

by

Yuxiao Chen

A dissertation submitted in partial fulfillment

 of the requirements for the degree of

 Doctor of Philosophy

(Mechanical Engineering)

in the University of Michigan

2018

Doctoral Committee:

Professor Huei Peng, Co-Chair

Professor Jessy Grizzle, Co-Chair

Assistant Professor Necmiye Ozay

Assistant Professor Ram Vasudevan

Correct-By-Construction Control Synthesis for

Systems with Disturbance and Uncertainty

Yuxiao Chen

chenyx@umich.edu

ORCID iD: 0000-0001-5276-7156

©Yuxiao Chen 2018

mailto:chenyx@umich.edu

 ii

Acknowledgments
First and foremost, I would like to thank my two advisors, Professor Huei Peng and Professor

Jessy W. Grizzle, for their kind help and support throughout my graduate life. They brought me

on board and guided me through my five-year journey as a Ph.D. student with their wisdom and

enthusiasm. I am indeed fortunate to have had the opportunity to work with them.

I would like to thank Professor Necmiye Ozay and Professor Ram Vasudevan, with whom I

collaborated while working on my Ph.D. The monthly meeting of the CPS group was an amazing

source of information and ideas and I received a great deal of help from the members.

I would like to thank the National Science Foundation for funding my research, and more

importantly, giving me the opportunity to meet awesome people outside the University of

Michigan such as Professor Aaron Ames and Professor Paulo Tabuada. Collaborating with them

and their students truly opened my eyes to many interesting tools and topics about CPS.

 My Ph.D. life would not have been as smooth as it has been without the great friends I made at

U-M. From my lab mates Chiao-ting, Byungjoo, Will, Xiaowu, Tianyou, Ding, Ziheng, Steve,

Xianan, Su-yang, Geunsob, Songan and Nauman, to my teammates in the U-M fencing team such

as Nitty and David, they all helped enliven my life and helped me in both my academic and

personal life. My special thanks go to Shaobing and Minghan, who helped me with the experiment

at Mcity.

 I would also like to thank my dear girlfriend, Grace Mo, for the abundant love and joy she has

given me. You are the apple of my eye.

 Finally, my greatest appreciation goes to my parents, Jianping Chen and Guiying Chen, for their

unconditional love and support. I consider myself carrying out part of their dreams, which makes

me feel that I am never alone, even in the tough times.

 iii

Table of Contents

Acknowledgments .. ii

List of Figures .. vii

List of Tables.. x

List of Appendices .. xi

List of Abbreviations.. xii

List of Symbols ... xiii

Abstract ... xiv

Chapter 1 Introduction ... 1

1.1 Literature review .. 2

1.2 Dissertation organization ... 6

Chapter 2 Review of important tools ... 8

2.1 Sum of squares programming .. 8

2.2 Control barrier functions .. 10

2.2.1 Overview of control barrier functions ... 10

2.2.2 Implementation of CBF .. 11

2.2.3 Synthesis of control barrier functions ... 13

Chapter 3 Polar method and obstacle avoidance.. 17

3.1 Introduction and motivation ... 17

3.2 Dynamic models and problem formulation.. 19

3.2.1 Dynamic models.. 19

3.2.2 Problem formulation ... 20

3.3 Supervisory control and avoidable set ... 21

 iv

3.4 Polar algorithm ... 23

3.4.1 Polar of a polytope .. 23

3.4.2 Hyperplane orientation and boundary condition ... 25

3.5 Avoidable set for low-speed autonomous vehicles .. 26

3.5.1 Infeasible set.. 26

3.5.2 Avoidable set for the autonomous vehicle .. 27

3.5.3 Supervisory control with control barrier functions ... 29

3.5.4 Mixed integer program .. 30

3.5.5 From single obstacle to multiple obstacles ... 31

3.6 Simulation results ... 32

3.6.1 Simulation setup and result ... 32

3.6.2 Comparison to two benchmark methods ... 35

3.7 Conclusion and discussion ... 35

Chapter 4 Supervised learning based design for safe controllers .. 37

4.1 Introduction and motivation ... 37

4.2 Dynamic model and virtual constraint ... 40

4.2.1 Model assumptions ... 40

4.2.2 Virtual constraint and tracking control ... 41

4.2.3 Tractor-semitrailer models .. 42

4.2.4 The virtual constraint for the truck model... 43

4.3 Trajectory optimization .. 44

4.3.1 Direct collocation for trajectory optimization ... 45

4.3.2 Generating the training set .. 49

4.3.3 Supervised learning ... 50

4.4 Implementation of learning based controller ... 51

 v

4.4.1 Continuous hold feedback control .. 51

4.4.2 Event-triggered update of the CH controller ... 51

4.4.3 CBF as a supervisory controller .. 52

4.5 Simulation result .. 53

4.6 Conclusion and discussion ... 57

Chapter 5 Lyapunov approach for validation of non-cooperative control designs 58

5.1 Introduction and motivation ... 58

5.2 Problem formulation and major tools .. 59

5.2.1 Problem formulation ... 59

5.3 Verification using Lyapunov functions .. 61

5.3.1 SOS verification for polynomial dynamic systems ... 61

5.3.2 Decomposition of Lyapunov derivative .. 61

5.4 Dual decomposition for verification .. 63

5.4.1 Dual decomposition for Lyapunov verification .. 63

5.4.2 Convergence of decentralized verification.. 66

5.4.3 Verification for systems with piecewise dynamics ... 66

5.4.4 Extension to control synthesis ... 67

5.5 Improving the Lyapunov function candidate ... 68

5.5.1 Centralized Lyapunov perturbation... 68

5.5.2 Decentralized Lyapunov perturbation ... 69

5.6 Case studies .. 71

5.6.1 Inverted pendulum .. 71

5.6.2 Vehicle chassis control .. 74

5.7 Conclusion ... 83

Chapter 6 Data-driven computation of minimal robust control invariant set 84

 vi

6.1 Background and motivation ... 84

Nomenclature ... 87

6.2 Linear parametrization with uncertainty .. 87

6.3 Admissible model for measurements ... 88

6.4 Robust LP algorithm for mRCI .. 90

6.4.1 One-step propagation .. 90

6.4.2 Iterative algorithm ... 94

6.5 Application on lane keeping of ground vehicle ... 97

6.5.1 Model structure ... 97

6.5.2 Preparation for mRCI .. 99

6.5.3 Result .. 100

6.6 Conclusion ... 102

Chapter 7 Experimental results .. 103

7.1 Hardware setup... 103

7.2 The experiment of CBF for lane keeping ... 105

7.3 The experiment of a data-driven computation of an RCI .. 108

7.4 Conclusion ... 113

Conclusion and future work ... 115

Conclusion ... 115

Future work .. 117

Appendices ... 119

Bibliography ... 138

 vii

List of Figures

Figure 2.1 Supervisory control structure .. 10

Figure 2.2 Reciprocal barrier and zeroing barrier .. 11

Figure 3.1 Coordinate system of the relative dynamic model ... 20

Figure 3.2 Three sets defining different stages of obstacle avoidance 21

Figure 3.3 Example of polar of polytopes .. 24

Figure 3.4 The avoidable set (yellow) and the infeasible set (red) .. 29

Figure 3.5 Multiple-pedestrian case with a single infeasible set and avoidable set 31

Figure 3.6 Control structure for simulation ... 32

Figure 3.7 Sample simulation results ... 33

Figure 3.8 Control input and minimum distance to avoidable set ... 34

Figure 4.1 Block diagram of the supervisory control .. 39

Figure 4.2 Learning based trajectory generator ... 39

Figure 4.3 Lateral-yaw-roll model of articulated truck .. 43

Figure 4.4 Preview of truck lateral dynamics .. 44

Figure 4.5 Example of trajectory optimization result .. 48

Figure 4.6 Lower bound for b ... 53

Figure 4.7 Animation with a 312 state model in TruckSim ... 53

Figure 4.8 Disturbance to the system in simulation ... 54

Figure 4.9 Input and intervention of CBF during simulation .. 54

Figure 4.10 Value of CBF and key states during simulation ... 55

Figure 4.11 Input and intervention of CBF with large initial deviation................................... 55

Figure 4.12 Value of CBF and key states with large initial deviation 56

 viii

Figure 4.13 Simulation result with LQR as student controller .. 56

Figure 5.1 Lyapunov perturbation procedure... 71

Figure 5.2 Lyapunov perturbation procedure... 72

Figure 5.3 Verification of the centralized synthesized controllers for inverted pendulum 73

Figure 5.4 Lyapunov perturbation process... 74

Figure 5.5 Lateral yaw model .. 75

Figure 5.6 Level set of the Lyapunov function for vehicle chassis control 76

Figure 5.7 Convex hull 1/x xv v of the curve.. 77

Figure 5.8 Verification of ESC+LK with the convex hull ... 79

Figure 5.9 Piecewise control structure for 1u .. 80

Figure 5.10 Synthesis of ESC+LK ... 82

Figure 6.1 Comparison of regression and uncertainty models ... 89

Figure 6.2 The tradeoff between uncertainty bounds... 90

Figure 6.3 Convergence of the iterative algorithm .. 100

Figure 6.4 mRCI obtained with least square model and optimal nominal model 101

Figure 7.1 The Mcity OpenAV platform ... 103

Figure 7.2 Map of the Mcity test facility ... 104

Figure 7.3 Human driver setup to implement the “student controller” 106

Figure 7.4 A sample run of the CBF experiments ... 107

Figure 7.5 CBF Delay on the input .. 108

Figure 7.6 the route for collecting data .. 108

Figure 7.7 CBF Experiment result ... 110

Figure 7.8 Inside-out algorithm to compute an mRCI ... 111

Figure 7.9 Relative position in the computed mRCI ... 112

Figure 7.10 State trajectory and mRCI .. 112

 ix

Figure J.1 Maximum and minimum yaw rates leading to collision (original figure in [66]) 126

Figure K.1 Hamilton Jacobi reachability set .. 128

 x

List of Tables

Table 3.1 Settings of the simulation runs .. 32

Table 3.2 Key performance indices of the three methods in 1000 simulation trials 35

Table 4.1 List of parameters .. 45

Table 4.2 Training set parameter setting ... 50

Table 4.3 Training result ... 51

Table 6.1 Comparison of the iterative algorithms ... 97

Table 7.1 Specifications of OXTS RT3003 RTK GPS ... 104

Table 7.2 Model parameters of the test vehicle... 105

Table 7.3 Parameters for the CBF construction .. 106

Table 7.4 Setup of the computation of mRCI ... 111

Table 7.5 Parameters of the sinusoidal desired path ... 111

Table H.1 Simulation Parameters... 124

Table H.2 Toolboxes Used ... 125

Table J.1 Parameter of the potential field controller... 126

 xi

List of Appendices

Appendix A. Proof of Theorem 3.1... 119

Appendix B. Proof of Theorem 3.2... 119

Appendix C. Proof of Theorem 3.3... 120

Appendix D. Proof of Theorem 3.4... 121

Appendix E. Proof of Theorem 3.5... 123

Appendix F. Proof of Theorem 3.6... 123

Appendix G. Derivation of (3.43) ... 123

Appendix H. Simulation setup in Section 3.6 ... 124

Appendix I. MPC design in Section 3.6 .. 125

Appendix J. Potential field controller design in Section 3.6.. 125

Appendix K. Hamilton Jacobi controller design ... 126

Appendix L. Zero dynamics of the truck lateral dynamics in Section 4.2 128

Appendix M. Analysis of continuous hold controller in Chapter 4 129

Appendix N. Smoothing of the desired trajectory in Section 4.4.2 134

Appendix O. Proof of Theorem 5.1... 135

Appendix P. Proof of Lemma 6.1 ... 136

 xii

List of Abbreviations

ACC Adaptive Cruise Control

ADMM Alternating Direction Method of Multipliers

CBF Control Barrier Function

CLF Control Lyapunov Function

GPS Global Positioning System

LK Lane Keeping

LMI Linear Matrix Inequality

LP Linear Programming

MIP Mixed Integer Programming

mRCI minimum Robust Control Invariant set

ODE Ordinary Differential Equation

PDE Partial Differential Equation

RCI Robust Control Invariant set

RTK Real-Time Kinematic

SDP Semidefinite Programming

SOS Sum of Squares

 xiii

List of Symbols

Spaces Sets

Set of real number Continuous state space

n-dimensional Euclidean space n Continuous input space

open (closed) positive orthant of 0

n

 (0

n

) Continuous disturbance space

Set of integers Subset of state space

Set of nonnegative integers 0

Set of real polynomials of x  x

Set of SOS polynomials of x  x

Symbols in dynamic systems

State x Input u

disturbance d Output y or z

Time t Sampling time sT

Lyapunov function V

Math operators and symbols

Convex hull Conv Euclidean inner product , 

Indicator function  1 Lie derivative of h w.r.t. f f

h
h f

x


 


Quadratic form of polynomial f fQ Minimum eigenvalue min

High degree Lie derivative
1n n

f f fh h

Basic logic and Linear Temporal Logic

Logical conjunction  Logic disjunction 

Logic negation  Logic implication 

Temporal next Temporal always

Temporal eventually Temporal until U

n

 xiv

Abstract
This dissertation focuses on correct-by-construction control synthesis for Cyber-Physical

Systems (CPS) under model uncertainty and disturbance. CPSs are systems that interact with the

physical world and perform complicated dynamic tasks where safety is often the overriding factor.

Correct-by-construction control synthesis is a concept that provides formal performance

guarantees to closed-loop systems by rigorous mathematic reasoning. Since CPSs interact with the

environment, disturbance and modeling uncertainty are critical to the success of the control

synthesis. Disturbance and uncertainty may come from a variety of sources, such as exogenous

disturbance, the disturbance caused by co-existing controllers and modeling uncertainty. To better

accommodate the different types of disturbance and uncertainty, the verification and control

synthesis methods must be chosen accordingly. Four approaches are included in this dissertation.

First, to deal with exogenous disturbance, a polar algorithm is developed to compute an avoidable

set for obstacle avoidance. Second, a supervised learning based method is proposed to design a

good student controller that has safety built-in and rarely triggers the intervention of the

supervisory controller, thus targeting the design of the student controller. Third, to deal with the

disturbance caused by co-existing controllers, a Lyapunov verification method is proposed to

formally verify the safety of coexisting controllers while respecting the confidentiality

requirement. Finally, a data-driven approach is proposed to deal with model uncertainty. A

minimal robust control invariant set is computed for an uncertain dynamic system without a given

model by first identifying the set of admissible models and then simultaneously computing the

invariant set while selecting the optimal model. The proposed methods are applicable to many

real-world applications and reflect the notion of using the structure of the system to achieve

performance guarantees without being overly conservative.

 1

Chapter 1 Introduction
We live in a world that is increasingly cybernetic and automatic. Computers have become an

essential part of our daily lives, with more automatic features being developed to free humans from

tedious and repetitive labor. Examples include autonomous vehicles, humanoid robots,

exoskeletons, and automated assembly lines. However, people tend not to accept or trust these

systems. Accidents caused by software errors in these systems have attracted a great deal of

attention and aggravated people’s worry (viz. the accidents by Tesla’s autopilot and the recent

tragic death of a pedestrian caused by Uber’s autonomous vehicle experiment). These worries are

not unjustified since there is typically no formal guarantee that the software (the control algorithm,

in particular) will meet the specifications, even for safety. The difficulty stems from the fact that

the software designed must interact with the physical world, which is difficult to model and has a

great deal of uncertainty. Systems that involve computation, communication, and interaction with

the physical world are usually called Cyber-Physical Systems (CPSs). As pointed out in [1], CPS

requires control/computing co-design. Two significant problems arise: tools are needed to verify

whether the design satisfies the specification; tools are needed to synthesize a controller that

satisfies the given specification.

In the current state of the art,control of CPS is commonly obtained by extensive experience;

various ad-hoc control algorithms such as PID, Linear Quadratic Regulator (LQR), Model

Predictive Control (MPC); and laborious trial and error. However, closed-loop performance lacks

formal guarantees of meeting the specifications. In search of a solution, researchers have turned

their attention to the formal methods, which were proposed to provide formal performance

guarantees in the computer science community targeting discrete transition systems. While

introducing these formal methods and ideas to control synthesis, several issues must be resolved.

First, control systems typically operate in the continuous time and state space, while states in

transition systems are typically discrete. Second, the control systems need to deal with disturbance

from the environment and model uncertainty. Although techniques exist in formal methods that

are able to deal with uncertainty, they typically model the uncertainty as nondeterministic

 2

transitions, thus not accurately capturing the true nature of the disturbance and uncertainty faced

by control synthesis. Using the general framework of nondeterministic transitions, therefore, result

in unnecessary conservativeness.

To fill this gap, the specific structure of the disturbance and uncertainty should be utilized. This

dissertation presents several methods that handle different types of disturbance and uncertainty.

Different as they may seem, they all abide by the same fundamental notion, which is to take

advantage of the specific structure of the disturbance and uncertainty and provide a guarantee of

closed-loop performance without being overly conservative. In particular, this dissertation focuses

on the verification and synthesis of safety specifications for CPSs under model uncertainty and

disturbance, which is the simplest and yet most fundamental type of specification.

1.1 Literature review

Control theories have been developing for decades, providing tools such as the Proportional–

Integral–Derivative controller (PID) [2], the Linear Quadratic Regulators (LQR) [3] and Model

Predictive Control (MPC) [4], yet most of the existing methods focus on optimality or some

narrowly-defined closed-loop performance such as bandwidth and steady-state error. For safety-

critical systems, however, a rigorous analysis of the time domain performance of the closed-loop

system is required. The concept of correct-by-construction has therefore been adopted from the

domain of computer science. In the realm of software engineering, tools for verification of the

software have been developed since the 1980s, and these methods are usually referred to as formal

methods [5]. A typical formal method approach modeling the systems as transition systems with

discrete states and the state transitions are triggered by certain actions as inputs [6]. To express

specifications that concern the system evolution over time, various temporal logics were

developed, among which Linear Temporal Logic (LTL) is the most popular one. It is capable of

expressing a complicated specification for the system by using not only logic symbols such as 

(and),  (or) and (not), but also temporal logic symbols such as (always), (eventually) and

U (until) [7, 8]. With the transition system to describe the system and LTL to express the

specifications, model checking tools are then developed to verify whether a transition system

always satisfies a specification [9, 10]. With the capability of describing a complicated

specification about the system behavior, and verifying whether a system satisfies the specification,

the system verification process for transition systems then becomes rigorous, exhaustive and

 3

automated. The promise is fascinating: a model-checking tool either returns a formal guarantee

that the system always satisfies the specification or a counter-example showing how, in certain

circumstances, the system fails the specification. Based on verification, there are tools that can

synthesize policies (sometimes also referred to as symbolic controllers) that satisfy a given

specification in an automated fashion [11]. An important milestone in the development of synthesis

tools is the synthesis protocol for generalized reactivity(1) (GR(1)) specifications [12]. A GR(1)

specification has the following form:

1 2

1 1

m

i j
i j

n

J J
 
   , (1.1)

where 1J are specifications for the environment and 2J are specifications for the system. GR(1)

specifications include a wide range of specifications encountered in engineering applications and

can be efficiently synthesized with cubic complexity. Toolboxes such as TuLiP [13] were

developed for verification and synthesis of transition systems. The creation of similar tools for the

control synthesis would be of great benefit to the community.

Some attempts have been made to introduce the formal verification and synthesis procedure

into the control design process. One major difference between software design and control

synthesis is the form of state space. Typically, a physics-driven dynamic system is described by

ordinary differential equations (ODE) or difference equations, and has continuous states, whereas

software design typically deals with discrete state space. For some applications, a hierarchy can

be constructed that divides the tasks of the system into high-level tasks and low-level tasks, where

the high-level controller treats the system as discrete transition systems, and the low-level

controller is designed using traditional feedback control techniques to execute the low-level tasks

assigned by the high-level controller [14, 15]. This hierarchical approach is limited, however, in

that traditional feedback techniques typically do not provide performance guarantees for the low-

level execution, except for stability.

To extend the formal methods designed for discrete transition systems to dynamic systems,

many approaches have been proposed, including timed automata [6] and hybrid automaton [16].

A hybrid automaton is an extension of a finite state machine which includes a mode that ranges

over finitely many discrete values and a finite set of real-valued variables. The evolution of the

continuous variables is specified for each discrete mode, and edges between modes are annotated

with guards and updates that specify discrete transitions [17]. However, as pointed out in [18], the

 4

reachability problem is undecidable even for some very simple hybrid automata. While there have

been efforts in the reachability computation for hybrid automata, such as over-approximations

using zonotope [19] and support functions [20], these analyses are highly conservative and are

limited to linear dynamics.

In order to adopt the tools developed for transition systems, a more brute force approach would

be to decompose the state space into a finite collection of subsets. This process is called abstraction

or bisimulation [21-23]. The discrete transition system is constructed as a bisimilar or

approximately bisimilar transition system of the continuous system via reachability computation.

If the continuous system happens to be incrementally stable, the reachability computation can be

simplified and the approach can be less conservative in the sense that fewer nondeterministic

transitions are needed. Since the dynamic system is now described as a transition system, both the

temporal logic specifications and the model checking and reactive synthesis tools can be adopted

[24]. This method has the advantage of being able to handle complicated specifications with the

help of temporal logic tools, but it does not scale well since the abstraction step discretizes the

whole state space and requires potentially difficult reachability computation, which has at least

exponential complexity w.r.t. the state dimension. Moreover, if the system is not incrementally

stable, the abstraction might generate many nondeterministic transitions, which is not the nature

of the original continuous dynamics.

In addition to directly compute the reachable set, inductive invariance is widely used for

verification of CPS. The idea is to find a set that contains the set of the initial states, satisfies the

safety condition and is forward invariant, i.e., if the initial state is inside the set, it will remain in

the set for the future evolution. Methods that use inductive invariance include the barrier certificate

[25], inductive verification with polynomial templates [26], and efforts to unify continuous

invariants and discrete invariants [27, 28]. The advantage of the inductive invariance type methods

is that they do not require reachability computation. However, one disadvantage is that the

supported specification is limited, typically only for safety specifications.

Methods have also been developed within the control community for reachability and the

forward invariance analysis of dynamic systems, such as the barrier certificate [29], control

invariant set with control barrier function [30-32], Hamilton Jacobi Partial Differential Equation

(PDE) [33] and the occupation measure [34].

 5

The barrier certificate method constructs a continuous function that is positive in the safe set,

and negative in the danger set. In addition, for every point on the boundary of its 0-level set, the

vector field is pointing towards the positive side of the boundary; therefore, the boundary of the 0-

level set serves as a barrier, and the function serves as a barrier that proves the safety of the system.

There exists a result of converse barrier certificate stating that a barrier certificate exists for any

safe system with some mild assumptions [35].

A control invariant set is a set that for any state within the set, there exists a control strategy

that keeps the future evolution of the state in the set. Control barrier function is then constructed

based on the control invariant set, which works with other control strategies and serves as a

supervisor to guarantee safety.

The Hamilton Jacobi (HJ) method formulates the problem in the form of a Hamilton-Jacobi-

Isaac PDE that describes the optimal solution to a zero-sum differential game between the

disturbance and control inputs. The 0-level set of the value function of such PDE represents the

winning set of the control (or disturbance, depending on the setting). If the state is not inside the

winning set of the disturbance, then for any disturbance allowed, there exists a control input

trajectory that prevents the state from reaching the danger set within the horizon T . The HJ method

is applicable to a wide range of applications since only mild restrictions on the form of dynamics

are imposed. However, the PDE is solved numerically using the level set method, which is

essentially dynamic programming; it does not scale well with the state dimension.

The occupation measure approach formulates an infinite-dimensional linear programming,

which in theory calculates the reachable set of a system, then uses Semidefinite Programming

(SDP) to approximate the solution. Its advantage lies in the fact that it can transform a nonconvex

problem to a convex one by working on the measure space rather than the function space.

Many of the above-mentioned methods suffer from high complexity, and do not scale well. To

reduce the size of the problem, compositional verification has been proposed. A typical one is the

assume-guarantee approach, which views the interaction between subsystems as a disturbance to

one another [36]. The protocol works as follows: for each subsystem, assuming that the disturbance

from other subsystems are bounded by certain bounds, the disturbance from this subsystem to other

subsystems can be bounded within certain sets, and the bound conditions check out, that is, the

bound guaranteed by the synthesis is no larger than the bound assumed by the synthesis, then the

 6

whole system satisfies the specification. Separable control invariant set [31], dissipative system

verification [37] and some decentralized control synthesis methods are all based on this idea.

Another significant difference between software design and control synthesis is disturbance and

model uncertainty. In software design, as complicated as it may be, designers deal with digits and

logic. Though non-deterministic transitions are allowed and supported by many model checking

tools, these non-deterministic transitions are well defined and finite. In real physical systems,

however, designers must deal with real physical dynamics that typically are not modeled perfectly,

and disturbance may come from a variety of sources. Treating everything as a non-deterministic

transition does not capture the structure of the potential disturbances in control systems and

typically leads to unnecessary conservativeness.

The lesson I learned while treating different types of disturbance and uncertainty is to take

advantage of their specific structure. As the famous “no free lunch” theorem states, there is no

such method that outperforms other methods in every situation. The best way to treat modeling

uncertainty and disturbance depends on the specific situation.

1.2 Dissertation organization

The remainder of the dissertation is organized as follows, important tools used throughout this

dissertation are reviewed in Chapter 2. Then four subproblems are discussed to illustrate different

approaches for handling disturbance and uncertainty to guarantee safety. The first two

subproblems are built around the concept of control barrier functions. First, in Chapter 3, the focus

is on the exogenous disturbance, a polar method is proposed that computes an avoidable set and

constructs a control barrier function (CBF) for moving obstacle avoidance of low-speed

autonomous vehicles. The CBF serves as a supervisory controller that watches over whatever

navigation controller the vehicle uses, and guarantees safety by intervening only when imminent

danger is detected.

After discussing the supervisor, in Chapter 4, the second subproblem concerns the design of a

student controller that works with a CBF as the supervisor. The CBF is combined with supervised

learning to train a student controller that has safety built in and rarely triggers intervention from

the CBF.

 7

In Chapter 5, the third subproblem deals with the verification and synthesis of co-existing but

non-cooperative controllers for a single dynamic system. In this case, the control actions from

other controllers act as disturbances. A Lyapunov function and dual decomposition based method

is developed to verify the composition of multiple controllers without exposing the control

algorithms of each controller.

Finally, in Chapter 6, the last subproblem deals with modeling uncertainty. A model of an

uncertain dynamic system consists of the nominal model and the uncertainty characterization. A

data-driven method is proposed that approximates a minimal robust control invariant set. First, the

set of all admissible models, that is, models that explains a finite sequence of measurement data,

is identified from the measurement data. Then an iterative algorithm is developed to approximate

a minimal robust control invariant set by simultaneously selecting the optimal model from the set

of admissible models and minimizing the size of the invariant set. This method is able to

approximate a minimal robust invariant set without a model being given and leverages the tradeoff

between additive uncertainty, multiplicative uncertainty, and the nominal model. Some

experimental work of the proposed methods is presented in Chapter 7.

 8

Chapter 2 Review of important tools

Some important tools are used throughout this dissertation, including Sum of Squares

programming and Control Barrier Function. A brief review of them is given in this chapter.

2.1 Sum of squares programming

First, a review of Sum of Squares (SOS) programming is presented in this section, which is

used to construct CBF in Chapter 4 and the Lyapunov certificate of performance guarantee in

Chapter 5. The application of SOS includes searching for a Lyapunov function to prove stability

[38], constructing a CBF [39], synthesizing a nonlinear controller with safety guarantee [40], and

calculating funnels around trajectories in motion planning [41].

A real coefficient polynomial p of x is a sum of squares if there exist polynomials 1f ,…, mf

such that

    2

1

m

i

i

p x f x


 . (2.1)

The set of polynomials with real coefficients in x is denoted as  x , and the set of all sum of

squares polynomials in x is denoted as []x . The problem of searching for the SOS decomposition

of a polynomial can be formulated as semidefinite programming and thus solved efficiently by

SDP solvers, Tools such as SOSTOOLS [42], YALMIP [43], and SPOTLESS [44] automatically

calculate the associated parametric matrices and convert an SOS problem to an SDP, which in turn

provides a sufficient condition for a polynomial to be nonnegative. In general, SOS is a sufficient

but not necessary condition for the positive definiteness of polynomials, with the exception of a

few known special cases [45]. Moreover, there exists a denseness result: every non-negative

polynomial is almost an SOS; namely, it can be approximated by a sequence of SOS polynomials,

see Theorem 4.1 in [46]. The verification of the SOS condition is solved by SDP in the space of

symmetric real matrices.

 9

Thanks to results from algebraic geometry, most notably Putinar’s and Stengle’s

Positivstellensatz, SOS is extended from verifying the global non-negativity of a polynomial to

verifying the non-negativity of a polynomial on a specific semialgebraic set, see page 2 of [46],

page 13 of [45], and [47]. The formal Positivstellensatz states the following: consider a cone P of

 x that satisfies

  2

, ,

, ,

,

a b P a b P

a b P a b P

a x a P

   

   

  

 (2.2)

which immediately implies []x P  .

Lemma 2.1: Let  
1,...j j s

f


,  
1,...k i t

g


,  
1,...l l u

h


be finite families of polynomials in  x . Denote by

P the cone generated by  
1,...i i s

f


, M the multiplicative monoid generated by  
1,...k i t

g


, and I

the ideal generated by  
1,...l l u

h


, then the following properties are equivalent:

1. The set       | 0, 1,... , 0, 1,... , 0, 1,...n

j k lx f x j s f x k t h x l u       is empty

2. There exists , ,f P g M h I   such that 2 0f g h   .

This is Theorem 4.6 in [45]; see the proof therein.

Now suppose the goal is to verify whether    0 0q x p x   is true. This condition is

equivalent to verifying whether the set       ,| 0 0, 0q xx p xx p   is empty. Applying

Lemma 2.1, a necessary and sufficient condition is to find  is x and 0r  such that

 0 1 2 3 0rs s p s q s pq p     . (2.3)

Sufficiency is easily verified. However, this condition, in general, is hard to verify, especially

when part of the coefficients of p is yet to be determined. A stronger condition uses fewer SOS

multipliers: if there exists  0 1,s s x such that 0 0s p sq   , then    0 0q x p x   .

Indeed, since  1s x is nonnegative for all x and        1 0 0p x s x q x s x   , the conclusion

follows. This argument provides a sufficient condition for a polynomial to be nonnegative inside

a semialgebraic set. However, since it is not the complete form of the PositivStallensatz, and in

practice, the order of the SOS multipliers’ order is limited by the computation power, the condition

 10

is merely sufficient but not necessary. For a review of the Positivestallensatz result, see Chapter 2

of [48] for reference.

