to solve the regularized

maximum likelihood estimation problem in high dimensional mixed effects logistic

regression model. We have demonstrated the effectiveness of our algorithms in dif-

ferent numerical scenarios and designs with comparions among themselves. Futher,

we have applied our algorithms to analyze a well known breast cancer data set (van

Vliet et al. (2008); van’t Veer et al. (2002); Vijver et al. (2002)) modeled by high
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dimensional mixed effect logistic regression. In this study, the distant metastasis

within five years event is the binary response, which is a widely used indicator of

breast cancer survival. The collected gene expression information and a few other

clinical variables are the fixed effects. The goal of the study is to find a gene set

which is most predictive of distant metastases within 5 years. For the mixed effects

model applied to this data, we have constructed the random effects which take the

relatedness of the individual gene information to form their variance-covariance ma-

trix. In the end, we have selected a few genes (among thousands of candidate genes)

as prognosis predictors of the response. Our gene set has novelties in gene discovery

compared with different published findings (which have very limited overlap among

themselves). Our potential prognostic gene discoveries may be useful for the clinical

scientists to consider for their future studies of breast cancer.

The rest of this dissertation is organized as follows. We will present the devel-

opment and analysis of our stochastic and deterministic approximate algorithms in

chapter II, numerical study of the high dimensional mixed effects logistic regression

and its application in a breast cancer real data analysis will be presented in chapter

II too. In chapter III, we will propose the fixed effects approximation to the mixed

effects model and a corresponding algorithm. In this chapter, we derive the high

dimensional statistical estimation error bound of the algorithm solution with respect

to the fixed effects parameters of the true model. We conduct numerical simulation

study of this algorithm, and compare its solution to those of the algorithms in chapter

II. We also apply this algorithm to the breast cancer data analysis. Next, in chapter

IV, we devise a different algorithm based on iterated filtering algorithms, which is

related to the proximal gradient algorithms we have developed before. We give a

broad presentation of the iterated filtering algorithm and relate it to other stochastic

11



gradient methods. We derive a property of iterated filtering algorithm concerning

its closeness to the proximal map, and derive a convergence result of the algorithm

solving for strongly convex objective function. We demonstrate its estimation per-

formance in numerical studies, with comparison with those of other algorithms we

have developed in previous chapters.
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Chapter II

Proximal Gradient Algorithms for Logistic Mixed

Effects Regression Models

2.1 Introduction

In this chapter, we will deal with a class of optimization problems and develop

a stochastic proximal gradient algorithm with other benchmark algorithms to solve

the problem. The objective functions of such problems are composite functions of

a generally non-convex loss function and a non-smooth component acting as a reg-

ularization. Moreover, the non-convex loss function we consider could involve ana-

lytically intractable integration that are also numerically challenging to approximate.

The non-convex and non-smooth problem we consider and their corresponding

algorithms we will develop are different from those non-convex problems we have

reviewed in the general introduction, mainly in three aspects. Firstly, in our case,

the loss function, instead of the regularization function, is the non-convex component

of the composite objective function; secondly, the non-convexity we face is not well

structured like in biconvex problems where alternating direction methods or other
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methods are known to be readily useful; the third and the most distinctive difference

in our problem is that we need to develop specific strategy in the algorithm to deal

with a non-convex function that involves intractable integration, which is challenging

to approximate in the first place, and not easy to close the approximation gap along

the algorithm updates. Our contribution in these aspects will be discussed toward

the end of the introduction.

A typical application of these optimization problems can be fitting the high di-

mensional mixed effect generalized linear models, except in the case of usual linear

model with Gaussian errors, which degenerates to a convex high dimensional esti-

mation problem. We will use the high dimensional mixed effect logistic regression

model as an example of the problems we consider in this chapter. The wide and

useful applications of generalized mixed effect models have already been mentioned

in the general introduction.

To deal with composite objective functions with intractable and non-smooth

components, various algorithms have been proposed. Nemirovski et al. (2008); Duchi

et al. (2012); Lan (2012); Juditsky and Nemirovski (2012a,b) have focused on stochas-

tic sub-gradient and mirror descent algorithms. Others like Combettes and Wajs

(2005); Hu et al. (2009); Xiao (2010); Juditsky and Nemirovski (2012a,b) have de-

veloped algorithms based on proximal operators to exploit the smoothness of the loss

function and properties of the penalty component in the objective function. However,

these algorithms have been studied only in the case of convex composite objective

functions.

The algorithms we consider are developed based on proximal gradient algo-
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rithms, for which we refer to Beck and Teboulle (2010); Combettes and Pesquet

(2015b) or others for literature review and additional references). We will introduce

relevant concepts about the proximal map and proximal gradient algorithm later

in this chapter. Based on the proximal gradient algorithms, we have developed a

stochastic proximal gradient algorithm, and a second order deterministic approxi-

mate algorithm as well. While the stochastic algorithm aims to exactly solve the

problem, the deterministic algorithm solves the problem approximately thus intro-

duces bias, especially when the dimension of integration involved in the objective

function is high. Our deterministic algorithm can be seen as an approximation of

the Laplace’s method of intractable integration. In this sense ours is of the same

spirit to the “GLMMLasso” algorithm developed by Schelldorfer et al. (2014)

In terms of algorithm convergence analysis, Combettes and Wajs (2005); Rosasco

et al. (2014); Nitanda (2014); Xiao and Zhang (2014) have analyzed the proximal al-

gorithm with perturbations. These methods and analysis again only apply to convex

or strongly convex objective functions. Beck and Teboulle (2010) has analyzed the

case with non-convex objective functions, but only for exact proximal operator with-

out stochastic perturbation. The closest development we have seen so far is Atchadé

et al. (2017). They have proposed and analyzed a similar stochastic proximal gra-

dient algorithm, however their convergence analysis is limited to convex composite

objective functions.

Our technical contribution in this chapter is that we have proposed and an-

alyzed both the stochastic proximal gradient algorithm and our deterministic ap-

proximation algorithm solving for problem with non-convex, non-smooth objective

function, where the loss function involves an intractable integration. In the theoreti-
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cal convergence analysis, we have extended the Kurdyka- Lojasiewicz (K-L) property

based technique to incorporate stochastic perturbation to analyze convergence of the

stochastic proximal gradient algorithm. The Kurdyka- Lojasiewicz (K-L) inequality

is a geometric property of a function, which provides sufficient curvature for the

function at its stationary points.

In addition to the technical contribution, we have applied our algorithms - the

stochastic (MCMC) proximal gradient algorithm for exact likelihood inference, sec-

ond order approximate algorithm for approximate inference for high dimensional

mixed effect logistic regression model, with comparison to glmnet solutions ignoring

the random effects. We have demonstrated that considering the random effects in

the data leads to clearly better estimation performance, and that the MCMC based

stochastic algorithm performs better than the deterministic algorithm in many cases,

with comparable running time.

As an overview of what follows in this chapter, in section 2.2, we formulate the

optimization problem we will solve in this chapter, and we will introduce the high

dimensional mixed effect generalized linear model as a typical example for the opti-

mization problem we aim to solve. Then in section 2.3 we will develop the stochastic

proximal gradient algorithm and a deterministic approximate algorithm we use to

solve our optimization problem. Next, we carry out our non-convex algorithm con-

vergence analysis of both the stochastic and deterministic algorithms in section 2.4.

Extensive simulation study will be carried out in section 2.5 to numerically demon-

strate the performance of our algorithms and their theoretical properties, we will

also use the high dimensional mixed effect logistic regression model as our numerical

example and study it in detail.
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2.2 The Optimization Problem

This chapter deals with the optimization problem

(P) min
β∈Rp

F (β) with F (β) = f(β) + g(β) (2.1)

Where f is a Lipschitz continuously differentiable function, possibly non-convex, and

g is a possibly non-smooth convex function.

Assumption II.1. The function f : Rp → R is continuously differentiable on Rp

and there exists a finite non-negative constant L such that, for all β, β′ ∈ Rp,

‖∇f(β)−∇f(β′)‖ ≤ L ‖β − β′‖ ,

where ∇f denotes the gradient of f . The function g : Rp → [0,+∞] is convex, not

identically ∞ (proper), and lower semi-continuous.

We denote by Θ the domain of g : Θ
def
= {β ∈ Rp : g(β) <∞}.

Assumption II.2. The set argminβ∈ΘF (β) is a non empty subset of Θ, and infβ∈Θ F (β) >

−∞. With out loss of generality, we take infβ∈Θ F (β) = 0.

Fitting high dimensional mixed effect generalized linear models gives a typical

example of problem (P). In this case, f is the negative log-likelihood function of the

mixed effect generalized linear models, as the following when yi ∈ {0, 1}

f(β) = − log

∫
Rq

exp

{
n∑
i=1

(yi(x
′
iβ + z′iui)− log(1 + x′iβ + z′iui))

}
π(du) (2.2)
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where π(u) is a q dimensional Gaussian density of random effects u in our problem,

other quantities are the same as introduced in (1.3) in chapter I

In general, the loss function we consider in this chapter has the following form,

f(β) = − log

∫
Rq

exp `(β, u)π(du) (2.3)

where π(u) is a q dimensional Gaussian density, `(β, u) can be thought of as the

conditional log-likelihood functions of the mixed effects logistic regressions and its

quadratic approximation later in this chapter. It is not hard to show that so long

as gradient and Hessian of ` are uniformly bounded, then f will satisfy Assumption

II.1, and this is the case for mixed effect logistic regression, and its quadratic ap-

proximation we will use later.

g is a regularization function that imposes structure to the solution, say sparsity

when p is larger than n. The elastic net function is widely used as a sparsity inducing

regularization function.

g(β) = λ

(
1− α

2
‖β‖2

2 + α ‖β‖1

)
(2.4)

2.3 Algorithms

To solve for problem (P) in (2.1), we propose and study two algorithms. Namely,

the stochastic perturbed proximal gradient algorithm and proximal gradient algo-

rithm for a deterministic approximation of the objective function.
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2.3.1 Stochastic Proximal Gradient Algorithm

Proximal algorithms are well established optimization algorithms for dealing

with non-smooth objective functions and composite optimization problems like prob-

lem (P) in (2.1). See Beck and Teboulle (2010); Parikh and Boyd (2013)Parikh and

Boyd (2013a); Juditsky and Nemirovski (2012a,b). In this paper, we focuse on the

proximal gradient algorithm(see also Nesterov (2004)) and its perturbed version first

proposed by Atchadé et al. (2017): the gradient of f(β) at the current estimate βk is

replaced by a Monte Carlo approximation Hk+1. Besides the perturbed gradient, our

objective function f(β) + g(β) is possibly non-convex and non-smooth. We typically

assumes the proximity operator of g(β) can be easily computed.

Algorithm 1 stochastic proximal gradient algorithm

For k ≥ 1, given the current β(k), repeat until convergence:

1. Compute an approximation of ∇f(β(k)) as Hk+1;

2. Compute β(k+1) = Proxγg
(
β(k) − γHk+1

)
.

In general, Proxγg (β − γ∇f(β)) denotes the proximal operator of a function

γ · g(·) applied to the vector β − γ∇f(β), defined as:

Proxγg (β − γ∇f(β)) = arg min
ϑ∈Dom(g)

{
〈∇f(β), ϑ− β〉+

1

2γ
‖ϑ− β‖2 + g(ϑ)

}
(2.5)

For the elastic regularization function g in (2.4),

Proxγg(ϑ) =



ϑj−γλα
1+γλ(1−α)

, if ϑj ≥ γλα,

ϑj+γλα

1+γλ(1−α)
, if ϑj ≤ −γλα,

0, if ϑj ∈ (−γλα, γλα)
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We now derive the Markov chain Monte Carlo algorithm we have used to ap-

proximate the gradient ∇f(β). The algorithm has utilized the Polya-Gamma distri-

bution, it is proposed in Polson et al. (2012) based on data augmentation strategy.

We first describe the Gibbs sampler below:

2.3.2 Deterministic Approximate Algorithm

Instead of directly solving the original problem (P) in (2.1), one can solve an

approximation problem

(̃P) min
β∈Rp

F̃ (β) with F̃ = f̃ + g (2.6)

where f̃ is a deterministic approximation of the intractable loss function f we will

derive.

Depending on the functional form of f̃ , various algorithms can be applied to

solve problem (̃P) in (2.6), we apply the proximal gradient algorithm as it performs

well and enables a comparable development of convergence theory with stochastic

proximal gradient algorithm.

Algorithm 2 Second Order Approximate Algorithm

For k ≥ 1, given the current β(k), repeat until convergence:

1. Compute ∇f̃(β(k));

2. Compute β(k+1) = Proxγg

(
β(k) − γ∇f̃(β(k))

)
.

Next we investigate the convergence of the proposed algorithms for solving in-
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tractable, possibly non convex and non smooth composite objective functions.

We assume Assumption (II.1) also applies to ∇f̃(β), that is there exists a finite

non-negative constant L̃ such that, for all β, β′ ∈ Rp,

∥∥∥∇f̃(β)−∇f̃(β′)
∥∥∥

2
≤ L̃ ‖β − β′‖2 (2.7)

This can be routinely verified to be true from our discussion of (2.3) in 2.2.

2.4 Algorithm Convergence

We first show that Algorithms (1) and (2) solving for respective problems (2.1)

and (2.6) always find the stationary points of the objective functions so long as

the objective functions satisfy Assumptions (II.1) and (II.2). To be precise, the

limiting points of iterative updates {βk}k∈N are all stationary points of F (β) or

F̃ (β) respectively, such that if β∗ is a limiting point of {βk}k∈N, then β∗ ∈ L =

{β ∈ Rp : 0 ∈ ∇f(β) + ∂g(β)}, or L̃ =
{
β ∈ Rp : 0 ∈ ∇f̃(β) + ∂g(β)

}
, along with

this we show that limk F̃ (βk) = F̃ (β∗) under mild assumptions.

For algorithm convergence, that is, concerning limk βk, we need to further char-

acterize the stationary points of the objective functions. In the case of mixed effect

Gaussian linear regression, proximal gradient algorithm (2) solving for (P) is enough

since approximation of objective function is not necessary, objective function con-

vexity at the stationary points is enough to guarantee convergence of Algorithm (2)

(Atchadé et al. (2017)), while in other cases of mixed effect generalized linear regres-

sion, since the objective function is possibly non-convex, and the curvature at its

stationary points is difficult to characterize due to its non-smooth part, we discuss

in detail for different problems and algorithms. Convergence of Algorithm (2) ap-
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plied to problem (P̃) always holds under assumptions (II.1) and (II.2), we propose

to utilize an approach developed in Attouch and Bolte (2009), which is based on the

Kurdyka- Lojasiewicz property of the possibly non-convex objective function.

2.4.1 Stochastic Proximal Gradient Algorithm Convergence Analysis

We will use a proposition (Bauschke and Combettes (2011)) concerning proximal

operators for convex functions:

Proposition II.3. For function g assuming A2, with

Proxγg (β) , arg min
ϑ∈Θ

[
g(ϑ) +

1

2γ
‖ϑ− β‖2

2

]

,

(i) Define function

gγ(β) = min
ϑ∈Θ

[
g(ϑ) +

1

2γ
‖ϑ− β‖2

2

]
gγ(β) is differentiable everywhere and

∇gγ(β) =
1

γ

(
β − Proxgγ(β)

)
. (2.8)

Furthermore β 7→ ∇gγ(β) is Lipschitz with Lipschitz constant 1
γ

.

(ii) For u ∈ Θ, ∇gγ(u) ∈ ∂g(Proxgγ(u)). This means that for all ϑ ∈ Θ,

g(ϑ) ≥ g(Proxgγ(u)) +

〈
1

γ

(
u− Proxgγ(u)

)
, ϑ− Proxgγ(u)

〉
(2.9)

We will then establish several lemmas.
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Lemma II.4 (Atchadé et al. (2017)). Let {νk, k ∈ N} and {χk, k ∈ N} be non-

negative sequences and {ξk, k ∈ N} be such that
∑

k ξk exists. If for any k ≥ 0,

νk+1 ≤ νk − χk+1 + ξk+1

then
∑

k χk <∞ and limk νk exists.

Lemma II.5. Suppose Assumption II.1 holds. Let {βk, k ∈ N} be given by Algorithm

(1) with non increasing step size {γk, k ∈ N}. The sequence {F (βk)}k∈N satisfies

F (βk)− F (βk+1) ≥ 1

2γk+1

‖βk+1 − βk‖2 + 〈βk+1 − βk, ηk+1〉 (2.10)

Lemma II.6. Suppose Assumptions II.1 and II.2 hold. Let ηk+1 = Hk+1−∇f(βk), k ≥

1 denote the Monte Carlo gradient approximation error in (1). If approximation er-

ror ηk satisfies ∑
k

〈βk+1 − βk, ηk+1〉 <∞ a.s. (2.11)

Then for the same sequence {βk, k ∈ N} in Lemma II.5, the following hold.

(i)
∑

k ‖βk+1 − βk‖2 <∞ and lim
k→∞
‖βk+1 − βk‖ = 0 a.s.

(ii) limk γk+1F (βk+1) exists.

Lemma II.7. Suppose Assumption II.1 holds. Let {βk, k ∈ N} be given by Algorithm

(1) with non increasing step size {γk, k ∈ N}. The following results hold.

(i) Ak := 1
γk

(βk−1 − βk) +∇f(βk)−∇f(βk−1)− ηk. Then Ak ∈ ∂F (βk)

(ii) ‖Ak‖ ≤ 2
γk
‖βk−1 − βk‖+ ‖ηk‖

Now we are ready to characterize the limit point set of the sequence {βk, k ∈ N}

produced by stochastic proximal gradient algorithm Algorithm(1). We show that
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the limit point(s) of {βk, k ∈ N} are stationary point(s) of the objective function

F (β) = f(β) + g(β) in problem (P), along with other properties.

Theorem II.8. Suppose that Assumptions II.1 and II.2 hold. Denote ω(β0) as the

limit point set of the sequence {βk, k ∈ N} which is assumed to be bounded, be given

by Algorithm with non increasing step size {γk, k ∈ N}. The following assertions

hold.

(i) ∅ 6= ω(β0) ⊂ L, defined as L , {β ∈ Θ : 0 ∈ ∇f(β) + ∂g(β)}, the critical

point set of F.

(ii) We have

lim
k→∞

dist (βk, ω (β0)) = 0 (2.12)

(iii) ω (β0) is a nonempty, compact and connected set.

Proofs for the above are presented in the proof section at the end of this chapter.

Now that our algorithms always find the stationary points of the objective func-

tions, we aim to establish the convergence of {βk}k∈N and it converges to a local

minimum for possibly non-convex objective functions. For this purpose, we explore

in two aspects.

Firstly, both algorithms produce {βk}k∈N such that limk→∞ ‖βk+1 − βk‖ = 0.

This implies that either the sequence {βk}k∈N converges to β∗ ∈ L, or the set of limit

points of this sequence forms a continuum, and the sequence does not converge. It

also implies that if {βk}k∈N has an isolated limit point β∗, then limk βk = β∗. In

addition, given limk→∞ F (βk) = F (β∗) (Theorem(II.12) (iv)), it is not hard to see

that for any given c∗ ∈ R, if {β∗ ∈ L : F (β∗) = c∗} is a countable set we denote A∗,
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then {βk}k∈N will converge to one point in A∗. Ofttimes, A∗ is finite, even has only

one point.

Secondly, what kind of stationary points do the algorithms find? Saddle points

and local maximums are undesirable, we will check the conditions under which local

minimums are discovered.

2.4.2 Second Order Approximate Algorithm Convergence

We begin with some lemmas. Similar but much simpler than Lemma(II.5), we

have the following lemma:

Lemma II.9. Suppose Assumptions II.1 and II.2 hold. Let {βk, k ∈ N} be given by

Algorithm(2) with non increasing positive step size {γk, k ∈ N}. We have descent

property for the objective function, that the sequence
{
F̃ (βk)

}
k∈N

is decreasing and

satisfies

F̃ (βk)− F̃ (βk+1) ≥ 1

2γk+1

‖βk+1 − βk‖2
2 . (2.13)

Lemma II.10. Suppose Assumptions II.1 and II.2 hold. Let {βk, k ∈ N} be given

by Algorithm(2). We have the square summable result,
∑

k ‖βk+1 − βk‖2
2 ≤ ∞ and

limk ‖βk+1 − βk‖2 = 0

Lemma II.11. Suppose Assumptions II.1 and II.2 holds. Let {βk, k ∈ N} be given

by Algorithm(2). The following results hold.

(i) Let Ãk := 1
γk

(βk−1 − βk) +∇f̃(βk)−∇f̃(βk−1). Then Ãk ∈ ∂F̃ (βk)

(ii)
∥∥∥Ãk∥∥∥

2
≤ 2

γk
‖βk−1 − βk‖2

Theorem II.12 (Properties of the limit point set of the sequence {βk, k ∈ N}).

Suppose that Assumptions II.1 and II.2 holds. Denote ω̃(β0) as the set of accumu-
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lation points of the sequence {βk, k ∈ N} generated by Algorithm(2) and assumed to

be bounded. We have the following assertions hold.

(i) ∅ 6= ω̃(β0) ⊂ L̃, defined as L̃ ,
{
β ∈ Θ : 0 ∈ ∇f̃(β) + ∂g(β)

}
, the critical

point set of F̃ .

(ii) We have

lim
k→∞

dist (βk, ω̃ (β0)) = 0 (2.14)

(iii) ω̃ (β0) is a nonempty, compact and connected set.

(iv) The objective function F̃ is finite and constant (:= F̃−) on ω̃ (β0), and for all

β̄ ∈ ω̃ (β0),

lim
k→∞

F̃ (βk) = F̃ (β̄) = F̃−. (2.15)

We derive algorithm convergence in this case by extending an approach de-

veloped based on the Kurdyka- Lojasiewicz property (K-L-property) of the possibly

non-convex objective function (Attouch et al. (2010)). We further derive the conver-

gence rate in this case.

Since the geometric concept of Kurdyka- Lojasiewicz property is not a very widely

known in statistics community, we will take a digression to introduce this concept

in the following, and derive useful properties from this concept to pave the way of

proving convergence of the deterministic approximate algorithm in Theorem 5.

2.4.2.1 Kurdyka- Lojasiewicz (K-L) property

First we introduce the ”KL property” characterizing the curvature of a possibly

non-convex function. As an motivating example, let us consider a toy triangular
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wave function as our objective.

z(t) =

(
t− 2

⌊
t

2
+

1

2

⌋)
(−1)b

t
2

+ 1
2c, x ∈ R (2.16)

This function is non-convex and non-smooth, it is convex in a neighborhood of

Figure 2.1: Triangular wave function z(t)

the local minimum points, but not strictly convex and thus not strongly convex.

However, it is easy to see that for any t̄ ∈ R, the function has a ”KL-property” that

|z(t)− z(t̄)|r ≤ 1

4r
, for all r ∈ [0, 1) and t ∈

{
t : |t− t̄| < 1

4
and 0 < z(t)− z(t̄) <

1

4

}

It can be shown that piecewise linear functions are all KL-functions, regardless of

their non-convexity and non-smoothness.

Such property around its local minimum points, which in the above example

are the even integer points, are of our interest, since such geometric property of the

objective function together with algorithmic properties established in section (??)

would imply algorithm convergence as we will prove.

To further motivate the role of KL-property in optimizing a function, consider a
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hypothetical toy function ζ(x), x ∈ R, ζ(x) is twice continuously differentiable such

that ζ
′′
(x) > 0 for all x in O∗ = {x ∈ R : ζ ′(x) = 0}.

