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Abstract 
This dissertation focuses on correct-by-construction control synthesis for Cyber-Physical 

Systems (CPS) under model uncertainty and disturbance. CPSs are systems that interact with the 

physical world and perform complicated dynamic tasks where safety is often the overriding factor. 

Correct-by-construction control synthesis is a concept that provides formal performance 

guarantees to closed-loop systems by rigorous mathematic reasoning. Since CPSs interact with the 

environment, disturbance and modeling uncertainty are critical to the success of the control 

synthesis. Disturbance and uncertainty may come from a variety of sources, such as exogenous 

disturbance, the disturbance caused by co-existing controllers and modeling uncertainty. To better 

accommodate the different types of disturbance and uncertainty, the verification and control 

synthesis methods must be chosen accordingly. Four approaches are included in this dissertation. 

First, to deal with exogenous disturbance, a polar algorithm is developed to compute an avoidable 

set for obstacle avoidance. Second, a supervised learning based method is proposed to design a 

good student controller that has safety built-in and rarely triggers the intervention of the 

supervisory controller, thus targeting the design of the student controller. Third, to deal with the 

disturbance caused by co-existing controllers, a Lyapunov verification method is proposed to 

formally verify the safety of coexisting controllers while respecting the confidentiality 

requirement. Finally, a data-driven approach is proposed to deal with model uncertainty. A 

minimal robust control invariant set is computed for an uncertain dynamic system without a given 

model by first identifying the set of admissible models and then simultaneously computing the 

invariant set while selecting the optimal model. The proposed methods are applicable to many 

real-world applications and reflect the notion of using the structure of the system to achieve 

performance guarantees without being overly conservative. 
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Chapter 1 Introduction 
We live in a world that is increasingly cybernetic and automatic. Computers have become an 

essential part of our daily lives, with more automatic features being developed to free humans from 

tedious and repetitive labor. Examples include autonomous vehicles, humanoid robots, 

exoskeletons, and automated assembly lines. However, people tend not to accept or trust these 

systems.  Accidents caused by software errors in these systems have attracted a great deal of 

attention and aggravated people’s worry (viz. the accidents by Tesla’s autopilot and the recent 

tragic death of a pedestrian caused by Uber’s autonomous vehicle experiment). These worries are 

not unjustified since there is typically no formal guarantee that the software (the control algorithm, 

in particular) will meet the specifications, even for safety. The difficulty stems from the fact that 

the software designed must interact with the physical world, which is difficult to model and has a 

great deal of uncertainty. Systems that involve computation, communication, and interaction with 

the physical world are usually called Cyber-Physical Systems (CPSs). As pointed out in [1], CPS 

requires control/computing co-design. Two significant problems arise: tools are needed to verify 

whether the design satisfies the specification; tools are needed to synthesize a controller that 

satisfies the given specification.  

In the current state of the art,control of CPS is commonly obtained by extensive experience; 

various ad-hoc control algorithms such as PID, Linear Quadratic Regulator (LQR), Model 

Predictive Control (MPC); and laborious trial and error. However, closed-loop performance lacks 

formal guarantees of meeting the specifications. In search of a solution, researchers have turned 

their attention to the formal methods, which were proposed to provide formal performance 

guarantees in the computer science community targeting discrete transition systems. While 

introducing these formal methods and ideas to control synthesis, several issues must be resolved. 

First, control systems typically operate in the continuous time and state space, while states in 

transition systems are typically discrete. Second, the control systems need to deal with disturbance 

from the environment and model uncertainty. Although techniques exist in formal methods that 

are able to deal with uncertainty, they typically model the uncertainty as nondeterministic 
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transitions, thus not accurately capturing the true nature of the disturbance and uncertainty faced 

by control synthesis. Using the general framework of nondeterministic transitions, therefore, result 

in unnecessary conservativeness. 

To fill this gap, the specific structure of the disturbance and uncertainty should be utilized. This 

dissertation presents several methods that handle different types of disturbance and uncertainty. 

Different as they may seem, they all abide by the same fundamental notion, which is to take 

advantage of the specific structure of the disturbance and uncertainty and provide a guarantee of 

closed-loop performance without being overly conservative. In particular, this dissertation focuses 

on the verification and synthesis of safety specifications for CPSs under model uncertainty and 

disturbance, which is the simplest and yet most fundamental type of specification.  

1.1 Literature review 

Control theories have been developing for decades, providing tools such as the Proportional–

Integral–Derivative controller (PID) [2], the Linear Quadratic Regulators (LQR) [3] and Model 

Predictive Control (MPC) [4], yet most of the existing methods focus on optimality or some 

narrowly-defined closed-loop performance such as bandwidth and steady-state error. For safety-

critical systems, however, a rigorous analysis of the time domain performance of the closed-loop 

system is required. The concept of correct-by-construction has therefore been adopted from the 

domain of computer science. In the realm of software engineering, tools for verification of the 

software have been developed since the 1980s, and these methods are usually referred to as formal 

methods [5]. A typical formal method approach modeling the systems as transition systems with 

discrete states and the state transitions are triggered by certain actions as inputs [6]. To express 

specifications that concern the system evolution over time, various temporal logics were 

developed, among which Linear Temporal Logic (LTL) is the most popular one. It is capable of 

expressing a complicated specification for the system by using not only logic symbols such as 

(and),  (or) and (not), but also temporal logic symbols such as  (always),  (eventually) and 

U (until) [7, 8]. With the transition system to describe the system and LTL to express the 

specifications, model checking tools are then developed to verify whether a transition system 

always satisfies a specification [9, 10]. With the capability of describing a complicated 

specification about the system behavior, and verifying whether a system satisfies the specification, 

the system verification process for transition systems then becomes rigorous, exhaustive and 
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automated. The promise is fascinating: a model-checking tool either returns a formal guarantee 

that the system always satisfies the specification or a counter-example showing how, in certain 

circumstances, the system fails the specification. Based on verification, there are tools that can 

synthesize policies (sometimes also referred to as symbolic controllers) that satisfy a given 

specification in an automated fashion [11]. An important milestone in the development of synthesis 

tools is the synthesis protocol for generalized reactivity(1) (GR(1)) specifications [12]. A GR(1) 

specification has the following form: 

 
1 2

1 1

m

i j
i j

n

J J
 
   , (1.1) 

where 1J are specifications for the environment and 2J are specifications for the system. GR(1) 

specifications include a wide range of specifications encountered in engineering applications and 

can be efficiently synthesized with cubic complexity. Toolboxes such as TuLiP [13] were 

developed for verification and synthesis of transition systems. The creation of similar tools for the 

control synthesis would be of great benefit to the community. 

Some attempts have been made to introduce the formal verification and synthesis procedure 

into the control design process. One major difference between software design and control 

synthesis is the form of state space. Typically, a physics-driven dynamic system is described by 

ordinary differential equations (ODE) or difference equations, and has continuous states, whereas 

software design typically deals with discrete state space. For some applications, a hierarchy can 

be constructed that divides the tasks of the system into high-level tasks and low-level tasks, where 

the high-level controller treats the system as discrete transition systems, and the low-level 

controller is designed using traditional feedback control techniques to execute the low-level tasks 

assigned by the high-level controller [14, 15]. This hierarchical approach is limited, however, in 

that traditional feedback techniques typically do not provide performance guarantees for the low-

level execution, except for stability.  

To extend the formal methods designed for discrete transition systems to dynamic systems, 

many approaches have been proposed, including timed automata [6] and hybrid automaton [16]. 

A hybrid automaton is an extension of a finite state machine which includes a mode that ranges 

over finitely many discrete values and a finite set of real-valued variables. The evolution of the 

continuous variables is specified for each discrete mode, and edges between modes are annotated 

with guards and updates that specify discrete transitions [17]. However, as pointed out in [18], the 
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reachability problem is undecidable even for some very simple hybrid automata. While there have 

been efforts in the reachability computation for hybrid automata, such as over-approximations 

using zonotope [19] and support functions [20], these analyses are highly conservative and are 

limited to linear dynamics.  

In order to adopt the tools developed for transition systems, a more brute force approach would 

be to decompose the state space into a finite collection of subsets. This process is called abstraction 

or bisimulation [21-23]. The discrete transition system is constructed as a bisimilar or 

approximately bisimilar transition system of the continuous system via reachability computation. 

If the continuous system happens to be incrementally stable, the reachability computation can be 

simplified and the approach can be less conservative in the sense that fewer nondeterministic 

transitions are needed. Since the dynamic system is now described as a transition system, both the 

temporal logic specifications and the model checking and reactive synthesis tools can be adopted 

[24]. This method has the advantage of being able to handle complicated specifications with the 

help of temporal logic tools, but it does not scale well since the abstraction step discretizes the 

whole state space and requires potentially difficult reachability computation, which has at least 

exponential complexity w.r.t. the state dimension. Moreover, if the system is not incrementally 

stable, the abstraction might generate many nondeterministic transitions, which is not the nature 

of the original continuous dynamics.  

In addition to directly compute the reachable set, inductive invariance is widely used for 

verification of CPS. The idea is to find a set that contains the set of the initial states, satisfies the 

safety condition and is forward invariant, i.e., if the initial state is inside the set, it will remain in 

the set for the future evolution. Methods that use inductive invariance include the barrier certificate 

[25], inductive verification with polynomial templates [26], and efforts to unify continuous 

invariants and discrete invariants [27, 28].  The advantage of the inductive invariance type methods 

is that they do not require reachability computation. However, one disadvantage is that the 

supported specification is limited, typically only for safety specifications.  

Methods have also been developed within the control community for reachability and the 

forward invariance analysis of dynamic systems, such as the barrier certificate [29], control 

invariant set with control barrier function [30-32], Hamilton Jacobi Partial Differential Equation 

(PDE) [33] and the occupation measure [34].  
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The barrier certificate method constructs a continuous function that is positive in the safe set, 

and negative in the danger set. In addition, for every point on the boundary of its 0-level set, the 

vector field is pointing towards the positive side of the boundary; therefore, the boundary of the 0-

level set serves as a barrier, and the function serves as a barrier that proves the safety of the system. 

There exists a result of converse barrier certificate stating that a barrier certificate exists for any 

safe system with some mild assumptions [35].  

A control invariant set is a set that for any state within the set, there exists a control strategy 

that keeps the future evolution of the state in the set. Control barrier function is then constructed 

based on the control invariant set, which works with other control strategies and serves as a 

supervisor to guarantee safety.  

The Hamilton Jacobi (HJ) method formulates the problem in the form of a Hamilton-Jacobi-

Isaac PDE that describes the optimal solution to a zero-sum differential game between the 

disturbance and control inputs. The 0-level set of the value function of such PDE represents the 

winning set of the control (or disturbance, depending on the setting). If the state is not inside the 

winning set of the disturbance, then for any disturbance allowed, there exists a control input 

trajectory that prevents the state from reaching the danger set within the horizon T . The HJ method 

is applicable to a wide range of applications since only mild restrictions on the form of dynamics 

are imposed. However, the PDE is solved numerically using the level set method, which is 

essentially dynamic programming; it does not scale well with the state dimension.  

The occupation measure approach formulates an infinite-dimensional linear programming, 

which in theory calculates the reachable set of a system, then uses Semidefinite Programming 

(SDP) to approximate the solution. Its advantage lies in the fact that it can transform a nonconvex 

problem to a convex one by working on the measure space rather than the function space.  

Many of the above-mentioned methods suffer from high complexity, and do not scale well. To 

reduce the size of the problem, compositional verification has been proposed. A typical one is the 

assume-guarantee approach, which views the interaction between subsystems as a disturbance to 

one another [36]. The protocol works as follows: for each subsystem, assuming that the disturbance 

from other subsystems are bounded by certain bounds, the disturbance from this subsystem to other 

subsystems can be bounded within certain sets, and the bound conditions check out, that is, the 

bound guaranteed by the synthesis is no larger than the bound assumed by the synthesis, then the 
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whole system satisfies the specification. Separable control invariant set [31], dissipative system 

verification [37] and some decentralized control synthesis methods are all based on this idea. 

Another significant difference between software design and control synthesis is disturbance and 

model uncertainty. In software design, as complicated as it may be, designers deal with digits and 

logic. Though non-deterministic transitions are allowed and supported by many model checking 

tools, these non-deterministic transitions are well defined and finite. In real physical systems, 

however, designers must deal with real physical dynamics that typically are not modeled perfectly, 

and disturbance may come from a variety of sources. Treating everything as a non-deterministic 

transition does not capture the structure of the potential disturbances in control systems and 

typically leads to unnecessary conservativeness. 

The lesson I learned while treating different types of disturbance and uncertainty is to take 

advantage of their specific structure. As the famous “no free lunch” theorem states, there is no 

such method that outperforms other methods in every situation. The best way to treat modeling 

uncertainty and disturbance depends on the specific situation.  

1.2 Dissertation organization 

The remainder of the dissertation is organized as follows, important tools used throughout this 

dissertation are reviewed in Chapter 2. Then four subproblems are discussed to illustrate different 

approaches for handling disturbance and uncertainty to guarantee safety. The first two 

subproblems are built around the concept of control barrier functions. First, in Chapter 3, the focus 

is on the exogenous disturbance, a polar method is proposed that computes an avoidable set and 

constructs a control barrier function (CBF) for moving obstacle avoidance of low-speed 

autonomous vehicles. The CBF serves as a supervisory controller that watches over whatever 

navigation controller the vehicle uses, and guarantees safety by intervening only when imminent 

danger is detected.  

After discussing the supervisor, in Chapter 4, the second subproblem concerns the design of a 

student controller that works with a CBF as the supervisor. The CBF is combined with supervised 

learning to train a student controller that has safety built in and rarely triggers intervention from 

the CBF.  
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In Chapter 5, the third subproblem deals with the verification and synthesis of co-existing but 

non-cooperative controllers for a single dynamic system. In this case, the control actions from 

other controllers act as disturbances. A Lyapunov function and dual decomposition based method 

is developed to verify the composition of multiple controllers without exposing the control 

algorithms of each controller.  

Finally, in Chapter 6, the last subproblem deals with modeling uncertainty. A model of an 

uncertain dynamic system consists of the nominal model and the uncertainty characterization. A 

data-driven method is proposed that approximates a minimal robust control invariant set. First, the 

set of all admissible models, that is, models that explains a finite sequence of measurement data, 

is identified from the measurement data. Then an iterative algorithm is developed to approximate 

a minimal robust control invariant set by simultaneously selecting the optimal model from the set 

of admissible models and minimizing the size of the invariant set. This method is able to 

approximate a minimal robust invariant set without a model being given and leverages the tradeoff 

between additive uncertainty, multiplicative uncertainty, and the nominal model. Some 

experimental work of the proposed methods is presented in Chapter 7. 
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Chapter 2 Review of important tools 

Some important tools are used throughout this dissertation, including Sum of Squares 

programming and Control Barrier Function. A brief review of them is given in this chapter. 

2.1 Sum of squares programming 

First, a review of Sum of Squares (SOS) programming is presented in this section, which is 

used to construct CBF in Chapter 4 and the Lyapunov certificate of performance guarantee in 

Chapter 5. The application of SOS includes searching for a Lyapunov function to prove stability 

[38], constructing a CBF [39], synthesizing a nonlinear controller with safety guarantee [40], and 

calculating funnels around trajectories in motion planning [41].  

A real coefficient polynomial p of x  is a sum of squares if there exist polynomials 1f ,…, mf

such that  

    2

1

m

i

i

p x f x


 . (2.1) 

The set of polynomials with real coefficients in x is denoted as  x , and the set of all sum of 

squares polynomials in x is denoted as [ ]x . The problem of searching for the SOS decomposition 

of a polynomial can be formulated as semidefinite programming and thus solved efficiently by 

SDP solvers, Tools such as SOSTOOLS [42], YALMIP [43], and SPOTLESS [44] automatically 

calculate the associated parametric matrices and convert an SOS problem to an SDP, which in turn 

provides a sufficient condition for a polynomial to be nonnegative. In general, SOS is a sufficient 

but not necessary condition for the positive definiteness of polynomials, with the exception of a 

few known special cases [45]. Moreover, there exists a denseness result: every non-negative 

polynomial is almost an SOS; namely, it can be approximated by a sequence of SOS polynomials, 

see Theorem 4.1 in [46]. The verification of the SOS condition is solved by SDP in the space of 

symmetric real matrices.  
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Thanks to results from algebraic geometry, most notably Putinar’s and Stengle’s 

Positivstellensatz, SOS is extended from verifying the global non-negativity of a polynomial to 

verifying the non-negativity of a polynomial on a specific semialgebraic set, see page 2 of [46], 

page 13 of [45], and [47]. The formal Positivstellensatz states the following: consider a cone P  of 

 x  that satisfies 

 

  2

, ,

, ,

,

a b P a b P

a b P a b P

a x a P

   

   

  

 (2.2) 

which immediately implies [ ]x P  .  

Lemma 2.1: Let  
1,...j j s

f


,  
1,...k i t

g


,  
1,...l l u

h


be finite families of polynomials in  x . Denote by 

P the cone generated by  
1,...i i s

f


, M  the multiplicative monoid generated by  
1,...k i t

g


, and I  

the ideal generated by  
1,...l l u

h


, then the following properties are equivalent: 

1. The set       | 0, 1,... , 0, 1,... , 0, 1,...n

j k lx f x j s f x k t h x l u       is empty 

2. There exists , ,f P g M h I   such that 2 0f g h   . 

This is Theorem 4.6 in [45]; see the proof therein.  

Now suppose the goal is to verify whether    0 0q x p x   is true. This condition is 

equivalent to verifying whether the set       ,| 0 0, 0q xx p xx p   is empty. Applying 

Lemma 2.1, a necessary and sufficient condition is to find  is x and 0r  such that 

 0 1 2 3 0rs s p s q s pq p     . (2.3) 

Sufficiency is easily verified. However, this condition, in general, is hard to verify, especially 

when part of the coefficients of p  is yet to be determined. A stronger condition uses fewer SOS 

multipliers: if there exists  0 1,s s x  such that 0 0s p sq   , then    0 0q x p x   . 

Indeed, since  1s x is nonnegative for all x and        1 0 0p x s x q x s x   , the conclusion 

follows. This argument provides a sufficient condition for a polynomial to be nonnegative inside 

a semialgebraic set. However, since it is not the complete form of the PositivStallensatz, and in 

practice, the order of the SOS multipliers’ order is limited by the computation power, the condition 
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is merely sufficient but not necessary. For a review of the Positivestallensatz result, see Chapter 2 

of [48] for reference. 

2.2 Control barrier functions 

2.2.1 Overview of control barrier functions 

Control barrier functions can be used to provide a safety guarantee to CPSs and generate a 

supervisory control structure that works in a plug-and-play fashion with any existing legacy 

controller. The supervisory controller is referred to as the “teacher”, while the legacy controller is 

treated as the “student”. The teacher does not intervene until an imminent threat to safety is 

detected, at which point the teacher uses minimum intervention to guarantee safety. It has a simple 

form yet can work as an add-on safety feature to most existing methods. The barrier certificate was 

developed to verify the safety features of a system without input [29, 49]. A CBF incorporates the 

control action and serves as a supervisor to guarantee safety, which was first proposed by Ames et 

al. in [30]. The original CBF takes the reciprocal form inspired by the logarithmic barrier in the 

interior point method developed for optimization. Then a zeroing CBF was proposed in [50], 

inheriting all the good properties of the reciprocal CBF and adding additional robustness to the 

method. The CBF was applied in areas such as ground vehicle control [50], biped robot walking 

[51] and swarm control of multiple robots [52]. A typical supervisory control structure with CBF 

is depicted below: 

 

Figure 2.1 Supervisory control structure 

The student controller can be any legacy controller, with its control command denoted as 0u ; 

the CBF based supervisory controller solves for the final control input u  to the system with the 

following optimization: 

 
 

0min

. . 0,

u u

s t u




 (2.4) 

where  u is the CBF condition, to be defined later. 
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2.2.2 Implementation of CBF 

As mentioned earlier, there are two common types of control barrier function—reciprocal 

barrier, and zeroing barrier. The reciprocal barrier goes to infinity when the state approaches the 

boundary of the constraint, and is not defined when the constraint is not satisfied; the zeroing 

barrier is positive when the constraint is satisfied, negative when the constraint is not satisfied and 

zero at the boundary. 

 

Figure 2.2 Reciprocal barrier and zeroing barrier 

Although the reciprocal barrier is very similar to the logarithmic barrier used in optimization, 

as it is not defined on the other side of the boundary, the supervisory control fails when the 

constraint is violated. Two typical reciprocal barrier functions are 

 

 
 

 

 
 

log ,
1

1
,

b x
B x

b x

B x
b x

 




 (2.5) 

where   0b x  is the original constraint. In order to keep the constraint satisfied, the CBF should 

be finite; therefore, the barrier condition can be defined as 

  /B B x , (2.6) 

where  is a positive constant. This condition gets tighter as the barrier function becomes larger. 

At the extreme, the RHS of the inequality drops to 0, restricting the CBF from growing.  

The zeroing barrier, on the other hand, can be simply defined with    B x b x . The barrier 

condition can be set as  

    ,b b x   (2.7) 
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where  is a positive constant is a class function. A typical choice for  is simply the identify 

function. In this case, the barrier condition requires that the barrier derivative be non-negative at 

the boundary  ( ) 0 ,b x  and enforce exponential convergence to the set  | ( ) 0x b x   when the 

barrier constraint is violated. This setup provides some robustness to the formulation so that the 

supervisory structure tries to force the state to return to the safe set when the barrier is breached.  

Remark 2.1: The barrier condition is not unique; it is only required that be a class  function, 

then the set invariance can be proved, (see Proposition 3 in [50] for detail). By tuning  , the level 

of caution of the supervisory controller can be tuned. With a large  , the barrier function will not 

be activated until  b x is very small; a smaller  will make the supervisory control more cautious. 

However, a larger  requires a faster convergence rate when   0b x  . 

Remark 2.2: In theory, when the supervisory control structure is enforced, the safety constraint 

will never be violated. However, this result is under the assumption that the model is perfect and 

there is no unknown disturbance. With modeling uncertainty, the barrier condition might be 

violated, but the CBF will try to let the state converge to the safe set exponentially. 

There seems to be some natural link between the Control Lyapunov Function (CLF) and the 

CBF. The CLF focuses on the convergence of the system to the equilibrium point while the CBF 

focuses on preventing the state from leaving the safe set. The CLF condition typically appears as 

 0f gV Vu  , (2.8) 

where : nV  is the CLF for a system with dynamics    x f x g x u  , f V and gV are 

the Lie derivatives defined as 

 

 

 

,

.

f

g

V f x
x

g
V

x

V

x
V










 (2.9) 

Comparing (2.7) and (2.8), one may discover the difference between CLF and CBF. The CLF 

enforces the Lyapunov derivative to be negative or zero at any time, which can be overly restrictive 

for safety specifications. In contrast, the barrier requirement is loose when the state is far away 

from the boundary of the danger set, and gets tighter as the state approaches the boundary, giving 

the student controller some freedom when danger is not imminent. 
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2.2.3 Synthesis of control barrier functions 

The synthesis of the CBF is not a trivial problem, and is closely related to the computation of 

the control invariant set. It should be noted that the barrier function, or control invariant set idea, 

is rather general. Depending on the specific properties of the problem, the formulation and 

computation methods may be quite different. HJ [33] is a powerful tool for computing the safe set 

and it can be extended to construct the CBF, see Appendix K, for example. For some systems, the 

CBF can be constructed using analytical methods, such as kinematic analysis [52-54]. The polar 

method is introduced in Chapter 3, which constructs a “polytopic” CBF. In this section, an SOS 

approach to constructing a CBF is reviewed, which is then used in Chapter 4. Only a synthesis 

procedure of the zeroing CBF will be discussed in this section as the zeroing CBF enjoys better 

properties compared to the reciprocal CBF, as stated in [50]. 

Let us consider a continuous dynamic system described by the following ODE: 

       ,u dx f x g x u g x d    (2.10) 

where nx  is the state, u  is the input and d  is the disturbance. Both u and d  are 

bounded within some semialgebraic set.  

Remark 2.3: To make a distinction between the value of the control input and the mapping that 

determines the control input, u denotes the value of control input, and  u  denotes the input as a 

function of other variables, such as the state and disturbance. 