2.2 Control barrier functions

2.2.1 Overview of control barrier functions

Control barrier functions can be used to provide a safety guarantee to CPSs and generate a

supervisory control structure that works in a plug-and-play fashion with any existing legacy

controller. The supervisory controller is referred to as the “teacher”, while the legacy controller is

treated as the “student”. The teacher does not intervene until an imminent threat to safety is

detected, at which point the teacher uses minimum intervention to guarantee safety. It has a simple

form yet can work as an add-on safety feature to most existing methods. The barrier certificate was

developed to verify the safety features of a system without input [29, 49]. A CBF incorporates the

control action and serves as a supervisor to guarantee safety, which was first proposed by Ames et

al. in [30]. The original CBF takes the reciprocal form inspired by the logarithmic barrier in the

interior point method developed for optimization. Then a zeroing CBF was proposed in [50],

inheriting all the good properties of the reciprocal CBF and adding additional robustness to the

method. The CBF was applied in areas such as ground vehicle control [50], biped robot walking

[51] and swarm control of multiple robots [52]. A typical supervisory control structure with CBF

is depicted below:

Figure 2.1 Supervisory control structure

The student controller can be any legacy controller, with its control command denoted as 0u ;

the CBF based supervisory controller solves for the final control input u to the system with the

following optimization:

 

0min

. . 0,

u u

s t u




 (2.4)

where  u is the CBF condition, to be defined later.

 11

2.2.2 Implementation of CBF

As mentioned earlier, there are two common types of control barrier function—reciprocal

barrier, and zeroing barrier. The reciprocal barrier goes to infinity when the state approaches the

boundary of the constraint, and is not defined when the constraint is not satisfied; the zeroing

barrier is positive when the constraint is satisfied, negative when the constraint is not satisfied and

zero at the boundary.

Figure 2.2 Reciprocal barrier and zeroing barrier

Although the reciprocal barrier is very similar to the logarithmic barrier used in optimization,

as it is not defined on the other side of the boundary, the supervisory control fails when the

constraint is violated. Two typical reciprocal barrier functions are

 
 

 

 
 

log ,
1

1
,

b x
B x

b x

B x
b x

 




 (2.5)

where   0b x  is the original constraint. In order to keep the constraint satisfied, the CBF should

be finite; therefore, the barrier condition can be defined as

  /B B x , (2.6)

where  is a positive constant. This condition gets tighter as the barrier function becomes larger.

At the extreme, the RHS of the inequality drops to 0, restricting the CBF from growing.

The zeroing barrier, on the other hand, can be simply defined with    B x b x . The barrier

condition can be set as

    ,b b x  (2.7)

 12

where  is a positive constant is a class function. A typical choice for is simply the identify

function. In this case, the barrier condition requires that the barrier derivative be non-negative at

the boundary  () 0 ,b x  and enforce exponential convergence to the set  | () 0x b x  when the

barrier constraint is violated. This setup provides some robustness to the formulation so that the

supervisory structure tries to force the state to return to the safe set when the barrier is breached.

Remark 2.1: The barrier condition is not unique; it is only required that be a class function,

then the set invariance can be proved, (see Proposition 3 in [50] for detail). By tuning  , the level

of caution of the supervisory controller can be tuned. With a large  , the barrier function will not

be activated until  b x is very small; a smaller  will make the supervisory control more cautious.

However, a larger  requires a faster convergence rate when   0b x  .

Remark 2.2: In theory, when the supervisory control structure is enforced, the safety constraint

will never be violated. However, this result is under the assumption that the model is perfect and

there is no unknown disturbance. With modeling uncertainty, the barrier condition might be

violated, but the CBF will try to let the state converge to the safe set exponentially.

There seems to be some natural link between the Control Lyapunov Function (CLF) and the

CBF. The CLF focuses on the convergence of the system to the equilibrium point while the CBF

focuses on preventing the state from leaving the safe set. The CLF condition typically appears as

 0f gV Vu  , (2.8)

where : nV  is the CLF for a system with dynamics    x f x g x u  , f V and gV are

the Lie derivatives defined as

 

 

,

.

f

g

V f x
x

g
V

x

V

x
V










 (2.9)

Comparing (2.7) and (2.8), one may discover the difference between CLF and CBF. The CLF

enforces the Lyapunov derivative to be negative or zero at any time, which can be overly restrictive

for safety specifications. In contrast, the barrier requirement is loose when the state is far away

from the boundary of the danger set, and gets tighter as the state approaches the boundary, giving

the student controller some freedom when danger is not imminent.

 13

2.2.3 Synthesis of control barrier functions

The synthesis of the CBF is not a trivial problem, and is closely related to the computation of

the control invariant set. It should be noted that the barrier function, or control invariant set idea,

is rather general. Depending on the specific properties of the problem, the formulation and

computation methods may be quite different. HJ [33] is a powerful tool for computing the safe set

and it can be extended to construct the CBF, see Appendix K, for example. For some systems, the

CBF can be constructed using analytical methods, such as kinematic analysis [52-54]. The polar

method is introduced in Chapter 3, which constructs a “polytopic” CBF. In this section, an SOS

approach to constructing a CBF is reviewed, which is then used in Chapter 4. Only a synthesis

procedure of the zeroing CBF will be discussed in this section as the zeroing CBF enjoys better

properties compared to the reciprocal CBF, as stated in [50].

Let us consider a continuous dynamic system described by the following ODE:

       ,u dx f x g x u g x d   (2.10)

where nx is the state, u is the input and d is the disturbance. Both u and d are

bounded within some semialgebraic set.

Remark 2.3: To make a distinction between the value of the control input and the mapping that

determines the control input, u denotes the value of control input, and  u  denotes the input as a

function of other variables, such as the state and disturbance.

There are a variety of settings for the synthesis; as an example, I choose a setting that enforces

the CBF condition in (2.7) for all x inside   | 0 ,x p x  a superset of   | 0x b x  , and all

d . If a larger level set of  b x , say   |x b x c  with 0c  , is contained inside

  | 0x p x  , then not only is   | 0x b x  robustly control invariant, it is also guaranteed that

for any inside   |x b x c  , there exists a control input sequence that robustly drives the state

back to   | 0x b x  exponentially. For a given danger set
dX , and an initial set

0X , represented

as semialgebraic sets:   0 0| 0i

xX x h x  ,   | 0i

d xdX x h x  , the CBF b must satisfy the

following:

x

 14

 

 

  

         

0 , 0,

, 0,

| 0 , , , . .

0.

d

u d

x X b x

x X b x

x x p x d u s t

db
f x g x u g x d b x

dx


  

  

      

   

 (2.11)

The first two conditions enforce the CBF to be positive in the initial set, and negative in the danger

set; the last condition states that, within the 0-level set of p , for any possible disturbance, there

always exists a feasible control input that renders the CBF condition satisfied. For simplicity, in

the remainder of this section,  is chosen as the identity function. It is further assumed that the

system is a polynomial dynamic system, that is, f , ug and dg are polynomials, and are

semialgebraic sets. In particular,   | 0uu h u  ,   | 0dd h d  .

Remark 2.4: Here it is assumed that and do not depend on , but this restriction can be

relaxed by adding to the semialgebraic set definition.

The problem is not yet solvable by SOS because:

1. the existence condition of the control input

2. the coupling between the control input and the CBF candidate.

To resolve the first issue, the controller is restricted to be a polynomial controller  u  , which

is a function of the state and measured disturbance. With this restriction, the second issue arises

as the coupling between the controller and the CBF candidate generates a bilinear term of the

decision variables, thus making the problem nonconvex. To resolve this issue, bilinear

alternation is used, separating the problem into two parts: specifying a feedback controller and

searching for a barrier function. Then the bilinear alternation process proceeds by alternating

between two steps:

1. fix the CBF candidate and search for a feedback controller,

2. fix the controller and search for a better CBF candidate.

Given a barrier candidate b , the following SOS programming searches for a feedback

controller that satisfies the input constraint and “almost” satisfies the barrier condition.

x

x

 15

“Almost” means that it satisfies a relaxed CBF condition, and the SOS programming is

minimizing the relaxation needed:

 

            

              

     

 

1 2 1 2, , , , ,

1 1

2

2

1 2 1 2

min

, , , , ,

, ,

, , ,

,

.

, , , ,

.
d de u s s s s

i i

u d d

i

u d

i i T

d d

i

d d

h u x d s x d p x s x d h d x d

db
f x g x u x d g x d b x s x d p x

dx

s x d h d ex x x d

s s s s

e s t

x d





  

   

  







 (2.12)

where  u  is the polynomial control law depending on and d . Whether it depends on d or a

subset of d depends on whether some disturbance is measured and can be used as feedforward.

1s , 2s , 1ds and 2ds are the multipliers, SOS polynomial of and d . e is the relaxation variable.

Remark 2.5: The relaxation term should depend on the degree of the original polynomial in the

SOS constraint. In this case, Tx x is used as an example, but in some cases, a higher even order

polynomial is needed to make the problem feasible.

Given a control law, one can find a barrier certificate with the following SOS programming:

       

       

          

         

       

   

1 2 3 1 2, , , ,

1 0

2

1 2

,

2

,

3

1 2 3 1

,

,

,

, , , ,

,

, , , .

i

,

m n .

,

.
d ds s s s s

i i

x

i

i i

xd

i

T

u d

i i

d d d

i

d d

e b

b x s x h x x

b x s x h x x

db
f x g x u x d g x d b x ex x

dx

s x d h d s x d p

e s

x x d

p x s x b x x

s s s x s x d

t

s



 

  

   

  

 

 







 (2.13)

The first two constraints restrict the CBF to be positive in
0X , and negative in

dX ; the third

constraint is the relaxed CBF condition; and the fourth constraint restricts the CBF 0-level set to

be contained by the 0-level set of p . The SOS optimization may seem complicated, but essentially

the SOS programming is structured based on Positivstellensatz and uses SOS multipliers to enforce

non-negativeness constraints on different semialgebraic sets (check [45, 55] for more detail). One

x

x

 16

can also vary
0X and gradually increase the volume of

0X until the problem becomes infeasible

so that the volume of the 0-level set of b is maximized indirectly, as presented in [39]. The overall

algorithm alternates between updating the controller and updating the CBF candidate until the CBF

condition is satisfied without relaxation or no progress can be made. The SOS based algorithm

finds a conservative CBF that guarantees the robust feasibility of the barrier condition. Due to the

computation limitation, the order of the CBF candidate, the controller and the SOS multipliers is

limited. By increasing the order of the polynomials, the method may find a less conservative CBF.

Another limitation is that, due to the bilinear alternation, global optimality is not guaranteed. See

[39] for more detail.

 As mentioned previously, the format of the CBF varies in different applications. The SOS based

method is applicable to polynomial systems, and results in a polynomial CBF, making the 0-level

set a semialgebraic set.

 17

Chapter 3 Polar method and obstacle avoidance
This chapter presents a method for solving the obstacle avoidance problem for low-speed

autonomous vehicles. This method, referred to as the polar method, computes a polytopic

avoidable set, whose complement is control invariant, and guarantees collision avoidance with a

supervisory control structure. The supervisory control structure is implemented with the CBF,

which works in a plug-and-play fashion with any existing navigation algorithm via a mixed integer

program. The main difficulty being addressed in this problem is from exogenous disturbance, more

specifically, the motion of the moving obstacles.

3.1 Introduction and motivation

Automotive companies are actively pursuing autonomous vehicles (AVs) to realize their

potential for improved safety and mobility. Some of the efforts target high-speed applications,

while others focus on low-speed applications, such as airport transport, driverless pods on urban

streets, museum tours. In 2013, Hitachi announced their development of a single-passenger

mobility-support robot “ROPITS”, which uses stereo cameras and multiple laser radar sensors to

navigate [56]. In Britain, LUTZ Pathfinder has tested a driverless “pod” vehicle [57]. Indoor

autonomous robots have also been tested, including museum guiding robots Minerva [58] and

KAPROS [59].

Low-speed autonomous vehicles differ from high-speed ones in two ways:

1. there are no lane boundaries;

2. they share space with multiple pedestrians and stationary obstacles.

A basic problem is to navigate the AV from an initial point to a target point within a reasonable

amount of time while avoiding collision with obstacles. Although several methods have been

proposed for obstacle avoidance of high-speed autonomous vehicles, such as Model Predictive

Control [60, 61], Fuzzy logic [62], and the motion primitive method [63], they generally cannot

guarantee safety.

 18

On the other hand, when the operating speed is low, the problem of robot navigation with static

or moving obstacles has been studied extensively. Cell decomposition was used in Minerva and

tested with real tourists interacting with the robot [58]. Bis et al. extended the cell decomposition

concept to deal with moving obstacle with known speed [64]. The potential field method,

originally developed for stationary obstacles, was also extended to moving obstacles [65, 66].

However, none of these methods provides a safety guarantee. Van den Berg et al. proposed

reciprocal collision avoidance, which provides a collision avoidance guarantee under the

assumption that the vehicle speed can be controlled instantaneously [67]. However, this

assumption is usually not valid in the real world since acceleration can typically be controlled

directly, but not the speed. The Dynamic Window Approach (DWA) was proposed in [68], which

guarantees that the vehicle will not collide with static obstacles. The DWA idea was further

developed in [69] and in [70] for moving obstacles, with a heavy use of braking. The proposed

method can guarantee the safety of low-speed autonomous vehicles by steering and braking, with

steering preferred if braking is not necessary.

The safety assurance is rooted in the concept of control invariant set. The key challenge of this

concept is the computation of the reachable set based on the system dynamics. Multiple methods

of computing or approximating a control invariant set have been proposed in the literature,

including barrier certificate [49], Hamilton-Jacobi method [33] and occupation measure [34, 71],

as reviewed in Section 1.1.

The polar algorithm proposed in this chapter computes a polytopic avoidable set whose

complement is an outer approximation of the reachable set, and control invariant. The gap between

the reachable set and the avoidable set serves as a safety buffer. Then a control barrier function is

constructed based on the avoidable set and implemented as a supervisory controller using Mixed

Integer Programming (MIP). The remainder of the chapter is organized as follows. Section 3.2

presents the dynamic model and the problem formulation, Section 3.3 introduces the supervisory

control structure, Section 3.4 presents the polar algorithm, Section 3.5 discusses the application of

the polar algorithm on obstacle avoidance for autonomous vehicles, Section 3.6 shows the results

and conclusion is drawn in Section 3.7.

 19

3.2 Dynamic models and problem formulation

3.2.1 Dynamic models

Two dynamic models are used in this study. The first model describes vehicle motion in the

Earth-fixed coordinates; the second model records the relative motion between the vehicle and a

moving obstacle. When there are multiple obstacles, a copy of the second model can be created

for each obstacle. For each type of obstacles, a maximum velocity and a geometric size are defined.

A unicycle model is used to represent the dynamics of the autonomous vehicle:

sin

c

os vv

Y v

X a

r



 

 







, (3.1)

where X and Y are the global Cartesian coordinates, v denotes the vehicle velocity and  is the

heading angle. The inputs to the vehicle are acceleration a and yaw rate r .

  ,u a r . (3.2)

The following constraints are assumed to hold:

   

 

max max max

2 2 2 2 2

max max

0, , , ,

, , .

v r r r

a a a a v r

v

g

  

   
 (3.3)

where  is the friction coefficient and g is the gravitational constant.

The motion relative to a moving obstacle is described with four states, as shown in Figure 3.1.

  
T

X Y vx   , (3.4)

where X and Y denote the relative position of the obstacle with respect to the vehicle in the

global coordinates.

 , ,
d dx

d

d

d dy

XX X X v

YY Y vY

    
 
     

 (3.5)

where
dX and

dY are the coordinates of the obstacle. The velocity of the obstacle dv is a

disturbance input and dxv , dyv are its components on X and Y directions. Relative heading angle

 is the difference between the AV heading angle and the yaw angle of the obstacle:

1tan .

Y

X
    
   

 
 (3.6)

 20

The dynamic equations are as follows:

1

1

2 2 2 2

tan

t

cos

sin an

sin

dx

d

dx dy

y

Y

X
X

Y
Y

X

v Y v X
r

v v

v

X

a

X Y Y

v

v












  
  

  

 
  

 


 
   

 

 


    

  


 

      
  
  
 
 

     

. (3.7)

Figure 3.1 Coordinate system of the relative dynamic model

Both  and  are restricted between  and . In the remainder of this chapter, the dynamic

system in (3.7) is denoted as 0 , and the set of state, input and disturbance are denoted as
0
,

0

and
0

, respectively.

3.2.2 Problem formulation

The goal of the AV is to reach a destination without colliding with any obstacle. Strictly

speaking, under some circumstances, collision is inevitable, for example, when the AV is

surrounded by hostile pursuers. In order to define a reasonable problem to solve, the concept of

“passive friendly safety” proposed by Macek et al. in [72] is adopted and extended to multiple

moving obstacles. The following rules are asserted:

(1) When the AV is stopped, any conflict is not considered a collision caused by the AV.

(2) When an obstacle runs into the AV from behind, it is not considered a collision caused by the

AV.

The definition of collision from behind is

 21

2


  . (3.8)

The second rule is not needed for the single obstacle case since the vehicle can accelerate and

avoid the collision. However, in the case of multiple moving obstacles, when an AV is threatened

by an approaching obstacle from behind, neither accelerating (risk to others in front) nor slowing

down (escalating the situation) is safe. These two rules are applied for all simulations in this

chapter.

For simplicity, it is assumed that all obstacles are pedestrians, and both the vehicle and

pedestrians are assumed to have a round shape with radius
vR and

pR , respectively. In

simulations, collision is detected by the following rule:

    2 2 0
2

v pX Y R R v



 

         
 

. (3.9)

In this study, the onboard sensors are assumed to measure all states accurately. The speed of the

pedestrians is assumed to be bounded, and the bound is known:

 2 2

maxd dx dy dv v v v   . (3.10)

3.3 Supervisory control and avoidable set

The goal of the supervisory control is to avoid collision under all possible disturbance input,

i.e., (3.9) is not violated by any obstacle at any time. First, based on the supervisory structure, the

following three subsets of the state space are defined, as shown in Figure 3.2.

Figure 3.2 Three sets defining different stages of obstacle avoidance

(1) Infeasible set: As shown in Figure 3.2, the infeasible set is the region where a collision is not

always preventable, that is, there exists a disturbance under which a collision will occur for

any control input. However, note that if the pedestrian is neither hostile nor shrewd enough to

choose this disturbance value, a collision may not occur. Once the AV is inside the infeasible

Infeasible
set

Avoidable
set

Controlled
invariant

set

 22

set, it should slow down and stop immediately. The infeasible set is denoted as
InX in the

remainder of the chapter.

(2) Avoidable set: To guarantee that the AV never enters the infeasible set, a superset of the

infeasible set is constructed, and its complement is control invariant. For a state in the

avoidable set and outside of the infeasible set, a collision can be avoided by taking emergency

action, to be explained later. If possible, the state should be driven out away from the avoidable

set.

(3) The control invariant set: The complement of the avoidable set. Because it is control

invariant, any state outside of the avoidable set can stay outside under all possible disturbances.

 Denote the system dynamics as

 (, ,)x f x u d , (3.11)

where x , u and d are the state, control input, and the disturbance input, respectively.

The mathematical condition for a set
BP to be avoidable is then

     

   . .

0 , 0, 0, , ,

, .

B

B

x P t s t d s

u s s t x t P

       

  
 (3.12)

If the set
BP is the zero level set of a real-valued function :b  , i.e.,

BP is characterized as

  0x b x ∣ , then the set invariance condition becomes a boundary condition:

   

 

     

0

, 0 , ,

. .

, ; ,

 , , 0.

0

T

x

B Bb x

x b x d u

s t b x b

x P x P b

f x d

x

u

   



 



    

 

 (3.13)

Suppose at a given point
0x is on BP , i.e., the boundary of

BP , the normal vector exists. Denote

the normal vector pointing outwards from
BP as

0xn , then the geometric condition of (3.13) is

equivalent to

  
00. . , , ,, 0xs t f x nd u du     . (3.14)

Note the strict inequality is changed to non-strict inequality to simplify the computation. This can

be done by introducing some small slack constant.

 23

3.4 Polar algorithm

The key challenge of the supervisory control is to find an avoidable set that contains the

infeasible set. To solve this problem, a polar algorithm is proposed. The infeasible set is

represented by a bounded polytope containing the collision set as described in (3.9), then the polar

algorithm solves for another polytope that contains the infeasible set and satisfies the boundary

condition introduced in (3.12). The polar algorithm is applicable to a dynamic model in the

following form

 , ,,E Gx du d x u    , (3.15)

where , and are polytope; E and G are constant matrices. Note that there is no state

dependent term in the state derivative. The dynamic model in Section 3.2 is simplified to this form

by viewing all state dependent terms as disturbance, which is explained in detail in Section 3.5.2.

3.4.1 Polar of a polytope

In this section, the polar algorithm is introduced, which is built based on the dual property of

polytope. A polytope P has two important elements: vertices and facets. For simplicity, only

bounded polytopes with a finite number of vertices and bounding hyperplanes are considered. A

bounded polytope nP with the origin in its interior can be represented as a set of the convex

combination of its vertices:

 1,| , 0,
i

i i i

i

iv iP x x   
 

   





  , (3.16)

where   .iv PV is the set of vertices of P . It can also be represented as an intersection of finitely

many closed half spaces:

  | 1
i

T

i

H

P x H x  , (3.17)

where  1| T

ix H x  are the bounding half spaces.   #

iH X denotes the set of linear functionals

that corresponds to the half spaces:

   T

i iH x H x , (3.18)

where  # |: fX f X linear  is the algebraic dual of the vector space X . Since the algebraic

dual of a Euclidean space is also a Euclidean space, the linear functionals in #X are treated as

vectors in the dual space and the set  iH is denoted as .P H . In addition, half-spaces and

 24

polytopes can also be defined in #X . The bounding hyperplane corresponding to a bounding half-

space | 1T

ix H x  is defined as

  | 1T

ix H x  , (3.19)

and the corresponding facet is defined as

    | 1T

i iF H P x H x   . (3.20)

For polytopes, the normal vector of the facet  iF H is simply iH , which simplifies the condition

in (3.14). The polar of P is a polytope in the dual space #X defined as

  | , 1TxP H xPH    . (3.21)

Because of the convexity and linearity of polytopes, a simpler definition is

  . , 1| T

iiv PP H V H v    . (3.22)

The vertices of P are mapped to the facets of P
, and the facets of the P are mapped to the

vertices of P
, as shown in the following example.

Figure 3.3 Example of polar of polytopes

For a bounded polytope P with the origin in its interior, the following hold:

(1) The polar of P , denoted as P
, is a bounded polytope with the same dimension as P and

containing the origin in the interior.

(2) The polar of P
, denoted as, is the original polytope, i.e., P P  .

(3) For any H P , P is completely contained in the half-space  1| Tx H x  , i.e.,

 , , 1TH P x P H x     . (3.23)

(4) For any point H outside P , P is not completely contained in the half-space  1| Tx H x 

 25

 , , 1TH P x P H x     . (3.24)

Because of the properties above, the polar concept provides a clear condition for polytope

inclusion:

 1 2 2 1.P P P H P   . (3.25)

This property is one of the building blocks of the polar algorithm. For more detailed properties of

polar, see the textbook [73].

When finding an avoidable set that contains the infeasible set
InX , the set inclusion condition

is enforced by the following constraint:

 . nB IP H X  . (3.26)

3.4.2 Hyperplane orientation and boundary condition

The boundary condition of the avoidable set is interpreted as an orientation condition for the

bounding hyperplanes. For each facet of a polytope P , suppose that the corresponding bounding

hyperplane is 1TH x  , the normal vector that points outwards from P is simply H .

For the dynamic system in (3.15), the avoidable set boundary condition in (3.14) becomes

. . , .

. , ,

0

H P H d

u s t Eu Gd H

   

   
 (3.27)

In order to find all bounding hyperplane orientations that are valid for an avoidable set, input

u is fixed first. For a bounding hyperplane 1TH x  to satisfy the boundary condition of the

avoidable set with a fixed input u , the following inequality must hold:

  , 0Td H Eu Gd    . (3.28)

Since is a polytope and the system dynamics is linear, (3.28) is simplified to checking only its

vertices:

  . , 0Td V H Eu Gd    . (3.29)

Condition (3.29) defines a polytope in
#X and it is easy to check that

  | . , 0
Tu

HsP H d V Eu Gd H     contains all the functionals corresponding to the

bounding hyperplanes valid under input u . Define

.

u

H

V

s Hs

u

PP
 

 , (3.30)

this union may not be convex, but using the linearity of the dynamics, the following theorem is

true:

 26

Theorem 3.1: HsP is the maximal set of linear functionals that satisfies the boundary condition of

an avoidable set for the dynamic system shown in (3.15).

See Appendix A for proof.

Recall that there are two requirements for the avoidable set: set inclusion and boundary

conditions. The set inclusion requirement is simplified to selecting bounding hyperplanes from the

polar of the infeasible set
InX ; the boundary conditions requirement is simplified to selecting

bounding hyperplanes from
HsP . Therefore, it is natural to intersect the two sets. Define

 H Hs InP P X   . (3.31)

This set may not be convex since it is the intersection of a convex polytope and a nonconvex

union of polytopes. Further, define

  B HP Conv P


 , (3.32)

where  Conv  denotes the convex hull of a polytope. Then BP possess the following properties:

Theorem 3.2: BP is an avoidable set that contains
InX .

Theorem 3.3:
BP is the minimal avoidable set.

Theorem 3.4: If the origin is in the interior of
InX , and IIn nX X c  , where c is a constant

shifting vector, then B BP P c  where BP is the constructed avoidable set based on InX .

The above claims mean that
BP is the minimal avoidable set that satisfies both set inclusion

condition and boundary condition, and it is invariant with respect to the change of origin position.

See Appendix B, Appendix C, and Appendix D for proofs.

3.5 Avoidable set for low-speed autonomous vehicles

In this section, the avoidable set for a single moving obstacle is solved using the polar algorithm.

3.5.1 Infeasible set

The obstacle avoidance problem with a single moving obstacle can be formulated as a pursuit-

evasion problem. In general, the vehicle can use both steering and braking to avoid collision (and

both are used in the control implementation). In the computation of the infeasible set, however,

only braking is used, which allows an easy extension to multiple pedestrian cases.

 27

For a given initial condition, an obstacle’s future position is bounded by:

            
2 2 2

max0 0d d d d dX t X Y t Y v t    , (3.33)

then the vehicle’s position is calculated by applying the maximum brake. By checking whether a

collision occurs before the vehicle stops, the points in the state space can be then identified as

either feasible (safety is guaranteed) or infeasible (safety cannot be guaranteed). A grid is selected

with certain resolution in the state space and it is computed for each grid point whether or not a

collision will occur. A polytope
InX is then found that contains all the infeasible grid points by

computing their convex hull.

3.5.2 Avoidable set for the autonomous vehicle

Consider the relative dynamics shown in (3.7). It is rewritten as:

1

32 2

2

sin

d

d

a
v

X

Y

r d
X Y




 




 

  
   
    
   
   
      

, (3.34)

where

  

  

1

2

1

3

1

2 2

tacos ,

sin ,

n /

tan /

.
dy dx

dx

dy

Yd v v

d

X

Yv v X

Xv Yv

X Y
d









 



  

  

 

 





 (3.35)

It is then easy to find the bounds of the disturbance:

 
2

max max

max
3

1

2

2

2

2

2 ,

.

d

d

d v v

v
d

X Y

d  


  



 (3.36)

From the collision avoidance condition,

  2 2 max
3

d
v p

v p

v
X Y R R d

R R

 
        

. (3.37)

Therefore, the dynamic is simplified as

 28

2 2

,

sin
0 0 0 .

x Eu Gd k

k
X Y



  

 
     

 (3.38)

where

 
2 2

max max max

max

2 2

1 2

3

,

.

d

d

v p

v v v

v
d

R

d d

R

  






 (3.39)

Although the constraint for 1d and 2d is a circle and nonlinear, it can be outer approximated by a

polygon. As the number of vertices grows, the approximation becomes more accurate. Therefore,

the disturbance 1 2 3

T

d d d d    is bounded by a polytope. The input constraints are

 

 

 

max max

max max

22 2 2

max

, ,

, ,

.

a a a

r r r

a v r g

 

 

 

 (3.40)

where  is the tire-road friction coefficient, and g is the gravitational constant. A polygon is

again used to approximate the circular constraint so that the set to constrain is also approximated

by a polytope. Denote the dynamic system in (3.38) by  , and the set of disturbance is denoted

by .

Theorem 3.5: If a set P is an avoidable set for the system  , then it is an avoidable set for 0

in (3.7).

See Appendix E for proof.

The last term k in (3.38) provides an additional safety margin. When 0  , the obstacle is on

the right-hand side of the vehicle. To avoid a collision,  must increase. Similarly, when 0  ,

 must decrease for safety. Both of these conditions are helped by k . Denote the dynamic system

that ignores the last term k as
1 1: x E u G d   .

Theorem 3.6: Suppose a polytope P is an avoidable set for  . Additionally, for any point x on

the boundary of P where 4 0x   , the bounding hyperplane  1 2 3 4 1TH x H H H H x 

at that point satisfies 4 0H  , and for any point where
4 0x   , 4 0H  holds, then P is an

avoidable set for  .

 29

See Appendix F for proof.

With Theorem 3., the problem is simplified to finding an avoidable set for  , and check

whether the condition in Theorem 3. holds.

Applying the procedure described in Section 3.4, the avoidable set
BP is obtained and shown in

Figure 3.4. Because the dimension of the state space is four,
BP is projected to three 3-dimensional

plots. The parameters used in generating the avoidable set can be found in Table H.1 in Appendix

H.

Figure 3.4 The avoidable set (yellow) and the infeasible set (red)

3.5.3 Supervisory control with control barrier functions

The concept of CBF is used to formulate the supervisory structure. First, a control barrier

function is applied to a single half-space generated from a facet of the avoidable set, a Mixed

Integer Program is used to deal with multiple facets.

 Consider one of the half-space of the polytope of the avoidable set. If the state must stay outside

of the half-space  | 1Tx H x  to ensure safety, the control barrier function is defined as

    
 

 
1, log

1

T
b x

B xb
x

x
b

H x  


  . (3.41)

 It can be seen that  B x goes to infinity as x approaches the bounding hyperplane. When x

is far from the boundary,  B x is positive but small. If the derivative of  B x is always finite, then

 B x is finite, and x remains outside of the half-space. In particular, the following constraint is

enforced by the supervisory controller:

  /B B x , (3.42)

where  is a positive constant. This constraint is loose when x is far away from the boundary, and

becomes tighter as x approaches the half-space. Consider the influence of sampling, the condition

is modified to

 30

  
 

, ,T

s

b
H f x u d

B x T




 


, (3.43)

where sT is the sampling time. This is the discrete version of (3.42) derived from Taylor expansion.

See Appendix G for the derivation of (3.43).

3.5.4 Mixed integer program

For each bounding hyperplane H of
BP , if the state satisfies 1TH x  , then H is said to be

active, otherwise, it is said to be inactive. Since the avoidable set
BP is the intersection of all

bounding half-spaces, the state x is outside
BP if and only if there exists at least one active

bounding hyperplane, i.e.,

 0 0. , 1T

B Bx P H P H H x     . (3.44)

When  x t is outside the avoidable set, each active bounding hyperplane generates a linear

constraint, in the form of (3.43), and at least one constraint must be satisfied. Since this is a logic

disjunction, combining the supervisory control structure presented in Section 2.2, an MIP with

slack variables is used to solve for u :

  
 

 

2

0

1

, , , ,

1 0,1

, . .