Taylor expansion of ζ(x) around any x ∈ O∗ gives

ζ(y)− ζ(x) =
1

2

(
ζ
′′
(x) + o(1)

)
(y − x)2 (2.17)

with (
ζ
′′
(x) + o(1)

)2

=
ζ ′(y)2

(y − x)2
(2.18)

since ζ ′(x) = 0. Combine (2.17) we get

|ζ(y)− ζ(x)| = 1

2

ζ ′(y)2

|ζ ′′(x) + o(1)|
(2.19)

Then there exists some positive η, for all y satisfying |x− y| < η, there exists some

positive constant C such that

|ζ(y)− ζ(x)|
1
2 ≤ C |ζ ′(y)| (2.20)

Now we give a formal definition of Kurdyka- Lojasiewicz property with some remarks.

Definition II.13. ( Kurdyka- Lojasiewicz property) Let F : Rd → (−∞,+∞] be

proper and lower semi-continuous.

(i) The function F is said to have the Kurdyka- Lojasiewicz (KL) property at x̄ ∈

dom ∂F :=
{
x ∈ Rd : ∂F (x) 6= ∅

}
if there exist η ∈ (0,∞], r ∈ [0, 1), c > 0,

a neighborhood B of x̄, such that for all

x ∈ B ∩ {x : F (x̄) < F (x) < F (x̄) + η} ,
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the following inequality holds for all x∗ ∈ ∂F (x)

|F (x)− F (x̄)|r ≤ c ‖x∗‖2 (2.21)

(ii) If F satisfy the K-L property at each point of dom ∂F then F is called a K-L

function (we will later say ”a function is K-L” meaning a function is a K-L

function).

Remark II.14. (on Definition 1) K-L property characterize a geometrical feature of

the function. As Attouch et al. (2013) pointed out K-L property does not pertain a

function’s convexity or smoothness. On another hand, while not all convex functions

are K-L functions, strongly convex functions are K-L, and while not all C∞ functions

are K-L, smooth functions whose Taylor series converges to the function in some

neighborhood for every point in its domain, or real analytic functions are all K-L.

K-L property has useful consequences in the study of first-order descent methods.(see

Attouch et al. (2013)).

We refer the definition of real analytic functions of several variables to Kranz

and Parks (2002) Definition 2.2.1, and elementary properties to Proposition 1.4.2

and Proposition 2.2.2.

Proposition II.15. ( Proposition 1.4.2) Let I and J be open intervals in R, f :

I → J and g : J → R are both real analytic. Then g ◦ f : I → R is real analytic.

Proposition II.16. ( Proposition 2.2.2) Let U, V ⊆ Rm be open. If f : U → R and

g : V → R are real analytic, then f + g, f · g are real analytic on U ∩ V , and f/g

is real analytic on U ∩ V ∩ {x : g(x) 6= 0}.

We aim to show that the objective function in (2.6) is a K-L function. We show

this in several steps.
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Proposition II.17. f̃(β) = −
◦
`(β)−σ2

2
g(β)T [Iq − σ2h(β)]

−1
g(β)+1

2
log det (Iq − σ2h(β))

in (2.49) is real analytic.

Proof. Firstly, −
◦
`(β) =

∑N
i=1 log (1 + exp (−yi 〈xi, β〉)) is real analytic. This is be-

cause exp (−yi 〈xi, β〉) being a composition of elementary exponential and linear func-

tion, is real analytic, then 1 + exp (−yi 〈xi, β〉) is real analytic. Since log(x) is real

analytic on x ∈ (0,+∞), log (1 + exp (−yi 〈xi, β〉)) is real analytic by composition

proposition (II.15). Now −
◦
`(β) is a real analytic function by proposition (II.16).

Secondly, since si(β) = 1
1+exp(−yi〈xi,β〉) in (2.51) is real analytic by proposition

(II.16), each element in the vector g(β) in (2.51) and matrix h(β) in (2.52) is a real

analytic function of β ∈ Rd again by proposition (II.16).

Next, h(β) is a diagonal matrix, since Z is an orthogonal matrix, so

det
(
Iq − σ2h(β)

)
=
∣∣Iq − σ2Wβ

∣∣
=

q∏
k=1

[
1− σ2si(β)(1− si(β))

]
so det (Iq − σ2h(β)) is an analytic function of β by proposition (II.16).

Similarly, [
Iq − σ2h(β)

]−1
= ZT

[
Iq − σ2Wβ

]−1
Z

where [Iq − σ2Wβ]
−1

is a n× n diagonal matrix with ith diagonal entry being

1/
[
1− σ2si(β)(1− si(β))

]
.

Assume that random effect noise σ2 satisfies that σ2si(β)(1 − si(β)) < 1,∀i =
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1, 2, . . . , n, then det (Iq − σ2h(β)) > 0, log det (Iq − σ2h(β)) is real analytic by propo-

sition (II.15), and each entry in [Iq − σ2h(β)]
−1

is real analytic function in β by

proposition (II.16).

Now it is easy to see after matrix multiplication σ2

2
g(β)T [Iq − σ2h(β)]

−1
g(β) is

real analytic in β by proposition (II.16).

Finally, as a sum of real analytic functions,

f̃(β) = −
◦
`(β)− σ2

2
g(β)T

[
Iq − σ2h(β)

]−1
g(β) +

1

2
log det

(
Iq − σ2h(β)

)
in (2.49) is real analytic.

So f̃(β) is a K-L function by Attouch and Bolte (2009)

Proposition II.18. The sum of two K-L functions is K-L.

Proof. Suppose F1 and F2 are two K-L functions. Specifically for any x̄ ∈ dom∂F1∩

dom∂F2, there exist η ∈ (0,∞], a neighborhood B ⊆ domF1 ∩domF2 of x̄, such that

for all

x ∈ B ∩ {x : Fi(x̄) < Fi(x) < Fi(x̄) + η/2, i = 1, 2}

the following inequalities hold for all x∗i ∈ ∂Fi(x), i = 1, 2

|Fi (x)− Fi (x̄)| ≤ ci ‖x∗i ‖
1/ri
2 (2.22)

Adding the above inequalities and by triangle inequality we have:

|F1(x) + F2(x)− F1(x̄)− F2(x̄)| ≤ c1 ‖x∗1‖
1/r1
2 + c2 ‖x∗2‖

1/r2
2 (2.23)
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Let c = c1 ∨ c2, suppose w.o.l.g. ‖x∗1‖2 ≥ ‖x∗2‖2, then we get

|F1(x) + F2(x)− F1(x̄)− F2(x̄)| ≤ c
(
‖x∗1‖

1/r1
2 + c2 ‖x∗1‖

1/r2
2

)
(2.24)

Since v(x) = ax, a > 0 is a convex function and ‖x∗1‖2 ≥ 0, let r = 2/(1/r1 + 1/r2) ∈

[0, 1), by Jensen’s inequality we get

|F1(x) + F2(x)− F1(x̄)− F2(x̄)| ≤ 2c ‖x∗1‖
1/r
2 (2.25)

Rearranging terms we get

|F1(x) + F2(x)− F1(x̄)− F2(x̄)|r ≤ C ‖x∗1‖2 (2.26)

for some constant C > 0. So F1 + F2 is a K-L function.

Remark II.19. By mathematical induction, the sum of finitely many K-L functions

is K-L.

Proposition II.20. The objective function F̃ (β) = f̃(β) + g(β), β ∈ Rd in problem

(2.6) is a K-L function.

Proof. Proposition (II.17) shows that f̃ is real analytic function and thus is K-L

function. The elastic net function

g(β) = λ

(
1− α

2
‖β‖2

2 + α ‖β‖1

)

is a sum of the polynomial(quadratic) function 1−α
2
‖β‖2

2, which is real analytic, and

the `1 norm function α ‖β‖1, which is itself a sum of p absolute value functions

|βj| , j = 1, 2, . . . , p. The K-L property of absolute value function is essentially estab-

lished in the triangular wave function example (2.16). By proposition (II.18), g(β)
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is a K-L function, and again by proposition (II.18) we conclude that F̃ (β) is a K-L

function.

Theorem(II.12) established that the limit point set ω(β0) of the sequence {βk, k ∈ N}

generated by Algorithm(2) is a non-empty, compact and connected set, and that the

objective function F̃ is a constant on ω(β0). As a consequence, we will derive a

uniformized K-L property used in the proof of the main convergence theorem.

Lemma II.21 (Uniformize K-L property). Let Ω be compact, in addition to assump-

tion A, assume F is constant on Ω and satisfies K-L property (see Definition 2) at

each point of Ω. Then there exists δ ∈ (0,∞], ε > 0, and c > 0, r ∈ [0, 1) such that

for all ū in Ω and all u in the following set:

{u ∈ Θ : dist(u,Ω) < ε} ∩ {u ∈ Θ : F (ū) < F (u) < F (ū) + δ} (2.27)

one has,

|F (u)− F (ū)|r ≤ c
∥∥u#

∥∥ , for all u# ∈ ∂F (u) (2.28)

Proof. Denote µ as the constant value of F on Ω. The compact set Ω can be covered

by a finite number of open balls B(ui, εi) with ui ∈ Ω, i = 1, . . . , p on which the K-L

property holds, that is, for any u ∈ B(ui, εi) ∩ {u ∈ Θ : 0 < F (u)− µ < δi} we have

|F (u)− F (ui)|ri = |F (u)− µ|ri ≤ ci
∥∥u#

∥∥ ∀u# ∈ ∂F (u).

Choose ε > 0 sufficiently small, so that

{u ∈ Θ : dist(u,Ω) < ε} ⊂ ∪pi=1B(ui, εi) (2.29)

Set δ = min {δi, i = 1, . . . , p} > 0 and

c = max {ci, i = 1, . . . , p},
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r = max {ri, i = 1, . . . , p}

we get that for all u ∈ {u ∈ Θ : dist(u,Ω) < ε}∩{u ∈ Θ : 0 < F (u)− F (ū) < δ},

|F (u)− F (ū)|r ≤ c
∥∥u#

∥∥ , for all u# ∈ ∂F (u) (2.30)

This completes the proof.

Now we are ready to show the theorem of convergence of proximal gradient

algorithm solving non-smooth and possibly non-convex problem P̃ in (2.6).

Theorem II.22 (almost sure finite path). Let γk+1 ∈ (0, 1/L] and {βk, k ∈ N} be

given by Algorithm (2) solving problem P̃ in (2.6), the sequence is assumed to be

bounded.

(i) The sequence {βk}k∈N has finite length,

∞∑
k=1

‖βk+1 − βk‖2 <∞ (2.31)

(ii) The sequence {βk}k∈N converges to a stationary point

β∗ ∈ L , {β ∈ Θ : 0 ∈ ∇f(β) + ∂g(β)}

.

Proof. Suppose β̄ ∈ ω (β0) is any limit point of the sequence {βk}k∈N. Since {F (βk)}k≥1

is a decreasing sequence and converges to F (β̄) = infk∈N {F (βk)} (ref. Lemma II.9,

theorem II.12), if there exists k0 ∈ N for which F (βk0) = F (β̄) then F (βk) =

F (βk0) and βk = βk0 ,∀k > k0 (ref. lemma II.9), and induction shows (2.31) eas-

ily.
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Otherwise, as {F (βk)}k∈N is decreasing, together with (2.15) we have for any

δ > 0, there exists a nonnegative integer K0, such that 0 < F (βk)− F (β̄) < δ for all

k > K0. Theorem II.12 (ii) established that lim
k→∞

dist (βk, ω (β0)) = 0, thus for any

ε > 0,∃K1 ∈ N, such that dist(βk, ω (β0)) < ε, for all k > K1. Summing up these

facts, we get that

βk ∈ {β ∈ Ω : dist(β,Ω) < ε}∩
{
β : 0 < F (β)− F (β̄) < δ

}
, for all k > l := K0∨K1

Let Ω = ω (β0), Theorem II.12 (ii) says Ω is compact and F is constant on Ω,

then we can apply Lemma II.21 of uniformize K-L property to get for any k > l,

there exists c > 0, r ∈ (0, 1]:

∣∣F (βk)− F (β̄)
∣∣r ≤ c ‖Ak‖ , ∀Ak ∈ ∂F (βk) (2.32)

Consider the concave function φ(s) = s1−r, s > 0, by the concavity inequality

φ(y)− φ(x) ≥ 〈y − x, φ′(y)〉 , ∀x, y ∈ (0, δ] we have that

(
F (βk)− F (β̄)

)1−r−
(
F (βk+1)− F (β̄)

)1−r ≥ [F (βk)− F (βk+1)]·(1−r)
∣∣F (βk)− F (β̄)

∣∣−r
(2.33)

Summarizing (2.32) and (2.33), and let c > 0 denote generic constants, we get

(
F (βk)− F (β̄)

)1−r −
(
F (βk+1)− F (β̄)

)1−r ≥ F (βk)− F (βk+1)

c ‖Ak‖
, ∀Ak ∈ ∂F (βk)

(2.34)

Denote

∆p,q :=
(
F (βp)− F (β̄)

)1−r −
(
F (βq)− F (β̄)

)1−r
(2.35)
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Apply lemma II.11 on subgradient growth bound we get:

∆k,k+1 ≥
F (βk)− F (βk+1)

2
γk
‖βk−1 − βk‖

(2.36)

By Theorem II.12 (i) we get :

∆k,k+1 ≥
‖βk+1 − βk‖2

4 ‖βk−1 − βk‖
≥ 0 (2.37)

that is

‖βk+1 − βk‖2 ≤ 4∆k,k+1 ‖βk−1 − βk‖ (2.38)

Take squre root in both sides of the above inequality and use the fact that 2
√
ab ≤

a+ b,∀a, b ≥ 0, we get:

‖βk+1 − βk‖ ≤ ∆k,k+1 + ‖βk−1 − βk‖ (2.39)

Summing up (2.39) ‖βi+1 − βi‖ ≤ ∆i,i+1 +‖βi−1 − βi‖ for i = l+ 1, . . . , k,∀k > l ≥ 1

yields

2
k+1∑
i=l+2

‖βi − βi−1‖ ≤
k+1∑
i=l+2

‖βi − βi−1‖+ ‖βl+1 − βl‖ − ‖βk+1 − βk‖+ 4
k∑

i=l+1

∆i,i+1

k∑
i=l+1

‖βi+1 − βi‖ ≤ ‖βl+1 − βl‖ − ‖βk+1 − βk‖

+ 4
((
F (βl+1)− F (β̄)

)1−r −
(
F (βk+1)− F (β̄)

)1−r
)

where in the last inequality one had 4
∑k

i=l+1 ∆i,i+1 = 4∆l+1,k+1 by the fact that

∆p,q + ∆q,r = ∆p,r for all p, q, r ∈ N. The limit of the right hand side of the above
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inequality with k, l→∞ is zero, so by Cauchy’s test of series we have

∞∑
k=0

‖βk+1 − βk‖ <∞

For (ii), theorem II.12 (i) has shown that the limiting point set ω (β0) of the

sequence {βk}k∈N is a subset of L, so we only need to show that the sequence{
βk ∈ Rd

}
k∈N is a Cauchy sequence and hence converges to a point in L.

For any q > p > l we have

βq − βp =

q−1∑
k=p

(βk+1 − βk) (2.40)

hence,

‖βq − βp‖ =

∥∥∥∥∥
q−1∑
k=p

(βk+1 − βk)

∥∥∥∥∥ ≤
q−1∑
k=p

‖βk+1 − βk‖ ≤
∞∑
k=p

‖βk+1 − βk‖
p→∞→ 0,

it follows that the sequence {βk}k∈N is a Cauchy sequence in Rd and hence is a

convergence sequence, which converges to a stationary point

β∗ ∈ L , {β ∈ Θ : 0 ∈ ∇f(β) + ∂g(β)} 6= ∅

.

2.5 Numerical Example: Mixed Effect Logistic Regression

Model in High Dimensions

Here, we would like to use designed numerical examples to illustrate the algo-

rithms developed in this chapter, demonstrate their convergence numerically, and in
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the case of high dimensional examples, explore the sparsity properties of the algo-

rithm solutions. We will also compare the solutions from stochastic exact algorithms

with the solutions from deterministic approximate algorithm, and other benchmark

algorithms.

We will focus on the mixed effect logistic regression model as an example in

our numerical studies. It has non-convex negative loglikelihood function, and has

non-convex and non-smooth objective function in high dimensional case when the

number of unknown covariate coeffecients is much larger than the sample size. We

will first introduce the model used in our numerical study below.

2.5.1 Model

A mixed effect logistic regression model models correlated binary responses us-

ing both fixed covariates and random effects. The a priori designed or estimated

covariance structure of the random effect term in the model is used to model the

correlation among the response.

We model the binary responses {yi}Ni=1, where yi ∈ {−1, 1}, for all i, as condi-

tionally independent realizations of the following Bernoulli model:

Yi|U?
ind.∼


1, with probability (w.p.) s (x′iβ + σz′iU?)

0, w.p. 1− s (x′iβ + σz′iU?)

(2.41)

where xi ∈ Rp is the vector of the i-th covariate, zi ∈ Rq is the i-th loading vector

for the random effect, which is known. The random effect U? is assumed to follow

standard Gaussian distribution: U? ∼ Nq (0, I). We focus on estimating high di-

mensional covariate coefficients β ∈ Rp and we assume the random effect covariance
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level parameter σ > 0 in (2.41) is given. In (2.41),

s(x) =
ex

1 + ex

denotes the cumulative distribution function of the standard logistic distribution.

We estimate β via maximum likelihood approach, via solving the following op-

timization problem approximately and numerically:

min
β∈Rp
−`(β) + λP (β) (2.42)

where `(β) denotes the log-likelihood function of the model (2.41), φ(u) denotes the

density function of q-dimensional standard Gaussian random variable u ∈ Rq:

` (β) = log

∫
u

N∏
i=1

1

1 + exp (−yi (〈xi, β〉+ σ 〈zi, u〉))
φ(u)du

= log

∫
u

exp

(
−

N∑
i=1

log [1 + exp (−yi(〈xi, β〉+ σ 〈zi,u〉))]

)
φ (u) du

(2.43)

where

P (β) =
1− α

2
‖β‖2

2 + α ‖β‖1

denotes the elastic net penalty, where ‖β‖r =
(∑p

j=1 |βj|
r
)1/r

, and α ∈ [0, 1]. α con-

trols the trade-off between `1 and `2 errors. P (β) encourage sparsity in the solution

β̂ and controls multicolinearity in the fixed design matrix. Tuning parameter λ > 0

controls the level of regularization, larger λ leads to more severe regularization and

results in more parsimonious model.
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2.5.2 Data

We generate synthetic response data y1, y2, . . . , yN for our simulation study ac-

cording to the Bernoulli model (2.41) introduced above.

For the high dimensional fixed effect specification, we let X ∈ RN×p denote the

design matrix with row vectors xi ∈ Rp, and 〈xi, β〉 denotes the fixed effect term,

i = 1, 2, . . . , N , β = (β1, β2, . . . , βp) ∈ Rp is the unknown parameter vector. We

generate the fixed design covariate matrix X by drawing random RN -vectors from

N (0,ΣX) to form each column of the N × p sized design matrix X. In many simula-

tion settings to follow, ΣX = IN , while in other settings, ΣX has an explicit structure,

we will specify ΣX in each setting.

For the random effect speficication, we have the random effect loading matrix

Z ∈ RN×q, such that ZTZ is the convariance matrix of the q dimensional random

effect U . We assume U follows Gaussian distribution N
(
0, σZTZ

)
. We have assumed

a given as known σ in most simulation studies we have carried out, however, in a few

cases where we will specify, we have also estimated σ. 〈zi, σU〉 denotes the random

effect term in the linear predictor, where zi is the i-th row of Z, i = 1, 2, . . . , N , and

σU ∼ N (0, σ2Iq) is a q-variate Gaussian random vector. We have specified two dis-

tinct structures of Z in our different simulation study settings for different purpose.

Let us specify the two ways below.

The first form of Z we use in the study is such that zi = ediq/Ne where {ej, j ≤ q}

is the canonical basis of Rq and d·e denotes the upper integer part, in words, each

Rq-row vector of Z is composed of (q − 1) zeros and an one indicating group label
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for the i-th . The repeated measurement structure is usually used for longitudinal

grouping structure in the data, which corresponds to q-group repeated measurement

in the response yi, i = 1, 2, . . . , N .

The other form of Z we use in the study is such that ZTZ ∈ Rq×q forms the low

rank approximation to the (underlying) random effect covariance marix ΣU ∈ RN×N

based on Eckart-Young-Mirsky theorem (Eckart and Young (1936)). In this case

the working model random effect vector U ∈ Rq is a low dimensional representation

of the underlying true random effect RN vector which follows Gaussian N(0, σΣU)

distribution, and the utilization of Z ∈ RN×q is such that the low dimensional

working model random effect vector U follows N
(
0, σZTZ

)
distribution. We as-

sume the random effect covariance matrix is given as ΣU = 1
p
XXT which encodes

the overall measurement similarity between all pairs of samples. Then we form Z

by the following Singular Value Decomposition (SVD) procedure: Let the SVD of

ΣU be that ΣU = V DV T , where V =: [Vq, VN−q] is an orthornormal matrix, and

D =

Dq 0

0 DN−q

 is a positive-semidefinite diagnal matrix, where Vq ∈ RN×q and

Dq ∈ Rq×q. We then let Z = VqD
1/2
q , and ZTZ = Dq, thus the working model low

dimensional random effect U ∼ N(0, σDq).

2.5.3 Algorithms and Simulation Study Design

We will implement the stochastic exact algorithm, and the deterministic ap-

proximate algorithm we have developed in this chapter to solve for high dimensional

mixed effect logistic regression model. Let us first derive for the details of our algo-

rithms below.
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2.5.3.1 Stochastic Proximal Gradient Algorithm for Mixed Effect Logis-

tic Regression Model

In the context of high dimensional mixed effect logistic regression model, for

stochastic proximal gradient algorithm in (1), the objective function F (β) = f(β) +

g(β) in (2.1) has become the sum of the negative model loglikelihood function and

the elastic net penalty.

In particular, from (2.43), f(β) is

f (β) = −`(β) = − log

∫
u

exp

(
−

N∑
i=1

log [1 + exp (−yi(x′iβ + σz′iu))]

)
φ (u) du

(2.44)

where φ(u), and the elastic penalty g(β) are defined in (2.43) too.

For implementation of the algorithm, it is useful to define the conditional log-

likelihood of the observations y = {y1, . . . , yN} given the random effect U?:

`c (β|U?) = −
N∑
i=1

log [1 + exp (−yi(x′iβ + σz′iu))]

And the derivative ∇`c (β|U?):

∇`c (β|U?) =
N∑
i=1

s(−yi(x′iβ + σz′iu)) · (yixi)

On another hand, the conditional distribution of the random effect U? given the

observations y and the parameters β is

πβ(U?) = exp (`c (β|U?)− ` (β))φ (U?) (2.45)

42



The stochastic algorithm involves the gradient of f(β), which can be routinely

derived with Fisher’s identity to be

∇f(β) = −
∫
∇`c (β|U?) πβ(U?)dU? = −

∫ N∑
i=1

s(−yi(x′iβ+σz′iu))·(yixi) πβ(U?)dU?

(2.46)

The integration above is analytically intractable. To approximate ∇f(β) in the

stochastic algorithm, we sample from the distribution πβ using the MCMC sampler

proposed in Polson et al. (2012) Polson et al. (2013) based on data-augmentation

strategy.

To approximate ∇f(β) = −
∫
∇`c (β|u) πβ(u)du via data-augmentation based

MCMC, we write ∇f(β) = −
∫
Hβ(u)π̃β(u,w)dudw, where u := u, and Hβ(u) :=

∇`c (β|u) notation-wise.

