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ABSTRACT

A dynamical time series is a sequence of real-valued observations of a dynamical

system. Commonly in applications, the dynamical system of interest is unknown

and only a dynamical time series is observed. Dynamical time series arise in er-

godic theory in mathematics, nonlinear dynamics in physics, state space modeling in

statistics, and control theory in engineering. We consider two common goals in the

analysis of dynamical time series.

First, it is desirable to construct a faithful representation of the state of the

dynamical system using only the time series. Delay-time coordinates are widely

used for this purpose. Under certain conditions, the delay map taking the state

of the dynamical system to its corresponding delay-time coordinates is generically

an embedding of the state space. More precisely, current work shows that for a

fixed dynamical system, delay-time coordinates result in embeddings of the state

space generically with respect to the observation function. Motivated by common

usage of delay-time coordinates, we consider the more difficult situation where the

observation function is fixed and genericity is studied with respect to the dynamical

system. We prove that delay-time coordinates result in embeddings of the state space

for polynomial perturbations of the dynamical system with probability one over the

perturbing coefficients.

Second, it is desirable to predict time series accurately. Prediction of dynamical

time series with additive noise using kernel-based regression is consistent for certain

iv



classes of discrete dynamical systems. These methods are effective at computing

the expected value of the time series at a future time given the present delay-time

coordinates. However, the present coordinates themselves are noisy, so these methods

are only optimal when it is not possible to remove noise. We consider the problem

of prediction for flows, and show that the use of smoothing splines to reduce noise

before using kernel-based regression results in increased prediction accuracy. We

prove that our method is consistent, converging to the exact predictor based on the

noiseless time series, in the limit as sampling frequency and sampling time go to

infinity.

v



CHAPTER I

Introduction

1.1 Introduction

A dynamical time series is a sequence of real numbers generated from observations

of a dynamical system. Dynamical time series arise in ergodic theory in mathematics,

nonlinear dynamics in physics, state space modeling in statistics, and control theory

in engineering. Commonly in applications, only the dynamical time series is known,

and the goal of analysis is to reconstruct the state space of the unknown dynamical

system or to make predictions about future observations. In this thesis, we focus on

these two aspects of the analysis of dynamical time series.

We consider both discrete-time and continuous-time dynamical systems. A discrete-

time dynamical system (X,φ) consists of a compact manifold X containing the states

of the system and a diffeomorphism φ : X → X dictating the evolution of the system

with time. If a system (X,φ) is in the state x ∈ X at some time t ∈ Z, then this

system is in the state φ(x) at time t + 1. We call X the state space and we call φ

the dynamical map. The trajectory of a state x0 ∈ X is the sequence x0,x1,x2, . . . ,

where xt+1 = φ(xt) for t = 0, 1, 2, . . . . Hence, a trajectory x0,x1,x2, . . . is com-

pletely determined by the map φ and the initial state x0 ∈ X. In a continuous-time

dynamical system (X, {φt}t≥0), the map is replaced by a flow {φt}t≥0, which consist

1
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of a family φt : X → X of diffeomorphisms dictating the evolution of the system

at all times t ∈ R, satisfying φ0 = id and φt1 ◦ φt2 = φt1+t2 . The trajectory of a

state x0 ∈ X is the curve {x(t)}t≥0, where x(t) = φt(x0). Of particular interest are

dynamical systems described by differential equations: if f : X → TX is a smooth

vector field on X, then we can define a flow {φt}t≥0 by φt(x0) = x(t), where x(t)

is the unique solution to the differential equation ẋ = f(x) with initial condition

x(0) = x0.

We consider situations in which the full state of the dynamical system cannot be

observed, and only real-valued observations of the dynamical system are available.

For a discrete-time dynamical system (X,φ), given a trajectory x0,x1,x2, · · · ∈ X

of φ, we observe a dynamical time series s0, s1, s2, · · · ∈ R, where each st is an

observation of xt, for each t = 0, 1, 2, . . . . More precisely, in the noiseless setting, we

assume that the time series is given by an observation function h : X → R, so that

st = h(xt) for t = 0, 1, 2, . . . . In the observational noise setting, we assume that the

observations are contaminated by additive noise, in which case st = h(xt) + εt for

t = 0, 1, 2, . . . , where the εt are i.i.d. realizations of a mean-zero random variable.

For continuous-time dynamical systems, we assume that observations of the system

occur at equally spaced time intervals with frequency n. Given a trajectory {x(t)}t≥0

of a flow {φt}t≥0, the observed time series s0, s1, s2, . . . is given by st = h(x(t/n)),

in the noiseless setting, or by st = h(x(t/n)) + εt, in the observational noise setting,

for t = 0, 1, 2, . . . .

The first two chapters of this thesis deal with the problem of state space recon-

struction from a time series using delay-time coordinates. Let us now overview the

idea and aim of state space reconstruction and delay-time coordinates. Let (X,φ)

be a dynamical system and let h be an observation function, and suppose that we
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observe the noiseless time series h(x0), h(x1), h(x2), . . . , where x0,x1,x2 is a tra-

jectory of φ. We assume that X is compact and that φ and h are C1. Suppose

that ξ ∈ C1(X,RD) is an embedding, that is, ξ is diffeomorphic onto its image ξ(X)

(which will also be a compact manifold of the same dimension as X). Here D is a

parameter called the embedding dimension. Then, observations of the trajectory re-

sulting from the dynamical system (ξ(X), ξ◦φ◦ξ−1), the observation function h◦ξ−1,

and the initial state ξ(x0) result in the same time series as before. Hence, the basic

goal of state space reconstruction is to produce a representation ξ(xt) ∈ RD of each

state xt based only on the observed time series, so that the map ξ : X → RD is an

embedding of X. Delay-time coordinates are a popular and easy-to-apply method

for state space reconstruction. Here, a representation of the state xt is constructed

from the time series h(x0), h(x1), h(x2), . . . , h(xt) in the form of the delay vector

(h(xt), h(xt−1), . . . , h(xt−D+1)). The resulting map ξ : X → RD, which we call the

delay map, is

(1.1) ξ(x) :=
(
h(x), h(φ−1x), . . . , h(φ−D+1x)

)
.

Our focus in on the question of when do delay-time coordinates result in faithful

representations of the state space, that is, when is the delay map an embedding.

Before overviewing current work on delay-time coordinates, we first connect this

work to a classical theorem of Whitney. A main idea behind state space reconstruc-

tion is that in order to construct a good representation of a state x ∈ X, all that is

needed are sufficiently many independent observations of x. This is a consequence

of Whitney’s embedding theorem: let X be a compact Cr manifold of dimension d,

where r ≥ 1; for some D > 2d, consider the space Cr(X,RD) of Cr functions from X

to RD (the space is given the standard strong topology); then it follows that the set
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of Cr embeddings from X to RD is open and dense in Cr(X,RD) [25]. As a conse-

quence, a generic set of D > 2d observation functions h1, h2, . . . , hD ∈ Cr(X,R) can

be combined into a map x → (h1(x), h2(x), . . . , hD(x)) that is an embedding of X

into RD. A subset of Cr(X,R) is generic if it is equal to a countable intersection of

open and dense subsets of Cr(X,R). This result does not apply to delay-time coor-

dinates, since the components of the delay map are not independent, but it suggests

that a similar result can hold.

We now mention the main results on the question of when delay-time coordinates

result in embeddings of the state space. The first results are due to Aeyels [2] and

Takens [54]. Takens paper is particularly well known, and the result that delay

maps are embeddings for D > 2d and generic dynamical systems and observation

functions is sometimes called Takens’ theorem. Both authors rely on standard tools

from differential topology, mainly parametric transversality. Their arguments do not

consider some subtleties (see chapter 3). Sauer, Yorke and Casdagli [47] strengthened

these results in a few ways. The method of proof is more careful and genericity is

replaced by the stronger notion of prevalence.

Let us explain what is meant by prevalence. First, we consider perturbations h+∑
α cαpα of the observation function h, where pα are polynomials, cα are coefficient,

and the index α varies over a finite set. A property is said to be prevalent with

respect to the observation function, if it holds with probability one with respect to

the perturbing coefficients cα. Likewise, a notion of prevalence can be defined by

perturbing the vector field f or the map φ by polynomials. Sauer et al considered

prevalence for a fixed map φ with perturbations applied to the observation function

h. We consider the more difficult but also more natural situation where h is fixed (for

example, as a projection π1 to the first coordinate) but perturbations are applied to
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f or φ. This situation is the most common in applications of delay-time coordinates,

where the dynamical system and initial conditions are unknown, but the state space

and observation function are known and fixed.

In chapter 2, we study delay maps with a fixed observation function, for flows and

for the special case where the delay maps are restricted to a periodic trajectory. Let

r ≥ 2. Fix a Cr observation function h on Rd. Consider the space Cr−1(Rd,Rd) of

vector fields in Rd. Given a vector field f ∈ Cr−1(Rd,Rd), there is a corresponding

flow {φt}t≥0 defined by the differential equation ẋ = f(x). Suppose that the flow

{φt}t≥0 has a hyperbolic periodic orbit p : [0, T ) → Rd with period T > 0. Let

o : [0, T ) → R be the periodic signal o : [0, T ) → R given by o(t) := h(p(t)). For

a delay parameter τ > 0, define the delay map o(·; τ) : [0, T ) → R3 by o(t; τ) :=

(o(t), o(t− τ), o(t− 2τ)). Here the embedding dimension is D = 3, which is the

lowest possible. We ask if o(·; τ) is an embedding of the circle [0, T ) for generic vector

fields f . We must restrict the analysis to nearby perturbations f ′ ∈ Cr−1(Rd,Rd) of

the vector field f , for which we are guaranteed a corresponding perturbed hyperbolic

periodic orbit p′ [41]. We show that, for suitable τ > 0, there exist arbitrarily close

perturbations f ′ of f for which the corresponding delay map o′ is an embedding, and

secondly, if f is such that o is an embedding, there exists an open neighborhood of

f in Cr−1(Rd,Rd) such that the corresponding delay maps are embeddings.

In chapter 3, we again study delay maps with a fixed observation function, but for

maps and where the delay maps are restricted to K ⊂ Rd, a compact ball centered at

the origin. Let the projection onto the first component π1 : Rd → R act as the fixed

observation function. Let φ be a diffeomorphism on Rd having finitely many periodic

points of period less than 2D in K, where the embedding dimension D is to be

specified. Let F0 be the delay map corresponding to φ and π1. Consider perturbations
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of φ given by φ(x) +e1

∑N
α=1 cαpα(x), where e1 = (1, 0, . . . , 0) ∈ Rd, p1, p2, . . . , pN is

a basis of the polynomials of degree at most 2D−1, and c1, c2, . . . cN are perturbation

coefficients. Let Fc be the delay map corresponding to the perturbation vector c =

(c1, c2, . . . , cN). For a suitable a > 0 and ‖c‖ ≤ a, we ask whether the delay map Fc

is an embedding of K. We show that for D ≥ 4d+ 2, the subset of ‖c‖ ≤ a for which

the delay map is an embedding has full measure.

The final chapter of this thesis deals with the problem of prediction. Time series

prediction consists of using the time series {s0, s1, . . . , sT} and predicting future

values sT+1, sT+2, . . . . A common approach is to estimate a one-step predictor, that

is, a function f : RD → R that takes the delay vector (st, st−1, . . . , st−D+1) and

returns a prediction to st+1. This method is motivated by an application of delay-

time coordinates: if the time series is given by noiseless observations st = h(xt) of

a trajectory x0,x1,x2, . . . of a dynamical system (X,φ), where h : X → R is an

observation function, then the map ξ(xt) = (st, st−1, . . . , st−D+1) is generically an

embedding of X and hence the function F = h ◦ φ ◦ ξ−1 satisfies

F (st, st−1, . . . , st−D+1) = st+1

for every t. In this noiseless setting, this one-step predictor F : ξ(X) → R can

be estimated by interpolating the data {(xt, yt)}t, where xt = (st, st−1, . . . , st−D+1)

and yt = st+1. We call F the exact one-step predictor. Methods for estimating F

from a noiseless time series exist. For example, Nobel [38] gives a histogram-based

algorithm for computing F .