, ,

j

j

P

HT

j a

Q

j

N

j

H s

Pj jj

b
H H H f x

minimize u u s t

s

s

x

s

u d
B T

N









   



 





 (3.45)

where  js are slack variables, and  is a large positive number. When 1js  , the corresponding

inequality is automatically satisfied; when 0js  , the original barrier inequality is enforced. aH

is the set of all active bounding hyperplanes and PN is its cardinality. The condition

1
1

PN

jj Ps N


  ensures that at least one of the original barrier inequalities is satisfied. Q
 is the

2-norm induced by a positive definite matrix Q ,
2 T

Q
x x Qx , It is used to adjust the weight on

each component of the input interference.

 31

3.5.5 From single obstacle to multiple obstacles

When there are multiple moving obstacles, one can follow the same approach to calculate the

avoidable set by expanding the state space to

  1 1 1 n n n

T
x X Y X Y v     . (3. 46)

Because of the limitation on computation complexity, and the number of pedestrians is not

known in general, this naive approach is not scalable to a large number of pedestrians. A simpler

alternative is used. The key innovation is that the AV is only allowed to brake when calculating

the infeasible set, as mentioned in Section 3.5.1. Under this assumption, the infeasible set can be

computed for one obstacle and then applied to multiple obstacles, since the emergency action to

avoid all obstacles are the same. If steering is allowed, this will no longer be the case.

Recall the concept of responsibility in Section 3.2.2. Let
InX be the set outside of which the

vehicle can come to a full stop before hitting the obstacle for all obstacle movement. In the

multiple-obstacle case, as long as all obstacles are outside of
InX , the vehicle is always able to

stop before hitting any one of the obstacles.

For each pedestrian, there is a set of states as described in (3.4), representing the relative

dynamics between the pedestrian and the AV. Now the task is to keep multiple states outside of a

single avoidable set.

Figure 3.5 Multiple-pedestrian case with a single infeasible set and avoidable set

With multiple moving obstacles, the avoidable set is not always avoidable. Nevertheless, the

supervisory control developed for a single pedestrian can still be used with the following

modifications: (i) the constraint in (3.45) must be checked for each of the pedestrians; and (ii)

when any obstacle breaches the “avoidable set,” braking is applied until either the states for all

pedestrians are outside the avoidable set, or the AV comes to a complete stop. Although braking

is used to guarantee safety in the multiple pedestrian case, the simulation shows that the

Ped1

Ped4

Ped3

Ped2

 32

supervisory control does not rely on heavily braking. The vehicle comes to a full stop only when

it is trapped by multiple pedestrians.

3.6 Simulation results

3.6.1 Simulation setup and result

The goal of the AV is to reach a destination from a fixed starting point without colliding with

any pedestrian. The initial positions and velocities of the pedestrians are random, and they walk

randomly. All objects stay in a predefined rectangular region    lim lim lim lim, ,X X Y Y   . The

random walk is generated with Gaussian distributed acceleration in X and Y directions:

   

, ,

~ 0, , ~ 0, .

px px py p

ax y ay

y

px p

v a v a

a N a N 

 
 (3.47)

The velocity must also satisfy the boundedness constraint in (3.10). To keep the pedestrians inside

the rectangular region, the following (reflection) rule is used

lim

lim

lim

lim

;

;

;

, .

,

,

,

px px p

px p

py py p

py

p

p

x

py

v v if X

v if X

v

X

v if Y

v if

v X

Y

v YY



  



  

 

 
 (3.48)

A greedy Model Predictive Controller is used as the navigation controller. The detail of MPC

is shown in Appendix I. The control structure is shown below:

Figure 3.6 Control structure for simulation

The simulation parameters are listed in Table 3.1.

Table 3.1 Settings of the simulation runs

Number of pedestrians 7

The region of pedestrian movement    5,5 5,5  

Initial Position of the vehicle (5,5)

 33

Initial velocity of the vehicle 2m/s

Initial yaw angle / 2
Destination (-5,-5)

A sample simulation is illustrated in Figure 3.7. The blue circles are snapshots of the position

of the vehicle; the green circles show the positions of the pedestrian and turn red when getting

close to the vehicle, and the red square is the destination. One snapshot is taken every 0.5 seconds.

The color of the snapshots changes from light to thick as time passes.

Figure 3.7 Sample simulation results

The control inputs from the navigation controller and the supervisory controller are shown in

the first two subplots in Figure 3.8, where
0a and 0r are the acceleration and yaw rate command

from the navigation controller, and are the command from the supervisory controller. maxd denotes

the distance from the state to the avoidable set, and was plotted in the third subplot. Different

colors correspond to maxd for different pedestrians.

 34

 max
.

1
max

T

H P H

H x

H


d . (3.49)

Figure 3.8 Control input and minimum distance to avoidable set

Based on the difference between MPC input and Barrier input, the simulation was divided into

five stages. In stages 3 and 5, the supervisory controller detects little danger, so the two control

inputs stay close; in stage 1 and 4, the supervisory controller manages to follow a similar

acceleration command, but uses a different yaw rate to avoid a collision. This preference is because

more weight is put on the acceleration difference than on the yaw rate difference when defining Q

matrix in (3.45). In stage 2, both acceleration and steering are changed by the supervisory control

to ensure safety. Compare the input plot and
maxd plot, the time when supervisory control changes

the MPC input corresponds to the time when the smallest
maxd among seven pedestrians is small,

which indicates danger.

 35

3.6.2 Comparison to two benchmark methods

The performance of the polar algorithm is compared to two benchmark methods: the potential

field method [66] and the Hamilton Jacobi method [33]. The details of both benchmark methods

are included in Appendix J and Appendix K.

In order to compare the performance, the simulation is repeated 1000 times with the same

setting shown in Table 3.1. In each trial, the vehicle starts at the same location and tries to reach

the same destination, while the pedestrians appear at random positions and do random walking. A

simulation trial is marked as “stuck” if the AV failed to reach the destination within 25 seconds,

and a trial is marked as “crash” if (3.9) is satisfied at any time.

Table 3.2 Key performance indices of the three methods in 1000 simulation trials

Method Average time Collision Stuck trips

Polar Method 10.88s 0 25

Hamilton Jacobi 14.93s 0 171

Potential Field 8.47s 436 0

 The statistics of the 1000 trials are shown in Table 3.2. Both the polar method and the Hamilton

Jacobi method can ensure safety, that is, no crash, while the potential field method crashes in about

half of the trials. The Polar method reaches the destination in a much shorter time, and with fewer

“stuck” cases compared with the Hamilton Jacobi method, indicating that the proposed method is

as safe as, but much less conservative than, the Hamilton Jacobi method.

3.7 Conclusion and discussion

This chapter presents a polar algorithm to design collision avoidance algorithms for low-speed

autonomous vehicles. The concept is based on the construction of an “avoidable set,” which is an

extension of the commonly used concept of a control invariant set. A Mixed Integer Programming

based supervisory control structure is proposed to implement this algorithm. Safety can be

guaranteed for both single moving obstacle and multiple moving obstacles while liveness is

maintained. The safety guarantee was verified with simulations.

The polar method is suitable for models that are similar to integrators. Given the way

disturbance is treated, the method maybe conservative when applied to a system with strong drift

 36

dynamics. However, since many of the vehicle kinetic models are similar to integrators, the polar

method is a powerful method for constructing supervisory controller for vehicle motion control.

In the simulation, the MIP runs faster than real-time with an avoidable set that has 70 facets. It

is reasonable to claim that the real-time implementation is feasible for models of similar

complexity. For higher dimensional models, one can make an over-approximation of the avoidable

set by eliminating some vertices that are too close to others in
HP , which results in an over-

approximation of
BP that is also avoidable.

 37

Chapter 4 Supervised learning based design for safe

controllers

As reviewed in Section 2.2 and demonstrated in Chapter 3, CBF is a powerful tool that can

provide safety guarantee to existing controllers (namely, the student controller) in a supervisory

structure. Typically, CBF works as a supervisor that intervenes when danger is detected. However,

when intervention happens, the action may be harsh and performance may be compromised.

Moreover, since the CBF condition is only enforced in the 0-level set of the CBF, the convergence

from initial states outside the 0-level set of the CBF is not guaranteed. In this chapter, the focus is

on the other side of the coin: the design of the student controller. A supervised learning based

method is proposed to design a proper student controller that mitigates the influence of CBF and

is capable of driving bad initial condition back to the safe region. A training set is generated by

trajectory optimization for multiple initial conditions that incorporate the CBF constraint. Then a

policy is trained via supervised learning that maps the feature representing the initial condition to

a parameterized desired trajectory. Finally, the learning based controller is used as the student

controller, and a CBF based supervisory controller on top of that guarantees safety. A case study

of lane keeping for articulated trucks shows that the student controller trained by the supervised

learning “inherits” the good properties of the training set and the CBF is rarely triggered.

4.1 Introduction and motivation

Control Barrier Function was developed to impose safety guarantee on control systems [30,

39]. The key idea is to compute a forward invariant set that contains the safe set and excludes the

danger set. CBF is typically implemented in a supervisory control structure to guarantee safety

with minimum interventions. As shown in Figure 2.1, 0u denotes the control input from the student

controller, which can be designed with any existing method, and u denotes the input signal after

the intervention of the supervisory controller. If 0u respects the safety constraint, 0u u ; otherwise

 38

a minimum intervention is applied. Depending on the form of the barrier function, the

implementation can be quadratic programming [30, 51], mixed integer programming [74] or in

other forms.

While safety is assured independently of the choice of student controller, if the student

controller is not properly designed, or is designed in a way that is not compatible with the CBF,

the CBF may be triggered frequently, leading to undesirable closed-loop performance. In [54],

when working with a student controller for Adaptive Cruise Control (ACC) that is not properly

designed, the CBF causes spikes on the input when activated. In [74], when the student controller

is designed without considering obstacle avoidance, the CBF has to intervene frequently and

severely to ensure obstacle avoidance.

On the other hand, machine learning has been used extensively in dynamic control. Supervised

learning has been used to learn a control policy with structure [75, 76], deep learning recently was

used to generate end-to-end Lane Keeping (LK) policy, i.e., a mapping directly from the camera

pixels to the steering input [77], and reinforcement learning can be used to generate a control

policy in an “explore and evaluate” manner [78-80]. However, one major deficit of machine

learning is its extreme difficulty for analysis. The number of parameters contained in a neural

network can easily reach several thousand, even millions, which makes it practically impossible

to analyze. Therefore, the safety of a learning-based controller should rely on other tools, such as

reachable sets and barrier functions. In this sense, machine learning and CBFs complement one

other.

Existing methods that combine learning with safety guarantee include reachable-set-based

learning scheme that can guarantee safety for online learning of a control policy [81, 82] and

Gaussian process learning [83]. Unlike approaches that aim at guaranteeing safety with learning,

such as [81-83], the method proposed in this chapter separates safety from the performance. The

safety guarantee is provided by a CBF, and supervised learning is used to improve the performance

considering the influence of the CBF as a supervisor.

The proposed method starts by performing trajectory optimization offline, generating a library

consisting of trajectories with good properties, such as stabilizing an equilibrium and attenuating

disturbances, as well as the satisfaction of the CBF condition. Then supervised learning is used to

train a student controller that inherits the properties of the trajectory library. In addition, CBF acts

 39

as a supervisor on top of the learning-based controller, as shown in Figure 4.1. Since the CBF

condition is enforced in the training set, an intervention by the supervisor is rarely triggered. It

should be emphasized that the safety is still guaranteed by the CBF, the supervised learning only

aims to improve performance.

Figure 4.1 Block diagram of the supervisory control

The main contributions of this chapter are the following two points. First, a supervised learning

based method is proposed to design a student controller that takes the CBF condition into account,

which is applicable to a large region of initial conditions, and rarely triggers an intervention from

the supervisory controller. With supervised learning, the design of a safe student controller is

transformed into the design of safe trajectories, which is much easier, as conceptually shown in

Figure 4.2.

Figure 4.2 Learning based trajectory generator

Second, a stability and set invariance analysis is provided for the learning-based controller

under the framework of continuous hold (CH) feedback control. Applying the proposed method, a

safety guarantee is provided for the lane keeping control (LK) of an articulated truck, while

achieving good ride comfort.

 40

4.2 Dynamic model and virtual constraint

In this chapter, a control affine nonlinear model is considered:

        1 1 2 2 ,d dx f x g x u g x d g x d    (4.1)

where nx , u  ,
1

1 1

ld   , and
2

2 2

ld   represent the state, input, measured

disturbance, and unmeasured disturbance, respectively.

Remark 4.1: The unmeasured disturbance 2d will be countered with the feedback control.

Therefore, it is assumed that 2 0d  for the following analysis of feedback linearization.

4.2.1 Model assumptions

The results in this chapter are developed under four key assumptions:

Assumption 4.1: It is assumed that 1d changes slowly comparing to the system dynamics.

Therefore,
1d is treated as constant in the following analysis.

Assumption 4.2: There exists an output  z h x for x within an open subset n , such that

for all
11d  , z has a relative degree  , where the relative degree is defined as the integer such

that x  ,

 

 

1

1

0, 1,2,..., 1,

0.

i

g f

g f

h x i

h x





  


 (4.2)

Where

      1 1df x f x g x d  , (4.3)

Assumption 4.3: It is assumed that when 2 0d  , for all
1 1d  , there exists a unique  1u d 

that maintains a unique equilibrium point
n

ex  with   0eh x  , denoted as  1e xx d :

       

 

11 1 0,

0.e

e de u ef g xg d

x

x x d

h

  


 (4.4)

Then from feedback linearization, there exists a state transformation:

 

 
 

 

   

1

2 1 1

, ,n

f

h x z
T x

T x
h

T x

x z

 

 


 





 

  
  

     
  

 

  
   

  
 


, (4.5)

 41

where T is a bijective diffeomorphism over , and the transformation satisfies  1 0
T

g x
x





.

Therefore, the dynamics of the “hidden” states  is represented as

  ,    . (4.6)

In particular,  ,0   is the zero dynamics of the system with output z , and there exists a

smooth surface  defined by  : 0x   ∣ , which is the zero dynamics manifold.

Assumption 4.4: It is assumed that the zero dynamics of the system under output z is exponentially

stable within .

Then by Theorem 11.2.3 in [84], the following feedback linearization controller constructed

from z and its derivatives stabilizes the equilibrium ex :

 

 0 1 11

1
... ,

f

g f

u k k h x
h x



 
 

       (4.7)

where  ik is a set of exponentially stabilizing gains in the sense that the following characteristic

equation

1

1 0... 0k k 

  

    (4.8)

has all of its roots are in the open left half plane of the complex plane. See e.g. [85] for reference

on feedback linearization and zero dynamics.

4.2.2 Virtual constraint and tracking control

To let the system track a desired trajectory of z , the virtual constraint method is used, which

was originally developed in the robotics literature [86-88], and now appearing more widely.

Suppose system need to track the following trajectory:

  desz h t , (4.9)

where :[0,)desh   is a  times continuously differentiable function. Differentiate (4.9) 1 

times and define the error states:

 

1

2

1 1.

des

des

des

e z h

e z h

e z h
 



 

 

 

 

 (4.10)

 42

Then select  ik to be a set of stabilizing gains as described in (4.8), and let

 

 0 1 11

1
... .

f

g f

u k e k e h x
h x



  
       (4.11)

When desh is  times continuously differentiable and its derivatives are bounded, the feedback

linearization control can locally track desh imposed as a virtual constraint of z [89].

The benefit of the virtual constraint approach is that it gives a simple means of parameterizing

the desired evolution of the vehicle. Instead of all the states, the desired trajectory is parameterized

only by an output z satisfying Assumption 4.2 and Assumption 4.4. Later, trajectory optimization

is used to determine the existence of a set of interesting trajectories that can be tracked by

considering the full dynamics and the feedback structure.

4.2.3 Tractor-semitrailer models

In this work, two models are used: a design model and a validation model. For validation, a

TruckSim model is used with its impressive 312 states. The literature contains a range of less

detailed models that could be considered for control design, ranging from the nonlinear 37-state,

physics-based model in [22], to linear models. To demonstrate the fundamental robustness of the

proposed approach, the control design is based on a low-complexity model for an articulated truck

adapted from [90] and [91], namely a 4 DOF linear model with 8 states:

T

y a sx y v r r p      , (4.12)

where y is the lateral deviation from the lane center to the tractor Center of Gravity (CG),
yv is

the lateral sideslip velocity of the tractor,  is the heading angle of the tractor, r is the yaw rate

of the tractor, a is the articulation angle on the fifth wheel (the joint between the tractor and

semitrailer), sr is the yaw rate of the semitrailer,  is the roll angle and p is the roll rate, as shown

in Figure 4.3.

 43

Figure 4.3 Lateral-yaw-roll model of articulated truck

The linear model is expressed in the form of (4.1) for consistency,

       

1 2

1 2

.

f

y

d

f d

d d yf x g x g x r g xx

Ax B E r

F

E F





  

 




 (4.13)

The input to the system is the steering angle f of the tractor front axle and the disturbances are

road curvature
dr and side wind

yF , where
dr is the measured disturbance, namely,

1d in (4.1) and

yF is the unmeasured disturbance, namely,
2d in (4.1).

A priori, the above linear model is only valid under the following assumptions:

 The longitudinal speed xv of the truck has small variation;

 Due to the stiff connection on the roll dimension, the roll angle of the tractor and

semitrailer are the same;

 The pitch and vertical motion are weakly coupled with the lateral, yaw and roll motion,

and are ignored in the model;

 The angles are small, therefore the model can be approximated by a linear dynamic

model.

The simulations performed later in TruckSim support that these assumptions are satisfied in a

highway lane keeping scenario.

4.2.4 The virtual constraint for the truck model

The lateral displacement with preview is selected as the output for feedback linearization:

   0: xz h x y T v   , (4.14)

with 0T is the preview time, as shown in Figure 4.4.

 44

Figure 4.4 Preview of truck lateral dynamics

The output z so-defined has relative degree 2 for any
dr , i.e.,

1

0, 0
d dg f rg gh h  . (4.15)

To be more specific, the output dynamics is

 

1

1

2

,

,

.

d

d

df g

f g f f g d

h x

h h

z h h u h

r

r

z

z 





  





 (4.16)

By Assumption 4.1,
dr changes slowly compared to the dynamics, therefore,

dr is omitted.

Since there are eight states but only z and z are used in the feedback linearization, six dimensions

of the state space are hidden. It is shown that the zero dynamics of the system is exponentially

stable, see Appendix L. Since 2  , the feedback structure in (4.11) is essentially a PD controller:

 

   
   

1

2

1
,

d

p des d des

g f f f g d

K z h K z h
u

h x h x h x r

    
  
  

 (4.17)

where pK and
dK are the PD gains.

At this point, specifying the desired performance of the truck is simplified to designing desh ,

the desired trajectory of the output z , which is discussed in Section 4.3.

Remark 4.2: If smooth steering angles are desired, the control design model can be augmented

with an integrator appended to u . In this case, the system has relative degree three and the control

design is nearly the same.

4.3 Trajectory optimization

A CBF is constructed following the procedure described in Section 2.2.3. Some of the key

parameters for the truck lane keeping problem are listed in Table 4.1.

 45

Table 4.1 List of parameters

xv 20 /m s

Bound on y 0.3m
Bound on  0.1rad
Bound on dr 0.02 /rad s (turning radius of 1000m)

Bound on yF 2000N

Bound on f 0.2rad

Although CBF gives safety guarantee to the system, the performance could be compromised

should the student controller be not properly designed. For example, a student controller designed

with LQR is demonstrated in Figure 4.13, which causes severe intervention from the CBF and thus

leads to bad ride comfort. In this section, the optimization procedure is presented that incorporates

the CBF condition, which is then used to train a student controller that is compatible with the CBF.

In addition to the CBF condition, other constraints are needed to ensure the stability of the

continuous hold controller, as introduced later in Section 4.4.1.

4.3.1 Direct collocation for trajectory optimization

As discussed in Section 4.2, the trajectory optimization is boiled down to the optimization of

desh , the desired trajectory of the output z . Direct collocation is used to generate the trajectory of

the states and
desh , while

desh is imposed as the virtual constraint.

Direct collocation is widely employed in trajectory optimization problems due to its

effectiveness and robustness. It is thus chosen to optimize the trajectory while enforcing the virtual

constraint. It works by replacing the explicit forward integration of the dynamical systems with a

series of defect constraints via implicit Runge-Kutta methods, which provides better convergence

and stability properties particularly for highly underactuated dynamical systems. The result is a

nonlinear programming problem (NLP) [92].

In this problem, a modified Hermite-Simpson scheme based direct collocation trajectory

optimization method is utilized [93]. Particularly, the flow (a.k.a. trajectory),  x t , of the

continuous dynamical system in (4.13) is approximated by discrete value
ix at uniformly

distributed discrete time instant 0 1 20 Nt t t t T      with 0N  being the number of

discrete intervals. Let
ix and

ix be the approximated states and first order derivatives at the node

 46

i , they must satisfy the system dynamics equation given in (4.13). Further, if these discrete states

satisfy the following defect constraints at all interior  1,3, , N 1i  ,

   

   

1 1 1 1

1 1 1 1

3 1
: 0,

2 4

1
: 0.

2 8

i i i i i i

i i i i i i

N
x x x x x

T

T
x x x x x

N





   

   

     

     

 (4.18)

Then, they are accurate approximations of the given continuous dynamics. (4.18) defines the

modified Hermite-Simpson conditions for the direct collocation trajectory optimization [93].

Based on the above formulation, now one can construct a constrained nonlinear programming

problem to solve for the virtual constraint excited trajectory optimization of the articulated truck

model. To incorporate the virtual constraints based feedback control with the trajectory

optimization, the output dynamics equation given in (4.16) is enforced at each node. Then the

control input iu will be implicitly determined via this constraint without explicitly enforcing it as

in (4.16). Further, the output z and its derivative z should equal to the desired trajectory
desh at

0t  to ensure that the system lies on the zero dynamics manifold  0,t t  .

The desired trajectory
desh is parameterized as Bezier curve, which is widely used in computer

graphics and related fields. A Bezier curve of order m is defined on  0,1 as

    
0

1
m

m ii

i

i

m
s s s

i
B 





 
  

 
 , (4.19)

where
i are the Bezier coefficients. It is a parameterized polynomial of order m. Compared to

the parameterization with standard monomial bases(21, , ,...s s  ), Bezier curve has the following

nice properties:

 The representation of initial and final values are simple:    00 , 1 mB B   ,

 The derivative of Bezier curve is also a Bezier curve, and the dependence of the new Bezier

coefficient on the original Bezier coefficient is sparse.

Though the input for Bezier curve is between 0 and 1, Bezier curve can parameterize trajectories

of any length. Suppose the horizon of dh is T , then the input is defined as
t

s
T

 .

 47

Let   be the cost function to be minimized, the trajectory optimization problem can be stated

as:

 

     

       
 

 

 

 

       

    

1 1

0

0

0

0

0

0

max max

()

()

0

1 1 1

2 3

arg min . .

0, 0,

,

0,

,

0,

0,

,

1
, 0,

1

,

,

i

i

i i

i i i i i i

d

i i

des i p des i d des i

des

des

i

b x
i i

b x

x x

s t

x f x x g x u g x d

z h t K z h t K z h t

x t x

z h t

z h t

u u u

e
b x x

e

V x T d c V x d

x T x T c

 



 





 

  

     



 

 

  


 



  

 

 (4.20)

where  i iz z x ,  i iz z x , and  ,i i iz z x x , respectively. The first three lines of constraints

correspond to the colocation constraint; 4th line specifies the initial states; 5th and 6th line

correspond to the virtual constraint; the 7th line is the input constraint; the 8th line is the CBF

constraint, the last two constraints are needed to guarantee stability of the continuous hold

controller, which will be explained in Appendix M.

Remark 4.3: The CBF condition is modified based on (2.7). Since
1

1

b

b

e

e




is bounded within  1,1 ,

when  b x is small, the lower bound for b saturates at 1, instead of growing linearly as b ,

which may be too difficult to satisfy. Besides, when   0b x  ,
1

0
1

b

b

e

e





, which resembles the

original barrier condition in (2.7). Since
1

1

b

b

e

e




 is still an extended class function, by

Proposition 1 in [50],   0|x b x  is still invariant under the modified constraint.

The cost function in (4.20) is a weighted sum of multiple cost functions, consisting of the

following terms:

 48

 Final value cost     x dV x T r , where V is the same Lyapunov function appeared in

the constraint.


2z dt , the square integral of z ;


2z dt , the square integral of jerk;

 y


, the maximum deviation from road center;

 r


, maximum yaw rate;


2u dt , the square integral of the input;

 m ，penalty on the last Bezier coefficient (facilitating convergence of the Bezier curve).

The terms that consist of function integrals are approximately computed using the Simpson’s

quadrature rule [94].

The setting of the constraints and costs seem complicated, they are the result of repeated trial

and tuning. It should be emphasized that CBF constraint is enforced in the trajectory optimization.

The motivation is that by enforcing CBF condition on the training set, the policy generated by

supervised learning may inherit this property.

Figure 4.5 Example of trajectory optimization result

Figure 4.5 shows an example trajectory with initial lateral deviation
0 0.5y m and road yaw rate

0.02 /dr rad s . The plot of y and the Bezier output z shows that the trajectory is converging to

the lane center. The plot of the CBF value and the control input shows that the trajectory generated

by direct collocation satisfies the input and CBF constraints.

 49

The trajectory optimization is solved with FROST, which uses a symbolic calculation to boost

the nonlinear optimization [95]. The trajectory optimization for each initial condition can be

finished within ten seconds.

4.3.2 Generating the training set

It is impossible to perform trajectory optimization for all the initial conditions offline, so instead,

supervised learning is used to train the mapping from initial conditions to desired trajectories with

a finite trajectory library, which is generated by the above-described trajectory optimization

process.

By varying the initial conditions and generating the corresponding trajectories with direct

collocation, the neural network trained with the training set is expected to generate good

trajectories for various initial conditions. The inputs to the neural network are called features,

denoted as  ; in the training of the trajaectory generator, they are variables that describe the initial

condition. The output of the neural network is a vector of control parameters, denoted as , in this

case, the Bezier coefficients.

 :  . (4.21)

The selection of initial conditions is done in a grid fashion. A grid on the feature space is defined

and trajectory optimization is performed on each of the grid points. Since the zero dynamics is

stable,    desz t h t for
2

desh C implies    desx t x t , where desx is the desired state

trajectory corresponding to desh . This implies that only two states are needed to determine the

asymptotic behavior of the system, but not necessarily the transient behavior. In practice, the more

states are used to parameterize the initial condition, the finer the trajectory library will be.

However, under a grid fashion of drawing samples, the number of samples needed grows

exponentially with the state dimension. Therefore, the dimension of  is limited by available

computation power.  is chosen to consist of six features, including five states and dr :

 , , , , ,a y dy r v r      . (4.22)

Under this setup, the computation needed to generate the trajectory library is manageable (about

20 hours on a desktop). With more computation power, a higher dimensional  can lead to a finer

trajectory library.

 50

Even though most driving behavior is mild, it is important that the controller be able to handle

bad initial conditions. Two training sets are therefore generated, denoted as
1S and 2S , where

1S

consists of trajectories defined for a duration of 1 second, and the features of the trajectories have

a wider span and
2S consists of trajectories defined over a 3-second window, with the features

more concentrated around the origin.
1S is used to train a mapping for severe initial conditions and

transients, and
2S is used to train a mapping for mild situations and normal driving. Some of the

initial conditions might render the trajectory optimization infeasible, therefore only the feasible

cases are included in the training sets. In the implementation, the CH controller will choose which

mapping to use based on the severity of the situation.

The parameters for the training are presented in Table 4.2.

Table 4.2 Training set parameter setting

Feature 1S 2S

y range  0.0.5,]5 [m  0.3, 0.3 [m]

 range  0.04, 0.04 []rad  0.04, 0.04 []rad

r range  0.06, 0.06 [/]rad s  0.03, 0.03 [/]rad s

dr range  0.03, 0.03 [/]rad s  0.025, 0.025 [/]rad s

a range  0.04, 0.04 []rad  0.04, 0.04 []rad

In total, there are 62825 trajectories in
1S , and 29300 trajectories in

2S .

4.3.3 Supervised learning

With the training set ready, there are several choices for the supervised learning, such as linear

regression, Gaussian process regression, and neural networks. In the truck problem, since there is

no structural information about the trajectory generator and strong expressive power is needed to

capture the potentially complicated mapping from the initial condition to the desired trajectory,

neural network is chosen for its strong expressive power.

A neural network that has six hidden layers with 200 neurons in each layer and uses the ReLU

function as the rectifier is trained. The training is performed using Tensorflow [96]. 85% of the

data is used for training and 15% is used for testing. Table 4.3 shows the mean squared error (MSE)

of the training result.

 51

Table 4.3 Training result

 1S 2S

MSE of training data 0.13 0.0023

MSE of testing data 0.16 0.0024

4.4 Implementation of learning based controller

4.4.1 Continuous hold feedback control

Once the trajectory generator is trained, it can generate a finite horizon desired trajectory for a

given initial condition. In order to piece together the finite horizon trajectories and synthesize a

controller from the trajectory generator, a continuous hold (CH) controller is employed. The name

continuous hold comes from the analogy with a zero-order hold and an n-th order hold. While an

n-th order hold approximates the segment between two consecutive sampling times with an n-th

order polynomial, continuous hold executes a predefined continuous trajectory.

 The idea of continuous hold is not claimed to be novel; a motion primitive is a special type of

continuous hold [63]. The trajectory is updated in an event-triggered fashion, which will be

discussed in detail in Section 4.4.2. While event-triggered finite-horizon control is studied in [97],

in the CH setting, it should be noted that the control action between triggering events is a

continuous function of time and states instead of being a constant.

For the truck example, the basic continuous hold controller [98] must be extended to systems

with exogenous disturbance. The stability and set invariance property of the CH controller are

proved, including the analysis for the case when only a subset of the state is used for feedback, in

Appendix M.

4.4.2 Event-triggered update of the CH controller

The CH controller uses the mapping trained by supervised learning to generate a desired

trajectory desh for the output z based on the current state and dr , then track the desired trajectory

with the control law in (4.17). The desired trajectory will be updated under three circumstances:

 The Bezier curve is executed to the end;

 A significant change in dr ;

 The trajectory tracking error is too large.

 52

In the first case, since the trajectory optimization has a limited horizon (1s or 3s), the neural

network will use the current value of the features to generate a new desired trajectory. In the second

case, if dr differs much from the dr used to generate the current desired trajectory, the trajectory

should be updated since dr is assumed to be constant during the entire horizon of the trajectory.

The rest of the features are simply initial conditions, so their change does not trigger an update of

the desired trajectory. In the third case, when the trajectory deviates too far from the desired

trajectory, re-planning is called for. This is likely to be caused by an unexpected disturbance, such

as wind gust.

When switching from one trajectory to the next, smoothing is performed to make sure that
desh

is twice differentiable, which ensures that the control signal is continuous. The smoothing process

is explained in the Appendix N.

4.4.3 CBF as a supervisory controller

Even though the CBF condition is enforced in the trajectory optimization for the training set,

after supervised learning, there is no guarantee that the trajectory generated by the neural network

will always satisfy the CBF condition. Therefore, CBF is still implemented as a supervisory

controller on top of the learning based controller. The CBF solves the following optimization:

 

2 2

1 2

00

min .