π̃β(u,w) is defined for u ∈ Rq and w = (w1, . . . , wN) ∈ RN by

π̃β(u,w) =

(
N∏
i=1

π̃PG (wi; |x′iβ + σz′iu|)

)
πβ (u) (2.47)

where π̃PG (·; c) is the probability density of the Polya-Gamma distribution on the

positive real line with parameter c. It has explicit function form as:

π̃PG (w; c) = cosh(c/2) exp(−wc2/2)ρ(w)1{R+(w)},

where ρ ∝
∑

k≥0(−1)k(2k+1) exp(−(2k+1)2/(8w))w−3/2 (Biane et al. (2001) Biane

et al. 2001, Section 3.1). The target distribution π̃β(u,w) can be sampled by the

Gibbs sampler below:
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With the current value (ut,wt) of the Markov chain, we sample the next point

from the conditional distribution of u given wt, and the conditional distribution of

w given ut+1:

π̃β (u|w) ≡ Nq (µβ(w); Γβ(w)) π̃β (w|u) ≡
N∏
i=1

π̃PG (wi; |x′iβ + σz′iu|)

with

Γβ(w) =

(
Iq + σ2

N∑
i=1

wiziz
′
i

)−1

, µβ(w) = σΓβ(w)
N∑
i=1

(Yi/2− wix′iβ) zi.

The details of the above data augmentation Gibbs sampler derivation, based on nice

properties of Polya-Gamma distribution , can be consulted in Section 3.1 of Polson

et al. (2012).

With the Monte Carlo sample
{
u(t)
}T
t=1

drawn from the above Polya-Gamma

sampler, we can proceed to give Monte Carlo approximation of the gradient ∇f(β):

∇f(β) ≈ H(β) , − 1

T

T∑
t=1

∇`c(β|u(t)) (2.48)

The MCMC approximation error η = −∇`(β)−H(β) for∇f(β) is seen as a stochastic

perturbation of the gradient operator.
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2.5.3.2 Second Order Approximate Algorithm for Mixed Effect Logistic

Regression Model

Through Taylor series expansion of

−
N∑
i=1

log [1 + exp (−yi(〈xi, β〉+ σ 〈zi, u〉))]

to the second order at σu = 0 , we can approximate the loss function f as

f̃(β) = −
◦
`(β)− σ2

2
g(β)T

[
Iq − σ2h(β)

]−1
g(β) +

1

2
log det

[
Iq − σ2h(β)

]
(2.49)

where −
◦
`(β) is the negative log-likelihood function of logistic regression model

−
◦
`(β) =

N∑
i=1

log (1 + exp (−yi 〈xi, β〉)) (2.50)

g(β) is the gradient of −
∑N

i=1 log [1 + exp (−yi(〈xi, β〉+ σ 〈zi, u〉))] with respect to

σu, evaluated at zero

g(β) = ZT [yi (1− s (yi 〈xi, β〉))]i=1:N (2.51)

where we denote si(β) := s (yi 〈xi, β〉) = 1
1+exp(−yi〈xi,β〉) .

h(β) is the Hessian of −
∑N

i=1 log [1 + exp (−yi(〈xi, β〉+ σ 〈zi, u〉))] with respect to

σu, evaluated at zero

h(β) = −ZTWβZ (2.52)

where Wβ = Diag(wi(β)i=1:N) and wi(β) = si(β) (1− si(β)).

We denote A(β) := [Iq − σ2h(β)]
−1

and B(β) = −A(β), the gradient of the
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approximation function f̃ in (2.49) can be derived to have closed form

∇f̃(β) = −XT [yi (1− si(β))]i=1:N−
σ2

2

[
2A(β)

∂g

∂β
+

(
∂A

∂β1

g(β), . . . ,
∂A

∂βp
g(β)

)]T
g(β)

+
1

2

[
tr

(
A · ∂B

∂βj

)]
j=1:p

(2.53)

The detailed derivation of the above second order approximations can be found

in the end of the chapter.

2.5.3.3 Simulation Study Design

We compare our developed algorithms with several benchmark algorithms to

demonstrate the estimation performance and illustrate their computational time.

We conduct the comparison in two steps. In the first step, we compare the stochastic

proximal gradient algorithm with the glmnet algorithm to solve for the high dimen-

sional mixed effect logistic regression model, with the glm algorithm ignoring the

random effects in the model. We show that considering the random effects into the

model clearly improves statistical estimation performance. Secondly, we compare

the Monte Carlo and the deterministic Laplace approximation of the integration in

the objective function, and show that the Markov chain Monte Carlo ((Polson et al.,

2012)) we leverage in stochastic proximal gradient algorithm, which accounts for the

“stochastic” ingredient of our algorithm, leads to better estimation performance,

while not increase too much on computational complexity.

We intended to compare the stochastic approximation of the integration in

(2.43), versus the Laplace approximation, which is implemented in the glmmLasso

algorithm in “glmmLasso” R package Schelldorfer et al. (2014). However, the “glmm-

Lasso” implemented the Laplace approximation approximately, which is essentially
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carrying out a second order Taylor approximation of the log-integrand at a particular

fixed value of random effect U . In this regard, we deem comparing the stochastic

algorithm with our second order Taylor approximation algorithm is sufficient for our

purpose.

2.5.4 Model Selection Method

In simulation study, when the algorithm solves high dimensional problem with

elastic net or Lasso penalty, we do model selection for a sequence of tuning param-

eters λ. The tuning parameter α in elastic net penalty is chosen subjectively as a

common practice.

In simulation study, we can independently generate testing data set correspond-

ing to each training data set that the algorithm trys to fit with a sequence of tuning

parameters λ. We will select the fitted models associated with different λ’s based on

their prediction performance on the testing data set. Precisely, we define the predic-

tion error as the `2 error of the predicted ŷi to the testing set yi, that is 1
Nt
‖ŷi − yi‖2,

i = 1, . . . , Nt, where Nt is the testing sample size. Nt typically equals N/2, half of

the training sample size. We choose the model corresponding to a specific λ that

results in the smallest prediction error.

2.5.5 Results and Conclusion

In this section, we describe our simulation results on a synthetic data which

resembles real world problem scale. We set sample size N = 400, fixed effect size

or the problem dimension p = 2000. The random effect size is set to q = 7. We

47



randomly pick 10βj’s to be non-zero among the 2000 fixed effect coefficient β’s. The

fixed and random effect design matrices X and Z respectively, and binary response

Y are all generated according to the fashion introduced in section 7.1. The random

effects were also introduced as Gaussian variables in section 7.1. The parameters λs

were tuned based on prediction performance on the testing data, the details are in

section 7.3.

The following plots presents the simulation results, based on 30 simulation runs

on independent data sets. The x-axis codes each of the independent simulation run,

while the y-axis denotes different performance metrics.
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Figure 2.2:
N400p2000s10sig3 step size γ = 0.005 stochastic proximal gradient de-
scent, second order approximate, and glmnet algorithms.

In the above figure, glmnet results represents the algorithms which solve the

problem ignoring the random effect in the data. We can tell in this case, glmnet

algorithm cannot estimate the unknown fixed coefficients well, as the estimation `2

norm percent error in the top left panel shows its errors are around 1.0, and its

corresponding minimum prediction errors (after tuning for λ) around 0.1. Worst of
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all, it has failed to recover the sparse set of the fixed effect coefficients. Indeed, the

bottom graphs have shown that glmnet cannot tell the non-zero coefficients from the

zero components, it basically estimate all the 2000 coefficients to be non zero.

The two effective algorithms here are the stochastic proximal gradient algorithm

and second order Taylor approximation algorithm. Their estimation and prediction

performance are similar in this setting. After 150 iteration steps, for both the algo-

rithms, the estimation errors are around 0.6, and the minimum prediction errors for

each of the independent are around 0.05 ∼ 0.06. In our setting here, on average the

deterministic second order Taylor approximate algorithm outperforms the stochstic

proximal gradient descent algorithm in terms of estimation precision, or sparsity re-

covery. Both algorithms have recovered all the non-zero components of fixed effect

coefficients, while precision concerns overshooting, there are 14 out of 30 runs where

Taylor approximation algorithm recovers more than 10 non-zero coefficients; whereas

stochastic proximal gradient descent overestimates in 22 out of 30 runs, this is due to

the stochasticity of the algorithm. However, the two algorithms both achieve above

0.6 of precision (recover about 16 non-zero variables, 6 more than the truth) in 90%

of the cases, except in few cases where every algorithm recovers sparsity poorly.

2.6 Real Data Analysis

We use our stochastic proximal gradient and second order approximate algo-

rithms to analyze a well known breast cancer data set.

Like the original Vijer study Vijver et al. (2002), we take the Distant Metastasis
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within five years event, which is coded in {0, 1} as the response vector, and level of

expression of estrogen-receptors (ER), called ER status, diameter of the tumor, age,

NIH score, St. Gallen score and lymph-node status (positive or negative) of each

consecutively enrolled breast cancer patient as their clinical variables, as part of the

fixed effects in our model. Our goal in this real data analysis is to identify certain

genes to be potential prognosis predictors, or the prognostic signatures in breast

cancer, of distant metastases within 5 years, which is a major clinical indicator of

survival.

The data set includes 295 patients, gene intensity measurements of 24496 genes

to begin with. Pre-processing is done by pruning the genes by individual gene T-test

with clinical variables as the off-set terms for all the 24496 genes. We determine to

use only the probes with p-value < 0.01, with the 70 gene set identified with Veer

et al. 2002 added to the initial gene set, as some of the 70 genes were pruned out

in the screening step. We end up with 295 patients and 1083 genes. For the screen-

ing procedure, we first enrolled the clinical variables “ESR1”, “NIH”, “StG”, and

“Posnodes” as the clinical characteristic for each patient, then we screen the genes

by fitting logistic regression models to 5 year metastases event against all the clini-

cal variables with each gene expression intensity measurement in one logistic model

at a time. Then we conduct t-test for each fitted gene covariate coefficient, and

pick the genes with corresponding testing p-value < 0.01. Out of the 24496 genes,

the procedure screens 1024 genes with corresponding coefficient test p-value < 0.01.

Then we check that there are only 16% or 11 genes in Vijer et al. 2002’s 70 genes

enrolled in these 1024 genes, we decide to include all the rest of the 70 genes into

the pre-processed gene set, this gives us 1083 genes as an initial set for subsequent

gene-selection in our model fittings.
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From sample design perspective, the 295 patients are consecutively enrolled, and

sample heterogeneity is very likely to present. We intend to apply mixed effect logis-

tic model to the model the data, and select genes as potential prognostic signature

for 5 year metastasis indicators. The advantage of using a mixed effects model also

includes taking the small effect genes into proper account, so that the major effect

genes could be more effectively discovered.

In order to apply our stochastic proximal gradient and second order approximate

algorithms to identify the gene prognostic signatures, the first step is to construct the

random effect variance - covariance matrix. We intend the random effect covariance

matrix to code the genetic relationship among individuals, suppose G ∈ Rn×p codes

the prognostic gene expression signature, in which genes are depicted in the columns

and samples in the rows. We use K = 1
p
GGT , which captures the overall genetic

similarity between all pairs of samples. As the random effect factor could only be low

dimensional, we fix its dimension at q � 295, and do SVD for K as K = UDUT , and

we take the top q eigenvalues of D to form the approximation of K as Σq = UDqU
T .

Thus the random effect U? ∼ N (0, σ2Σq). Finally, before applying our algorithms

to the screened gene data, we perform a standardization of the fixed effects design

matrix X and the random effects loading matrix Z such that their columns are all

of mean zero and unit standard deviation.

To describe the fitting and model selection schemes, both stochastic proximal

gradient and second order approximate algorithms involve Lasso regularization, and

model selection is done by solving a sequence of Lasso regularized optimization prob-

lems with different penalty amount λ’s, this is usually called “regularization path”

in the literature (Friedman et al. (2010a)). For a given sequence of lambda, we run
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the two algorithms for each lambda, and plot the solution path along the sequence

of lambdas from largest to smallest. We will regard the genes that constantly stays

in the solution path to be potential prognostic signatures.

In the following solution path plots, we have fixed the random effect factor

dimension q = 5. We use Lasso regularization with a sequence of λ = 30, 29.5, . . . , 24.

Notice the x-axis is order reversed, so that log of lambda values decreases from left

to right.
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Figure 2.3:
Solution paths for mixed effect logistic regression on breast cancer data,
q = 5
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We notice the solution paths of both algorithms have sudden jump ups with the

number of selected genes as the regularization amount log(λ) decreases from 3.3 to

3.28 for the stochastic proximal gradient algorithm, and from 3.28 to 3.26 for the

second order approximate algorithm. In the following, we first present the selected

genes that stays along the solution paths of both algorithms, then we provide some

explanation for the jump ups.

There are 4 genes selected by both the stochastic proximal gradient and the

second order approximate algorithms which stay along the solution paths both be-

fore and after the jump ups. They are genes named “AF055033”,“NM˙006573”,

“NM˙002985” and “Contig44265˙RC” in the data set.

After the jump ups, there are 32 common genes selected and stays in the solution

paths of both algorithms, before the number of selected genes grows above 100 as λ

continue to decrease toward zero. The commonly selected genes are “NM˙004120”,

“NM˙002727”, “NM˙002985”, “Contig54010˙RC”, “Contig54425”, “Contig60753˙RC”,

“NM˙005455”, “Contig37281˙RC”, “NM˙007019”, “NM˙014395”, “AB002304”, “NM˙007204”,

“NM˙006573”, “AF055033”, “NM˙016009”, “NM˙007358”, “Contig26022˙RC”, “AB028985”,

“Contig44265˙RC”, “Contig47106˙RC”, “AL049667”, “AF049524”, “NM˙001165”,

“NM˙000599”, “NM˙020188”, “NM˙003875”, “Contig32185˙RC”, “NM˙016577”, “Con-

tig51464˙RC”, “NM˙005915”, “NM˙001282”, and “Contig20217˙RC”.

For the jump ups in the number of selected genes, we have tried to use elastic-

net penalty with different α values, but the results are similar. Judging from the

solution paths, we see that many of the selected genes after the jump ups have

coefficients close to zero, and the effect sizes are very close; on another hand, both
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of our algorithm update all p-components of the gradient at a time in each iteration,

instead of updating them in a coordinate-wise fashion. These factors very likely

contribute to the jump ups in the number of non-zero coefficients. We will see in

next chapter that with coordinate-wise updates, the solution path will evolve much

more smoothly.

2.7 Proofs and Derivation

2.7.1 Proofs for Section 2.4.1

Proof for Lemma II.5:

Proof. By Assumption II.1 and consequently the descent lemma, we have

f(βk+1) ≤ f(βk) + 〈∇f(βk), βk+1 − βk〉+
1

2γk+1

‖βk+1 − βk‖2
2 , ∀k ≥ 0 (2.54)

With the convexity of g over Θ, let u = βk − γk+1Hk+1, and ϑ = βk in proposition

II.3 we get

g(βk+1) ≤ g(βk)−
1

γk+1

〈βk − γk+1Hk+1 − βk+1, βk − βk+1〉 (2.55)

Summing up (2.54) and (2.55) we conclude:

F (βk)− F (βk+1) ≥ 1

2γk+1

‖βk+1 − βk‖2 + 〈βk+1 − βk, ηk+1〉 (2.56)

Proof for Lemma II.6:

Proof. By Lemma II.5 with the facts that γk is positive non-increasing, and {F (βk)}k∈N
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is non-negative (Assumption II.2), we have

2γk+1F (βk+1) ≤ 2γkF (βk)− ‖βk+1 − βk‖2
2 + 〈βk+1 − βk, γk+1ηk+1〉 (2.57)

In Lemma II.4, let νk = 2γkF (βk), ξk+1 = 〈βk+1 − βk, γk+1ηk+1〉, χk+1 = ‖βk+1 − βk‖2
2,

for all k ∈ N. Assume ηk satisfies
∑

k≥0 〈βk+1 − βk, γk+1ηk+1〉 <∞ a.s., then Lemma

II.4 concludes that

∑
k≥0

‖βk+1 − βk‖2
2 <∞ and lim

k→∞
γkF (βk) exists.

Proof for Lemma II.7:

Proof. From Algorithm (1) we know, for all k ≥ 1, with γk ∈ (0, 1
L

],

βk := arg min
β∈Θ

{
〈β − βk−1, Hk〉+

1

2γk
‖β − βk−1‖2 + g(β)

}
(2.58)

by the global optimization criterion of (2.72) we have

Hk +
1

γ
(βk − βk−1) + uk = 0 (2.59)

where uk ∈ ∂g(βk), by additivity of subdifferential, that is∇f(βk)+∂g(βk) = ∂F (βk),

thus (i) is established:

Ak :=
1

γk
(βk−1 − βk) +∇f(βk)−∇f(βk−1)− ηk ∈ ∂F (βk) (2.60)
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For (ii),

‖Ak‖ ≤ ‖ηk‖+ ‖∇f(βk)−∇f(βk−1)‖+
1

γk
‖βk−1 − βk‖

≤ ‖ηk‖+

(
L+

1

γk

)
‖βk−1 − βk‖

≤ ‖ηk‖+
2

γk
‖βk−1 − βk‖ , since γk ≤

1

L
,∀k ≥ 1.

Proof for Theorem II.8:

Proof. (i) Let β∗ ∈ ω(β0) be a limit point of {βk}k∈N. To show that β∗ ∈ L,

we need to show that for a sequence αn → β∗ as n → ∞, if Aαn ∈ ∂F (αn)

converges to 0, with F (αn) → F (β∗), then (by an elementary argument with

the definition of subderivative) 0 ∈ ∂F (β∗). We will begin as the following.

{βk}k∈N is a bounded sequence, so there is a subsequence
{
βkq
}
q∈N such that

βkq
a.s.→ β∗ as q →∞. Since g is lower semicontinous, we have

lim inf
q→∞

g(βkq) ≥ g(β∗) (2.61)

From Algorithm (1), we have for all k ∈ N

βk+1 ∈ arg min
β∈Θ

{
〈β − βk, Hk+1〉+

1

2γk
‖β − βk‖2 + g(β)

}

Thus letting β = β∗ in the above, we have

〈βk+1 − βk, ηk+1 +∇f(βk)〉+
1

2γk
‖βk+1 − βk‖2 + g(βk+1)

≤ 〈β∗ − βk, ηk+1 +∇f(βk)〉+
1

2γk
‖β∗ − βk‖2 + g(β∗)
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Choosing k = kq− 1 in the above inequality and letting q goes to∞, we obtain

lim sup
q→∞

{〈
βkq − βkq−1, ηkq +∇f(βkq−1)

〉
+

1

2γkq−1

∥∥βkq − βkq−1

∥∥2
+ g(βkq)

}
≤ lim sup

q→∞

{〈
β∗ − βkq−1, ηkq +∇f(βkq−1)

〉
+

1

2γkq−1

∥∥β∗ − βkq−1

∥∥2
+ g(β∗)

}
(2.62)

We have from Lemma II.6 that almost surely,



lim
k→∞
‖βk+1 − βk‖ = 0

lim
k→∞
‖ηk‖ = 0

lim
q→∞
∇f(βkq) = ∇f(β∗) by continuity

⇒



lim sup
q→∞

∥∥βkq − βkq−1

∥∥ = 0

βkq−1 → β∗ as q →∞

lim sup
q→∞

∥∥ηkq∥∥ = 0

lim sup
q→∞

∇f(βkq−1) = ∇f(β∗)

(2.63)

Combining the above (2.77) results with (2.76) we get

lim sup
q→∞

g(βkq) ≤ g(β∗) (2.64)

Recalling (2.75) one has

lim
q→∞

g(βkq) = g(β∗) (2.65)

Thus we finally obtain

lim
q→∞

F (βkq) = lim
q→∞

f(βkq) + lim
q→∞

g(βkq)

= f(β∗) + g(β∗), f is continuously differentiable

= F (β∗)

(2.66)
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From Lemma II.7 we know that

Akq :=
1

γkq

(
βkq−1 − βkq

)
+∇f(βkq)−∇f(βkq−1)− ηkq ∈ ∂F (βkq)

So

lim
q→∞

Akq = 0 (2.67)

Now that βkq → β∗, and in view of (2.80), (2.81) we get by definition of ∂F :

0 ∈ ∂F (β∗)

This shows β∗ ∈ L and ∅ 6= ω(β0) ⊂ L.

(ii) By the definition of limiting points, this item follows as an elementary conse-

quence.

(iii) Since the sequence {βk}k∈N is bounded, its closure clo {βk}k∈N is compact. By

definition of limiting points, ω(β0) is a closed subset of clo {βk}k∈N, thus it is

also compact.

It is a fact that a metric space is connected if and only if every continous {0, 1}

valuded function defined on the space is a constant. (Apostol Theorem 4.36).

Suppose f is an arbitrary {0, 1} valuded continuous function defined on the

closure of the sequence {βn}n∈N, in particular is such defined on ω (β0). W.l.o.g.,

let β∗ 6= β′ be any two limit points of the sequence {βn}n≥0, there are two

subsequences converging to them respectively, βnp → β∗ as p→∞ and βnq →

β′ as q → ∞. Suppose f(β∗) = 0, by continuity of f , ∃P1 ∈ N, s.t. ∀p >

P1, f(βnp) = 0. On another hand, lim
n→∞

‖βn+1 − βn‖ = 0, f is continuous on

a compact set, thus is uniformly continuous, so lim
n→∞

‖f(βn+1)− f(βn)‖ = 0,
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in this {0, 1} valued case, ∃N ∈ N,∀n > N, f(βn+1) = f(βn). To summarize,

∃P2 ∈ N,∀p > max (P1, P2) , s.t. np + m > N for all m ≥ 0, thus f(βnp+m) =

f(βnp) = 0. Now for any ∀p > max (P1, P2) there exists Q ∈ N, s.t. ∀q >

Q,mq = nq − np ≥ nQ − np ≥ 0, and f(βnq) = f(βnp+mq) = f(βnp) = 0, so by

continuity of f , f(β′) = 0. We conclude that f ≡ 0 is a constant on ω (β0),

which is now shown to be connected.

(iv) Since F (βk) is decreasing on k and is assumed to be bounded from below,

denote by F− the finite limit of F (βk) as k →∞. Take β̄ ∈ ω(β0). There exists

a subsequence βkq → β̄ as q → ∞, a.s. On one hand lim
q→∞

F (βkq) = l, a.s., one

the other hand as we proved in (i) lim
q→∞

F (βkq) = F (β̄), a.s., so F (β̄) = F−, a.s.,

and lim
k→∞

F (βk) = F (β∗) = F−, a.s..

Proof of Lemma II.9

Proof. By Assumption II.1 and consequently the descent lemma, we have

f̃(βk+1) ≤ f̃(βk) +
〈
∇f̃(βk), βk+1 − βk

〉
+

1

2γk+1

‖βk+1 − βk‖2
2 , ∀k ≥ 0 (2.68)

With the convexity of g over Θ, let u = βk − γ∇f̃(βk), and ϑ = βk in proposition

II.3 we get

g(βk+1) ≤ g(βk)−
1

γk+1

〈
βk − γk+1∇f̃(βk)− βk+1, βk − βk+1

〉
(2.69)

Summing up (2.68) and (2.69) we conclude:

F̃ (βk)− F̃ (βk+1) ≥ 1

2γk+1

‖βk+1 − βk‖2
2 (2.70)
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Proof of Lemma II.10

Proof. We sum up the inequality (2.70) for any fixed integer l ≥ 0, k = 0, . . . , l.