There are a variety of settings for the synthesis; as an example, I choose a setting that enforces 

the CBF condition in (2.7) for all x  inside   | 0 ,x p x   a superset of   | 0x b x  , and all 

d . If a larger level set of  b x , say   |x b x c  with 0c  , is contained inside 

  | 0x p x  , then not only is   | 0x b x  robustly control invariant, it is also guaranteed that 

for any inside   |x b x c  , there exists a control input sequence that robustly drives the state 

back to    | 0x b x  exponentially. For a given danger set
dX , and an initial set

0X , represented 

as semialgebraic sets:   0 0| 0i

xX x h x  ,   | 0i

d xdX x h x  , the CBF b must satisfy the 

following: 

x
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 

 

  

         

0 , 0,

, 0,

| 0 , , , . .

0.

d

u d

x X b x

x X b x

x x p x d u s t

db
f x g x u g x d b x

dx


  

  

      

   

 (2.11) 

The first two conditions enforce the CBF to be positive in the initial set, and negative in the danger 

set; the last condition states that, within the 0-level set of p , for any possible disturbance, there 

always exists a feasible control input that renders the CBF condition satisfied. For simplicity, in 

the remainder of this section,   is chosen as the identity function. It is further assumed that the 

system is a polynomial dynamic system, that is, f , ug and dg  are polynomials,  and are 

semialgebraic sets. In particular,   | 0uu h u  ,   | 0dd h d  .  

Remark 2.4: Here it is assumed that and do not depend on , but this restriction can be 

relaxed by adding to the semialgebraic set definition. 

The problem is not yet solvable by SOS because: 

1.  the existence condition of the control input 

2.  the coupling between the control input and the CBF candidate.  

To resolve the first issue, the controller is restricted to be a polynomial controller  u  , which 

is a function of the state and measured disturbance. With this restriction, the second issue arises 

as the coupling between the controller and the CBF candidate generates a bilinear term of the 

decision variables, thus making the problem nonconvex. To resolve this issue, bilinear 

alternation is used, separating the problem into two parts: specifying a feedback controller and 

searching for a barrier function. Then the bilinear alternation process proceeds by alternating 

between two steps:  

1.  fix the CBF candidate and search for a feedback controller,  

2. fix the controller and search for a better CBF candidate.  

Given a barrier candidate b , the following SOS programming searches for a feedback 

controller that satisfies the input constraint and “almost” satisfies the barrier condition. 

x

x
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“Almost” means that it satisfies a relaxed CBF condition, and the SOS programming is 

minimizing the relaxation needed: 

 

 

            

              

     

 

1 2 1 2, , , , ,

1 1

2

2

1 2 1 2

min

, , , , ,

, ,

, , ,

,

.

, , , ,

.
d de u s s s s

i i

u d d

i

u d

i i T

d d

i

d d

h u x d s x d p x s x d h d x d

db
f x g x u x d g x d b x s x d p x

dx

s x d h d ex x x d

s s s s

e s t

x d





  

   

  







 (2.12) 

where  u  is the polynomial control law depending on  and d . Whether it depends on d  or a 

subset of d depends on whether some disturbance is measured and can be used as feedforward.  

1s  , 2s , 1ds  and 2ds  are the multipliers, SOS polynomial of  and d . e  is the relaxation variable.  

Remark 2.5: The relaxation term should depend on the degree of the original polynomial in the 

SOS constraint. In this case, Tx x is used as an example, but in some cases, a higher even order 

polynomial is needed to make the problem feasible. 

Given a control law, one can find a barrier certificate with the following SOS programming: 

 

       

       

          

         

       

   

1 2 3 1 2, , , ,

1 0

2

1 2

,

2

,

3

1 2 3 1

,

,

,

, , , ,

,

, , , .

i

,

m n .

,

.
d ds s s s s

i i

x

i

i i

xd

i

T

u d

i i

d d d

i

d d

e b

b x s x h x x

b x s x h x x

db
f x g x u x d g x d b x ex x

dx

s x d h d s x d p

e s

x x d

p x s x b x x

s s s x s x d

t

s



 

  

   

  

 

 







 (2.13) 

The first two constraints restrict the CBF to be positive in
0X , and negative in 

dX ; the third 

constraint is the relaxed CBF condition; and the fourth constraint restricts the CBF 0-level set to 

be contained by the 0-level set of p . The SOS optimization may seem complicated, but essentially 

the SOS programming is structured based on Positivstellensatz and uses SOS multipliers to enforce 

non-negativeness constraints on different semialgebraic sets (check [45, 55] for more detail). One 

x

x
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can also vary
0X  and gradually increase the volume of 

0X  until the problem becomes infeasible 

so that the volume of the 0-level set of b is maximized indirectly, as presented in [39]. The overall 

algorithm alternates between updating the controller and updating the CBF candidate until the CBF 

condition is satisfied without relaxation or no progress can be made. The SOS based algorithm 

finds a conservative CBF that guarantees the robust feasibility of the barrier condition. Due to the 

computation limitation, the order of the CBF candidate, the controller and the SOS multipliers is 

limited. By increasing the order of the polynomials, the method may find a less conservative CBF. 

Another limitation is that, due to the bilinear alternation, global optimality is not guaranteed. See 

[39] for more detail. 

 As mentioned previously, the format of the CBF varies in different applications. The SOS based 

method is applicable to polynomial systems, and results in a polynomial CBF, making the 0-level 

set a semialgebraic set. 
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Chapter 3 Polar method and obstacle avoidance
This chapter presents a method for solving the obstacle avoidance problem for low-speed 

autonomous vehicles. This method, referred to as the polar method, computes a polytopic 

avoidable set, whose complement is control invariant, and guarantees collision avoidance with a 

supervisory control structure. The supervisory control structure is implemented with the CBF, 

which works in a plug-and-play fashion with any existing navigation algorithm via a mixed integer 

program. The main difficulty being addressed in this problem is from exogenous disturbance, more 

specifically, the motion of the moving obstacles. 

3.1 Introduction and motivation 

Automotive companies are actively pursuing autonomous vehicles (AVs) to realize their 

potential for improved safety and mobility. Some of the efforts target high-speed applications, 

while others focus on low-speed applications, such as airport transport, driverless pods on urban 

streets, museum tours. In 2013, Hitachi announced their development of a single-passenger 

mobility-support robot “ROPITS”, which uses stereo cameras and multiple laser radar sensors to 

navigate [56]. In Britain, LUTZ Pathfinder has tested a driverless “pod” vehicle [57]. Indoor 

autonomous robots have also been tested, including museum guiding robots Minerva [58] and 

KAPROS [59].   

Low-speed autonomous vehicles differ from high-speed ones in two ways:  

1. there are no lane boundaries;  

2. they share space with multiple pedestrians and stationary obstacles.  

A basic problem is to navigate the AV from an initial point to a target point within a reasonable 

amount of time while avoiding collision with obstacles. Although several methods have been 

proposed for obstacle avoidance of high-speed autonomous vehicles, such as Model Predictive 

Control [60, 61], Fuzzy logic [62], and the motion primitive method [63], they generally cannot 

guarantee safety.  
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On the other hand, when the operating speed is low, the problem of robot navigation with static 

or moving obstacles has been studied extensively. Cell decomposition was used in Minerva and 

tested with real tourists interacting with the robot [58]. Bis et al. extended the cell decomposition 

concept to deal with moving obstacle with known speed [64]. The potential field method, 

originally developed for stationary obstacles, was also extended to moving obstacles [65, 66]. 

However, none of these methods provides a safety guarantee. Van den Berg et al. proposed 

reciprocal collision avoidance, which provides a collision avoidance guarantee under the 

assumption that the vehicle speed can be controlled instantaneously [67]. However, this 

assumption is usually not valid in the real world since acceleration can typically be controlled 

directly, but not the speed. The Dynamic Window Approach (DWA) was proposed in [68], which 

guarantees that the vehicle will not collide with static obstacles. The DWA idea was further 

developed in [69] and in [70] for moving obstacles, with a heavy use of braking. The proposed 

method can guarantee the safety of low-speed autonomous vehicles by steering and braking, with 

steering preferred if braking is not necessary. 

The safety assurance is rooted in the concept of control invariant set. The key challenge of this 

concept is the computation of the reachable set based on the system dynamics. Multiple methods 

of computing or approximating a control invariant set have been proposed in the literature, 

including barrier certificate [49], Hamilton-Jacobi method [33] and occupation measure [34, 71], 

as reviewed in Section 1.1. 

The polar algorithm proposed in this chapter computes a polytopic avoidable set whose 

complement is an outer approximation of the reachable set, and control invariant. The gap between 

the reachable set and the avoidable set serves as a safety buffer. Then a control barrier function is 

constructed based on the avoidable set and implemented as a supervisory controller using Mixed 

Integer Programming (MIP).  The remainder of the chapter is organized as follows. Section 3.2 

presents the dynamic model and the problem formulation, Section 3.3 introduces the supervisory 

control structure, Section 3.4 presents the polar algorithm, Section 3.5 discusses the application of 

the polar algorithm on obstacle avoidance for autonomous vehicles, Section 3.6 shows the results 

and conclusion is drawn in Section 3.7. 
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3.2 Dynamic models and problem formulation 

3.2.1 Dynamic models 

Two dynamic models are used in this study. The first model describes vehicle motion in the 

Earth-fixed coordinates; the second model records the relative motion between the vehicle and a 

moving obstacle.  When there are multiple obstacles, a copy of the second model can be created 

for each obstacle. For each type of obstacles, a maximum velocity and a geometric size are defined.  

A unicycle model is used to represent the dynamics of the autonomous vehicle:  

 
      

 
sin    

c

   

os vv

Y v

X a

r



 

 







, (3.1) 

where X and Y are the global Cartesian coordinates, v  denotes the vehicle velocity and   is the 

heading angle. The inputs to the vehicle are acceleration a  and yaw rate r .  

  ,u a r . (3.2) 

The following constraints are assumed to hold:  

  
   

 

max max max

2 2 2 2 2

max max

0, ,         , ,

, ,     .

v r r r

a a a a v r

v

g

  

   
    (3.3) 

where   is the friction coefficient and g is the gravitational constant. 

The motion relative to a moving obstacle is described with four states, as shown in Figure 3.1. 

  
T

X Y vx   , (3.4) 

where X and Y denote the relative position of the obstacle with respect to the vehicle in the 

global coordinates. 

 , ,
d dx

d

d

d dy

XX X X v

YY Y vY

    
 
     

 (3.5) 

where
dX and 

dY  are the coordinates of the obstacle. The velocity of the obstacle dv  is a 

disturbance input and dxv , dyv are its components on X and Y directions. Relative heading angle

  is the difference between the AV heading angle and the yaw angle of the obstacle: 

 
1tan .

Y

X
    
   

 
 (3.6) 
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The dynamic equations are as follows: 
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. (3.7) 

 

Figure 3.1 Coordinate system of the relative dynamic model 

Both  and   are restricted between   and . In the remainder of this chapter, the dynamic 

system in (3.7) is denoted as 0 , and the set of state, input and disturbance are denoted as
0
,

0

and
0

, respectively. 

3.2.2 Problem formulation 

The goal of the AV is to reach a destination without colliding with any obstacle. Strictly 

speaking, under some circumstances, collision is inevitable, for example, when the AV is 

surrounded by hostile pursuers. In order to define a reasonable problem to solve, the concept of 

“passive friendly safety” proposed by Macek et al. in [72] is adopted and extended to multiple 

moving obstacles. The following rules are asserted: 

(1) When the AV is stopped, any conflict is not considered a collision caused by the AV. 

(2) When an obstacle runs into the AV from behind, it is not considered a collision caused by the 

AV.   

The definition of collision from behind is  
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2


  . (3.8) 

The second rule is not needed for the single obstacle case since the vehicle can accelerate and 

avoid the collision. However, in the case of multiple moving obstacles, when an AV is threatened 

by an approaching obstacle from behind, neither accelerating (risk to others in front) nor slowing 

down (escalating the situation) is safe. These two rules are applied for all simulations in this 

chapter. 

For simplicity, it is assumed that all obstacles are pedestrians, and both the vehicle and 

pedestrians are assumed to have a round shape with radius 
vR  and

pR , respectively.  In 

simulations, collision is detected by the following rule: 

    2 2 0
2

v pX Y R R v



 

         
 

. (3.9) 

In this study, the onboard sensors are assumed to measure all states accurately. The speed of the 

pedestrians is assumed to be bounded, and the bound is known: 

 2 2

maxd dx dy dv v v v   . (3.10) 

3.3 Supervisory control and avoidable set 

The goal of the supervisory control is to avoid collision under all possible disturbance input, 

i.e., (3.9) is not violated by any obstacle at any time.  First, based on the supervisory structure, the 

following three subsets of the state space  are defined, as shown in Figure 3.2.  

 

Figure 3.2 Three sets defining different stages of obstacle avoidance 

(1) Infeasible set: As shown in Figure 3.2, the infeasible set is the region where a collision is not 

always preventable, that is, there exists a disturbance under which a collision will occur for 

any control input. However, note that if the pedestrian is neither hostile nor shrewd enough to 

choose this disturbance value, a collision may not occur.  Once the AV is inside the infeasible 

Infeasible 
set

Avoidable 
set

Controlled 
invariant 

set
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set, it should slow down and stop immediately. The infeasible set is denoted as 
InX  in the 

remainder of the chapter. 

(2) Avoidable set: To guarantee that the AV never enters the infeasible set, a superset of the 

infeasible set is constructed, and its complement is control invariant.  For a state in the 

avoidable set and outside of the infeasible set, a collision can be avoided by taking emergency 

action, to be explained later. If possible, the state should be driven out away from the avoidable 

set. 

(3) The control invariant set: The complement of the avoidable set.  Because it is control 

invariant, any state outside of the avoidable set can stay outside under all possible disturbances. 

 Denote the system dynamics as 

 ( , , )x f x u d , (3.11) 

where x , u and d are the state, control input, and the disturbance input, respectively. 

The mathematical condition for a set 
BP  to be avoidable is then  

 
     

   . .

0 , 0, 0, , ,

, .
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B

x P t s t d s

u s s t x t P

       

  
 (3.12) 

If the set 
BP  is the zero level set of a real-valued function :b  , i.e., 

BP  is characterized as

  0x b x ∣ , then the set invariance condition becomes a boundary condition: 

 

   

 

     
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, 0 , ,
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, ; ,

  , , 0.
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x b x d u

s t b x b

x P x P b

f x d

x

u

   



 



    

 

 (3.13) 

Suppose at a given point 
0x  is on BP , i.e., the boundary of 

BP , the normal vector exists. Denote 

the normal vector pointing outwards from 
BP  as 

0xn , then the geometric condition of (3.13) is 

equivalent to 

  
00. . , , ,, 0xs t f x nd u du     . (3.14) 

Note the strict inequality is changed to non-strict inequality to simplify the computation. This can 

be done by introducing some small slack constant. 
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3.4 Polar algorithm 

The key challenge of the supervisory control is to find an avoidable set that contains the 

infeasible set. To solve this problem, a polar algorithm is proposed. The infeasible set is 

represented by a bounded polytope containing the collision set as described in (3.9), then the polar 

algorithm solves for another polytope that contains the infeasible set and satisfies the boundary 

condition introduced in (3.12). The polar algorithm is applicable to a dynamic model in the 

following form 

 , ,,E Gx du d x u    , (3.15) 

where , and  are polytope; E and G are constant matrices. Note that there is no state 

dependent term in the state derivative. The dynamic model in Section 3.2 is simplified to this form 

by viewing all state dependent terms as disturbance, which is explained in detail in Section 3.5.2. 

3.4.1 Polar of a polytope 

In this section, the polar algorithm is introduced, which is built based on the dual property of 

polytope. A polytope P  has two important elements: vertices and facets. For simplicity, only 

bounded polytopes with a finite number of vertices and bounding hyperplanes are considered. A 

bounded polytope nP  with the origin in its interior can be represented as a set of the convex 

combination of its vertices: 

 1,| , 0,
i

i i i

i

iv iP x x   
 

   





  , (3.16) 

where   .iv PV  is the set of vertices of P . It can also be represented as an intersection of finitely 

many closed half spaces: 

  | 1
i

T

i

H

P x H x  , (3.17) 

where  1| T

ix H x  are the bounding half spaces.   #

iH X  denotes the set of linear functionals 

that corresponds to the half spaces: 

   T

i iH x H x , (3.18) 

where  # |: fX f X linear   is the algebraic dual of the vector space X . Since the algebraic 

dual of a Euclidean space is also a Euclidean space, the linear functionals in #X are treated as 

vectors in the dual space and the set  iH  is denoted as .P H . In addition, half-spaces and 
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polytopes can also be defined in #X . The bounding hyperplane corresponding to a bounding half-

space | 1T

ix H x  is defined as 

  | 1T

ix H x  , (3.19) 

and the corresponding facet is defined as  

    | 1T

i iF H P x H x   . (3.20) 

For polytopes, the normal vector of the facet  iF H  is simply iH , which simplifies the condition 

in (3.14). The polar of P is a polytope in the dual space #X defined as  

  | , 1TxP H xPH    . (3.21) 

Because of the convexity and linearity of polytopes, a simpler definition is  

  . , 1| T

iiv PP H V H v    . (3.22) 

The vertices of P are mapped to the facets of P
, and the facets of the P are mapped to the 

vertices of P
, as shown in the following example.  

 

Figure 3.3 Example of polar of polytopes 

For a bounded polytope P with the origin in its interior, the following hold:  

(1) The polar of P , denoted as P
,  is a bounded polytope with the same dimension as P and 

containing the origin in the interior. 

(2) The polar of P
, denoted as, is the original polytope, i.e., P P  . 

(3) For any H P , P is completely contained in the half-space  1| Tx H x  , i.e.,  

 , , 1TH P x P H x     . (3.23) 

(4) For any point H  outside P , P is not completely contained in the half-space  1| Tx H x   
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 , , 1TH P x P H x     . (3.24) 

Because of the properties above, the polar concept provides a clear condition for polytope 

inclusion: 

 1 2 2 1.P P P H P   . (3.25) 

This property is one of the building blocks of the polar algorithm. For more detailed properties of 

polar, see the textbook [73]. 

When finding an avoidable set that contains the infeasible set 
InX , the set inclusion condition 

is enforced by the following constraint: 

 . nB IP H X  . (3.26) 

3.4.2 Hyperplane orientation and boundary condition 

The boundary condition of the avoidable set is interpreted as an orientation condition for the 

bounding hyperplanes. For each facet of a polytope P , suppose that the corresponding bounding 

hyperplane is 1TH x  , the normal vector that points outwards from P is simply H . 

For the dynamic system in (3.15), the avoidable set boundary condition in (3.14) becomes 

 
. . , .

. , ,

0

H P H d

u s t Eu Gd H

   

   
 (3.27) 

In order to find all bounding hyperplane orientations that are valid for an avoidable set, input 

u  is fixed first. For a bounding hyperplane 1TH x  to satisfy the boundary condition of the 

avoidable set with a fixed input u , the following inequality must hold: 

  , 0Td H Eu Gd    . (3.28) 

Since  is a polytope and the system dynamics is linear, (3.28) is simplified to checking only its 

vertices: 

  . , 0Td V H Eu Gd    . (3.29) 

Condition (3.29) defines a polytope in
#X  and it is easy to check that 

  | . , 0
Tu

HsP H d V Eu Gd H     contains all the functionals corresponding to the 

bounding hyperplanes valid under input u . Define 

 
.

u

H

V

s Hs

u

PP
 

 , (3.30) 

this union may not be convex, but using the linearity of the dynamics, the following theorem is 

true: 
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Theorem 3.1: HsP is the maximal set of linear functionals that satisfies the boundary condition of 

an avoidable set for the dynamic system shown in (3.15). 

See Appendix A for proof. 

Recall that there are two requirements for the avoidable set: set inclusion and boundary 

conditions. The set inclusion requirement is simplified to selecting bounding hyperplanes from the 

polar of the infeasible set 
InX ; the boundary conditions requirement is simplified to selecting 

bounding hyperplanes from 
HsP . Therefore, it is natural to intersect the two sets. Define  

 H Hs InP P X   . (3.31) 

This set may not be convex since it is the intersection of a convex polytope and a nonconvex 

union of polytopes. Further, define 

  B HP Conv P


 , (3.32) 

where  Conv   denotes the convex hull of a polytope. Then BP possess the following properties:  

Theorem 3.2: BP  is an avoidable set that contains 
InX . 

Theorem 3.3: 
BP  is the minimal avoidable set. 

Theorem 3.4:  If the origin is in the interior of  
InX , and IIn nX X c   , where c is a constant 

shifting vector, then B BP P c  where BP  is the constructed avoidable set based on InX . 

The above claims mean that 
BP is the minimal avoidable set that satisfies both set inclusion 

condition and boundary condition, and it is invariant with respect to the change of origin position. 

See Appendix B, Appendix C, and Appendix D for proofs. 

3.5 Avoidable set for low-speed autonomous vehicles 

In this section, the avoidable set for a single moving obstacle is solved using the polar algorithm. 

3.5.1 Infeasible set 

The obstacle avoidance problem with a single moving obstacle can be formulated as a pursuit-

evasion problem. In general, the vehicle can use both steering and braking to avoid collision (and 

both are used in the control implementation). In the computation of the infeasible set, however, 

only braking is used, which allows an easy extension to multiple pedestrian cases.   
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For a given initial condition, an obstacle’s future position is bounded by: 

            
2 2 2

max0 0d d d d dX t X Y t Y v t    , (3.33) 

then the vehicle’s position is calculated by applying the maximum brake. By checking whether a 

collision occurs before the vehicle stops, the points in the state space can be then identified as 

either feasible (safety is guaranteed) or infeasible (safety cannot be guaranteed). A grid is selected 

with certain resolution in the state space and it is computed for each grid point whether or not a 

collision will occur. A polytope
InX  is then found that contains all the infeasible grid points by 

computing their convex hull.  

3.5.2 Avoidable set for the autonomous vehicle 

Consider the relative dynamics shown in (3.7). It is rewritten as: 
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, (3.34) 

where  
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 (3.35) 

It is then easy to find the bounds of the disturbance: 

 

 
2

max max

max
3

1

2
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2

2 ,

.

d

d

d v v

v
d

X Y

d  


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

 (3.36) 

From the collision avoidance condition,  

  2 2 max
3

d
v p

v p

v
X Y R R d

R R

 
        

. (3.37) 

Therefore, the dynamic is simplified as 
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,
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x Eu Gd k

k
X Y



  

 
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 (3.38) 

where  
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 (3.39) 

Although the constraint for 1d and 2d is a circle and nonlinear, it can be outer approximated by a 

polygon. As the number of vertices grows, the approximation becomes more accurate. Therefore, 

the disturbance 1 2 3

T

d d d d    is bounded by a polytope. The input constraints are 

 

 

 

 

max max

max max

22 2 2

max

, ,

, ,

.

a a a

r r r

a v r g

 

 

 

 (3.40) 

where   is the tire-road friction coefficient, and g  is the gravitational constant. A polygon is 

again used to approximate the circular constraint so that the set to constrain is also approximated 

by a polytope. Denote the dynamic system in (3.38) by  , and the set of disturbance is denoted 

by .  

Theorem 3.5:  If a set P is an avoidable set for the system  , then it is an avoidable set for 0  

in (3.7). 

See Appendix E for proof. 

The last term k  in (3.38) provides an additional safety margin. When 0  , the obstacle is on 

the right-hand side of the vehicle. To avoid a collision,   must increase. Similarly, when 0  , 

 must decrease for safety. Both of these conditions are helped by k . Denote the dynamic system 

that ignores the last term k  as 
1 1: x E u G d   . 

Theorem 3.6: Suppose a polytope P is an avoidable set for  . Additionally, for any point x  on 

the boundary of P  where 4 0x   , the bounding hyperplane  1 2 3 4 1TH x H H H H x   

at that point satisfies 4 0H  , and for any point where 
4 0x   , 4 0H   holds, then P is an 

avoidable set for  .   
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See Appendix F for proof. 

With Theorem 3., the problem is simplified to finding an avoidable set for  , and check 

whether the condition in Theorem 3. holds. 