0, ,

.oldw w s t

u

u u u

u u u

 



 

    
 (4.23)

where u is the intervention of the CBF,
oldu is the intervention of the previous time instant,

  is the barrier condition and
1w , 2w are the weights. The reason for the second penalty term is

to prevent chattering if intervention is necessary.

The barrier condition is defined as

 

 

0, 0

1
0, 0

1

b

b

b if b x

b if b x

b

e

e





 



 

 








, (4.24)

where the transition at   0b x  is continuous, i.e. the two constraint coincides at   0b x  , as

shown in Figure 4.6.

 53

Figure 4.6 Lower bound for b

Remark 4.4: When   0b x  , the existence of u is guaranteed by the construction of the CBF;

when   0b x  , there is no guarantee of feasibility. When (4.23) is infeasible, the input is saturated

by .

4.5 Simulation result

The proposed control design is validated on TruckSim, a high fidelity physics based simulation

software that is widely acknowledged by the industry. The model selected for simulation has 312

states and is a tractor-semitrailer with heavy cargo in the trailer, weighing 35 tons in total, as shown

in Figure 4.7.

Figure 4.7 Animation with a 312 state model in TruckSim

The truck is asked to drive on a road with minimum turning radius 1000m at 20m/s, and sidewind

is simulated with lateral force and roll moment to the truck. Because of the cargo, the truck has

high CG, the roll motion in the simulation is significant and the maneuver is aggressive.

 54

Figure 4.8 Disturbance to the system in simulation

As shown in Figure 4.8, the road profile consists of segments with different curvatures, and the

sidewind is a square wave with maximum allowed magnitude.

Figure 4.9 Input and intervention of CBF during simulation

The steering input trajectory is shown in Figure 4.9. A zoom-in view is presented to show a five

seconds period of input. The input is actually quite smooth. The little bumps are necessary to

counter the sidewind when it changes direction. The lower plot shows f , which indicates that

no intervention from CBF happened.

 55

Figure 4.10 Value of CBF and key states during simulation

Figure 4.10 shows the value of CBF and two key states. Lateral deviation y and roll angle 

never exceed the limit (plotted in red) and  b x is always positive, showing that the CBF bound

was never breached. This is under the CH controller without any help from the CBF.

To demonstrate the controller’s ability to handle bad initial conditions, the lateral deviation was

perturbed with a square wave, simulating the situation when the initial position is 0.5m from the

lane center, as shown in Figure 4.11 and Figure 4.12.

Figure 4.11 Input and intervention of CBF with large initial deviation

 56

Figure 4.12 Value of CBF and key states with large initial deviation

Figure 4.11 shows the input under large deviation. The CBF intervention occurred three times,

but they are very mild compared to the size of 0u . The learning based controller was able to handle

the bad initial conditions most of the time. When  b x was below zero, the learned controller was

able to drive the system back to the safe set without the intervention of CBF.

As a comparison, an LQR controller is tuned with feedforward control of dr , and it performs

very well under normal driving conditions. However, when the initial condition is bad (under the

same setting as the previous simulation), the LQR controller triggered intervention from the CBF

multiple times (11 times) and the jerk was severe, as shown in Figure 4.13.

Figure 4.13 Simulation result with LQR as student controller

Though the LQR controller was fine-tuned, it triggered severe intervention from the CBF

frequently. On the other hand, none or very mild interventions was triggered from the CBF under

the learning based controller in all trial simulations when the states are within the training set span.

When the states are outside the span of the training set, the neural network is asked to extrapolate

instead of interpolating, therefore the performance is not guaranteed.

 57

4.6 Conclusion and discussion

The focus of this chapter is on the synthesis of the student controller. When a CBF is synthesized

as a supervisor, it poses additional requirement to the student controller, that is, the student

controller should be compatible with the CBF supervisor and not causing frequent intervention

from the CBF. A supervised learning based method is proposed to enforce this requirement. The

idea is to use trajectory optimization technique to generate a training set consisting of trajectories

that satisfy the CBF constraint, supervised learning is then used to learn the mapping from the

initial condition to a parameterized desired trajectory. The policy generated with supervised

learning will inherit the good properties of the training set, though not rigorously. On top of that,

safety guarantee is formally imposed with CBF as the supervisory controller. The simulation

shows that the proposed approach is able to reduce the intervention of the CBF and therefore

improve the performance while guaranteeing safety.

The supervised learning is set up to learn the mapping from an initial condition to the desired

output trajectory, instead of the mapping from the initial condition to the desired input trajectory.

The stability is guaranteed under the CH framework, whereas there is no guarantee that following

the desired input trajectory will lead to desired performance. The proposed CH control structure is

able to transform the synthesis problem into a trajectory optimization problem, which may be much

simpler for complicated nonlinear systems such as robots [98].

There are problems to be solved for the proposed method. First, when the initial condition is not

contained inside the feature range of the training set, i.e. when the neural network is doing

extrapolation rather than interpolation, the performance is poor. In other words, to get good

performance in a wide range, one needs to have training data with enough coverage. Second, when

training data from a large range of features are stacked together for the training, the regression

accuracy drops and the performance is bad. To solve this, one might need more complicated neural

network structure, or use multiple neural networks for different situations.

 58

Chapter 5 Lyapunov approach for validation of non-

cooperative control designs
In this chapter, a decentralized procedure to verify the closed-loop performance of a system

with multiple controllers designed by non-cooperative agents is presented. The main problem to

address is the disturbance coming from coexisting controllers on the same dynamic system. The

goal is to verify whether performance specifications are met when multiple controllers that have

been designed separately are applied to the same system. The key concept is to use Lyapunov

functions as measures of the influence of each controller on the system. Sum of Squares

programming is used to verify Lyapunov derivative conditions, thus providing a sufficient

condition for the specification. Dual decomposition is then used to guarantee that the decentralized

verification is equivalent to the centralized verification. Moreover, the verification procedure is

extended to decentralized controller synthesis to satisfy safety specifications.

5.1 Introduction and motivation

As modern vehicles become more automated, they contain an increasing number of controllers,

with more to be added. NHTSA mandated that Electronic Stability Control (ESC) be installed on

all light vehicles manufactured after 2011. Adaptive Cruise Control (ACC) and Lane Keeping

(LK) are available as convenience features on both sedans and trucks. Moreover, systems such as

active suspension and rollover prevention are installed to enhance the riding comfort and safety of

trucks and buses. A crucial issue is whether these features will cause problems to one another when

put together, since the controllers are all coupled through the vehicle’s dynamics. The concept of

integrated chassis control has been proposed to take into account all actuators that influence vehicle

chassis dynamics, and it aims at better performance, including safety, comfort, and drivability. The

design was first carried out in a centralized manner, assuming one agent is in charge of designing

all the controllers involved [99-102]. The benefit of centralization is obvious: the designer can

fully consider the coupling in the dynamics and design controllers accordingly. However, the

centralized approach is not always feasible in real engineering situations. The Original Equipment

 59

Manufacturer (OEM) usually cooperates with multiple suppliers that specialize in the different

areas of chassis control, and the controllers are designed by non-cooperative agents (suppliers)

who keep their control algorithms confidential.

There are several approaches to address the coupling and potential conflicts between different

chassis controllers. One is supervisory control, which treats the local controllers as servo-loop

controllers and relies on a supervisor to give set points to the local controllers [103]. The

coordinator approach uses worst-case analysis and “tunes down” the control signal when it detects

that failure might occur because of the coupling [104]. However, as stated in [105], without global

structure, a decentralized control structure (at least the traditional ones) is not suitable for safety-

critical tasks. In addition to the design of the controllers, verification is another important issue.

Ground testing can be performed by the OEMs, but it is notorious for its high cost of money and

time because of the curse of dimensionality. Despite great efforts to expose the system to various

scenarios in both the ground test approach and simulation approach, verification is never complete,

meaning that there are always scenarios that are omitted during experimentation. In this chapter, a

novel Lyapunov approach is proposed that provides safety guarantees to a decentralized design of

a chassis control system. The proposed method does not suffer from the curse of dimensionality,

and it provides verification of the closed-loop system. In addition, it satisfies the requirement of

decentralized design by independent suppliers by keeping the control algorithms confidential.

The proposed approach requires that all control laws be explicit analytic functions of the states

and the measured disturbance. This requirement might limit the applicability of the proposed

approach, but it already covers a large portion of the existing control techniques, and in future

work, the proposed method may be extended to implicit control algorithms with methods such as

system identification.

5.2 Problem formulation and major tools

5.2.1 Problem formulation

In this section, the case where two controllers are acting on one system is considered. The

system dynamics is assumed to have the form

        1 1 2 2(,) (,) dx f x g x u x d g x u x d g x d    (5.1)

 60

where nx is the state, 1 2

1 2,
m m

u u  are inputs from two coexisting controllers, ld  is

the exogenous disturbance; ()f x is the intrinsic (or drift) dynamics,
1()g x is the input dynamics

for
1u ,

2()g x is the input dynamics for
2u , and ()dg x is the exogenous disturbance dynamics, for

both measured and unmeasured disturbance. The control inputs
1u and

2u are assumed to be

functions of x and d , but the disturbance feedforward is limited to measured disturbance.

It is assumed that the system dynamics can be described by a polynomial (can be extended to

rational functions by the simple transformation of multiplying through by the denominator). For

non-polynomial systems, Taylor expansion can be used to obtain a polynomial approximation, and

then the proposed method can apply.

Now recall the Lyapunov theory. For a continuous dynamic system described by an ordinary

differential equation:

 ()x f x . (5.2)

Consider a continuously differentiable Lyapunov function candidate : nV  that satisfies

    0 0, 0, 0V x V x    . (5.3)

If it can be shown that

   

   

, 0,

, 0, 0.

n

n

dV
x V x f x

dx

dV
x x V x f x

dx

   

    

 (5.4)

Then, the origin is asymptotically stable; if it can be shown that

  { () 1}, 0,x x V x V x   ∣ (5.5)

the set { () 1}x V x ∣ is invariant. The former is considered a special case of the latter; therefore, in

the remainder of the chapter, only the set invariance verification will be discussed. Note that the

Lyapunov function can always be scaled to adjust for the size of the 1-level set; thus, discussing

the 1-level set is sufficient. Given a Lyapunov function candidate V and the dynamic system in

(5.1), the Lyapunov derivative is

               1 1 2 2, , , .d

dV
V x d f x g x u x d g x u x d g x d

dx
    (5.6)

In real-world control problems, the exogenous disturbance is usually bounded; It is assumed

that the bound is known and is represented as a semialgebraic set . The standard verification

 61

setup considered in this chapter is that, given the system dynamics, with the control inputs as

functions of the state and measured disturbance, and the Lyapunov candidate, whether the

following condition holds:

     1 , , 0.x x V x d V x     ∣ (5.7)

Above is a sufficient condition for the set   1x V x ∣ to be invariant under all disturbance in .

5.3 Verification using Lyapunov functions

In this section, a verification procedure using Lyapunov functions is introduced. Since the

procedure checks the positive definiteness of polynomials, some basic techniques of SOS are

introduced.

5.3.1 SOS verification for polynomial dynamic systems

SOS has been used for verification of dynamic systems in a variety of ways. For a given control

law, SOS is used to find a Lyapunov function to prove stability [38, 106], calculate the approximate

region of attraction [107], and guarantee that the states never enter an unsafe set [41, 49]. SOS is

also used to directly synthesize controllers [40]. A review of SOS was given in Section 2.1. The

Lyapunov verification problem can be formulated as the problem of verifying positive definiteness

of a polynomial inside a semialgebraic set, of which a sufficient condition can be given using the

SOS multipliers. The Lyapunov derivative condition is enforced in the following semialgebraic

set:

      , | , 0 1 ,ix d h x d x V x   ∣ (5.8)

and the condition to be verified becomes

        , , , , ,i i

i

V x d a x d h x d x d   (5.9)

where  ia is the set of SOS multipliers with arguments x and d . This direct SOS approach is

referred to as the centralized verification. The centralized verification requires that there be an

agent who knows the control algorithms of both controllers.

5.3.2 Decomposition of Lyapunov derivative

As stated in Section 5.1, in a decentralized design process, since the control laws are kept

confidential by the agents, centralized verification is not applicable.

 62

In this situation, the Lyapunov derivative is decomposed into two parts, one part containing
1u

only, and the other part containing
2u only. In this way, the two agents are able to find polynomial

upper bounds for the two parts, respectively. A sample decomposition of the Lyapunov derivative

is shown below:

             1 1 2 2, , .d

dV dV
V f x g x u x d g x d g x u x d

dx dx

   
      
   

 (5.10)

Agents 1 and 2 can find upper bounds for the two parts, 1 and 2 , respectively.

  

          

  

   

1 1 1

2 2 2

1: 1 , ,

, , ,

2 : 1 , ,

(,) , .

d

Agent x x V x d

dV
f x g x u x d g x d x d

dx

Agent x x V x d

dV
g x u x d x d

dx





    

  

    



∣

∣
 (5.11)

Remark 5.1: There is freedom in decomposing the Lyapunov derivative.
1 1()g x u and

2 2()g x u

should always be put into two parts. In addition to this rule, a good decomposition may simplify

the computation. For example, if
2u does not depend on d ,

2 only depends on x . See Appendix

O for more detail.

Since the first part of the Lyapunov derivative is completely known to agent 1, and the second

part is completely known to agent 2, the upper bound can be found using SOS programming. If

 1 2 0,   (5.12)

the verification is successful. The above-mentioned condition is sufficient but not necessary. Next,

it is shown that the decentralized verification is equivalent to the centralized verification, that is,

if a system can be verified by centralized verification, the decentralized verification returns the

same result.

First, the existence of such 1 and 2 is discussed. If the system satisfies the set invariance

condition to be verified, that is,

    () 1 , , , 0,x x V x d V x d     ∣ (5.13)

then the decentralized verification aims to find
1 and

2 that satisfy (5.11) and (5.12).

Theorem 5.1 (Equivalency of centralized verification and decentralized verification):

 63

Suppose is a semialgebraic set, V is a polynomial candidate Lyapunov function in x , then

 If (5.13) is satisfied, there exist
1 and

2 that satisfy (5.11) and (5.12).

 If (5.13) can be verified with SOS, there exist
1 and

2 such that (5.11) and (5.12) can be

verified with SOS.

Furthermore, with some additional conditions, Theorem 5.1 can be extended to cases where
1

and
2 are functions of only x . The proof is given in Appendix O.

With existence guaranteed, the next important question is how to find
1 and

2 . The dual

decomposition technique is used to solve this coupled problem.

5.4 Dual decomposition for verification

In this section, the dual decomposition procedure for decentralized verification is presented.

5.4.1 Dual decomposition for Lyapunov verification

Dual decomposition has been widely used in convex optimization recently [108, 109]. The main

benefit is its ability to decompose a problem into smaller ones. The procedure in [109] is modified

to suit the purpose of decentralized verification. The standard setup is as follows:

   1 2

,
min . .

0,

x z
f x f z s t

Ax Bz c



  
 (5.14)

where
1f and

2f are convex objective functions. The variables x and z are coupled by an

equality constraint. The Lagrangian is written as

        
2

1 2, , ,
2

TL x y z f x f z y Ax Bz c Ax Bz c


        (5.15)

where y is the dual variable, and the last term is a quadratic penalty term. Then the dual ascent

method is used to search for the optimum:

 

 

 

1

1 1

1 1 1

arg min , , ,

arg min , , ,

.

k k k

x

k k k

z

k k k k

x L x y z

z L x y z

y y Ax Bz c



 

  





   

 (5.16)

 64

The algorithm known as alternating direction method of multipliers (ADMM) iterates until no

improvement can be made.

Remark 5.2: Additional constraint is allowed for x and z , but there should be no coupling, i.e.,

the update of x should be an optimization of only x and the same is required for the update of z .

The problem of decentralized verification differs from the original ADMM setup mainly in that

the coupling constraint is a semidefinite constraint, not a linear equality constraint. To simplify the

representation, define two indicator functions as

      

          

1 1 1 1 1

2 2 2 2 2

1 , , (() () (,) ()) , ,

1 , , , , .

d

V
x x V x d f x g x u x d g x d x d

x

V
x x V d g x u x d x d

x
x

1

1

 

 

 
        

 

 
      

 

∣

∣

 (5.17)

where ()1  is the indicator function. Further, define
1 1() and

2 2() as

 
 

 

 
 

 

1 1

1 1

1 1

2 2

2 2

2 2

,
0,

.

1

, 0

0, 1

, 0












 

 


 

 

 (5.18)

Assumption 5.1: The set of
1 and

2 that satisfy (5.11) is nonempty.

Then
1 1() and

2 2() are closed, proper and convex. The verification problem then becomes

    
1 2

1 1 2 2 1 2
,

min . . 0,s t
 

      (5.19)

where
1 and

2 are polynomials of x and d , and the inequality sign enforces negative

definiteness.

Then, the Lagrangian needs to be formulated. The SDP literature suggests two common ways

to formulate the Lagrangian: the conic representation [110] and the minimum eigenvalue

representation [111]. Although the former is more commonly used in SDP solvers, the latter

formulation is used primarily because it generates only one dual variable for each SDP constraint,

thus simplifying the dual decomposition process. The Lagrangian is formulated as

        
1 21 2 1 1 2 2 min, , ,L Q Q           (5.20)

 65

where
1

Q and
2

Q are the matrix representations of the polynomials
1 and

2 ; 0  is the dual

variable corresponding to the semidefinite constraint:

  
1 2min 0.Q Q     (5.21)

With this Lagrangian formulation, the dual ascent algorithm appears as follows:

 

 

 

1

2

1 1
1 2

1

1 1 2

1 1

2 1 2

1

min

arg min , , ,

arg min , , ,

,k k

k k k

k k k

k k

L

L

Q Q





 

   

   

    



 







   

 (5.22)

where  is a constant representing the step size. Notice that the update for
1 is

      
1 2

1

1

1 1 1 2 2 minmin .k karg Q Q 


         (5.23)

If 2 2()k   , then

      
   

 
1 2

1 2

min 1 1

1 1 2 2 min

1 1

,

0
.

1

,

k
Q Q

Q Q
 

 

 
  



   
     

 

 (5.24)

Assume there exists an
1 such that

1 1() 1  , the update for
1 is

  1 2
1

1

1 min 1 1min . . () 1.k

k arg Q Q s t 


        (5.25)

Therefore,  can be normalized to be 1. Similarly, in the update of
2 ,  is also normalized to

1, which renders the dual update step unnecessary. The procedure for dual decomposition is

simplified to

 

 

1 2
1

1
21

2

1

1 min 1 1

1

2 min 2 2

min . . () 1,

min . . () 1.

k

k

k

k

arg Q Q s t

arg Q Q s t

 





  

  





    

    
 (5.26)

The purpose of dual decomposition, in this case, is not to reduce the size of the optimization

but rather to allow the agents to keep the control algorithms confidential. As such, dual

decomposition suits this purpose perfectly. With this procedure, the two agents are asked to

exchange polynomials
1 and

2 , and no further information about the control algorithms.

 66

5.4.2 Convergence of decentralized verification

Next, let’s discuss the convergence of decentralized verification. First, the following theorem

is presented.

Theorem 5.1: Suppose there exist 1 and 2 that satisfy (5.11) and (5.12), then 1 1[,]  and

2 2[,]  also satisfy (5.11) and (5.12).

Proof: Add (5.12) to (5.11):

          

   

1 1 2

2 2 1

, , ,

(,) , ,

d

dV
f x g x u x d g x d x d

dx

dV
g x u x d x d

dx





   

 

 (5.27)

which proves that 1 1[,]  and 2 2[,]  satisfy (5.11). It is also straightforward to check that

1 1[,]  and 2 2[,]  satisfy (5.12).

With Theorem 5.1, (5.12) can be replaced with the following equality constraint

 1 2 0,   (5.28)

which can be transformed to a linear equality constraint on the coefficients. Decentralized

verification, therefore, follows the standard form of ADMM in [109]. With Assumption 5.1,

1 1() and
2 2() are closed, proper and convex functions of

1 and
2 , and therefore Theorem

3.2 in [109] proves convergence of the dual decomposition process.

Remark 5.3: In practice, it is found that compared to dual decomposition with the equality

constraint in (5.28), the convergence is actually faster if the inequality constraint in (5.12) is used

and the Lagrangian is formulated as in (5.20). However, there is no proof of convergence.

5.4.3 Verification for systems with piecewise dynamics

As mentioned in the problem formulation section, this method requires an explicit analytic form

of the control algorithm. This restriction can be relaxed to a piecewise analytic form of the closed-

loop dynamics. Suppose there exists some piecewise structure in the control algorithm such as

 67

  

      

      

1

1 1

1

1

, , , , , 0

, ,

, , , , , 0n

n

u x d if x d x d G x d

u x d

u x d if x d x d G x d

  


 
  

∣

∣

 (5.29)

where   1

iu  are analytic functions of x and d ,    , , 0ix d G x d ∣ are disjoint semialgebraic

sets of x and d that satisfies

   
1...

, , 0 ,i

i n

x d G x d


  ∣ (5.30)

where is the domain of x ,  is the set on which  iu  are defined. Then the condition for

1 is modified to

        

          1 1 1

, 1 , , 0 , 1, ,

, , .

i

i

d

x d x V x x d G x d i n

dV
f x g x u x d g x d x d

dx


       

  

∣ ∣

 (5.31)

The rest of the verification procedure stays the same.

5.4.4 Extension to control synthesis

The proposed dual decomposition method can be used for both the verification of existing

control design and synthesis of controllers that satisfy the specification. Consider the update

procedure in (5.22). Suppose one or both controllers need to be synthesized. Then the Lagrangian

would depend on the control algorithms:

        
1 21 2 1 2 1 1 1 2 2 2 min, , , (), () , () , () .L u u u u Q Q               (5.32)

Since
1()u  and 2 ()u  are part of the optimization variables, the two functions 1 1 1(, ())u  and

2 2 2(, ())u  depend on the control algorithms as well.

The dual decomposition procedure is used to solve the problem with the dual ascent method. In

addition to the Lyapunov condition, cost functions and constraints such as the control input bounds

may be added to the synthesis process. An example where the tradeoff between different control

objectives is resolved with this synthesis procedure is presented in Section 5.6.2.4.

Remark 5.4: It is important that the proposed verification method does not expose the control

algorithm of each agent. Note that

 68

 the polynomial upper bound of Lyapunov derivative being exchanged between agents

may not be tight, so the control law that achieves it is not unique;

 the two agents do not exchange the form of their controller (e.g. linear, quadratic or

piecewise linear);

 the algorithm relies on SOS multipliers, which are not exchanged between agents

(especially when the controller has piecewise structure).

Due to the above three reasons, it is not possible for one agent to identify the control algorithm of

the other agent in most cases.

5.5 Improving the Lyapunov function candidate

The above-mentioned dual decomposition is only guaranteed to succeed if the original

centralized verification is feasible, which is strongly limited by the choice of the Lyapunov

function candidate. A poorly chosen Lyapunov function may fail the verification even though the

system satisfies the specification.

The problem of finding a Lyapunov function with its 1-level set being invariant is, however,

bilinear in the Lyapunov function candidate and the SOS multipliers, and is thus nonconvex.

Methods for solving Bilinear Matrix Inequality (BMI) include bilinear alternation [112], which is

local, and branch-and-cut, which gives a global solution to a relaxed convex problem [113].

In the Lyapunov verification problem, besides the bilinearity that arises from the invariant set

setup, the need to decompose and decentralize the algorithm should also be considered due to the

confidentiality requirement. A method that uses perturbation to resolve the bilinearity is proposed.

The idea is simple. Starting with an initial Lyapunov function candidate, the algorithm refines the

Lyapunov function candidate and seeks to find a tighter lower bound of the Lyapunov derivative

by adding a small perturbation to the Lyapunov function. Since the perturbation is small, the level

set does not change much, so the condition is verified on the level set of the original Lyapunov

function, thus eliminating the bilinear term.

5.5.1 Centralized Lyapunov perturbation

First, the perturbation algorithm for centralized verification is presented. Suppose the

specification requires the state to stay inside a set
n

safeX  , and the Lyapunov candidate satisfies

 69

 () 1 safex V x X ∣ . Then an additional slack variable e is introduced to make the problem

always feasible:

  

            

,

1 1 2 2

min . .

() 1 , ,

, , .

V e

T

d

e s t

x x V x d D

dV
f x g x u x d g x u x d g x d ex x

dx

    

   

∣ (5.33)

If 0e  , the original centralized verification is successful. Using perturbation, the bilinear term is

eliminated:

    

  

 
0

0
,

0

0

min . . 1 ,

1 , ,

, ,

safe
e V

T

V V

e s t x V x V x X

x x V x d

d V V
x ex x Q Q

dx





   

    


 

∣

∣
 (5.34)

where V is the perturbation and
0V is the original Lyapunov candidate. The last constraint limits

the size of the perturbation with a small constant 0 . The inner product between matrices is

defined as

 , (),TA B Tr A B (5.35)

and the matrix norm is induced from this inner product. The above optimization iterates until no

further improvement can be made and 0VQ  .

5.5.2 Decentralized Lyapunov perturbation

The extension of Lyapunov perturbation from centralized verification to decentralized

verification is not straightforward. The “local copy” idea is adopted, similar to that in [114]. In the

search for V , the two agents will each keep a local copy of V , and the two local copies should

converge to be identical. Dual decomposition will again be used to guarantee convergence.

Consider the following decentralized Lyapunov perturbation:

 70

 

 
          

 
     

   

 

1 2

1 0

0
, ,

0 1

1 1 1

0 2

2 2 2

1 2

1 2 0 1

min . . 1 , ,

, , ,

, , ,

, , ,

, 1 , .

e V V

d

T

safe V V

e s t x x V d

d V V
f x g x d g x u x d x d

dx

d V V
g x u x d x d

dx

x d x d ex x

V V x V V X Q Q





 

 



   


  

 


 

       

∣

∣

 (5.36)

Define the indicator functions 1 and 2 as

 

 

 
          

 

 

 

 
     

 

1 0

2 0

0

0 1
1 1 1 1 1 1

0 1

0

0 2
2 2 2 2 2 2

0 2

1 , ,

, , , , ,

1 ,

1 , ,

, , , , .

1 ,

d

safe V V

safe V V

x x V d

d V V
V f x g x d g x u x d x d

dx

x V V X Q Q

x x V d

d V V
V g x u x d x d

dx

x V V X Q Q

1

1

 

 





     
 

  
     

 
     
 

     
 

  
   

 
     
 

∣

∣

∣

∣

 (5.37)

Then define feasibility functions 1 1 1(,)V  and 22 2(,)V  following the convention in (5.18)

based on the indicator function 1 and 2 . The Lagrangian is then formulated as

 

   

1 2 1 2

2

1 2 1 2

1 1 1 1 2 2

, , , , , ,
2

, , .

V V V VL V V e e Q Q Q Q

V V


   

 

         

   

 (5.38)

Here it is assumed that an admissible perturbation exists that renders 1 and 2 equal to 1. This

process is a direct extension of the standard dual decomposition setup, and the dual variable  is

a real symmetric matrix of the same size as V . The dual ascent update is

   

   

 

1 1

2 2

1 1

1 1 1 2 1 2
,

1 1 1 1

2 2 1 2 1 2
,

1 1 1

1 2

, arg min , , , , , ,

, arg min , , , , , ,

.

k k k k k

V

k k k k k

V

k k k k

V L V V e

V L V V e

V V





   

   

  

 



   



  

   

   

   

 (5.39)

The perturbation algorithm is demonstrated in Figure 5.1. Two loops in the Lyapunov

perturbation algorithm allow for decentralized verification: an inner loop that converges to V

 71

and an outer loop that iteratively perturbs the current Lyapunov function until no improvement can

be made.

Figure 5.1 Lyapunov perturbation procedure

5.6 Case studies

The proposed methodology is applied to two examples: a toy problem of an inverted pendulum

and a practical vehicle chassis control problem.

5.6.1 Inverted pendulum

As shown in Figure 5.2, the two control inputs are the horizontal force F on the cart and the

torque T on the hinge. The cart has mass M , the ball on the tip of the pendulum has mass m , the

pendulum has length L and no mass. The two degrees of freedom (DOF) are displacement of cart

S and angle of the pendulum  . In addition to the actuation, a disturbance force
1d acts on the

cart and a disturbance torque 2d acts on the pendulum.

 72

Figure 5.2 Lyapunov perturbation procedure

The dynamic equations are obtained using the Lagrangian method:

 

 

2 2

2 2 2 2

12 2 2

2 2 2 2

2 2 2 2

2

2 2 2

() sin() () sin()cos()

() () cos ()

(cos())

() () cos ()

sin() () sin()cos()

() () cos ()

cos

()

,

() cos ()

d M m mgL mL

dt M m mL mL

mL F m M T
d

M m mL mL

d S mL mL mL g

dt M m mL mL

mL F mL T

M m mL mL

    







   







 


 

  
 

 




 




 
2.d

 (5.40)

Two simplified models are considered:

1. Simplified nonlinear model:

Assume 1 , therefore ()sin   and cos() 1  .

 22

12 2

2 2 2 2 2

22 2

,
() ()

()
.

M m mgL mL mLF m M Td
d

dt MmL

d S mL mL mL g mL F mLT
d

dt MmL

  

  

    
 

  
 

 (5.41)

2. Linear model:

In addition to the small angle assumption, ignore the higher order terms of  and  . Then the

model becomes linear:

 1 1 2 2 ,dx Ax B u B u B d    (5.42)

where

 73

 1 2, ,x S S u F u T      . (5.43)

5.6.1.1 Lyapunov verification for inverted pendulum

The specification is assumed to impose bounds on all four states:

max

, 1, 2,3, 4.iix x i  (5.44)

A hyperbox is constructed from the specification. The Lyapunov function is obtained by solving

the LQR cost-to-go function. Then the cost-to-go function is scaled such that its 1-level set is

contained in the hyperbox constructed from the specification. Bounds are put on the disturbance

terms.

To demonstrate the verification process, a set of sane controllers is synthesized via SOS

programming that satisfies the Lyapunov condition. The order of 1 and
2 are quadratic. While

to guarantee the existence of a solution, the order of
1 and

2 must be as high as the original

polynomial to be verified, in practice, using lower order polynomials is often found to be sufficient.

The order of the multipliers is selected according to the computation capability of existing SDP

solvers, in this case, 4.
1 and

2 are initialized to be 0.

Figure 5.3 Verification of the centralized synthesized controllers for inverted pendulum

Figure 5.3 shows that
1 2

()min Q Q    monotonically increases over 16 iterations. Eventually,

it becomes positive, proving that the Lyapunov derivative is negative definite outside the 1-level

set of the Lyapunov function and the verification is successful.

 74

5.6.1.2 Lyapunov perturbation for inverted pendulum

In order to demonstrate the Lyapunov perturbation process, the Lyapunov function is altered so

that the derivative condition is not met. With the altered Lyapunov function, the verification

process converges to
1 and

2 , whose summation is not negative definite:

  
1 2min 451Q Q      . (5.45)

Then using the perturbation algorithm in Figure 5.1, the Lyapunov function is changed to

improve the result of verification. After four iterations, a Lyapunov function that renders the

verification successful is obtained.