Since γ1 ≥ γ2 ≥ . . . ≥ γk ≥ 0, we have:

l∑
k=0

‖βk+1 − βk‖2 ≤ 2γ1

l∑
k=0

[
F̃ (βk)− F̃ (βk+1)

]
= 2γ1

(
F̃ (β0)− F̃ (βl+1)

) (2.71)

From Assumption A we know F (β) ≥ 0,∀β ∈ Θ. Taking limit of l → ∞ on both

sides of (2.71), we get the desired square summable result

∞∑
k=0

‖βk+1 − βk‖2
2 ≤ ∞

and its elementary consequence

lim
k→∞
‖βk+1 − βk‖2 = 0

Proof of Lemma II.11:

Proof. From Algorithm 1 we know, for all k ≥ 1, with γk ∈ (0, 1/L̃],

βk := arg min
β∈Θ

{〈
β − βk−1,∇f̃(βk−1)

〉
+

1

2γk
‖β − βk−1‖2

2 + g(β)

}
(2.72)

by the global optimization criterion of (2.72) we have

∇f̃(βk−1) +
1

γk
(βk − βk−1) + uk = 0 (2.73)
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where uk ∈ ∂g(βk), by additivity of subdifferential we have ∇f̃(βk) + ∂g(βk) =

∂F̃ (βk), with these two results we get (i):

Ãk :=
1

γk
(βk−1 − βk) +∇f̃(βk)−∇f̃(βk−1) ∈ ∂F̃ (βk) (2.74)

For (ii),

∥∥∥Ãk∥∥∥
2
≤
∥∥∥∇f̃(βk)−∇f̃(βk−1)

∥∥∥
2

+
1

γk
‖βk−1 − βk‖2

≤
(
L̃+

1

γk

)
‖βk−1 − βk‖2

≤ 2

γk
‖βk−1 − βk‖2 , since γk ≤

1

L̃

Proof of Theorem II.12:

Proof. (i) Let β∗ ∈ ω̃(β0) be a limit point of {βk}k∈N. To show that β∗ ∈ L̃,

we need to show that for a sequence αn → β∗ as n → ∞, if Ãαn ∈ ∂F̃ (αn)

converges to 0, with F̃ (αn) → F̃ (β∗), then (by an elementary argument with

the definition of subderivative) 0 ∈ ∂F̃ (β∗). We will do this in the following.

{βk}k∈N is a bounded sequence, so there is a subsequence
{
βkq
}
q∈N such that

βkq
a.s.→ β∗ as q →∞. Since g is lower semicontinous, we have

lim inf
q→∞

g(βkq) ≥ g(β∗) (2.75)

From Algorithm (2), we have for all k ∈ N

βk+1 ∈ arg min
β∈Θ

{〈
β − βk,∇f̃(βk)

〉
+

1

2γk
‖β − βk‖2

2 + g(β)

}
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Thus letting β = β∗ in the above, we have

〈
βk+1 − βk,∇f̃(βk)

〉
+

1

2γk
‖βk+1 − βk‖2

2 + g(βk+1)

≤
〈
β∗ − βk,∇f̃(βk)

〉
+

1

2γk
‖β∗ − βk‖2

2 + g(β∗)

Choosing k = kq− 1 in the above inequality and letting q goes to∞, we obtain

lim sup
q→∞

{〈
βkq − βkq−1,∇f̃(βkq−1)

〉
+

1

2γkq−1

∥∥βkq − βkq−1

∥∥2
+ g(βkq)

}
≤ lim sup

q→∞

{〈
β∗ − βkq−1,∇f̃(βkq−1)

〉
+

1

2γkq−1

∥∥β∗ − βkq−1

∥∥2
+ g(β∗)

}
(2.76)

We have from Lemma II.6 we have,


lim
k→∞
‖βk+1 − βk‖ = 0

lim
q→∞
∇f̃(βkq) = ∇f̃(β∗) by continuity

⇒



lim sup
q→∞

∥∥βkq − βkq−1

∥∥ = 0

βkq−1 → β∗ as q →∞

lim sup
q→∞

∇f̃(βkq−1) = ∇f̃(β∗)

(2.77)

Combining the above (2.77) results with (2.76) we get

lim sup
q→∞

g(βkq) ≤ g(β∗) (2.78)

Recall (2.75), we have

lim
q→∞

g(βkq) = g(β∗) (2.79)
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Thus we finally obtain

lim
q→∞

F̃ (βkq) = lim
q→∞

f̃(βkq) + lim
q→∞

g(βkq)

= f̃(β∗) + g(β∗), f̃ is continuously differentiable

= F̃ (β∗)

(2.80)

From Lemma II.7 we know that

Ãkq :=
1

γkq

(
βkq−1 − βkq

)
+∇f̃(βkq)−∇f̃(βkq−1) ∈ ∂F̃ (βkq)

So

lim
q→∞

Ãkq = 0 (2.81)

Now that βkq → β∗, and in view of (2.80), (2.81) we get by definition of ∂F̃ :

0 ∈ ∂F̃ (β∗)

This shows β∗ ∈ L̃ and ∅ 6= ω̃(β0) ⊂ L̃.

(ii) By the definition of limiting points, this item follows as an elementary conse-

quence.

(iii) Since the sequence {βk}k∈N is bounded, its closure clo {βk}k∈N is compact. By

definition of limiting points, ω̃(β0) is a closed subset of clo {βk}k∈N, thus it is

also compact.

It is a fact that a metric space is connected if and only if every continous {0, 1}

valuded function defined on the space is a constant. (Apostol Theorem 4.36).

Suppose f is an arbitrary {0, 1} valued continuous function defined on the

closure of the sequence {βn}n∈N, in particular on ω̃ (β0). W.l.o.g., let β∗ 6= β′
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be any two limit points of the sequence {βn}n≥0, there are two subsequences

converging to them respectively, βnp → β∗ as p→∞ and βnq → β′ as q →∞.

Suppose f(β∗) = 0, by continuity of f , ∃P1 ∈ N, s.t. ∀p > P1, f(βnp) = 0. On

another hand, lim
n→∞

‖βn+1 − βn‖ = 0, f is continuous on a compact set, thus

is uniformly continuous, so lim
n→∞

‖f(βn+1)− f(βn)‖ = 0, in this {0, 1} valued

case, ∃N ∈ N,∀n > N, f(βn+1) = f(βn). To summarize, ∃P2 ∈ N, ∀p >

max (P1, P2) , s.t. np + m > N for all m ≥ 0, thus f(βnp+m) = f(βnp) = 0.

Now for any ∀p > max (P1, P2) there exists Q ∈ N, s.t. ∀q > Q,mq = nq−np ≥

nQ − np ≥ 0, and f(βnq) = f(βnp+mq) = f(βnp) = 0, so by continuity of f ,

f(β′) = 0. We conclude that f ≡ 0 is a constant on ω̃ (β0), which is shown to

be connected now.

(iv) Since F̃ (βk) is decreasing in k and is assumed to be bounded from below,

denote by F̃− the finite limit of F̃ (βk) as k → ∞. Take β̄ ∈ ω̃(β0). There

exists a subsequence βkq → β̄ as q →∞. On one hand lim
q→∞

F̃ (βkq) = l, on the

other hand we have proved in (i) that lim
q→∞

F̃ (βkq) = F̃ (β̄), so F̃ (β̄) = F̃−, and

lim
k→∞

F̃ (βk) = F̃ (β∗) = F̃−.

2.7.2 Derivation of the Second Order Approximation Gradient

We derive the deterministic approximation to the objective function (2.43),

which we use to develop the second order approximation algorithm in the follow-
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ing. We denote

F (β, σu) = exp (fβ(σu))

= exp

(
−

N∑
i=1

log [1 + exp (−yi(〈xi, β〉+ σ 〈zi, u〉))]

)

= exp

(
N∑
i=1

yi(〈xi, β〉+ σ 〈zi, u〉)−
N∑
i=1

log [1 + exp (yi(〈xi, β〉+ σ 〈zi, u〉))]

)
,

(2.82)

In the following we expand fβ(σu) in logEu (exp (fβ(σu))) at σu = 0. One has:

` (β) = logEu (exp (fβ(σu)))

= logEu
(

exp

(
fβ(0) + 〈∇σufβ(0), σu〉+

σ2

2
uT∇2

σuf(β, σū)u

))
= logEu

(
F (β, 0) ∗ exp

(
〈∇σufβ(0), σu〉+

σ2

2
uT∇2

σufβ(σū)u

))
= logF (β, 0) + log

(∫
u

exp

(
〈∇σufβ(0), σu〉+

σ2

2
uT∇2

σufβ(σū)u

)
φ(u)du

)
≈ log

◦
L(β)+

log

[
exp

(
σ2

2
∇f(0)T

[
Iq − σ2∇2f(0)

]−1∇f(0)

)(√
det (Iq − σ2∇2f(0))

)−1
]

≈
◦
`(β) +

σ2

2
g(β)T

[
Iq − σ2h(β)

]−1
g(β)− 1

2
log
∣∣Iq − σ2h(β)

∣∣
(2.83)

Where we assume u ∼ N (0, Iq) so E
(
uuT

)
= Iq, ū lies in between 0 and u;

Now we have an approximation of the loglikelihood function:

˜̀(β) =
◦
`(β) +

σ2

2
g(β)T

[
Iq − σ2h(β)

]−1
g(β)− 1

2
log
∣∣Iq − σ2h(β)

∣∣ (2.84)
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We can derive that in the approximation function (2.84),

◦
`(β): the logistic regression model log-likelihood is

◦
`(β) = log ΠN

i=1

1

1 + exp (−yi 〈xi, β〉)

= −
N∑
i=1

log (1 + exp (−yi 〈xi, β〉))
(2.85)

g(β): the gradient of fβ(σu) with respect to σu at zero is

g(β) =
∂f

∂(σu)
|σu=0(β)

= ZT [yi (1− s (yi 〈xi, β〉))]i=1:N

(2.86)

we henceforce denote si(β) := s (yi 〈xi, β〉) = 1
1+exp(−yi〈xi,β〉) .

h(β): the Hessian of fβ(σu) with respect to σu at zero is

h(β) =
∂2f

∂(σu)2
|σu=0(β)

= −ZTWβZ

(2.87)

where Wβ = Diag(wi(β)i=1:N) and wi(β) = si(β) (1− si(β)).

Then we can derive the gradient for the negative of approximation function

(2.84):
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firstly

∂
◦
`

∂β
(β) = − ∂

∂β

N∑
i=1

log (1 + exp (−yi 〈xi, β〉))

=
N∑
i=1

yi

(
1− 1

1 + exp(−yi 〈xi, β〉)

)
xi

=
N∑
i=1

yi (1− si(β))xi

= XT [yi (1− si(β))]i=1:N

(2.88)

and, denote A(β) := [Iq − σ2h(β)]
−1

in the following, we have

∂

∂β

(
σ2

2
g(β)T

[
Iq − σ2h(β)

]−1
g(β)

)
=
σ2

2

[(
∂g

∂β

)T
A(β)g(β) +

(
∂(A · g)

∂β

)T
g(β)

]
(2.89)

where,

∂g

∂β
= −ZTDiag (si(β)(1− si(β)))X (2.90)

and,

(
∂(A · g)

∂β

)T
=

(
∂A

∂β
g(β) + A(β)

∂g

∂β

)T
=

[(
∂A

∂β1

, . . . ,
∂A

∂βp

)
g(β) + A(β)

∂g

∂β

]T
=

[(
∂A

∂β1

g(β), . . . ,
∂A

∂βp
g(β)

)
+ A(β)

∂g

∂β

]T (2.91)
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Compute for j = 1, . . . , p, denote B = Iq − σ2h(β) = A−1 in the following,

∂A

∂βj
,

[
∂Amn
∂βj

]
m,n=1:q

=
∂

∂βj

[(
Iq − σ2h(β)

)−1
]

=
∂

∂βj
(B−1)

= −B−1 ∂B

∂βj
B−1

= −A∂B
∂βj

A

(2.92)

in the above,

∂B

∂βj
=

∂

∂βj

[
Iq − σ2h(β))

]
= σ2ZTDiag

(
∂

∂βj
(si(β) (1− si(β)))i=1:N

)
Z

= σ2ZTDiag
(
[yixijsi(β)(1− si(β))(1− 2si(β))]i=1:N

)
Z

∈M(q × q)

(2.93)

For the logdet term,

∂

∂β
log det(B) =

[
∂

∂βj
log det(B)

]
j=1:p

=

[
tr

(
A · ∂B

∂βj

)]
j=1:p

∈ Rp

(2.94)
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Now for the approximate log-likelihood function ˜̀(β),

∇˜̀(β) = XT [yi (1− si(β))]i=1:N

+
σ2

2

[
2A(β)

∂g

∂β
+

(
∂A

∂β1

g(β), . . . ,
∂A

∂βp
g(β)

)]T
g(β)

− 1

2

[
tr

(
A · ∂B

∂βj

)]
j=1:p

(2.95)

Finally, the gradient of the negative log-likelihood function for which we mini-

mize over β,

∇− ˜̀(β) = −XT [yi (1− si(β))]i=1:N

− σ2

2

[
2A(β)

∂g

∂β
+

(
∂A

∂β1

g(β), . . . ,
∂A

∂βp
g(β)

)]T
g(β)

+
1

2

[
tr

(
A · ∂B

∂βj

)]
j=1:p

= −∇˜̀(β)

(2.96)
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Chapter III

A Fixed Effects Model Approximation to Mixed

Effects Logistic Models

3.1 Introduction

In this chapter, we will devise another algorithm to solve for the high dimen-

sional mixed effects logistic regression model, based on a very different approxima-

tion of the model. The approximation we propose in this chapter is to treat the

random effects in the model as if they are fixed effects, we call this algorithm the

fixed effect approximate algorithm (“FEAME”). Specifically, we will combine the true

p-dimensional (p� N) fixed effects coefficients and the random effects u ∈ Rq to be

a p + q dimensional coefficient vector in model estimation, where the q dimensional

component u will not be penalized. This approximation will reduce the high dimen-

sional generalized mixed effects model to be a p + q dimensional generalized linear

model, which we already have highly efficient algorithms to solve, glmnet (Friedman

et al. (2010a,b)) is a popular one.

The major goal of this chapter is to solve the fixed effect approximate problem
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via Lasso regularized maximum likelihood inference, and to establish non-asymptotic

estimation consistency results with high probability, for the fixed effect approximate

solution β̂ from this algorithm, with respect to the true model generating fixed

effects coefficients β?. In establishing this estimation error bound with high proba-

bility, we could show that under certain conditions of the design matrices, especially

in terms of the problem dimension p, random effect dimension q and the magnitude

of the random effect noise level σ, one can actually get the fixed effect approximate

solution β̂ reasonably close to the true generalized mixed effects model parameter β?.

This theoretical development takes its framework foundation in the estimation

consistency theory of the high dimensional generalized linear models. For generalized

linear models, the high dimensional point estimation theoretical development inher-

its largely from the work in high-dimensional linear models, the statistical properties

derived in high dimensional linear models using Lasso hold analogously in general-

ized linear models regularized by Lasso van de Geer (2008), this is especially true

when the distribution of dependent variable Y |X = x (we treat X as fixed input

information) is from the exponential family model. Our focus of statistical property

of the fixed effect approximate solution β̂ is its estimation consistency with respect to

the true generalized mixed effects model parameter β?, in terms of a non-asymptotic

estimation error bound with high probability.

To estimate parameter β?, an identifiability assumption on the design matrix X

is needed Bickel et al. (2009); Koltchinskii (2009), due to the well known fact that

in high dimensions, the design matrix Xn×p is column rank deficient when p > n,

which leads to non-identifiable model parameters. One of such conditions is the re-

stricted eigenvalue (RE) condition. First introduced by Bickel et al. (2009), RE is a
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less restrictive condition than other compatibility conditions like restricted isometry

property Candés and Tao (2005). The RE condition is frequently seen in literature

for providing estimation error bounds for Lasso estimators, Geer and Bühlmann

(2009) provides a comparison between RE and other related compatibility condi-

tions for establishing Lasso error bound in high dimension.

Briefly speaking, the restricted eigenvalue condition tailors an affine vector sub-

space (usually a cone) in the p-dimensional vector space such that the loss function

will be strongly convex in this subspace. In the case of linear models, that means the

design matrix X is positive definite restricted to this affine subspace. The concept

of restricted eigenvalue allows for establishing optimality in Lasso estimation, and

development of estimation error bound such as the following in high dimensional

linear model Bühlmann and van de Geer (2011):

∥∥∥β̂ − β?∥∥∥
2

= Op

(
s1/2
? γ

√
log(p)/n

)
(3.1)

where s? denotes the number of non-zero coefficients in the true parameter vector

β?, and γ denotes a restricted eigenvalue of the design matrix X in the linear model.

The corresponding error bound for generalized linear model is quite similar. The

rate in (3.1) is optimal up to the log(p) factor and the restricted eigenvalue γ, in the

context that the oracle least squares estimation would have an error rate Op(s/n)

should we knew the non-zero true effects variables beforehand. Numerous elegant

works are dedicated to dealing with the many facets of (3.1), see for example Bunea

et al. (2007); van de Geer (2008); Zhang and Huang (2008); Meinshausen and Yu

(2009); Bickel et al. (2009).
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Our main technical contribution in establishing the high dimensional estima-

tion error bound is that we have extended the restricted eigenvalue condition to a

stochastic setting where both the fixed effect approximate solution β̂(λ,U?), and the

true model log-likelihood function `(β; data,U?) are essentially random functions of

the random effects U?. We show that the extended restricted eigenvalue condition

holds with high probability in this setting. We will describe the details en route our

theoretical development.

We also contribute to the tool box of solving high dimensional generalized lin-

ear mixed effect models the fixed effects approximate algorithm, which reduces the

problem to solving a high dimensional generalized linear model. Under suitable con-

ditions, the approximate solution will be reasonably close to the true model parame-

ters. From an algorithmic and computational point of view, fitting high dimensional

generalized linear model with Lasso penalty are convex optimization problems. These

models have convex negative log-likelihood function and convex `1 penalty on the un-

known coefficients to form a convex objective function (strongly convex if the model

fisher information matrix is positive definite), which enables tractable computation,

efficient optimization via many major algorithms. The recent very efficient coordi-

nate gradient descent approach carried out in glmnet package Friedman et al. (2010b)

is a favorable choices. It has been argued that the coordinate gradient descent ap-

proach is usually more efficient to solve `1 penalized smooth convex optimization

problems Meier et al. (2008); Wu and Lange (2008); Friedman et al. (2010a), we will

use glmnet to solve the fixed effect approximate problem.

The rest of this chapter is organized as follows. In section 3.2 we will intro-

duce the true and approximate models and corresponding optimization problems
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and algorithms to fit the models, the fixed effect approximate algorithm will be also

outlined. In section 3.3, we will develop our high dimensional statistical estimation

error bound for the fixed effect approximate solution in detail. Finally in 3.4, we

will present our comprehensive numerical simulation studies for the approximate al-

gorithm, and numerical echos to the statistical property we have derived.

3.2 The Model and Problem

Recall that a mixed effect logistic regression model models correlated binary re-

sponses where the correlation among the response could be counted in the covariance

structure of a random effect term introduced into the model. Specifically, we model

the binary response or observation y1, y2, . . . , yn, for all i, yi ∈ {0, 1} as conditionally

independent realizations as the following Bernoulli model:

Yi|U? = u
ind.∼


1, with probability (w.p.) s

(
x′iβ + σz′i,·u

)
0, w.p. 1− s

(
x′iβ + σz′i,·u

) (3.2)

where xi ∈ Rp is the vector of the i-th covariate, zi,· ∈ Rq is the i-th loading vector

for the random effect. The random effect U is assumed to follow standard Gaussian

distribution: U? ∼ Nq (0, I). We focus on estimating high dimensional covariate

coefficients β and assume the random effect covariance level parameter σ is given.

s(x) = 1/(1 + e−x)

denotes the cumulative distribution function of the standard logistic distribution.
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We present and compare the exact and a fixed effect approximate regularized

maximum likelihood inference problems relevant to fitting model (3.2). The Exact

problem has been solved in Chapter 1. The current chapter will focus on the fixed

effect approximate problem.

3.2.1 Exact Model and Problem

For the original probabilistic model in (3.2), when the dimension of the model

covariate p is greater than the sample size n, we adopt the well developed regularized

maximum likelihood estimation framework to fit and infer about the model.

The regularized maximum likelihood estimation framework tries to maximize

the model likelihood (or log-likelihood) function with respect to the unknown pa-

rameters to fit the model to the observed data, while it puts a contraint on the

model parameter space to encourage certain desirable structure, control model com-

plexity and avoid model overfitting.

For high dimensional mixed logistic regression model, the model likelihood func-

tion at β ∈ Rp given the observations {yi}ni=1 is:

L(β) =

∫
Rq

exp (`β(u))φ (u) du (3.3)

where

`β(u) =
n∑
i=1

log
[
s(yi(x

′
iβ + σz′i,·u))

]
(3.4)

is the log-likelihood function of the observations at β, conditioning on the random

effect U? at u ∈ Rq. And φ (u) is the density function of the standard Gaussian

random effect U? evaluated at u ∈ Rq.

76



The log-likelihood function of the model at β ∈ Rp given the observations is:

`(β) = log

∫
Rq

exp (`β(u))φ (u) du

= log

∫
Rq

N∏
i=1

1

exp
[
−yi

(
x′iβ + σz′i,·u

)]
+ 1

φ(u)du;

(3.5)

Again, `(β) is a non-concave function, and it typically involves intractable q dimen-

sional integration.

The unknown parameter to be inferred is β ∈ Rp in our case. Apart from the

model log-likelihood function in (3.5) to maximize, we apply the Lasso penalty on

β to encourage sparsity of the solution, which is necessary here as we are in p > n

regime; also this penalty is useful to counter the multi-colinearity problem in the high

dimensional covariates. The model fitting problem is formulated in the following, as

in chapter 1 problem

(M1):

min
β∈Rp
−`(β; y) + g(β) (3.6)

where

g(β) = λ ‖β‖1 (3.7)

is the Lasso penalty function applied to non-intercept coefficients of the covariates.

λ > 0 is the regularization tuning parameter, ‖β‖r = (
∑p

i=1|βi|r)
1/r

.

Problem M1 above is a nonconvex problem involving intractable q dimensional

integration. In Chapter 1 we have seen the stochastic proximal gradient algorithm

solving problem M1 exactly, which outperforms the other state-of-the-art algorithm
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in usual cases. One possible practical concern for the stochastic proximal gradient

algorithm, for now, is its relatively low computation efficiency. This is due to the

fact that the algorithm involves solving the intractable high dimensional integration

via Markov chain Monte Carlo techniques.

3.2.2 Approximate Model and Problem

Now that the original problem seems too challenging to solve in both an accurate

and efficient manner, we apply the common wisdom to approximate the problem in

a reasonable form, such that the approximate problem can be much more efficiently

solved, while the approximate solution being reasonably close to its exact counter-

part, and to the true data generating parameter value when sample size is large.

To motivate a simple way to approximate model (3.2), we have observed that in

many simulation studies, when the presence of random effect in the high dimensional

data is of moderate strength, in terms of the random effect dimension q being much

lower than the sample size n, and the covariance level parameter σ being small, we

can approximately solve the original model by solving a misspecified model which

treats the random effect U? as an unknown fixed effect u ∈ Rq. It turns out this

approximate model can be highly efficiently solved, with solution being reasonablely

close to the solution given by the stochastic proximal gradient algorithm solving the

exact model (3.2) in chapter 1, we will demonstrate the performance comparison in

the simulation studies.

Specifically, we approximate the exact solution by fitting a misspecified logis-

tic regression model which models correlated binary observations y1, y2, · · · , yn as
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realizations of independent Bernoulli random variables Y1, Y2, · · · , Yn, such that for

any i = 1, 2, . . . , n, P(Yi = 1) = s(x′iθ), and P(Yi = 0) = 1 − P(Yi = 1). θ is

the unknown covariate coefficient. We denote the augmented covariate matrix as

XA = (X,Z) ∈ Rn×(p+q), where X ∈ Rn×p is the original covariate marix, and

Z ∈ Rq is the original random effect loading matrix presented in chapter 1. For all

i = 1, 2, . . . , n, x̃i denotes the i-th row of the augmented covariate matrix. θ = (β, u)

denotes the unknown model parameters. The misspecified logistic regression model

is:

Yi
ind.∼


1, w.p. s (x̃′iθ)

0, w.p. 1− s (x̃′iθ)

(3.8)

The misspecified model has the negative log-likelihood function as the following:

− ˜̀n (θ; y) = −
n∑
i=1

[yi 〈x̃i, θ〉 − log (1 + exp (〈x̃i, θ〉))] (3.9)

It is routine to check that −˜̀n(θ; y) is a convex function in θ = (β, u), where β ∈ Rp

is the high dimensional component of the model parameter vector, while u ∈ Rq is

its low dimensional component.