Applying the procedure described in Section 3.4, the avoidable set
BP  is obtained and shown in 

Figure 3.4. Because the dimension of the state space is four, 
BP is projected to three 3-dimensional 

plots.  The parameters used in generating the avoidable set can be found in Table H.1 in Appendix 

H. 

 

Figure 3.4 The avoidable set (yellow) and the infeasible set (red)   

3.5.3 Supervisory control with control barrier functions 

The concept of CBF is used to formulate the supervisory structure. First, a control barrier 

function is applied to a single half-space generated from a facet of the avoidable set, a Mixed 

Integer Program is used to deal with multiple facets.  

 Consider one of the half-space of the polytope of the avoidable set.  If the state must stay outside 

of the half-space  | 1Tx H x   to ensure safety, the control barrier function is defined as  

    
 

 
1, log

1

T
b x

B xb
x

x
b

H x  


  . (3.41) 

 It can be seen that  B x  goes to infinity as x  approaches the bounding hyperplane. When x   

is far from the boundary,  B x is positive but small. If the derivative of  B x is always finite, then 

 B x is finite, and x  remains outside of the half-space. In particular, the following constraint is 

enforced by the supervisory controller: 

  /B B x , (3.42) 

where   is a positive constant. This constraint is loose when x  is far away from the boundary, and 

becomes tighter as x  approaches the half-space. Consider the influence of sampling, the condition 

is modified to  
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  
 

, ,T

s

b
H f x u d

B x T




 


, (3.43) 

where sT is the sampling time. This is the discrete version of (3.42) derived from Taylor expansion. 

See Appendix G for the derivation of (3.43). 

3.5.4 Mixed integer program  

For each bounding hyperplane H of 
BP , if the state satisfies 1TH x  , then H  is said to be 

active, otherwise, it is said to be inactive. Since the avoidable set 
BP  is the intersection of all 

bounding half-spaces, the state x  is outside 
BP if and only if there exists at least one active 

bounding hyperplane, i.e.,  

 0 0. , 1T

B Bx P H P H H x     . (3.44) 

When  x t is outside the avoidable set, each active bounding hyperplane generates a linear 

constraint, in the form of (3.43), and at least one constraint must be satisfied. Since this is a logic 

disjunction, combining the supervisory control structure presented in Section 2.2, an MIP with 

slack variables is used to solve for u : 
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
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 (3.45) 

where  js are slack variables, and  is a large positive number. When 1js  , the corresponding 

inequality is automatically satisfied; when 0js  , the original barrier inequality is enforced. aH  

is the set of all active bounding hyperplanes and PN is its cardinality. The condition 

1
1

PN

jj Ps N


   ensures that at least one of the original barrier inequalities is satisfied. Q
 is the 

2-norm induced by a positive definite matrix Q ,
2 T

Q
x x Qx , It is used to adjust the weight on 

each component of the input interference. 
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3.5.5 From single obstacle to multiple obstacles 

When there are multiple moving obstacles, one can follow the same approach to calculate the 

avoidable set by expanding the state space to  

  1 1 1 n n n

T
x X Y X Y v     . (3. 46) 

Because of the limitation on computation complexity, and the number of pedestrians is not 

known in general, this naive approach is not scalable to a large number of pedestrians. A simpler 

alternative is used. The key innovation is that the AV is only allowed to brake when calculating 

the infeasible set, as mentioned in Section 3.5.1. Under this assumption, the infeasible set can be 

computed for one obstacle and then applied to multiple obstacles, since the emergency action to 

avoid all obstacles are the same. If steering is allowed, this will no longer be the case.   

Recall the concept of responsibility in Section 3.2.2. Let 
InX be the set outside of which the 

vehicle can come to a full stop before hitting the obstacle for all obstacle movement.  In the 

multiple-obstacle case, as long as all obstacles are outside of 
InX  , the vehicle is always able to 

stop before hitting any one of the obstacles.  

For each pedestrian, there is a set of states as described in (3.4), representing the relative 

dynamics between the pedestrian and the AV. Now the task is to keep multiple states outside of a 

single avoidable set.  

 

Figure 3.5 Multiple-pedestrian case with a single infeasible set and avoidable set  

With multiple moving obstacles, the avoidable set is not always avoidable. Nevertheless, the 

supervisory control developed for a single pedestrian can still be used with the following 

modifications: (i) the constraint in (3.45) must be checked for each of the pedestrians; and (ii) 

when any obstacle breaches the “avoidable set,” braking is applied until either the states for all 

pedestrians are outside the avoidable set, or the AV comes to a complete stop. Although braking 

is used to guarantee safety in the multiple pedestrian case, the simulation shows that the 

Ped1

Ped4

Ped3

Ped2



 

 32  

supervisory control does not rely on heavily braking. The vehicle comes to a full stop only when 

it is trapped by multiple pedestrians.  

3.6 Simulation results  

3.6.1 Simulation setup and result  

The goal of the AV is to reach a destination from a fixed starting point without colliding with 

any pedestrian. The initial positions and velocities of the pedestrians are random, and they walk 

randomly.  All objects stay in a predefined rectangular region    lim lim lim lim, ,X X Y Y   . The 

random walk is generated with Gaussian distributed acceleration in X  and Y directions: 
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The velocity must also satisfy the boundedness constraint in (3.10). To keep the pedestrians inside 

the rectangular region, the following (reflection) rule is used 
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A greedy Model Predictive Controller is used as the navigation controller. The detail of MPC 

is shown in Appendix I.  The control structure is shown below: 

 

Figure 3.6 Control structure for simulation 

The simulation parameters are listed in Table 3.1.  

Table 3.1 Settings of the simulation runs 

Number of pedestrians 7 

The region of pedestrian movement    5,5 5,5    

Initial Position of the vehicle (5,5) 
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Initial velocity of the vehicle 2m/s 

Initial yaw angle / 2  
Destination (-5,-5) 

A sample simulation is illustrated in Figure 3.7. The blue circles are snapshots of the position 

of the vehicle; the green circles show the positions of the pedestrian and turn red when getting 

close to the vehicle, and the red square is the destination. One snapshot is taken every 0.5 seconds. 

The color of the snapshots changes from light to thick as time passes.  

 

 

Figure 3.7 Sample simulation results 

The control inputs from the navigation controller and the supervisory controller are shown in 

the first two subplots in Figure 3.8, where 
0a  and 0r  are the acceleration and yaw rate command 

from the navigation controller, and are the command from the supervisory controller. maxd denotes 

the distance from the state to the avoidable set, and was plotted in the third subplot. Different 

colors correspond to maxd  for different pedestrians. 
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Figure 3.8 Control input and minimum distance to avoidable set 

Based on the difference between MPC input and Barrier input, the simulation was divided into 

five stages. In stages 3 and 5, the supervisory controller detects little danger, so the two control 

inputs stay close; in stage 1 and 4, the supervisory controller manages to follow a similar 

acceleration command, but uses a different yaw rate to avoid a collision. This preference is because 

more weight is put on the acceleration difference than on the yaw rate difference when defining Q 

matrix in (3.45). In stage 2, both acceleration and steering are changed by the supervisory control 

to ensure safety. Compare the input plot and 
maxd plot, the time when supervisory control changes 

the MPC input corresponds to the time when the smallest 
maxd among seven pedestrians is small, 

which indicates danger.  
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3.6.2 Comparison to two benchmark methods 

The performance of the polar algorithm is compared to two benchmark methods: the potential 

field method [66] and the Hamilton Jacobi method [33]. The details of both benchmark methods 

are included in Appendix J and Appendix K. 

In order to compare the performance, the simulation is repeated 1000 times with the same 

setting shown in Table 3.1. In each trial, the vehicle starts at the same location and tries to reach 

the same destination, while the pedestrians appear at random positions and do random walking. A 

simulation trial is marked as “stuck” if the AV failed to reach the destination within 25 seconds, 

and a trial is marked as “crash” if (3.9) is satisfied at any time. 

Table 3.2 Key performance indices of the three methods in 1000 simulation trials 

Method Average time Collision Stuck trips 

Polar Method 10.88s 0 25 

Hamilton Jacobi 14.93s 0 171 

Potential Field 8.47s 436 0 

 The statistics of the 1000 trials are shown in Table 3.2. Both the polar method and the Hamilton 

Jacobi method can ensure safety, that is, no crash, while the potential field method crashes in about 

half of the trials. The Polar method reaches the destination in a much shorter time, and with fewer 

“stuck” cases compared with the Hamilton Jacobi method, indicating that the proposed method is 

as safe as, but much less conservative than, the Hamilton Jacobi method. 

3.7 Conclusion and discussion 

This chapter presents a polar algorithm to design collision avoidance algorithms for low-speed 

autonomous vehicles. The concept is based on the construction of an “avoidable set,” which is an 

extension of the commonly used concept of a control invariant set.  A Mixed Integer Programming 

based supervisory control structure is proposed to implement this algorithm. Safety can be 

guaranteed for both single moving obstacle and multiple moving obstacles while liveness is 

maintained. The safety guarantee was verified with simulations.  

The polar method is suitable for models that are similar to integrators. Given the way 

disturbance is treated, the method maybe conservative when applied to a system with strong drift 
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dynamics. However, since many of the vehicle kinetic models are similar to integrators, the polar 

method is a powerful method for constructing supervisory controller for vehicle motion control. 

In the simulation, the MIP runs faster than real-time with an avoidable set that has 70 facets. It 

is reasonable to claim that the real-time implementation is feasible for models of similar 

complexity. For higher dimensional models, one can make an over-approximation of the avoidable 

set by eliminating some vertices that are too close to others in 
HP  , which results in an over-

approximation of 
BP  that is also avoidable.  
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Chapter 4 Supervised learning based design for safe 

controllers 

As reviewed in Section 2.2 and demonstrated in Chapter 3, CBF is a powerful tool that can 

provide safety guarantee to existing controllers (namely, the student controller) in a supervisory 

structure. Typically, CBF works as a supervisor that intervenes when danger is detected. However, 

when intervention happens, the action may be harsh and performance may be compromised. 

Moreover, since the CBF condition is only enforced in the 0-level set of the CBF, the convergence 

from initial states outside the 0-level set of the CBF is not guaranteed. In this chapter, the focus is 

on the other side of the coin: the design of the student controller. A supervised learning based 

method is proposed to design a proper student controller that mitigates the influence of CBF and 

is capable of driving bad initial condition back to the safe region. A training set is generated by 

trajectory optimization for multiple initial conditions that incorporate the CBF constraint. Then a 

policy is trained via supervised learning that maps the feature representing the initial condition to 

a parameterized desired trajectory. Finally, the learning based controller is used as the student 

controller, and a CBF based supervisory controller on top of that guarantees safety. A case study 

of lane keeping for articulated trucks shows that the student controller trained by the supervised 

learning “inherits” the good properties of the training set and the CBF is rarely triggered. 

4.1 Introduction and motivation 

Control Barrier Function was developed to impose safety guarantee on control systems [30, 

39]. The key idea is to compute a forward invariant set that contains the safe set and excludes the 

danger set. CBF is typically implemented in a supervisory control structure to guarantee safety 

with minimum interventions. As shown in Figure 2.1, 0u  denotes the control input from the student 

controller, which can be designed with any existing method, and u denotes the input signal after 

the intervention of the supervisory controller. If 0u respects the safety constraint, 0u u ; otherwise 
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a minimum intervention is applied. Depending on the form of the barrier function, the 

implementation can be quadratic programming [30, 51], mixed integer programming [74] or in 

other forms.  

While safety is assured independently of the choice of student controller, if the student 

controller is not properly designed, or is designed in a way that is not compatible with the CBF, 

the CBF may be triggered frequently, leading to undesirable closed-loop performance. In [54], 

when working with a student controller for  Adaptive Cruise Control (ACC) that is not properly 

designed, the CBF causes spikes on the input when activated. In [74], when the student controller 

is designed without considering obstacle avoidance, the CBF has to intervene frequently and 

severely to ensure obstacle avoidance.  

On the other hand, machine learning has been used extensively in dynamic control. Supervised 

learning has been used to learn a control policy with structure [75, 76], deep learning recently was 

used to generate end-to-end Lane Keeping (LK) policy, i.e., a mapping directly from the camera 

pixels to the steering input [77], and reinforcement learning can be used to generate a control 

policy in an “explore and evaluate” manner [78-80]. However, one major deficit of machine 

learning is its extreme difficulty for analysis. The number of parameters contained in a neural 

network can easily reach several thousand, even millions, which makes it practically impossible 

to analyze. Therefore, the safety of a learning-based controller should rely on other tools, such as 

reachable sets and barrier functions. In this sense, machine learning and CBFs complement one 

other.  

Existing methods that combine learning with safety guarantee include reachable-set-based 

learning scheme that can guarantee safety for online learning of a control policy [81, 82] and 

Gaussian process learning [83]. Unlike approaches that aim at guaranteeing safety with learning, 

such as [81-83], the method proposed in this chapter separates safety from the performance. The 

safety guarantee is provided by a CBF, and supervised learning is used to improve the performance 

considering the influence of the CBF as a supervisor.  

The proposed method starts by performing trajectory optimization offline, generating a library 

consisting of trajectories with good properties, such as stabilizing an equilibrium and attenuating 

disturbances, as well as the satisfaction of the CBF condition. Then supervised learning is used to 

train a student controller that inherits the properties of the trajectory library. In addition, CBF acts 
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as a supervisor on top of the learning-based controller, as shown in Figure 4.1. Since the CBF 

condition is enforced in the training set, an intervention by the supervisor is rarely triggered. It 

should be emphasized that the safety is still guaranteed by the CBF, the supervised learning only 

aims to improve performance.  

 

Figure 4.1 Block diagram of the supervisory control 

The main contributions of this chapter are the following two points. First, a supervised learning 

based method is proposed to design a student controller that takes the CBF condition into account, 

which is applicable to a large region of initial conditions, and rarely triggers an intervention from 

the supervisory controller. With supervised learning, the design of a safe student controller is 

transformed into the design of safe trajectories, which is much easier, as conceptually shown in 

Figure 4.2.  

 

Figure 4.2 Learning based trajectory generator 

Second, a stability and set invariance analysis is provided for the learning-based controller 

under the framework of continuous hold (CH) feedback control. Applying the proposed method, a 

safety guarantee is provided for the lane keeping control (LK) of an articulated truck, while 

achieving good ride comfort. 
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4.2 Dynamic model and virtual constraint 

In this chapter, a control affine nonlinear model is considered: 

        1 1 2 2 ,d dx f x g x u g x d g x d     (4.1) 

where nx , u  ,
1

1 1

ld   , and 
2

2 2

ld   represent the state, input, measured 

disturbance, and unmeasured disturbance, respectively. 

Remark 4.1: The unmeasured disturbance 2d  will be countered with the feedback control. 

Therefore, it is assumed that 2 0d   for the following analysis of feedback linearization. 

4.2.1 Model assumptions 

The results in this chapter are developed under four key assumptions: 

Assumption 4.1: It is assumed that 1d changes slowly comparing to the system dynamics. 

Therefore, 
1d  is treated as constant in the following analysis. 

Assumption 4.2: There exists an output  z h x  for x within an open subset n , such that 

for all 
11d  , z has a relative degree   , where the relative degree is defined as the integer such 

that x   ,  
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Where 

      1 1df x f x g x d  , (4.3) 

Assumption 4.3: It is assumed that when 2 0d  ,  for all 
1 1d  , there exists a unique  1u d   

that maintains a unique equilibrium point 
n

ex  with   0eh x  , denoted as  1e xx d :  

 
       

 

11 1 0,

0.e

e de u ef g xg d

x

x x d

h

  


 (4.4) 

Then from feedback linearization, there exists a state transformation: 
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where T is a bijective diffeomorphism over , and the transformation satisfies  1 0
T

g x
x





. 

Therefore, the dynamics of the “hidden” states   is represented as  

  ,    . (4.6) 

In particular,  ,0    is the zero dynamics of the system with output z , and there exists a 

smooth surface   defined by  : 0x   ∣ , which is the zero dynamics manifold.  

Assumption 4.4: It is assumed that the zero dynamics of the system under output z  is exponentially 

stable within .  

Then by Theorem 11.2.3 in [84], the following feedback linearization controller constructed 

from z  and its derivatives stabilizes the equilibrium ex : 
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where  ik is a set of exponentially stabilizing gains in the sense that the following characteristic 

equation 

 
1

1 0... 0k k 

  

     (4.8) 

has all of its roots are in the open left half plane of the complex plane. See e.g. [85] for reference 

on feedback linearization and zero dynamics. 

4.2.2 Virtual constraint and tracking control 

To let the system track a desired trajectory of z , the virtual constraint method is used, which 

was originally developed in the robotics literature [86-88], and now appearing more widely. 

Suppose system need to track the following trajectory: 

  desz h t , (4.9) 

where :[0, )desh   is a  times continuously differentiable function. Differentiate (4.9) 1   

times and define the error states: 
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Then select  ik to be a set of stabilizing gains as described in (4.8), and let 
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When desh is   times continuously differentiable and its derivatives are bounded, the feedback 

linearization control can locally track desh imposed as a virtual constraint of z [89]. 

The benefit of the virtual constraint approach is that it gives a simple means of parameterizing 

the desired evolution of the vehicle. Instead of all the states, the desired trajectory is parameterized 

only by an output z satisfying Assumption 4.2 and Assumption 4.4. Later, trajectory optimization 

is used to determine the existence of a set of interesting trajectories that can be tracked by 

considering the full dynamics and the feedback structure. 

4.2.3 Tractor-semitrailer models 

In this work, two models are used: a design model and a validation model. For validation, a 

TruckSim model is used with its impressive 312 states. The literature contains a range of less 

detailed models that could be considered for control design, ranging from the nonlinear 37-state, 

physics-based model in [22], to linear models. To demonstrate the fundamental robustness of the 

proposed approach, the control design is based on a low-complexity model for an articulated truck 

adapted from [90] and [91], namely a 4 DOF linear model with 8 states: 

 
T

y a sx y v r r p      , (4.12) 

where y  is the lateral deviation from the lane center to the tractor Center of Gravity (CG), 
yv  is 

the lateral sideslip velocity of the tractor,   is the heading angle of the tractor, r  is the yaw rate 

of the tractor, a is the articulation angle on the fifth wheel (the joint between the tractor and 

semitrailer), sr is the yaw rate of the semitrailer,   is the roll angle and p  is the roll rate, as shown 

in Figure 4.3. 
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Figure 4.3 Lateral-yaw-roll model of articulated truck  

The linear model is expressed in the form of (4.1) for consistency,  
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The input to the system is the steering angle f of the tractor front axle and the disturbances are 

road curvature 
dr  and side wind

yF , where 
dr is the measured disturbance, namely, 

1d  in (4.1)  and

yF is the unmeasured disturbance, namely, 
2d  in (4.1).  

A priori, the above linear model is only valid under the following assumptions:  

 The longitudinal speed xv of the truck  has small variation; 

 Due to the stiff connection on the roll dimension, the roll angle of the tractor and 

semitrailer are the same; 

 The pitch and vertical motion are weakly coupled with the lateral, yaw and roll motion, 

and are ignored in the model; 

 The angles are small, therefore the model can be approximated by a linear dynamic 

model.  

The simulations performed later in TruckSim support that these assumptions are satisfied in a 

highway lane keeping scenario.  

4.2.4 The virtual constraint for the truck model 

The lateral displacement with preview is selected as the output for feedback linearization: 

   0: xz h x y T v   , (4.14) 

with 0T  is the preview time, as shown in Figure 4.4. 
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Figure 4.4 Preview of truck lateral dynamics  

The output z so-defined has relative degree 2 for any
dr , i.e., 
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To be more specific, the output dynamics is 

 

 

1

1

2

,

,

.

d

d

df g

f g f f g d

h x

h h

z h h u h

r

r

z

z 





  





  (4.16) 

By Assumption 4.1, 
dr changes slowly compared to the dynamics, therefore, 

dr  is omitted. 

Since there are eight states but only z  and z are used in the feedback linearization, six dimensions 

of the state space are hidden. It is shown that the zero dynamics of the system is exponentially 

stable, see Appendix L. Since 2   , the feedback structure in (4.11) is essentially a PD controller: 
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 (4.17) 

where pK  and
dK  are the PD gains. 

At this point, specifying the desired performance of the truck is simplified to designing desh , 

the desired trajectory of the output z , which is discussed in Section 4.3. 

Remark 4.2: If smooth steering angles are desired, the control design model can be augmented 

with an integrator appended to u . In this case, the system has relative degree three and the control 

design is nearly the same. 

4.3 Trajectory optimization 

A CBF is constructed following the procedure described in Section 2.2.3. Some of the key 

parameters for the truck lane keeping problem are listed in Table 4.1. 
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Table 4.1 List of parameters 

xv  20 /m s  

Bound on y  0.3m  
Bound on   0.1rad  
Bound on dr  0.02 /rad s (turning radius of 1000m) 

Bound on yF  2000N  

Bound on f  0.2rad  

Although CBF gives safety guarantee to the system, the performance could be compromised 

should the student controller be not properly designed. For example, a student controller designed 

with LQR is demonstrated in Figure 4.13, which causes severe intervention from the CBF and thus 

leads to bad ride comfort. In this section, the optimization procedure is presented that incorporates 

the CBF condition, which is then used to train a student controller that is compatible with the CBF. 

In addition to the CBF condition, other constraints are needed to ensure the stability of the 

continuous hold controller, as introduced later in Section 4.4.1. 

4.3.1 Direct collocation for trajectory optimization 

As discussed in Section 4.2, the trajectory optimization is boiled down to the optimization of 

desh , the desired trajectory of the output z . Direct collocation is used to generate the trajectory of 

the states and
desh , while

desh is imposed as the virtual constraint. 

Direct collocation is widely employed in trajectory optimization problems due to its 

effectiveness and robustness. It is thus chosen to optimize the trajectory while enforcing the virtual 

constraint. It works by replacing the explicit forward integration of the dynamical systems with a 

series of defect constraints via implicit Runge-Kutta methods, which provides better convergence 

and stability properties particularly for highly underactuated dynamical systems. The result is a 

nonlinear programming problem (NLP) [92]. 

In this problem, a modified Hermite-Simpson scheme based direct collocation trajectory 

optimization method is utilized [93]. Particularly, the flow (a.k.a. trajectory),  x t , of the 

continuous dynamical system in (4.13) is approximated by discrete value 
ix  at uniformly 

distributed discrete time instant 0 1 20 Nt t t t T      with 0N  being the number of 

discrete intervals. Let 
ix and 

ix  be the approximated states and first order derivatives at the node
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i , they must satisfy the system dynamics equation given in (4.13). Further, if these discrete states 

satisfy the following defect constraints at all interior  1,3, , N 1i  , 
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 (4.18) 

Then, they are accurate approximations of the given continuous dynamics. (4.18) defines the 

modified Hermite-Simpson conditions for the direct collocation trajectory optimization [93]. 

Based on the above formulation, now one can construct a constrained nonlinear programming 

problem to solve for the virtual constraint excited trajectory optimization of the articulated truck 

model. To incorporate the virtual constraints based feedback control with the trajectory 

optimization, the output dynamics equation given in (4.16) is enforced at each node. Then the 

control input iu  will be implicitly determined via this constraint without explicitly enforcing it as 

in (4.16). Further, the output z  and its derivative z  should equal to the desired trajectory 
desh at 

0t   to ensure that the system lies on the zero dynamics manifold  0,t t  .  

The desired trajectory 
desh is parameterized as Bezier curve, which is widely used in computer 

graphics and related fields. A Bezier curve of order m is defined on  0,1  as  
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 
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where 
i  are the Bezier coefficients. It is a parameterized polynomial of order m. Compared to 

the parameterization with standard monomial bases( 21, , ,...s s   ), Bezier curve has the following 

nice properties: 

 The representation of initial and final values are simple:    00 , 1 mB B   ,  

 The derivative of Bezier curve is also a Bezier curve, and the dependence of the new Bezier 

coefficient on the original Bezier coefficient is sparse.  