Figure 5.4 Lyapunov perturbation process

5.6.2 Vehicle chassis control

The second case study is the motivating engineering application: vehicle chassis control. Two

controllers that have strong coupling are selected: LK and ESC. The dynamic model for the vehicle

lateral dynamics is the linear lateral-yaw model:

 75

2 2

0 1 0

0 0

0 0 0 1

0 0

0

0 0 0 0

0 1 0 0

0 0 0 1 0

1 0 0 1

x

f r r f

x

x xy y

r f f r

z x z x

f

f

f

z

v

C C bC aCy y
v

mv mvv v

r rbC aC a C b C

I v I v

C

m
T

aC

I

   

   





 



 
 

          
     
    
         

  

 
 

   
 

   
 

     
  

 
  

     
 
 

1 1 2 2 ,d

d

Ax B u B u B d





   

 (5.46)

where the four states are the lateral displacement w.r.t. the road center y , sideslip velocity of the

chassis yv , yaw angle  and the yaw rate r . The inputs are the steering angle f and yaw

moment T generated by differential braking. m and zI are the mass and moment of inertia of the

vehicle, fC and
rC are the cornering stiffness of the two axles, a and b are the distance from

vehicle CG (center of gravity) to the front and rear axle. These parameters are constant.
xv is the

longitudinal speed, if it stays constant, the dynamic is linear. Disturbance d comes in with three

channels:
T

dy d dd F r T    : the external lateral force dyF affects yv , road curvature
dr affects

yaw angle, and the external yaw moment
dT affects the yaw rate.

Figure 5.5 Lateral yaw model

 76

5.6.2.1 Lyapunov function setting for vehicle chassis control

It is assumed that the Lyapunov function has the following form:

       1 2min ,V x V x V x . (5.47)

This form arises from the assumption that each supplier may have its own focus on the

performance. The two Lyapunov functions are assumed to represent a different emphasis on

performance.

Figure 5.6 Level set of the Lyapunov function for vehicle chassis control

The goal of verification is to prove that the 1-level set of V is invariant, as shown in Figure

5.6. For simplicity, it is required that both the 1-level set of
1V and that of

2V are invariant, which

is a sufficient condition of { () 1}x V x ∣ being invariant.

The Lyapunov derivative condition then becomes

  
  

1 1

2 2

1 , , 0,

1 , , 0.

x x V x d V

x x V x d V

    

    

∣

∣
 (5.48)

It is assumed that the LK controller
1u depends on state x and the road curvature

dr , which is

a measured disturbance, and the ESC controller 2u uses only state feedback. The decentralized

verification aims to find polynomials
1 , 2 , 1 and

2 that satisfy

  

        

  

        

1

1 1
1 1 1 2 2 2

2

2 2
1 1 1 2 2 2

1 , ,

, ; ,

1 , ,

, ; ,

d

d

x x V x d

dV dV
Ax B u x d B d x B u x x

dx dx

x x V x d

dV dV
Ax B u x d B d x B u x x

dx dx

 

 

   

   

   

   

∣

∣
 (5.49)

where
1 and

2 are the lower bounds of the two parts of 1V ,
1 and

2 are the lower bounds of

the two parts of 2V . Since 2u does not depend on d , the polynomial bounds depend only on x . If

 77

1 2 0   and 1 2 0   , the verification is successful. Note that the verification of the two

Lyapunov derivative conditions is decoupled, so the verification follows the same procedure,

except that it should be done on both
1V and

2V .

Define the following:

 

 
1 2

1 2

min

min

,

.

min

min

Q Q

Q Q



 



 

 

 

  

  
 (5.50)

If both min

 and min

 are positive, the verification is successful.

5.6.2.2 Dealing with varying xv

One major challenge for this dynamic system is the varying
xv . The lateral dynamic model is

linear only when the longitudinal speed
xv is constant. In reality,

xv may vary, for example, due to

differential braking. Thus the verification must be done for
xv in a range. A convex hull method

adopted from [115] is used to solve this problem. The verification is performed on several linear

systems. Note that
xv affects only the A matrix in (5.46); furthermore, the entries of A matrix are

linear functions of
xv and 1/ xv .

Figure 5.7 Convex hull 1/x xv v of the curve

Based on the linear relationship between
xv ,1/ xv and the A matrix, two variables p and q are

introduced. In Figure 5.7, each point on the p-q plane corresponds to an Amatrix by the following

mapping:

 78

2 2

0 1 0

0 0

(,)
0 0 0 1

0 0

f r r f

r f f r

z z

p

C C bC aC
q q p

m m
A p q

bC aC a C b C
q q

I I

   

   

 
 

 
  
 

  
 
  

 
 

. (5.51)

Each point on the 1p q  curve corresponds to an Amatrix for the vehicle lateral dynamic model

in (5.46) under the speed
xv p , plotted as the blue curve in Figure 5.7. Then a polytope is

constructed as a convex hull of the curve, plotted as the red polytope in Figure 5.7. A finite set of

Amatrices is constructed by taking the vertices of the polytope, denoted as . Since the mapping

from p and q to Lyapunov derivative is linear if the Lyapunov derivative condition is satisfied by

each of the linear models in , by convex inclusion, all models corresponding to the points inside

the polytope satisfy the Lyapunov derivative condition, including the models with
xv varying

between
minv and

maxv .

For simplicity, taking the verification of 1V for example (the verification of
2V follows the same

procedure), the Lyapunov condition becomes

  

    

1

1
1 1 2 2

1 , , ,

, 0.

i

i d

x x V x d A

dV
A x B u x d B u x B d

dx

      

   

∣

 (5.52)

The decentralized verification is to find
1 and

2 such that

  

    

       

1

1
1 1 1

1
2 2 2 1 2

1 , , ,

, ,

; 0.

i

i d

x x V x d A

dV
A x B u x d B d x

dx

dV
B u x x x x

dx



  

      

  

  

∣

 (5.53)

In practice, the optimization in (5.53) has a heavy computation load due to a large number of the

constraints. An alternative (relaxed) problem can be solved instead:

 79

  

    

   

   

1

1
1 1 1

1
2 2 2

1 1 1 2

1 , , ,

, ,

;

, ; 0.

i

i

i d

i

x x V x d A

dV
A x B u x d B d x

dx

dV
B u x x

dx

i x x





   

      

  



   

∣

 (5.54)

This relaxation is a conservative approximation of the original search, as it is the sufficient

condition, but it allows separate search of 1

i for each
iA , and then search for a common upper

bound for all the 1

i . It accelerates the search, but min

 and min

 may not decrease monotonically,

as shown in Figure 5.8.

Figure 5.8 Verification of ESC+LK with the convex hull

5.6.2.3 Verification of controllers with piecewise structure

Next, the case where the chassis controllers are piecewise functions of the states is considered.

An example is presented to demonstrate the capability of the proposed method to deal with

piecewise controllers. In this example, 1()u  is assumed to have the following form:

   

   
max

1

1

1 1

, 1.1
,

,1.1 1.2
ff T

u

g x V
u K d

sat k

x

x V x

 
  

 

 (5.55)

where g is a quadratic function of x , maxu is a constant, representing the maximum allowed

feedback input, and
maxusat is the saturation function that saturates the input at

maxu . In effect,

when the state is close to the origin (  1 1.1xx V ∣), a mild nonlinear control law is used; as the

 80

state moves far from the origin (  11.2 1.1x V x ∣), a more aggressive linear control law is

used; when the states are too far away from the origin (  1 1.2xx V ∣), the control law is not

defined. Moreover, due to actuator capacity, the control input saturates at
maxu .

While a real controller used in the industry may be much more complicated than the controller

described above, this controller is a good example of controllers with piecewise structures.

The controller is synthesized so that it satisfies the Lyapunov condition.

Figure 5.9 Piecewise control structure for 1u

Since  2u  has a single analytical form, the search for
2 remains the same as the original

algorithm in (5.26); the search for
1 uses the following procedure:

 

       

        

        

2 1

1

1 min

1
1 1 1

1
1 1 max 1 1 1

1
1 1 max 1 max 1

arg max . .

1 1.1 , , ,

1.1 1.2 , , ,

1.1 1.2 , , .

d

T T

d

T

d

Q Q s t

dV
x x V x d Ax B g x B d x

dx

dV
x x V x x k x u d Ax B k x B d x

dx

dV
x x V x x k x u d Ax B u B d x

dx

 


 







  

       

         

         

∣

∣ ∣

∣ ∣

 (5.56)

One can use the relaxation trick in (5.54) to make the computation complexity grow linearly with

the number of regions in the piecewise controller. This is also true with multiple piecewise

controllers (e.g., both  1u  and  2u  are piecewise functions), since the search for
1 and

2 are

performed separately.

 81

5.6.2.4 Synthesis of vehicle chassis control

Unlike verification, synthesis with this Lyapunov function is more complicated. In (5.49), if

 1u  and  2u  are part of the optimization variables, the verification of the two Lyapunov

derivative conditions become coupled, since changing the control algorithm to decrease
1V could

end up increasing 2V , and vice versa. Because of this coupling, the dual variable cannot be

normalized to 1, as was the case in (5.26).

To simplify the expression, the feasibility functions 1 1 1(, ())u   , 2 2 2(, ())u   , 1 1 1(, ())u  

and 2 2 2(, ())u   are defined following the convention in (5.18). They take zero if the conditions

in (5.49) are met; otherwise, infinity. Note that the indicator functions depend on the control

algorithms as well. The Lagrangian is defined as

          

           

1 2 1 2 1 2 1 2 1 1 2 2 1 2min

1 1 1 2 2 2 1 1 1 2 2 2

, , , , , , ,

, , , , ,

minL u u J u J u

u u u u





   

         

   

       

       
 (5.57)

where   1 1J u  and   2 2J u  are cost functions of the control algorithms for performance

purposes,
1 and

2 are the dual variables corresponding to the following two constraints,

respectively:

 1 2 1 20, 0       . (5.58)

The dual ascent update is then

 
 

    

 
 

    

  

  

1 1 1

2 2 2

1 1 1

1 1 1 1 2 1 2 1 2 1 2
, ,

1 1 1 1 1 1

2 2 2 1 2 1 2 1 2 1 2
, ,

1

1 1 min 1 2

1

2 2 min 1 2

, , min , , , , , , , ,

, , min , , , , , , , ,

max ,0 ,

max ,0 ,

k k k k k k k k

u

k k k k k k k k

u

k k

k k

u arg L u u

u arg L u u

 

 

       

       

    

    

  



     







     

     

   

   

 (5.59)

where  is the step size to update the dual variables. If min

 and min

 are both positive, the

synthesis is successful; otherwise, continue the dual decomposition iteration.

In practice, it is found that performing a verification step before updating the dual variable, that

is, verifying the system with the current controllers as described in Section 5.4, is beneficial to the

 82

convergence. The verification process searches for an  and  that achieve the maximum min



and min

 , thus making the synthesis converge faster.

In the ESC+LK case, the search of controllers is restricted to linear controllers, with the LK

using road curvature to construct the feedforward control:

    1 1 2 2, ,T T

ffu x d k x K d u x k x   . (5.60)

The cost functions are defined as

      1 1 1 2 2 2,J u k J u k
 

    . (5.61)

The synthesis takes five iterations to complete:

Figure 5.10 Synthesis of ESC+LK

Figure 5.10 shows the change of 1k and 2k , min

 and min

 ,
1 and 2 . The plot shows how

the synthesis process handles the tradeoff between the two Lyapunov conditions. At the beginning

of synthesis, since 0min

  ,
1 kept increasing. Since

2k was very small after the first iteration,

the solver realized that increasing 2k was beneficial to increasing both min

 and min

 . As the size

of
2k grew, its influence on

1V was too large, which made
1V grow, and as

1 grew, the size of
2k

decreased and eventually the algorithm found a design that made both min

 and min

 positive.

 83

5.7 Conclusion

This chapter discusses the situation where coexisting controllers become the disturbance. The

key feature of this situation is that the disturbance is not necessarily hostile, but the control law

must not be exposed due to the confidentiality requirement. A Lyapunov function based method

is proposed for verifying of the closed loop performance with multiple coexisting controllers. This

method uses dual decomposition to allow non-cooperative agents to exchange information in the

form of polynomials, which does not expose their control algorithms. The decentralized

verification is proved to be equivalent to the centralized verification, which would require

exposure of the control algorithm. Moreover, the method also provides information regarding how

to modify the existing controllers if the verification fails, and it is capable of directly synthesizing

controllers given the specifications. The proposed method is applicable to controllers with analytic

expressions, and an example application with a piecewise analytic controller is shown.

 84

Chapter 6 Data-driven computation of minimal robust

control invariant set
A data-driven framework to compute an approximation of a minimal robust control invariant

set (mRCI) for an uncertain dynamical system is proposed in this chapter, which demonstrates the

importance of properly treating the modeling uncertainty of the system in correct-by-construction

control synthesis. In the previous chapters, the dynamic models are assumed to be known. In fact,

most of the correct-by-construction synthesis literature assumes that the model is known, including

the nominal model and the characterization of uncertainty, which is not an assumption that is easily

satisfied. In this chapter, the tradeoff between the nominal model and different types of uncertainty

and the relationship between the model chosen and the synthesis result are discussed. Measurement

data is used to identify the set of admissible models and a robust optimization approach is proposed

to select the optimal admissible model for the purpose of synthesis.

6.1 Background and motivation

A fundamental concept related to safety specifications is robust control invariant sets (RCI). If

an initial condition lies in an RCI, then there exist control inputs to guarantee that the trajectory of

the system remains in the set indefinitely, despite all possible uncertainties. In addition to

providing a safety certificate, set invariance can be used in a supervisory control structure, which

guarantees safety with minimal intervention on top of an existing controller [31, 74].

Existing methods for computing invariant sets include, on the one hand, LMI-based Lyapunov

type analysis [116], sum of squares programming [107], and occupation measures [117], which

result in invariant sets with a smooth boundary, and on the other hand, Minkowski type methods

[118-121], polytopic projection [31, 32] and linear programming [122], which result in polytopic

invariant sets. Although polytopes are commonly used to represent invariant sets for discrete-time

dynamical systems, the complexity of the polytope representing the invariant set grows quickly

within iterative algorithms. To overcome this challenge, several techniques for the computation of

 85

low-complexity robust invariant sets are proposed (see, e.g., [122-124]). In this chapter, inspired

by the one-shot approach proposed in [122] for low-complexity invariant set computation for

autonomous systems (i.e., systems without a control input), an iterative algorithm is proposed to

compute an RCI with constant representation complexity where one can leverage the available

control authority for enforcing invariance.

Depending on the control problem at hand, either maximal or minimal control invariant sets

can be relevant. A maximal control invariant set can describe the region of attraction with limited

control authority. It is formally defined in [125], and the definition of the maximum is in the set

inclusion sense, that is, every control invariant set within a compact subset of the state space is a

subset of the maximal control invariant set. The existence and uniqueness of the maximal control

invariant set can be guaranteed with some mild assumptions. For linear discrete-time systems, the

maximal control invariant set can be computed via polytopic projection [31, 126]. On the other

hand, an mRCI describes how small a robust invariant set can be under disturbance and

uncertainty. An mRCI is useful when the objective is to limit the deviations from a desired

operating point. For instance, when assume-guarantee reasoning [115, 127] is adopted, an mRCI

is useful since it minimizes the bound on the states of one part of the system, which is then treated

as uncertainty bound in the synthesis of other parts of the system. However, in general, there does

not exist a unique mRCI that is a subset of every RCI.

The computation of invariant sets depends on a model of the system, and uncertainty

characterization is critical for the computation of RCI. Among the above-mentioned methods,

while some can handle modeling uncertainty and exogenous disturbance, but they all assume that

the model is given, including both the nominal model and the uncertainty characterization.

However, the a priori uncertainty characterization might be too loose or too tight, leading to control

designs that may fail to satisfy the specifications due to under-estimating the uncertainty, or

designs that are too conservative due to over-estimating the uncertainty. In addition, if the

environment or the dynamical system itself is changing, the assumption about the bound of

uncertainty should be large enough to cover all the possible changes, which may cause the

synthesized controllers to be unnecessarily conservative, or even infeasible.

In real engineering practice, the model is often the result of a system identification step. Even

for physics-based models, the uncertainty is often characterized through experiments. The most

 86

classical system identification method is the least square regression, including many extensions

that incorporate various filtering structures [128]. Another class of identification methods are the

set membership methods, which identify the set of admissible model parameters via set

intersections [129]. Since the 1980s, control relevant identification has been studied, including

H identification [130], generalized predictive control [131], and stochastic embedding [132].

However, the H
identification and stochastic embedding approaches are for model identification

in the frequency domain, and the generalized predictive control focuses on optimality rather than

robustness. In terms of the identification of a model for an uncertain system that suits the need for

correct-by-construction control synthesis, there is a gap to be filled. Sadraddini et al. provide an

identification method that uses mixed integer programming to identify a piecewise linear model

with a bound on the disturbance for formal synthesis [133]. Although with assumptions on the

knowledge of Lipschitz constants on the system, the approach can provide safety guarantees also

for unseen data, the system identification and control synthesis are done separately and the

identified model is not necessarily “optimal” for the control synthesis task. Besides, the resulting

mixed integer program is very large scale, making it unsuitable for onboard identification.

The main contribution of this chapter is a robust linear programming (LP) framework for

approximating a minimal robust control invariant set while simultaneously selecting the optimal

admissible uncertain model. An admissible model, which is not unique, is defined as a model that

explains a finite measurement history. The novelty of the proposed framework lies in two aspects.

First, it treats the uncertainty bound as part of the identification parameters, which leads to a non-

unique model characterization and allows for trading off between different types of uncertainty.

Second, the non-uniqueness of the model is exploited by the mRCI algorithm and an optimal model

for computing an mRCI is selected concurrently. The proposed method is demonstrated with a

lane keeping problem for road vehicles. The lateral dynamics of a vehicle is nonlinear, but typically

it is approximated by a linear model, therefore modeling uncertainty is introduced. Moreover, the

nominal model, as well as the modeling uncertainty, varies with road conditions, vehicle properties

such as mass and tire properties, which might not be known exactly a priori. The objective of a

lane keeping controller is to keep the vehicle inside the lane boundary, therefore an mRCI is useful

for bounding the lateral deviation.

 87

The remainder of the chapter is organized as follows. First, the system identification framework

that identifies the set of admissible models for systems with uncertainty is presented in Section 6.2

and 6.3. Then a robust LP algorithm that computes an approximation of an mRCI by selecting a

model from the set of admissible models is presented in Section 6.4. The whole process of

approximating an mRCI from data is demonstrated on a lane keeping problem in Section 6.5 and

finally, conclusion is drawn in Section 6.6.

Nomenclature

In this chapter, for two vectors , nx y , the inequality is defined in the element-wise sense:

0

nx y y x     . For a matrix A ,
iA denotes its i-th row, jA denotes its j-th column and ijA

denotes the entry on the i-th row, j-th column.  1 2:x t t denotes a sequence of vectors, labeled by

time, starting from 1t  and ending at 2t  . For simplicity,  ,P q denotes the polyhedron

 x Px q∣ .

6.2 Linear parametrization with uncertainty

The following discrete-time linear model with uncertainty is considered:

 ˆ ˆ ˆ ,x Ax Bu Ed Ax Ed e       (6.1)

where nx is the state of the system, x is the state of the next sampling time, mu  is

the control input and ld  is the exogenous measured disturbance. ˆ ˆ ˆ, ,A B E are the nominal

model matrices, ,A E are the matrices for the multiplicative uncertainty and
ne is the additive

uncertainty. In fact, this is simply n uncertain linear parametrizations stacked together. Take the i-

th dimension as an example, the linear parametrization appears as:

 ˆ ,T T

i i i i i iz e      (6.2)

by taking

, ,

ˆ ˆ ˆ ˆ ,

.

T
T T T n m l

i i i

T
n m l

i i i i

T
n m l

i i i i

x u d z x

A B E

A B E







  

 

 

     

  
 

   

 (6.3)

It is assumed that the uncertainties are bounded in hyper-boxes:

 88

 | | , .i i

i M i Ae   (6.4)

However, unlike most set membership approaches which assume a fixed bound on the uncertainty,

the bounds M and A are not given and are included as part of the identification process. It is

assumed that u and d are bounded in polytopes and the bound is known a priori:

 

 

,

.

d d Gd g

u u Ru r

  

  

∣

∣
 (6.5)

This assumption is satisfied by many engineering problems since the bound for u and d are often

determined by system specifications or physics.

An uncertain linear model is determined by the value of ˆ[, ,]M A   , which contains the

information of both the nominal model and the uncertainty characterization.

In many cases, the model to be identified has additional structure. For example, due to

underlying physics, some of the model parameters may be known to be zero or some entries of the

system matrices may be linearly dependent. In order to incorporate such structure, it is assumed

that the model parameters are affinely parameterized by a hyperparameter  . That is,  ˆ ˆ Θ ,

 M   MΩ , and  A   AΩ , where the bold font is used to denote the known affine mapping

from  to the model parameters, e.g., ˆ ˆ ()A  A . Since these mappings are affine, the overall

parametrization of the model is also affine in  . Moreover, when no structural information is

available, these mappings can be taken to be the trivial ones.

6.3 Admissible model for measurements

Given a sequence of measurement (1: 1)x T  , the output and regressor for time step t is

defined as

 () (1), () [() , () , ()] .T T T T

i i iz t x t t x t u t d t   (6.6)

A model ˆ[, ,]M A   is called admissible if for 1,2,...,t T ,

 

(), (), . . () ,| () | ,

ˆ() () () ().

A M

T

e t t s t e t t

z t t t e t

 

  

    

  
 (6.7)

In fact, for each time step, the measurement introduces a linear constraint to the model

parameters:

 89

      ˆ() () () .
TTz t t t      

M A
Θ Ω Ω (6.8)

Since the  -parametrization of ˆ[, ,]M A   is affine, the above condition is a linear inequality

constraint on . The set of admissible models is then parameterized by  constrained inside a

polyhedron, with the following representation:

       1:
ˆ,| () () | ()

TT

Nt z t t t           
M A

Θ Ω Ω∣ . (6.9)

Figure 6.1 shows the comparison between the proposed uncertain model structure and linear

regression. The dots represent the measurement data and the center purple line represents the

nominal model. In addition to the nominal model, the uncertain model on the right introduces the

bound on additive uncertainty, represented as the parallel red dashed lines, and the bound on

multiplicative uncertainty, represented as the green radiating dashed lines. With additive and

multiplicative uncertainty, the model on the right covers all data points and therefore is an

admissible model.

Figure 6.1 Comparison of regression and uncertainty models

If  is nonempty, then all models in  explain the measurement data. In fact, under mild

assumptions,  is guaranteed to be non-empty.

Theorem 6.1: If parametrization of additive uncertainty is full rank, i.e. the image of ()
A

Ω under

 spans n , and the parametrization of A is decoupled from ̂ , then  is nonempty.

Proof: For any ̂ , since the parametrization of ̂ and A are decoupled, A can be chosen

independently. Let

 ˆmax () () .T

A
t

z t t    (6.10)

Then the model is admissible for any .M

 90

This shows that when
A is sufficiently large, the model becomes admissible. However, a

model with a large uncertainty bound may be useless in control synthesis.

In addition, there is a trade-off between different types of uncertainty, as shown in Figure 6.2.

When the additive uncertainty bound is large, the bound on multiplicative uncertainty can be

smaller, and vice versa. This is the direct result of (6.8).

Figure 6.2 The tradeoff between uncertainty bounds

The set of admissible models  gives the domain from which the model should be selected.

Among the admissible models, which one is “the best” depends on how this model is to be used.

If the goal is to find a model with the least squared error, then the least squares regression gives

the best model, with corresponding uncertainty characterization. However, since the goal is to

compute an mRCI, the incorporation of model selection process into the mRCI computation, as

shown in the next section, may result in a more desirable invariant set.

6.4 Robust LP algorithm for mRCI

6.4.1 One-step propagation

In this section, a robust LP algorithm that simultaneously selects the optimal model and

computes the mRCI is proposed.

Definition 6.1: A set n is called robust control invariant for the system described by (6.1),

(6.4) and (6.5) if there exists a control strategy : n   , satisfying,

, , (,)x d x d    and for all x , with (,)u x d , x  under all possible

uncertainty given by (6.4).

 91

As mentioned in Section 6.1, the existence of a minimal control invariant set in the set inclusion

sense is not guaranteed. The definition of an mRCI in a weak set inclusion sense is given:

Definition 6.2: A robust control invariant set is a minimal robust control invariant set if

, . .s t  is a robust control invariant set.

However, even with this definition, finding an mRCI is non-trivial. Typically, one tries to find

an (approximate) mRCI by minimizing a certain measure of size, such as volume [121, 123]. The

mRCI algorithm proposed in this chapter computes a polytopic RCI that minimizes a linear

objective function.

The proposed method draws inspiration from [122], where the author proposed a one-step LP

approach to compute a robust invariant set for a system without control. The key idea is to fix the

orientation of the separating hyperplanes defining a polytopic invariant set. However, the method

in [122] can only deal with autonomous systems. For systems that are not open loop stable, the

problem becomes infeasible. One can design a feedback controller to make the system autonomous,

but there is no guarantee that the feedback input respects the input bounds for all states inside the

RCI. Besides, the uncertainty is assumed to be purely additive in [122] and no measured

disturbance is included. Borrowing the idea of fixing the hyperplane orientation, an iterative

approach based on a robust LP is proposed.

The method starts by choosing a set of L hyperplanes with fixed orientation
iP and varying

offset iq , 1,...,i L . Let 1 2[, ,...,]T T T T

LP P P P , 1[,...,]T

Lq q q . Without loss of generality, assume

1iP  . If (,)P q has a nonempty interior, then
iP is the normalized normal vector pointing

outwards the corresponding separating hyperplane.

Assumption 6.1: The hyperplanes are chosen such that  Lx Px  1∣ is a compact set, where

L

L 1 denotes the column vector consisting of all ones.

Given a polytope (,)P q , the following one-step propagation is considered which

searches for  that contains all possible x :

min . . (,), ,

, | | , . . (,).,

T

q

A M

c q s t x P q d

e u s t x P q





 

   

      
 (6.11)

 92

The set (,)S P q  satisfies the following condition: for any x , d , there exists u

such that all possible x under u is contained in  . It is clear that if   , is control

invariant. By minimizing Tc q , an  that is as small as possible is preferred.

Next, a few simplification steps are presented to make the one-step propagation solvable by

convex optimization. First, as mentioned at the beginning of this section, there is no minimum RCI

that is the subset of every RCI. Therefore the RCI obtained depends on a specific control strategy.

For the linear discrete-time system discussed in this chapter, the following control structure is

imposed:

 ,T T

ff fbu K d K x  (6.12)

where ffK and fbK are constant matrices, representing the feedforward and feedback gain

respectively.

Second, it is assumed that B̂ is given so that the cross product terms between ffK , fbK and B̂

vanish.

Third, the one-step propagation should be robust against the model uncertainty, i.e.,  should

contain all possible x under the uncertain model. This is enforced by considering the worst case

uncertainty, captured by the “for all” quantifiers for e and  in (6.11). Since the uncertainty

bounds are assumed to be hyper-boxes, the following is true:

 

 

| | | |

| | | |

max max | | ,

max max | | ,

max ,

A A

E E

A

i i i AA A

i i i EE E

i i A
e

P Ax Tr xP A P x

PEd Tr dP E P d

Pe P

 

 



  

  

 

 (6.13)

where
n n

A

  and
n l

E

  are the bounds on | |A and | |E induced from
M respectively.

iP is the i-th row of P . Note that the expressions in (6.13) are not yet linear in x and d due to the

absolute value. Absolute value constraints can be converted to linear constraints using standard LP

techniques but, for the sake of keeping the notation simple, the absolute value form is used for the

remainder of the chapter. Now the one-step propagation problem is formulated as the following

robust optimization problem:

 93

             

, , ,

,

min . . , (,), ,

ˆ ˆ ˆ

.

ff fb

T

K K q

T T

ff fb

T T

ff fb

c q s t x P q d

P x B K d K x d P x P d P q

K d K x

AEA
A E Ω Ω Ω




    







    

      

 

 (6.14)

The above optimization simultaneously searches for 1) an admissible model, 2) a linear

controller that satisfies the input bound constraint, and 3) (,)P q  , the polytopic set

containing all possible x under the selected model and controller. It is a robust LP in the sense

that the constraints have to be satisfied for all x and all d . The robust LP is solved via

dualization [134].

Lemma 6.1: Consider the following robust LP problem:

1 2 3

min . . (,),

, 1,... ,

T

i T i i i

c s t F f

H H H h i M


 

   

 

   
 (6.15)

where  is the decision variable,  is the uncertain variable, and (,)F f is the bound for

uncertainty. It is equivalent to an LP as follows:

 

 

3
,

1 2

min . .

, 0, 1, .

,

...

T
T i i i

T
i T i i i

c s t H f h

H H F i M

 
  

  

 

   

 (6.16)

Proof: See Appendix P.

Observe that the one-step propagation in (6.14) is in the robust LP form of (6.15), by taking

, , ,ff fbK K q     and  ,x d  . Therefore, by Lemma 6.1, it can be transformed to a

standard LP and can be solved efficiently.

In some cases, the mRCI is required to be contained inside a set  , assumed to be a polytope:

  : ,M m  . (6.17)

This constraint can be easily enforced by appending M to P, and setting an upper bound on the

entries of the offset q corresponding to M based on m. Suppose the original P contains 1N

hyperplanes and M contains 2N hyperplanes. Simply let

    : , , ; ,P q P P M  (6.18)

and add the following upper bound on q  :

 94

1 1 21:N N Nq m

   . (6.19)

6.4.2 Iterative algorithm

As mentioned previously, if   , is a robust control invariant set. With the one-step

propagation solvable as an LP, there are two typical iterative methods that solve for invariant sets,

the outside-in method and the inside-out method [31, 121, 126]. In the proposed formulation, the

inside-out algorithm is used to solve for an RCI, and the outside-in algorithm is used to shrink a

known RCI to a smaller size.

6.4.2.1 Inside-out algorithm

The inside-out algorithm starts with a small initial , iteratively solves for  with the one-

step propagation and replace with  , until   is satisfied.

Algorithm 6.1 Inside-out algorithm for mRCI

1: procedure RCI-IO(0 ,, , , ,P q)

2: 0q q

3: do

4:

Find , , , s.t. ,

(,), , ,

(,)

ff fb

ff fb

L

q K K

x P q d K d K x

x P q

 

 

   

     

  1

5: q q

6: while Lq q   1

7: return [,], ,ff fbKq K

8: end procedure

The algorithm is shown in Algorithm 6.1, where 0 1  is a small constant that helps

accelerate the convergence.

Proposition 6.1: If Algorithm 6.1 terminates, (,)P q is an RCI.

Proof: By construction, (,)LP q   1 contains all possible x with x , d , and

since Lq q   1 ,   , therefore is an RCI.

 95

Remark 6.1: With 0 , the algorithm searches for an  slightly larger than that in (6.14), so

that tolerance is allowed for the termination condition   , which accelerates the

convergence of the algorithm.

Remark 6.2:  changes in every iteration, which allows the algorithm to choose a model based

on in each iteration. For a small , more uncertainty may be lumped into multiplicative terms

since | |x is relatively small; for a large , a smaller M may be preferred.