The approximate regularized maximum likelihood estimation problem is:

problem M2:

min
θ∈Rp+q

−˜̀n (θ; y) + g (β) (3.10)

where ˜̀n (θ; y) is the log-likelihood function (3.9) of the misspecified model (3.8), and

g (β) is the Lasso function at β ∈ Rp specified in (3.7).

To solve problem M2, we treat the fixed effect and the random effect approx-
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imated as fixed effect factors as one enlarged unknown fixed vector of parameters,

we let the random effect factors be free of penalty, and fit the rest of the parameters

as usual high dimensional logistic regression, via, say glmnet. The algorithm is sum-

marized as the following: We outline the Fixed effects approximate algorithm below:

Algorithm 3 Fixed effects approximate algorithm (FEAME)

1. Initialize (β, u) = (β0, u0) ∈ Rp+q;

2. Solve the following problem via glmnet algorithm:(
β̂, û

)
= arg min

β∈Rp,u∈Rq
−˜̀n (β, u; y) + g (β)

for ˜̀n(·) and g(·) in (3.10)

3.3 Statistical High Dimensional Estimation Theory

Consider the convex optimization problem problem M2 defined in (3.10), we

will show in the following that the solution of problem M2 exsists and is well

defined. The stochastic behavior of the solution stems from that of the random

vectors Y and U?. Henceforth we denote its solution as

θ̂λ : = θ̂λ (Y, U?)

= arg min
θ∈Rp+q

{
−˜̀n (θ;Y, U?) + g

(
θ[p]

)}

where θ[p] = β ∈ Rp denotes the subvector composed of the first p elements of

θ ∈ Rp+q.

One aspect of high dimensional statistical estimation theory concerns the con-
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vergence behavior, especially the convergence rate of the M-estimator θ̂λ to the true

data generating model parameter θ? = (β?, U?) ∈ Rp+q. This convergence behavior

in Rp+q is naturally expressed by the convergence behavior of various norms of θ̂λ−θ?

in R, when sample size n and problem dimension p goes to infinity.

In this chapter, we would like to establish the finite sample bound of the `2-norm

error of our estimation procedure, which in notation is to bound
∥∥∥θ̂λ (Y, U?)− θ?

∥∥∥2

2

with high probability. In so doing we would like to investigate the convergence be-

havior of our estimator.

In a nutshell , we point out the difference of our problem with other high di-

mensional convex statistical inference problems. In one hand, our true parameter

value θ? is not a constant vector, but instead a degenerate p + q dimensional Gaus-

sian random vector composed of p unknown sparse atoms and q standard Gaussian

variables: β? is a unknown constant vector in Rp and U? ∼ Nq (0, I); On another

hand, our M-estimator θ̂λ has stochastic behavior stems not only from the random

vector Y with an observed sample {yi}Ni=1, but also from the unobserved random

effect vector U?.

For the high dimensional estimation theory of our estimation procedure, we make

the following basic assumption:

A1: XA = (X,Z) ∈ Rn×(p+q) is given as fixed. Y = {Yi ∈ R}i=1:n are condi-

tionally independent given U?, and follows conditional Bernoulli distribution with

P (Yi = 1|U?) = exp (XAθ?) /(1 + exp (XAθ?)), where θ? = (β?, U?) and U? ∼ N(0, σ2Iq),

σ > 0 is assumed to be known.
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Before we delve into the main theorem, let us first introduce the key quantities

involved in the theory development. For the unknown p-dimensional parameter vec-

tor of interest β?, we denote its support as S? = {j ∈ {1, 2, . . . , p} |β?j 6= 0}, and

s? := |S?| as the number of none-zero entries in β?. For the fixed design matrix

XA = (X,Z), let ‖XA‖2 := maxj=1,...,p+q ‖x̃·,j‖2
2, and |||XA|||∞ := maxi,j |x̃ij|, where

x̃·,j denotes the j-th column, and x̃ij the ij-th entry of the augmented design matrix

XA. We also let ν̄2
Z := max1≤i≤n ‖zi,·‖2

∞ = |||Z|||2∞, where zi,· denotes the i-th row of

the random effect loading matrix Z.

3.3.0.1 Restricted Eigenvalues for Mixed Effect GLM Regression

Analogue to high dimensional (p >> n) linear regression, the relevant constraint

set C for restricted eigenvalues turns out to be a cone. Specifically, for appropriate

choices of the regularization parameter λN , the lasso error ζ̂ = β̂− β̂? satisfies a cone

constraint of the form ∥∥∥ζ̂Sc∥∥∥
1
≤ α

∥∥∥ζ̂S∥∥∥
1

(3.11)

for some constant α ≥ 1, where S := {j ∈ {1, . . . , p} : β?j 6= 0} and ζS ∈ R|S| denotes

the subvector indexed by elements of S, such that (ζS)j = ζj · 1{j∈S}. In fact, with

appropriate choice of the regularization parameter λN , the lasso error in the mixed

effect logistic regression model is also restricted to a cone we define in the following:

C :=
{
ζ ∈ Rp+q : ‖ζSC‖1 ≤ 3 ‖ζS‖1

}
(3.12)
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3.3.0.2 Restricted Strong Convexity

In `2 error bound theory development, in general one would desire that the

objective function is sufficiently curved, so that a bound on the function difference

translates into a bound on `2 error.

To be specific, in our case, where θ̂ is the lasso minimizer to the objective func-

tion fN(θ), and θ? is the true parameter vector, it is desirable that a small difference in

∆fN =
∣∣∣fN(θ̂)− fN(θ?)

∣∣∣ would lead directly to a small difference in ∆θ =
∥∥∥θ̂ − θ?∥∥∥

2
.

The notion of strong convexity specifies a desirable curvature of a function. To

formalize, given a differentiable function f : Rp → R, f is said to be strongly covex

with parameter γ > 0 at θ ∈ Rp if the inequality

f(θ′)− f(θ) ≥ ∇f(θ)T (θ′ − θ) +
γ

2
‖θ′ − θ‖2

2 (3.13)

hold for all θ′ ∈ Rp. When the function f is twice continuously differentiable, an al-

ternative characterization of strong convexity is expressed through the Hessian ∇2f ,

such that, the function f is strongly convex with parameter γ > 0 around θ? ∈ Rp if

and only if the minimum eigenvalue of the Hessian matrix ∇2f(θ) is at least γ for all

vectors θ in a neighborhood of θ?. In our particular statistical context, f is the neg-

ative log-likelihood under the mixed effect logistic model parametrized by θ ∈ Rp+q,

then ∇2f(θ?) is the observed Fisher information matrix, so that strong convexity

corresponds to a uniform lower bound on the Fisher information in all directions.

However, the above notion of strong convexity is not applicable in high dimen-

sional linear regression, as well as mixed effect logistic regression, exactly because

83



the uniform lower bound of γ needs to be applied in all directions.

Recall that in the high-dimensional setting, where the number of parameters,

or the problem dimension p is larger than sample size N , the objective function˜̀
n (θ; y) =

n∑
i=1

[yi 〈x̃i, θ〉 − log (1 + exp (〈x̃i, θ〉))] in (3.9) is always convex for all θ in

its domain. However, under what condition is it strongly convex? Notice the func-

tion ˜̀N (θ; y) is twice continuously differentiable and its Hessian matrix at θ ∈ Rp+q

is: ∇2˜̀
n (θ; y) =

(
XT
AWθXA

)
/N . Thus, the logistic loss is strongly convex if and

only if the eigenvalues of the positive semidefinite matrix XT
AWθXA are uniformly

bounded away from zero. However, this matrix has rank at most min(N, p + q),

thus it is always rank-deficient in high-dimensional setting where p ≥ N , and hence

not strongly convex. For this reason, we need a relaxed notion of strong convexity

suitable for high dimensional analysis setting.

Let us note the difference between the notions of locally strongly convex and re-

stricted strongly convex here. By literature convention, the notion of locally strongly

convex refers to a function f(β) being strongly convex in a neighborhood of a fixed

β ∈ Rp in its domain, the definition applies to all p directions of any vector in a

neighborhood of β ∈ Rp, thus locally strongly convexity would not meet the chal-

lenge we face in our high dimensional problem. Whereas the notion of restricted

strongly convex we need should at least not require strongly convex in all directions

of the argument vector. It turns out in our theory development, one only needs to

impose a strong convexity condition for some subset C ∈ Rp of vectors v ∈ Rp. In

particular, we say that a function f satisfies restricted strong convexity at w∗ with
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respect to C if there is a constant γ > 0 such that

vT∇2f(w)v ≥ γ for all v ∈ C and ‖v‖2 = 1, (3.14)

and for all w ∈ Rp in a neighborhood of w∗.

Let us compare the case of linear regression with the case for our problem.

In the case of linear regression, this notion is equivalent to lower bounding the

restricted eigenvalues of the model matrix, in particular, requiring that

1

N
vTXTXv ≥ γ for all v ∈ C and ‖v‖2 = 1 (3.15)

While in the case of our problem of fixed effect approximation to random effect

logistic regression model, it is equivalent to lower bounding the restricted random

eigenvalues of the model matrix, which is requiring that

1

N

(
XT
AWθ?XA

)
≥ γ for all v ∈ C and ‖v‖2 = 1 (3.16)

To explore the restricted strong convexity in the context of mixed effect logistic

regression, we will inspect the following restricted random eigenvalue
¯
νC(U?):

¯
νC(U?) = inf

v∈C,‖v‖2=1

{
vT
(
XT
AWθ?XA

)
v
}
/N (3.17)

where Wθ? is a random n × n diagonal matrix with the ith random diagonal entry

equal to exp(〈x̃i,θ?〉)
(1+exp(〈x̃i,θ?〉))2

, x̃i is the i-th row of the augmented design matrix XA. The

randomness of Wθ? matrix is due to that U? is a random Rq subvector in θ? = (β?, U?);
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In an effort to lower bound the above restricted random eigenvalue (3.17), we

define the corresponding usual restricted eigenvalue
¯
νC(0) in the following:

¯
νC(0) = inf

v∈C,‖v‖2=1

{
vT
(
XT
AWβ?XA

)
v
}
/n, (3.18)

whereWβ? is an n×n diagonal matrix with the ith diagonal entry equal to exp(〈xi,β?〉)
(1+exp(〈xi,β?〉))2

,

where xi is the i-th row of the fixed effect design matrix X;

We assume that the above defined restricted eigenvalue
¯
νC(0) is positive in our

theory development. We note that there are design matrices X which can guaran-

tee the positiveness of
¯
νC(0) in (3.18), for example the Gaussian and sub-Gaussian

ensembles.

We denote
¯
νC :=

¯
νC(0)/2. This deterministic constant

¯
νC will bound

¯
νC(0) from

below.

As our theory develops, we define a constant c := |||XA
¯
νC(0)|||2∞ > 0.

We present and prove our main theorem regarding convergence of our estimator θ̂λ

to the true parameter vector θ? in the following.

Theorem III.1. Assume σ ≤ 2
¯
νC

c|||Z|||∞
√
q log(n)

. Take the regularization parameter λ

such that λ/
√
n ≥ 2

√
2|||XA|||∞ log(p+ q), we have:

With probability at least
(

1− 2
n
− 2

p+q

)
,

∥∥∥θ̂λ − θ?∥∥∥
2
≤ 48

¯
νC

√
2|||XA|||∞s? log (p+ q)

n
(3.19)

Given that sample size n satisfies

n ≥ 96

¯
νC
|||XA|||∞

√
2|||XA|||∞s? log(p+ q)
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In our main theorem above, c and
¯
νC are positive constants that we have men-

tioned before, and will describe in detail as we develop the theorem later.

Before we prove our main result, let us first discuss the various factors in the

above finite sample bound to put them into perspective. We further compare our re-

sult with non-asymptotic estimation error bounds in literature for high dimensional

generalized linear models.

In most “with high probability” results, it is usually certain critical conditions

that the design or objective functions need to satisfy with large probability. For our

result specifically, we need Y ∈ {0, 1}n and U? ∈ Rq satisfy the two conditions with

high probability:

[C1] :
∥∥∥∇˜̀(θ?, Y )

∥∥∥
∞
≤ λ

2
, and (3.20)

[C2] :
¯
νC(U?) ≥

¯
νC (3.21)

Proof. To prove the main theorem, we first state the conditions under which the

conclusion of the theorem follows; we later show the high probability type of results

guaranteeing the conditions hold with high probability when sample size and prob-

lem dimension are large.

[Condition C2]: Y ∈ {0, 1}n and U? ∈ Rq satisfy that there
¯
νC(U?) ≥

¯
νC.

Before we systematically develop the main conclusion in Theorem 1, let us first

introduce several basic conditions that we will use as intermediate tools en route the

development.

[Condition C1]: Y ∈ {0, 1}n and U? ∈ Rq satisfy that
∥∥∥∇˜̀(θ?, Y )

∥∥∥
∞
≤ λ

2
.
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This basic condition C1 says that the gradient of ˜̀(θ, Y ) at or around the true

parameter value θ? should be small, which is often necessary for the M-estimator θ̂λ

derived from regularized maximization of ˜̀(θ, Y ) to be close to the truth θ?.

We begin to develop our result with the following first lemma.

Lemma III.2. Suppose for a fixed tuning parameter λ > 0, Y ∈ {0, 1}n and U? ∈ Rq

satisfy conditions C1 and a restricted eigenvalue condition C2 that we will introduce

in proving this lemma, the solution θ̂λ to (3.10) is well defined and satisfies:

∥∥∥θ̂λ − θ?∥∥∥
2
≤

24λ
√
s?

n
¯
νC

(3.22)

We prove Lemma 1 below. We choose to introduce our restricted eigenvalue

condition C2 in the proof for Lemma 1 because the relevant derivation and notations

necessary to present this condition are best developed while proving Lemma 1 for

coherent presentation of ideas and logic. Furthermore, conditions C1 and C2 will be

shown to hold with high probability in later Lemmas, all these lemmas will eventually

bring us to our main conclusion in Theorem 1.

Proof. We begin with showing that the estimator θ̂λ is well defined and has the

property that θ̂λ − θ? lies in a cone C := {ζ ∈ Rp+q : ‖ζSC‖1 ≤ 3 ‖ζS‖1}, assuming

condition [C1] holds.

For a given λ > 0, define

Un (θ) := −˜̀n(θ;Y ) + λ ‖θ‖1

Let θ? ∈ Rp+q be the true (random) parameter vector. By concavity of `n(θ) we
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have:

Un (θ?)− Un (θ) = −˜̀n(θ?;Y ) + ˜̀n(θ;Y ) + λ (‖θ?‖1 − ‖θ‖1)

≤
〈
∇˜̀n(θ?;Y ), θ − θ?

〉
+ λ (‖θ?‖1 − ‖θ‖1)

Apply Cauchy-Schwarz inequality we get

Un (θ?)− Un (θ) ≤
∥∥∥∇˜̀n(θ?;Y )

∥∥∥
∞
· ‖θ − θ?‖1 + λ (‖θ?‖1 − ‖θ‖1)

Apply condition [C1] to
∥∥∥∇˜̀n(θ?;Y )

∥∥∥
∞

we get

Un (θ?)− Un (θ) ≤ λ

2
(‖θ − θ?‖1 − ‖θ‖1) + λ ‖θ?‖1 −

λ

2
‖θ‖1

≤ 3λ

2
‖θ?‖1 −

λ

2
‖θ‖1

(3.23)

Thus Un (θ) > Un (θ?) in the open set {θ ∈ Rp+q : ‖θ‖1 > 3 ‖θ?‖1}. By continuity,

Un (θ) has well defined global minimum in the compact set

{
θ ∈ Rp+q : ‖θ‖1 ≤ 3 ‖θ?‖1

}
.

That is θ̂λ := arg minθ∈Rp+q −˜̀n(θ) + λ ‖θ‖1 is well defined.

On another hand, let S = {j ∈ {1, . . . , p+ q} : θ?j 6= 0}, and (θS)j = θj · 1{j∈S}.

89



Let Sc denote the complement set of S. We have,

Un (θ?)− Un (θ) ≤
∥∥∥∇˜̀n(θ?;Y )

∥∥∥
∞
· ‖θ − θ?‖1 + λ (‖θ?‖1 − ‖θ‖1)

≤ λ

2
‖θS + θSc − θ?‖1 + λ (‖θ? − θS + θS‖1 − ‖θS + θSc‖1)

≤ 3λ

2
‖θS − θ?‖1 −

λ

2
‖θSc‖1

(3.24)

By the definition of S we see that (θ − θ?)Sc = θSc and (θ − θ?)S = θS − θ?. Re-

call the cone C := {ζ ∈ Rp+q : ‖ζSc‖1 ≤ 3 ‖ζS‖1}, (3.24) above indicates that when

θ − θ? /∈ C, Un (θ) > Un (θ?); It is also clear that θ? ∈ C.

With the above two aspects, we conclude that θ̂λ − θ? lies in C.

To further investigate
∥∥∥θ̂λ − θ?∥∥∥

2
by exploring the convexity of the negative

loglikelihood function ˜̀n(θ;Y ) around θ?, we define,

Ln,θ?(θ) = ˜̀
n(θ;Y )− ˜̀n(θ?;Y )−

〈
∇˜̀n(θ?), θ − θ?

〉
(3.25)

Then for the difference of objective function at θ̂λ and θ? we have

Un(θ?)− Un(θ̂λ) = ˜̀
n(θ̂λ;Y )− ˜̀n(θ?;Y ) + λ

(
‖θ?‖1 −

∥∥∥θ̂λ∥∥∥
1

)
= Ln,θ?(θ̂λ) +

〈
∇˜̀n(θ?), θ̂λ − θ?

〉
+ λ

(
‖θ?‖1 −

∥∥∥θ̂λ∥∥∥
1

)

By condition C1 that
∥∥∥∇˜̀n(θ?)

∥∥∥
∞
≤ λ

2
, we have:

∣∣∣〈∇˜̀n(θ?), θ̂λ − θ?
〉∣∣∣+

∣∣∣λ(‖θ?‖1 −
∥∥∥θ̂λ∥∥∥

1

)∣∣∣ ≤ (∥∥∥∇˜̀n(θ?)
∥∥∥
∞

+ λ
)
·
∥∥∥θ̂λ − θ?∥∥∥

1

≤ 3λ

2

∥∥∥θ̂λ − θ?∥∥∥
1
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Since θ̂λ − θ? lies in cone C = {ζ ∈ Rp+q : ‖ζSc‖1 ≤ 3 ‖ζS‖1}, we have:

∥∥∥θ̂λ − θ?∥∥∥
1
≤ 4

∥∥∥(θ̂λ)S − θ?
∥∥∥

1
≤ 4
√
s?

∥∥∥θ̂λ − θ?∥∥∥
2

Since Un(θ?)− Un(θ̂λ) ≥ 0,

We have

Un(θ?)− Un(θ̂λ) ≤ Ln,θ?(θ̂λ) + 6λ
√
s?

∥∥∥θ̂λ − θ?∥∥∥
2

(3.26)

And,

− Ln,θ?(θ̂λ) ≤ 6λ
√
s?

∥∥∥θ̂λ − θ?∥∥∥
2

(3.27)

Now, with (3.27) obtained and by convexity of −˜̀n(θ;Y ), if we are able to lower

bound −Ln,θ?(θ̂λ) by a positive quantity relating to
∥∥∥θ̂λ − θ?∥∥∥

2
, we might be able

to form an inequality in
∥∥∥θ̂λ − θ?∥∥∥

2
alone, and find the finite sample bound for the

estimation error. Following this line, we need to explore the curvature of ˜̀n(θ;Y )

at θ? and make use of the fact that θ̂λ − θ? lies in cone C. We will do this in the

following.

Define

Li,θ?(θ;Yi) = ˜̀
i(θ;Yi)− ˜̀i(θ?;Yi)− 〈∇˜̀i(θ?), θ − θ?〉

where for Yi in logistic model,

˜̀
i(θ;Yi) = Yi 〈x̃i, θ〉 − log (1 + exp (〈x̃i, θ〉)) , for all i = 1, 2, . . . , n;

Fix any α ∈ R, we define a univariate function gα(h) : R→ R, that

gα(h) = log (1 + exp(α + h)) , for all h ∈ R (3.28)
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Let αi = 〈x̃i, θ?〉, h = 〈x̃i, θ − θ?〉 for all i = 1, 2, . . . , n, we have:

− Li,θ?(θ;Yi) = gαi(h)− gαi(0)− g′αi(0)h, where g′αi(0) = s(〈x̃i, θ?〉) (3.29)

where s(·) is defined in section 3.2.

From algebraic simplifications in the above (3.28) and (3.29), we observe that

lower bounding −Li,θ?(θ;Yi) through the curvature information of ˜̀i(θ;Yi) at θ? has

been equivalently transformed into lower bounding the right hand side of (3.29) via

the curvature information of the univariate function gα(h) at 0. For this purpose,

we have the following proposition, the proof of which can be found in the end of this

chapter.

Proposition III.3. For function gα(h) defined in (3.28), we have gα(h)−gα(0)−

g′α(0)h ≥ g′′α(0) h2

|h|+2
, for all α, h ∈ R

Apply Proposition (III.3) to (3.29), we get:

−Li,θ?(θ;Yi) ≥ g′′αi(0)
(θ − θ?)T x̃ix̃Ti (θ − θ?)

2 + |〈x̃i, θ − θ?〉|

Apply Cauchy-Schwarz inequality to 〈x̃i, θ − θ?〉 in the above denominator we

get:

−Li,θ?(θ;Yi) ≥ g′′αi(0)
(θ − θ?)T x̃ix̃Ti (θ − θ?)
2 + ‖x̃i‖∞ ‖θ − θ?‖1

To generalize the inequality for all i = 1, 2, . . . , n, we replace ‖x̃i‖∞ by its

matrix counterpart |||XA|||∞ and use Cauchy-Schwarz inequality to change `1 norm

to `2 norm in the above. Then we have:

− Li,θ?(θ;Yi) ≥ g′′αi(0)
(θ − θ?)T x̃ix̃Ti (θ − θ?)

2 + 4
√
s?|||XA|||∞ ‖θ − θ?‖2

(3.30)
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where g′′αi(0) = s(〈x̃i, θ?〉) (1− s(〈x̃i, θ?〉)).

Now, Ln,θ?(θ) defined in (3.25) relates to Li,θ?(θ;Yi) in the above as:

Ln,θ?(θ) =
n∑
i=1

Li,θ?(θ;Yi)

So by summing up (3.30) for i = 1, . . . , n we get

− Ln,θ?(θ) ≥
1

2
· 1

1 + 2
√
s?|||XA|||∞ ‖θ − θ?‖2

(θ − θ?)TXT
AWθ?XA(θ − θ?) (3.31)

where Wθ? is an n× n diagonal matrix with the ith diagonal entry equal to g′′αi(0).

From (3.31) we see that by controlling the minimum eigenvalue of the matrixXT
AWθ?XA

to be positive, we would be able to reach our goal of lower bounding −Ln,θ?(θ) by a

positive quantity in ‖θ − θ?‖2.