Though the input for Bezier curve is between 0 and 1, Bezier curve can parameterize trajectories 

of any length. Suppose the horizon of dh  is T , then the input is defined as 
t

s
T

 .  
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Let   be the cost function to be minimized, the trajectory optimization problem can be stated 

as: 
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 (4.20) 

where  i iz z x ,  i iz z x , and  ,i i iz z x x , respectively. The first three lines of constraints 

correspond to the colocation constraint; 4th line specifies the initial states; 5th and 6th line 

correspond to the virtual constraint; the 7th line is the input constraint; the 8th line is the CBF 

constraint, the last two constraints are needed to guarantee stability of the continuous hold 

controller, which will be explained in Appendix M.   

Remark 4.3: The CBF condition is modified based on (2.7). Since 
1

1

b

b

e

e




is bounded within  1,1 ,  

when  b x is small, the lower bound for b  saturates at 1, instead of growing linearly as b , 

which may be too difficult to satisfy. Besides, when   0b x  , 
1

0
1

b

b

e

e





, which resembles the 

original barrier condition in (2.7). Since 
1

1

b

b

e

e




 is still an extended class function, by 

Proposition 1 in [50],   0|x b x  is still invariant under the modified constraint. 

The cost function in (4.20) is a weighted sum of multiple cost functions, consisting of the 

following terms: 
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 Final value cost     x dV x T r , where V is the same Lyapunov function appeared in 

the constraint. 

 
2z dt , the square integral of z ; 

 
2z dt , the square integral of jerk; 

 y


, the maximum deviation from road center; 

 r


, maximum yaw rate; 

 
2u dt , the square integral of the input; 

 m ，penalty on the last Bezier coefficient (facilitating convergence of the Bezier curve). 

The terms that consist of function integrals are approximately computed using the Simpson’s 

quadrature rule [94]. 

The setting of the constraints and costs seem complicated, they are the result of repeated trial 

and tuning. It should be emphasized that CBF constraint is enforced in the trajectory optimization. 

The motivation is that by enforcing CBF condition on the training set, the policy generated by 

supervised learning may inherit this property.  

 

Figure 4.5 Example of trajectory optimization result 

Figure 4.5 shows an example trajectory with initial lateral deviation 
0 0.5y m  and road yaw rate 

0.02 /dr rad s . The plot of y  and the Bezier output z shows that the trajectory is converging to 

the lane center. The plot of the CBF value and the control input shows that the trajectory generated 

by direct collocation satisfies the input and CBF constraints.  
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The trajectory optimization is solved with FROST, which uses a symbolic calculation to boost 

the nonlinear optimization  [95]. The trajectory optimization for each initial condition can be 

finished within ten seconds. 

4.3.2 Generating the training set 

It is impossible to perform trajectory optimization for all the initial conditions offline, so instead, 

supervised learning is used to train the mapping from initial conditions to desired trajectories with 

a finite trajectory library, which is generated by the above-described trajectory optimization 

process.  

By varying the initial conditions and generating the corresponding trajectories with direct 

collocation, the neural network trained with the training set is expected to generate good 

trajectories for various initial conditions. The inputs to the neural network are called features, 

denoted as  ; in the training of the trajaectory generator, they are variables that describe the initial 

condition. The output of the neural network is a vector of control parameters, denoted as , in this 

case, the Bezier coefficients. 

 :  . (4.21) 

The selection of initial conditions is done in a grid fashion. A grid on the feature space is defined 

and trajectory optimization is performed on each of the grid points. Since the zero dynamics is 

stable,    desz t h t  for 
2

desh C implies    desx t x t , where desx is the desired state 

trajectory corresponding to desh . This implies that only two states are needed to determine the 

asymptotic behavior of the system, but not necessarily the transient behavior. In practice, the more 

states are used to parameterize the initial condition, the finer the trajectory library will be.  

However, under a grid fashion of drawing samples, the number of samples needed grows 

exponentially with the state dimension. Therefore, the dimension of  is limited by available 

computation power.   is chosen to consist of six features, including five states and dr : 

 , , , , ,a y dy r v r      . (4.22) 

Under this setup, the computation needed to generate the trajectory library is manageable (about 

20 hours on a desktop). With more computation power, a higher dimensional  can lead to a finer 

trajectory library.  
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Even though most driving behavior is mild, it is important that the controller be able to handle 

bad initial conditions. Two training sets are therefore generated, denoted as 
1S  and 2S , where

1S

consists of trajectories defined for a duration of 1 second, and the features of the trajectories have 

a wider span and 
2S consists of trajectories defined over a 3-second window, with the features 

more concentrated around the origin. 
1S is used to train a mapping for severe initial conditions and 

transients, and 
2S is used to train a mapping for mild situations and normal driving. Some of the 

initial conditions might render the trajectory optimization infeasible, therefore only the feasible 

cases are included in the training sets. In the implementation, the CH controller will choose which 

mapping to use based on the severity of the situation. 

The parameters for the training are presented in Table 4.2. 

Table 4.2 Training set parameter setting 

Feature 1S  2S  

y  range  0.0.5, ]5 [m   0.3, 0.3 [m]  

   range  0.04, 0.04 [ ]rad   0.04, 0.04 [ ]rad  

r  range  0.06, 0.06 [ / ]rad s   0.03, 0.03 [ / ]rad s  

dr  range  0.03, 0.03 [ / ]rad s   0.025, 0.025 [ / ]rad s  

a  range  0.04, 0.04 [ ]rad   0.04, 0.04 [ ]rad  

In total, there are 62825 trajectories in
1S , and 29300 trajectories in 

2S .  

4.3.3 Supervised learning 

With the training set ready, there are several choices for the supervised learning, such as linear 

regression, Gaussian process regression, and neural networks. In the truck problem, since there is 

no structural information about the trajectory generator and strong expressive power is needed to 

capture the potentially complicated mapping from the initial condition to the desired trajectory, 

neural network is chosen for its strong expressive power. 

A neural network that has six hidden layers with 200 neurons in each layer and uses the ReLU 

function as the rectifier is trained. The training is performed using Tensorflow [96]. 85% of the 

data is used for training and 15% is used for testing. Table 4.3 shows the mean squared error (MSE) 

of the training result.  
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Table 4.3 Training result 

 1S  2S  

MSE of training data 0.13 0.0023 

MSE of testing data 0.16 0.0024 

4.4 Implementation of learning based controller 

4.4.1 Continuous hold feedback control 

Once the trajectory generator is trained, it can generate a finite horizon desired trajectory for a 

given initial condition. In order to piece together the finite horizon trajectories and synthesize a 

controller from the trajectory generator, a continuous hold (CH) controller is employed. The name 

continuous hold comes from the analogy with a zero-order hold and an n-th order hold. While an 

n-th order hold approximates the segment between two consecutive sampling times with an n-th 

order polynomial, continuous hold executes a predefined continuous trajectory. 

 The idea of continuous hold is not claimed to be novel; a motion primitive is a special type of 

continuous hold [63]. The trajectory is updated in an event-triggered fashion, which will be 

discussed in detail in Section 4.4.2. While event-triggered finite-horizon control is studied in [97], 

in the CH setting, it should be noted that the control action between triggering events is a 

continuous function of time and states instead of being a constant.  

For the truck example, the basic continuous hold controller [98] must be extended to systems 

with exogenous disturbance. The stability and set invariance property of the CH controller are 

proved, including the analysis for the case when only a subset of the state is used for feedback, in 

Appendix M. 

4.4.2 Event-triggered update of the CH controller 

The CH controller uses the mapping trained by supervised learning to generate a desired 

trajectory desh  for the output z based on the current state and dr , then track the desired trajectory 

with the control law in (4.17). The desired trajectory will be updated under three circumstances: 

 The Bezier curve is executed to the end; 

 A significant change in dr ; 

 The trajectory tracking error is too large. 
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In the first case, since the trajectory optimization has a limited horizon (1s or 3s), the neural 

network will use the current value of the features to generate a new desired trajectory. In the second 

case, if dr differs much from the dr used to generate the current desired trajectory, the trajectory 

should be updated since dr  is assumed to be constant during the entire horizon of the trajectory. 

The rest of the features are simply initial conditions, so their change does not trigger an update of 

the desired trajectory. In the third case, when the trajectory deviates too far from the desired 

trajectory, re-planning is called for. This is likely to be caused by an unexpected disturbance, such 

as wind gust. 

When switching from one trajectory to the next, smoothing is performed to make sure that 
desh  

is twice differentiable, which ensures that the control signal is continuous. The smoothing process 

is explained in the Appendix N. 

4.4.3  CBF as a supervisory controller 

Even though the CBF condition is enforced in the trajectory optimization for the training set, 

after supervised learning, there is no guarantee that the trajectory generated by the neural network 

will always satisfy the CBF condition. Therefore, CBF is still implemented as a supervisory 

controller on top of the learning based controller. The CBF solves the following optimization: 
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where u  is the intervention of the CBF, 
oldu  is the intervention of the previous time instant, 

   is the barrier condition and 
1w , 2w are the weights. The reason for the second penalty term is 

to prevent chattering if intervention is necessary.  

The barrier condition is defined as  
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, (4.24) 

where the transition at   0b x   is continuous, i.e. the two constraint coincides at   0b x  , as 

shown in Figure 4.6. 
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Figure 4.6 Lower bound for b  

Remark 4.4: When   0b x  , the existence of u is guaranteed by the construction of the CBF; 

when   0b x  , there is no guarantee of feasibility. When (4.23) is infeasible, the input is saturated 

by . 

4.5 Simulation result 

The proposed control design is validated on TruckSim, a high fidelity physics based simulation 

software that is widely acknowledged by the industry. The model selected for simulation has 312 

states and is a tractor-semitrailer with heavy cargo in the trailer, weighing 35 tons in total, as shown 

in Figure 4.7.  

 

Figure 4.7 Animation with a 312 state model in TruckSim 

The truck is asked to drive on a road with minimum turning radius 1000m at 20m/s, and sidewind 

is simulated with lateral force and roll moment to the truck. Because of the cargo, the truck has 

high CG, the roll motion in the simulation is significant and the maneuver is aggressive. 
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Figure 4.8 Disturbance to the system in simulation 

As shown in Figure 4.8, the road profile consists of segments with different curvatures, and the 

sidewind is a square wave with maximum allowed magnitude.  

 

Figure 4.9 Input and intervention of CBF during simulation 

The steering input trajectory is shown in Figure 4.9. A zoom-in view is presented to show a five 

seconds period of input. The input is actually quite smooth. The little bumps are necessary to 

counter the sidewind when it changes direction. The lower plot shows f , which indicates that 

no intervention from CBF happened. 
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Figure 4.10 Value of CBF and key states during simulation 

Figure 4.10 shows the value of CBF and two key states. Lateral deviation y and roll angle 

never exceed the limit (plotted in red) and  b x  is always positive, showing that the CBF bound 

was never breached. This is under the CH controller without any help from the CBF. 

To demonstrate the controller’s ability to handle bad initial conditions, the lateral deviation was 

perturbed with a square wave, simulating the situation when the initial position is 0.5m from the 

lane center, as shown in Figure 4.11 and Figure 4.12. 

 

Figure 4.11 Input and intervention of CBF with large initial deviation 
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Figure 4.12 Value of CBF and key states with large initial deviation 

Figure 4.11 shows the input under large deviation. The CBF intervention occurred three times, 

but they are very mild compared to the size of 0u . The learning based controller was able to handle 

the bad initial conditions most of the time. When  b x  was below zero, the learned controller was 

able to drive the system back to the safe set without the intervention of CBF. 

As a comparison, an LQR controller is tuned with feedforward control of dr , and it performs 

very well under normal driving conditions. However, when the initial condition is bad (under the 

same setting as the previous simulation), the LQR controller triggered intervention from the CBF 

multiple times (11 times) and the jerk was severe, as shown in Figure 4.13.  

 

Figure 4.13 Simulation result with LQR as student controller 

Though the LQR controller was fine-tuned, it triggered severe intervention from the CBF 

frequently. On the other hand, none or very mild interventions was triggered from the CBF under 

the learning based controller in all trial simulations when the states are within the training set span. 

When the states are outside the span of the training set, the neural network is asked to extrapolate 

instead of interpolating, therefore the performance is not guaranteed. 
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4.6 Conclusion and discussion 

The focus of this chapter is on the synthesis of the student controller. When a CBF is synthesized 

as a supervisor, it poses additional requirement to the student controller, that is, the student 

controller should be compatible with the CBF supervisor and not causing frequent intervention 

from the CBF. A supervised learning based method is proposed to enforce this requirement. The 

idea is to use trajectory optimization technique to generate a training set consisting of trajectories 

that satisfy the CBF constraint, supervised learning is then used to learn the mapping from the 

initial condition to a parameterized desired trajectory. The policy generated with supervised 

learning will inherit the good properties of the training set, though not rigorously. On top of that, 

safety guarantee is formally imposed with CBF as the supervisory controller. The simulation 

shows that the proposed approach is able to reduce the intervention of the CBF and therefore 

improve the performance while guaranteeing safety. 

The supervised learning is set up to learn the mapping from an initial condition to the desired 

output trajectory, instead of the mapping from the initial condition to the desired input trajectory. 

The stability is guaranteed under the CH framework, whereas there is no guarantee that following 

the desired input trajectory will lead to desired performance. The proposed CH control structure is 

able to transform the synthesis problem into a trajectory optimization problem, which may be much 

simpler for complicated nonlinear systems such as robots [98]. 

There are problems to be solved for the proposed method. First, when the initial condition is not 

contained inside the feature range of the training set, i.e. when the neural network is doing 

extrapolation rather than interpolation, the performance is poor. In other words, to get good 

performance in a wide range, one needs to have training data with enough coverage. Second, when 

training data from a large range of features are stacked together for the training, the regression 

accuracy drops and the performance is bad. To solve this, one might need more complicated neural 

network structure, or use multiple neural networks for different situations.  
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Chapter 5 Lyapunov approach for validation of non-

cooperative control designs 
In this chapter, a decentralized procedure to verify the closed-loop performance of a system 

with multiple controllers designed by non-cooperative agents is presented. The main problem to 

address is the disturbance coming from coexisting controllers on the same dynamic system. The 

goal is to verify whether performance specifications are met when multiple controllers that have 

been designed separately are applied to the same system. The key concept is to use Lyapunov 

functions as measures of the influence of each controller on the system. Sum of Squares 

programming is used to verify Lyapunov derivative conditions, thus providing a sufficient 

condition for the specification. Dual decomposition is then used to guarantee that the decentralized 

verification is equivalent to the centralized verification. Moreover, the verification procedure is 

extended to decentralized controller synthesis to satisfy safety specifications. 

5.1 Introduction and motivation 

As modern vehicles become more automated, they contain an increasing number of controllers, 

with more to be added. NHTSA mandated that Electronic Stability Control (ESC) be installed on 

all light vehicles manufactured after 2011. Adaptive Cruise Control (ACC) and Lane Keeping 

(LK) are available as convenience features on both sedans and trucks. Moreover, systems such as 

active suspension and rollover prevention are installed to enhance the riding comfort and safety of 

trucks and buses. A crucial issue is whether these features will cause problems to one another when 

put together, since the controllers are all coupled through the vehicle’s dynamics. The concept of 

integrated chassis control has been proposed to take into account all actuators that influence vehicle 

chassis dynamics, and it aims at better performance, including safety, comfort, and drivability. The 

design was first carried out in a centralized manner, assuming one agent is in charge of designing 

all the controllers involved [99-102]. The benefit of centralization is obvious: the designer can 

fully consider the coupling in the dynamics and design controllers accordingly. However, the 

centralized approach is not always feasible in real engineering situations. The Original Equipment 
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Manufacturer (OEM) usually cooperates with multiple suppliers that specialize in the different 

areas of chassis control, and the controllers are designed by non-cooperative agents (suppliers) 

who keep their control algorithms confidential.  

There are several approaches to address the coupling and potential conflicts between different 

chassis controllers. One is supervisory control, which treats the local controllers as servo-loop 

controllers and relies on a supervisor to give set points to the local controllers [103]. The 

coordinator approach uses worst-case analysis and “tunes down” the control signal when it detects 

that failure might occur because of the coupling [104]. However, as stated in [105], without global 

structure, a decentralized control structure (at least the traditional ones) is not suitable for safety-

critical tasks. In addition to the design of the controllers, verification is another important issue. 

Ground testing can be performed by the OEMs, but it is notorious for its high cost of money and 

time because of the curse of dimensionality. Despite great efforts to expose the system to various 

scenarios in both the ground test approach and simulation approach, verification is never complete, 

meaning that there are always scenarios that are omitted during experimentation. In this chapter, a 

novel Lyapunov approach is proposed that provides safety guarantees to a decentralized design of 

a chassis control system. The proposed method does not suffer from the curse of dimensionality, 

and it provides verification of the closed-loop system. In addition, it satisfies the requirement of 

decentralized design by independent suppliers by keeping the control algorithms confidential. 

The proposed approach requires that all control laws be explicit analytic functions of the states 

and the measured disturbance. This requirement might limit the applicability of the proposed 

approach, but it already covers a large portion of the existing control techniques, and in future 

work, the proposed method may be extended to implicit control algorithms with methods such as 

system identification. 

5.2 Problem formulation and major tools 

5.2.1 Problem formulation 

In this section, the case where two controllers are acting on one system is considered.  The 

system dynamics is assumed to have the form 

        1 1 2 2( , ) ( , ) dx f x g x u x d g x u x d g x d     (5.1) 
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where nx is the state, 1 2

1 2,
m m

u u  are inputs from two coexisting controllers, ld  is 

the exogenous disturbance; ( )f x  is the intrinsic (or drift) dynamics, 
1( )g x  is the input dynamics 

for 
1u , 

2( )g x  is the input dynamics for 
2u , and ( )dg x  is the exogenous disturbance dynamics, for 

both measured and unmeasured disturbance. The control inputs 
1u  and 

2u are assumed to be 

functions of x  and d , but the disturbance feedforward is limited to measured disturbance. 

It is assumed that the system dynamics can be described by a polynomial (can be extended to 

rational functions by the simple transformation of multiplying through by the denominator). For 

non-polynomial systems, Taylor expansion can be used to obtain a polynomial approximation, and 

then the proposed method can apply. 

Now recall the Lyapunov theory. For a continuous dynamic system described by an ordinary 

differential equation: 

 ( )x f x . (5.2) 

Consider a continuously differentiable Lyapunov function candidate : nV   that satisfies 

    0 0, 0, 0V x V x    . (5.3) 

If it can be shown that 

 

   

   

, 0,

, 0, 0.

n

n

dV
x V x f x

dx

dV
x x V x f x

dx

   

    

 (5.4) 

Then, the origin is asymptotically stable; if it can be shown that 

  { ( ) 1}, 0,x x V x V x   ∣  (5.5) 

the set { ( ) 1}x V x ∣ is invariant.  The former is considered a special case of the latter; therefore, in 

the remainder of the chapter, only the set invariance verification will be discussed. Note that the 

Lyapunov function can always be scaled to adjust for the size of the 1-level set; thus, discussing 

the 1-level set is sufficient. Given a Lyapunov function candidate V  and the dynamic system in 

(5.1), the Lyapunov derivative is 

               1 1 2 2, , , .d

dV
V x d f x g x u x d g x u x d g x d

dx
     (5.6) 

In real-world control problems, the exogenous disturbance is usually bounded; It is assumed 

that the bound is known and is represented as a semialgebraic set . The standard verification 
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setup considered in this chapter is that, given the system dynamics, with the control inputs as 

functions of the state and measured disturbance, and the Lyapunov candidate, whether the 

following condition holds: 

     1 , , 0.x x V x d V x     ∣  (5.7) 

Above is a sufficient condition for the set   1x V x ∣ to be invariant under all disturbance in . 

5.3 Verification using Lyapunov functions 

In this section, a verification procedure using Lyapunov functions is introduced. Since the 

procedure checks the positive definiteness of polynomials, some basic techniques of SOS are 

introduced. 

5.3.1 SOS verification for polynomial dynamic systems 

SOS has been used for verification of dynamic systems in a variety of ways. For a given control 

law, SOS is used to find a Lyapunov function to prove stability [38, 106], calculate the approximate 

region of attraction [107], and guarantee that the states never enter an unsafe set [41, 49]. SOS is 

also used to directly synthesize controllers [40]. A review of SOS was given in Section 2.1. The 

Lyapunov verification problem can be formulated as the problem of verifying positive definiteness 

of a polynomial inside a semialgebraic set, of which a sufficient condition can be given using the 

SOS multipliers. The Lyapunov derivative condition is enforced in the following semialgebraic 

set: 

      , | , 0 1 ,ix d h x d x V x   ∣  (5.8) 

and the condition to be verified becomes 

        , , , , ,i i

i

V x d a x d h x d x d    (5.9) 

where  ia  is the set of SOS multipliers with arguments x and d . This direct SOS approach is 

referred to as the centralized verification. The centralized verification requires that there be an 

agent who knows the control algorithms of both controllers. 

5.3.2 Decomposition of Lyapunov derivative 

As stated in Section 5.1, in a decentralized design process, since the control laws are kept 

confidential by the agents, centralized verification is not applicable. 
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In this situation, the Lyapunov derivative is decomposed into two parts, one part containing 
1u  

only, and the other part containing 
2u  only. In this way, the two agents are able to find polynomial 

upper bounds for the two parts, respectively. A sample decomposition of the Lyapunov derivative 

is shown below: 

             1 1 2 2, , .d

dV dV
V f x g x u x d g x d g x u x d

dx dx

   
      
   

 (5.10) 

Agents 1 and 2 can find upper bounds for the two parts, 1  and 2 , respectively. 
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Remark 5.1: There is freedom in decomposing the Lyapunov derivative. 
1 1( )g x u  and 

2 2( )g x u  

should always be put into two parts. In addition to this rule, a good decomposition may simplify 

the computation. For example, if 
2u  does not depend on d , 

2  only depends on x . See Appendix 

O for more detail. 

Since the first part of the Lyapunov derivative is completely known to agent 1, and the second 

part is completely known to agent 2, the upper bound can be found using SOS programming. If  

 1 2 0,    (5.12) 

the verification is successful. The above-mentioned condition is sufficient but not necessary. Next, 

it is shown that the decentralized verification is equivalent to the centralized verification, that is, 

if a system can be verified by centralized verification, the decentralized verification returns the 

same result. 

First, the existence of such 1  and 2  is discussed. If the system satisfies the set invariance 

condition to be verified, that is, 

    ( ) 1 , , , 0,x x V x d V x d     ∣  (5.13) 

then the decentralized verification aims to find 
1  and 

2  that satisfy (5.11) and (5.12). 

Theorem 5.1 (Equivalency of centralized verification and decentralized verification): 
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Suppose  is a semialgebraic set, V  is a polynomial candidate Lyapunov function in x , then 

 If (5.13) is satisfied, there exist 
1  and 

2  that satisfy (5.11) and (5.12). 

 If (5.13) can be verified with SOS, there exist 
1  and 

2 such that (5.11) and (5.12) can be 

verified with SOS. 

Furthermore, with some additional conditions, Theorem 5.1 can be extended to cases where 
1  

and 
2 are functions of only x . The proof is given in Appendix O. 

With existence guaranteed, the next important question is how to find 
1  and 

2 . The dual 

decomposition technique is used to solve this coupled problem. 

5.4 Dual decomposition for verification  

In this section, the dual decomposition procedure for decentralized verification is presented. 

5.4.1 Dual decomposition for Lyapunov verification 

Dual decomposition has been widely used in convex optimization recently [108, 109]. The main 

benefit is its ability to decompose a problem into smaller ones. The procedure in [109] is modified 

to suit the purpose of decentralized verification. The standard setup is as follows: 

 
   1 2

,
min . .

0,

x z
f x f z s t

Ax Bz c



  
 (5.14) 

where 
1f  and 

2f  are convex objective functions. The variables x  and z are coupled by an 

equality constraint. The Lagrangian is written as 

        
2

1 2, , ,
2

TL x y z f x f z y Ax Bz c Ax Bz c


         (5.15) 

where y  is the dual variable, and the last term is a quadratic penalty term. Then the dual ascent 

method is used to search for the optimum: 
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



   

 (5.16) 
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The algorithm known as alternating direction method of multipliers (ADMM) iterates until no 

improvement can be made. 

Remark 5.2: Additional constraint is allowed for x  and z , but there should be no coupling, i.e., 

the update of x should be an optimization of only x and the same is required for the update of z . 