6.4.2.2 Inside-out algorithm

On the other hand, if an initial RCI is known for some admissible model, the outside-in

algorithm can further shrink the initial RCI with a convergence guarantee. The algorithm

iteratively solves for   , and replace with  until can no longer be shrunk.

Algorithm 6.2 Outside-in algorithm for mRCI

1: procedure RCI-OI(0 ,, , , ,P q)

2: 0q q

3: do

4:

Find , , , s.t. ,

(,), , ,

(,)

ff fb

ff fb

q K K q

x P q d K d K x

q

x P q

 

 

    

     



5: q q

6: while q q  

7: return [,], ,ff fbKq K

8: end procedure

Algorithm 6.2 shows the outside-in algorithm, which is very similar to the inside-out algorithm

except for two differences. First, the one-step propagation has an additional constraint q q  ,

which ensures that S S  . Second, the termination condition is on the norm of the difference

between q and q .

Theorem 6.1: If for a certain admissible model
0 , a polytopic RCI 0(,)P q is known, then the

outside-in algorithm is guaranteed to converge.

Before proving the above theorem, the following lemma needs to be proved:

 96

Lemma 6.2: For a compact polytope (,)P q , suppose one moves the i-th hyperplane from iq to

iq , and leaves the rest unchanged, resulting in the following polytope (,)P q , where

1 1[,... , ,...]T

i i Lq q q q q
  . Then there exists a constant ic such that if

i iq c , (,)P q   .

Proof: Since (,)P q is compact, () if x Px is a continuous function and it always achieves

its minimum value on a compact set. Let
(,)

mini i
x P q

c Px


 . Obviously i ic q . Note that if i iq q ,

 (,) (,) i iP q P q x Px q   ∣ . Therefore when i iq c , (,)P q   .

Lemma 6.3: Let (,)P q be a compact polytope. Define
(,)

mini i
x P q

c Px


 . For any q q  , if the set

(,)P q is nonempty, q c  .

Proof: The proof follows from Lemma 6.2 and the fact that
(,)

mini i i
x P q

c Px c


   .

Now let us prove Theorem 6.1.

Proof: First it is shown that the one-step propagation is always feasible, and every q during the

iteration leads to an RCI. For clarity, denote the offset q found in the i-th iteration as iq . This is

shown by induction. For the first iteration, by assumption, 0(,)P q is an RCI, so 1 0q q is a

feasible solution for the one-step propagation in the first iteration. Since it is an LP, thus convex,

the LP solver always finds a feasible solution. Assume at the n-th iteration, 1(,)nP q  is an RCI.

Then

   

      

1

1

, , , . . ,

(,), ,| | , ,

ˆ ˆ ˆ

,

,

.

n

ff fb

n

T T n

ff fb

T T n n

ff fb

K K q s t

x P q d e

P x B K d K x d Ed Ax e q

K d K x q q

M AΩ Ω

A E

 

  

 





 

     

      

  

 (6.20)

This implies that the one-step propagation is feasible at the n-th iteration. Consider the one-step

propagation in the n+1-th iteration. The only difference between the robust LP in the n-th and

 97

n+1-th iteration is that the uncertainty set of x changes from 1(,)nP q  to (,)nP q . Since

1(,) (,)n nP q P q  , the uncertainty set for the n+1-th iteration is a subset of that in the n-th

iteration, therefore nq is still a solution to the one-step propagation in the n+1-th iteration, and

the one-step propagation is still feasible. By induction, the one-step propagation in the outside-in

algorithm is always feasible, and for all nq , (,)nP q is always an RCI.

Next, let
0(,)

mini i
x P q

c Px


 . Since
0

0 , nn q q   , by Assumption 6.1, (,)nP q is compact,

then by Lemma 6.3,
0 , nn q c   . Since q is monotonically decreasing, and lower bounded

by c , by bounded convergence theorem,  nq eventually converges.

Table 6.1 Comparison of the iterative algorithms

 Initialization Convergence

Inside-out Arbitrary Not guaranteed

Outside-in Need an RCI to start with Guaranteed

In conclusion, the inside-out algorithm solves for an RCI, and the outside-in algorithm shrinks

the size of a known RCI. The comparison of the iterative algorithms is shown in Table 6.1.

6.5 Application on lane keeping of ground vehicle

In this section, an application on the vehicle lane keeping problem is presented. The

measurement comes from simulation data from CarSim, a commercial software highly

acknowledged by the auto industry that runs simulations with high-fidelity physics-based vehicle

models. The CarSim model used for collecting data has 113 states. A linear model with four states

is used to approximate this detailed model.

6.5.1 Model structure

The model to be identified for the lateral dynamics of a ground vehicle is called lateral-yaw

model, or bicycle model, which has four states:

 , , , ,
T

yx y v r    (6.21)

where y is the lateral displacement from the lane center, yv is the sideslip velocity,  is the

heading angle with respect to the lane direction and r is the yaw rate. The model is linear, yet the

 98

coefficient may change with the forward speed
xv , road condition and vehicle condition such as

mass, inertia and tire properties. A linear discrete model with uncertainty is used to describe the

dynamics. The input is the steering angle on the front axle f ; the measured disturbance is road

curvature dr .

In order to reduce the complexity of the uncertainty characterization, certain structures are

imposed on the model based on the properties of the dynamics. The dynamics for y and  are

essentially integrators, therefore no multiplicative uncertainty is put on these two dimensions.

Similarly, since yv and r do not depend on y and  , no multiplicative uncertainty is put on the

corresponding entries of A . The influence of dr follows a simple kinetic equation, therefore, E

is set to 0. Thus, the model is in the following form:

    

1

22 24 2

3

42 44 4

0 0 0 0

0 0
ˆ ˆ ˆ .

0 0 0 0

0 0

y y y

f d

ey y y

A A ev v v
B r

e

A A er r r

  
  

        
        
            
        
        

        

A E (6.22)

The bounds on uncertainty are

    22 24 42 44| | | | | | | | , .
T

A A A A e      M A
Ω Ω (6.23)

If one were to fully parameterize the nominal model, 20 independent variables are needed,

which may not be necessary since Â and Ê only have several strongly varying dimensions.

Instead, it is assumed that Â and Ê are linearly parameterized by a set of bases:

1 1 2

1

1 1

1 1

ˆ ˆ, ,
n n n

i i

i i

i i n

A A E E 


  

   (6.24)

where  iA and  iE are the bases for Â , Ê , with cardinality 1n and
2n respectively.

Remark 6.3: Multiple simulations are run under different scenarios to obtain multiple sets of the

nominal model with least square regression, and then Principle Component Analysis (PCA) is

applied on the models obtained to extract bases for Â , Ê .

The overall  parametrization appears as

 99

1 1 2

1

1 2 3 4

1 1 2 2 2 2

1 1

1 2 3 4

3 3 3 3 1 2 3

ˆ ˆ, , , , ,

, , , , , .

,

,

n n n
T

i i

i i M

i i n

T T
T T T

A

A A E E     

       



  

      

        

 
 (6.25)

The parametrization is indeed affine.

6.5.2 Preparation for mRCI

First, data is collected from CarSim, in which the vehicle is equipped with a simple LK

controller with some input noise and follows a prescribed route. Then the data is used to formulate

the set of admissible models  following the procedure in (6.8).  is a polyhedron of  .
1n is

selected to be 6, and
2n is selected to be 4, so 18  .

The selection of the hyperplane orientation is not the focus of this chapter since it is not clear

yet how to optimally select L hyperplanes. In [122], the author shows a 2-dimensional example,

where the hyperplanes are selected so that  , LP 1 is an L-sided regular polygon. This is not

applicable to state space with a higher dimension. There exist strategies for choosing hyperplane

orientations in higher dimensional space, e.g. using quaternions [135, 136], but uniform sampling

is in general inefficient for computing RCI since the shape of RCI is strongly influenced by the

dynamic system. A particle simulation approach is used to generate the hyperplane orientation for

the lane keeping problem.

To be specific, an uncertain model is identified from the experiment data, with the nominal

model being the least square regression result and bound on additive uncertainty:

 , Ax Ax Bu Ed e e      . (6.26)

Note that when fixing the nominal model to be the least square regression result, the minimum A

can be uniquely identified. A saturated LQR is then designed with the nominal model of the

system:

  max

max

max

,

,

Kx Kx
u

sign K u

u

x Kx u


 


, (6.27)

where  sign  is the sign function and  max max,u u  is the bound on input. Then M particles

with random initial state are simulated following this control law. The disturbance and additive

uncertainty are chosen in the following fashion: with probability  , d and are chosen such that e

 100

x
is maximized; with probability 1  , d and e are uniformly sampled among the extreme

values of and .

After T sampling times, the convex hull of the M particles is computed and the orientations

of the bounding hyperplanes of the convex hull are used for the mRCI computation:

 .P H . (6.28)

6.5.3 Result

The result of mRCI computation with the model structure in (6.25) is shown.

Figure 6.3 Convergence of the iterative algorithm

Figure 6.3 shows the convergence of the inside-out algorithm and outside-in algorithm. In fact,

the inside-out and outside-in algorithms converge to the same mRCI in this case, but there is no

guarantee that this will happen every time.

d e

 101

Figure 6.4 mRCI obtained with least square model and optimal nominal model

Figure 6.4 shows the computed RCI. For a benchmark, the least square regression result is used

as the nominal model and the mRCI algorithm selects the optimal bound for multiplicative and

additive uncertainty. In this case,  is simply
2 3,

T
T T    in (6.25) and

8  . The RCI with the

least square model is shown in blue, and the RCI under optimal nominal model is shown in red.

The reduction in volume is more than 50%. Since the RCI is in 4 , the plot shows the slices of

the polytope by setting one dimension to 0.

Notice that the nominal model selected by the mRCI algorithm is only optimal for the purpose

of computing an mRCI. In fact, under the least square model, the uncertainty bound found by the

mRCI algorithm is as follows:

 

 

0 0.0307 0 0.0022 ,

0.0046 0.0283 0.0088 0.0116 .

T

M

T

A

 

 
 (6.29)

For the optimal nominal model, the uncertainty bound becomes

 

 

0 0.129 0 0.0112 ,

0.0327 0.1643 0.0088 0.0236 ,

T

M

T

A

 

 
 (6.30)

which is significantly larger than the previous case. This shows that the least square model indeed

fits the measurement better, but results in a larger mRCI. This again shows the necessity of

performing model selection and mRCI computation simultaneously. Such co-optimization leads

 102

to a model that better suits the mRCI computation. On the other hand, one does not need to worry

about the correctness of the model, since it belongs to the admissible model set.

6.6 Conclusion

This chapter presents a novel data-driven algorithm to approximately compute a minimal robust

invariant set by simultaneously selecting an admissible model and minimizing the size of the RCI.

The algorithm has two steps: first, the set of all admissible models with uncertainty

characterization is identified from the measurement data, then a robust LP is formulated to

iteratively search for an mRCI. The robust LP-based algorithm is able to simultaneously select an

optimal model, finding a good tradeoff between the nominal model and different types of

uncertainties and minimize the size of an mRCI. A vehicle lane keeping example is used to

demonstrate the method, and the result shows more than 50% reduction in the volume of the RCI

computed compared to the benchmark.

Although the current algorithm provides a means to co-optimize invariant set size, the selection

of invariance-inducing controllers, and the selection of models among the models consistent with

the experimentally observed data, it does not necessarily provide invariance guarantees for unseen

data in cases where the unseen data can reveal additional dynamics and can further shrink the

admissible model set. Hence, another interesting direction is to extend the invariance guarantees

to unseen data by incorporating a priori information on the dynamics as in [133].

 103

Chapter 7 Experimental results
This chapter presents the experimental result of some of the methods proposed in this

dissertation. The experiments were conducted on the OpenAV platform in Mcity, which is a test

facility built by the University of Michigan. In particular, two algorithms were tested. First, a

supervisory control structure with CBF as the supervisor for lane keeping was tested. A human

driver was used to emulate the student controller, and the CBF’s ability to guarantee safety was

tested in a lane keeping scenario. Second, the data-driven algorithm for computing an mRCI was

validated with experiments. Data were collected from experiments on the vehicle, then an mRCI

was computed using the algorithm proposed in Chapter 6. The computed mRCI was then

implemented on the same vehicle, showing that the state indeed stayed inside the computed mRCI.

The effectiveness of the proposed methods are demonstrated with the experiments, and the

shortcomings of the theory and possible direction of future work to improve performance are

discussed.

7.1 Hardware setup

The hardware platform is built based on a Lincoln MKZ sedan. Multiple sensors, such as Lidars,

radars, cameras, and GPS units, are installed on the car, and the vehicle can be controlled by wire,

including its throttle, braking, transmission shift, and steering.

Figure 7.1 The Mcity OpenAV platform

 104

The sensors and actuators are accessible via the middleware called Polysync, designed

specifically for autonomous vehicle operation [137]. Polysync is able to collect the sensor data

packages, share among the nodes linked to the network, and send commands to actuation nodes

such as steering and braking.

The major sensor used in the experiment is the Real Time Kinematic GPS. RTK is an advanced

type of differential GPS that provides accurate measurement of position and velocity with the help

of a base station. The model on board the MKZ is OXTS RT3003, which has the following

specifications:

Table 7.1 Specifications of OXTS RT3003 RTK GPS

Position error Velocity error Pitch/roll error Heading error

0.01m 0.05km/h 0.03deg 0.1deg

The test facility is at Mcity, which is built by the University of Michigan for the testing and

validation of autonomous vehicles. Mcity is a closed test facility with urban roads as well as a

segment of straight highway.

Figure 7.2 Map of the Mcity test facility

 105

7.2 The experiment of CBF for lane keeping

The first experiment done on the MKZ platform was to test the performance of a CBF for lane

keeping, where the safety specification is to bound the lateral deviation of the vehicle:

 maxy y , (7.1)

where y is the lateral deviation from the lane center, set to 0.9m . The CBF was constructed based

on a linear lateral-yaw model of the test vehicle, which is a four-state linear model of the lateral

dynamics of the vehicle:

2 2

0

0

0 1

1

0 0

0 0

00 1

.

0

0
0

0

0

x

f r r f f
x

x xy y

f

fr f f r

zz x z x

d

v

C C bC aCy y C
v

mv mvv v m

aCr rbC aC a C b C

r

Ax Bu Ed

II v I v

    

   


 

   
                 

       
      
             

   

 
 
 
 
 
 

  



 (7.2)

where the four states are the lateral deviation y , sideslip velocity of the chassis yv , yaw angle 

and the yaw rate r . The input u is the steering angle f and the measured disturbance d is dr . m

and
zI are the mass and moment of inertia of the vehicle; fC and

rC are the cornering stiffness

of the two axles; a and b are the distance from vehicle CG (center of gravity) to the front and rear

axles.
xv is the longitudinal speed; if it stays constant, the dynamics is linear. The parameters

identified through testing are listed in Table 7.2.

Table 7.2 Model parameters of the test vehicle

m zI a b fC fC

1800kg 23270kg m 1.65m 1.25m 140000 /N rad 140000 /N rad

 The CBF was constructed using SOS programming and followed the procedure described in

Section 2.2.3. Bounds on all four states, the input, and the disturbance were enforced. Among the

bounds, the bound on disturbance was an assumption on the environment; the bound on the input

and states were the specifications to be satisfied. The parameters for the CBF construction are

listed in Table 7.3.

 106

Table 7.3 Parameters for the CBF construction

maxy maxyv max maxr maxf maxdr xv

0.9m 1 /m s 0.07rad 0.3 /rad s 0.5 /rad s 0.2 /rad s 10 /m s

 The order of the CBF was limited to quadratic. Moreover, since the LK problem is symmetric

w.r.t. the origin, the CBF was in the following form:

   1 Tb x x Qx  . (7.3)

The following CBF condition was enforced:

  2 0Tb x Q Ax Bu Eb d b       , (7.4)

which was a linear constraint for u , given x and d . The overall optimization solved on board was

the following:

  

1 0 2 3arg min .

0,

0

.

2

, ,

T

pre
u

u w u u w u u w s s t

x Q Ax Bu Ed b

u s

s

   

    





 

 (7.5)

where 0u is the input from the student controller and preu is the input from the previous time

instance. s is a relaxation term for the CBF condition, which is heavily penalized. The optimization

was solved online with Gurobi C++ implementation [138].

The student controller was emulated by a human driver, which could behave like a well-

designed student controller or a badly designed controller in the experiment. In order to keep the

system safe, another set of driving-by-wire controllers was installed on the passenger seat using a

gaming console, as shown in Figure 7.3. A safety driver would sit in the driver’s seat watching

over the experiment and would terminate the experiment should anything go wrong.

Figure 7.3 Human driver setup to implement the “student controller”

 107

The command from the student controller (emulated by a human driver)
0u was sent to the

CBF; then the CBF would determine whether an intervention was needed via the optimization in

(7.5) and send the command u to the drive-by-wire system of the test vehicle. One sample run is

shown in Figure 7.4.

Figure 7.4 A sample run of the CBF experiments

During the experiment run shown in Figure 7.4, the human driver was trying to steer the vehicle

out of the lane, and the CBF was able to keep the vehicle in the lane. u stayed the same as 0u when

no danger was detected and intervened when danger was detected. The experiment was not perfect,

as shown in Figure 7.4: the CBF  b x dropped below 0 once, which was due to the unmodeled

dynamics of the system, such as the delay and lag of the drive-by-wire system, and the unmodeled

dynamics of the vehicle excited by the abrupt steering. The video of this experiment can be found

at experiment video.

Multiple experimental runs were attempted, with some results worse than the one shown above.

Typically, when 0u changed direction quickly, or the vehicle was asked to bounce between the two

lane boundaries, the CBF performed poorly. The major drawback of the current CBF theory is that

it is not able to handle the change-rate limit of the input and the delay in the system. It assumes

that u can change arbitrarily fast when the command is within the input limit. However, in

experiments, when an abrupt change is commanded for f , the servo motor cannot keep up with

https://youtu.be/Xm3LoRWYe-Q

 108

the pace and the CBF may fail. In addition, a delay exists from the signal transmission on the CAN

bus and the Ethernet.

Figure 7.5 CBF Delay on the input

Figure 7.5 shows the comparison of the f commanded and the actual
f . The delay is about 0.4

seconds.

In future work, how to incorporate the delay and the input rate bound into the construction of

the CBF will be considered.

7.3 The experiment of a data-driven computation of an RCI

This section presents the experiment on the data-driven algorithm for computing a minimal

robust control invariant set (mRCI), as proposed in Chapter 6. The same experiment platform—

the MKZ in Mcity—was used.

First, data were collected by running the vehicle on a prescribed path. The path was a sinusoidal-

like curve with a maximum curvature of around 0.02 1rad  . The path was not perfectly sinusoidal

since it was recorded by a human driver. A map representing the lane center was recorded in the

form of trajectory points consisting of X , Y coordinates, heading angle and curvature.

Figure 7.6 the route for collecting data

 109

The vehicle was controlled by an LK controller designed with a preview control method, as

introduced in [139]. Details of the preview control design are omitted here. The vehicle followed

the prescribed path with a longitudinal velocity around 5m/s, which was enforced by a cruise

control using PID. Among the states, yv and r were directly measured with the RTK GPS, y and

 were obtained by projecting the current GPS coordinates to the reference trajectory, that is,

finding the closest point in the map file and computing the difference. With the projection, the

curvature is also determined, along with dr , which is the multiplication of longitudinal velocity

and road curvature.

As presented in Section 6.5, the model for LK consists of four states, one input, and one

measured disturbance:

 , , ,, ,fy d

T

r u rx dy v       . (7.6)

The measurements of , ,x u d were recorded, But the sensor was not perfect, especially when

measuring yv and r . Therefore, a Kalman filter was used to filter out the noise. The Kalman filter

was built based on a nominal model of the MKZ:

 d d dA x B dx u E    , (7.7)

which was obtained by discretizing the model shown in (7.2) with the parameters shown in Table

7.2. The output is the full state measurement, and the input is u and d . The process model is shown

below:

,

,

d d dx A x B u E d w

z x v





   

 
 (7.8)

where w and v are the process and measurement noise. The covariance for w and v were selected

as

 

 

0.01 0 0 0

0 0.1 0 0
cov , ,

0 0 0.01 0

0 0 0 0.05

0.2 0 0.001 0

0 5 0 0
cov , .

0.001 0 0.01 0

0 0 0 0.3

Q w w

R v v

 
 
  
 
 
 

 
 
  
 
 
 

 (7.9)

 110

The covariance matrix for x was initialized with the identity matrix, and then the Kalman filter

followed standard Kalman filter iteration as the experiment proceeded. See [140] and other

textbooks for reference.

To this end, the model to be identified was actually the following sequence of blocks:

Figure 7.7 CBF Experiment result

The above sequence of blocks was viewed as a generalized model, as this was actually what the

controller had to deal with in the experiment.

Since part of the LK dynamics is purely kinetic equations, additional structures were imposed

on the model. Notice that the dynamics of y and   are determined purely by kinetics, which can

be obtained by discretizing the following linear system:

0 0 0

0 0 1 1

x

d

y v y
r r

 

         
           

         
. (7.10)

After discretizing the model in (7.10), the entries in the nominal models that correspond to the

parameters from the kinetic model were fixed. As a result, all entries of Ê were now fixed, Â

was parameterized as follows:

1

1 0

1

0

ˆ ˆ ,

1 0 0 0 * 0 *

0 0 0 0 * * * *ˆ , .
0 0 1 0 0 0 0

0 0 0 0 * * * *

n
i

i

i

x s

i

s

A A A

v T

A A
T




 

   
   
    
   
   
   



 (7.11)

Remark 7.1: The rest of the entries of Â were parameterized by  , with linear bases generated

via PCA, as described in Remark 6.3.

Then following the procedure presented in Section 6.3, the set of admissible models  was

identified. The model structure was the same as described in Section 6.5.1, and the procedure

presented in Section 6.5.2 was used to generate the orientations of the hyperplanes of P . In

 111

addition, the mRCI was enforced to be contained in  1| 0.9x x  , which restricted the lateral

deviation y to be less than 0.9m. The specifications for the mRCI computation are listed in Table

7.4.

Table 7.4 Setup of the computation of mRCI

Maximum steering Maximum road curvature Maximum deviation

0.2 rad 0.025 1rad  0.9 m

Since there was no known RCI to begin with, an mRCI was computed with the inside-out

algorithm. At the first iteration, a high gain controller with a small RCI was obtained, but when

put to the experiment, the MKZ steer-by-wire system was not able to keep up with the input

command, and the controller performed poorly. Then the feedback gain was restricted and an RCI

with moderate gains was obtained. The bound on the gain was set as follows:

1 30.3, 1.2fb fbK K  . (7.12)

Figure 7.8 Inside-out algorithm to compute an mRCI

As shown in Figure 7.8, the algorithm terminated after 123 iterations, returning an RCI, an

admissible model, and a control law consisting of feedback of x and feedforward of dr :

  0.30, 0.061, 0.85, 0.05 0.03 du x r      . (7.13)

Next the lane keeping controller was tested on a sinusoidal track with maximum allowed curvature

with the above control law. The parameters of the desired path are listed below:

Table 7.5 Parameters of the sinusoidal desired path

Wavelength Maximum road curvature Amplitude

49 m 0.025 1rad  1.5 m

 112

The same Kalman filter was used on board and the feedback was based on the filtered measurement

of the states.

Figure 7.9 Relative position in the computed mRCI

Figure 7.9 plots /i iPx q for every
iP in P . If x is contained inside  ,P q , all plots

should stay below 1. As shown in Figure 7.9, after converging from the initial condition, x stayed

inside during the experiment run.

Figure 7.10 State trajectory and mRCI

 113

Figure 7.10 shows the plot of state trajectory and the computed mRCI. Since the mRCI is in

4 , both the state trajectory and the mRCI are projected into four 3-dimensional space. As shown

in Figure 7.10, the state stayed within the computed mRCI.

Remark 7.2: Experiments were conducted on paths with sharper (40m wavelength) and milder

(80m wavelength) turns, and the state was contained in the mRCI in both cases. However, when

the speed of the vehicle was changed, the performance deteriorated significantly. This result

indicating that the proposed method is quite sensitive to xv . Since
xv is an important parameter

in the nominal model, the model may not be admissible once xv is changed. One possible solution

is to parameterize the model with
xv , but some modification is needed in the one-step propagation,

as the model will no longer be linear.

 In Section 6.5.3, when the nominal model is fixed to be the least squares regression model,

the RCI computed is larger in size compared to the RCI computed with the nominal model

determined by the mRCI algorithm. However, when the undetermined entries of (7.11) were

determined by linear regression with the measurements from the experiments, the inside-out

algorithm did not terminate. The failure arose from the fact that the data from the real experiments

were noisier than those from the CarSim simulation, meaning that a badly chosen nominal model

may cause the iterative algorithm to fail.

7.4 Conclusion

Experiments were conducted on two methods—the CBF supervisory control method and the

data-driven mRCI method. The CBF experiment shows the effect of the CBF on preserving safety,

even with a student controller with bad intentions. However, a gap always exists between theory

and reality, and the experiments on the CBF demonstrate some shortcomings of the theory.

Because the CBF uses last-minute intervention to guarantee safety, which is drastic and sensitive

to delay and to the limited change-rate of the input, the CBF must be improved upon.

On the other hand, the mRCI computed worked well with the imperfection of the model in the

experiments. There may be three reasons that lead to the good performance. First, the model used

for computing the mRCI is already an uncertain one that includes the system imperfection. Second,

the mRCI is enforced with a linear controller with feedback and feedforward, which is simple yet

 114

more robust against the delay. Third, bound on the feedback gain is enforced during the

computation of the RCI, thus preventing the system from being high-gain.

One possible solution to the problem with the CBF method is to restrict the gain of the controller

used to construct the CBF, as presented in Section 2.2.3, though it may lead to establishing a very

conservative CBF which intervenes frequently. A CBF that intervenes even when safety is not

endangered beats the purpose of using a CBF as a supervisor. Possible directions for improving

the CBF method include:

1. using an integrator to incorporate the change rate limit of the input;

2. including delay by considering the worst-case propagation of the system.

In conclusion, one may achieve safety with a simple implementation, as is the case with the

mRCI experiment, but it is restrictive, dictating the whole design of the controller. One may

achieve safety with a more complicated structure, such as the supervisory structure in the CBF

case, but it would require a better model and the theory is not yet mature.

 115

Conclusion and future work

Conclusion

This dissertation considers the problem of correct-by-construction control synthesis and

verification for dynamic systems. In order to guarantee safety for the system without being overly

conservative, disturbance and model uncertainty must be accounted for properly. Several

approaches are presented, tackling different types of disturbance and uncertainty, yet they all

center around the idea of taking advantage of the structure of the problem, including the dynamic

model, the disturbance structure, and the uncertainty characterization and reducing the level of

conservativeness during the verification and control synthesis.

Chapter 3 presents the polar method, which solves the problem of moving obstacle avoidance

for low-speed autonomous vehicles. The main issue addressed in this problem is the motion of

moving obstacles, viewed as an exogenous disturbance. When no more information is available

other than the maximum velocity of the moving obstacles, the control synthesis should prepare for

all possible motion within the velocity limit. Safety is achieved with a supervisory control

structure, where a CBF is constructed with the avoidable set solved with the polar method. The

CBF supervisor would follow the student controller’s command when no danger is detected, and

intervene when the student controller’s control input is leading to danger. The supervisor works

with a student controller that may be designed with any existing methods, which really shows the

method’s ability to provide a guarantee of safety in a plug-and-play fashion. In the single obstacle

case, the polar method is able to guarantee obstacle avoidance under all possible motion of the

obstacle. In the multiple obstacles case, since collision is inevitable in some situations, the concept

of responsibility of the collision is adopted to make the problem reasonable. The polar method is

able to guarantee collision avoidance in the sense that the autonomous vehicle will never cause a

collision for which it is responsible.

 116

After discussing the design of a supervisor in Chapter 3, Chapter 4 switches gears to the other

side of the coin—the design of a student controller. As powerful as the CBF may be, it focuses on

safety rather than performance. When a student controller is not designed in a way that is

compatible with the supervisor, intervention may be triggered frequently and the performance may

be compromised. Therefore, a supervised learning based method is proposed that combines

machine learning with CBF. First, trajectory optimization is used to generate a trajectory library

consisting of trajectories that satisfy the CBF condition and will not trigger an intervention. These

trajectories are then used to train a trajectory generator that will presumably inherit the good

properties of the training set. The trajectory generator is implemented in the form of a Continuous

Hold controller, while CBF guarantees safety on top of it. The proposed method is demonstrated

on a truck lane keeping example, where the safety specification is bounding the lateral deviation

and roll angle of the truck. Simulation is performed on TruckSim, a high-fidelity physics-based

model. The result shows that the learning based controller is able to satisfy the safety specification

without triggering the CBF supervisor, and the ride comfort of the truck is enhanced compared to

that of the benchmark, which results in severe intervention from the CBF.

Next, Chapter 5 discusses a situation where the disturbance is not necessarily hostile.

Previously, in the obstacle avoidance problem and the lane keeping problem, the disturbance was

assumed hostile, that is, the control synthesis had to guarantee safety even for the worst-case

realization of the disturbance. In the vehicle chassis control problem, however, the coexisting

controllers designed by suppliers are not necessarily hostile, and considering the worst-case

scenario would render the problem unsolvable. The main difficulty lies in the fact that the control

algorithms are trade secrets of the suppliers, which means that it is impossible to ascertain the

whole picture of the closed-loop system. To resolve this problem, the Lyapunov function is used

as a measure of the influence of each controller, and dual decomposition is used to build a bridge

of communication that preserves confidentiality. It is proved that the decentralized verification is

equivalent to the centralized verification, thus obviating the need for the suppliers to expose their

control algorithms.

Chapter 6 then focuses on modeling uncertainty. Most correct-by-construction methods,

including the three methods previously mentioned in this dissertation, assume that the model of

the dynamic system is known, including the nominal model and the uncertainty characterization.

In practice, however, obtaining a model is not trivial. Moreover, if the model is the result of system

 117

identification from measurement data, there are typically non-unique choices of the model

parameters, and it is not clear how to choose one that would suit the control synthesis. A data-

driven algorithm is proposed to approximate a minimal robust control invariant set. It begins by

identifying the set of all admissible models, which include the nominal model and the uncertainty

characterization. An admissible model is defined as a model that explains the measurement and is

thus viewed as a “correct” model for control synthesis. Then a robust optimization based algorithm

computes a minimal robust control invariant set while selecting the optimal admissible model that

leads to the smallest invariant set. This work shows that when system identification and control

synthesis are considered in an integrated way, the tradeoff between the nominal model and

different types of modeling uncertainty may be dealt in a way that suits the control synthesis.

In conclusion, by utilizing tools in classic control theory, optimization and machine learning,

several methods are proposed that give a safety guarantee to many interesting Cyber-Physical

Systems. Disturbance and model uncertainty is an important issue for providing a safety guarantee

to dynamic systems, and it is shown that when the structure of the problem is utilized in a smart

way, conservativeness can be reduced. In some cases, a less conservative method means the

difference between a solvable problem and a non-solvable one. Some of the proposed methods are

tested on an autonomous vehicle experiment platform, demonstrating the capability of providing

safety guarantees to a realistic system.