We consider the observational noise model, where the time series is of the from

st = h(xt)+εt for t ≥ 0, 1, 2, . . . ,where the εt are i.i.d samples of a mean-zero random

variable. Steinwart and Anghel [50] analyzed a kernel-based algorithm for computing

a one-step predictor from the noisy data {(xt, yt)}t. They consider the minimizer fT
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of

(1.2)
1

T −D − 1

T−1∑
i=D−1

(yi − f(xi))
2 + ΛT‖f‖2

Hγ

over f : RD → R in the reproducing kernel Hilbert space Hγ corresponding to

the Gaussian kernel k(x, y) = exp (−γ‖x− y‖2), where γ > 0 and ΛT > 0 are

determined using cross validation [48]. They give conditions on the regularization

parameter ΛT to ensure that fT converges with probability one to the regression

function G(x) := E [ỹ | x̃ = x], where (x̃, ỹ) is the distribution of (x, y).

At first sight, it seems as if the regression function G is the best possible predictor

for the observational noise model. Nonetheless, given that the data is presented

in the form of a time series, it is possible to reduce noise before constructing the

pairs {(xt, yt)}t, and hence obtain a better estimate of the states at each point. In

particular, if it is possible to eliminate all noise in the time series, then it is possible

to estimate the exact one-step predictor F instead of G. We pursue this strategy for

dynamical time series generated from flows.

Many time series of interests are given by measurements of continous-time dynam-

ical systems, such as systems modeled by ordinary differential equations. Lalley [31]

suggested that noise removal for time series generated from flows is different than for

maps. For general discrete dynamical systems, there is no notion of smoothness with

respect to time, so all noise-removal algorithms must be based on recurrences. For

continuous-time dynamical systems, a signal h(φtx0) will depend smoothly on time,

whereas the observational noise will not. Let {φt}t be a flow on X and consider a

time series given by sampling with frequency n

(1.3) st = h
(
φt/n(x0)

)
+ εt
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The time series is a noisy discretization of the signal h(φt(x0)) with noisy samples

at times t = 0, 1/n, 2/n, . . . , so we can estimate h(φt(x0)) using any of the usual

methods for one-dimensional smoothing. Due to their practical benefits, we consider

smooth splines for this purpose. In particular, we use cubic spline smoothing [8] to

compute the signal un : [0, T ] minimizing the functional

(1.4)
1

nT + 1

nT∑
i=0

(st − u(i/n))2 + λnT

∫ T

0

u′′(t)2dt

over the Sobolov space W 2,2[0, T ]. The regularization parameter λnT > 0 determines

the balance between fit to the signal and smoothness of the spline function, and is

determined using cross-validation.

In chapter 4, we propose using smooth splines (1.4) before learning a one-step

predictor using kernel-based regression (1.2). We compare our approach to other

kernel-based algorithms that try to directly estimate the regression function G and

show that our approach can improve prediction accuracy significantly. We show that,

for an ergodic flow {φt}t on X preserving a compactly supported probability measure

µ̃ and initial state x drawn from µ̃, given the time series (1.3), the regularization

parameters λnT and ΛnT can be chosen so that the estimated one-step predictor

converges to the exact one-step predictor F with probability one in the limit as

n→∞ and T →∞.

1.2 Contributions of this thesis

1. Suppose that p(t) is a hyperbolic periodic solution of the differential equation

dx
dt

= f(x), f : Rd → Rd. We prove that there exists an open set O of vector

fields containing f (in Cr with r ≥ 2) such that the delay map into R3 is an

embedding of the circle for a set of vector fields dense in O (chapter 2).

2. The theory of delay embeddings originated with the work of Takens [54] and
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Aeyels [2]. We argue that the proofs in both papers have significant gaps (chap-

ter 3).

3. A major paper on delay embeddings is due to Sauer et al [47], who considered

the situation where the dynamical system is fixed and only the observation

function is perturbed. We point out a minor but significant error in that paper

and correct it (chapter 3).

4. We analyze the considerably more difficult situation where the dynamical sys-

tem is perturbed and the observation is fixed (as π1 the projection to the first

coordinate). For diffeomorphisms φ defined over K, where K is a compact ball

in Rd, we prove that the delay map with embedding dimension D ≥ 4d + 2 is

an embedding with probability one with respect to polynomial perturbations of

φ (chapter 3).

5. As a part of that analysis, we introduce a new technique based on the concept

of Lebesgue points for proving prevalence. Prevalence, which asserts a property

to be true with probability one with respect to polynomial perturbations, is a

more powerful concept than genericity.

6. The best methods for time series prediction are based on machine learning. We

use smooth splines to derive a method that significantly improves prediction

accuracy (chapter 4).

7. For predicting a dynamical time series with a lookahead equal to tf , we show that

a predictor derived assuming a lookahead of tf from the beginning is superior

to iterating a one-step predictor (chapter 4).

8. Prediction of dynamical time series with observational noise using support vec-

tor machines with Gaussian kernelshas been shown to be consistent by Steinwart
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and Anghel [50]. We prove that a similar predictor that uses a preliminary spline

smoothing step converges to the exact predictor of the unknown noiseless time

series in the limit as sampling time and frequency go to infinity (chapter 4).

1.3 Overview of Chapter 2

Consider a dynamical system defined by the differential equation dx
dt

= f(x), where

f is a Cr−1 vector field on Rd, where r ≥ 2. Suppose that this system has a hyperbolic

periodic solution p : [0, T )→ Rd of period T > 0, which is guaranteed to be Cr. We

always think of [0, T ) as a topological circle, that is, the interval [0, T ] with 0 and T

identified. Consider the periodic signal o : [0, T )→ R given by o(t) := π(p(t)), where

π ∈ Cr(Rd,R) is an observation function. To simplify exposition, we restrict π to

linear observation functions π(x) = a ·x, where a ∈ Rd. For a delay τ > 0, we define

the delay map o(·; τ) : [0, T )→ R3 given by o(t; τ) := (o(t), o(t− τ), o(t− 2τ)).

Let Or be the set of Cr periodic signals. More precisely, Or is the set of pairs

(o, T ), where o : [0, T ) → R is a periodic Cr signal of period T > 0. When there is

no room for confusion, we will simply write o ∈ Or instead of (o, T ) ∈ Or. We define

the following metric d on Or

d(o, o′) := sup
k=0,...,r

sup
0≤s<1

∣∣o(k)(sT )− o′(k)(sT ′)
∣∣+ |T − T ′| .

Or is given the topology generated by this metric. Similarly, let Pr be the set of

Cr periodic functions on Rd. More precisely, Pr is the set of pairs (p, T ), where

p : [0, T ) → Rd is a periodic Cr function on Rd of period T > 0. Again, we will

simply write p ∈ Pr instead of (p, T ) ∈ Pr. We can also define a metric (which we

also call d) on Pr by

d(p,p′) := sup
k=0,...,r

sup
0≤s<1

‖p(k)(sT )− p′(k)(sT ′)‖2 + |T − T ′|
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and give Pr the topology generated by this metric. Finally, let F r−1 be the set of

Cr−1 vector fields on U ⊂ Rd. The set is endowed with the usual Cr−1 Whitney

topology. In this topology, two vector fields are close to each other if their values

and first r−1 derivatives are close to each other at every point (in local coordinates).

The theorem we prove is the following. Consider a dynamical system dx
dt

= f(x)

with a hyperbolic periodic orbit p of period T and corresponding periodic signal

o. Then, there exists τ > 0 an open neighborhood of f in F r−1 such that for an

open and dense subset of this neighborhood every vector field g admits a nearby

hyperbolic periodic orbit p′ of period T ′ and a corresponding periodic signal o′ such

that the map t→ o′(t; τ) is an embedding of the circle [0, T ′) into R3.

Sketch of some of the proofs

The arguments of chapter 2 are divided into two sections, the first dealing with

general periodic signals and their embeddings into R3, and the second dealing with

periodic orbits and their embeddings into R3. In the next paragraphs, we give

an overview of the proof of genericity of general periodic signals and make some

comments on the proof of genericity of periodic orbits of flows.

We first sketch the proof of genericity of embeddings of general periodic signals.

We begin with the argument that a generic delay map t → o(t; τ) is locally an

embedding. To begin, given a general periodic signal o ∈ Or, we show that o has

at most finitely many critical points, or that o can be approximated arbitrarily

well by a signal o′ ∈ Or of the same period and with finitely many critical points.

More precisely, we show that if 0 is a regular value of ȯ, then o has finitely many

critical points; otherwise, 0 is a critical value of ȯ, and we show how to construct

an arbitrarily close perturbation o′ of o for which ȯ′ has 0 as a regular value. The

last step uses Sard’s theorem, which states that the set of critical values of a smooth
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function between manifolds is a null set [17, 25]. Then, given a periodic signal o ∈ Or

with finitely many critical points, we show that the map ξ is locally an embedding.

Since o has finitely many critical points, the set [0, T ) is broken into finitely many

sub-intervals of strict monotonicity with minimum length µ > 0. For τ < µ/3, we

show that ξ(t) 6= ξ(t′) for |t− t′| < µ/3.

Suppose now that t → o(t; τ) is a local embedding, as described above. In order

to find an arbitrarily small perturbation o′ of o for which t → o′(t; τ) is a (global)

embedding, we make use of a finite-dimensional family of perturbations of o that is

rich enough to perturb away points where t→ o(t; τ) fails to be injective. Explicitly,

let h = τ/2 and 0 ≤ j ≤ n := floor(T/h), and consider C∞ bump functions λj :

[0, T )→ [0, 1] centered at jh and of width 2h = τ , such that λ(t) = 1 for |t−jh| < h/2

and λ(t) = 0 for |t− jh| > h. Hence, the family of perturbations oε of o defined by

oε(t) = o(t) +
n∑
i=0

εiλi (t) ,

has the property that for any t ∈ [0, T ), there is one j for which λj(t) = 1, and

if |t − t′| ≥ τ , then λj(t
′) = 0. First, we show that the perturbations oε are also

local embeddings for sufficiently small ε. Explicitly, we show that there exists ε′ > 0

such that for ‖ε‖ < ε′ and for τ < 12, the corresponding delay maps oε(t; τ) satisfy

oε(t; τ) 6= oε(t
′; τ) for |t− t′| < µ/3.

Suppose now that o ∈ Or is such that o(t; τ) is a local embedding for τ < 12, as

just described. We find an arbitrarily small perturbation o′ of o for which t→ o′(t; τ)

is a (global) embedding. We find o′ among the perturbations oε of o using results

from transversality theory. For this, we consider the set

T = {(t1, t2) | |t1 − t2| > µ/3, t1, t2 ∈ [0, T )} ,

which is a submanifold of dimension 2 of the torus [0, T ) × [0, T ). The function
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f : Rn+1 × T → R3 × R3 taking (ε, (t1, t2)) to (oε(t1; τ), oε(t1; τ)) is shown to be

transverse to the diagonal of R3 × R3. By the parametric transversality theorem,

there are ε arbitrarily small so that (t1, t2) → (oε(t1; τ), oε(t2; τ)) is transversal to

the diagonal of R3 × R3, which implies that oε(t1; τ) 6= oε(t2; τ) for (t1, t2) ∈ T .

Finally, we show that if o is such that o(t; τ) is an embedding, then there is an open

neighborhood of o in Or such that every corresponding delay map is an embedding.

This is done with an application of the inverse function theorem. It follows that the

set of periodic signals o for which o(t; τ) is an embedding for sufficiently small τ is

open and dense in Or.

Let us now mention some of the arguments used in analyzing periodic orbits of

dynamical systems and the genericity of their embeddings via delay coordinates. The

openness part of the argument follows easily from standard results and the results

above. Given a system dx
dt

= f(x) with a hyperbolic periodic orbit p, it is known

that an open neighborhood A ⊂ Cr−1(Rd,Rd) of f exists such that every f ′ ∈ A

contains a nearby hyperbolic periodic orbit p′. If in addition the delay map o(·; τ)

of p is an embedding for some τ , then the previous result about the openness of

Or imply that the delay maps o′(·; τ) will be embeddings for every f ′ ∈ A. It is

the denseness part of the argument that requires more work. As already explained,

given a periodic orbit p ∈ P of a system dx
dt

= f(x) with observed signal o ∈ Or, we

can find an arbitrarily close signal o′ ∈ Or to o such that o′(t; τ) is an embedding.