Note that the matrix XT
AWθ?XA is random in nature due to the randomness in

θ?, so its eigenvalues are naturally random. We define the following random quantity

analogous to the smallest eigenvalue of a fixed matrix:

¯
νC(U?) := inf

v∈C,‖v‖2=1

{
vT
(
XTWθ?X

)
v
}
/n

≡ inf
v∈C\{0}

{
vT
(
XTWθ?X

)
v

n ‖v‖2

}

where θ? = (β?, U?), U? ∼ N (0, σ2I), and thus
¯
νC(U?) is a random function, for which

we assume the following condition holds
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[C2] There exists a constant
¯
νC > 0, such that U? ∈ Rq satisfies that

¯
νC(U?) ≥

¯
νC.

In fact, the above condition [C2] is our version of the restricted eigenvalue

condition that we plan to discuss in detail in Lemma 3 later, where we prove that

it holds with high probability as n and p grows large. For now, we make use of this

condition and draw conclusion for Lemma 1 below.

Having shown that θ̂λ − θ? lies in the cone C, together with (3.31) and [C2]

applied to XT
AWθ?XA, we have,

− Ln,θ?(θ̂λ;Y ) ≥ 1

2
· n

¯
νC

1 + 2
√
s?|||XA|||∞

∥∥∥θ̂λ − θ?∥∥∥
2

∥∥∥θ̂λ − θ?∥∥∥2

2
(3.32)

Now combine (3.27) with (3.32), we have

1

2
· n

¯
νC

1 + 2
√
s?|||XA|||∞

∥∥∥θ̂λ − θ?∥∥∥
2

∥∥∥θ̂λ − θ?∥∥∥2

2
≤ 6λ

√
s?

∥∥∥θ̂λ − θ?∥∥∥
2

By simple algebraic arrangement we get the conclusion of Lemma 1:

∥∥∥θ̂λ − θ?∥∥∥
2
≤

24λ
√
s?

n
¯
νC

, assuming n ≥
48λ
√
s?|||XA|||∞

¯
νC

Next, we show that when sample size n and problem dimension p go large, conditions

C1 and C2 hold with high probability.

We define the following event:

En(λ, σ)
def
=

{
Y ∈ {0, 1}n , U? ∈ Rq : ‖∇`(θ?, Y )‖∞ ≤

λ

2
,
¯
νC(U?) ≥

¯
νC

}
(3.33)
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For the high probability results, we aim to show that for certain choice of λ and σ,

we have:

PY,U? (En(λ, σ))→ 1, as n, p→∞.

For the above it suffices to show that

P
(
‖∇`(θ?, Y )‖∞ ≥

λ

2

)
→ 0 (3.34)

and

P (
¯
νC(U?) ≤

¯
νC)→ 0 (3.35)

when n, p → ∞, with suitable choice of λ, σ. It is understood that P denotes joint

(Y, U?) probability measure.

Lemma III.4. For a fixed λ > 0, it holds that :

PY,U?
(∥∥∥∇˜̀(θ?, Y )

∥∥∥
∞
≥ λ

2

)
→ 0 (3.36)

as p→∞.

Proof. Recall the misspecified model log-likelihood function defined in (3.9), we have:

∇˜̀n(θ?;Y ) =
n∑
i=1

ε?ix̃i (3.37)

where we denote the deviance ε?i := Yi−µ?i, with µ?i = E(Yi|U?) = exp(〈x̃i,θ?〉)
1+exp(〈x̃i,θ?〉) , and

x̃i denotes the i-th row of the augmented matrix XA.

95



From the above we have

∥∥∥∇˜̀n(θ?;Y )
∥∥∥
∞

= max
j=1:(p+q)

|〈ε?, x̃·,j〉| (3.38)

where ε? = (ε?1, . . . , ε?n), x̃·,j is the jth column of matrix XA = (X,Z).

By an equivalent transformation, for any j-th entry of ∇˜̀n(θ?; y), j = 1, . . . , p+

q, we have

P(Y,U?)

(
n∑
i=1

ε?ix̃ij >
λ

2

)
= inf

t≥0
P(Y,U?)

[
exp

(
t

n∑
i=1

ε?ix̃ij

)
> exp

(
tλ

2

)]

Apply Markov’s inequality to the above, we get

P(Y,U?)

(
n∑
i=1

ε?ix̃ij >
λ

2

)
≤ inf

t≥0

EY,U?
[
n∏
i=1

etx̃ij(Yi−µ?i)
]

etλ/2
(3.39)

For the numerator in (3.39) above, we observe that condition on random ef-

fect U?, the random variables (Yi − µ?i) ∈ [−1, 1] , i = 1, . . . , n are zero-mean, sup-

ported on interval [−1, 1]. So they are sub-Gaussian random variables satisfying

EU?
[
et(Yi−µ?i)

]
≤ et

2/2. Then we have:

EY,U?

[
n∏
i=1

etx̃ij(Yi−µ?i)

]
= EU?

[
n∏
i=1

EY
[
etx̃ij(Yi−µ?i)|U?

]]

≤ EU?

[
n∏
i=1

e
t2x̃2ij

2

]

= exp

(
t2

2
‖x̃·,j‖2

2

)
(3.40)
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Now back to (3.39) we have

PY,U?

(
n∑
i=1

ε?ix̃ij >
λ

2

)
≤ inf

t≥0

EY,U?
[
n∏
i=1

etx̃ij(Yi−µ?i)
]

etλ/2

≤ inf
t≥0

exp

(
t2

2
‖x̃·,j‖2

2 −
λ

2
t

)
= exp

(
− λ2

4 ‖x̃·,j‖2

) (3.41)

By symmetry we get the following

PY,U?

(∣∣∣∣∣
n∑
i=1

ε?ix̃ij >
λ

2

∣∣∣∣∣
)
≤ 2 exp

(
− λ2

4 ‖x̃·,j‖2
2

)

≤ 2 exp

(
− λ2

4n|||XA|||2∞

) (3.42)

where |||XA|||∞ = maxj=1,...,p+q ‖x̃·,j‖∞ by definitions of |||XA|||∞ and ‖x̃·,j‖∞.

To proceed with the above j-th component result, we apply a simple union

bound argument and get the followng

PY,U?
(∥∥∥∇˜̀n(θ?;Y )

∥∥∥
∞
>
λ

2

)
≤ 2(p+ q) exp

(
− λ2

4n|||XA|||2∞

)

= 2 exp

(
log(p+ q)− λ2

4n|||XA|||2∞

) (3.43)

If we choose λ such that 2 log(p+ q) = λ2

4n|||XA|||2∞
, we can get

PY,U?
(∥∥∥∇˜̀n(θ?;Y )

∥∥∥
∞
>
λ

2

)
≤ 2

p+ q
(3.44)

Thus as problem dimension p → ∞, ‖∇`n(θ?; y)‖∞ ≤
λ
2

holds with probability
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converging to 1.

To show that for some positive constant
¯
νC,

¯
νC(U?) ≥

¯
νC with high probability,

it is sensible to control the random effect noise level σ. We show this in the following

lemma:

Lemma III.5. For a fixed λ > 0 and σ ≤ 2
¯
νC

cν̄Z
√

log(n)
, it holds that

PY,U? (
¯
νC (U?) ≤

¯
νC)→ 0

as n, p→∞.

Proof. Recall the cone C := {v ∈ Rp+q : ‖vSC‖1 ≤ 3 ‖vS‖1}, S is the support of θ?.

Now we denote C1 = C∩{v : ‖v‖2 = 1}, and θ?1 = (β?, U1), θ?2 = (β?, U2), where β? is

the true covariate coefficient vector, U1, U2 are any q-dimensional standard Gaussian

random vectors with a noise level σ to be specified.
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We have:

|̄νC(U1)−
¯
νC(U2)| =

∣∣∣∣ inf
v∈C1

{
vT
(
XTWθ?1X

)
v
}
− inf

v∈C1

{
vT
(
XTWθ?2X

)
v
}∣∣∣∣ /n

≤
∣∣vT2 XTWθ?1Xv2 − vT2 XTWθ?2Xv2

∣∣ /n
( inf
v∈C1

{
vT
(
XTWθ?2X

)
v
}

is attainable at some v2 ∈ C1)

≤ 1

n

n∑
i=1

|(Wθ?1)ii − (Wθ?2)ii| · [(Xv2)i]
2

=
1

n

n∑
i=1

|g′′′i (tmi)| |〈zi,·, U1 − U2〉| [(Xv2)i]
2

(there exists vector tmi lies between θ?1 and θ?2)

≤
max1≤i≤n

{
[(Xv2)i]

2}
n

·
n∑
i=1

g′′i (tmi) |〈zi,·, U1 − U2〉|

≤ c

4
max
1≤i≤n

|〈zi,·, U1 − U2〉|

(3.45)

Where c = |||Xv2|||2∞ > 0 in the above.

Now, let θ?1 = θ? = (β?, U?), which is the true parameter vector; and θ?2 = (β?, 0),

a deterministic parameter vector which consists the true model fixed effect covariate

coefficients β?.

Let
¯
νC(0) := infv∈C,‖v‖2=1

{
vT
(
XTW(β?,0)X

)
v
}
/n, which is a deterministic quantity.

It is known that if matrix X ∈ Rn×p is formed by independently sampling each row

Xi ∼ N(0,Σ), which is referred to as the Σ-Gaussian ensemble, then with high prob-

ability we have
¯
νC(0) > 0. (Raskutti et al. (2010); Negahban et al. (2012)). Rudelson

and Zhou (2011) extends this result to the cases of sub-Gaussian designs, allowing

substantial dependencies among the covariates, such that sub-Gaussian ensembles X

also has its corresponding
¯
νC(0) > 0.
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Let t be any positive number, we inspect the following:

P [|̄νC(U?)−
¯
νC(0)| ≤ t] ≤ P

[
max
1≤i≤n

|〈zi,·, U?〉| ≤
4t

c

]
≤

n∑
i=1

P
[
|〈zi,·, U?〉| ≤

4t

c

]
(union bound)

≤ 2
n∑
i=1

exp

(
− 8t2

c2σ2 ‖zi,·‖2
2

)
(Gaussian tail bound)

≤ 2 exp

(
log(n)− 8t2

c2σ2qν̄2
Z

)
(3.46)

Where ν̄2
Z = |||Z|||2∞ and c = |||XA

¯
νC(0)|||2∞ > 0 in the above. So if one chooses the

standard deviation σ of the random effect variable U? as σ ≤ 2t/(cν̄Z
√
q log(n)), and

let t =
¯
νC(0)/2, then we have:

P
[
|̄νC(U?)−

¯
νC(0)| ≤ ¯

νC(0)

2

]
≤ 2

n
(3.47)

That is, if one can choose the random effect variable U? ∼ N(0, σ2Iq) such that

σ ≤ ¯
νC(0)

cν̄Z
√
q log(n)

, then with probability at least 1 − 2
n
,

¯
νC(U?) ≥

¯
νC(0)/2 > 0. So we

find the positive constant to be
¯
νC =

¯
νC(0)/2, such that

¯
νC(U?) ≥

¯
νC > 0 with high

probability.

3.4 Numerical Simulation

In the simulation study for the fixed effect approximation algorithm, we have

generated data X,Z, Y and parameters β?, U? according to section 7.1 in Chapter 1.

In the first simple simulation study below, we set sample size N = 200, fixed effect
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size (problem dimension) p = 50, in which randomly selected 5 β?j’s are non-zero.

The number of non-zero singular values of the Gaussian random effects covariance

matrix is q = 2.

The following plots presents the simulation results, based on 18 repeated runs

on independently generated data sets. The x-axis denotes each of the independent

run, while the y-axis denotes different performance metrics.

Compared with the two major algorithms in chapter 1, the fixed effect approx-

imation algorithm performs similarly in terms of estimation errors and sparsity re-

covery. The average estimation errors of the fixed effect approximate solutions are

around 0.65, while those of the stochastic proximal gradient and second order ap-

proximate solutions are around 0.75. Its sparsity recovery is comparable to those of

the stochastic proximal gradient and second order approximate algorithms. As sen-

sitivity of a solution captures“how much true effects (non-zero coefficients) does the

algorithm find”, there is only one instance out of 18 runs the fixed effect approximate

solution missed one true effect, which is in general performing slightly better than

the second order approximate and stochastic proximal gradient algorithms. The pre-

cision of a solution measures“among those non-zero coefficients in the solution, how

much are true effects”, and we can see that the fixed effect approximate solution is

over covering the non-zero coefficients in a few cases, slightly more than that of the

other two algorithms, but overall performs similarly.

Next, we will conduct a comprehensive numerical experiment to explore the per-

formance of the fixed effects approximate algorithm with respect to different problem

dimensions p, random effect rank q, and random effect noise level σ. As our estima-

tion consistency theory points out that these three design quantities affect the fixed
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Figure 3.1:
N200p50s5sigma1.5 step size γ = 0.005 Stochastic proximal gradient,
second order (quadratic) approximate, and fixed effects approximate al-
gorithms.

effects approximate solution performance the most.

We generate data as before, but let the training sample size equals 200, and

testing sample size equals 100, 5 non-zero true fixed effects in all cases. We run

one experiment on each of the following problem design: fixed effect dimensions
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p = 50, 100, 200, 250, random effect ranks q = 2, 5, 7, 10, and random effect noise

levels σ = 0.1, 1.5, 2.5, 3.5. So in total, for each of the three algorithms: fixed effects

approximate (FEA), stochastic proximal gradient (SPG), second order approximate

(SOA), we have 4× 4× 4 = 64 different settings. The results are tabulated below.

Table 3.1:
Relative estimation error of fixed effect approximate (FEA) vs. stochastic
proximal gradient (SPG) and second order approximate (SOA) algorithms

p = 50

σ = 0.1 σ = 1.5 σ = 2.5 σ = 3.5

FEA SPG SOA FEA SPG SOA FEA SPG SOA FEA SPG SOA

q = 2 0.63 0.56 0.56 0.57 0.64 0.67 0.58 0.58 0.75 0.73 0.72 0.82
5 0.61 0.53 0.53 0.55 0.73 0.71 0.66 0.94 0.93 0.68 1.0 1.0
7 0.44 0.39 0.39 1.0 0.73 0.83 1.0 0.96 0.95 1.0 1.0 1.0

10 0.57 0.80 0.43 0.69 0.67 0.70 0.71 0.68 0.95 0.92 1.0 0.97
p = 100

q = 2 0.62 0.55 0.45 0.57 0.39 0.67 0.73 0.74 0.84 0.58 0.69 0.86
5 0.65 0.59 0.59 0.60 0.58 0.82 0.52 0.79 0.81 0.77 0.72 0.96
7 0.55 0.35 0.56 0.87 0.87 0.88 0.94 0.78 0.99 1.0 1.0 1.0

10 0.63 0.31 0.31 0.79 0.73 0.84 0.88 0.87 0.92 1.0 0.95 0.96
p = 200

q = 2 0.50 0.40 0.40 0.57 0.56 0.62 0.58 0.63 0.64 0.58 0.69 0.66
5 0.80 0.64 0.64 0.81 0.72 0.73 0.68 0.79 0.86 0.83 1.0 0.92
7 0.36 0.37 0.44 0.87 0.69 0.82 0.74 0.72 0.98 1.0 0.76 1.0

10 0.64 0.43 0.56 0.86 0.81 0.86 1.0 0.90 0.92 1.0 0.90 0.94
p = 250

q = 2 0.67 0.68 0.55 0.57 0.64 0.64 0.70 0.65 0.70 0.70 0.79 0.82
5 0.70 0.37 0.59 0.73 0.74 0.76 0.90 0.81 0.91 1.0 0.90 1.0
7 0.65 0.66 0.59 0.70 0.69 0.82 0.88 0.96 0.95 1.0 1.0 1.0

10 0.72 0.52 060 0.85 0.82 0.80 0.83 0.92 0.93 0.87 0.92 0.91

The `2 norm relative estimation error is defined as
∥∥∥β̂ − β?∥∥∥

2
/‖β?‖2, where β?

is the true parameter vector. Reading the above results corresponding to our estima-

tion error bound theorem III.1, we recall that for generated design matrices X and

Z, XA = (X,Z), and |||XA|||∞ = 3.81 when p = 50, |||XA|||∞ = 4.55 when p = 250.

The error bounds
∥∥∥β̂λ − β?∥∥∥

2
≤ 48

¯
νC

√
2|||XA|||∞s? log(p+q)

n
have been well satisfied. We

also observe that for the fixed sample size n = 200 and true effect size s? = 5,
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when the random effect factor dimension q increases, smaller random effect noise σ

will in general have lower estimation errors, this is in line with the requirement that

σ <
2
¯
νc

c|||Z|||∞
√
q log(n)

for the estimation error bound to hold. Also, from the error bound

we can say that when problem dimension p increases, the upper bound will enlarge,

so as the actual estimation errors show the increasing trend.

Table 3.2:
Harmonic Mean of Sensitivity and Precision for FEA, SPG and SOA
algorithms

p = 50

σ = 0.1 σ = 1.5 σ = 2.5 σ = 3.5

FEA SPG SOA FEA SPG SOA FEA SPG SOA FEA SPG SOA

q = 2 0.67 0.48 0.48 0.63 0.83 0.71 0.83 0.83 0.91 1.0 1.0 0.91
5 0.47 0.38 0.38 0.77 0.91 0.91 0.83 0.57 0.75 0.91 NaN NaN
7 0.53 0.48 0.77 NaN 0.43 0.77 NaN 0.50 0.46 NaN NaN NaN

10 0.67 0.18 0.48 0.77 0.71 0.77 0.83 0.59 0.57 0.67 NaN 0.50
p = 100

q = 2 0.67 0.59 0.42 0.63 0.22 0.59 0.83 0.89 0.80 1.0 0.67 0.73
5 0.71 0.53 0.53 0.40 0.23 0.80 0.31 0.83 0.62 0.80 0.10 0.33
7 0.53 0.18 0.53 0.80 0.77 0.62 0.57 0.14 0.28 NaN NaN NaN

10 0.77 0.20 0.20 0.75 0.83 0.53 0.75 0.67 0.46 NaN 0.29 0.44
p = 200

q = 2 0.36 0.26 0.26 0.30 0.30 0.42 0.32 0.42 0.45 0.37 0.67 0.50
5 0.89 0.26 0.26 0.75 0.47 0.42 0.44 0.73 0.60 0.57 NaN 0.55
7 0.20 0.17 0.26 0.80 0.15 0.57 0.53 0.18 0.67 NaN 0.23 0.29

10 0.59 0.13 0.29 0.75 0.73 0.75 NaN 0.50 0.57 NaN 0.55 0.50
p = 250

q = 2 0.53 0.47 0.22 0.34 0.45 0.48 0.91 0.56 0.91 0.67 0.91 1.0
5 0.77 0.15 0.37 0.50 0.42 0.43 0.67 0.38 0.50 NaN 0.50 NaN
7 0.71 0.63 0.36 0.50 0.28 0.59 0.62 0.04 0.50 NaN NaN NaN

10 0.83 0.18 0.30 0.91 0.67 0.71 0.53 0.71 0.60 0.62 0.73 0.62

The harmonic mean of sensitivity and precision is defined as

2

(1/sensitivity + 1/precision)
∈ (0, 1]

, it is a measure of the trade off in recovering the true non-zero effects while main-
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taining the model to be sparse. A value of the harmonic mean closer to 1 indicates

the sparsity pattern is closer to the true parameter vector. If this value attains 1,

then the solution exactly recovers the non-zero true effects. From the above results,

we can conclude that when random effect noise level σ is small, the sparsity recovery

is in general better for fixed effects approximate solutions.

From other numerical experiments we have carried out for the three algorithms,

we have found that the stochastic proximal gradient and second order approximate

algorithms generally perform better than fixed effect approximate model based algo-

rithm when the problem dimension p is large, say p = 2000, especially when random

effects dimension q are large to be around 30 ∼ 50.

3.5 Real Data Analysis

We apply the fixed effects approximate algorithm to the same breast cancer data

we have analyzed in chapter II, 2.6.

Recall that the original data set (Vijver et al. (2002)) includes 295 patients

consecutively enrolled. There are 24496 gene expression intensity measurements to

start with. Our pre-processing screening has selected 1083 genes’s expression mea-

surements as the fixed effects, on top of a few clinical variables “ESR1”, “NIH”,

“StG”, and “Posnodes” as the clinical characteristic for each patient. To model the

5-year distant metastasis event, which is coded {0, 1} by the mixed effects logistic

regression model, the Gaussian random effects variance-covariance matrix ZTZ is

similarly generated as in chapter II.
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To describe the fitting and model selection schemes, the fixed effects approxi-

mate algorithm involves Lasso regularization, and model selection is done by solving a

sequence of Lasso regularized optimization problems with different penalty amount

λ’s, this is usually called “regularization path” in the literature (Friedman et al.

(2010a)). For a given sequence of lambda, we run the algorithm for each lambda,

and plot the solution path along the sequence of lambdas from largest to smallest.

We will regard the genes that constantly stays in the solution path to be potential

prognostic signatures.

In the following solution path plots, we have fixed the random effect factor di-

mension q = 2. We use Lasso regularization with a sequence of λ = 38, 36, 34, . . . , 12.

Notice the x-axis is order reversed, so that log of lambda values decreases from left

to right.
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Figure 3.2:
Solution paths for mixed effect logistic regression on breast cancer data,
q = 2

We observe that there are 4 genes selected by FEAME which stay along the

solution paths, they are named ”NM˙003258”, ”NM˙003662”, “NM˙003981” and

”Contig41977˙RC” in the data set; “Contig57584˙RC” appeared in the beginning

of the path but subsided later when more gene expressions are selected, while ”Con-

tig41977˙RC” pops up when λ gets a bit smaller and stays in the path. This result

has ”Contig41977˙RC” overlapped with those in stochastic proximal gradient and
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second order approximate algorithm’s solution path. Except the limited overlap of

result compared with previous algorithms, we have also noticed that the number of

genes selected in the fixed effects approximate algorithm solution path tend to in-

crease more continuously than those of stochastic proximal gradient and second order

approximate algorithms, partly because we have treated the random effects as fixed

now, which reduces much of the noise (σ = 1.0 in our experiments) from the random

effects in the model. This matters because the gene expression measurements are of

a small scale in this data set, and is more prone to noise in the model.