Future work

Some open problems and possible extensions of the proposed methods have not been addressed

in this dissertation. Future work will include:

 Improving the CBF theory: The CBF theory has been found to be incomplete by the

experiment due to a lack of consideration for delay and lag in the dynamics. Lag may

be solved by increasing the order of the dynamic model; a good solution for the delay

is not yet apparent.

 More complicated specifications: Most of the work covered by this dissertation

concerns invariant set and safety constraints. Extensions of the proposed methods to

more complicated specifications concerning liveness and reactiveness of the system are

possible.

 118

 Extension to hybrid systems: The systems considered in this dissertation consist of

purely continuous states. The proposed methods may be extended to hybrid systems in

which some states are discrete, such as traffic light signals.

 Extension to stochastic settings: In some cases, guaranteeing safety in a rigorous sense

may be impossible. A lower bound of the probability of safety may be sought instead,

such as the work on the Markov Decision Process [141, 142]. A potential direction of

research is to extend the proposed methods to a stochastic setting.

 Safe learning: Although machine-learning techniques were used in Chapter 4, it was

separated from the safety guarantee. Methods do exist that guarantee safety along with

learning (viz. the Gaussian process approach [82, 83]). However, assuming the

unknown function to be a Gaussian process is very general, and may hide some inner

structure of the problem. A potential extension of the proposed methods is to combine

learning with structural information of the system and provide a performance guarantee

to a partially known system.

 119

Appendices

Appendix A. Proof of Theorem 3.1

For any bounding half space 1TH x  that satisfies (3.29), since is a convex polytope, it can

be rewritten as a convex combination of the vertices of :

 

, , . ,

0, 1: 0.

i i i

T

i i

d u u u V

H Eu Gd



 

    

   




 (A.1)

Note that .V is a set with finite elements, so  
.V

max
i

T

i
u

H Eu


 exists, and

  
.V

max
i

T T

i
u

H Eu H Eu


 . (A.2)

Therefore, let  
.V

arg max T

m
u

u H Eu


 ,

 mu

HHs sH P P  . (A.3)

(A.3) proves that HsP contains all linear functionals corresponding to bounding half spaces

satisfying the boundary conditions.

Appendix B. Proof of Theorem 3.2

First, write  HConv P as

      
.

.u

H Hs HIn Ins

u V

ConvConv P Conv P X P X 



 
 


   


 (B.1)

Recall the fact that for any union of polytopes i

i

P
 , the vertices of its convex hull is a subset of

the union of the vertices of all polytope components.

  ..i i

i i

Conv P VV P
 

 
 

 (B.2)

 120

Therefore,

    
.

. .u

H Hs In

u V

Conv P V P X V



  . (B.3)

Recall the definition of a polar; it follows that

    
.

. .. i

i

u

HsB H In

u V

P X VP H Conv P V 



  . (B.4)

Therefore the bounding hyperplanes of
BP lie inside the intersection of

InX 
 and

HsP , and
BP is an

avoidable set that contains
InX .

Appendix C. Proof of Theorem 3.3

First, it is shown that for all
HH P , 1TH x  is not a valid bounding hyperplane for the

avoidable set containing
InX . Then it is shown that for all

HH P , the half space 1TH x  contains

BP . In other words,
BP is minimal.

For all HH P , by definition,
sn HIH X H P   . If InH X  , then from (3.24), 1TH x  is a half

space that does not contain dX . If
HsH P , from (B.1), H does not satisfy the boundary

conditions.

For all
HH P ,  H HH P H Conv P  , so

  , 0, 1, .i i i i i HH H H Conv P V       . (C.1)

For all
0 Bx P , 0 0

TT

i iH x H x . Since
0 Bx P , it follows that

 0

0 0

1, .

1.

T

i i H

TT

i i

H x H Conv P V

H x H x

  

  
 (C.2)

(C.2) implies that adding 1TH x  as a half space to
BP will not reduce any point from

BP , so
BP

is minimal.

 121

Appendix D. Proof of Theorem 3.4

Let
HP be the polytope consisting of all feasible bounding hyperplanes H for an avoidable set

BP .
HP may not contain the origin in its interior. Normalize the expression of its bounding

hyperplanes to

1, 1,

0, 1,

v

T

j

T

i i N

H j

v H

N





 

 
, (D.1)

where the first category denotes bounding hyperplanes corresponding to facets that do not contain

the origin, and the second category denotes those facets that contain the origin.
vN and N are the

number of linear constraints for each category.

Let  v iH v and  iH  denote the two groups of bounding hyperplanes in (D.1). Since

HP is constructed by intersecting HsP , where every facet contains the origin, and InX 
, where every

facet does not contain the origin, it is clear that . .v IIn nH X H X V  . Recall that shifting a

polytope is equivalent to shifting all the vertices. It follows that

  . , .IIn nX H v c v X V


    . (D.2)

Since the construction of
HsP is an invariant of the shifting operation in the state space, HsP remains

the same after shifting InX . It then follows that HP has the following bounding half spaces:

  1

.
,

0,

v

T

T
v H

H

v c H

H 

   

  





 (D.3)

For any vertex
0H of HP , it is the intersection of N facets, where N is the dimension of the state

space. Assume the linear equations corresponding to
0H is

 

0

1 1

,

,

1 1 0 0 .

T

p pM q qN M

T

AH a

A v v

a

  



   



 (D.4)

Since (D.4) has a unique solution
0H , A is invertible and 1

0H A a . In addition, since 0 HH P ,

1 0

1 0

, , , 1,

, , , 0.

T

v p pM

T

q qN M

v H v v v v H

H H    

    

    
 (D.5)

Now consider the corresponding vertex 0H of
HP . If it exists, it satisfies

 122

   0 0TA ac H  . (D.6)

If the matrix  TA ac is invertible and  
1

TA ac a


 satisfies all inequalities of HP , then 0H

exists and is a vertex of
HP .

From the matrix inversion lemma, if Aand 11 Tc A a are invertible, then  TA ac is invertible

and

    
1 1

1 1 1 11T T TA ac A A a c A a c A
 

       . (D.7)

Clearly, A is invertible;
11 Tc A a is a scalar. Since In InX X c  contains the origin, c is inside

InX .
0H is a vertex of

HP , so  0 1TH c  . It follows that

1

01 1 0T Tc A a c H    . (D.8)

Therefore

  
1

1 1

0 1 TH c A a A a


   . (D.9)

Next it is shown that 0H is inside
HP . For all 1, ,v p pMv H v v v  :

      0

1
1 1 11 TT T Tc A a v Av H ac A c a


     . (D.10)

From (D.8), 1

0 1T Tv A a v H   . It follows that

  
1

0 1

1
1

1

T
T

T

c A

a
v

a
Hc

c A






 


 . (D.11)

For all 1, ,q qN MH       ,

  
1

1

0 01 0T T T

i iH c A a H 


   . (D.12)

Therefore 0H is a vertex of HP . Since the mapping from the vertices of
HP to the vertices of HP

is established, the only thing left to check is wether
B H BP P P c



   . Note that

 

     

   

 

0

1
1 1

1 1

1

1

1 1

0

1

1 1

1
1

1

1 1

1,

T

T
T T

T T
T T

T

T
T

T T

T

H x c

c A a a A x c

a A x a A c

c A a

a A x

c A a c A a

H x


 

 





 

 

   


 



 
 

 

 (D.13)

 123

which proves that for each facet of
BP , a corresponding facet of BP exists by shifting the facet with

vector c , i.e., B BP P c  .

Appendix E. Proof of Theorem 3.5

 is actually a differential inclusion of the original system
0 , which implies:

   

0 0

. . , ,

, ,

, ,

,

.

,

s t f x u d f x u

x S d u d

x d

     






 (E.1)

This means for any , ,x u d in
0 , there exists d  that reproduce the state derivative in system

 with the same state and input. Therefore, any avoidable set under dynamic is also an avoidable

set under dynamics
0 . It follows that P is also an avoidable set for

0 .

Appendix F. Proof of Theorem 3.6

 Only the case when 0  is proved. The case when 0  follows the same reasoning. For any

point x at the boundary of P , suppose 0  , then 4 0H  . P is an avoidable set w.r.t. the

dynamic system . Therefore,

  1 1, : 0Td u H E u G d      . (F.1)

Since

 

 

 

1 1

4
1 1 2 2

1 1

sin

0.

T

T

T

H E u G d k

H
H E u G d

X Y

H E u G d



 

  
  

  

 (F.2)

It follows that P is also an avoidable set w.r.t.  .

Appendix G. Derivation of (3.43)

From the definition of the barrier function in (3.41), the derivative of  B x is

  
B b

B x x
b x

 

 

. (G.1)

Assuming that x is constant within the sampling time
sT ,

  
0.

T
b

d x
d H xx

dt dt

 
 
   

 (G.2)

 124

It follows that

      
n

nn T

n

B
B x H x

b





. (G.3)

For this certain function,
n

n

B

b




has an explicit expression:

     

 

1 1 ! 1

1

n n n
n

nn n

n b bB

b b b

      


 
. (G.4)

Given a sampling time
sT , the barrier function at the next time step can be calculated using the

Taylor expansion:

          
   

 
 

1 1

1 11 1
.

! 1

i i i

ii i T i

s s sii i i

b b
B t T B t B t T B t H x T

n n b b

 

 

   
 

    


  (G.5)

It follows that

    
1

i
T T

s s
s T

i s

H xT H xT
B t T B t

b b H xT





  
    

 
 . (G.6)

Recall (3.42),

1

T

s

T

sT

s s

H xT

bb T H x
H xT B T B

b

 





   




. (G.7)

Appendix H. Simulation setup in Section 3.6

The parameters for simulations are listed in Table H.1.

Table H.1 Simulation Parameters

Parameter Value Meaning

maxdv 1.2 /m s Maximum obstacle speed

maxr 3.4 /rad s Maximum yaw rate

maxa 24 / sm Maximum acceleration

maxv 2 /m s Maximum vehicle speed

vR 0.5m Radius of AV

pR 0.3m Radius of pedestrians

 125

sT 0.05s Sampling time

 0.7 Friction coefficient

ax , ay 1 Standard deviation of pedestrian acceleration on X and Y direction

The simulations are conducted using Matlab. The toolboxes used are shown in Table H.2.

Table H.2 Toolboxes Used

Polytope Calculation Multi-Parametric Toolbox 3

Mixed Integer Programming Gurobi 6.0.4

Hamilton Jacobi Calculation Level Set Toolbox 1.1.1

Appendix I. MPC design in Section 3.6

The greedy MPC navigates the vehicle to the destination without any knowledge of the

pedestrians. The nonlinear unicycle model of the vehicle is linearized for MPC.

   

   
0 0

0 0

00 0 cos sin

00 0 sin cos

0 0 0 0

0 0 0 0

XvX

YvY

v av

r

 

 



        
       
        
       
       

     

, (I.1)

where

  0 0 0, .t       (I.2)

This linearized model is then discretized and used for the MPC, with prediction horizon 5predN 

and control horizon 1conN  .

Appendix J. Potential field controller design in Section 3.6

The potential field controller is adapted from the method proposed by Shimoda et al. in [66]

and tune the parameter to enhance its performance. The potential field is built on the trajectory

space, which is the Cartesian product of velocity and yaw rate (different from the original trajectory

space in [66] because of the different inputs of the dynamic model). The potential field function

used is

 126

     

 

 
 

22

1

21

2

,

1

1 exp /
2

v

ped

k

g des v des

N o ov

i i

oi i

oa d odi

f v r K r r K v v

K K v

r r
K A K d v





    



  
  
 
 

 , (J.1)

where
dA , or , d , and  are defined in the following

  

   

2

1 2

1

2 2

arctan arctan ,

1
,

2

,

.

des d
d

des d

o

d d v p

r

Y Y Y Y
A

X X X X

r r r

d X X

r

Y Y R R



 
 

 

 

  

 

  

 (J.2)

1r and 2r are the maximum and minimum yaw rate that will lead to a collision, as demonstrated in

Figure J.1. See [66] for more details.

Figure J.1 Maximum and minimum yaw rates leading to collision (original figure in [66])

The parameters for the potential field method are listed in Table J.1.

Table J.1 Parameter of the potential field controller

gK 5

1vK 15

2vK 2

oK 100

oaK 0.1

ovK 0.1

odK 2

Appendix K. Hamilton Jacobi controller design

The control problem is formed and solved as a pursue-evade game. First, a reachability set for

a single obstacle is solved while restricting the vehicle’s input to only braking, then apply this

reachability set to multiple obstacles (the same “trick” used in the polar method). It should be noted

 127

that the coordinate for relative dynamics in the Hamilton Jacobi method differs from that for the

polar algorithm.

cos sin

sin cos

L

L

X

x Y

v v

X Y

X Y

 

 

   

   

   
   

 
   
      

, (K.1)

where
LX and

LY are the relative position of the obstacle in the local frame attached to the

vehicle. Theoretically, the three states in (K.1) are sufficient for describing the relative dynamics

between the AV and the obstacle. The reason for using four states in the polar algorithm is that the

model shown in (3.7) is more similar to double integrators, which makes the simplification in the

polar algorithm easier. The dynamic equation for the states in (K.1) is

L Ldx

L Ldy

v

x

a

Y r v

X r v

 

 

  
 

 
 
  

, (K.2)

where Ldxv and Ldyv are the longitudinal and lateral projection of the obstacle’s speed in the local

coordinates. The dynamics are then reversed in time to calculate the backward reachable set.

The value function is defined as

     
0

, t min max 0
b

t

ta
x dt x t

 
  , (K.3)

and  x satisfies:

  

 

 

 

2
2 2

2
2 2

2
2 2

0,

0, .

0,

L L v p

L L v p

L L v p

X Y R R

x X Y R R

X Y R R

    

   




 

   








 (K.4)

The Hamiltonian of the reversed dynamics allowing only braking is solved analytically:

    

 

 

 

 

2 2

1 2
1 3 max

3

ma

max

3 3 max max

3 xmax

, , , , ,

, ,
2

min 0, ,

, , ,

m

min max

0

0

in 0, ,

T

b a

d

p f x t a x t b x t

p p
p v k p v v

p a

k p v p a

H

v

v

v

v vp a

 


  















 

 (K.5)

 128

where a and b are the strategy for the vehicle and obstacle, respectively. p
x





 is the

conjugate momenta;  3 ,k p v ensures that the vehicle speed is within the limit. To enforce the

responsibility rules presented in Section 3.2.2,

  0 0 0LX v H      . (K.6)

The final time is chosen as 10T s .The calculated zero level set is shown in Figure K.1.

Figure K.1 Hamilton Jacobi reachability set

The result is calculated numerically and stored in a look-up table. In the implementation, local

regression is performed to obtain the value and the gradient of  . Then the following constraint

is enforced:

      , ,
T

x f x u xd    , (K.7)

where  is the gradient at that point and  is a positive constant. For more details, please

refer to [143] and [33].

Appendix L. Zero dynamics of the truck lateral dynamics in Section 4.2

To show the zero dynamics the following state transformation is used that renders a new choice

of states:

T

TTx z z      , (L.1)

where T is a full rank matrix:

 129

0

0

4 2

6 2

8 2

1 0 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0 1 0

0 0 0 0 0 0

x

x x

v T

v v T

B B
T

B B

B B

 
 
 
 
 

 
 
 

 
 
 

  

, (L.2)

and iB is the i-th entry of B . The transformation is linear and full rank. The dynamics under  is

 dA Bu Er    , (L.3)

Moreover,

  0 0 0 0 0 0 0
T

B TB CAB  , (L.4)

where  0 1 51 0 xC T v  0 . So the dynamics under  can be written as

 
1

2

0 0

0 0, ,

d

z z

z CACA x

z z

B u CAE r

 

      
      

        
            





, (L.5)

where  , ,z z  has exponentially stable zero dynamics, meaning  0,0,   is

exponentially stable.

Appendix M. Analysis of continuous hold controller in Chapter 4

M.1 Continuous hold controller for systems with disturbance

Systems of the following form are considered:

  , ,x f x u d , (M.1)

where x , u and d are the state, the input, and the measured disturbance respectively.

Remark M.1: The result of the CH controller is applicable to general nonlinear dynamic model,

the control-affine nonlinear model in (4.1) (assuming 2 0d ) is a special case.

The following assumptions about the system dynamics are made.

Assumption M.1: : n m p nf    is locally Lipschitz continuous in x ,u , and d .

 130

Assumption M.2: p  and mapping : n

x  , : p

u  , Lipschitz continuous, such

that     , , 0x uf d d d   , i.e., for every exogenous disturbance d , there exist two

mappings x and u that map any d to a unique equilibrium point and a unique input that

maintains the equilibrium.

Remark M.2: There may be non-unique equilibrium points of the system due to the cyclic

coordinates, i.e., states that do not affect the dynamics, see [144] for detail. Therefore, a function

x is needed to select a single equilibrium point given d . Assumption 4.3 gives a possible

definition of x .

Assumption M.3: d  , there is an open ball about the origin, n

dB  , a positive-definite,

locally Lipschitz-continuous function :d dV B  , and constants
1 20    such that

 d xx B d   ,

 

 1 2

,

.

x

T T

d

x x d

x x V x x x



 

 

 
 (M.2)

Assumption M.4: n  , compact, such that  , xd d   . There exists CBF ()b x , such

that  , 0x S b x   , ,d     0xb d  . Moreover, , d    , : 0,d m

pu T
   

and a corresponding state trajectory : 0,d n

pT     satisfying

         

 
    

 
   

 
   

1 0 ,

| 0,

lim , lim ,

d

x x

d d

d p x d x

d d

t

d d

x u
d d

V T d c V d

db
t b t

dx

t d u t d



 

 

 
   

   

  

  
 

  

 

 

 (M.3)

where 0  , 11 0c  are predefined constants.

A CH controller keeps a timer t̂ that is reset to 0 when the triggering event happens and the

desired trajectory is updated, then keep flowing as the trajectory is being executed. The update can

happen when the trajectory is executed to the end, i.e. ˆ
pt T , or when an interruption is detected.

A possible interruption includes a change in d or an unexpected disturbance that makes the

tracking error too large. The CH input is

 131

     ˆ ˆ ˆ ˆ(, ,) () ,CH d fb du t x d u t u x t t   ,
(M.4)

where  is the initial state when ˆ 0t  , and :fb n n mu   is a feedback controller that tracks

d

 .

The closed-loop system under CH feedback is then

        ˆ, , : ˆ) ,ˆ ˆ(,, d fb dCH t u t ux f x d f x dx t t    . (M.5)

Assumption M.5: For any trajectory
d

 in Assumption M.4 that a CH controller tries to follow,

there exists a feedback controller :fb n n mu   that makes
d

 uniformly locally

exponentially stable, i.e., the closed loop system in (M.5) satisfies

    

         2 2 1

1 2 1 1

2 2 1 1

, . . 0 , ,n d

p

c t td d

B s t t t T x t t B

x t t e x t t



 



 
 

       

  
 (M.6)

for some
2 0c  .

Next, the result on the stability of the CH controller is presented. First, consider the case when

d is fixed.

Theorem M.1: Under Assumption M.1, Assumption M.2, Assumption M.3, Assumption M.4 and

Assumption M.5, for an initial condition   | 0x b x   the closed-loop system in (M.5) will stay

inside   | 0x b x  , and if d stops changing after 0T  , the state will converge to  x d

exponentially.

Proof: From Assumption M.4, since   | 0x b x   ,   , which means the feedback system

in (M.5) is well defined. From (M.3), the CBF  b x remains nonnegative as discussed in Section

2.2, which proves that the state will stay inside   | 0x b x  , and thus   , 0x t t   .

When d stops changing, from the Lyapunov condition in Assumption M.4,

         1

1 0n

d p x d xV x nT d c V x d    , 1,2,3,...n  , which implies   lim 0d p
n

V x nT


 .

So from Assumption M.3, the sequence  px nT converges to  x d . Therefore from the last

assumption in (M.3), the state stays at  x d .

 132

M.2 State decomposition and dimension reduction

As discussed in Section 4.3.2, under a grid fashion sampling of the initial condition, the

computation power limits the dimension of the feature that describes the initial condition. To

parameterize the initial condition with a subset of states, the states are decomposed into two parts:

 1 2;x x x , where in practice 1

1

n
x  are states with slow dynamics and 2

2

n
x  are states with

fast and stable dynamics. The case where the trajectory and tracking feedback fbu is parameterized

by only
1x is considered.

Definition M.1: A locally Lipschitz continuous function 1 2:
n n  such that  0 0  and

satisfies

     

    

1 2

2 1

, ; ,

,

x x x

x x

d d d d

d d

  

  

     


 (M.7)

is called an insertion map.

The condition in (M.7) states that for any d , the insertion map maps the steady state of
1x

to the steady state of
2x . To extend the previous conclusion to cases where trajectories are

parameterized with only
1x , the following assumptions are made.

Assumption M.6: n  , compact, such that  , xd d   . There exists CBF ()b x , s.t.

 , 0x b x   ;   , 0xbd d   ;  1 2, ; ,d        2 1 ,   there exists

1
: 0,d m

pu T
    and a corresponding state trajectory,

1
: 0,d n

pT     satisfying

         

 
   

1 1

1 1
1

0 ,

| 0,d

d d

d p x d x

d d

t

V T d cV d

db
t t

dx 

 

 

   

 

  

 

   
   

   
   

1 1

1 1

,

,

lim ,

lim ,

x

x

d

x
d

d

u
d

t d

u t d


   


   

 



  

  





    
1 12 1

d d

p pT T   

(M.8)

 133

Assumption M.7: There exists a feedback 1 1

1 :
n nfb mu   that     

11 1 1
ˆ,fb du x t t makes

1

d



uniformly locally exponentially stable, i.e. (M.6) is satisfied with

        
11 1 1

ˆ ˆ ˆ ˆ,d fb du t u t u x t t   .

Remark M.3: The subscript
11

d

 means the desired trajectory of 1x with initial condition

 1 10 ,x  and
12

d

 means the desired trajectory of 2x ,
1 1 11 2;d d d

        . Assumption M.7 is

possible if the dynamic subsystem of
2x is locally exponentially stable.

Theorem M.2: Under Assumption M.1, Assumption M.2, Assumption M.3, Assumption M.6 and

Assumption M.7, d  fixed,     1 1; | 0x b x         , the closed-loop system under

CH feedback will stay inside   | 0x b x  , and if d stop changing after 0T  , the state will

converge to  x d exponentially.

Proof: By Assumption M.7, the closed loop system exponentially converges to the CH desired

trajectory. From Assumption M.6, by CBF condition,   | 0x b x  is invariant under the CH

controller. When d stops changing, the closed loop system exponentially converges to
d

 and

       1n

p x xV x nT d c V d     , 1,2,3,...n  , and satisfies     2 1p px nT x nT . So

every time the desired trajectory is executed to the end, there exists  1 p

d

x nT
 that follows the

previous trajectory, By the definition of insertion map in (M.7) make sure that when  1

1 ,xx d

   2

1 xx d  . By Theorem M.2,  x t converges to  x d exponentially.

Remark M.4: When the dynamics of 2x is stable and fast,
12 2:y x   converges to zero quickly,

the influence of initial condition of 2x is small enough to be neglected. Therefore, the CH can be

parameterized only by
1x .

Now consider a CH controller with trajectories generated with the procedure described in

(4.20). Assumption M.1and Assumption M.2 are trivially satisfied by the linear dynamics, where

x is defined such that it maps dr to the equilibrium point that renders   0z h x  , which is

 134

unique. It can be shown that x is Lipschitz continuous. The cost-to-go function of a Linear

Quadratic Regulator (LQR) is used as the Lyapunov function V by solving the Riccati equation.

Since V is quadratic, and the truck dynamic is linear, V satisfies Assumption M.3 for all dr . The

CBF condition and Lyapunov condition in Assumption M.6 are enforced in the trajectory

optimization by the last two constraints in (4.20). Pick 1 4 2y ax z z B v B r      , since

z and z are part of 1x , the closed loop dynamics is indeed stable under the PD control that only

depends on
1x , which is the direct result of a stable zero dynamics, therefore satisfies the

exponential stability condition in Assumption M.7. Note that the initial conditions in the training

set are parameterized by  , which is a full rank linear transformation of
1x and

dr . By Theorem

M.2, the closed-loop system with CH feedback stays within   0|x b x  , and converges to

 x d exponentially once
dr stops changing.

Appendix N. Smoothing of the desired trajectory in Section 4.4.2

The smoothing of Bezier curve is very simple. For an m-th order Bezier curve, the value for 0th

to 2nd derivative at 0s  are

 

 

    

0

1 0

2 0 1

0 ,

' 0 ,

'' 0 1 2 .

m m

m m

B

B

B



 

  



 

   

 (N.1)

Solving for
0 , 1 and 2 :

 

0

0

0

1 0

0

2 1 0

,

,

2 ,
1

des

des

des

h

h

m

h

m m



 

  



 

  


 (N.2)

where 0

desh ,
0

desh and 0

desh are the current value and derivatives of the desired trajectory before the

update. The smoothing process requires that the Bezier order should be high enough so that the

influence of the smoothing is limited to only the beginning of the curve. The Bezier order is chosen

to be 8.

 135

Appendix O. Proof of Theorem 5.1

To simplify the notation, define

              

          

     

1 1 2 2

1 1 1

2 2 2

, , , ,

, , ,

, , ,

d

d

dV
x d f x g x u x d g x d g x u x d

dx

dV
x d f x g x u x d g x d

dx

dV
x d g x u x d

dx

   

  



 (O.1)

and note that

      1 2, , ,x d x d x d  . (O.2)

Assume the hypothesis of part (a) of Theorem 5.1, then

 (,) 0.x d  (O.3)

To show part (a), select

   

   
1 1

2 2

, , ,

, , ,

x d x d

x d x d








 (O.4)

then (5.12) is immediately satisfied with (O.3). Since

     

     
1 1 1

2 2 2

, , , ,

, , , ,

x d x d x d

x d x d x d

 

 

 

 
 (O.5)

(5.12) is also satisfied.

Next, let us consider part (b). Since is a semialgebraic set defined with polynomials, and V

is a polynomial of x , the following representation is used:

      , | , 0 1 .ix d h x d x V x   ∣ (O.6)

Suppose (5.13) can be verified by SOS, that is, through Parrilo's Hierarchy, there exist SOS

multipliers  ic such that

      , , , .i i

i

SOS x d c x d h x d
 
  
 

 (O.7)

Let

   1 1

2 2

(,) (,) , , ,

(,) (,),

i i

i

x d x d c x d h x d

x d x d





 




 (O.8)

then such 1 and 2 satisfy (5.11) and (5.12). Moreover, since

 136

   

     

1 1

2 2

1 2

(,) (,) 0 , , ,

(,) (,) 0,

(,) (,) , , , ,

i i

i

i i

i

x d x d c x d h x d

x d x d

x d x d x d c x d h x d





 

  

 

  





 (O.9)

which means that (5.11) and (5.12) can be verified with SOS. This proves part (b).

Next, it is shown that when one of
1 and 2

depends only on x , 1 and 2 can be functions

of x only. Suppose

        2 2 2 2,
dV

x d g x u x x
dx

  , (O.10)

and      1 2, ,x d x d x  satisfies (5.13), then let

        1 2 2 2,x x x x    , (O.11)

and the above
1 and

2 satisfy (5.11) and (5.12). If (5.13) can be verified with SOS, that is, (O.7)

is satisfied with some ic , then (5.11) and (5.12) can be verified by SOS with the above 1 and 2 .

Appendix P. Proof of Lemma 6.1

Proof: Lemma 6.1 is a specific instantiation of the general theory developed in [145]. The

robust optimization in (6.15) is equivalent to the following:

  1 2 3
(,)

min . .

max , 1,... ,

T

i T i i i

F f

c s t

H H H h i M




   


   
 (P.1)

where the maximum is taken over the uncertainty set. Then the maximum is written as its dual:

   

1 2 3
(,)

1 2 3
0

max ,

min max .
i

i i T i i

F f

T
i i T i i i

H H H

H H H f F

p

d





   

     





  

    
 (P.2)

According to the duality theory, i id p , and with some mild assumptions, by strong duality,

i id p . Note that

    
   3 21

1 2 3

,
max .

,

T T
i i T i i

T
i T i i i

iH f H F
H H H

if H
f F

otherwise


   
     

  
     







 (P.3)

So the dual is written as

 137

 

 
1 2

3
0,

min .
T

i i T i i

T
i i i

H H F

H f
  

 
  

 d (P.4)

Combined with the original optimization in (6.15), the robust optimization is transformed to the

following:

 

 

3

1 2

min . .

,

0, 1,..

,

. .

T

T
i i i

T
i T i i

i

c s t

H f h

H H F

i M



 

 



 

 

 

 (P.5)

Note that due to the duality, i
d is always an upper bound of the right-hand side of the constraint in

(6.15), therefore a solution to (P.5) is always a feasible solution to (6.15), and when strong duality

holds, the two formulations are equivalent.

 138

Bibliography

[1] E. COMPUTING, "Cyber-physical systems," 2009.

[2] K. J. Åström and T. Hägglund, PID controllers: theory, design, and tuning vol. 2: Instrument society of

America Research Triangle Park, NC, 1995.

[3] S. Skogestad and I. Postlethwaite, Multivariable feedback control: analysis and design vol. 2: Wiley New

York, 2007.

[4] M. Morari, C. Garcia, J. Lee, and D. Prett, Model predictive control: Prentice Hall Englewood Cliffs, NJ,

1993.

[5] E. M. Clarke and J. M. Wing, "Formal methods: State of the art and future directions," ACM Computing

Surveys (CSUR), vol. 28, pp. 626-643, 1996.

[6] R. Alur and D. L. Dill, "A theory of timed automata," Theoretical computer science, vol. 126, pp. 183-235,

1994.

[7] P. Gastin and D. Oddoux, "Fast LTL to Büchi automata translation," in International Conference on

Computer Aided Verification, Berlin, Heidelberg, 2001, pp. 53-65.

[8] R. Gerth, D. Peled, M. Y. Vardi, and P. Wolper, "Simple on-the-fly automatic verification of linear temporal

logic," in Protocol Specification, Testing and Verification XV, ed: Springer, 1996, pp. 3-18.

[9] E. M. Clarke, O. Grumberg, and D. Peled, Model checking: MIT press, 1999.

[10] K. L. McMillan, "Symbolic model checking," in Symbolic Model Checking, ed: Springer, 1993, pp. 25-60.

[11] S. Edwards, L. Lavagno, E. A. Lee, and A. Sangiovanni-Vincentelli, "Design of embedded systems: Formal

models, validation, and synthesis," Proceedings of the IEEE, vol. 85, pp. 366-390, 1997.

[12] N. Piterman, A. Pnueli, and Y. Sa'ar, "Synthesis of reactive (1) designs," in International Workshop on

Verification, Model Checking, and Abstract Interpretation, Charleston, USA, 2006, pp. 364-380.

[13] T. Wongpiromsarn, U. Topcu, N. Ozay, H. Xu, and R. M. Murray, "TuLiP: a software toolbox for receding

horizon temporal logic planning," in Proceedings of the 14th international conference on Hybrid systems:

computation and control, Chicago, IL, USA, 2011, pp. 313-314.