Hence, the difficulty is in showing that this can be used to construct an arbitrarily

close vector field f ′ to f with periodic orbit p′ ∈ P arbitrarily close to p such that

o′ is the corresponding observed signal.
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1.4 Overview of Chapter 3

As in chapter 2, we are interested in the case where the observation function is

fixed and the genericity of delay map embeddings is studied with respect to pertur-

bations of the dynamical system. Whereas chapter 2 deals with flows, we now focus

on maps. We expand the results of chapter 2 in two ways. First, we no longer restrict

our analysis to periodic orbits of the dynamical system. Second, following Sauer et

al [47], we replace genericity by prevalence. In exchange for these improvements, we

must weaken the lower bound on the embedding dimension from chapter 2.

Consider a dynamical system defined by the diffeomorphism φ : Rd → Rd and an

observation function given by h : Rd → R. Both φ and h are assumed to be Cr for

some r ≥ 2. We simply write the iterates of a state x ∈ Rd as x1 := x, x2 := φ(x1),

x3 := φ(x2), and so on. The delay map F0 : Rd → RD, where D is the embedding

dimension, is given by

F0(x) = (h(x1), h(x2), . . . , h(xD))T .

We consider the question of whether perturbations of F0 resulting from perturbations

of φ are embeddings on K ⊂ Rd, a closed ball centered at the origin. Since K is

compact, F0 is an embedding on K if and only if it is injective and the tangent map

TxF0 is injective at every x ∈ K.

Sketch of some of the arguments

In what follows, φ : Rd → Rd is a diffeomorphism and h : Rd → R is an observation

function, both assumed to be Cr for some r ≥ 2. The corresponding delay map is
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given by

F0(x) =


h(x1)

...

h(xD)

 .

The domain of F0 is restricted to K ⊂ Rd, a closed ball centered at the origin.

Given a multi-index α = (α1, α2, . . . , αd) ∈ {0, 1, 2, . . . }d, let pα : Rd → R be the

monomial given by

pα(x) := (π1x)α1(π2x)α2 · · · (πdx)αd ,

where πi : Rd → R is the projection onto the i-th coordinate, for i = 1, 2, . . . , d. The

degree of pα is given by |α| := α1 + α2 + · · · + αd. The set of polynomials PNd in

Rd and of degree at most N consists of all functions of the form
∑
|α|≤N cαpα, where

cα ∈ R for each index α. This is a finite-dimensional subspace of Cr(Rd,R), with

dimension DN
d :=

 N + d

N

. By enumerating the multi-indices |α| ≤ N , we can

define p : Rd → RDNd by p(x) = (pα(x))|α|≤N , which we treat as a row vector. The

elements of PNd can then be expressed as p(x)c, where c := (cα)|α|≤N ∈ RDNd is the

perturbation (column) vector.

We first sketch the arguments used in proving the prevalence of delay map em-

beddings with regards to perturbations of the observation function h, as done in

[47]. Here it is enough to consider perturbations by polynomials of degree at most

N = 2D − 1. For a given perturbation vector c ∈ RDNd , the perturbed observation

hc is given by

(1.5) hc(x) := h(x) +
∑

|α|≤2D−1

cαpα(x) = h(x) + p(x)c
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and the corresponding delay map is

(1.6)

Fc(x) :=


hc(x1)

...

hc(xD)

 =


h(x1)

...

h(xD)

+
∑
|α|≤2D−1 cα


pα(x1)

...

pα(xD)



= F0(x) +


p(x1)

...

p(xD)

 c

.

Note that, for a fixed x ∈ K, Fc(x) is an affine function of c. In the proof, we assume

that the perturbation coefficients are bounded by ‖c‖ ≤ a for some a > 0, and then

take a→∞.

Let us first deal with the argument for injectivity of 1.6. Here we restrict φ to

contain only finitely many periodic points of period less than 2D. Define the set K :=

{(x,y) ∈ K ×K | x 6= y} and function Gc : K → RD given by Gc(x,y) = Fc(x) −

Fc(y). The goal is then to show that 0 /∈ range(Gc) for a subset of perturbations c

of full measure. Due to compactness of K and the ball ‖c‖ ≤ a, the maps Gc are

Lipschitz with a global Lipschitz constant L. We can write Gc(x,y) = Mx,yc+ bx,y

where

Mx,y =


p(x1)− p(y1)

...

p(xD)− p(y2)

 and bx,y := F0(x)− F0(y).

The matrix Mx,y can be rewritten as
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Mx,y =

(
ID×D −ID×D

)



p(x1)

...

p(xD)

p(y1)

...

p(yD)


,

which has full rank D whenever all the iterates x1, . . . , xD, y1, . . . , yD are distinct, as

a consequence of the interpolation property of polynomials and that N = 2D − 1.

Even if some of the iterates are the same, as long as neither x or y are periodic

with period less than 2D, we show that Mx,y has rank D. Most pairs (x,y) ∈ K

are of this form, since only a finite number of periodic points with period less than

2D exist. We denote the set of pairs in K where containing one periodic point of

period less than 2D by K1. This set is dealt with separately. For the other points

K2 := K\K1, set

K2(δ) := {(x,y) ∈ K2 | ‖x− y‖ ≥ δ, dist((x,y),K1) ≥ δ} .

Due to compactness, for every (x,y) ∈ K2(δ), the matrix Mx,y has full rank D

with D-th singular values bounded below by some σδ > 0. To show that Gc is

injective over K2(δ) with probability one, we use that K2(δ) can be covered by at most

CKε
−2d ε-balls centered at K2(δ). For a given pair (x,y) ∈ K2(δ), the probability

that Gc(x,y) = 0 is no more than the probability that ‖Gc(x
′,y′)‖ ≤ Lε, where

(x′,y′) is the center of an ε-ball in the cover containing (x,y), which can be shown

to be bounded by Dα!LDεD

σDδ a
D using elementary arguments. Then the probability that

Gc(x,y) = 0 for any (x,y) ∈ K2(δ) is bounded by CK
ε2d

Dα!LDεD

σDδ a
D , which for D > 2d

goes to 0 as ε→ 0. Since K2 =
⋃∞
n=1K2(1/n), the result can be extended to K2 and
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finally to K = K1 ∪ K2.

The proof of immersivity of 1.6 uses similar arguments as those sketched above. To

talk about immersions, we now require K to be a submanifold of Rd, with T1K as its

unit tangent bundle. We consider the function Hc : T1K → Rd given by Hc(x, v) :=

(dFc)xv and show that Hc(x, v) 6= 0 for any (x, v) ∈ T1K with probability one

over perturbations c. Combining this and the results for injectivity, we obtain that

for a fixed dynamical system satisfying the restrictions above, the resulting delay

maps are embeddings with probability one over observation functions in the space

of polynomials of degree at most 2D − 1 (and any finite dimensional function space

containing it).

We now make some comments regarding the proof of prevalence of delay map

embeddings with respect to perturbations of the dynamical system. For simplicity

of exposition, we set h = π1, so we only need to consider perturbations of φ along its

first coordinate. Here we make use of polynomials of degree at most N = 4D + 1.

For a given c ∈ RDNd , the corresponding perturbed map φc is

φc(x) := φ(x) + e1

∑
|α|<N

cαpα(x) = φ(x) + e1p(x)c.

The trajectory starting at x ∈ Rd under this new map is denoted by x̃1(c) = x,

x̃2(c) = φc(x̃1), and so on (sometimes we drop the dependency on c). The delay map

is

Fc(x) =


π1(x̃1(c))

...

π1(x̃D(c))

 .

Here Fc(x) is no longer an affine function of c, for fixed x. Using Taylor’s theorem,
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we obtain

Fc(x) = F0(x)+



0

p(x1)

p(x2) + π1ρ2(x2,p(x1))

...

p(xD−1) + π1ρD−1(x2, . . . , xD−1,p(x1), . . . ,p(xD−1))


c+O(‖c‖2)

where the ρi depend linearly on the p(xj). This is similar to 1.6, except for the

nonlinear terms in c.‘

1.5 Overview of Chapter 4

For the purpose of predicting time series generated from noisy observations of

continuous-time dynamical systems, we describe a new algorithm that can signif-

icantly improve prediction accuracy compared to other prediction methods. This

algorithm makes use of the fact that flows exhibit smoothness with respect to time,

meaning that it is possible to reduce noise in the time series before attempting to re-

construct the dynamics. We prove that this method can consistently learn the exact

predictor function in the limit as the sampling frequency and length of measurements

go to infinity.

Consider the flow φ : Rd×R→ Rd defined by the differential equation dx
dt

= F(x),

where F ∈ Cr(Rd,Rd) for some r ≥ 2. As customary, we write φtx0 := φ(x0, t) =

x(t), where x(t) is the unique solution to dx
dt

= F(x) with initial condition x0 ∈ Rd.

We further assume that the flow φ preserves a probability measure µ on Rd with

compact support X ⊂ Rd and that φ is ergodic with respect to µ. We will consider

a trajectory {φtx0}t∈[0,∞) in X, where the initial state x0 ∈ X is drawn from the

measure µ.
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Consider the observation function π ∈ Cr(Rd,R). For some embedding dimension

D and delay-time τ > 0, suppose that the delay-coordinate map ξ : Rd → RD taking

a state in X to its corresponding delay-coordinate

ξ(x) :=
(
π(x), π(φ−τx), . . . , π(φ−τ(D−1)x)

)
is a Cr diffeomorphism. This embedding defines naturally a flow φ̃ = ξ ◦ φ ◦ ξ−1 on

the image ξ(Rd) ⊂ RD. The flow φ̃ preserves the push-forward measure µ = ξ∗µ of

µ, which has compact support X = ξ(X), and is ergodic. For a fixed tf > 0, we

define the tf -step predictor function F = π ◦φtf ◦ξ−1, which for a given state x ∈ X,

takes the delay-coordinate ξ(x) to the future observation π(φtfx) after the system

has evolved by time tf . When there is not risk of confusion, we will simply write

x = ξ(x).

Suppose that a time series {st}∞t=0 is generated from noisy observations of the

trajectory {φtx0}t∈[0,∞) by sampling at regular time intervals with frequency n

st = π
(
φt/nx0

)
+ εt,

where the εt are i.i.d. samples from a noise distribution ε. Hence, if the system is

observed up to a time T ∈ Z+, the times series obtained is {st}nTt=0. We assume that

ε = N (0, σ2), or more generally, that ε has variance σ2 and a finite κ-moment for

some κ > 3.

The predictor function F is normally estimated from the time series {st}nTt=0 as

follows. For easiness of notation, we assume that the delay-time τ and the prediction

time tf are integers. Then, the delay-coordinate and future observation at time t

become xt :=
(
st, st−nτ , . . . , st−n(D−1)τ

)
and yt := st+ntf . We can produce N =

n(T − tf − τ(D − 1)) such pairs of points, and to simplify manners we can re-index

the pairs to obtain the data pairs {(xt, yt)}Nt=1. This data is then used to estimate
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the regression function G(x) = E
[
Ȳ |X̄ = x

]
, where (X̄, Ȳ ) is the distribution of the

noisy delay-coordinate/future-observation pairs.

Algorithms following this protocol make use of the time series only to construct

the delay-coordinate/future pairs. This is not optimal, as the regression function

G, when restricted to X, will generally be different from the exact predictor F . In

situations where it is possible to reduce noise in observations by other methods,

such as in our set-up for flows, it is possible to obtain a regression function F̃ that

improves prediction accuracy and actually tries to approximate F .

The algorithm we study consists of two parts. First, the time series {st}nTt=0 is

smoothed out to reduce noise. We choose the method of cubic splines for this purpose,

since it uses the same methodology as the kernel-based methods that we use in the

second part. In this step, we find the signal s̃ : [0, T ] → R that minimizes the

functional

1

nT + 1

nT∑
t=0

(st − f(t/n))2 + λnT

∫ T

0

f ′′(t)2dt

among functions f ∈ W 2,2[0, T ], the Sobolev space of twice-differentiable functions

on [0, T ]. Here, λnT > 0 is a regularization parameter balancing fit to the time

series data and smoothness of the spline function s̃. In practice, the parameter is

determined using cross-validation.