We have also run the algorithm when we set the random effects dimension q = 5

and get the following result:
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Figure 3.3:
Solution paths for mixed effect logistic regression on breast cancer data,
q = 5

This time the genes selected from the solution path are ”NM˙003258”, ”NM˙003662”,

“NM˙003981”, “NM000903”, “M94096”, “AF055033” and “Contig41977˙RC” which

appears in a later stage when more genes are selected. The overlap with q = 2

result are NM˙003258”, ”NM˙003662”, “NM˙003981” and “Contig41977˙RC”. Again

we only provide these results as contenders for future clinical study, however their

validity still needs to be proved by scientific means.
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3.6 Proofs

We give the proof of Proposition III.3 below:

Proposition III.6. For the function gα(h) defined in (3.28), we have:

gα(h)− gα(0)− g′α(0)h ≥ g′′α(0)
h2

|h|+ 2
, for all α, h ∈ R

Proof. Fix any α ∈ R. For all h ∈ R, we have

g′α(h) =
exp(α + h)

1 + exp(α + h)

g′′α(h) = g′α(h)(1− g′α(h))

g′′′α (h) = g′′α(h)(1− 2g′α(h))

Observe that g′α(h) ∈ (0, 1), g′′α(h) > 0. And, 1 − 2g′α(h) ∈ (−1, 1), so |g′′′α (h)| ≤

g′′α(h),∀h ∈ R. We repeatedly apply the theorem of calculus for the center quantity

in h in the following, for all h > 0:

−1 ≤ (log(g′′α(h)))
′ ≤ 1

−h ≤ log

(
g′′α(h)

g′′α(0)

)
≤ h

g′′α(0)e−h ≤g′′α(h) ≤ g′′α(0)eh

g′′α(0)(1− e−h) ≤g′α(h)− g′α(0) ≤ g′′α(0)(eh − 1)

g′′α(0)(e−h + h− 1) ≤gα(h)− gα(0)− g′α(0)h ≤ g′′α(0)(eh − h− 1)

(3.48)

On another hand, for all h ≤ 0, similar to the above procedure we have

g′′α(0)(eh − h− 1) ≤ gα(h)− gα(0)− g′α(0)h ≤ g′′α(0)(e−h + h− 1) (3.49)
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So for all h ∈ R we have

g′′α(0)(e−|h| + |h| − 1) ≤ gα(h)− gα(0)− g′α(0)h ≤ g′′α(0)(e|h| − |h| − 1) (3.50)

In addition, we verify that the following holds for all x ≥ 0:

e−x + x− 1 ≥ x2/(x+ 2) . (3.51)

Denote

f(x) = e−x + x− 1− x2

x+ 2

Note that f(0) = 0, and for x > 0, we have

f ′(x) =
4

(x+ 2)2
− e−x

=
4ex − x2 − 4x− 4

ex(x+ 2)2

=
4
∑∞

i=0 x
i/i!−x2 − 4x− 4

ex(x+ 2)2

>
x2

ex(x+ 2)2

> 0

So for all h ∈ R we have,

g(h)− g(0)− g′(0)h ≥ g′′(0)
h2

|h|+ 2
(3.52)

111



Chapter IV

Iterated Filtering Algorithms Revisited

4.1 Introduction

Iterated filtering algorithms are a class of stochastic algorithms recently pro-

posed in the statistical literature (Ionides et al. (2006, 2011, 2015)) to address

some uniquely challenging optimization problems that arise when dealing with state

space models. A state space model is comprised of a latent (un-observed) state

X1:T = (X1, . . . , XT ) ∈ X T with distribution fβ, and an observation variable Y1:T =

(Y1, . . . , YT ) ∈ YT with conditional distribution qβ(·|x) given X1:T = x. The param-

eter β ∈ Θ ⊆ Rp is unknown and the problem at hand is the estimation of β from

a realization y1:T of Y1:T . Since the state variable is not observed, the log-likelihood

function of the model is

`(β)
def
= log

∫
XT

qβ(y1:T |x1:T )fβ(x1:T )dx1:T . (4.1)

State space models are widely used in science and engineering (Cappé et al. (2005);

Anderson and Collins (2007); Fernandez-Villaverde and Rubio-Ramirez (2007); Er-

gun et al. (2007); Newman et al. (2008)), and the problem of maximizing the log-
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likelihood function (4.1) is very common. We should add that the function ` is not

concave in general, so local modes and stationary points are typically the best one

can hope for.

The problem of maximizing (4.1) is particularly difficult when dealing with state

space models for which the density of the state model fβ is intractable (not easily

computable). This is the case for instance when the state variable (X1, . . . , XT ) is

obtained from a diffusion process observed at some discrete time {t1, . . . , tT}. This

type of state variable models are commonly used in the applications (see for instance

Ionides et al. (2011) and the references therein).

Notice that the integral in (4.1) is intractable in general, so direct access to the

function ` is rarely available. One of the simplest methods available to approach this

optimization problem is to approximate e` (the likelihood function) by Monte Carlo

(importance sampling) estimate:

L̃N(β) =
1

N

N∑
i=1

qβ(y1:T |X(i)
1:T )fβ(X

(i)
1:T )

p(X
(i)
1:T )

, where X
(i)
1:T

i.i.d.∼ p.

One can then proceed to maximize L̃N using standard optimization tools. Fearnhead

(2008) reviews several examples where this approach was successful. However that

success hinges on the choice of the proposal density q: the method produces terri-

bly large variance unless p is carefully chosen. Sequential Monte Carlo algorithms

(instead of importance sampling) typically produce better estimates of L̃N(β). But

these estimates are typically discontinuous functions of β. Another issue is the well-

known fact that approximating and maximizing the likelihood function e` itself is

typically not a numerically stable problem (it is more susceptible to over/under-flow).

Another well-established strategies for maximizing the function ` is the expec-

tation maximization (EM) algorithm and Stochastic approximation (SA). These al-
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gorithms are described at length in Cappé et al. (2005). The Q function for the EM

algorithm is

Q(β, β′) =

∫
XT

log [qβ′(y1:T |x1:T )fβ′(x1:T )] πβ(x1:T |y1:T )dx1:T , (4.2)

where πβ(x1:T |y1:T ) is the conditional distribution of X1:T given Y1:T = y1:T . Similarly

the gradient of the log-likelihood function ` is

∇`(β) =

∫
XT
∇ log [qβ(y1:T |x1:T )fβ(x1:T )]πβ(x1:T |y1:T )dx1:T . (4.3)

The EM algorithm is based on (4.2); whereas SA uses (4.3). Due to their integral

form, neither of these functions is readily available, but Monte Carlo approximation

can be obtained by sampling from the filtering distribution πβ(x1:T |Y1:T ). This can

be done by Markov Chain Monte Carlo (MCMC) or sequential Monte Carlo (SMC).

There is a large literature on MCMC/SMC driven EM and SA algorithms for com-

puting stationary points of ` (Cappé et al. (2005)). One important limitation of the

EM and SA algorithms is that they cannot be easily applied when dealing with state

space models for which the density of the state is intractable.

One clever strategy devised in the finance literature to dealing with the case of

discretely observed diffusion is data-augmentation (Eraker (2001); Ola et al. (2001);

Roberts and Stramer (2001); Beskos et al. (2006)). If t1 < . . . < tT denote the time

points of the latent observations X1:T , the basic idea is to add more time points to

get t′1 < . . . < t′K , such that {t1, . . . , tT} ⊂ {t′1, . . . , t′K}, and such that the Euler

scheme approximation of the diffusion process based on (Xt′1
, Xt′1

, . . . , Xt′K
) is rea-

sonably accurate. The EM and SA strategies can then be adapted to the augmented

model. The approach has limitation though: the mixing of the resulting algorithm

deteriorates with the amount of additional data imputation, and the posterior for
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the volatility parameter becomes severely degenerate as the number of augmented

variable increases (Roberts and Stramer (2001); Beskos et al. (2006)).

Iterated filtering algorithms give a simple, yet effective strategy to deal with

state space in general. The method is particularly effective in dealing with state

space models where the density of the state is intractable. The goal of this work is

to give a broad presentation of iterated filtering algorithms, and relate more closely

these algorithms to well-known stochastic gradient methods. These new connections

will allow us to derive new convergence results for iterated filtering algorithms that

are sharper than those of Ionides et al. (2011). Although iterated filtering algorithms

are commonly used to address nonconvex optimization problems, the theoretical

results established here assume strong convexity. The general convex case and the

nonconvex case are left as possible future research. By and large the convergence

analysis of stochastic optimization algorithms in nonconvex setting remains an open

problem.

The rest of the manuscript is organized as follows. In Section 4.2 we introduce it-

erated algorithms and explores its connection with gradient and proximal algorithms.

We focus on the problem of minimizing composite objective functions as commonly

seen in high-dimensional statistics, and the main iterated filtering algorithm that we

propose is Algorithm 5, as well as its block coordinate version described in Algo-

rithm 6. We illustrate the behavior of the algorithm in Section 4.4, using a mixed

effects logistic regression model. In Section 4.3 we establish the convergence of Al-

gorithm 6 under a strong convexity and boundedness assumption. Technical details

are gathered in Section 4.5.
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4.2 Iterated Filtering Algorithms

We consider the problem of minimizing a function F : Rp → (−∞,+∞], that we

think of as a negative log-likelihood function, or a penalized negative log-likelihood

function. For σ > 0, and u ∈ Rp, let Kσ(u, ·) denote the density on Rp of the normal

density N(u, σ2Ip). Given σ > 0, and β ∈ Rp, we define

BFσ,β(z)
def
=

e−F (z)Kσ(β, z)∫
Rp e

−F (u)Kσ(β, u)du
, z ∈ Rp.

And we introduce the map ΠF
σ : Rp → Rp by

ΠF
σ (β)

def
=

∫
zBFσ,β(z)dz.

The map ΠF
σ is closely related to the proximal map of F defined as

ProxFσ (β)
def
= Argmin u∈Rp

[
F (u) +

1

2σ2
‖u− β‖2

]
= Argmin u∈Rp Bσ,β(u).

In other words ΠF
σ (β) is the mean of BFσ,β, whereas ProxFσ (β) is its mode. Therefore,

we shall sometimes refer to the map ΠF
σ as the pseudo-proximal map of F . It is

well known that one can approximate the minimizer of F by iterating the proximal

map ProxFσ (Parikh and Boyd (2013b)). Such iterations schemes are also known as

implicit gradient schemes. When F is differentiable, its minimizers F can also be

found by iterating the gradient map

GF
σ (β)

def
= β − σ2∇F (β), β ∈ Rp, (4.4)

where ∇F denotes the gradient of F . Such schemes are also known as explicit

gradient schemes. We introduce here the pseudo-proximal ΠF
σ as an alternative to
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the proximal and gradient maps. The following result initially due to Ionides et al.

(2011) and improved by Doucet et al. (2013) show that ΠF
σ is closely related to the

gradient map GF
σ .

Proposition IV.1. Suppose that F is four times continuously differentiable. Then

for any compact set C ⊂ Rp, we can find σ0 > 0 c > 0 such that

sup
0<σ≤σ0

sup
β∈C
‖ΠF

σ (β)−GF
σ (β)‖2≤ cσ4.

Proof. See Theorem 1 of Doucet et al. (2013).

The next result shows that when σ is small, the pseudo-proximal map ΠF
σ and

the proximal map ProxFσ are also close.

Proposition IV.2. Suppose that F is differentiable and its gradient is Lipschitz with

constant L. Then for all β ∈ Θ, and all σ > 0 such that σ2L ≤ 1,

‖Πσ(β)− Proxσ(β)‖ ≤ σ
√
p
(
1 + Lσ2

)p/4
. (4.5)

Proof. See Section 4.5.1.

There are several classes of problems – in state space modeling and more gen-

erally in modeling with latent variables – where the map ΠF
σ proves much easier

to approximate by Monte Carlo. Indeed, one can easily approximate ΠF
σ by the

importance sampling estimate

HF
σ,N(β)

def
=

∑N
i=1 ϑie

−F (ϑi)∑N
i=1 e

−F (ϑi)
, where ϑ1:N

i.i.d.∼ Kσ(β, ·). (4.6)

In the last display the notation U1:K is a short for the vector (U1, . . . , UK). The

performance of iterated filtering algorithms hinges on the fact HF
σ,N(β) is a good
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approximation for ΠF
σ (β), for large N . This is summarized in the next result.

Lemma IV.3. Let C ⊂ Rp be a compact set. Then there exists σ0 > 0, and a finite

constant c0 such that

sup
0<σ<σ0

sup
β∈C

∣∣E [HF
σ,N(β)− ΠF

σ (β)
]∣∣+ E

[(
HF
σ,N(β)− ΠF

σ (β)
)2
]
≤ c0

N
.

Proof. This follows from Theorem 7 of Ionides et al. (2011).

This leads to the following stochastic algorithm to minimize F . Let {σk, k ≥ 0}

be a sequence of positive numbers, and {Nk, k ≥ 0} a sequence of integers.

Algorithm 4 Iterated Filtering Algorithm I

Given β(k) generate ϑ1:Nk

i.i.d.∼ Kσk(β
(k), ·), and compute

β(k+1) = HF
σk,Nk

(β(k)).

Remark IV.4. Variants of this algorithm can be easily constructed depending on

the application. For example, in the case of the state space model discussed in the

introduction with log-likelihood function given in (4.1), the map ΠF
σ takes the form

∫
Θ

∫
XT ϑqϑ(y1:T |x1:T )Kσ(β, ϑ)fϑ(x1:T )dx1:Tdϑ∫

Θ

∫
XT qϑ(y1:T |x1:T )Kσ(β, ϑ)fϑ(x1:T )dx1:Tdϑ

,

which can be approximation for instance by importance sampling by drawing ϑj ∼

Kσ(β, ·), and (X1:T )j|ϑj ∼ fϑj(·) for j = 1, . . . , N , and taking

∑N
j=1 ϑ

(j)qϑ(j)(y1:T |X(j)
1:T )∑N

j=1 qϑ(j)(y1:T |X(j)
1:T )

.

Note that this estimator does not require the computation of the density of the latent

variable X1:T , it requires only the ability to sample from it. The temporal dynamics
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of the state space can be further exploited to construct more robust sequential Monte

Carlo sampler approximation of ΠF
σ (β). We refer the reader to Ionides et al. (2011)

for more details.

Remark IV.5. It is worth pointing out that Algorithm 4 differs slightly from the

original iterated filtering algorithm of Ionides et al. (2006, 2011). Indeed, in these

works Proposition IV.1 is used to approximate the gradient ∇F (β) by

∇̂F (β)
def
=

1

σ2

(
β −HF

σ,N(β)
)
,

which is then used in a standard gradient update with step-size γ > 0:

β(k+1) = β(k) − γ∇̂F (β(k)).

For γ = σ2, one recovers the same iteration as in Algorithm 4, however Proposition

IV.1 shows that this strategy is redundant. Furthermore, the computation of ∇̂F (β)

can be unstable when σ is small.

4.2.1 The Case of Composite Function

In many problems of interest the function F takes the form

F = f + g,

where f : Rp → R is a smooth function, and g : Rp → (−∞,+∞] is non-smooth

but is simple enough for its proximal – denoted Proxgσ – to be easily computed. In

this setting the proximal map of F itself is typically intractable. The hugely success-

ful forward-backward splitting algorithm (Beck and Teboulle (2010); Combettes and

Pesquet (2015b); Parikh and Boyd (2013b)) comes to the rescue, and leads to the
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iterations

β(k) = Proxgσ
(
β(k−1) − σ2∇f(β(k−1))

)
.

In many statistical problems involving latent variables, the gradient ∇f(β) is typi-

cally intractable and is approximated by Monte Carlo or Markov Chain Monte Carlo

simulation. The resulting stochastic optimization algorithm has been investigated by

several authors in recent year (Rosasco et al. (2014); Combettes and Pesquet (2015a);

Atchadé et al. (2017)). However this strategy can prove difficult in latent variable

models where the density of the latent variable is intractable. We propose an iter-

ated filtering algorithms whereby we replace the gradient map update Gf
σ(β) by the

pseudo-proximal update Πf
σ(β), leading to the deterministic iteration

β(k) = Proxgσ
(
Πf
σ(β(k−1)

)
.

If we approximate the pseudo-proximal map Πf
σ(β) by its Monte Carlo estimate as

in Algorithm 4, we obtain the following stochastic algorithm.

Algorithm 5 Iterated Filtering Algorithm II : Composite Objective Function

Given β(k), generate ϑ1:Nk

i.i.d.∼ Kσk(β
(k), ·), set H(k+1) =

∑Nk
i=1 ϑie

−f(ϑi)∑Nk
i=1 e

−f(ϑi)
, and compute

β(k+1) = Proxgσk
(
H(k+1)

)
.

4.2.2 Bloc Update Implementation

For large scale problems, it may be advantageous to use a block update strategy

to minimize F . We consider again the case where F is a composite function F = f+g,

and f(β) = f(β1, β2), and g(β1, β2) = g1(β1) + g2(β2). We focus on two blocks, but

the idea can be readily extended to any finite number of blocks. Suppose that the

dimension of βi is pi. For σ > 0, and ui ∈ Rpi , let Ki,σ(ui, ·) denote the density on

120



Rpi of the normal density N(ui, σ
2Ipi). Given βi ∈ Rpi , we define

H
(1,f)
σ,N (β1, β2)

def
=

∑N
i=1 ϑie

`(ϑ
(1)
i ,β2)∑N

i=1 e
`(ϑ

(1)
i ,β2)

, and H
(2,f)
σ,N (β1, β2)

def
=

∑N
i=1 ϑie

`(β1,ϑ
(2)
i )∑N

i=1 e
`(β1,ϑ

(2)
i )

,

where ϑ
(i)
1:N

iid∼ Ki,σ(βi, ·), i = 1, 2.

Algorithm 6 Block Update Iterated Filtering Algorithm: Composite Objective
Function

Given β(k) = (β
(k)
1 , β

(k)
2 ):

1. generate ϑ
(1)
1:Nk

i.i.d.∼ K1,σk(β
(k)
1 , ·), and compute H

(k+1)
1

def
= H

(1,f)
σk,Nk

(β
(k)
1 , β

(k)
2 ),

β
(k+1)
1 = Proxg1σk

(
H

(k+1)
1

)
.

2. generate ϑ
(2)
1:N

i.i.d.∼ K2,σk(β
(k)
2 , ·), and compute H

(k+1)
2

def
= H

(2,f)
σk,Nk

(β
(k+1)
1 , β

(k)
2 )

β
(k+1)
2 = Proxg2σk

(
H

(k+1)
2

)
.

4.3 Some Theory

We study here the convergence of Algorithm 6. Block coordinate descent algo-

rithms have attracted a lot of attention in recent years due due their ability to deal

with very large problems. The analysis of these algorithms has been considered by

several authors (Saha and Tewari (2013); Beck and Tetruashvili (2013); Bolte et al.

(2014)) for convex and nonconvex problems. However stochastic version of these

algorithms have received comparatively little attention1. We study Algorithm 6 by

adapting ideas from Atchadé et al. (2017). We make the simplifying assumption

1By stochastic we mean that the gradient update is stochastic, as opposed to stochastic block
coordinate descent algorithms where the randomness comes from a random selection of the blocks.
This latter class of algorithms have also been extensively studied in recent year (see for instance
Richtárik and Takáč (2014) and the references therein). These two types of stochastic block coor-
dinate descent algorithms lead to very different challenges
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that the function g is convex, and f is strongly convex, even though this assumption

does not hold in general with latent variable models. Convergence analysis under

convexity assumption can still be useful in nonconvex settings to understand the

local behavior of the algorithm around local modes. We should also note that the

ideas developed in the first part of the thesis can also be used here to show that in

the nonconvex case limit points of the optimization sequences are stationary points.

However we shall not pursue this here.

We assume the function ` satisfies the following.

Assumption IV.6. The function gi : Rpi → (−∞,+∞] is convex not identically

+∞, and lower semi-continuous. The function ` is four times continuously differen-

tiable on Rp and there exist finite constant 0 < µ ≤ L such that for all β ∈ Rp,

µIp � ∇(2)f(β) � LIp,

where Ip is the identity matrix of Rp, ∇(2)f denotes the Hessian matrix of f evaluated

at β, and A � B means that B − A is symmetric positive semi-definite.

Theorem IV.7. Assume AIV.6 and σ2
kL ≤ 1 for all k ≥ 1. Suppose also that the

sequence {β(k), k ≥ 0} produced by Algorithm 6 remains in a compact set C that

contains β?
def
= Argminu∈Rp F (β). Then there exists a finite constant C0 such that

E
[
‖β(k) − β?‖2

2

]
≤
(

1− µ

4

)k
E
[
‖β(0) − β?‖2

2

]
+ C0

(
1

Nk

+ σ4
k

)

Proof. See Section 4.5.2.
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4.4 Numerical Experiments

4.4.1 Toy Example: Comparing Algorithm 4 and the Iterated Filtering

of Ionides et al. (2011)

In this section we use a toy proble to illustrate the behavior of Algorithm 4

(that we refer below as PROX) can perform a comparison with the initial iterated

filtering of Ionides et al. (2011) (that we refer below as IF1). We consider a simple

bivariate discrete time Gaussian autoregressive process, with Gaussian measurement

error. We chose this model so that the Monte Carlo calculations can be verified using

a Kalman filter. The model is given by the state space forms:

Xn|Xn−1 = xn−1 ∼ N (αxn−1, σ
>σ),

Yn|Xn = xn ∼ N (xn, I2).

where α, σ are 2× 2 matrices and I2 is 2× 2 identity matrix. We simulate the data

set with the following parameters:

α =

 α1 α2

α3 α4

 =

 0.8 −0.5

0.3 0.9

 , σ =

 3 0

−0.5 2

 .
We set the number of time points N = 100 and initial starting point X0 = (−3, 4).

We estimate parameters α2 and α3 for this model using both PROX and IF1. We

run our experiment with 25 iterations (M = 25) and with 1000 particles (J = 1000)

on a Linux computer with 12 cores 3.07GHz processors. As seen from Fig. 4.1,

while the maximum likelihood (ML) value obtained from both algorithms appear to

be fairly close to the true ML value – vertical broken line – the distribution of the

estimate produced by Algorithm 4 appear to smaller bias and a smaller variance,

123



−486 −484 −482 −480 −478

0.
0

0.
2

0.
4

0.
6

0.
8

−486 −484 −482 −480 −478

log likelihood

IF1
PROX

Figure 4.1:
Comparison of estimators for the linear, Gaussian toy example, showing
the densities of the MLEs estimated by the PROX and IF1 methods.
The parameters α2 and α3 were estimated, started from 200 randomly
uniform initial values over a large rectangular region [−1, 1]× [−1, 1].

implying better convergence rate in this case. In addition, Algorithm 4 seems to be

more robust to the initialization of the algorithm, since we start at random values

uniformly in a large rectangle. Furthermore as shown in Table 4.4.1 PROX has

similar computational costs as IF1.

For this toy example, Fig. 4.2 shows the results of 40 Monte Carlo replications

so that we can see the clustering of the MLE estimates around the true MLE. For

PROX, most of the replications clustered near the true MLE while none of them

stays in a lower likelihood region. Fig. 1, can be viewed as a statistical summary of

Fig. 4.2, with 200 Monte Carlo replications. These results indicate that PROX is

clearly the better of the investigated methods for this test compared to IF1.

We also checked how the methods compared when given additional computa-

tional resources, setting M = 100 iterations and J = 10000 particles, with the

random walk standard deviation decreasing geometrically from 0.02 down to 0.0018

for both methods. In this situation, PROX is better than IF1. Both methods have
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Figure 4.2:
Comparison of different estimators. The likelihood surface for the lin-
ear, Gaussian model, with likelihood within 2 log units of the maximum
shown in red, within 4 log units in orange, within 10 log units in yellow,
and lower in light yellow. The location of the MLE is marked with a
green cross. The black crosses show final points from 40 Monte Carlo
replications of the estimators: (A) IF1 method; (B) PROX method; Each
method, was started uniformly over the rectangle shown, with M = 25
iterations, N = 1000 particles, and a random walk standard deviation
decreasing from 0.02 geometrically to 0.011 for both α2 and α3.
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Figure 4.3:
The distributions of likelihoods corresponding to Monte Carlo MLE ap-
proximations estimated by IF1 and PROX methods for toy model. The
MLE is shown as a dashed vertical line (dark blue in electronic version).
The optimizations were started from 200 randomly uniform initial values
over a rectangle.

Table 4.1: Computation times, in seconds, for the toy example.

J = 200 J = 1000 J = 10000
IF1 1.332 3.653 36.564
PROX 1.329 3.640 36.594

comparable computational demands for given M and J .

In addition, average computational time of ten independent runs of each ap-

proach is given in Table4.4.1. Additional overheads for estimating score make the

computation time of IF1 a bit larger compared to computational time of PROX.

However, with complex models and large enough number of particles, these over-

heads become negligible and computational time of IF1 and PROX are similar.
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4.4.2 High-Dimensional Mixed Effects Logistic Regression Models

Although iterated filtering algorithms were developed specifically in the context

of state space models, we show here that they can also be employed to fit random

effects models. We focus on the high-dimensional logistic regression case.

Let X ∈ Rn×p, Z ∈ Rn×q. The i-th row of X is xi, and the i-column of Z is

zi. For a regularization parameter λ > 0, pλ : Rp → [0,∞) is a convex penalty.