[14] M. Risler and O. von Stryk, "Formal behavior specification of multi-robot systems using hierarchical state

machines in XABSL," in AAMAS08-workshop on formal models and methods for multi-robot systems,

Estoril, Portugal, 2008.

 139

[15] C. Belta, A. Bicchi, M. Egerstedt, E. Frazzoli, E. Klavins, and G. J. Pappas, "Symbolic planning and control

of robot motion [grand challenges of robotics]," IEEE Robotics & Automation Magazine, vol. 14, pp. 61-70,

2007.

[16] R. Alur and E. Altug, "Linear Hybrid Automata," 2000.

[17] R. Alur, "Formal verification of hybrid systems," in Proceedings of the International Conference on

Embedded Software (EMSOFT), 2011, Taipei, Taiwan, 2011, pp. 273-278.

[18] R. Alur, C. Courcoubetis, N. Halbwachs, T. A. Henzinger, P.-H. Ho, X. Nicollin, et al., "The algorithmic

analysis of hybrid systems," Theoretical computer science, vol. 138, pp. 3-34, 1995.

[19] A. Girard, "Reachability of uncertain linear systems using zonotopes," in International Workshop on Hybrid

Systems: Computation and Control, Zurich, Switzerland, 2005, pp. 291-305.

[20] C. Le Guernic and A. Girard, "Reachability analysis of hybrid systems using support functions," in

International Conference on Computer Aided Verification, Grenoble, France, 2009, pp. 540-554.

[21] E. Haghverdi, P. Tabuada, and G. J. Pappas, "Bisimulation relations for dynamical, control, and hybrid

systems," Theoretical Computer Science, vol. 342, pp. 229-261, 2005.

[22] R. Alur, T. A. Henzinger, G. Lafferriere, and G. J. Pappas, "Discrete abstractions of hybrid systems,"

Proceedings of the IEEE, vol. 88, pp. 971-984, 2000.

[23] A. Girard, G. Pola, and P. Tabuada, "Approximately bisimilar symbolic models for incrementally stable

switched systems," IEEE Transactions on Automatic Control, vol. 55, pp. 116-126, 2010.

[24] P. Tabuada and G. J. Pappas, "Model checking LTL over controllable linear systems is decidable," in

International Workshop on Hybrid Systems: Computation and Control, Prague, Czech Republic, 2003, pp.

498-513.

[25] S. Prajna and A. Jadbabaie, "Safety verification of hybrid systems using barrier certificates," Hybrid Systems:

Computation and Control, Proceedings, vol. 2993, pp. 477-492, 2004.

[26] S. Gulwani and A. Tiwari, "Constraint-based approach for analysis of hybrid systems," in International

Conference on Computer Aided Verification, Princeton, USA, 2008, pp. 190-203.

[27] A. Platzer and E. M. Clarke, "Computing differential invariants of hybrid systems as fixedpoints," in

International Conference on Computer Aided Verification, Pricneton, USA, 2008, pp. 176-189.

[28] A. Platzer, Logical analysis of hybrid systems: proving theorems for complex dynamics: Springer Science &

Business Media, 2010.

[29] S. Prajna, "Barrier certificates for nonlinear model validation," Automatica, vol. 42, pp. 117-126, 2006.

[30] A. D. Ames, J. W. Grizzle, and P. Tabuada, "Control barrier function based quadratic programs with

application to adaptive cruise control," in 53rd IEEE Conference on Decision and Control, Los Angeles,

USA, 2014, pp. 6271-6278.

[31] P. Nilsson, O. Hussien, Y. Chen, A. Balkan, M. Rungger, A. Ames, et al., "Preliminary results on correct-

by-construction control software synthesis for adaptive cruise control," in IEEE 53rd Annual Conference on

Decision and Control (CDC), 2014 Los Angeles, USA, 2014, pp. 816-823.

[32] F. Blanchini, "Set invariance in control," Automatica, vol. 35, pp. 1747-1767, 1999.

 140

[33] I. M. Mitchell, A. M. Bayen, and C. J. Tomlin, "A time-dependent Hamilton-Jacobi formulation of reachable

sets for continuous dynamic games," IEEE Transactions on automatic control, vol. 50, pp. 947-957, 2005.

[34] D. Henrion and M. Korda, "Convex Computation of the Region of Attraction of Polynomial Control

Systems," IEEE Transactions on Automatic Control, vol. 59, pp. 297-312, 2014.

[35] R. Wisniewski and C. Sloth, "Converse Barrier Certificate Theorems," IEEE Transactions on Automatic

Control, vol. 61, pp. 1356-1361, May 2016.

[36] K. Chatterjee and T. A. Henzinger, "Assume-guarantee synthesis," in International Conference on Tools and

Algorithms for the Construction and Analysis of Systems, Braga, Portugal, 2007, pp. 261-275.

[37] M. Arcak, C. Meissen, and A. Packard, Networks of dissipative systems: compositional certification of

stability, performance, and safety: Springer, 2016.

[38] A. Papachristodoulou and S. Prajna, "On the construction of Lyapunov functions using the sum of squares

decomposition," in Proceedings of the 41st IEEE Conference on Decision and Control, Las Vegas, USA,

2002, pp. 3482-3487.

[39] X. Xu, J. W. Grizzle, P. Tabuada, and A. D. Ames, "Correctness Guarantees for the Composition of Lane

Keeping and Adaptive Cruise Control," arXiv preprint arXiv:1609.06807, 2016.

[40] S. Prajna, A. Papachristodoulou, and F. Wu, "Nonlinear control synthesis by sum of squares optimization: A

Lyapunov-based approach," in 5th Asian Control Conference, 2004, Melbourne, Australia, 2004, pp. 157-

165.

[41] R. Tedrake, I. R. Manchester, M. Tobenkin, and J. W. Roberts, "LQR-trees: Feedback Motion Planning via

Sums-of-Squares Verification," in The International Journal of Robotics Research vol. 29, ed, 2010, pp.

1038-1052.

[42] S. Prajna, A. Papachristodoulou, and P. A. Parrilo, "Introducing SOSTOOLS: A general purpose sum of

squares programming solver," in Proceedings of the 41st IEEE Conference on Decision and Control, 2002,

Las Vegas, USA, 2002, pp. 741-746.

[43] J. Lofberg, "YALMIP: A toolbox for modeling and optimization in MATLAB," in IEEE International

Symposium on Computer Aided Control Systems Design, 2004 New Orleans, USA, 2004, pp. 284-289.

[44] F. P. Mark M. Tobenkin, Alexandre Megretski. SPOTless: Conic and Polynomial Programming Toolbox.

Available: https://github.com/mmt/spotless

[45] P. A. Parrilo, "Semidefinite programming relaxations for semialgebraic problems," Mathematical

Programming, vol. 96, pp. 293-320, 2003.

[46] J. B. Lasserre, "A sum of squares approximation of nonnegative polynomials," Siam Journal on Optimization,

vol. 16, pp. 751-765, 2006.

[47] J. Bochnak, M. Coste, and M.-F. Roy, Real algebraic geometry vol. 36: Springer Science & Business Media,

2013.

[48] J.-B. Lasserre, Moments, positive polynomials and their applications vol. 1: World Scientific, 2010.

[49] S. Prajna and A. Jadbabaie, "Safety Verification of Hybrid Systems Using Barrier Certificates," in

International Workshop on Hybrid Systems: Computation and Control, Berlin Heidelberg, 2004, pp. 477-

492.

https://github.com/mmt/spotless

 141

[50] A. D. Ames, X. Xu, J. W. Grizzle, and P. Tabuada, "Control barrier function based quadratic programs for

safety critical systems," IEEE Transactions on Automatic Control, vol. 62, pp. 3861-3876, 2017.

[51] S.-C. Hsu, X. Xu, and A. D. Ames, "Control barrier function based quadratic programs with application to

bipedal robotic walking," in American Control Conference (ACC), 2015, Chicago, USA, 2015, pp. 4542-

4548.

[52] U. Borrmann, L. Wang, A. D. Ames, and M. Egerstedt, "Control barrier certificates for safe swarm behavior,"

IFAC-PapersOnLine, vol. 48, pp. 68-73, 2015.

[53] L. Wang, A. D. Ames, and M. Egerstedt, "Safety Barrier Certificates for Collisions-Free Multirobot

Systems," IEEE Transactions on Robotics, 2017.

[54] A. D. Ames, X. Xu, J. W. Grizzle, and P. Tabuada, "Control barrier function based quadratic programs with

application to automotive safety systems," arXiv preprint arXiv:1609.06408, 2016.

[55] G. Stengle, "A Nullstellensatz and a Positivstellensatz in semialgebraic geometry," Mathematische Annalen,

vol. 207, pp. 87-97, 1974.

[56] T. IIMURA and K. YAMAMOTO, "2A1-H03 Development of Single-passenger Mobility-Support Robot

"ROPITS" : Verification of Self-Localization Function with Camera Images(Demonstration experiments of

personal mobility robots in Mobility Robot Special Zone of Tsukuba-city)," presented at the ロボティクス

・メカトロニクス講演会講演概要集, 2014.

[57] Transport-Systems-Catapult. (2016). Self-Driving Pods. Available: https://ts.catapult.org.uk/current-

projects/self-driving-pods/

[58] S. Thrun, M. Bennewitz, W. Burgard, A. B. Cremers, F. Dellaert, D. Fox, et al., "MINERVA: a second-

generation museum tour-guide robot," in Proceedings of IEEE International Conference on Robotics and

Automation,1999, Detroit, USA, 1999.

[59] K. Yamazaki, A. Yamazaki, M. Okada, Y. Kuno, Y. Kobayashi, Y. Hoshi, et al., "Revealing Gauguin :

Engaging Visitors in Robot Guide ’ s Explanation in an Art Museum," in Proceedings of the SIGCHI

conference on Human factors in computing systems, Boston, USA, 2009, pp. 1437-1446.

[60] A. Gray, Y. Gao, T. Lin, J. K. Hedrick, H. E. Tseng, and F. Borrelli, "Predictive control for agile semi-

autonomous ground vehicles using motion primitives," in American Control Conference (ACC), 2012,

Montreal, Canada, 2012, pp. 4239-4244.

[61] Y. Yoon, J. Shin, H. J. Kim, Y. Park, and S. Sastry, "Model-predictive active steering and obstacle avoidance

for autonomous ground vehicles," Control Engineering Practice, vol. 17, pp. 741-750, 2009.

[62] D. Fernandez Llorca, V. Milanes, I. Parra Alonso, M. Gavilan, I. Garcia Daza, J. Perez, et al., "Autonomous

Pedestrian Collision Avoidance Using a Fuzzy Steering Controller," IEEE Transactions on Intelligent

Transportation Systems, vol. 12, pp. 390-401, 2011.

[63] E. Frazzoli, M. A. Dahleh, and E. Feron, "Real-Time Motion Planning for Agile Autonomous Vehicles," in

Journal of Guidance, Control, and Dynamics vol. 25, ed, 2002, pp. 116-129.

[64] R. Bis, H. Peng, and G. Ulsoy, "Velocity Occupancy Space: Robot Navigation and Moving Obstacle

Avoidance With Sensor Uncertainty," in ASME 2009 Dynamic Systems and Control Conference, Volume 1,

Hollywood, California, USA, 2009, pp. 363-370.

[65] O. Khatib, "Real time obstacle avoidance for manipulators and mobile robots," International Journal of

Robotics and Research, vol. 5, pp. 90-98, 1986.

https://ts.catapult.org.uk/current-projects/self-driving-pods/
https://ts.catapult.org.uk/current-projects/self-driving-pods/

 142

[66] S. Shimoda, Y. Kuroda, and K. Iagnemma, "Potential field navigation of high speed unmanned ground

vehicles on uneven terrain," in IEEE International Conference on Robotics and Automation, Barcelona,

Spain, 2005, pp. 2828-2833.

[67] J. van den Berg, S. J. Guy, M. Lin, and D. Manocha, "Reciprocal n-Body Collision Avoidance," Robotics

Research, pp. 3-19, 2011.

[68] D. Fox, W. Burgard, and S. Thrun, "The dynamic window approach to collision avoidance," IEEE Robotics

and Automation Magazine, vol. 4, pp. 23-33, 1997.

[69] P. Ogren and N. E. Leonard, "A convergent dynamic window approach to obstacle avoidance," IEEE

Transactions on Robotics, vol. 21, pp. 188-195, 2005.

[70] S. Mitsch, K. Ghorbal, and A. Platzer, "On Provably Safe Obstacle Avoidance for Autonomous Robotic

Ground Vehicles," in Proceedings of Robotics: Science and Systems, 2013.

[71] A. Majumdar, R. Vasudevan, M. M. Tobenkin, and R. Tedrake, "Convex optimization of nonlinear feedback

controllers via occupation measures," The International Journal of Robotics Research, vol. 33, pp. 1209-

1230, 2014.

[72] K. Macek, D. Alejandro Vasquez Govea, T. Fraichard, and R. Siegwart, "Towards Safe Vehicle Navigation

in Dynamic Urban Scenarios," Automatika, vol. 50, pp. 184-194, 2009.

[73] G. M. Ziegler, Lectures on Polytopes: Springer Science & Business Media, 2012.

[74] Y. Chen, H. Peng, and J. Grizzle, "Obstacle Avoidance for Low-Speed Autonomous Vehicles With Barrier

Function," IEEE Transactions on Control Systems Technology, 2017.

[75] H. Gomi and M. Kawato, "Neural network control for a closed-loop system using feedback-error-learning,"

Neural Networks, vol. 6, pp. 933-946, 1993.

[76] X. Da, R. Hartley, and J. W. Grizzle, "Supervised Learning for Stabilizing Underactuated Bipedal Robot

Locomotion, with Outdoor Experiments on the Wave Field."

[77] M. Bojarski, D. Del Testa, D. Dworakowski, B. Firner, B. Flepp, P. Goyal, et al., "End to end learning for

self-driving cars," arXiv preprint arXiv:1604.07316, 2016.

[78] A. E. Sallab, M. Abdou, E. Perot, and S. Yogamani, "End-to-End Deep Reinforcement Learning for Lane

Keeping Assist," arXiv preprint arXiv:1612.04340, 2016.

[79] S.-Y. Oh, J.-H. Lee, and D.-H. Choi, "A new reinforcement learning vehicle control architecture for vision-

based road following," IEEE Transactions on Vehicular Technology, vol. 49, pp. 997-1005, 2000.

[80] D. Bertsekas, Dynamic programming and optimal control vol. 1: Athena Scientific Belmont, MA, 1995.

[81] J. H. Gillula and C. J. Tomlin, "Guaranteed safe online learning via reachability: tracking a ground target

using a quadrotor," in IEEE International Conference on Robotics and Automation (ICRA), St. Paul,

Minnesota, USA, 2012, pp. 2723-2730.

[82] A. K. Akametalu, J. F. Fisac, J. H. Gillula, S. Kaynama, M. N. Zeilinger, and C. J. Tomlin, "Reachability-

based safe learning with Gaussian processes," in IEEE 53rd Annual Conference on Decision and Control

(CDC), Los Angeles, USA, 2014, pp. 1424-1431.

[83] F. Berkenkamp and A. P. Schoellig, "Safe and robust learning control with Gaussian processes," in 2015

European Control Conference (ECC), Linz, Austria, 2015, pp. 2496-2501.

 143

[84] A. Isidori, Nonlinear control systems: Springer Science & Business Media, 2013.

[85] H. K. Khalil, "Noninear systems," Prentice-Hall, New Jersey, vol. 2, pp. 5-1, 1996.

[86] E. R. Westervelt, J. W. Grizzle, C. Chevallereau, J. H. Choi, and B. Morris, "Feedback control of dynamic

bipedal robot locomotion," ed: CRC press, 2007.

[87] A. Shiriaev, J. W. Perram, and C. Canudas-de-Wit, "Constructive tool for orbital stabilization of

underactuated nonlinear systems: Virtual constraints approach," IEEE Transactions on Automatic Control,

vol. 50, pp. 1164-1176, 2005.

[88] M. Maggiore and L. Consolini, "Virtual holonomic constraints for Euler–Lagrange systems," IEEE

Transactions on Automatic Control, vol. 58, pp. 1001-1008, 2013.

[89] J. W. Grizzle, M. D. Di Benedetto, and F. Lamnabhi-Lagarrigue, "Necessary conditions for asymptotic

tracking in nonlinear systems," IEEE Transactions on Automatic Control, vol. 39, pp. 1782-1794, 1994.

[90] A. J. Miege and D. Cebon, "Optimal roll control of an articulated vehicle: theory and model validation,"

Vehicle system dynamics, vol. 43, pp. 867-884, 2005.

[91] J. Y. Wong, Theory of ground vehicles: John Wiley & Sons, 2008.

[92] J. T. Betts, Practical methods for optimal control and estimation using nonlinear programming: SIAM, 2010.

[93] A. Hereid, E. A. Cousineau, C. M. Hubicki, and A. D. Ames, "3D dynamic walking with underactuated

humanoid robots: A direct collocation framework for optimizing hybrid zero dynamics," in IEEE

International Conference on Robotics and Automation (ICRA), 2016, Stockholm, Sweden, 2016, pp. 1447-

1454.

[94] J. Stoer and R. Bulirsch, Introduction to numerical analysis vol. 12: Springer Science & Business Media,

2013.

[95] A. Hereid and A. D. Ames, "FROST*: Fast Robot Optimization and Simulation Toolkit," in 2017 IEEE/RSJ

International Conference on Intelligent Robots and Systems (IROS), Vancouver, Canada, 2017.

[96] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, et al., "Tensorflow: Large-scale machine

learning on heterogeneous distributed systems," arXiv preprint arXiv:1603.04467, 2016.

[97] P. Tabuada, "Event-triggered real-time scheduling of stabilizing control tasks," IEEE Transactions on

Automatic Control, vol. 52, pp. 1680-1685, 2007.

[98] X. Da and J. Grizzle, "Combining Trajectory Optimization, Supervised Machine Learning, and Model

Structure for Mitigating the Curse of Dimensionality in the Control of Bipedal Robots," arXiv preprint

arXiv:1711.02223, 2017.

[99] Y. A. Ghoneim, W. C. Lin, D. M. Sidlosky, H. H. Chen, Y. K. Chin, and M. J. Tedrake, "Integrated chassis

control system to enhance vehicle stability," International Journal of Vehicle Design, vol. 23, pp. 124-144,

2000.

[100] T. H. Hwang, K. Park, S. J. Heo, S. H. Lee, and J. C. Lee, "Design of integrated chassis control logics for

AFS and ESP," International Journal of Automotive Technology, vol. 9, pp. 17-27, Feb 2008.

[101] M. Nagai, M. Shino, and F. Gao, "Study on integrated control of active front steer angle and direct yaw

moment," Jsae Review, vol. 23, pp. 309-315, Jul 2002.

 144

[102] N. A. Duffie, R. Chitturi, and J. I. Mou, "Fault-Tolerant Heterarchical Control of Heterogeneous

Manufacturing System Entities," Journal of Manufacturing Systems, vol. 7, pp. 315-328, 1988.

[103] Nico A. Kelling and W. Heck, "Centralized Versus Distributed Redundancy for Brake-by-Wire Systems,"

SAE technical paper series 0148-7191, 2002.

[104] Y. Kou, "Development and Evaluation of Integrated Chassis Control Systems," 2010.

[105] T. Gordon, M. Howell, and F. Brandao, "Integrated control methodologies for road vehicles," Vehicle System

Dynamics, vol. 40, pp. 157-190, Sep 2003.

[106] S. Prajna, A. Papachristodoulou, P. Seiler, and P. A. Parrilo, "New developments in sum of squares

optimization and SOSTOOLS," in Proceedings of the American Control Conference, Boston, USA, 2004,

pp. 5606-5611.

[107] W. Tan, A. Packard, and others, "Stability region analysis using polynomial and composite polynomial

Lyapunov functions and sum-of-squares programming," IEEE Transactions on Automatic Control, vol. 53,

pp. 565-570, 2008.

[108] L. Xiao, M. Johansson, and S. P. Boyd, "Simultaneous routing and resource allocation via dual

decomposition," IEEE Transactions on Communications, vol. 52, pp. 1136-1144, 2004.

[109] S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein, "Distributed optimization and statistical learning via

the alternating direction method of multipliers," Foundations and Trends® in Machine Learning, vol. 3, pp.

1-122, 2011.

[110] L. Vandenberghe and S. Boyd, "Semidefinite programming," SIAM review, vol. 38, pp. 49-95, 1996.

[111] L. E. Ghaoui, "Lecture 13: SDP Duality," University of California, Berkeley, Ed, 2008.

[112] K. C. Goh, L. Turan, M. G. Safonov, G. P. Papavassilopoulos, and J. H. Ly, "Biaffine matrix inequality

properties and computational methods," in American Control Conference, Baltimore, USA, 1994, pp. 850-

855.

[113] M. Fukuda and M. Kojima, "Branch-and-cut algorithms for the bilinear matrix inequality eigenvalue

problem," Computational Optimization and Applications, vol. 19, pp. 79-105, 2001.

[114] H. a. k. Terelius, U. Topcu, and R. M. Murray, "Decentralized multi-agent optimization via dual

decomposition," IFAC Proceedings Volumes, vol. 44, pp. 11245-11251, 2011.

[115] S. W. Smith, P. Nilsson, and N. Ozay, "Interdependence quantification for compositional control synthesis

with an application in vehicle safety systems," in IEEE 55th Conference on Decision and Control (CDC),

2016, Las Vegas, USA, 2016, pp. 5700-5707.

[116] S. Boyd, L. El Ghaoui, E. Feron, and V. Balakrishnan, Linear matrix inequalities in system and control theory

vol. 15: Siam, 1994.

[117] J. B. Lasserre, D. Henrion, C. Prieur, and E. Trélat, "Nonlinear optimal control via occupation measures and

LMI-relaxations," SIAM journal on control and optimization, vol. 47, pp. 1643-1666, 2008.

[118] I. Kolmanovsky and E. G. Gilbert, "Theory and computation of disturbance invariant sets for discrete-time

linear systems," Mathematical problems in engineering, vol. 4, pp. 317-367, 1998.

[119] D. Q. Mayne, M. M. Seron, and S. Raković, "Robust model predictive control of constrained linear systems

with bounded disturbances," Automatica, vol. 41, pp. 219-224, 2005.

 145

[120] S. V. Rakovic, E. C. Kerrigan, K. I. Kouramas, and D. Q. Mayne, "Invariant approximations of the minimal

robust positively invariant set," IEEE Transactions on Automatic Control, vol. 50, pp. 406-410, 2005.

[121] S. V. Rakovic and M. Baric, "Parameterized robust control invariant sets for linear systems: Theoretical

advances and computational remarks," IEEE Transactions on Automatic Control, vol. 55, pp. 1599-1614,

2010.

[122] P. Trodden, "A one-step approach to computing a polytopic robust positively invariant set," IEEE

Transactions on Automatic Control, vol. 61, pp. 4100-4105, 2016.

[123] T. B. Blanco, M. Cannon, and B. De Moor, "On efficient computation of low-complexity controlled invariant

sets for uncertain linear systems," International journal of Control, vol. 83, pp. 1339-1346, 2010.

[124] F. Tahir and I. M. Jaimoukha, "Low-complexity polytopic invariant sets for linear systems subject to norm-

bounded uncertainty," IEEE Transactions on Automatic Control, vol. 60, pp. 1416-1421, 2015.

[125] D. Bertsekas, "Infinite time reachability of state-space regions by using feedback control," IEEE

Transactions on Automatic Control, vol. 17, pp. 604-613, 1972.

[126] M. Rungger and P. Tabuada, "Computing robust controlled invariant sets of linear systems," IEEE

Transactions on Automatic Control, vol. 62, pp. 3665-3670, 2017.

[127] J. Liu, N. Ozay, U. Topcu, and R. M. Murray, "Synthesis of reactive switching protocols from temporal logic

specifications," IEEE Transactions on Automatic Control, vol. 58, pp. 1771-1785, 2013.

[128] L. Ljung, "System identification," in Signal analysis and prediction, ed: Springer, 1998, pp. 163-173.

[129] R. L. Kosut, M. K. Lau, and S. P. Boyd, "Set-membership identification of systems with parametric and

nonparametric uncertainty," IEEE Transactions on Automatic Control, vol. 37, pp. 929-941, 1992.

[130] J. Chen and G. Gu, Control-oriented system identification: an H [infinity] approach vol. 19: Wiley-

Interscience, 2000.

[131] D. S. Shook, C. Mohtadi, and S. L. Shah, "A control-relevant identification strategy for GPC," IEEE

Transactions on Automatic Control, vol. 37, pp. 975-980, 1992.

[132] G. C. Goodwin and M. E. Salgado, "A stochastic embedding approach for quantifying uncertainty in the

estimation of restricted complexity models," International Journal of Adaptive Control and Signal

Processing, vol. 3, pp. 333-356, 1989.

[133] S. Sadraddini and C. Belta, "Formal Guarantees in Data-Driven Model Identification and Control Synthesis,"

presented at the 21st international conference on Hybrid systems: computation and control, Porto, Portugal,

2018.

[134] D. Bertsimas, D. B. Brown, and C. Caramanis, "Theory and applications of robust optimization," SIAM

review, vol. 53, pp. 464-501, 2011.

[135] S. T. Wong and M. S. Roos, "A strategy for sampling on a sphere applied to 3D selective RF pulse design,"

Magnetic Resonance in Medicine, vol. 32, pp. 778-784, 1994.

[136] J. J. Kuffner, "Effective sampling and distance metrics for 3D rigid body path planning," in Proceedings of

IEEE International Conference on Robotics and Automation, 2004., New Orleans, USA, 2004, pp. 3993-

3998.

 146

[137] J. J. Hartung, P. Brink, J. Lamb, and D. P. Miller, "Autonomous Vehicle Platform and Safety Architecture,"

ed: Google Patents, 2017.

[138] G. Optimization. (2015). Gurobi optimizer reference manual. Available: http://www.gurobi.com

[139] H. Peng and M. Tomizuka, "Lateral control of front-wheel-steering rubber-tire vehicles," California Partners

for Advanced Transportation Technology1990.

[140] A. C. Harvey, Forecasting, structural time series models and the Kalman filter: Cambridge university press,

1990.

[141] E. M. Wolff, U. Topcu, and R. M. Murray, "Robust control of uncertain Markov decision processes with

temporal logic specifications," in IEEE 51st Annual Conference on Decision and Control (CDC), 2012 Maui,

Hawaii, USA, 2012, pp. 3372-3379.

[142] T. M. Moldovan and P. Abbeel, "Safe exploration in Markov decision processes," arXiv preprint

arXiv:1205.4810, 2012.

[143] L. C. Evans and P. E. Souganidis, "Differential Games and Representation Formulas for Solutions of

Hamilton-Jacobi-Isaacs Equations.," Mathematics Research Center, University of Wisconsin-Madison 2492,

1983.

[144] V. I. Arnol'd, Mathematical methods of classical mechanics vol. 60: Springer Science & Business Media,

2013.

[145] A. Ben-Tal, D. Den Hertog, and J.-P. Vial, "Deriving robust counterparts of nonlinear uncertain inequalities,"

Mathematical programming, vol. 149, pp. 265-299, 2015.

http://www.gurobi.com/

	Acknowledgments
	Table of Contents
	List of Figures
	List of Tables
	List of Appendices
	List of Abbreviations
	List of Symbols
	Abstract
	Chapter 1 Introduction
	1.1 Literature review
	1.2 Dissertation organization

	Chapter 2 Review of important tools
	2.1 Sum of squares programming
	2.2 Control barrier functions
	2.2.1 Overview of control barrier functions
	2.2.2 Implementation of CBF
	2.2.3 Synthesis of control barrier functions

	Chapter 3 Polar method and obstacle avoidance
	3.1 Introduction and motivation
	3.2 Dynamic models and problem formulation
	3.2.1 Dynamic models
	3.2.2 Problem formulation

	3.3 Supervisory control and avoidable set
	3.4 Polar algorithm
	3.4.1 Polar of a polytope
	3.4.2 Hyperplane orientation and boundary condition

	3.5 Avoidable set for low-speed autonomous vehicles
	3.5.1 Infeasible set
	3.5.2 Avoidable set for the autonomous vehicle
	3.5.3 Supervisory control with control barrier functions
	3.5.4 Mixed integer program
	3.5.5 From single obstacle to multiple obstacles

	3.6 Simulation results
	3.6.1 Simulation setup and result
	3.6.2 Comparison to two benchmark methods

	3.7 Conclusion and discussion

	Chapter 4 Supervised learning based design for safe controllers
	4.1 Introduction and motivation
	4.2 Dynamic model and virtual constraint
	4.2.1 Model assumptions
	4.2.2 Virtual constraint and tracking control
	4.2.3 Tractor-semitrailer models
	4.2.4 The virtual constraint for the truck model

	4.3 Trajectory optimization
	4.3.1 Direct collocation for trajectory optimization
	4.3.2 Generating the training set
	4.3.3 Supervised learning

	4.4 Implementation of learning based controller
	4.4.1 Continuous hold feedback control
	4.4.2 Event-triggered update of the CH controller
	4.4.3 CBF as a supervisory controller

	4.5 Simulation result
	4.6 Conclusion and discussion

	Chapter 5 Lyapunov approach for validation of non-cooperative control designs
	5.1 Introduction and motivation
	5.2 Problem formulation and major tools
	5.2.1 Problem formulation

	5.3 Verification using Lyapunov functions
	5.3.1 SOS verification for polynomial dynamic systems
	5.3.2 Decomposition of Lyapunov derivative

	5.4 Dual decomposition for verification
	5.4.1 Dual decomposition for Lyapunov verification
	5.4.2 Convergence of decentralized verification
	5.4.3 Verification for systems with piecewise dynamics
	5.4.4 Extension to control synthesis

	5.5 Improving the Lyapunov function candidate
	5.5.1 Centralized Lyapunov perturbation
	5.5.2 Decentralized Lyapunov perturbation

	5.6 Case studies
	5.6.1 Inverted pendulum
	5.6.1.1 Lyapunov verification for inverted pendulum
	5.6.1.2 Lyapunov perturbation for inverted pendulum

	5.6.2 Vehicle chassis control
	5.6.2.1 Lyapunov function setting for vehicle chassis control
	5.6.2.2 Dealing with varying
	5.6.2.3 Verification of controllers with piecewise structure
	5.6.2.4 Synthesis of vehicle chassis control

	5.7 Conclusion

	Chapter 6 Data-driven computation of minimal robust control invariant set
	6.1 Background and motivation
	Nomenclature

	6.2 Linear parametrization with uncertainty
	6.3 Admissible model for measurements
	6.4 Robust LP algorithm for mRCI
	6.4.1 One-step propagation
	6.4.2 Iterative algorithm
	6.4.2.1 Inside-out algorithm
	6.4.2.2 Inside-out algorithm

	6.5 Application on lane keeping of ground vehicle
	6.5.1 Model structure
	6.5.2 Preparation for mRCI
	6.5.3 Result

	6.6 Conclusion

	Chapter 7 Experimental results
	7.1 Hardware setup
	7.2 The experiment of CBF for lane keeping
	7.3 The experiment of a data-driven computation of an RCI
	7.4 Conclusion

	Conclusion and future work
	Conclusion
	Future work

	Appendices
	Bibliography