In the second part of our algorithm, the smoothed out signal s̃ is used instead of s

to learn the predictor function. As before, delay-coordinate/future pairs {(x̃t, ỹt)}Nt=1

are constructed from s̃. The predictor F̃ is obtained by minimizing the functional

1

N

N∑
i=1

(ỹi − f(x̃1))2 + ΛnT‖f‖2
Hγ

over functions f ∈ Hγ, where Hγ is the reproducing kernel Hilbert space correspond-

ing to the Gaussian kernel k(x, y) = exp (−γ‖x− y‖2
2), for some fixed γ > 0. In
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practice, the bandwidth parameter γ > 0 and the regularization parameter ΛnT > 0

are determined using cross-validation.

In the analysis of consistency, we set λnT =
(

log(nT )
nT

)4/5

, for which a theorem

of Eggermont and LaRiccia [10, 11] assures that for a fixed ∆ > 0, the probability

p = p(n, T,∆,x) that supt∈[0,T ] |u(t)− π (φtx)| > ∆ goes to 0 and n → ∞. In the

analysis of consistency, we set ΛnT = ε2/‖Fε‖2
Hγ , where ε > 0 and Fε ∈ Hγ is chosen

so that ‖Fε − F‖∞ < ε. This can be done by the universality of Gaussian kernels

[49].

The RKHS Hγ corresponding to the Gaussian kernel k(x, y) = exp (−γ‖x− y‖2
2),

where x, y ∈ RD and γ > 0 is a fixed parameter, is large enough to guarantee

that the predictor function F can be approximated arbitrarily close by functions in

Hγ. Steinwart [49] has shown that the Gaussian kernel is universal, meaning that

continuous functions defined over compact sets can be approximated arbitrarily well.

In particular, since the predictor function F is continuous, for any ε > 0, there exists

some Fε ∈ Hγ such that ‖F − Fε‖∞ < ε.

For a fixed ε > 0, choose a function Fε ∈ Hγ such that ‖Fε−F‖∞ < ε in a compact

domain containing the invariant set X. Set Λ = ε2/‖Fε‖2
Hγ . Divide X using boxes

of dimension 2−l, where l > 0 is large enough to ensure that Fε varies by less than

√
ε/2. Then T is chosen so that all boxes are adequately sampled (with respect to the

ergodic measure). The bound ∆ is chosen small enough so that B1∆1/2/Λ < ε1/2.

This determines how large n is. With this setup, we can show that the resulting

predictor Fn,T satisfies

µ
{
x ∈ X | |Fn,T (x)− F (x)| > 3

√
ε
}
< 8ε/(1− ε)

for initial points x ∈ X of measure greater than 1 − ε and with probability 1 −

p(n, T,∆,x), where p → 0 as ε → 0. Hence, as n, T → ∞, our estimated predictor
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Fn,T converges to the exact predictor F .



CHAPTER II

Delay embeddings of periodic orbits using a fixed
observation function

2.1 Introduction

Suppose a physical system is described by the differential equation dx
dt

= f(x),

where f : Rd → Rd. Often the state vector x is unobservable in its entirety, and

that is especially true if d is large. Thus, reconstructing the flow from observations

is not straightforward. The technique of delay coordinates makes it possible to look

at a single scalar observation and reconstruct the dynamics. We denote the scalar

that is observed by πx. The observation function π could be a projection to a single

coordinate, for example, when the velocity of a fluid flow is recorded at a single point

and in a single direction. It could be some other linear function of x. More generally,

the observation function πx could be nonlinear.

If φt(x) is the time-t flow map, the idea behind delay coordinates [39, 47, 54] is

to use the delay vector

ξ(x; τ, n) =
(
πx, πφ−τ (x), . . . , πφ−(n−1)τ (x)

)
,

which is observable, as a surrogate for the point x in phase space. For a suitable

choice of delay τ and embedding dimension n, delay coordinates yield a faithful

representation of the phase space in a sense we will explain. Delay coordinates have

24
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been employed in many applications [3, 53]. Current theory for delay coordinates

[47] applies perturbations to the observation function π. We consider the situation

where the observation function is fixed as a linear projection and only the dynamical

system dx
dt

= f(x) is perturbed.

Packard et al [39] demonstrated that coordinate vectors such as (πφt(x), d
dt
πφt(x))

give good representations of strange attractors. They noted that delay coordinate

vectors would be equivalent to coordinate vectors formed using derivatives of the

observed quantity.

A mathematical analysis of delay coordinates was undertaken in a famous paper

by Takens [54] and independently by Aeyels [2]. In particular, Takens considered

when x → ξ(x; τ, n) is an embedding. Suppose M is a manifold of dimension m,

A ⊂M a submanifold of M of dimension d, and f : M → N a continuous map from

M to the manifold N . The restriction f
∣∣
A

is an embedding of A in N if the tangent

map df has full rank at every point of A, f
∣∣
A

is injective, and f
∣∣
A

maps open sets in

A to open sets in its range in the subspace topology [17, 25]. For the definition to

make sense, the manifolds and f must be at least C1. More generally, the manifolds

M,N and the map f may be assumed to be Cr with r ≥ 1 or with r = ∞. Takens

concluded that delay coordinates yield an embedding of compact manifolds without

boundary if n ≥ 2m+1, for generic observation functions π and generic vector fields

f . A property is generic in the Cr topology if it holds for functions f or π belonging

to a countable intersection of open and dense sets [41]. Because the Cr spaces are

Baire spaces [25], a countable intersection of open and dense sets is dense as well as

uncountable.

The paper by Sauer et al [47] marked a major advance in the theory of delay

coordinates. The approach to embedding theorems outlined by Takens relied on
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parametric transversality. Parametric transversality arguments typically have a local

part and a global part, and the transition from local arguments to a global theorem

is made using partitions of unity [25].

Sauer et al [47] sidestepped transversality theory almost entirely. Unlike in

transversality theory, there is no explicitly local part in the arguments of Sauer

et al [47]. The local part of the argument comes down to a verification of Lipshitz

continuity. The set being embedded is only assumed to have finite box counting

dimension. The arguments are mostly probabilistic and the globalization step relies

only on the finiteness of the box counting dimension. The only real analogy to differ-

ential topology appears to be to the proof of Sard’s theorem [25], which too is proved

using probabilistic arguments. Sauer et al prove prevalence [26], which goes beyond

genericity. A property is prevalent with respect to the observation function π, if

the property holds when any given π is replaced by π +
∑

α∈Iα cαpα, with pα being

monomials indexed by the finite set Iα, for almost every choice of the coefficients cα.

The embedding theorem of Sauer et al [47] fixes the dynamical system and allows

only the observation function π to be perturbed. The statements of genericity and

prevalence are with regard to π, not the original dynamical system. If consideration is

restricted to subsets A of box counting dimension d, Sauer et al only require n > 2d.

Thus, we could even have n < m.

As mentioned, we investigate embedding theorems in which the observation func-

tion is fixed. For example, π could be fixed as a linear projection that extracts some

component of the state vector. We allow perturbations of the dynamical system only.

The motivation for considering such embedding theorems is as follows. First, on

purely aesthetic grounds, it appears desirable to have an embedding theory that

depends upon the dynamics and not the observation function. Second, in many



27

applications the observation function is fixed, whereas the dynamical system itself

is parametrized [3, 6, 16, 42, 53]. If π extracts a single component at a single point

in the velocity field of a fluid, it is more pertinent to make the embedding theory

depend upon the dynamics rather than upon the observation function.

Aeyels [2] stated that delay coordinates are injective for generic flows and a fixed

observation function. In the context of applications, stronger theorems would be

desirable as argued by Sauer et al [47]. First, an open and dense set can have

arbitrarily small measure implying that prevalence, which is stronger than genericity,

is a more appropriate concept. Second, the dynamics may be confined to an attractor

of dimension much smaller than that of the state vector of the flow. In such a

situation, we would like the embedding dimension to be determined by the dimension

of the attractor and not the dimension of the state vector of the flow.

In this chapter, we consider the second of these two directions. Obtaining an em-

bedding dimension that depends on the dimension of the attractor and not the flow

introduces new difficulties when the observation is fixed and the flow is parametrized.

Current proofs [47, 54] rely on perturbing the observation function to produce an

embedding. When the observation function is fixed, the additional step of propa-

gating perturbations to the flow to the observed delay coordinates will need to be

handled. We need to understand how perturbing the flow perturbs the invariant set

or attractor, which is assumed to persist, and how the perturbations to the invariant

set or attractor propagate to delay coordinates. When the flow is fixed and the ob-

servation function is perturbed, the attractor to be embedded, which depends only

upon the flow, is unchanged by the perturbations. In contrast, when the observation

function is fixed and the flow is perturbed, the set to be embedded is altered by the

perturbations.
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Figure 2.1: A periodic signal (only a single period is shown) and its delay embedding in R3 with
delay τ . The points a, b, c map to A, B, C with delay coordinates.

To get a handle on such difficulties, we limit ourselves to hyperbolic periodic orbits

and prove that they embed generically in R3. The techniques we use are those of

transversality theory. Although periodic orbits are only a special case, they are an

important special case and arise frequently in applications, for example [5, 15].

To conclude this introduction, we mention some other extensions of delay coordi-

nate embedding theory. Embedding theory has been considered for endomorphisms

[55] as well as delay differential equations [9], for continuous but not necessarily

smooth observation functions [18, 19], and in concert with Kalman filtering [22].

The concept of determining modes and points in fluid mechanics and PDE is related

to embedding theory [28, 42, 43]. Delay coordinates have been used for noise re-

duction [44, 57]. The embedding theory of Sauer et al [47] has been generalized to

PDE by Robinson [42, 43]. The current embedding theory for PDE also relies on

perturbing the observation function.

2.2 Embedding periodic signals in R3

In the next section, we consider periodic solutions of differential equations. In this

section, we begin by considering periodic signals. A periodic signal is any function
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Figure 2.2: The points a1 and a2, and likewise b1, b2 and c1, c2, map to the same point in R3 under
delay embedding with the delay shown. The fundamental period of this signal is half
of what is shown. However, by modifying the signal in the box shown, its fundamental
period becomes equal to the interval shown and the delay map still fails to be injective
because c1 and c2 map to the same point in R3.

o : R → R with a period T > 0. Figure 2.1 shows a periodic signal and its delay

embedding in R3.

To make the definition of periodic signals more precise, let Or be the set of Cr

functions o : [0, T ] → R with period T > 0. Periodicity requires r derivatives of

o(t) to match at t = 0 and t = T . The domain of functions in Or, which we will

write as [0, T ) for signals o of period T , is compact and homeomorphic to S1. More

precisely, the domain is the identification space obtained by identifying 0 and T in

[0, T ]. For convenience, we shall refer to it as [0, T ), with the understanding that

when we refer to an interval (α, β) it can wrap around. The elements of Or will be

referred to as periodic signals. Even if o ∈ Or is constant, it must be equipped with

a period T > 0, and if T is chosen differently, we get a different element of Or.

For the periodic signal shown in Figure 2.1, the map t→ (o(t), o(t− τ), o(t− 2τ))

for 0 ≤ t < T results in an embedding of the circle. Each point of the circle [0, T )

maps to a distinct point in R3 so that the delay map is injective. The delay is

also immersive because a small movement along the periodic signal maps to a small

and nonzero movement in the embedding space R3. Because the delay map is both

injective and immersive, it is an embedding.
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Figure 2.2 shows a situation in which the delay map is not injective. This example

is in fact the same as in Figure 2.1 but the period is taken to be double of what it

is in Figure 2.1. As a result, points which are separated by the fundamental period

map to the same point in R3. As shown in Figure 2.2, the signal may be modified

so that the fundamental interval is not repeated and the delay map still fails to be

injective. Later in this section, we will prove that signals whose delay maps embed

the circle in R3 are more typical.

Local argument for periodic signals

If r ∈ Z+ and o, o′ ∈ Or are two periodic signals, define

(2.1) dr(o, o
′) = sup

k=0,...r
sup

0≤s<1
|o(k)(sT )− o′(k)(sT ′)|+ |T − T ′|.

The Cr topology on Or is defined by this metric. The Or norm of a periodic signal

is
∣∣∣∣o∣∣∣∣

r
= supk=0,...,r sup0≤t<T

∣∣o(k)(t)
∣∣ . By our definition, Or is not a vector space

because signals with different periods cannot be added. However, signals of a fixed

period are a vector space and
∣∣∣∣·∣∣∣∣

r
is a norm over it.The C∞ topology is the union

of Cr topologies over r ∈ Z+ as explained in [25]. For concepts and results of

differentiable topology, such as critical points, regular values, and Sard’s theorem,

our main reference is Hirsch [25]. The same topics are discussed from a dynamical

point of view in [40, 41].