The problem of decentralized verification differs from the original ADMM setup mainly in that 

the coupling constraint is a semidefinite constraint, not a linear equality constraint. To simplify the 

representation, define two indicator functions as 
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      

 

∣

∣

 (5.17) 

where ( )1   is the indicator function. Further, define 
1 1( )  and 

2 2( )  as 
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 (5.18) 

Assumption 5.1: The set of 
1  and 

2  that satisfy (5.11) is nonempty. 

Then 
1 1( )  and 

2 2( ) are closed, proper and convex. The verification problem then becomes 

    
1 2

1 1 2 2 1 2
,

min . . 0,s t
 

       (5.19) 

where 
1 and 

2  are polynomials of x and d , and the inequality sign enforces negative 

definiteness. 

Then, the Lagrangian needs to be formulated. The SDP literature suggests two common ways 

to formulate the Lagrangian: the conic representation [110] and the minimum eigenvalue 

representation [111]. Although the former is more commonly used in SDP solvers, the latter 

formulation is used primarily because it generates only one dual variable for each SDP constraint, 

thus simplifying the dual decomposition process. The Lagrangian is formulated as 

        
1 21 2 1 1 2 2 min, , ,L Q Q            (5.20) 
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where 
1

Q and 
2

Q  are the matrix representations of the polynomials
1  and 

2 ; 0   is the dual 

variable corresponding to the semidefinite constraint: 

  
1 2min 0.Q Q      (5.21) 

With this Lagrangian formulation, the dual ascent algorithm appears as follows: 
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   

 (5.22) 

where   is a constant representing the step size. Notice that the update for 
1 is 

      
1 2

1

1

1 1 1 2 2 minmin .k karg Q Q 


          (5.23) 

If 2 2( )k   , then 

      
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 
1 2

1 2

min 1 1
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1 1
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     

 

 (5.24) 

Assume there exists an 
1 such that 

1 1( ) 1   , the update for 
1 is 

  1 2
1

1

1 min 1 1min . . ( ) 1.k

k arg Q Q s t 


         (5.25) 

Therefore,   can be normalized to be 1. Similarly, in the update of 
2  ,   is also normalized to 

1, which renders the dual update step unnecessary. The procedure for dual decomposition is 

simplified to 
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  

  





    

    
 (5.26) 

The purpose of dual decomposition, in this case, is not to reduce the size of the optimization 

but rather to allow the agents to keep the control algorithms confidential. As such, dual 

decomposition suits this purpose perfectly. With this procedure, the two agents are asked to 

exchange polynomials 
1 and 

2 , and no further information about the control algorithms. 
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5.4.2 Convergence of decentralized verification 

Next, let’s discuss the convergence of decentralized verification. First, the following theorem 

is presented. 

Theorem 5.1: Suppose there exist 1  and 2  that satisfy (5.11) and (5.12), then 1 1[ , ]  and 

2 2[ , ]  also satisfy (5.11) and (5.12). 

Proof: Add (5.12) to (5.11): 

 

          

   

1 1 2

2 2 1

, , ,

( , ) , ,

d

dV
f x g x u x d g x d x d

dx

dV
g x u x d x d

dx





   

 

 (5.27) 

which proves that 1 1[ , ]   and 2 2[ , ]  satisfy (5.11). It is also straightforward to check that 

1 1[ , ]  and 2 2[ , ]  satisfy (5.12). 

 

With Theorem 5.1, (5.12) can be replaced with the following equality constraint 

 1 2 0,    (5.28) 

which can be transformed to a linear equality constraint on the coefficients. Decentralized 

verification, therefore, follows the standard form of ADMM in [109]. With Assumption 5.1, 

1 1( )  and 
2 2( )  are closed, proper and convex functions of 

1  and 
2 , and therefore Theorem 

3.2 in [109] proves convergence of the dual decomposition process. 

Remark 5.3: In practice, it is found that compared to dual decomposition with the equality 

constraint in (5.28), the convergence is actually faster if the inequality constraint in (5.12) is used 

and the Lagrangian is formulated as in (5.20). However, there is no proof of convergence. 

5.4.3 Verification for systems with piecewise dynamics 

As mentioned in the problem formulation section, this method requires an explicit analytic form 

of the control algorithm. This restriction can be relaxed to a piecewise analytic form of the closed-

loop dynamics. Suppose there exists some piecewise structure in the control algorithm such as 
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  
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 (5.29) 

where   1

iu  are analytic functions of x  and d ,    , , 0ix d G x d ∣ are disjoint semialgebraic 

sets of x  and d  that satisfies 

   
1...

, , 0 ,i

i n

x d G x d


  ∣  (5.30) 

where is the domain of x ,   is the set on which  iu   are defined. Then the condition for 

1  is modified to 
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 (5.31) 

The rest of the verification procedure stays the same. 

5.4.4 Extension to control synthesis 

The proposed dual decomposition method can be used for both the verification of existing 

control design and synthesis of controllers that satisfy the specification. Consider the update 

procedure in (5.22). Suppose one or both controllers need to be synthesized. Then the Lagrangian 

would depend on the control algorithms: 

        
1 21 2 1 2 1 1 1 2 2 2 min, , , ( ), ( ) , ( ) , ( ) .L u u u u Q Q                (5.32) 

Since 
1( )u   and 2 ( )u  are part of the optimization variables, the two functions 1 1 1( , ( ))u  and 

2 2 2( , ( ))u   depend on the control algorithms as well. 

The dual decomposition procedure is used to solve the problem with the dual ascent method. In 

addition to the Lyapunov condition, cost functions and constraints such as the control input bounds 

may be added to the synthesis process. An example where the tradeoff between different control 

objectives is resolved with this synthesis procedure is presented in Section 5.6.2.4. 

Remark 5.4: It is important that the proposed verification method does not expose the control 

algorithm of each agent. Note that 
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 the polynomial upper bound of Lyapunov derivative being exchanged between agents  

may not be tight, so the control law that achieves it is not unique; 

 the two agents do not exchange the form of their controller (e.g. linear, quadratic or 

piecewise linear); 

 the algorithm relies on SOS multipliers, which are not exchanged between agents 

(especially when the controller has piecewise structure). 

Due to the above three reasons, it is not possible for one agent to identify the control algorithm of 

the other agent in most cases. 

5.5 Improving the Lyapunov function candidate 

The above-mentioned dual decomposition is only guaranteed to succeed if the original 

centralized verification is feasible, which is strongly limited by the choice of the Lyapunov 

function candidate. A poorly chosen Lyapunov function may fail the verification even though the 

system satisfies the specification. 

The problem of finding a Lyapunov function with its 1-level set being invariant is, however, 

bilinear in the Lyapunov function candidate and the SOS multipliers, and is thus nonconvex.  

Methods for solving Bilinear Matrix Inequality (BMI) include bilinear alternation [112], which is 

local, and branch-and-cut, which gives a global solution to a relaxed convex problem [113]. 

In the Lyapunov verification problem, besides the bilinearity that arises from the invariant set 

setup, the need to decompose and decentralize the algorithm should also be considered due to the 

confidentiality requirement. A method that uses perturbation to resolve the bilinearity is proposed. 

The idea is simple. Starting with an initial Lyapunov function candidate, the algorithm refines the 

Lyapunov function candidate and seeks to find a tighter lower bound of the Lyapunov derivative 

by adding a small perturbation to the Lyapunov function. Since the perturbation is small, the level 

set does not change much, so the condition is verified on the level set of the original Lyapunov 

function, thus eliminating the bilinear term. 

5.5.1 Centralized Lyapunov perturbation 

First, the perturbation algorithm for centralized verification is presented. Suppose the 

specification requires the state to stay inside a set 
n

safeX  , and the Lyapunov candidate satisfies  
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 ( ) 1 safex V x X ∣ . Then an additional slack variable e  is introduced to make the problem 

always feasible: 

  

            
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∣  (5.33) 

If 0e  , the original centralized verification is successful. Using perturbation, the bilinear term is 

eliminated: 
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 (5.34) 

where V  is the perturbation and 
0V  is the original Lyapunov candidate. The last constraint limits 

the size of the perturbation with a small constant 0  . The inner product between matrices is 

defined as 

 , ( ),TA B Tr A B  (5.35) 

and the matrix norm is induced from this inner product. The above optimization iterates until no 

further improvement can be made and 0VQ  . 

5.5.2 Decentralized Lyapunov perturbation 

The extension of Lyapunov perturbation from centralized verification to decentralized 

verification is not straightforward. The “local copy” idea is adopted, similar to that in [114]. In the 

search for V , the two agents will each keep a local copy of V  , and the two local copies should 

converge to be identical. Dual decomposition will again be used to guarantee convergence. 

Consider the following decentralized Lyapunov perturbation: 
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 (5.36) 

Define the indicator functions 1 and 2 as 
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Then define feasibility functions 1 1 1( , )V   and 22 2( , )V  following the convention in (5.18) 

based on the indicator function 1 and 2 . The Lagrangian is then formulated as 
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Here it is assumed that an admissible perturbation exists that renders 1 and 2 equal to 1. This 

process is a direct extension of the standard dual decomposition setup, and the dual variable   is 

a real symmetric matrix of the same size as V . The dual ascent update is 
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 (5.39) 

The perturbation algorithm is demonstrated in Figure 5.1. Two loops in the Lyapunov 

perturbation algorithm allow for decentralized verification: an inner loop that converges to V  
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and an outer loop that iteratively perturbs the current Lyapunov function until no improvement can 

be made. 

 

Figure 5.1 Lyapunov perturbation procedure 

5.6 Case studies 

The proposed methodology is applied to two examples: a toy problem of an inverted pendulum 

and a practical vehicle chassis control problem. 

5.6.1 Inverted pendulum 

As shown in Figure 5.2, the two control inputs are the horizontal force F on the cart and the 

torque T  on the hinge. The cart has mass M , the ball on the tip of the pendulum has mass m , the 

pendulum has length L and no mass. The two degrees of freedom (DOF) are displacement of cart 

S  and angle of the pendulum  . In addition to the actuation, a disturbance force 
1d  acts on the 

cart and a disturbance torque 2d  acts on the pendulum. 
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Figure 5.2 Lyapunov perturbation procedure 

The dynamic equations are obtained using the Lagrangian method: 
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Two simplified models are considered: 

1. Simplified nonlinear model:  

Assume 1 , therefore ( )sin    and cos( ) 1  . 
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2. Linear model:  

In addition to the small angle assumption, ignore the higher order terms of  and  . Then the 

model becomes linear: 

 1 1 2 2 ,dx Ax B u B u B d     (5.42) 

where 
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 1 2, ,x S S u F u T      . (5.43) 

5.6.1.1 Lyapunov verification for inverted pendulum 

The specification is assumed to impose bounds on all four states: 

 
max

, 1, 2,3, 4.iix x i   (5.44) 

A hyperbox is constructed from the specification. The Lyapunov function is obtained by solving 

the LQR cost-to-go function. Then the cost-to-go function is scaled such that its 1-level set is 

contained in the hyperbox constructed from the specification. Bounds are put on the disturbance 

terms. 

To demonstrate the verification process, a set of sane controllers is synthesized via SOS 

programming that satisfies the Lyapunov condition. The order of 1 and 
2  are quadratic. While 

to guarantee the existence of a solution, the order of 
1 and 

2 must be as high as the original 

polynomial to be verified, in practice, using lower order polynomials is often found to be sufficient. 

The order of the multipliers is selected according to the computation capability of existing SDP 

solvers, in this case, 4. 
1 and 

2 are initialized to be 0. 

 

Figure 5.3 Verification of the centralized synthesized controllers for inverted pendulum 

Figure 5.3 shows that 
1 2

( )min Q Q    monotonically increases over 16 iterations. Eventually, 

it becomes positive, proving that the Lyapunov derivative is negative definite outside the 1-level 

set of the Lyapunov function and the verification is successful. 
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5.6.1.2 Lyapunov perturbation for inverted pendulum 

In order to demonstrate the Lyapunov perturbation process, the Lyapunov function is altered so 

that the derivative condition is not met. With the altered Lyapunov function, the verification 

process converges to 
1 and 

2 , whose summation is not negative definite: 

  
1 2min 451Q Q      . (5.45) 

Then using the perturbation algorithm in Figure 5.1, the Lyapunov function is changed to 

improve the result of verification. After four iterations, a Lyapunov function that renders the 

verification successful is obtained. 

 

Figure 5.4 Lyapunov perturbation process 

5.6.2 Vehicle chassis control 

The second case study is the motivating engineering application: vehicle chassis control. Two 

controllers that have strong coupling are selected: LK and ESC. The dynamic model for the vehicle 

lateral dynamics is the linear lateral-yaw model: 
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 (5.46) 

where the four states are the lateral displacement w.r.t. the road center y , sideslip velocity of the 

chassis yv , yaw angle   and the yaw rate r . The inputs are the steering angle f  and yaw 

moment T generated by differential braking. m  and zI are the mass and moment of inertia of the 

vehicle, fC  and 
rC  are the cornering stiffness of the two axles, a  and b  are the distance from 

vehicle CG (center of gravity) to the front and rear axle. These parameters are constant. 
xv  is the 

longitudinal speed, if it stays constant, the dynamic is linear. Disturbance d comes in with three 

channels: 
T

dy d dd F r T    : the external lateral force dyF  affects yv , road curvature 
dr  affects 

yaw angle, and the external yaw moment 
dT  affects the yaw rate. 

 

Figure 5.5 Lateral yaw model 
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5.6.2.1 Lyapunov function setting for vehicle chassis control 

It is assumed that the Lyapunov function has the following form: 

       1 2min ,V x V x V x . (5.47) 

This form arises from the assumption that each supplier may have its own focus on the 

performance. The two Lyapunov functions are assumed to represent a different emphasis on 

performance. 

 

Figure 5.6 Level set of the Lyapunov function for vehicle chassis control 

The goal of verification is to prove that the 1-level set of V  is invariant, as shown in Figure 

5.6. For simplicity, it is required that both the 1-level set of  
1V  and that of 

2V  are invariant, which 

is a sufficient condition of { ( ) 1}x V x ∣  being invariant. 

The Lyapunov derivative condition then becomes 
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It is assumed that the LK controller 
1u  depends on state x and the road curvature 

dr , which is 

a measured disturbance, and the ESC controller 2u uses only state feedback. The decentralized 

verification aims to find polynomials 
1 , 2 , 1  and 

2  that satisfy 
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 (5.49) 

where 
1 and 

2 are the lower bounds of the two parts of 1V , 
1  and 

2  are the lower bounds of 

the two parts of 2V . Since 2u does not depend on d , the polynomial bounds depend only on x . If 
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1 2 0    and 1 2 0   , the verification is successful. Note that the verification of the two 

Lyapunov derivative conditions is decoupled, so the verification follows the same procedure, 

except that it should be done on both 
1V  and 

2V . 

Define the following: 
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 (5.50) 

If both min

 and min

 are positive, the verification is successful. 

5.6.2.2 Dealing with varying xv  

One major challenge for this dynamic system is the varying
xv . The lateral dynamic model is 

linear only when the longitudinal speed 
xv is constant. In reality, 

xv may vary, for example, due to 

differential braking. Thus the verification must be done for 
xv in a range. A convex hull method 

adopted from [115] is used to solve this problem. The verification is performed on several linear 

systems. Note that 
xv  affects only the A matrix in (5.46); furthermore, the entries of A matrix are 

linear functions of 
xv and 1/ xv . 

 

Figure 5.7 Convex hull 1/x xv v of the curve 

Based on the linear relationship between
xv ,1/ xv and the A matrix, two variables p and q are 

introduced. In Figure 5.7, each point on the p-q plane corresponds to an Amatrix by the following 

mapping: 
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Each point on the 1p q  curve corresponds to an Amatrix for the vehicle lateral dynamic model 

in (5.46) under the speed 
xv p , plotted as the blue curve in Figure 5.7. Then a polytope is 

constructed as a convex hull of the curve, plotted as the red polytope in Figure 5.7. A finite set of 

Amatrices is constructed by taking the vertices of the polytope, denoted as . Since the mapping 

from p and q to Lyapunov derivative is linear if the Lyapunov derivative condition is satisfied by 

each of the linear models in , by convex inclusion, all models corresponding to the points inside 

the polytope satisfy the Lyapunov derivative condition, including the models with 
xv varying 

between 
minv  and 

maxv . 

For simplicity, taking the verification of 1V  for example (the verification of 
2V  follows the same 

procedure), the Lyapunov condition becomes 
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The decentralized verification is to find 
1  and 

2  such that 
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 (5.53) 

In practice, the optimization in (5.53) has a heavy computation load due to a large number of the 

constraints. An alternative (relaxed) problem can be solved instead: 
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 (5.54) 

This relaxation is a conservative approximation of the original search, as it is the sufficient 

condition, but it allows separate search of 1

i  for each 
iA  , and then search for a common upper 

bound for all the 1

i . It accelerates the search, but min

 and min

 may not decrease monotonically, 

as shown in Figure 5.8. 

 

Figure 5.8 Verification of ESC+LK with the convex hull 

5.6.2.3 Verification of controllers with piecewise structure 

Next, the case where the chassis controllers are piecewise functions of the states is considered. 

An example is presented to demonstrate the capability of the proposed method to deal with 

piecewise controllers. In this example, 1( )u  is assumed to have the following form: 
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 (5.55) 

where g is a quadratic function of x , maxu  is a constant, representing the maximum allowed 

feedback input, and 
maxusat is the saturation function that saturates the input at 

maxu . In effect, 

when the state is close to the origin (   1 1.1xx V ∣ ), a mild nonlinear control law is used; as the 
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state moves far from the origin (   11.2 1.1x V x ∣ ), a more aggressive linear control law is 

used; when the states are too far away from the origin (   1 1.2xx V ∣ ), the control law is not 

defined. Moreover, due to actuator capacity, the control input saturates at 
maxu . 

While a real controller used in the industry may be much more complicated than the controller 

described above, this controller is a good example of controllers with piecewise structures. 

The controller is synthesized so that it satisfies the Lyapunov condition. 

 

Figure 5.9 Piecewise control structure for 1u  

Since  2u   has a single analytical form, the search for 
2  remains the same as the original 

algorithm in (5.26); the search for 
1  uses the following procedure: 
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 (5.56) 

One can use the relaxation trick in (5.54) to make the computation complexity grow linearly with 

the number of regions in the piecewise controller. This is also true with multiple piecewise 

controllers (e.g., both  1u   and  2u   are piecewise functions), since the search for 
1 and 

2 are 

performed separately. 
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5.6.2.4 Synthesis of vehicle chassis control 

Unlike verification, synthesis with this Lyapunov function is more complicated. In (5.49), if 

 1u  and  2u  are part of the optimization variables, the verification of the two Lyapunov 

derivative conditions become coupled, since changing the control algorithm to decrease 
1V  could 

end up increasing 2V , and vice versa. Because of this coupling, the dual variable cannot be 

normalized to 1, as was the case in (5.26). 

To simplify the expression, the feasibility functions 1 1 1( , ( ))u   , 2 2 2( , ( ))u   , 1 1 1( , ( ))u    

and 2 2 2( , ( ))u   are defined following the convention in (5.18). They take zero if the conditions 

in (5.49) are met; otherwise, infinity. Note that the indicator functions depend on the control 

algorithms as well. The Lagrangian is defined as 
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 (5.57) 

where   1 1J u  and   2 2J u   are cost functions of the control algorithms for performance 

purposes,
1  and 

2  are the dual variables corresponding to the following two constraints, 

respectively: 

 1 2 1 20, 0       . (5.58) 

The dual ascent update is then 
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 (5.59) 

where   is the step size to update the dual variables. If min

 and min

 are both positive, the 

synthesis is successful; otherwise, continue the dual decomposition iteration.  

In practice, it is found that performing a verification step before updating the dual variable, that 

is, verifying the system with the current controllers as described in Section 5.4, is beneficial to the 
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convergence. The verification process searches for an   and   that achieve the maximum min

  

and min

 , thus making the synthesis converge faster. 

In the ESC+LK case, the search of controllers is restricted to linear controllers, with the LK 

using road curvature to construct the feedforward control: 

    1 1 2 2, ,T T

ffu x d k x K d u x k x   . (5.60) 

The cost functions are defined as 

      1 1 1 2 2 2,J u k J u k
 

    . (5.61) 

The synthesis takes five iterations to complete: 

 

Figure 5.10 Synthesis of ESC+LK 

Figure 5.10 shows the change of 1k  and 2k , min

  and min

 , 
1  and 2 . The plot shows how 

the synthesis process handles the tradeoff between the two Lyapunov conditions. At the beginning 

of synthesis, since 0min

  , 
1  kept increasing. Since 

2k  was very small after the first iteration, 

the solver realized that increasing 2k was beneficial to increasing both min

  and min

 . As the size 

of 
2k grew, its influence on 

1V  was too large, which made 
1V  grow, and as 

1  grew, the size of 
2k

decreased and eventually the algorithm found a design that made both min

 and min

 positive. 
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5.7 Conclusion 

This chapter discusses the situation where coexisting controllers become the disturbance. The 

key feature of this situation is that the disturbance is not necessarily hostile, but the control law 

must not be exposed due to the confidentiality requirement. A Lyapunov function based method 

is proposed for verifying of the closed loop performance with multiple coexisting controllers. This 

method uses dual decomposition to allow non-cooperative agents to exchange information in the 

form of polynomials, which does not expose their control algorithms. The decentralized 

verification is proved to be equivalent to the centralized verification, which would require 

exposure of the control algorithm. Moreover, the method also provides information regarding how 

to modify the existing controllers if the verification fails, and it is capable of directly synthesizing 

controllers given the specifications. The proposed method is applicable to controllers with analytic 

expressions, and an example application with a piecewise analytic controller is shown.  
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Chapter 6 Data-driven computation of minimal robust 

control invariant set
A data-driven framework to compute an approximation of a minimal robust control invariant 

set (mRCI) for an uncertain dynamical system is proposed in this chapter, which demonstrates the 

importance of properly treating the modeling uncertainty of the system in correct-by-construction 

control synthesis. In the previous chapters, the dynamic models are assumed to be known. In fact, 

most of the correct-by-construction synthesis literature assumes that the model is known, including 

the nominal model and the characterization of uncertainty, which is not an assumption that is easily 

satisfied. In this chapter, the tradeoff between the nominal model and different types of uncertainty 

and the relationship between the model chosen and the synthesis result are discussed. Measurement 

data is used to identify the set of admissible models and a robust optimization approach is proposed 

to select the optimal admissible model for the purpose of synthesis. 

6.1 Background and motivation 

A fundamental concept related to safety specifications is robust control invariant sets (RCI). If 

an initial condition lies in an RCI, then there exist control inputs to guarantee that the trajectory of 

the system remains in the set indefinitely, despite all possible uncertainties. In addition to 

providing a safety certificate, set invariance can be used in a supervisory control structure, which 

guarantees safety with minimal intervention on top of an existing controller [31, 74]. 

Existing methods for computing invariant sets include, on the one hand, LMI-based Lyapunov 

type analysis [116], sum of squares programming [107], and occupation measures [117], which 

result in invariant sets with a smooth boundary, and on the other hand, Minkowski type methods 

[118-121], polytopic projection  [31, 32] and linear programming [122], which result in polytopic 

invariant sets. Although polytopes are commonly used to represent invariant sets for discrete-time 

dynamical systems, the complexity of the polytope representing the invariant set grows quickly 

within iterative algorithms. To overcome this challenge, several techniques for the computation of 
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low-complexity robust invariant sets are proposed (see, e.g., [122-124]). In this chapter, inspired 

by the one-shot approach proposed in [122] for low-complexity invariant set computation for 

autonomous systems (i.e., systems without a control input), an iterative algorithm is proposed to 

compute an RCI with constant representation complexity where one can leverage the available 

control authority for enforcing invariance. 