The random effect logistic regression model leads to the problem of maximizing

F (β) = f(β) + pλ(β), where f is the negative penalized negative log-likelihood

function given by

f(β) = − log

∫
Rq

exp

[
n∑
i=1

yi (〈xi, β〉+ κ 〈zi, u〉)− log
(
1 + e〈xi,β〉+κ〈zi,u〉

)]
G(u)du,

where G is the density of N(0, Iq) on Rq, and κ > 0 is a noise parameter that we

assume known. In the sequel we take pλ(β) = λ‖β‖1. This problem falls squarely in

the framework developed above and Algorithm 5 applied to this problem becomes.

Algorithm 7 Iterated Filtering Algorithm solving mixed effects logistic regression

Given β(k):

1. Generate ϑ1:Nk

i.i.d∼ N(β(k), σkIp), and U1:Nk

i.i.d.∼ N(0, Iq).

2. For each 1 ≤ i ≤ Nk, compute

wj = exp

[
n∑
i=1

yi (〈xi, ϑj〉+ κ 〈zi, Uj〉)− log
(
1 + e〈xi,ϑj〉+κ〈zi,Uj〉

)]
,

3. Compute

β(k+1) = Proxpλσk

(
−
∑Nk

j=1 wjϑj∑Nk
j=1wj

)
.

When the dimension p is large, this joint update strategy is likely to perform
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poorly. The block update version (Algorithm 6) is straightforward to design, provides

a better alternative. The resulting algorithm is as follows.

Algorithm 8 Block Iterated Filtering Algorithm solving mixed effects logistic re-
gression

Given β(k):

1. Set β̄ = β(k), and s = 1.

(a) Generate U1:Nk

i.i.d.∼ N(0, Iq). For j = 1, . . . , Nk, set ϑj,` = β̄`, if ` 6= s, and
draw ϑj,s ∼ N(β̄s, σk). Compute

wj = exp

[
n∑
i=1

yi (〈xi, ϑj〉+ κ 〈zi, Uj〉)− log
(
1 + e〈xi,ϑj〉+κ〈zi,Uj〉

)]
, 1 ≤ j ≤ Nk

(b) Set

β̄s = Proxpλσk

(
−
∑Nk

j=1wjϑj∑Nk
j=1wj

)
.

(c) If s < p, set s = s+ 1, and go back to (a).

2. Set β(k+1) = β̄.

4.4.2.1 Numerical examples

We have carried out a comprehensive numerical study for the iterated filtering

algorithm compared with the stochastic proximal gradient and second order approx-

imate algorithms below. For the simulation data settings, we have kept the training

sample size to be 200, true non-zero fixed effects size to be 5, and testing sample size

to be 100 for model selection with respect to the regularization parameter λ’s. Data

generation is done according to section 2.5 of chapter II.

Then we run one experiment on each of the following problem design:s fixed

effect dimensions p = 50, 100, 200, 250, random effect ranks q = 2, 5, 7, 10, and ran-

dom effect noise levels σ = 0.1, 1.5, 2.5, 3.5. In total, for each of the three algorithms:
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iterated filtering (IF), stochastic proximal gradient (SPG), second order approximate

(SOA), we have 4× 4× 4 = 64 different settings. In each of these settings, we have

used Nk = 250 Monte Carlo particles in algorithm (8) above. The results are tabu-

lated below.

Table 4.2:
Relative estimation error for Iterated Filtering (IF), Stochastic Proximal
Gradient (SPG), and Second Order Approximate (SOA) algorithms

p = 50

σ = 0.1 σ = 1.5 σ = 2.5 σ = 3.5

IF SPG SOA IF SPG SOA IF SPG SOA IF SPG SOA

q = 2 0.39 0.73 0.47 0.64 0.69 0.71 0.62 0.46 0.72 1.0 0.78 0.80
5 0.35 0.36 0.46 1.01 0.60 0.82 1.0 0.95 0.99 1.0 0.82 1.0
7 0.59 0.49 0.49 1.0 0.55 0.74 1.0 0.46 0.92 1.0 0.78 0.92

10 0.36 0.73 0.46 1.0 0.55 0.81 1.0 0.78 0.92 1.0 0.79 0.98
p = 100

q = 2 0.54 0.45 0.45 0.69 0.53 0.73 0.71 0.61 0.83 0.92 0.65 0.91
5 0.36 0.43 0.43 0.93 0.66 0.86 1.0 0.82 0.97 1.0 0.77 0.98
7 0.41 0.50 0.67 0.99 0.82 0.87 1.01 0.80 0.95 1.0 0.86 1.0

10 0.57 0.66 0.66 1.0 0.69 0.81 1.0 0.66 0.89 1.0 1.0 1.0
p = 200

q = 2 0.39 0.41 0.41 0.43 0.75 0.47 0.61 0.71 0.66 0.66 0.66 0.68
5 0.59 0.50 0.66 1.0 0.58 0.72 1.0 0.66 0.85 1.0 1.0 0.98
7 0.74 0.49 0.65 1.0 0.80 0.73 1.0 0.86 0.88 1.0 0.93 0.98

10 0.51 0.41 0.61 1.0 0.75 0.78 1.0 0.66 0.86 1.0 0.92 0.93
p = 250

q = 2 0.42 0.55 0.55 0.59 0.48 0.67 0.62 0.67 0.67 0.74 0.77 0.77
5 0.65 0.49 0.58 1.0 0.64 0.78 1.0 0.63 0.77 1.0 0.59 0.85
7 0.44 0.46 0.70 1.0 0.87 0.88 1.0 0.91 0.88 1.0 0.84 0.98

10 0.37 0.41 0.53 0.99 0.60 0.80 1.0 0.64 0.82 1.0 0.76 0.89

For estimation performance from the above results, problem dimensions p within

our experimental range seem not be a major factor affecting the performance. While

the random effect factor dimension q and noise level σ play clearer role in solution

performance. In general, the iterative filtering algorithm performs well, in some cases

better than the stochastic proximal gradient second order approximate algorithms

when q = 2, or when σ = 0.1, which is relatively small compared with other σ values.
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When σ becomes larger than 1.5, it would only perform relatively well when q = 2,

and its performance deteriorates when q increases.

Table 4.3:
Harmonic Mean of Sensitivity and Precision for IF, SPG and SOA algo-
rithms

p = 50

σ = 0.1 σ = 1.5 σ = 2.5 σ = 3.5

IF SPG SOA IF SPG SOA IF SPG SOA IF SPG SOA

q = 2 0.22 0.77 0.33 0.55 0.91 0.91 0.33 0.63 0.83 NaN 0.83 0.73
5 0.22 0.23 0.37 0.24 0.43 0.77 NaN 0.57 0.29 NaN 0.67 NaN
7 0.52 0.42 0.37 NaN 0.19 1.0 NaN 0.28 0.75 0.09 0.57 0.40

10 0.20 0.19 0.43 NaN 0.23 0.67 NaN 0.63 0.57 NaN 0.28 0.33
p = 100

q = 2 0.59 0.42 0.42 0.19 0.36 0.91 0.13 0.10 0.91 0.16 0.10 0.67
5 0.14 0.38 0.38 0.11 0.12 0.83 NaN 0.10 0.5 0.04 0.13 0.44
7 0.14 0.29 0.67 0.11 0.60 0.60 0.10 0.14 0.62 NaN 0.19 NaN

10 0.45 0.91 0.91 0.09 0.56 0.75 NaN 0.18 0.75 NaN NaN NaN
p = 200

q = 2 0.09 0.26 0.26 0.06 0.06 0.24 0.12 0.73 0.72 0.10 0.50 0.57
5 0.34 0.24 0.56 NaN 0.24 0.77 NaN 0.13 0.50 NaN 0.29 0.20
7 0.77 0.21 0.53 NaN 0.57 0.42 0.03 0.60 0.33 NaN 0.36 0.22

10 0.34 0.11 0.71 NaN 0.62 0.57 NaN 0.09 0.43 NaN 0.57 0.57
p = 250

q = 2 0.07 0.22 0.22 0.18 0.25 0.67 0.13 0.56 0.56 0.08 0.91 0.91
5 0.21 0.08 0.19 NaN 0.21 0.59 NaN 0.24 0.63 NaN 0.12 0.67
7 0.08 0.10 0.48 NaN 0.62 0.67 NaN 0.75 0.59 NaN 0.36 0.22

10 0.07 0.09 0.18 0.04 0.07 0.83 NaN 0.04 0.62 NaN 0.04 0.62

The sparsity recovery performance of iterated filtering algorithm is comparable

to the stochastic proximal gradient and second order approximate algorithm when

sample size N , problem dimension p are relatively small and the random effects are

relatively weak in the models. However, iterated filtering algorithm would perform

poorly in problems with larger sizes, especially with large q or σ’s. In a number of

large q or σ settings, the iterated filtering algorithm could be unstable, such that it

estimates the fixed effects coefficients to be all zero, which leads to poor precision.

Thus in close to real scale problems, we recommend at least using the stochastic
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proximal gradient or second order approximate algorithms to check the results of the

iterated filtering algorithms.

4.5 Proofs

4.5.1 Proof of Proposition IV.2

Proof. Let q denote the density of N(0, σ2Ip). Write

Πσ(β) =

∫
q(z)e`(β+σz)(β + σz)dz∫

q(z)e`(β+σz)dz
=

∫
q(z)e`(β+σz)−`(Proxσ(β))(β + σz)dz∫

q(z)e`(β+σz)−`(Proxσ(β))dz
.

Hence

Πσ(β)− Proxσ(β) =

∫
q(z)e`(β+σz)−`(Proxσ(β)) (β + σz − Proxσ(β)) dz∫

q(z)e`(β+σz)−`(Proxσ(β))dz
.

We note that for all x ∈ R, ex = 1 + x+ x2
∫ 1

0
(1− t)etxdt. Hence

∫
q(z)e`(β+σz)−`(Proxσ(β)) (β + σz − Proxσ(β)) dz = β − Proxσ(β)

+

∫
(β + σz − Proxσ(β)) (`(β + σz)− `(Proxσ(β))) q(z)dz

+

∫ 1

0

(1−t)
[∫

(β + σz − Proxσ(β)) (`(β + σz)− `(Proxσ(β)))2 et(`(β+σz)−`(Proxσ(β)))q(z)dz

]
dt.

Using the assumption that ∇` is M Lipschitz, and setting p = Proxσ(β), we get

∫
(β + σz − Proxσ(β)) (`(β + σz)− `(Proxσ(β))) et(`(β+σz)−`(Proxσ(β)))q(z)dz
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Hence, Jensen’s inequality gives

‖Πσ(β)− Proxσ(β)‖≤ σ

[∫
q(z)e`(β+σz)−`(Proxσ(β))‖z − σ−1(Proxσ(β)− β))‖2dz∫

q(z)e`(β+σz)−`(Proxσ(β))dz

]1/2

.

By the optimality condition in the maximization that defines Proxσ(β), we have:

∇` (Proxσ(β)) =
1

σ2
(Proxσ(β)− β) . (4.7)

Using this AIV.6 and a straightforward Taylor expansion we obtain

q(z)e`(β+σz)−`(Proxσ(β)) ≥
(

1

1 +Mσ2

)p/2
exp

(
− 1

2σ2
‖Proxσ(β)− β‖2

)(
1 +Mσ2

2π

)p/2
× exp

(
−1 +Mσ2

2
‖z − σ−1(Proxσ(β)− β)‖2

)
.

Hence

∫
q(z)e`(β+σz)−`(Proxσ(β))dz ≥

(
1

1 +Mσ2

)p/2
exp

(
− 1

2σ2
‖Proxσ(β)− β‖2

)
.

Similar calculations for the numerator gives

q(z)e`(β+σz)−`(Proxσ(β)) ≤
(

1

1 +mσ2

)p/2
exp

(
− 1

2σ2
‖Proxσ(β)− β‖2

)(
1 +mσ2

2π

)p/2
× exp

(
−1 +mσ2

2
‖z − σ−1(Proxσ(β)− β)‖2

)
,

So that

∫
q(z)e`(β+σz)−`(Proxσ(β))‖z − σ−1(Proxσ(β)− β))‖2dz

≤
(

1

1 +mσ2

)p/2
exp

(
− 1

2σ2
‖Proxσ(β)− β‖2

)
p

1 +mσ2
.
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We conclude that

‖Πσ(β)− Proxσ(β)‖≤ σ

(
1 +Mσ2

1 +mσ2

)p/4(
p

1 +mσ2

)1/2

,

as claimed.

4.5.2 Proof of Theorem IV.7

We then denote by Θi ∈ Rpi the domain of gi, That is Θi = {u ∈ Rpi : gi(u) <

∞}. We introduce the function

F1(u|β2)
def
= f(u, β2) + g1(u), F2(v|β1) = f(β1, v) + g2(v),

where u, β1 ∈ Rp1 , and v, β2 ∈ Rp2 . We then write ∇1f(u, v) (resp. ∇2f(u, v)) to

denote the partial derivative of f with respect to u (resp. v) and evaluated at (u, v).

We will need the following well-known result.

Lemma IV.8. Assume that g : Rp → (−∞,+∞] is a convex lower semi-continuous

function with domain Θ. For β, β′ ∈ Θ and γ > 0

g
(

Proxgγ(β)
)
− g(β′) ≤ −1

γ

〈
Proxgγ(β)− β′,Proxgγ(β)− β

〉
. (4.8)

For any γ > 0 and for any β, β′ ∈ Θ,

‖Proxgγ(β)− Proxgγ(β
′)‖2+‖( Proxgγ(β)− β)− ( Proxgγ(β

′)− β′)‖2≤ ‖β − β′‖2. (4.9)

Proof. See (Bauschke and Combettes , 2011, Propositions 4.2., 12.26 and 12.27).

We will also need the following result taken from Atchadé et al. (2017).
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Lemma IV.9. Assume IV.6 and take σ > 0 such that σ2L ≤ 1.

1. For all u, u′, x ∈ Θ1, and β2 ∈ Rp2, we have

2σ2 (F1 (Proxg1σ (u)|β2)− F1(x|β2)) + ‖Proxg1σ (u)− x‖2
2−
(

1− µ

2

)
‖u′ − x‖2

2

≤ 2
〈
u−

(
u′ − σ2∇1f(u′, β2)

)
,Proxg1σ (u)− x

〉
. (4.10)

2. for all v, v′, y ∈ Θ2, and β1 ∈ Rp1,

2σ2 (F2 (Proxg2σ (v)|β1)− F2(y|β1)) + ‖Proxg2σ (v)− y‖2
2−
(

1− µ

2

)
‖v′ − y‖2

2

≤ 2
〈
v −

(
v′ − σ2∇2f(v′, β1)

)
,Proxg2σ (v)− y

〉
. (4.11)

Proof. We prove (1), (2) is similar. The L-Lipschitz property of f1 which follows

from AIV.6 give:

f (Proxg1σ (u), β2) ≤ f(u′, β2) + 〈∇1f(u′, β2),Proxg1σ (u)− u′〉+
L

2
‖Proxg1σ (u)− u′‖2

2.

Hence

f (Proxg1σ (u), β2)− f(x; β2) ≤ [f(u′, β2) + 〈∇1f(u′, β2), x− u′〉 − f(x, β2)]

+ 〈∇1f(u′, β2),Proxg1σ (u)− x〉+
L

2
‖Proxg1σ (u)− u′‖2

2.

Then we use the strong convexity of f to conclude that

f (Proxg1σ (u), β2)− f(x; β2) ≤ −µ
2
‖x− u′‖2

2+ 〈∇1f(u′, β2),Proxg1σ (u)− x〉

+
L

2
‖Proxg1σ (u)− u′‖2

2. (4.12)
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On the other hand Lemma IV.8 gives

g1(x) ≥ g1(Proxg1σ (u)) +
1

σ2
〈u− Proxg1σ (u), x− Proxg1σ (u)〉 .

We combine this with (4.12) to get

F1 (Proxg1σ (u)|β2)− F1(x|β2) ≤ −µ
2
‖x− u′‖2

2

+
1

σ2

〈
u+ σ2∇1f(u′, β2)− Proxg1σ (u),Proxg1σ (u)− x

〉
+
L

2
‖Proxg1σ (u)− u′‖2

2

≤ −µ
2
‖x− u′‖2

2+
1

σ2

〈
u−

(
u′ − σ2∇1f(u′, β2)

)
,Proxg1σ (u)− x

〉
+

1

σ2
〈u′ − Proxg1σ (u),Proxg1σ (u)− x〉+

1

2σ2
‖Proxg1σ (u)− u′‖2

2,

where the last inequality also uses the assumption that σ2L ≤ 1. The result follows

noticing that for all β, β0, β̄ ∈ Rq for some q ≥ 1, we have

1

2
‖β̄ − β‖2+

〈
β̄ − β, β0 − β̄

〉
=

1

2

〈
β̄ − β, β̄ − β

〉
+
〈
β̄ − β, β0 − β̄

〉
=

1

2

〈
β̄ − β, β̄ − β + 2β0 − 2β̄

〉
=

1

2

〈
β̄ − β, 2β0 − β − β̄

〉
=

1

2

[〈
β̄ − β0, β0 − β + β0 − β̄

〉
+
〈
β0 − β, β0 − β + β0 − β̄

〉]
=

1

2

[
‖β − β0‖2−‖β̄ − β0‖2

]
.

We apply Lemma IV.9-(4.10) with u = H
(k+1)
1 , u′ = β

(k)
1 , x = β?,1, β2 = β?,2 to

get

2σ2
k

[
F1(β

(k+1)
1 |β?,2)− F1(β?,1|β?,2)

]
+ ‖β(k+1)

1 − β?,1‖2
2−
(

1− µ

2

)
‖β(k)

1 − β?,1‖2
2

≤ 2
〈
H

(k+1)
1 −

(
β

(k)
1 − σ2

k∇1f(β
(k)
1 , β?,2)

)
, β

(k+1)
1 − β?,1

〉
. (4.13)
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Then we apply Lemma IV.9-(4.11) with v = H
(k+1)
2 , β1 = β

(k+1)
1 , v′ = β

(k)
2 , and

y = β?,2, and we get

2σ2
k

[
F2(β

(k+1)
2 |β(k+1)

1 )− F2(β?,2|β(k+1)
1 )

]
+ ‖β(k+1)

2 − β?,2‖2
2−
(

1− µ

2

)
‖β(k)

2 − β?,2‖2
2

≤ 2
〈
H

(k+1)
2 −

(
β

(k)
2 − σ2

k∇2f(β
(k+1)
1 , β

(k)
2 )
)
, β

(k+1)
2 − β?,2

〉
. (4.14)

We then add (4.13) and (4.14) to get

2σ2
k

[
F (β(k+1))− F (β?)

]
+ ‖β(k+1) − β?‖2

2−
(

1− µ

2

)
‖β(k) − β?‖2

2

≤ 2
〈
η

(k+1)
1 , β

(k+1)
1 − β?,1

〉
+ 2

〈
η

(k+1)
2 , β

(k+1)
2 − β?,2

〉
+ 2σ2

k

〈
∇1f(β

(k)
1 , β?,2)−∇1f(β

(k)
1 , β

(k)
2 ), β

(k+1)
1 − β?,1

〉
, (4.15)

where

η
(k+1)
1

def
= H

(k+1)
1 −

(
β

(k)
1 − σ2

k∇1f(β
(k)
1 , β

(k)
2 )
)
,

and η
(k+1)
2

def
= H

(k+1)
2 −

(
β

(k)
2 − σ2

k∇2f(β
(k+1)
1 , β

(k)
2 )
)
.

Since the gradient ∇f is Lipschitz as assumed in HIV.6, we have

+2
∣∣∣〈∇1f(β

(k)
1 , β?,2)−∇1f(β

(k)
1 , β

(k)
2 ), β

(k+1)
1 − β?,1

〉∣∣∣ ≤ 2L‖β(k)
2 −β?,2‖2‖β(k+1)

1 −β?,1‖2

≤ 2L‖β(k) − β?‖2‖β(k+1) − β?‖2≤ L‖β(k) − β?‖2
2+L‖β(k+1) − β?‖2

2,

where the last inequality uses the fact that 2ab ≤ a2 + b2. Using this together with

(4.15) and the choice σ2
k ≤ µ/(4L), we conclude that

2σ2
k

[
F (β(k+1))− F (β?)

]
+ ‖β(k+1) − β?‖2

2≤
(

1− µ

4

)
‖β(k) − β?‖2

2
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+ 2
〈
η(k+1), β(k+1) − β?

〉
. (4.16)

Iterating this inequality we obtain,

‖β(k) − β?‖2
2≤
(

1− µ

4

)k
‖β(0) − β?‖2

2+2
k∑
j=1

(
1− µ

4

)k−j 〈
η(j), β(j) − β?

〉
. (4.17)

Define β̄(k+1) = (β̄
(k+1)
1 , β̄

(k+1)
2 ), where

β̄
(k+1)
1

def
= Proxg1σk

(
β

(k)
1 − σ2

k∇1f(β
(k)
1 , β

(k)
2 )
)
,

and β̄
(k+1)
2

def
= Proxg2σk

(
β

(k)
2 − σ2

k∇2f(β
(k+2)
1 , β

(k)
2 )
)
.

We then write β(k) − β? = β(k) − β̄(k) + β̄(k) − β?. Then by the Lipschitz property of

the proximal map (4.9),

〈
η(j), β(j) − β?

〉
=
〈
η(j), β(j) − β̄(j)

〉
+
〈
η(j), β̄(j) − β?

〉
≤ ‖η(j)‖2

2+
〈
η(j), β̄(j) − β?

〉
Hence, taking the expectation on both side of (4.17 yields,

E
[
‖β(k) − β?‖2

2

]
≤
(

1− µ

4

)k
E
[
‖β(0) − β?‖2

2

]
+ 2

k∑
j=1

(
1− µ

4

)k−j
E
[
‖η(j)‖2

2+
〈
η(j), β̄(j) − β?

〉]
.

We apply Lemma IV.3 to conclude that

E
[
‖β(k) − β?‖2

2

]
≤
(

1− µ

4

)k
E
[
‖β(0) − β?‖2

2

]
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+ 2
k∑
j=1

(
1− µ

4

)k−j
E
[

1

Nj

+ σ2
k

]
≤
(

1− µ

4

)k
E
[
‖β(0) − β?‖2

2

]
+ C

(
1

Nk

+ σ4
k

)
.

This completes the proof.
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Atchadé, Y. F., G. Fort, and E. Moulines (2017), On perturbed proximal gradient
algorithms, J. Mach. Learn. Res., 18 (1), 310–342.

Attouch, H., and J. Bolte (2009), On the convergence of the proximal algorithm for
nonsmooth functions involving analytic features, Math. Program., 116, 5–16.

Attouch, H., J. Bolte, P. Redont, and A. Soubeyran (2010), Proximal alternating
minimization and projection methods for nonconvex problems: an approach based
on the Kurdyka- lojasiewicz inequality, Math. Oper. Res., 35 (2), 438–457.

Attouch, H., J. Bolte, and B. F. Svaiter (2013), Convergence of descent methods
for semi-algebraic and tame problems: proximal algorithms, forward-backward
splitting, and regularized Gauss-Seidel methods, Math. Program., 137 (1-2, Ser.
A), 91–129.

Atwell, S. e. a. (2010), Genome-wide association study of 107 phenotypes in ara-
bidopsis thaliana inbred lines, Nature, 465, 627–631.

Aulchenko, Y. S. e. a. (2007), Genomewide rapid association using mixed model and
regression: A fast and simple method for genomewide pedigree-based quantitative
trait loci, Genetics, 177, 577–585.

Bauschke, H., and P. Combettes (2011), Convex analysis and monotone operator
theory in Hilbert spaces, CMS Books in Mathematics/Ouvrages de Mathématiques
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