Figure 2.2 shows a signal which does not embed the circle in R3 under delay

mapping. However, it is clear from observation that points that are nearby such

as a1 and b1 map to distinct points in R3. In fact, quite generally, if the number

of critical points in [0, T ) is finite, nearby points in the signal will map to distinct

points in R3, as we later prove. We begin by considering whether any periodic signal

may be perturbed slightly so that it has only finitely many critical points.
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Figure 2.3: An infinitely differentiable (bump) function (dashed line), which is zero outside (α, β)
and 1 near the middle of that interval, subtracted from a constant value of do

dt . If the

amount subtracted is adjusted, the integral of do
dt over one full period becomes zero as

shown.

Lemma II.1. Let o ∈ Or, r ≥ 2, be a periodic signal of period T > 0. If 0 is a

regular value of do/dt, then the periodic signal o(t) has finitely many critical points

in [0, T ).

Proof. Suppose do/dt = 0 at infinitely many points on the compact circle [0, T ). Let

p ∈ [0, T ) be an accumulation point of the set of zeros. Then d2o(p)/dt2 = 0 and

do(p)/dt = 0 implying that 0 is not a regular value of do/dt.

The following lemma generates a periodic signal of period T whose derivative is

do
dt

= ε everywhere except over a given interval (α, β). Any function whose derivative

is do
dt

= ε, ε 6= 0, everywhere cannot be periodic. Therefore, the proof of the lemma

comes down to modifying the derivative carefully in the interval (α, β).

Lemma II.2. Given (α, β) ⊂ [0, T ) and δ > 0, for all sufficiently small ε there exists

an infinitely differentiable periodic signal o of period T such that do(t)/dt = ε for

t /∈ (α, β) and |do(t)/dt| < δ for t ∈ (α, β). In addition, for r ∈ Z+,
∣∣∣∣o∣∣∣∣

r
→ 0 as

ε→ 0.
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Proof. Let λ(x) be an infinitely differentiable bump function with λ(x) ∈ [0, 1] for

x ∈ [0, 1], λ(x) = 1 for x ∈ [1/4, 3/4], and λ(x) = 0 for x ∈ [0, 1/8] and x ∈ [7/8, 1].

If
∫ 1

0
λ(x) dx = c then 1/2 < c < 1. The bump function λ(x) is used to modify do/dt

in the interval (α, β).

Define do(t)/dt = ε for t /∈ (α, β) and more generally

do(t)

dt
= ε− kλ((t− α)/(β − α))

for t ∈ [0, T ). The idea behind the construction is shown in Figure 2.3: if the bump

function is shifted to the interval (α, β) and a suitable multiple is subtracted, do
dt

may

then be integrated to obtain a periodic function.

More precisely, it follows that
∫ T

0
(do(t)/dt) dt = εT − k(β − α)c. The integral is

zero if k = εT/(β − α)c. For ε small, k is small as well. We may obtain o(t) by

integrating do(t)/dt, with
∣∣∣∣o∣∣∣∣

r
proportional to ε.

The following lemma proves that any sufficiently smooth periodic signal can be

perturbed to a nearby periodic signal with finitely many critical points.

Lemma II.3. If o′ ∈ Or, r ≥ 2, is a periodic signal, there exists another periodic

signal o of the same period with dr(o, o
′) arbitrarily small and such that o has only

finitely many critical points (including local maxima and minima) and 0 is a regular

value of do/dt.

Proof. If o′(t) is constant we can perturb to ε sin(tT/2π) for arbitrarily small ε and

verify the theorem. We will assume that o′ is not constant.

Consider do′

dt
(t) as a map from the circle [0, T ′) to R. If 0 is a regular value of this

map, we are done by Lemma II.1.

If not, there exists a regular value ε of do′/dt arbitrarily close to 0 by Sard’s

theorem (here r ≥ 2 is needed). Suppose we look at do′(t)/dt− ε. This function has
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Figure 2.4: The function f(x) = x3 sin
(
1
x

)
and its derivative.

a regular value at 0. However, the corresponding perturbation of o′ is o′(t)− tε and

is not periodic.

Because o′(t) is not constant, there exists an interval (α, β) in the circle [0, T ) over

which do′(t)/dt is nonzero. Without loss of generality, we assume do′(t)/dt > δ > 0

in the interval (α, β) (consider −o′(t) for the case where the derivative is negative).

Using Lemma II.2, we may find a periodic signal p(t) such that dp/dt = ε for t /∈

(α, β) and |dp/dt| < δ for t ∈ (α, β). Set o(t) = o′(t) − p(t) to obtain a periodic

signal with 0 being a regular value of do/dt to complete the proof.

Remark. Lemma II.1 is evidently true if we only assume the second derivative of

the periodic signal o(t) to exist and not necessarily continuous. In fact, Lemma II.3

is also true under the same weaker assumption because, in one dimension, Sard’s

theorem requires only the existence of the derivative (see Exercise 1 of Section 3.1 of

[25]).

The proof of Lemma II.3 may be illustrated using Figure 2.4. The figure shows

a part of the graph of f(x) = x3 sin(1/x) and its derivative f ′(x). It is evident that

the critical points of f ′, where f ′′(x) = 0, accumulate at the origin. In fact, a small
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perturbation cannot eliminate the accumulation of critical points because f(x) does

not have a second derivative at x = 0. However, if f(x) = x5 sin(1/x), a function

whose second derivative looks like the derivative show in Figure 2.4, Sard’s theorem

may be used to obtain a small perturbation such that 0 is a regular value of the

derivative of the perturbed function.

If o is a periodic signal with finitely many critical points, then its circular domain

[0, T ) may be decomposed into finitely many intervals with local minima and maxima

at either end. Let µ denote the minimum width among such intervals. Because o(t)

is monotonic in each interval, we refer to each such interval as the minimum interval

of strict monotonicity. If the delay is τ , we denote the point (o(t), o(t− τ), o(t− 2τ))

by o(t; τ).

Lemma II.4. If 0 < |t1 − t2| ≤ µ/3, where µ is the minimum interval of strict

monotonicity, and if the delay τ satisfies 0 < τ ≤ µ/3, then o(t1; τ) 6= o(t2; τ). If 0

is a regular value of do(t)
dt

, we also have do(t;τ)
dt
6= 0 for all t ∈ [0, T ).

Proof. Because |t1 − t2| ≤ µ/3, t1and t2 lie in either the same interval of strict

monotonicity of the periodic signal o(t) or in neighboring intervals. If they lie in the

same interval, we must have either o(t1) < o(t2) or o(t2) < o(t1) proving the lemma.

If t1 and t2 lie in neighboring intervals, we may assume t1 < t2 without loss of

generality. If o(t1) 6= o(t2), there is nothing to prove. So we assume o(t1) = o(t2) in

addition. Again without loss of generality, we assume that o(t) first increases and

then decreases as t increases from t1 to t2.

With these assumptions, t1 and t1−τ must lie in the same interval of monotonicity

because τ ≤ µ/3, and therefore o(t1 − τ) < o(t1). Further t2 − τ ∈ (t1 − τ, t2) and

the unique minimum of o(t) for t ∈ [t1− τ, t2] is attained when t = t1− τ . Therefore

o(t1 − τ) < o(t2 − τ), and we once again have o(t1; τ) 6= o(t2; τ).
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For the claim about do(t;τ)
dt
6= 0, we note that do

dt
cannot equal zero at both t and

t− τ , because τ < µ.

With Lemma II.4, the local argument for embedding periodic signals is partly

complete. Globalizing the argument will involve additional perturbations, which we

now define.

Let λ be a C∞ bump function with λ(x) = 1 for |x| ≤ 1/2, λ(x) = 0 for |x| ≥ 1,

and λ(x) ∈ [0, 1] for all x ∈ R. Let h = τ/2 and j ∈ Z. Define

λj(t) = λ

(
t− jh
h

)
for j = 0, 1, . . . , n and n = bT/hc. We interpret t modulo T and regard λj(t) as

a periodic signal with the circular domain [0, T ): a pulse of period T and width

h centered at jh which is equal to 1 for |t − jh| ≤ h/2. We now consider the

perturbation

(2.2) oε(t) = o(t) + ε0λ0(t) + ε1λ1(t) + · · ·+ εnλn(t),

where ε = (ε0, . . . , εn) ∈ Rn+1. For any t0 ∈ [0, T ), there exists a bump function λj(t)

with 0 ≤ j ≤ n such that λj(t0) = 1 and therefore λj(t) = 0 if |t− t0| ≥ τ = 2h.

Before we turn to the global argument, we must prove that the local structure

asserted by Lemma II.4 is preserved when o is perturbed to oε as in (2.2). The lemma

below guarantees oε(t1; τ) 6= oε(t2; τ) for |t1 − t2| ≤ 3τ . The bound 3τ ensures that

oε(t1; τ) = oε(t2; τ) can happen only when the intervals [t1 − 2τ, t1] and [t2 − 2τ, t2]

do not overlap.

Lemma II.5. Let o ∈ Or, r ≥ 2, be a periodic signal defined over the domain [0, T )

and with minimum interval of strict monotonicity equal to µ. Assume that 0 is a

regular value of do/dt. There exists ε0 such that if ||ε|| ≤ ε0, then for the perturbation
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defined by (2.2) and delay τ satisfying 0 < τ < µ/12, we have oε(t1; τ) 6= oε(t2; τ) for

all (t1, t2) with |t1 − t2| ≤ 3τ . In addition, 0 remains a regular value of doε
dt

.

Proof. By assumption the periodic signal o(t) has finitely many critical points. Let

t1 < t2 < · · · < tk be the critical points in the circular interval [0, T ); at these points

and only at these, we have do/dt = 0. Since 0 is a regular value of do/dt, we have

d2o(tj)

dt2
6= 0 for j = 1, . . . , k.

In the circle [0, T ), choose compact intervals Ki = [ti − δ, ti + δ], i = 1, . . . , k,

such that δ < µ/4 and d2o(t)
dt2
6= 0 for any t ∈ Ki. By continuity in the perturbing

parameters εi, for sufficiently small ||ε|| the perturbed periodic signal (2.2) also has

nonzero second derivative on ∪Ki.

Define the interval K ′i to be [ti + δ/2, ti+1 − δ/2] (K ′k wraps around the circle).

Each K ′k is an interval of strict monotonicity. By compactness, |do/dt| attains a

minimum strictly greater than 0 over ∪K ′i. Again by continuity, any perturbation of

the form (2.2) with ||ε|| sufficiently small also has nonzero derivative over ∪K ′i.

Thus, for ||ε|| sufficiently small, K ′i remain intervals of strict monotonicity for

the perturbed periodic signal, and each Ki can contain at most one critical point

of the perturbed periodic signal. The minimum interval of strict monotonicity is at

least µ − δ ≥ 3µ/4. We now apply Lemma II.4 to infer that 0 < τ ≤ µ/4 implies

oε(t1; τ) 6= oε(t2; τ) for 0 < |t1 − t2| ≤ µ/4. We limit τ to the interval (0, µ/12) to

complete the proof.

Global argument for periodic signals

The global argument relies on the parametric transversality theorem [25, 41].

Lemma II.6. Let o ∈ Or, r ≥ 2, be a periodic signal defined over the circle [0, T ).

There exists an arbitrarily small perturbation of the periodic signal o to o′, with the
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same period, and a delay τ > 0, such that t → o′(t; τ) is an embedding, with 0 a

regular value of do′/dt.

Proof. By Lemma II.3, we may make an initial perturbation to o if necessary and

assume that o has finitely many critical points, that 0 is a regular value of do/dt,

and that µ > 0 is the minimum width of an interval of strict monotonicity.

Now consider perturbations of o to oε of the form (2.2). By Lemma II.5, we may

assume oε(t1; τ) 6= oε(t2; τ) for t1 6= t2 and |t1 − t2| ≤ 3τ for τ < µ/12, provided ||ε||

is sufficiently small.