Depending on the control problem at hand, either maximal or minimal control invariant sets 

can be relevant. A maximal control invariant set can describe the region of attraction with limited 

control authority. It is formally defined in [125], and the definition of the maximum is in the set 

inclusion sense, that is, every control invariant set within a compact subset of the state space is a 

subset of the maximal control invariant set. The existence and uniqueness of the maximal control 

invariant set can be guaranteed with some mild assumptions. For linear discrete-time systems, the 

maximal control invariant set can be computed via polytopic projection [31, 126]. On the other 

hand, an mRCI describes how small a robust invariant set can be under disturbance and 

uncertainty. An mRCI is useful when the objective is to limit the deviations from a desired 

operating point. For instance, when assume-guarantee reasoning [115, 127] is adopted, an mRCI 

is useful since it minimizes the bound on the states of one part of the system, which is then treated 

as uncertainty bound in the synthesis of other parts of the system. However, in general, there does 

not exist a unique mRCI that is a subset of every RCI. 

The computation of invariant sets depends on a model of the system, and uncertainty 

characterization is critical for the computation of RCI. Among the above-mentioned methods, 

while some can handle modeling uncertainty and exogenous disturbance, but they all assume that 

the model is given, including both the nominal model and the uncertainty characterization. 

However, the a priori uncertainty characterization might be too loose or too tight, leading to control 

designs that may fail to satisfy the specifications due to under-estimating the uncertainty, or 

designs that are too conservative due to over-estimating the uncertainty. In addition, if the 

environment or the dynamical system itself is changing, the assumption about the bound of 

uncertainty should be large enough to cover all the possible changes, which may cause the 

synthesized controllers to be unnecessarily conservative, or even infeasible. 

In real engineering practice, the model is often the result of a system identification step. Even 

for physics-based models, the uncertainty is often characterized through experiments. The most 
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classical system identification method is the least square regression, including many extensions 

that incorporate various filtering structures [128]. Another class of identification methods are the 

set membership methods, which identify the set of admissible model parameters via set 

intersections [129]. Since the 1980s, control relevant identification has been studied, including 

H  identification [130], generalized predictive control [131], and stochastic embedding [132]. 

However, the H
identification and stochastic embedding approaches are for model identification 

in the frequency domain, and the generalized predictive control focuses on optimality rather than 

robustness. In terms of the identification of a model for an uncertain system that suits the need for 

correct-by-construction control synthesis, there is a gap to be filled. Sadraddini et al. provide an 

identification method that uses mixed integer programming to identify a piecewise linear model 

with a bound on the disturbance for formal synthesis [133]. Although with assumptions on the 

knowledge of Lipschitz constants on the system, the approach can provide safety guarantees also 

for unseen data, the system identification and control synthesis are done separately and the 

identified model is not necessarily “optimal” for the control synthesis task. Besides, the resulting 

mixed integer program is very large scale, making it unsuitable for onboard identification. 

The main contribution of this chapter is a robust linear programming (LP) framework for 

approximating a minimal robust control invariant set while simultaneously selecting the optimal 

admissible uncertain model. An admissible model, which is not unique, is defined as a model that 

explains a finite measurement history. The novelty of the proposed framework lies in two aspects. 

First, it treats the uncertainty bound as part of the identification parameters, which leads to a non-

unique model characterization and allows for trading off between different types of uncertainty. 

Second, the non-uniqueness of the model is exploited by the mRCI algorithm and an optimal model 

for computing an mRCI is selected concurrently. The proposed method is demonstrated with a 

lane keeping problem for road vehicles. The lateral dynamics of a vehicle is nonlinear, but typically 

it is approximated by a linear model, therefore modeling uncertainty is introduced. Moreover, the 

nominal model, as well as the modeling uncertainty, varies with road conditions, vehicle properties 

such as mass and tire properties, which might not be known exactly a priori. The objective of a 

lane keeping controller is to keep the vehicle inside the lane boundary, therefore an mRCI is useful 

for bounding the lateral deviation. 
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The remainder of the chapter is organized as follows. First, the system identification framework 

that identifies the set of admissible models for systems with uncertainty is presented in Section 6.2 

and 6.3. Then a robust LP algorithm that computes an approximation of an mRCI by selecting a 

model from the set of admissible models is presented in Section 6.4. The whole process of 

approximating an mRCI from data is demonstrated on a lane keeping problem in Section 6.5 and 

finally, conclusion is drawn in Section 6.6. 

Nomenclature 

In this chapter, for two vectors , nx y , the inequality is defined in the element-wise sense: 

0

nx y y x     . For a matrix A , 
iA  denotes its i-th row, jA  denotes its j-th column and ijA

denotes the entry on the i-th row, j-th column.  1 2:x t t  denotes a sequence of vectors, labeled by 

time, starting from 1t  and ending at 2t  . For simplicity,  ,P q  denotes the polyhedron 

 x Px q∣ . 

6.2 Linear parametrization with uncertainty 

The following discrete-time linear model with uncertainty is considered: 

 ˆ ˆ ˆ ,x Ax Bu Ed Ax Ed e        (6.1) 

where nx  is the state of the system, x  is the state of the next sampling time, mu  is 

the control input and ld   is the exogenous measured disturbance. ˆ ˆ ˆ, ,A B E  are the nominal 

model matrices, ,A E  are the matrices for the multiplicative uncertainty and 
ne  is the additive 

uncertainty. In fact, this is simply n uncertain linear parametrizations stacked together. Take the i-

th dimension as an example, the linear parametrization appears as: 

 ˆ ,T T

i i i i i iz e       (6.2) 

by taking 

 

, ,

ˆ ˆ ˆ ˆ ,

.

T
T T T n m l

i i i

T
n m l

i i i i

T
n m l

i i i i

x u d z x

A B E

A B E







  

 

 

     

  
 

   

 (6.3) 

It is assumed that the uncertainties are bounded in hyper-boxes: 
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 | | ,  .i i

i M i Ae    (6.4) 

However, unlike most set membership approaches which assume a fixed bound on the uncertainty, 

the bounds M and A  are not given and are included as part of the identification process. It is 

assumed that u and d are bounded in polytopes and the bound is known a priori: 

 
 

 

,

.

d d Gd g

u u Ru r

  

  

∣

∣
 (6.5) 

This assumption is satisfied by many engineering problems since the bound for u and d are often 

determined by system specifications or physics. 

An uncertain linear model is determined by the value of ˆ[ , , ]M A   , which contains the 

information of both the nominal model and the uncertainty characterization.  

In many cases, the model to be identified has additional structure. For example, due to 

underlying physics, some of the model parameters may be known to be zero or some entries of the 

system matrices may be linearly dependent. In order to incorporate such structure, it is assumed 

that the model parameters are affinely parameterized by a hyperparameter  . That is,  ˆ ˆ Θ , 

 M   MΩ , and  A   AΩ , where the bold font is used to denote the known affine mapping 

from   to the model parameters, e.g., ˆ ˆ ( )A  A . Since these mappings are affine, the overall 

parametrization of the model is also affine in  . Moreover, when no structural information is 

available, these mappings can be taken to be the trivial ones. 

6.3 Admissible model for measurements 

Given a sequence of measurement (1: 1)x T  , the output and regressor for time step t  is 

defined as 

 ( ) ( 1), ( ) [ ( ) , ( ) , ( ) ] .T T T T

i i iz t x t t x t u t d t    (6.6) 

A model ˆ[ , , ]M A    is called admissible if for 1,2,...,t T , 

 
 

( ), ( ), . . ( ) ,| ( ) | ,

ˆ( ) ( ) ( ) ( ).

A M

T

e t t s t e t t

z t t t e t

 

  

    

  
 (6.7) 

In fact, for each time step, the measurement introduces a linear constraint to the model 

parameters: 
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      ˆ( ) ( ) ( ) .
TTz t t t      

M A
Θ Ω Ω  (6.8) 

Since the  -parametrization of ˆ[ , , ]M A    is affine, the above condition is a linear inequality 

constraint on . The set of admissible models is then parameterized by  constrained inside a 

polyhedron, with the following representation: 

       1:
ˆ,| ( ) ( ) | ( )

TT

Nt z t t t           
M A

Θ Ω Ω∣ . (6.9) 

Figure 6.1 shows the comparison between the proposed uncertain model structure and linear 

regression. The dots represent the measurement data and the center purple line represents the 

nominal model. In addition to the nominal model, the uncertain model on the right introduces the 

bound on additive uncertainty, represented as the parallel red dashed lines, and the bound on 

multiplicative uncertainty, represented as the green radiating dashed lines. With additive and 

multiplicative uncertainty, the model on the right covers all data points and therefore is an 

admissible model. 

 

Figure 6.1 Comparison of regression and uncertainty models 

If  is nonempty, then all models in  explain the measurement data. In fact, under mild 

assumptions,  is guaranteed to be non-empty. 

Theorem 6.1:  If parametrization of additive uncertainty is full rank, i.e. the image of  ( )
A

Ω under 

 spans n , and the parametrization of A is decoupled from ̂ , then   is nonempty. 

Proof: For any ̂ , since the parametrization of ̂ and A are decoupled, A can be chosen 

independently. Let 

 ˆmax ( ) ( ) .T

A
t

z t t     (6.10) 

Then the model is admissible for any .M  
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This shows that when 
A is sufficiently large, the model becomes admissible. However, a 

model with a large uncertainty bound may be useless in control synthesis. 

In addition, there is a trade-off between different types of uncertainty, as shown in Figure 6.2. 

When the additive uncertainty bound is large, the bound on multiplicative uncertainty can be 

smaller, and vice versa. This is the direct result of (6.8). 

 

Figure 6.2 The tradeoff between uncertainty bounds 

The set of admissible models   gives the domain from which the model should be selected. 

Among the admissible models, which one is “the best” depends on how this model is to be used. 

If the goal is to find a model with the least squared error, then the least squares regression gives 

the best model, with corresponding uncertainty characterization. However, since the goal is to 

compute an mRCI, the incorporation of model selection process into the mRCI computation, as 

shown in the next section, may result in a more desirable invariant set. 

6.4 Robust LP algorithm for mRCI 

6.4.1 One-step propagation 

In this section, a robust LP algorithm that simultaneously selects the optimal model and 

computes the mRCI is proposed.  

Definition 6.1: A set n  is called robust control invariant for the system described by (6.1), 

(6.4) and (6.5) if there exists a control strategy : n   , satisfying, 

, , ( , )x d x d     and for all x , with ( , )u x d , x  under all possible 

uncertainty given by (6.4). 
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As mentioned in Section 6.1, the existence of a minimal control invariant set in the set inclusion 

sense is not guaranteed. The definition of an mRCI in a weak set inclusion sense is given: 

Definition 6.2: A robust control invariant set is a minimal robust control invariant set if 

, . .s t   is a robust control invariant set. 

However, even with this definition, finding an mRCI is non-trivial. Typically, one tries to find 

an (approximate) mRCI by minimizing a certain measure of size, such as volume [121, 123]. The 

mRCI algorithm proposed in this chapter computes a polytopic RCI that minimizes a linear 

objective function. 

The proposed method draws inspiration from [122], where the author proposed a one-step LP 

approach to compute a robust invariant set for a system without control. The key idea is to fix the 

orientation of the separating hyperplanes defining a polytopic invariant set. However, the method 

in [122] can only deal with autonomous systems. For systems that are not open loop stable, the 

problem becomes infeasible. One can design a feedback controller to make the system autonomous, 

but there is no guarantee that the feedback input respects the input bounds for all states inside the 

RCI. Besides, the uncertainty is assumed to be purely additive in  [122] and no measured 

disturbance is included. Borrowing the idea of fixing the hyperplane orientation, an iterative 

approach based on a robust LP is proposed. 

The method starts by choosing a set of L hyperplanes with fixed orientation 
iP  and varying 

offset iq , 1,...,i L . Let 1 2[ , ,..., ]T T T T

LP P P P , 1[ ,..., ]T

Lq q q . Without loss of generality, assume 

1iP  . If ( , )P q  has a nonempty interior, then 
iP is the normalized normal vector pointing 

outwards the corresponding separating hyperplane. 

Assumption 6.1: The hyperplanes are chosen such that  Lx Px  1∣  is a compact set, where  

L

L 1  denotes the column vector consisting of all ones. 

Given a polytope ( , )P q , the following one-step propagation is considered which 

searches for   that contains all possible x  : 

 

min . . ( , ), ,

, | | , . . ( , ).,

T

q

A M

c q s t x P q d

e u s t x P q





 

   

      
 (6.11) 
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The set ( , )S P q   satisfies the following condition: for any x , d , there exists u

such that all possible x  under u  is contained in  . It is clear that if   , is control 

invariant. By minimizing Tc q , an  that is as small as possible is preferred. 

Next, a few simplification steps are presented to make the one-step propagation solvable by 

convex optimization. First, as mentioned at the beginning of this section, there is no minimum RCI 

that is the subset of every RCI. Therefore the RCI obtained depends on a specific control strategy. 

For the linear discrete-time system discussed in this chapter, the following control structure is 

imposed: 

 ,T T

ff fbu K d K x   (6.12) 

where ffK and fbK  are constant matrices, representing the feedforward and feedback gain 

respectively.  

Second, it is assumed that B̂  is given so that the cross product terms between ffK , fbK  and B̂

vanish.  

Third, the one-step propagation should be robust against the model uncertainty, i.e.,  should 

contain all possible x  under the uncertain model. This is enforced by considering the worst case 

uncertainty, captured by the “for all” quantifiers for e  and   in (6.11). Since the uncertainty 

bounds are assumed to be hyper-boxes, the following is true: 

 

 

 

| | | |

| | | |

max max | | ,

max max | | ,

max ,

A A

E E

A

i i i AA A

i i i EE E

i i A
e

P Ax Tr xP A P x

PEd Tr dP E P d

Pe P

 

 



  

  

 

 (6.13) 

where 
n n

A

   and 
n l

E

   are the bounds on | |A and | |E induced from 
M  respectively. 

iP is the i-th row of P . Note that the expressions in (6.13) are not yet linear in x  and d  due to the 

absolute value. Absolute value constraints can be converted to linear constraints using standard LP 

techniques but, for the sake of keeping the notation simple, the absolute value form is used for the 

remainder of the chapter. Now the one-step propagation problem is formulated as the following 

robust optimization problem: 
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             

, , ,

,

min . . , ( , ), ,

ˆ ˆ ˆ

.

ff fb

T

K K q

T T

ff fb

T T

ff fb

c q s t x P q d

P x B K d K x d P x P d P q

K d K x

AEA
A E Ω Ω Ω




    







    

      

 

 (6.14) 

The above optimization simultaneously searches for 1) an admissible model, 2) a linear 

controller that satisfies the input bound constraint, and 3) ( , )P q  , the polytopic set 

containing all possible x  under the selected model and controller. It is a robust LP in the sense 

that the constraints have to be satisfied for all x and all d . The robust LP is solved via 

dualization [134]. 

Lemma 6.1: Consider the following robust LP problem: 

 

1 2 3

min . . ( , ),

, 1,... ,

T

i T i i i

c s t F f

H H H h i M


 

   

 

   
 (6.15) 

where  is the decision variable,   is the uncertain variable, and ( , )F f is the bound for 

uncertainty. It is equivalent to an LP as follows: 

 
 

 

3
,

1 2

min . .

, 0, 1, .

,

...

T
T i i i

T
i T i i i

c s t H f h

H H F i M

 
  

  

 

   

 (6.16) 

Proof: See Appendix P. 

Observe that the one-step propagation in (6.14) is in the robust LP form of (6.15), by taking 

, , ,ff fbK K q      and  ,x d  . Therefore, by Lemma 6.1, it can be transformed to a 

standard LP and can be solved efficiently. 

In some cases, the mRCI is required to be contained inside a set  , assumed to be a polytope: 

  : ,M m  . (6.17) 

This constraint can be easily enforced by appending M to P, and setting an upper bound on the 

entries of the offset q corresponding to M based on m. Suppose the original P contains 1N

hyperplanes and M contains 2N  hyperplanes. Simply let  

    : , , ; ,P q P P M   (6.18) 

and add the following upper bound on q  : 
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1 1 21:N N Nq m

   . (6.19) 

 

6.4.2 Iterative algorithm 

As mentioned previously, if   ,  is a robust control invariant set. With the one-step 

propagation solvable as an LP, there are two typical iterative methods that solve for invariant sets, 

the outside-in method and the inside-out method [31, 121, 126]. In the proposed formulation, the 

inside-out algorithm is used to solve for an RCI, and the outside-in algorithm is used to shrink a 

known RCI to a smaller size. 

6.4.2.1 Inside-out algorithm 

The inside-out algorithm starts with a small initial , iteratively solves for  with the one-

step propagation and replace with  , until   is satisfied. 

Algorithm 6.1 Inside-out algorithm for mRCI 

1: procedure RCI-IO( 0 ,, , , ,P q ) 

2:       0q q  

3:       do 

4:             

Find , , , s.t. ,

( , ), , ,

( , )

ff fb

ff fb

L

q K K

x P q d K d K x

x P q

 

 

   

     

  1

 

5:             q q  

6:       while Lq q   1  

7:       return [ , ], ,ff fbKq K  

8: end procedure 

The algorithm is shown in Algorithm 6.1, where 0 1   is a small constant that helps 

accelerate the convergence. 

Proposition 6.1: If Algorithm 6.1 terminates,  ( , )P q  is an RCI. 

Proof: By construction, ( , )LP q   1  contains all possible x with x , d , and 

since Lq q   1 ,   , therefore  is an RCI. 
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Remark 6.1: With 0 , the algorithm searches for an  slightly larger than that in (6.14), so 

that tolerance is allowed for the termination condition   , which accelerates the 

convergence of the algorithm. 

Remark 6.2:  changes in every iteration, which allows the algorithm to choose a model based 

on in each iteration. For a small , more uncertainty may be lumped into multiplicative terms 

since | |x  is relatively small; for a large , a smaller M  may be preferred. 

6.4.2.2 Inside-out algorithm 

On the other hand, if an initial RCI is known for some admissible model, the outside-in 

algorithm can further shrink the initial RCI with a convergence guarantee. The algorithm 

iteratively solves for   , and replace with   until can no longer be shrunk. 

Algorithm 6.2 Outside-in algorithm for mRCI 

1: procedure RCI-OI( 0 ,, , , ,P q ) 

2:       0q q  

3:       do 

4:             

Find , , , s.t. ,

( , ), , ,

( , )

ff fb

ff fb

q K K q

x P q d K d K x

q

x P q

 

 

    

     



 

5:             q q  

6:       while q q    

7:       return [ , ], ,ff fbKq K  

8: end procedure 

Algorithm 6.2 shows the outside-in algorithm, which is very similar to the inside-out algorithm 

except for two differences. First, the one-step propagation has an additional constraint q q  , 

which ensures that S S  . Second, the termination condition is on the norm of the difference 

between q and q . 

Theorem 6.1: If for a certain admissible model 
0 , a polytopic RCI 0( , )P q  is known, then the 

outside-in algorithm is guaranteed to converge. 

Before proving the above theorem, the following lemma needs to be proved: 
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Lemma 6.2: For a compact polytope ( , )P q , suppose one moves the i-th hyperplane from iq to 

iq , and leaves the rest unchanged, resulting in the following polytope ( , )P q , where 

1 1[ ,... , ,... ]T

i i Lq q q q q
  . Then there exists a constant ic such that if 

i iq c , ( , )P q   . 

Proof: Since ( , )P q  is compact, ( ) if x Px  is a continuous function and it always achieves 

its minimum value on a compact set. Let 
( , )

mini i
x P q

c Px


 . Obviously i ic q . Note that if i iq q , 

 ( , ) ( , ) i iP q P q x Px q   ∣ . Therefore when i iq c , ( , )P q   . 

 

Lemma 6.3: Let ( , )P q  be a compact polytope. Define 
( , )

mini i
x P q

c Px


 . For any q q  , if the set 

( , )P q  is nonempty, q c  . 

Proof: The proof follows from Lemma 6.2 and the fact that 
( , )

mini i i
x P q

c Px c


   . 

 

Now let us prove Theorem 6.1. 

Proof: First it is shown that the one-step propagation is always feasible, and every q during the 

iteration leads to an RCI. For clarity, denote the offset q found in the i-th iteration as iq . This is 

shown by induction. For the first iteration, by assumption, 0( , )P q  is an RCI, so 1 0q q is a 

feasible solution for the one-step propagation in the first iteration. Since it is an LP, thus convex, 

the LP solver always finds a feasible solution. Assume at the n-th iteration, 1( , )nP q   is an RCI. 

Then 
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 (6.20) 

This implies that the one-step propagation is feasible at the n-th iteration. Consider the one-step 

propagation in the n+1-th iteration. The only difference between the robust LP in the n-th and 



 

 97  

n+1-th iteration is that the uncertainty set of x  changes from 1( , )nP q   to ( , )nP q . Since 

1( , ) ( , )n nP q P q  , the uncertainty set for the n+1-th iteration is a subset of that in the n-th 

iteration, therefore nq is still a solution to the one-step propagation in the n+1-th iteration, and 

the one-step propagation is still feasible. By induction, the one-step propagation in the outside-in 

algorithm is always feasible, and for all nq , ( , )nP q  is always an RCI. 

Next, let 
0( , )

mini i
x P q

c Px


 . Since 
0

0 , nn q q   , by Assumption 6.1, ( , )nP q is compact, 

then by Lemma 6.3, 
0 , nn q c   .  Since q is monotonically decreasing, and lower bounded 

by c , by bounded convergence theorem,  nq eventually converges. 

 

Table 6.1 Comparison of the iterative algorithms 

 Initialization Convergence 

Inside-out Arbitrary Not guaranteed 

Outside-in Need an RCI to start with Guaranteed 

In conclusion, the inside-out algorithm solves for an RCI, and the outside-in algorithm shrinks 

the size of a known RCI. The comparison of the iterative algorithms is shown in Table 6.1. 

6.5 Application on lane keeping of ground vehicle 

In this section, an application on the vehicle lane keeping problem is presented. The 

measurement comes from simulation data from CarSim, a commercial software highly 

acknowledged by the auto industry that runs simulations with high-fidelity physics-based vehicle 

models. The CarSim model used for collecting data has 113 states. A linear model with four states 

is used to approximate this detailed model. 

6.5.1 Model structure 

The model to be identified for the lateral dynamics of a ground vehicle is called lateral-yaw 

model, or bicycle model, which has four states: 

 , , , ,
T

yx y v r     (6.21) 

where y  is the lateral displacement from the lane center, yv  is the sideslip velocity,   is the 

heading angle with respect to the lane direction and r  is the yaw rate. The model is linear, yet the 
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coefficient may change with the forward speed 
xv , road condition and vehicle condition such as 

mass, inertia and tire properties. A linear discrete model with uncertainty is used to describe the 

dynamics. The input is the steering angle on the front axle f ; the measured disturbance is road 

curvature dr . 

In order to reduce the complexity of the uncertainty characterization, certain structures are 

imposed on the model based on the properties of the dynamics. The dynamics for y and  are 

essentially integrators, therefore no multiplicative uncertainty is put on these two dimensions. 

Similarly, since yv and r do not depend on y  and  , no multiplicative uncertainty is put on the 

corresponding entries of A . The influence of dr  follows a simple kinetic equation, therefore, E  

is set to 0. Thus, the model is in the following form: 

    

1

22 24 2

3
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0 0 0 0

0 0
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f d
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        

A E  (6.22) 

The bounds on uncertainty are 

    22 24 42 44| | | | | | | | , .
T

A A A A e      M A
Ω Ω  (6.23) 

If one were to fully parameterize the nominal model, 20 independent variables are needed, 

which may not be necessary since Â  and Ê  only have several strongly varying dimensions. 

Instead, it is assumed that Â and Ê are linearly parameterized by a set of bases: 

 
1 1 2

1

1 1

1 1

ˆ ˆ, ,
n n n

i i

i i

i i n

A A E E 


  

    (6.24) 

where  iA and  iE are the bases for Â , Ê , with cardinality 1n and 
2n  respectively.  

Remark 6.3: Multiple simulations are run under different scenarios to obtain multiple sets of the 

nominal model with least square regression, and then Principle Component Analysis (PCA) is 

applied on the models obtained to extract bases for Â , Ê . 

The overall   parametrization appears as 
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 
 (6.25) 

The parametrization is indeed affine. 

6.5.2 Preparation for mRCI 

First, data is collected from CarSim, in which the vehicle is equipped with a simple LK 

controller with some input noise and follows a prescribed route. Then the data is used to formulate 

the set of admissible models   following the procedure in (6.8).   is a polyhedron of  . 
1n  is 

selected to be 6, and 
2n  is selected to be 4, so 18  . 