Consider the set

T =
{

(t1, t2)
∣∣∣|t1 − t2| > 3τ, t1 ∈ [0, T ), t2 ∈ [0, T )

}
,

where [0, T ) is interpreted as the circle, as before. For the applicability of the para-

metric transversality theorem later in the proof, it is important to note that T is a

manifold of dimension 2 without a boundary.

Consider (oε(t1; τ), oε(t2; τ)) as a function from the domain {(ε1, . . . εn)} × T to

R6 = R3 ×R3. We will now verify that this function is transverse to the diagonal in

R3×R3. If oε(t1; τ) 6= oε(t2; τ) there is nothing to prove. Suppose oε(t1; τ) = oε(t2; τ)

and consider the point in R6 given by

(oε(t1), oε(t1 − τ), oε(t1 − 2τ), oε(t2), oε(t2 − τ), oε(t2 − 2τ))

The intervals [t1 − 2τ, t1] and [t2 − 2τ, t2] are disjoint because |t1 − t2| > 3τ . By

construction, there exist i1, i2, i3, i4, i5, i6 such that λi1 , λi2 , λi3 , λi4 , λi5 , λi6 are each

equal to 1 at exactly one of the six points t1, t1 − τ, t1 − 2τ, t2, t2 − τ, t2 − 2τ and

zero at the others. If the tangent direction in the domain is taken to perturb εij for

j ∈ {1, . . . , 6}, it maps to a perturbation of the j-th coordinate in R6, more precisely
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the elementary vector ej. Therefore, the tangent map is surjective and transversality

is verified.

By the parametric transversality theorem [Hirsch, Chapter 3, Theorem 2.7], we

may choose ε arbitrarily small such that (oε(t1; τ), oε(t2; τ)) considered as a function

from T to R6 is transverse to the diagonal of R3 × R3. Since T is of dimension 2,

that can only happen if oε(t1; τ) 6= o(t2; τ) for (t1, t2) ∈ T .

To complete the proof, we only need to check the smoothness/dimension condition

in the parametric transversality theorem. The dimension of T is 2 and the codimen-

sion of the diagonal in R6 is 3. Thus, it is sufficient if the map from {(ε1, . . . εn)}×T

to R6 is C1 which it is.

Lemma II.7. Let o ∈ Or, r ≥ 2, be a periodic signal such that t → o(t; τ) is an

embedding of the circle [0, T ) in R3 for delay τ > 0. There exists ε0 > 0 such that

dr(o, o
′) < ε0 and T = T ′ (perturbation has same period) imply that t → o′(t; τ) is

also an embedding of the circle [0, T ).

Proof. By the inverse function theorem (see [25, Appendix]), there exists ε0 > 0 such

that for every t̃ ∈ [0, T ) there exists a neighborhood of t̃ over which t→ o′(t; τ) is an

injection if dr(o
′, o) < ε0 and T = T ′. Using a Lebesgue-δ argument we may assume

that o′(t1; τ) 6= o′(t2; τ) for 0 < |t1 − t2| < ε0, making ε0 smaller if necessary.

Although arguments like the one above are common in differential topology, we

state the version of the inverse function theorem invoked for clarity. The version

used is as follows. Suppose f is a Cr map from U , an open subset of Rm to V , an

open subset of Rn with m < n. Suppose f(x) = y and that the tangent map ∂f
∂x

is

injective at x. Then there exists a neighborhood N of f in the weak Cr topology

(r ≥ 1), a neighborhood U ′ of x, V ′ of y, and W ′ of 0 ∈ Rn−m, such that for every

g ∈ N there exists a diffeomorphism G : V ′ → U ′×W ′ with G−1 restricted to U ′× 0
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coinciding with g. This theorem is applied with m = 1 and n = 3.

The rest of the proof is a standard compactness argument. Let

min
|t1−t2|≥ε0

|o(t1; τ)− o(t2; τ)| = δ > 0,

where the minimum exists because of compactness and is greater than 0 because

t → o(t; τ) is an embedding. By continuity, the minimum must be positive for o′

sufficiently close to o. Similarly, immersivity of o′ sufficiently close to o is a direct

consequence of compactness of the circle. Thus, t→ o′(t; τ) is also an embedding.

Theorem II.8. The set of periodic signals o ∈ Or, r ≥ 2, for which there exists a

delay τ > 0 such that t → o(t; τ) is an embedding of the circle [0, T ) in R3 is open

and dense in Or.

Proof. By Lemma II.6, there exists an arbitrarily small perturbation to o′ such that

t → o′(t; τ) is an embedding for 0 < τ < τ0 and with 0 a regular value of do′/dt.

Thus the set of periodic signals with a delay embedding and with 0 a regular value

of do/dt is dense. We only have to prove that the set is open.

Given periodic signal o with t → o(t; τ) an embedding, Lemma II.7 shows that

t→ o′(t; τ) remains an embedding for dr(o, o
′) sufficiently small if T = T ′. If T 6= T ′,

we may still apply Lemma II.7, by defining o′′(t) = o′(tT ′/T ) which is a periodic

signal of period T . If dr(o, o
′) → 0 ,then dr(o, o

′′) → 0. Finally, t → o′′(t; τ) is an

embedding implies that t→ o′(t; τ̃) is an embedding with τ̃ = τT ′/T .

Theorem II.9. Suppose that o ∈ Or, r ≥ 2, and that t → o(t; τ) is an embedding

of the circle for some delay τ > 0. Then t → o(t; τ ′) remains an embedding if τ ′ is

close enough to τ .

Proof. The arguments used in Lemma II.7 and Theorem II.8 apply with little change.
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Figure 2.5: A periodic orbit of the classical Lorenz system and its x-coordinate as a function of
time (over a single period). The periodic orbit shown is A24B in the nomenclature of
[58].

2.3 Embedding periodic orbits in R3

Figure 2.5 shows a periodic orbit of the classical Lorenz system given by dx/dt =

10(y− x), dy/dt = −y− xz + 28x, dz/dt = −8z/3 + xy.1 The signal extracted from

that orbit is nearly flat for a significant duration when the origin is approached.

In this section, we will prove that “typical” periodic orbits (in a sense that will

be made precise) yield signals that result in embeddings of the circle. The following

proposition proves that an embedding using delay coordinates persists when the

vector field is perturbed slightly. It is the easier half of the argument.

Proposition II.10. Let dx
dt

= f(x), where x ∈ Rd, f : U → Rd, and U an open subset

of Rd, be a dynamical system with f a Cr−1 vector field, r ≥ 2. Let p : [0, T ) → U

be a hyperbolic periodic solution of period T > 0. Let a ∈ Rd and a 6= 0. Assume

that t→ (a ·p(t), a ·p(t− τ), a ·p(t− 2τ)) be an embedding of the circle [0, T ) in R3.

There exists an open neighborhood of f in the Cr−1 topology such that for each g in

that neighborhood, there exists a Cr-close hyperbolic periodic solution p′(t) of period

T ′ of dx
dt

= g(x) and a τ ′ close to τ such that t→ (a ·p′(t), a ·p′(t− τ ′), a ·p′(t−2τ ′))

1The periodic orbit of Figure 2.5 in [58] could not be computed using the techniques of [58]. It was computed
some years later using an initial guess that was constructed from the periodic orbit A25B25.
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Figure 2.6: A periodic orbit with a tube around it.

is an embedding of the circle [0, T ′) in R3.

Proof. The fact that a hyperbolic periodic solution such as p perturbs to a nearby

hyperbolic solution p′ in a small enough open neighborhood of f is a standard result

[42, Chapter 5]. If the signal o(t) = a·p(t) is such that t→ o(t; τ) is an embedding of

the circle, then t→ o′(t; τ ′) is also an embedding for o′(t) = a · p′(t; τ ′) by Theorem

II.8. The proof of Theorem II.8 uses the choice τ ′ = τT ′/T .

Suppose that the delay map of a signal obtained by projecting the first component

of a periodic orbit does not embed in R3. We will show that the differential equation

dx
dt

= f(x), x ∈ Rd, can be perturbed ever so slightly such that a nearby periodic

orbit of the perturbed equation results in an embedding of the circle. The proof

relies on constructing a tube around the periodic orbit. A tube around a periodic

orbit is illustrated in Figure 2.6.

To construct a tube around any periodic orbit in Rd, we begin by defining Pr in

analogy to Or. Let Pr be the set of periodic orbits p : [0, T )→ Rd that are r times

continuously differentiable. As before, we assume that [0, T ) is a parametrization of

S1 and T > 0 for the period. As a part of the definition of P , we require dp
dt
6= 0

for t ∈ [0, T ). The set Pr is endowed with a topology by defining the metric dr in
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analogy with (2.1):

dr(p,p
′) = sup

k=0,...r
sup

0≤s<1

∣∣∣∣p(k)(sT )− p′(k)(sT ′)
∣∣∣∣+ |T − T ′|.

The norm over Rd is the 2-norm. The kth derivative of p is denoted by p(k). For

convenience, dp
dt

and d2p
dt2

are also denoted as ṗ and p̈, respectively. The tangent

vector at t is defined as s(t) = ṗ(t)/
∣∣∣∣ṗ(t)

∣∣∣∣.
We denote the projection from Rd to the first coordinate by π1. If p is a solution

of the dynamical system dx
dt

= f(x), we wish to show that either o(t) = π1p(t) is

such that t → o(t; τ) is an embedding of the circle [0, T ) for some delay τ > 0, or

that there exists an arbitrarily close perturbed dynamical system dx
dt

= f ′(x) with

a nearby periodic orbit p′ such that t → o′(t; τ) is an embedding of the circle, if

o′ = π1 ◦ p′.

To begin with, the signal o(t) may even be identically zero. In our proof, we use

the results of the previous section to perturb it to o′(t) such that t → o′(t; τ) is an

embedding and then show how to perturb the flow to realize o′(t) as π1 ◦ p′.

The next lemma constructs a tube around the periodic orbit p in Rd (see Figure

2.6). That tube will be used to perturb f to f ′. Known results in differential geometry

[14, 27] may be used to assert the existence of a tube. However, uniformity and

smoothness guarantees that we need could not be found in the literature. Therefore,

an elementary proof of the lemma is included. The proof will later be modified to

deduce the existence of a tube whose radius is uniform in a neighborhood of p. In

the following lemma, δ may be thought of as the radius of a tube around p.

Lemma II.11. Suppose p ∈ Pr, r ≥ 2, and that its period is T > 0. Then there

exists δ > 0 such that

•
∣∣∣∣ṗ(t)

∣∣∣∣2 − δ∣∣∣∣p̈∣∣∣∣ > δ for t ∈ [0, T ),
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• if x ∈ Rd and dist(x,p) ≤ δ, there exists a unique t ∈ [0, T ) such that dist(x,p) =∣∣∣∣x− p(t)
∣∣∣∣.

Proof. The proof is organized so as to be easy to uniformize in the next lemma.

1. Choice of m and m∗. Let 2m = mint∈[0,T )

∣∣∣∣ṗ(t)
∣∣∣∣ > 0 and m∗ = maxt∈[0,T )

∣∣∣∣p̈(t)
∣∣∣∣.

The first part of the lemma would be satisfied if 4m2 − δm∗ > δ, or if δ < 4m2

1+m∗
.

2. Choice of M and r. First, we introduce the notation

dp

dt

∣∣∣∣∣
[t1,t2]

for a vector each of whose components is the corresponding component of ṗ

evaluate at some t ∈ [t1, t2]. Crucially, each component may chose a different t.

This notation will facilitate application of the mean value theorem. The interval

[t1, t2] may wrap around [0, T ), in which case the interval width must be taken

to be T + t2 − t1 and not t2 − t1. We ignore such wrap-arounds from this point

onwards.

Suppose t1 < t2 and tm = t1+t2
2

. Then∣∣∣∣∣∣
∣∣∣∣∣∣ṗ(tm)− dp

dt

∣∣∣∣∣
[t1,t2]

∣∣∣∣∣∣
∣∣∣∣∣∣ ≤ max

t∈[0,T )

∣∣∣∣p̈∣∣∣∣∞√d(t2 − t1).

The
√
d factor here arises in converting a componentwise bound using the ∞-

norm to a bound on the 2-norm. Evidently, if we choose M = maxt∈[0,T )

∣∣∣∣p̈∣∣∣∣∞×
√
d and r = m

M
, we may assert that

(2.3)

∣∣∣∣∣∣
∣∣∣∣∣∣ṗ(tm)− dp

dt

∣∣∣∣∣
[t1,t2]

∣∣∣∣∣∣
∣∣∣∣∣∣ ≤ m

for t1 < t2 and t2 − t1 ≤ r.
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If s(tm) is the unit tangent vector to p at tm, we have

s(tm) · (p(t2)− p(t1) = s(tm) ·
(
dp

dt

∣∣∣
[t1,t2]

(t2 − t1)

)
= s(tm) · ṗ(tm)(t2 − t1) + s(tm) ·

(
dp

dt

∣∣∣
[t1,t2]
−ṗ(tm)

)
(t2 − t1),

where the first equality is obtained by applying the mean value theorem to each

component of p(t2) − p(t1). Now, s(tm) · ṗ(tm) =
∣∣∣∣ṗ(tm)

∣∣∣∣ ≥ 2m by choice

of m. By (2.3), the second term in the display above is at most m(t2 − t1) in

magnitude. Therefore,

|s(tm) · (p(t2)− p(t1)| ≥ m(t2 − t1)

for t1 < t2 and t2 − t1 ≤ r.

3. Choice of M∗. Suppose w1 is a vector orthogonal to s(t1) and t1 < t2 with

tm = t1+t2
2

as before. Then, we have s(tm) · w1 = (s(tm)− s(t1)) · w1, which

implies

|s(tm) ·w1| ≤
∣∣∣∣s(tm)− s(t1)

∣∣∣∣ ∣∣∣∣w1

∣∣∣∣
≤
√
d max
t∈[0,T )

∣∣∣∣ṡ(t)
∣∣∣∣
∞(tm − t1)

∣∣∣∣w1

∣∣∣∣,
where the

√
d factor arises in converting a componentwise bound to a bound on

the 2-norm. An explicit formula for ṡ, the time derivative of the unit tangent,

will be given in the next proof. If we choose M∗ =
√
dmaxt∈[0,T )

∣∣∣∣ṡ(t)
∣∣∣∣
∞, we

may replicate the argument given using w1, t1 with w2, t2 and assert

|s(tm) ·w1| <M∗∣∣∣∣w1

∣∣∣∣(t2 − t1) and |s(tm) ·w2| <M∗∣∣∣∣w2

∣∣∣∣(t2 − t1).

4. Choice of ∆. We define ∆ = min|t2−t1|≥r
∣∣∣∣p(t2) − p(t1)

∣∣∣∣. Because a periodic

orbit cannot self-intersect, we must have ∆ > 0.
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We will choose δ to be smaller than the least of

4m2

1 + m∗
,

m

2M∗ ,
∆

2
.

The first part of the lemma follows immediately. Now suppose x ∈ Rd and dist(x,p) ≤

δ. Suppose dist(x,p) is equal to
∣∣∣∣x− p(t1)

∣∣∣∣ as well as
∣∣∣∣x− p(t2)

∣∣∣∣ for t1 < t2. By

item 4 above, we must have t2 − t1 < r, which we will now assume.

Because t = t1 minimizes (x− p(t)) · (x− p(t)), we may differentiate and deduce

(x − p(t1)) · ṗ(t1) = 0. Equivalently (x − p(t1).s(t1) = 0. Thus, we may write

x = p(t1) + w1,with w1 orthogonal to the tangent s(t1) and dist(x,p) =
∣∣∣∣w1

∣∣∣∣.
Likewise, we may write x = p(t2) + w2,with w2 orthogonal to the tangent s(t2) and

dist(x,p) =
∣∣∣∣w2

∣∣∣∣.
From p(t1) + w1 = p(t2) + w2, we obtain

s(tm) · (p(t2)− p(t1)) = s(tm) · (w1 −w2) .

Taking absolute values, applying item 2 above to the left hand side, and item 3 above

to the right hand side, we get

m(t2 − t1) <M∗ (∣∣∣∣w1

∣∣∣∣+
∣∣∣∣w2

∣∣∣∣) (t2 − t1),

or dist(x,p) > m
2M∗
≥ δ, contradicting our hypothesis about x. Thus, the assumption

t1 < t2 is mistaken, and we can only have t1 = t2 proving the second part of the

lemma.

The following lemma is a uniform version of the preceding Lemma II.11. The

lemma allows us to construct a tube of radius δ around all periodic orbits of period

T that are within a distance ε of p. Its proof is a minor modification of the preceding

proof.
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Lemma II.12. Suppose p ∈ Pr, r ≥ 2, and that its period is T > 0. Then there

exist ε > 0 and δ > 0 such that p′ ∈ Pr, with the same period as p, and dr(p,p
′) ≤ ε

imply that

•
∣∣∣∣ṗ′(t)∣∣∣∣2 − δ∣∣∣∣p̈′∣∣∣∣ > δ for t ∈ [0, T ),

• if x ∈ Rd and dist(x,p′) ≤ δ, then there exists a unique t ∈ [0, T ) such that

dist(x,p′) =
∣∣∣∣x− p′(t)

∣∣∣∣.
Proof. In the previous proof, we demonstrated the existence of a δ that works for p.

This proof comes down to choosing ε so that m,m∗, M, r, M∗, and ∆ work for all p′

with the same period as p and satisfying dr(p,p
′) ≤ ε.

The quantity m is a lower bound on
∣∣∣∣ṗ(t)

∣∣∣∣. Because ε controls
∣∣∣∣ṗ(t) − ṗ′(t)

∣∣∣∣
over t ∈ [0, T ), we may assume ε small enough and replace m by m/2 to make it

work for p′.

The quantity m∗ is an upper bound on
∣∣∣∣p̈(t)

∣∣∣∣. Because ε controls
∣∣∣∣p̈(t)− p̈′(t)

∣∣∣∣
over t ∈ [0, T ), we may assume ε small enough and replace m∗ by 2m∗ to make it

work for p′.

The quantity M is essentially an upper bound on
∣∣∣∣p̈(t)

∣∣∣∣
∞. Because ε controls∣∣∣∣p̈(t)− p̈′(t)

∣∣∣∣ over t ∈ [0, T ), we may assume ε small enough and replace M by 2M

to make it work for p′.

We may use the same definition of r = m
M

after modifying m and M as above.

The quantity M∗ is essentially an upper bound on
∣∣∣∣ṡ(t)

∣∣∣∣
∞. The unit tangent

vector s is given by s = ṗ/ (ṗ · ṗ)1/2. Differentiating, we obtain

ṡ =
p̈

(ṗ · ṗ)1/2
− ṗ (p̈ · ṗ)

(ṗ · ṗ)3/2
.

Because r ≥ 2, we may control the variation in p, ṗ, and p̈ by making ε small. Thus,

we may assume ε small enough and replace M∗ by 2M∗ to make it work for p′.
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We begin by defining ∆ = min|t2−t1|≥r
∣∣∣∣p(t2) − p(t1)

∣∣∣∣ as before. By assuming ε

small enough and replacing ∆ by ∆/2, we may assume ∆ to work for all p′.

The rest of the proof of the previous lemma works without change.

Half of the smoothness lemma that follows is a special case of the main theorem

in [14]. Given a periodic orbit and a tube around it, the lemma shows that each

point in the tube can be expressed as a sum of a point on the periodic orbit and

a vector orthogonal to the tangent at that point. Additionally, the lemma provides

smoothness and uniformity guarantees.

Lemma II.13. Assume the same setting as in the previous Lemma II.12. Given p′

with dr(p,p
′) ≤ ε and a point x0 ∈ Rd with dist(x0,p

′) ≤ δ, we may send x0 → t0,

where p′(t0) is the unique point on p′ closest to x0, and x0 → w0, where w0 =

x0 − p′(t0). The functions t0(x0) and w0(x0) are Cr−1. In addition, the magnitudes

of all derivatives of order r− 1 or less have upper bounds that depend only on p and

δ.

Proof. It is sufficient to prove the lemma for t0(x0). The assertions about w0(x0)

follow easily from that point.

The function (x0 − p′(t)) · (x0 − p′(t)) has a unique minimum at t = t0. By

differentiating, we get the equation (x0 − p′(t0)).dp
′(t0)
dt

= 0. If we define

f(x0, t0) = (x0 − p′(t0)).
dp′(t0)

dt

We may think of the equation f(x0, t0) = 0 as implicitly defining t0(x0) as a function

of x0. We have

∂f

∂t0
= p̈′(t0) · (x0 − p′(t0))− dp′(t0)

dt
· dp

′(t0)

dt
.

Here
∣∣∣∣x0−p′(t0)

∣∣∣∣ = dist(x0,p
′) ≤ δ. We may use the first part of Lemma II.12 and

conclude that the partial derivative ∂f/∂t0 is greater than δ in magnitude.
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Thus, the Cr−1 smoothness of t0(x0) follows by the implicit function theorem. To

upper bound the magnitudes of the derivatives, we simply have to use chain rule and

implicit differentiation. For example, if x0 = (ξ1, . . . , ξd), we have

(2.4)
∂t0
∂ξ1

= −
e1 · dp

′(t0)
dt

∂f
∂t0

,

where e1 = (1, 0, . . . , 0). Now the denominator is δ or more in magnitude and the

magnitude of the numerator has an upper bound that depends only on p′.

To obtain bounds for derivatives of t0(x0) of order r−1 or less, we may repeatedly

differentiate (2.4). The bounds on the derivatives obtained in this manner depend

only on the first r derivatives of p′ and δ. If we assume ε < 1, we may bound the

first r derivatives of p′ in terms of the derivatives of p. Thus, the magnitudes of all

derivatives of order r−1 or less have upper bounds that depend only on p and δ.

Theorem II.14. Let p(t) be a periodic solution of the dynamical system dx/dt =

f(x), where f is Cr−1. If o(t) = π1p(t) is a periodic signal, there exists either a delay

τ > 0 such that t→ o(t; τ), 0 ≤ t < T , is an embedding of the circle [0, T ) or another

vector field f ′, arbitrarily close to f in the Cr−1 topology, with a periodic solution

p′(t) arbitrarily close to p(t) in Pr and of the same period such that t → π1p
′(t; τ)

is an embedding of the circle [0, T ) for some τ > 0.

Proof. Let o(t) = π1p(t) and assume that there is no delay τ > 0 such that t→ o(t; τ)

is an embedding. By Lemma II.6, we can find a periodic signal o′(t) of period T , and

arbitrarily close to o(t) in Or, such that t→ o′(t; τ) for some τ > 0. Define

(2.5) p′(t) = p(t) +


o′(t)− o(t)

0

...

 .
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It suffices to construct a vector field f ′ such that p′(t) is a periodic solution of

dx
dt

= f ′(x) and f ′ → f as p′ → p.

Using Lemmas II.11 and II.12, find an ε > 0 and a δ > 0, such that a δ-tube may

be constructed as in the lemma for all periodic orbits p′ of the same period as p

satisfying dr(p,p
′) < ε. In addition, by taking o′ close enough to o, we may assume

that dr(p,p
′) < ε.

The following calculation is the heart of the proof:

dp′(t)

dt
=

dp(t)

dt
+ ε1(t)

= f(p(t)) + ε1(t)

= f(p′(t)) + ε1(t) + ε2(t),

where

ε1(t) =


d(o′(t)−o(t))

dt

0

...


and ε2(t) = f(p(t))− f(p′(t)). Evidently, as o′ → o in Or, the periodic signals ε1(t)

and ε2(t) go to 0 in Or−1.

Let λ : R→ R be a C∞ bump function with λ(x) = 1 for |x| ≤ 1/2 and λ(x) = 0

for |x| ≥ 3/4. Suppose x0 is a point in the δ-tube around p′. Then Lemma II.13,

allows us to write x0 as x0 = p′(t0(x0)) + w0(x0). The perturbation δf : Rd → Rd is

defined as

δf(x0) = (ε1(t0(x0)) + ε2(t0(x0)))λ

(
w0(x0).w0(x0)

δ2

)
for x0 in the δ-tube around p′, and zero otherwise. As a consequence of Lemma

II.13, δf → 0 in the Cr−1 sense as o′ → o.

By construction, p′(t) is a periodic solution of the dynamical system dx/dt =

f ′(x), with f ′ = f + δf .
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Finally, as a consequence of Proposition II.10 and Theorem II.14, we have the

following theorem.