The selection of the hyperplane orientation is not the focus of this chapter since it is not clear 

yet how to optimally select L hyperplanes. In [122], the author shows a 2-dimensional example, 

where the hyperplanes are selected so that  , LP 1  is an L-sided regular polygon. This is not 

applicable to state space with a higher dimension. There exist strategies for choosing hyperplane 

orientations in higher dimensional space, e.g. using quaternions [135, 136], but uniform sampling 

is in general inefficient for computing RCI since the shape of RCI is strongly influenced by the 

dynamic system. A particle simulation approach is used to generate the hyperplane orientation for 

the lane keeping problem. 

To be specific, an uncertain model is identified from the experiment data, with the nominal 

model being the least square regression result and bound on additive uncertainty: 

 , Ax Ax Bu Ed e e      . (6.26) 

Note that when fixing the nominal model to be the least square regression result, the minimum A

can be uniquely identified. A saturated LQR is then designed with the nominal model of the 

system: 

 
  max

max

max

,

,

Kx Kx
u

sign K u

u

x Kx u


 


, (6.27) 

where  sign  is the sign function and  max max,u u  is the bound on input. Then M particles 

with random initial state are simulated following this control law. The disturbance and additive 

uncertainty are chosen in the following fashion: with probability  , d and  are chosen such that e
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x
is maximized; with probability 1  , d and e  are uniformly sampled among the extreme 

values of and .  

After T sampling times, the convex hull of the M particles  is computed and the orientations 

of the bounding hyperplanes of the convex hull are used for the mRCI computation: 

 .P H . (6.28) 

6.5.3 Result 

The result of mRCI computation with the model structure in (6.25) is shown.  

 

Figure 6.3 Convergence of the iterative algorithm 

Figure 6.3 shows the convergence of the inside-out algorithm and outside-in algorithm. In fact, 

the inside-out and outside-in algorithms converge to the same mRCI in this case, but there is no 

guarantee that this will happen every time. 

d e



 

 101  

 

Figure 6.4 mRCI obtained with least square model and optimal nominal model 

Figure 6.4 shows the computed RCI. For a benchmark, the least square regression result is used 

as the nominal model and the mRCI algorithm selects the optimal bound for multiplicative and 

additive uncertainty. In this case,   is simply 
2 3,

T
T T    in (6.25) and 

8  . The RCI with the 

least square model is shown in blue, and the RCI under optimal nominal model is shown in red. 

The reduction in volume is more than 50%. Since the RCI is in 4 , the plot shows the slices of 

the polytope by setting one dimension to 0.  

Notice that the nominal model selected by the mRCI algorithm is only optimal for the purpose 

of computing an mRCI. In fact, under the least square model, the uncertainty bound found by the 

mRCI algorithm is as follows: 

 
 

 

0 0.0307 0 0.0022 ,

0.0046 0.0283 0.0088 0.0116 .

T

M

T

A

 

 
 (6.29) 

For the optimal nominal model, the uncertainty bound becomes 

 
 

 

0 0.129 0 0.0112 ,

0.0327 0.1643 0.0088 0.0236 ,

T

M

T

A

 

 
 (6.30) 

which is significantly larger than the previous case. This shows that the least square model indeed 

fits the measurement better, but results in a larger mRCI. This again shows the necessity of 

performing model selection and mRCI computation simultaneously. Such co-optimization leads 
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to a model that better suits the mRCI computation. On the other hand, one does not need to worry 

about the correctness of the model, since it belongs to the admissible model set. 

6.6 Conclusion 

This chapter presents a novel data-driven algorithm to approximately compute a minimal robust 

invariant set by simultaneously selecting an admissible model and minimizing the size of the RCI. 

The algorithm has two steps: first, the set of all admissible models with uncertainty 

characterization is identified from the measurement data, then a robust LP is formulated to 

iteratively search for an mRCI. The robust LP-based algorithm is able to simultaneously select an 

optimal model, finding a good tradeoff between the nominal model and different types of 

uncertainties and minimize the size of an mRCI. A vehicle lane keeping example is used to 

demonstrate the method, and the result shows more than 50% reduction in the volume of the RCI 

computed compared to the benchmark. 

Although the current algorithm provides a means to co-optimize invariant set size, the selection 

of invariance-inducing controllers, and the selection of models among the models consistent with 

the experimentally observed data, it does not necessarily provide invariance guarantees for unseen 

data in cases where the unseen data can reveal additional dynamics and can further shrink the 

admissible model set. Hence, another interesting direction is to extend the invariance guarantees 

to unseen data by incorporating a priori information on the dynamics as in [133]. 
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Chapter 7 Experimental results
This chapter presents the experimental result of some of the methods proposed in this 

dissertation. The experiments were conducted on the OpenAV platform in Mcity, which is a test 

facility built by the University of Michigan. In particular, two algorithms were tested. First, a 

supervisory control structure with CBF as the supervisor for lane keeping was tested. A human 

driver was used to emulate the student controller, and the CBF’s ability to guarantee safety was 

tested in a lane keeping scenario. Second, the data-driven algorithm for computing an mRCI was 

validated with experiments. Data were collected from experiments on the vehicle, then an mRCI 

was computed using the algorithm proposed in Chapter 6. The computed mRCI was then 

implemented on the same vehicle, showing that the state indeed stayed inside the computed mRCI. 

The effectiveness of the proposed methods are demonstrated with the experiments, and the 

shortcomings of the theory and possible direction of future work to improve performance are 

discussed. 

7.1 Hardware setup 

The hardware platform is built based on a Lincoln MKZ sedan. Multiple sensors, such as Lidars, 

radars, cameras, and GPS units, are installed on the car, and the vehicle can be controlled by wire, 

including its throttle, braking, transmission shift, and steering. 

 

Figure 7.1 The Mcity OpenAV platform 
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The sensors and actuators are accessible via the middleware called Polysync, designed 

specifically for autonomous vehicle operation [137]. Polysync is able to collect the sensor data 

packages, share among the nodes linked to the network, and send commands to actuation nodes 

such as steering and braking. 

The major sensor used in the experiment is the Real Time Kinematic GPS. RTK is an advanced 

type of differential GPS that provides accurate measurement of position and velocity with the help 

of a base station. The model on board the MKZ is OXTS RT3003, which has the following 

specifications: 

Table 7.1 Specifications of OXTS RT3003 RTK GPS 

Position error Velocity error Pitch/roll error Heading error 

0.01m 0.05km/h 0.03deg  0.1deg 

The test facility is at Mcity, which is built by the University of Michigan for the testing and 

validation of autonomous vehicles. Mcity is a closed test facility with urban roads as well as a 

segment of straight highway.  

 

Figure 7.2 Map of the Mcity test facility 
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7.2 The experiment of CBF for lane keeping 

The first experiment done on the MKZ platform was to test the performance of a CBF for lane 

keeping, where the safety specification is to bound the lateral deviation of the vehicle: 

 maxy y , (7.1) 

where y  is the lateral deviation from the lane center, set to 0.9m . The CBF was constructed based 

on a linear lateral-yaw model of the test vehicle, which is a four-state linear model of the lateral 

dynamics of the vehicle: 
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 (7.2) 

where the four states are the lateral deviation y , sideslip velocity of the chassis yv , yaw angle   

and the yaw rate r . The input u is the steering angle f and the measured disturbance d  is dr . m

and 
zI  are the mass and moment of inertia of the vehicle; fC  and 

rC  are the cornering stiffness 

of the two axles; a  and b are the distance from vehicle CG (center of gravity) to the front and rear 

axles. 
xv  is the longitudinal speed; if it stays constant, the dynamics is linear. The parameters 

identified through testing are listed in Table 7.2. 

Table 7.2 Model parameters of the test vehicle 

m  zI  a  b  fC  fC  

1800kg  23270kg m  1.65m  1.25m  140000 /N rad  140000 /N rad  

 The CBF was constructed using SOS programming and followed the procedure described in 

Section 2.2.3. Bounds on all four states, the input, and the disturbance were enforced. Among the 

bounds, the bound on disturbance was an assumption on the environment; the bound on the input 

and states were the specifications to be satisfied. The parameters for the CBF construction are 

listed in Table 7.3. 
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Table 7.3 Parameters for the CBF construction 

maxy  maxyv  max  maxr  maxf  maxdr  xv  

0.9m  1 /m s  0.07rad  0.3 /rad s  0.5 /rad s  0.2 /rad s  10 /m s  

 The order of the CBF was limited to quadratic. Moreover, since the LK problem is symmetric 

w.r.t. the origin, the CBF was in the following form: 

   1 Tb x x Qx  . (7.3) 

The following CBF condition was enforced: 

  2 0Tb x Q Ax Bu Eb d b       , (7.4) 

which was a linear constraint for u , given x  and d . The overall optimization solved on board was 

the following: 
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 (7.5) 

where 0u is the input from the student controller and preu  is the input from the previous time 

instance. s is a relaxation term for the CBF condition, which is heavily penalized. The optimization 

was solved online with Gurobi C++ implementation [138]. 

The student controller was emulated by a human driver, which could behave like a well-

designed student controller or a badly designed controller in the experiment. In order to keep the 

system safe, another set of driving-by-wire controllers was installed on the passenger seat using a 

gaming console, as shown in Figure 7.3. A safety driver would sit in the driver’s seat watching 

over the experiment and would terminate the experiment should anything go wrong. 

             

Figure 7.3 Human driver setup to implement the “student controller” 
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The command from the student controller (emulated by a human driver) 
0u  was sent to the 

CBF; then the CBF would determine whether an intervention was needed via the optimization in 

(7.5) and send the command u  to the drive-by-wire system of the test vehicle. One sample run is 

shown in Figure 7.4. 

 

Figure 7.4 A sample run of the CBF experiments  

During the experiment run shown in Figure 7.4, the human driver was trying to steer the vehicle 

out of the lane, and the CBF was able to keep the vehicle in the lane. u stayed the same as 0u when 

no danger was detected and intervened when danger was detected. The experiment was not perfect, 

as shown in Figure 7.4: the CBF  b x  dropped below 0 once, which was due to the unmodeled 

dynamics of the system, such as the delay and lag of the drive-by-wire system, and the unmodeled 

dynamics of the vehicle excited by the abrupt steering. The video of this experiment can be found 

at experiment video.  

Multiple experimental runs were attempted, with some results worse than the one shown above. 

Typically, when 0u changed direction quickly, or the vehicle was asked to bounce between the two 

lane boundaries, the CBF performed poorly. The major drawback of the current CBF theory is that 

it is not able to handle the change-rate limit of the input and the delay in the system. It assumes 

that u can change arbitrarily fast when the command is within the input limit. However, in 

experiments, when an abrupt change is commanded for f , the servo motor cannot keep up with 

https://youtu.be/Xm3LoRWYe-Q
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the pace and the CBF may fail. In addition, a delay exists from the signal transmission on the CAN 

bus and the Ethernet. 

 

Figure 7.5 CBF Delay on the input 

Figure 7.5 shows the comparison of the f commanded and the actual
f . The delay is about 0.4 

seconds.  

In future work, how to incorporate the delay and the input rate bound into the construction of 

the CBF will be considered. 

7.3 The experiment of a data-driven computation of an RCI 

This section presents the experiment on the data-driven algorithm for computing a minimal 

robust control invariant set (mRCI), as proposed in Chapter 6. The same experiment platform—

the MKZ in Mcity—was used. 

First, data were collected by running the vehicle on a prescribed path. The path was a sinusoidal-

like curve with a maximum curvature of around 0.02 1rad  . The path was not perfectly sinusoidal 

since it was recorded by a human driver. A map representing the lane center was recorded in the 

form of trajectory points consisting of X , Y  coordinates, heading angle and curvature. 

 

Figure 7.6 the route for collecting data 
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The vehicle was controlled by an LK controller designed with a preview control method, as 

introduced in [139]. Details of the preview control design are omitted here. The vehicle followed 

the prescribed path with a longitudinal velocity around 5m/s, which was enforced by a cruise 

control using PID. Among the states, yv  and r were directly measured with the RTK GPS, y and 

  were obtained by projecting the current GPS coordinates to the reference trajectory, that is, 

finding the closest point in the map file and computing the difference. With the projection, the 

curvature is also determined, along with dr , which is the multiplication of longitudinal velocity 

and road curvature. 

As presented in Section 6.5, the model for LK consists of four states, one input, and one 

measured disturbance: 

 , , ,, ,fy d

T

r u rx dy v       . (7.6) 

The measurements of , ,x u d were recorded, But the sensor was not perfect, especially when 

measuring yv  and r . Therefore, a Kalman filter was used to filter out the noise. The Kalman filter 

was built based on a nominal model of the MKZ: 

 d d dA x B dx u E    , (7.7) 

which was obtained by discretizing the model shown in (7.2) with the parameters shown in Table 

7.2. The output is the full state measurement, and the input is u and d . The process model is shown 

below: 
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 (7.8) 

where w and v are the process and measurement noise. The covariance for w and v were selected 

as 
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The covariance matrix for x was initialized with the identity matrix, and then the Kalman filter 

followed standard Kalman filter iteration as the experiment proceeded. See [140] and other 

textbooks for reference. 

To this end, the model to be identified was actually the following sequence of blocks: 

 

Figure 7.7 CBF Experiment result 

The above sequence of blocks was viewed as a generalized model, as this was actually what the 

controller had to deal with in the experiment.  

Since part of the LK dynamics is purely kinetic equations, additional structures were imposed 

on the model. Notice that the dynamics of y and   are determined purely by kinetics, which can 

be obtained by discretizing the following linear system: 
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After discretizing the model in (7.10), the entries in the nominal models that correspond to the 

parameters from the kinetic model were fixed. As a result, all entries of Ê  were now fixed, Â  

was parameterized as follows: 
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 (7.11) 

Remark 7.1: The rest of the entries of Â were parameterized by  , with linear bases generated 

via PCA, as described in Remark 6.3. 

Then following the procedure presented in Section 6.3, the set of admissible models   was 

identified. The model structure was the same as described in Section 6.5.1, and the procedure 

presented in Section 6.5.2 was used to generate the orientations of the hyperplanes of P . In 
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addition, the mRCI was enforced to be contained in  1| 0.9x x  , which restricted the lateral 

deviation y  to be less than 0.9m. The specifications for the mRCI computation are listed in Table 

7.4. 

Table 7.4 Setup of the computation of mRCI 

Maximum steering Maximum road curvature Maximum deviation 

0.2 rad  0.025 1rad   0.9 m   

Since there was no known RCI to begin with, an mRCI was computed with the inside-out 

algorithm. At the first iteration, a high gain controller with a small RCI was obtained, but when 

put to the experiment, the MKZ steer-by-wire system was not able to keep up with the input 

command, and the controller performed poorly. Then the feedback gain was restricted and an RCI 

with moderate gains was obtained. The bound on the gain was set as follows: 

 
1 30.3, 1.2fb fbK K  . (7.12) 

 

Figure 7.8 Inside-out algorithm to compute an mRCI 

As shown in Figure 7.8, the algorithm terminated after 123 iterations, returning an RCI, an 

admissible model, and a control law consisting of feedback of x  and feedforward of dr : 

  0.30, 0.061, 0.85, 0.05 0.03 du x r      . (7.13) 

Next the lane keeping controller was tested on a sinusoidal track with maximum allowed curvature 

with the above control law. The parameters of the desired path are listed below: 

Table 7.5 Parameters of the sinusoidal desired path 

Wavelength Maximum road curvature Amplitude 

49 m  0.025 1rad   1.5 m   
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The same Kalman filter was used on board and the feedback was based on the filtered measurement 

of the states. 

 

Figure 7.9 Relative position in the computed mRCI 

Figure 7.9 plots /i iPx q for every 
iP  in P . If x is contained inside  ,P q , all plots 

should stay below 1. As shown in Figure 7.9, after converging from the initial condition, x  stayed 

inside during the experiment run.  

 

Figure 7.10 State trajectory and mRCI 
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Figure 7.10 shows the plot of state trajectory and the computed mRCI. Since the mRCI is in

4 , both the state trajectory and the mRCI are projected into four 3-dimensional space. As shown 

in Figure 7.10, the state stayed within the computed mRCI. 

Remark 7.2: Experiments were conducted on paths with sharper (40m wavelength) and milder 

(80m wavelength) turns, and the state was contained in the mRCI in both cases. However, when 

the speed of the vehicle was changed, the performance deteriorated significantly. This result 

indicating that the proposed method is quite sensitive to xv . Since 
xv  is an important parameter 

in the nominal model, the model may not be admissible once xv is changed. One possible solution 

is to parameterize the model with 
xv , but some modification is needed in the one-step propagation, 

as the model will no longer be linear. 

 In Section 6.5.3, when the nominal model is fixed to be the least squares regression model, 

the RCI computed is larger in size compared to the RCI computed with the nominal model 

determined by the mRCI algorithm. However, when the undetermined entries of (7.11) were 

determined by linear regression with the measurements from the experiments, the inside-out 

algorithm did not terminate. The failure arose from the fact that the data from the real experiments 

were noisier than those from the CarSim simulation, meaning that a badly chosen nominal model 

may cause the iterative algorithm to fail. 

7.4 Conclusion 

Experiments were conducted on two methods—the CBF supervisory control method and the 

data-driven mRCI method. The CBF experiment shows the effect of the CBF on preserving safety, 

even with a student controller with bad intentions. However, a gap always exists between theory 

and reality, and the experiments on the CBF demonstrate some shortcomings of the theory. 

Because the CBF uses last-minute intervention to guarantee safety, which is drastic and sensitive 

to delay and to the limited change-rate of the input, the CBF must be improved upon. 

On the other hand, the mRCI computed worked well with the imperfection of the model in the 

experiments. There may be three reasons that lead to the good performance. First, the model used 

for computing the mRCI is already an uncertain one that includes the system imperfection. Second, 

the mRCI is enforced with a linear controller with feedback and feedforward, which is simple yet 
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more robust against the delay. Third, bound on the feedback gain is enforced during the 

computation of the RCI, thus preventing the system from being high-gain.  

One possible solution to the problem with the CBF method is to restrict the gain of the controller 

used to construct the CBF, as presented in Section 2.2.3, though it may lead to establishing a very 

conservative CBF which intervenes frequently. A CBF that intervenes even when safety is not 

endangered beats the purpose of using a CBF as a supervisor. Possible directions for improving 

the CBF method include:  

1. using an integrator to incorporate the change rate limit of the input; 

2. including delay by considering the worst-case propagation of the system. 

In conclusion, one may achieve safety with a simple implementation, as is the case with the 

mRCI experiment, but it is restrictive, dictating the whole design of the controller. One may 

achieve safety with a more complicated structure, such as the supervisory structure in the CBF 

case, but it would require a better model and the theory is not yet mature. 
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Conclusion and future work

Conclusion 

This dissertation considers the problem of correct-by-construction control synthesis and 

verification for dynamic systems. In order to guarantee safety for the system without being overly 

conservative, disturbance and model uncertainty must be accounted for properly. Several 

approaches are presented, tackling different types of disturbance and uncertainty, yet they all 

center around the idea of taking advantage of the structure of the problem, including the dynamic 

model, the disturbance structure, and the uncertainty characterization and reducing the level of 

conservativeness during the verification and control synthesis.  

Chapter 3 presents the polar method, which solves the problem of moving obstacle avoidance 

for low-speed autonomous vehicles. The main issue addressed in this problem is the motion of 

moving obstacles, viewed as an exogenous disturbance. When no more information is available 

other than the maximum velocity of the moving obstacles, the control synthesis should prepare for 

all possible motion within the velocity limit. Safety is achieved with a supervisory control 

structure, where a CBF is constructed with the avoidable set solved with the polar method. The 

CBF supervisor would follow the student controller’s command when no danger is detected, and 

intervene when the student controller’s control input is leading to danger. The supervisor works 

with a student controller that may be designed with any existing methods, which really shows the 

method’s ability to provide a guarantee of safety in a plug-and-play fashion. In the single obstacle 

case, the polar method is able to guarantee obstacle avoidance under all possible motion of the 

obstacle. In the multiple obstacles case, since collision is inevitable in some situations, the concept 

of responsibility of the collision is adopted to make the problem reasonable. The polar method is 

able to guarantee collision avoidance in the sense that the autonomous vehicle will never cause a 

collision for which it is responsible. 
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After discussing the design of a supervisor in Chapter 3, Chapter 4 switches gears to the other 

side of the coin—the design of a student controller. As powerful as the CBF may be, it focuses on 

safety rather than performance. When a student controller is not designed in a way that is 

compatible with the supervisor, intervention may be triggered frequently and the performance may 

be compromised. Therefore, a supervised learning based method is proposed that combines 

machine learning with CBF. First, trajectory optimization is used to generate a trajectory library 

consisting of trajectories that satisfy the CBF condition and will not trigger an intervention. These 

trajectories are then used to train a trajectory generator that will presumably inherit the good 

properties of the training set. The trajectory generator is implemented in the form of a Continuous 

Hold controller, while CBF guarantees safety on top of it. The proposed method is demonstrated 

on a truck lane keeping example, where the safety specification is bounding the lateral deviation 

and roll angle of the truck. Simulation is performed on TruckSim, a high-fidelity physics-based 

model. The result shows that the learning based controller is able to satisfy the safety specification 

without triggering the CBF supervisor, and the ride comfort of the truck is enhanced compared to 

that of the benchmark, which results in severe intervention from the CBF.  

Next, Chapter 5 discusses a situation where the disturbance is not necessarily hostile. 

Previously, in the obstacle avoidance problem and the lane keeping problem, the disturbance was 

assumed hostile, that is, the control synthesis had to guarantee safety even for the worst-case 

realization of the disturbance. In the vehicle chassis control problem, however, the coexisting 

controllers designed by suppliers are not necessarily hostile, and considering the worst-case 

scenario would render the problem unsolvable. The main difficulty lies in the fact that the control 

algorithms are trade secrets of the suppliers, which means that it is impossible to ascertain the 

whole picture of the closed-loop system. To resolve this problem, the Lyapunov function is used 

as a measure of the influence of each controller, and dual decomposition is used to build a bridge 

of communication that preserves confidentiality. It is proved that the decentralized verification is 

equivalent to the centralized verification, thus obviating the need for the suppliers to expose their 

control algorithms.  

Chapter 6 then focuses on modeling uncertainty. Most correct-by-construction methods, 

including the three methods previously mentioned in this dissertation, assume that the model of 

the dynamic system is known, including the nominal model and the uncertainty characterization. 

In practice, however, obtaining a model is not trivial. Moreover, if the model is the result of system 



 

 117  

identification from measurement data, there are typically non-unique choices of the model 

parameters, and it is not clear how to choose one that would suit the control synthesis. A data-

driven algorithm is proposed to approximate a minimal robust control invariant set. It begins by 

identifying the set of all admissible models, which include the nominal model and the uncertainty 

characterization. An admissible model is defined as a model that explains the measurement and is 

thus viewed as a “correct” model for control synthesis. Then a robust optimization based algorithm 

computes a minimal robust control invariant set while selecting the optimal admissible model that 

leads to the smallest invariant set. This work shows that when system identification and control 

synthesis are considered in an integrated way, the tradeoff between the nominal model and 

different types of modeling uncertainty may be dealt in a way that suits the control synthesis. 

In conclusion, by utilizing tools in classic control theory, optimization and machine learning, 

several methods are proposed that give a safety guarantee to many interesting Cyber-Physical 

Systems. Disturbance and model uncertainty is an important issue for providing a safety guarantee 

to dynamic systems, and it is shown that when the structure of the problem is utilized in a smart 

way, conservativeness can be reduced. In some cases, a less conservative method means the 

difference between a solvable problem and a non-solvable one. Some of the proposed methods are 

tested on an autonomous vehicle experiment platform, demonstrating the capability of providing 

safety guarantees to a realistic system. 

Future work 

Some open problems and possible extensions of the proposed methods have not been addressed 

in this dissertation. Future work will include: 

 Improving the CBF theory: The CBF theory has been found to be incomplete by the 

experiment due to a lack of consideration for delay and lag in the dynamics. Lag may 

be solved by increasing the order of the dynamic model; a good solution for the delay 

is not yet apparent. 

 More complicated specifications: Most of the work covered by this dissertation 

concerns invariant set and safety constraints. Extensions of the proposed methods to 

more complicated specifications concerning liveness and reactiveness of the system are 

possible. 
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 Extension to hybrid systems: The systems considered in this dissertation consist of 

purely continuous states. The proposed methods may be extended to hybrid systems in 

which some states are discrete, such as traffic light signals. 

 Extension to stochastic settings: In some cases, guaranteeing safety in a rigorous sense 

may be impossible. A lower bound of the probability of safety may be sought instead, 

such as the work on the Markov Decision Process [141, 142]. A potential direction of 

research is to extend the proposed methods to a stochastic setting. 

 Safe learning: Although machine-learning techniques were used in Chapter 4, it was 

separated from the safety guarantee. Methods do exist that guarantee safety along with 

learning (viz. the Gaussian process approach [82, 83]). However, assuming the 

unknown function to be a Gaussian process is very general, and may hide some inner 

structure of the problem. A potential extension of the proposed methods is to combine 

learning with structural information of the system and provide a performance guarantee 

to a partially known system. 
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Appendices 
 

Appendix A.  Proof of Theorem 3.1 

For any bounding half space 1TH x   that satisfies (3.29), since  is a convex polytope, it can 

be rewritten as a convex combination of the vertices of : 

 
 

, , . ,

0, 1: 0.

i i i
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i i

d u u u V

H Eu Gd



 
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 (A.1) 

Note that .V is a set with finite elements, so  
.V

max
i

T

i
u

H Eu


 exists, and  

  
.V

max
i

T T

i
u

H Eu H Eu


 . (A.2) 

Therefore, let  
.V

arg max T

m
u

u H Eu


 , 

 mu

HHs sH P P  . (A.3) 

(A.3) proves that HsP  contains all linear functionals corresponding to bounding half spaces 

satisfying the boundary conditions. 

 

Appendix B.  Proof of Theorem 3.2 

First, write  HConv P  as 

      
.

.u

H Hs HIn Ins

u V

ConvConv P Conv P X P X 



 
 


   


 (B.1) 

Recall the fact that for any union of polytopes i

i

P
 , the vertices of its convex hull is a subset of 

the union of the vertices of all polytope components. 

  ..i i

i i

Conv P VV P
 

 
 

 (B.2) 
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Therefore,  

    
.

. .u

H Hs In

u V

Conv P V P X V



  . (B.3) 

Recall the definition of a polar; it follows that  

    
.

. .. i

i

u

HsB H In

u V

P X VP H Conv P V 



  . (B.4) 

Therefore the bounding hyperplanes of 
BP  lie inside the intersection of  

InX 
 and

HsP  , and 
BP is an 

avoidable set that contains
InX .  

 

Appendix C.  Proof of Theorem 3.3 

First, it is shown that for all 
HH P , 1TH x  is not a valid bounding hyperplane for the 

avoidable set containing
InX . Then it is shown that for all 

HH P , the half space 1TH x  contains

BP .  In other words, 
BP is minimal. 

For all HH P , by definition, 
sn HIH X H P   . If InH X  , then from (3.24), 1TH x  is a half 

space that does not contain dX . If 
HsH P , from (B.1), H does not satisfy the boundary 

conditions. 

For all
HH P ,  H HH P H Conv P  , so 

  , 0, 1, .i i i i i HH H H Conv P V       . (C.1) 

For all
0 Bx P , 0 0

TT

i iH x H x . Since 
0 Bx P , it follows that 
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0 0

1, .

1.

T

i i H

TT

i i

H x H Conv P V

H x H x

  

  
 (C.2) 

(C.2) implies that adding 1TH x   as a half space to 
BP  will not reduce any point from

BP , so 
BP

is minimal.  
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Appendix D.  Proof of Theorem 3.4 

Let 
HP  be the polytope consisting of all feasible bounding hyperplanes H for an avoidable set

BP . 
HP  may not contain the origin in its interior. Normalize the expression of its bounding 

hyperplanes to 

 
1, 1,

0, 1,

v

T

j

T

i i N

H j

v H

N



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 

 
, (D.1) 

where the first category denotes bounding hyperplanes corresponding to facets that do not contain 

the origin, and the second category denotes those facets that contain the origin. 
vN  and N  are the 

number of linear constraints for each category.  

Let  v iH v and  iH   denote the two groups of bounding hyperplanes in (D.1). Since 

HP is constructed by intersecting HsP , where every facet contains the origin, and InX 
, where every 

facet does not contain the origin, it is clear that . .v IIn nH X H X V  . Recall that shifting a 

polytope is equivalent to shifting all the vertices. It follows that  

  . , .IIn nX H v c v X V


    . (D.2) 

Since the construction of 
HsP is an invariant of the shifting operation in the state space, HsP remains 

the same after shifting InX . It then follows that HP  has the following bounding half spaces: 
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 (D.3) 

For any vertex 
0H  of HP , it is the intersection of N facets, where N is the dimension of the state 

space. Assume the linear equations corresponding to 
0H  is 
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 (D.4) 

Since (D.4) has a unique solution
0H , A is invertible and 1

0H A a . In addition, since 0 HH P , 
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 (D.5) 

Now consider the corresponding vertex 0H of 
HP . If it exists, it satisfies 
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   0 0TA ac H  . (D.6) 

If the matrix  TA ac is invertible and  
1

TA ac a


 satisfies all inequalities of HP , then 0H

exists and is a vertex of 
HP . 

From the matrix inversion lemma, if Aand 11 Tc A a are invertible, then  TA ac is invertible 

and  

    
1 1

1 1 1 11T T TA ac A A a c A a c A
 

       . (D.7) 

Clearly, A is invertible; 
11 Tc A a  is a scalar. Since In InX X c   contains the origin, c  is inside

InX . 
0H  is a vertex of 

HP , so  0 1TH c  . It follows that 

 
1

01 1 0T Tc A a c H    . (D.8) 

Therefore  

  
1

1 1

0 1 TH c A a A a


   . (D.9) 

Next it is shown that 0H is inside 
HP . For all 1, ,v p pMv H v v v  : 
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From (D.8), 1

0 1T Tv A a v H   . It follows that 
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For all 1, ,q qN MH       , 
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Therefore 0H is a vertex of HP . Since the mapping from the vertices of 
HP  to the vertices of HP

is established, the only thing left to check is wether
B H BP P P c



   .  Note that 
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which proves that for each facet of 
BP , a corresponding facet of BP exists by shifting the facet with 

vector c ,  i.e., B BP P c  . 

 

Appendix E.  Proof of Theorem 3.5 

  is actually a differential inclusion of  the original system 
0 , which implies: 
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This means for any , ,x u d  in 
0 , there exists d   that reproduce the state derivative in system

 with the same state and input. Therefore, any avoidable set under dynamic  is also an avoidable 

set under dynamics 
0 . It follows that P is also an avoidable set for 

0 . 

 

Appendix F.  Proof of Theorem 3.6 

 Only the case when 0   is proved. The case when 0   follows the same reasoning. For any 

point x  at the boundary of P , suppose 0  , then 4 0H  . P is an avoidable set w.r.t. the 

dynamic system .  Therefore, 

  1 1, : 0Td u H E u G d      . (F.1) 

Since 
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It follows that P is also an avoidable set w.r.t.  . 

 

Appendix G.  Derivation of (3.43) 

From the definition of the barrier function in (3.41), the derivative of  B x  is  

  
B b
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Assuming that x is constant within the sampling time
sT ,  
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It follows that 
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For this certain function, 
n
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has an explicit expression: 
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Given a sampling time
sT , the barrier function at the next time step can be calculated using the 

Taylor expansion: 
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It follows that 
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Recall (3.42),  
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Appendix H.  Simulation setup in Section 3.6 

The parameters for simulations are listed in Table H.1. 

Table H.1 Simulation Parameters 

Parameter Value Meaning 

maxdv  1.2 /m s  Maximum obstacle speed 

maxr  3.4 /rad s  Maximum yaw rate 

maxa  24 / sm  Maximum acceleration 

maxv  2 /m s  Maximum vehicle speed 

vR  0.5m Radius of AV 

pR  0.3m Radius of pedestrians 
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sT  0.05s Sampling time 

  0.7 Friction coefficient 

ax , ay  1 Standard deviation of pedestrian acceleration on X and Y direction 

The simulations are conducted using Matlab.  The toolboxes used are shown in Table H.2. 

Table H.2 Toolboxes Used 

Polytope Calculation Multi-Parametric Toolbox 3 

Mixed Integer Programming Gurobi 6.0.4 

Hamilton Jacobi Calculation Level Set Toolbox 1.1.1 

Appendix I. MPC design in Section 3.6 

The greedy MPC navigates the vehicle to the destination without any knowledge of the 

pedestrians. The nonlinear unicycle model of the vehicle is linearized for MPC. 

 

   

   
0 0

0 0

00 0 cos sin

00 0 sin cos

0 0 0 0

0 0 0 0

XvX

YvY

v av

r

 

 



        
       
        
       
       

     

, (I.1) 

where  

  0 0 0, .t        (I.2) 

This linearized model is then discretized and used for the MPC, with prediction horizon 5predN   

and control horizon 1conN  . 

Appendix J. Potential field controller design in Section 3.6 

The potential field controller is adapted from the method proposed by Shimoda et al. in [66] 

and tune the parameter to enhance its performance.  The potential field is built on the trajectory 

space, which is the Cartesian product of velocity and yaw rate (different from the original trajectory 

space in [66] because of the different inputs of the dynamic model). The potential field function 

used is 
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where
dA , or , d , and   are defined in the following 
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 (J.2) 

1r  and 2r are the maximum and minimum yaw rate that will lead to a collision, as demonstrated in 

Figure J.1. See [66] for more details. 

 

Figure J.1 Maximum and minimum yaw rates leading to collision (original figure in [66]) 

The parameters for the potential field method are listed in Table J.1. 

Table J.1 Parameter of the potential field controller 

gK  5 

1vK  15 

2vK  2 

oK  100 

oaK  0.1 

ovK  0.1 

odK  2 

Appendix K.  Hamilton Jacobi controller design 

The control problem is formed and solved as a pursue-evade game. First, a reachability set for 

a single obstacle is solved while restricting the vehicle’s input to only braking, then apply this 

reachability set to multiple obstacles (the same “trick” used in the polar method). It should be noted 
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that the coordinate for relative dynamics in the Hamilton Jacobi method differs from that for the 

polar algorithm.  
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, (K.1) 

where 
LX  and 

LY  are the relative position of the obstacle in the local frame attached to the 

vehicle. Theoretically, the three states in (K.1) are sufficient for describing the relative dynamics 

between the AV and the obstacle. The reason for using four states in the polar algorithm is that the 

model shown in (3.7) is more similar to double integrators, which makes the simplification in the 

polar algorithm easier. The dynamic equation for the states in (K.1) is 
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, (K.2) 

where Ldxv  and Ldyv  are the longitudinal and lateral projection of the obstacle’s speed in the local 

coordinates. The dynamics are then reversed in time to calculate the backward reachable set. 

The value function is defined as 

     
0

, t min max 0
b

t

ta
x dt x t

 
  , (K.3) 

and  x  satisfies: 
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The Hamiltonian of the reversed dynamics allowing only braking is solved analytically: 
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where a  and b  are the strategy for the vehicle and obstacle, respectively. p
x





 is the 

conjugate momenta;  3 ,k p v  ensures that the vehicle speed is within the limit. To enforce the 

responsibility rules presented in Section 3.2.2, 

  0 0 0LX v H      . (K.6) 

The final time is chosen as 10T s .The calculated zero level set is shown in Figure K.1. 

 

Figure K.1 Hamilton Jacobi reachability set 

The result is calculated numerically and stored in a look-up table. In the implementation, local 

regression is performed to obtain the value and the gradient of  . Then the following constraint 

is enforced: 

      , ,
T

x f x u xd    , (K.7) 

where   is the gradient at that point and   is a positive constant. For more details, please 

refer to [143] and [33]. 

Appendix L.  Zero dynamics of the truck lateral dynamics in Section 4.2 

To show the zero dynamics the following state transformation is used that renders a new choice 

of states: 

 
T

TTx z z      , (L.1) 

where T is a full rank matrix:  
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, (L.2) 

and iB is the i-th entry of B . The transformation is linear and full rank. The dynamics under   is 

 dA Bu Er    , (L.3) 

Moreover,  

  0 0 0 0 0 0 0
T

B TB CAB  , (L.4) 

where  0 1 51 0 xC T v  0 . So the dynamics under  can be written as 
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, (L.5) 

where  , ,z z   has exponentially stable zero dynamics, meaning  0,0,    is 

exponentially stable. 

Appendix M. Analysis of continuous hold controller in Chapter 4 

M.1 Continuous hold controller for systems with disturbance 

Systems of the following form are considered: 

  , ,x f x u d , (M.1) 

where x , u  and d are the state, the input, and the measured disturbance respectively. 

Remark M.1: The result of the CH controller is applicable to general nonlinear dynamic model, 

the control-affine nonlinear model in (4.1) (assuming 2 0d  )  is a special case. 

The following assumptions about the system dynamics are made. 

Assumption M.1: : n m p nf     is locally Lipschitz continuous in x ,u , and d .  
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Assumption M.2: p  and mapping : n

x  , : p

u  , Lipschitz continuous, such 

that     , , 0x uf d d d   , i.e., for every exogenous disturbance d , there exist two 

mappings x and u that map any d to a unique equilibrium point and a unique input that 

maintains the equilibrium.  

Remark M.2: There may be non-unique equilibrium points of the system due to the cyclic 

coordinates, i.e., states that do not affect the dynamics, see [144] for detail. Therefore, a function 

x is needed to select a single equilibrium point given d . Assumption 4.3 gives a possible 

definition of x . 

Assumption M.3: d  , there is an open ball about the origin, n

dB  , a positive-definite, 

locally Lipschitz-continuous function :d dV B  , and constants 
1 20     such that 

 d xx B d   , 
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 
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 (M.2) 

Assumption M.4: n  , compact, such that  , xd d   . There exists CBF ( )b x , such 

that  , 0x S b x    , ,d     0xb d  . Moreover, , d    , : 0,d m

pu T
     

and a corresponding state trajectory  : 0,d n

pT      satisfying 
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 (M.3) 

where 0  , 11 0c   are predefined constants. 

A CH controller keeps a timer t̂  that is reset to 0 when the triggering event happens and the 

desired trajectory is updated, then keep flowing as the trajectory is being executed. The update can 

happen when the trajectory is executed to the end, i.e. ˆ
pt T , or when an interruption is detected. 

A possible interruption includes a change in d or an unexpected disturbance that makes the 

tracking error too large. The CH input is  
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     ˆ ˆ ˆ ˆ( , , ) ( ) ,CH d fb du t x d u t u x t t   ,  
(M.4) 

where  is the initial state when ˆ 0t  , and :fb n n mu    is a feedback controller that tracks 

d

 . 

The closed-loop system under CH feedback is then 

        ˆ, , : ˆ) ,ˆ ˆ( ,, d fb dCH t u t ux f x d f x dx t t    . (M.5) 

Assumption M.5: For any trajectory 
d

 in Assumption M.4 that a CH controller tries to follow, 

there exists a feedback controller :fb n n mu    that makes 
d

 uniformly locally 

exponentially stable, i.e., the closed loop system in (M.5) satisfies 
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for some 
2 0c  . 

Next, the result on the stability of the CH controller is presented. First, consider the case when 

d  is fixed.  

Theorem M.1: Under Assumption M.1, Assumption M.2, Assumption M.3, Assumption M.4 and 

Assumption M.5, for an initial condition   | 0x b x    the closed-loop system in (M.5) will stay 

inside   | 0x b x  , and if d stops changing after 0T  , the state will converge to  x d

exponentially. 

Proof: From Assumption M.4, since   | 0x b x   ,   , which means the feedback system 

in (M.5) is well defined. From (M.3), the CBF  b x remains nonnegative as discussed in Section 

2.2, which proves that the state will stay inside   | 0x b x   , and thus   , 0x t t   .  

When d stops changing, from the Lyapunov condition in Assumption M.4,

         1

1 0n

d p x d xV x nT d c V x d    , 1,2,3,...n  , which implies   lim 0d p
n

V x nT


 . 

So from Assumption M.3, the sequence  px nT  converges to  x d . Therefore from the last 

assumption in (M.3), the state stays at  x d . 
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M.2 State decomposition and dimension reduction 

As discussed in Section 4.3.2, under a grid fashion sampling of the initial condition, the 

computation power limits the dimension of the feature that describes the initial condition. To 

parameterize the initial condition with a subset of states, the states are decomposed into two parts: 

 1 2;x x x , where in practice 1

1

n
x  are states with slow dynamics and 2

2

n
x  are states with 

fast and stable dynamics. The case where the trajectory and tracking feedback fbu is parameterized 

by only 
1x  is considered. 

Definition M.1: A locally Lipschitz continuous function 1 2:
n n  such that  0 0  and 

satisfies 
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 (M.7) 

is called an insertion map. 

The condition in (M.7)  states that for any d , the insertion map maps the steady state of 
1x  

to the steady state of 
2x . To extend the previous conclusion to cases where trajectories are 

parameterized with only 
1x , the following assumptions are made. 

Assumption M.6: n  , compact, such that  , xd d   . There exists CBF ( )b x , s.t.

 , 0x b x   ;   , 0xbd d   ;  1 2, ; ,d         2 1 ,    there exists 

1
: 0,d m

pu T
     and a corresponding state trajectory,  

1
: 0,d n

pT      satisfying  
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Assumption M.7: There exists a feedback 1 1

1 :
n nfb mu   that     

11 1 1
ˆ,fb du x t t  makes 

1

d



uniformly locally exponentially stable, i.e. (M.6) is satisfied with 

        
11 1 1

ˆ ˆ ˆ ˆ,d fb du t u t u x t t   . 

Remark M.3: The subscript 
11

d

 means the desired trajectory of 1x with initial condition

 1 10 ,x   and 
12

d

 means the desired trajectory of 2x , 
1 1 11 2;d d d

        . Assumption M.7 is 

possible if the dynamic subsystem of 
2x  is locally exponentially stable. 

Theorem M.2: Under Assumption M.1, Assumption M.2, Assumption M.3, Assumption M.6 and 

Assumption M.7, d   fixed,     1 1; | 0x b x         , the closed-loop system under 

CH feedback will stay inside   | 0x b x  , and if d stop changing after 0T  , the state will 

converge to  x d exponentially. 

Proof: By Assumption M.7, the closed loop system exponentially converges to the CH desired 

trajectory. From Assumption M.6, by CBF condition,   | 0x b x  is invariant under the CH 

controller. When d stops changing, the closed loop system exponentially converges to 
d

 and 

       1n

p x xV x nT d c V d     , 1,2,3,...n  , and satisfies     2 1p px nT x nT . So 

every time the desired trajectory is executed to the end, there exists  1 p

d

x nT
  that follows the 

previous trajectory, By the definition of insertion map in (M.7) make sure that when  1

1 ,xx d

   2

1 xx d  . By Theorem M.2,  x t  converges to  x d  exponentially.  

 

Remark M.4: When the dynamics of 2x  is stable and fast, 
12 2:y x    converges to zero quickly, 

the influence of initial condition of 2x is small enough to be neglected. Therefore, the CH can be 

parameterized only by 
1x . 

Now consider a CH controller with trajectories generated with the procedure described in 

(4.20). Assumption M.1and Assumption M.2 are trivially satisfied by the linear dynamics, where 

x  is defined such that it maps dr  to the equilibrium point that renders   0z h x  , which is 
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unique. It can be shown that x  is Lipschitz continuous. The cost-to-go function of a Linear 

Quadratic Regulator (LQR) is used as the Lyapunov function V by solving the Riccati equation. 

Since V is quadratic, and the truck dynamic is linear, V satisfies Assumption M.3 for all dr . The 

CBF condition and Lyapunov condition in Assumption M.6 are enforced in the trajectory 

optimization by the last two constraints in (4.20). Pick 1 4 2y ax z z B v B r      , since 

z and z are part of  1x , the closed loop dynamics is indeed stable under the PD control that only 

depends on 
1x , which is the direct result of a stable zero dynamics, therefore satisfies the 

exponential stability condition in Assumption M.7. Note that the initial conditions in the training 

set are parameterized by  , which is a full rank linear transformation of 
1x and 

dr . By Theorem 

M.2, the closed-loop system with CH feedback stays within   0|x b x  , and converges to 

 x d  exponentially once 
dr  stops changing.  

Appendix N.  Smoothing of the desired trajectory in Section 4.4.2 

The smoothing of Bezier curve is very simple. For an m-th order Bezier curve, the value for 0th 

to 2nd derivative at 0s   are 

 

 

 

    

0

1 0

2 0 1

0 ,

' 0 ,

'' 0 1 2 .

m m

m m

B

B

B



 

  



 

   

 (N.1) 

Solving for 
0 , 1 and 2 : 

 

 

0

0

0

1 0

0

2 1 0

,

,

2 ,
1

des

des

des

h

h

m

h

m m



 

  



 

  


 (N.2) 

where 0

desh ,
0

desh  and 0

desh  are the current value and derivatives of the desired trajectory before the 

update. The smoothing process requires that the Bezier order should be high enough so that the 

influence of the smoothing is limited to only the beginning of the curve. The Bezier order is chosen 

to be 8. 
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Appendix O.  Proof of Theorem 5.1 

To simplify the notation, define 

 

              

          

     

1 1 2 2

1 1 1

2 2 2

, , , ,

, , ,

, , ,

d

d

dV
x d f x g x u x d g x d g x u x d

dx

dV
x d f x g x u x d g x d

dx

dV
x d g x u x d

dx

   

  



 (O.1) 

and note that 

      1 2, , ,x d x d x d  . (O.2) 

Assume the hypothesis of part (a) of Theorem 5.1, then 

 ( , ) 0.x d   (O.3) 

To show part (a), select 

 
   

   
1 1

2 2

, , ,

, , ,
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x d x d








 (O.4) 

then (5.12) is immediately satisfied with (O.3). Since 

 
     
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1 1 1
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, , , ,
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 

 
 (O.5) 

(5.12) is also satisfied. 

Next, let us consider part (b). Since  is a semialgebraic set defined with polynomials, and V

is a polynomial of x , the following representation is used: 

      , | , 0 1 .ix d h x d x V x   ∣  (O.6) 

Suppose (5.13) can be verified by SOS, that is, through Parrilo's Hierarchy, there exist SOS 

multipliers  ic such that 

      , , , .i i

i

SOS x d c x d h x d
 
  
 

  (O.7) 

Let 
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( , ) ( , ) , , ,

( , ) ( , ),

i i
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
 (O.8) 

then such 1 and 2 satisfy (5.11) and (5.12). Moreover, since 
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 (O.9) 

which means that (5.11) and (5.12) can be verified with SOS. This proves part (b). 

Next, it is shown that when one of 
1  and 2

depends only on x , 1 and 2  can be functions 

of x only. Suppose 

        2 2 2 2,
dV

x d g x u x x
dx

  , (O.10) 

and      1 2, ,x d x d x  satisfies (5.13), then let 

        1 2 2 2,x x x x    , (O.11) 

and the above 
1  and 

2  satisfy (5.11) and (5.12). If (5.13) can be verified with SOS, that is, (O.7) 

is satisfied with some ic , then (5.11) and (5.12) can be verified by SOS with the above 1 and 2 . 

 

Appendix P.  Proof of Lemma 6.1 

Proof: Lemma 6.1 is a specific instantiation of the general theory developed in [145]. The 

robust optimization in (6.15) is equivalent to the following: 
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where the maximum is taken over the uncertainty set. Then the maximum is written as its dual: 
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 (P.2) 

According to the duality theory, i id p , and with some mild assumptions, by strong duality, 

i id p . Note that 

    
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 (P.3) 

So the dual is written as 



 

 137  
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Combined with the original optimization in (6.15), the robust optimization is transformed to the 

following: 
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 (P.5) 

Note that due to the duality, i
d is always an upper bound of the right-hand side of the constraint in 

(6.15), therefore a solution to (P.5) is always a feasible solution to (6.15), and when strong duality 

holds, the two formulations are equivalent. 
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