Theorem II.15. Let dx
dt

= f(x), where x ∈ Rd, f : U → Rd, and U an open

subset of Rd, be a Cr, r ≥ 2, dynamical system. Let a ∈ R be a nonzero vector. Let

p : [0, T )→ U be a hyperbolic periodic solution of period T > 0. There exists an open

neighborhood of f in the Cr−1 topology such that for an open and dense set of g in

that neighborhood admit a nearby hyperbolic periodic solution p′(t) of dx′/dt = g(x′)

of period T ′ and a delay τ ′ > 0 such that the delay map t→ (a ·p′(t), a ·p′(t− τ ′), a ·

p′(t− 2τ ′)) is an embedding of the circle [0, T ′) in R3.

Proof. Proposition II.10 and Theorem II.14 imply Theorem II.15 with a = (1, 0, . . . , 0).

The theorem may be reduced to that case for any a 6= 0 by a linear change of vari-

ables.

The theorem does not assert that periodic orbits can be embedded in R3 for

an open and dense set of Cr vector fields g. Instead, the theorem limits itself to a

neighborhood of a vector field f which is known to admit a hyperbolic periodic orbit.

Such a restriction is essential because there exist open sets of vector fields none of

which admit any periodic solution.

2.4 Discussion

In this chapter, we have considered an extension of the delay coordinate embed-

ding theory. The current embedding theory of Sauer et al [47] is based on fixing

the dynamical system and perturbing the observation function. We have obtained

an embedding theorem for periodic orbits that fixes the observation function but

perturbs the dynamical system.
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Periodic solutions are a special case that arise in applications [5, 15]. However,

a generalization to a broader setting is desirable both from the theoretical point of

view as well as for wider applicability.

Our approach in this chapter relies heavily on the periodicity of signals. Yet

some differences between our approach and that of Sauer et al may be pertinent to

more general settings. The approach of Sauer et al is able to handle aspects of the

embedding result, such as injectivity, immersivity, and distinct points on the same

periodic orbit, relatively independently. Our argument is more layered. A global

argument is structured above a local argument, and the argument for periodic orbits

relies on the argument for periodic signals.



CHAPTER III

Prevalence of delay embeddigs with a fixed observation
function

3.1 Introduction

Let xj+1 = φ(xj) be a dynamical system. If o is a scalar valued observation

function, the delay map is given by

F0(x1) = (o(x1), . . . , o(xD)) .

The question of when F0 is an embedding was considered by Aeyels [2] and Takens

[54]. Suppose that xj ∈ Rn but with the dynamics confined to an invariant sub-

manifold of dimension d ≤ n. Alternatively, we may assume xj ∈ m, where m is a

manifold of dimension d. Based on an analogy to Whitney embedding [24], we may

expect F0 to be an embedding for generic o for embedding dimension D ≥ 2d + 1.

Here genericity is with respect to the space of functions o under a Cr topology with

r ≥ 2 [24].

Sauer et al [47] introduced a new point of view, supported by deep ideas, into

the theory of delay embeddings. If x ∈ Rn and α ∈ Zn0 is a multi-index, denote

the monomial xα by pα(x). Instead of assuming the observation function o to be

any Cr function, Sauer et al take the observation function to be the sum of some

fixed function o∗ and a finite linear combination of the monomials pα(x). Proofs

52
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of genericity rely on “bump” functions or C∞ functions with compact support. Al-

though the device of bump functions is of much utility in differential topology [24],

bump functions hardly ever arise in applications. In contrast, physical models often

use polynomials. Thus, limiting the perturbations to a finite linear combination of

polynomials is a welcome shift in point of view.

A property is generic in a Baire space if it holds for a countable intersection of

open and dense sets. A generic set is always dense but it may be of probability zero

(in a reasonable sense). For example, generic subsets of [0, 1] of probability zero may

be constructed easily. Thus, it may be questioned whether the concept of genericity

captures the notion of what is typical in applications.

Sauer et al [47] answered that question by introducing the notion of prevalence.

To say that delay embeddings are prevalent is equivalent to saying that the delay map

is an embedding for almost every linear combination of polynomials. If probabilities

are defined by normalizing the Lebesgue measure, we may say that the delay map is

an embedding with probability one.

Suppose xk = φk(x1) and yk = φk(y1). For F0 to be an injection, we must have

F0(x1) 6= F0(y1) whenever x1 6= y1. A major difficulty in the proof of injectivity

arises in handling points x1 6= y1 but with overlapping orbits. For example, we may

have y1 = x2 or y1 = x3. Related difficulties arise in handling periodic points and

in the proof of immersivity (an embedding must be injective as well as immersive).

Sauer et al [47] introduced several key ideas for handling these difficulties. However,

there is a minor gap in their proof. In section 4, we fix that gap and show that earlier

mathematical treatments have serious deficiencies. Therefore, proofs prior to Sauer

et al cannot be accepted.

The proof of Sauer et al [47] is quite informal. We give a more formally precise
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development of their ideas in sections 2 and 3. Later, we consider the case where the

observation map is fixed at o = π1, with π1 being the projection to the first coordinate

and with polynomial perturbations applied directly to φ. Ideas essential for the new

developments are interspersed in sections 2 and 3. Sauer et al include a filtering

step applied to the delay map in their main theorems. In addition to mathematical

informality, the filtering step makes the essential ideas difficult to grasp and verify.

Thus, the filtering step is omitted in section 4, where we derive their main results in

a modified form.

From section 5 onwards, we treat the case where o = π1 and φ itself is perturbed

by polynomials. There are two main motivations for considering this case. First,

from a purely aesthetic point of view, it is desirable to make the theory of delay

embeddings depend upon the dynamics and not the observation function. Second,

the setting with o = π1 is pertinent to applications. For example, the most natural

way to extract a time series from a fluid flow is to simply record the fluid velocity at

a fixed point [54].

The main technical novelty in our approach is related to the concept of Lebesgue

points. Our delay embedding theorem for the o = π1 case requires D ≥ 4d + 2,

although the work in chapter 2 of this thesis suggests D ≥ 2d+ 1. In the concluding

section, we express the hope that the technique of Lebesgue points may prove useful

in obtaining prevalence versions of some classical results in dynamical systems theory.

In that regard, we mention the extensions of delay embedding theory to PDE by

Robinson [42, 43]. A more complete account of other mathematical investigations in

embedding theory may be found in the introduction to chapter 2 in this thesis.
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3.2 Transfer of volume

A key idea in the work of Sauer et al [47] is to transfer volumes from embedding

space to parameter space. For an example of what we mean by transfer of volume,

suppose A is a square matrix. Then a volume equal to v in the range is transferred

to v/ detA in the domain.

Suppose G : RDα × Rd → RD is a Cr function with r ≥ 2. Here RDα is the

space of parameters and we will denote a point in parameter space by (cα) or cα,

with the understanding that (cα) (or cα)is a column vector. The transfer of volume

is carried out with fixed z ∈ Rd. Thus, the dependence of G (cα, z) on z, which

will be nonlinear, does not come up in the transfer of volume argument. When the

map φ is fixed and only the observation function is parametrized, G is linear in the

parameters cα. The embedding space is RD and the dimension D of this space is

of much importance. The rank of G is mainly constrained by D because Dα � D,

and the rank determines how much volume (or how little, with lesser the better) is

transferred from embedding space to parameter space.

In the following lemma and later we refer to µ(B1 ∩B2)/µ(B2), where µ(·) is the

Lebesgue measure, as the probability of B1 relative to B2 (both sets are assumed

to be measurable). Measure will always refer to Lebesgue measure. The following

lemma transfers the volume of a ball of radius Lε in RD to parameter space. All

norms in this chapter are spectral or L2 norms.

Lemma III.1 ([47]). Let g (cα) = A (cα) + g0 be a linear (affine) map from RDα to

RD, with A being a D ×Dα matrix. Suppose the first r singular values of A are at

least as great as σ > 0. Then the measure of the set

(3.1)
{
cα

∣∣∣||A(cα) + g0|| ≤ Lε
}
∩
{
cα

∣∣∣||cα|| ≤ a
}
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is less than or equal to

(3.2) 2DαLrεraDα−r
/
σr,

and the probability of ||A (cα) + g0|| ≤ Lε relative to ||cα|| ≤ a is less than or equal

to

Dα!Lrεr
/
σrar.

Proof. Suppose u1, . . . , uDαare the right singular vectors, v1, . . . , vD are the left singu-

lar vectors, and σ1, . . . , σDα the singular values of A. (see [56]). Let (cα) =
∑Dα

i=1 ciui

and g0 =
∑D

i=1 givi.

For i = 1, . . . , r, ||A(cα) + g0|| ≤ Lε implies that |σici + gi| ≤ Lε and therefore

|ci + gi/σi| ≤ Lε/σi ≤ Lε/σ. Thus, the coefficient ci must lie in an interval of

measure less than 2Lε/σ for i = 1, . . . , r.

For i = r + 1, . . . , Dα, ||cα|| ≤ a implies that ci must vary inside the interval

[−a, a], whose length is 2a.

Therefore, the volume of the set (3.1) is bounded above by (2Lε/σ)r(2a)Dα−r,

which simplifies to (3.2).

For the statement about the probability of ||A (cα) + g0|| ≤ Lε relative to ||cα|| ≤

a, we divide (3.2) by γaDα , where γ is the volume of the unit sphere in RDα , to obtain

2DαLrεr
/
γσrar.

The proof is completed using γ = πDα/2
/

Γ (Dα/2 + 1) ≥ 2Dα
/
Dα!.

Lemma III.1 shows how a volume ||g(cα)|| ≤ Lε in embedding space is transferred

to a probability relative to ||cα|| ≤ a in parameter space. The transferred probability



57

is proportional to εr, and therefore, as the rank r increases, the probability becomes

smaller.

To obtain prevalence with the observation function fixed and the map parametrized,

we will rely on the following nonlinear transfer of volume lemma. When the previous

Lemma III.1 is applied, L will be a Lipshitz constant. When the following lemma is

applied, L will be a Lipshitz constant as well as a bound on the quadratic remainder

term in a Taylor series.

Lemma III.2. Suppose g : RDα → RD is a C2 function, with the Taylor series

g (cα) = g0 + A (cα) + h (cα). We assume that both g(·) and h(.) are defined for

||cα|| ≤ a and that ||h (cα)|| ≤ L ||cα||2. We also assume that the first r singular

values of A are at least as great as σ > 0. Then the probability of ||g (cα)|| ≤ Lε

relative to ||cα|| ≤ ε1/2 is less than or equal to

Dα!2rLrεr/2
/
σr

for 0 < ε1/2 ≤ a.

Proof. If ε1/2 ≤ a and ||cα|| ≤ ε1/2, then ||h (cα)|| ≤ Lε. Therefore, ||A (cα) + g0|| ≤

2Lε. The proof is completed by applying the previous lemma with L ← 2L and

a← ε1/2.

Applications of Lemmas III.1 and III.2 will require us to get a handle on singular

values. We will turn to that in the next section. Before doing so, we recapitulate an

elegant argument of Sauer et al [47]. This argument, although elementary, gives a

good idea of the general approach when the observation function is parametrized.

Suppose K is a smooth sub-manifold or even a fractal set of box counting dimen-

sion d and with compact closure that is a subset of Rn. Let the embedding dimension
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be D > 2d. If d ∈ Z+, we can take D = 2d+ 1 as in Whitney’s embedding theorem

[24]. The following assumptions are made about the constant CK :

Assumption about CK (1): The set K can be covered with CK/ε
d ε-balls for any

ε > 0.

Assumption about CK (2): The set K ×K can be covered with CK/ε
2d ε-balls for

any ε > 0.

All balls are spherical.

A linear map from Rn to RD can be written as Fα(x) =
∑

α∈I cαmαx, where I is

the index set (i, j), 1 ≤ i ≤ D and 1 ≤ j ≤ n, and mα is the matrix with 1 in the

i, jth position if α = (i, j) and zero everywhere else. Here Dα = nD. We use cα both

to refer to an entry of the vector (cα) as in the definition of Fα and to the vector as

a whole as in ||cα||. The slight ambiguity, which is resolved from context, is highly

convenient. In most instances, cα refers to the vector as a whole.

Define Gα(x, y) = Fα(x)−Fα(y). Assume ||cα|| ≤ a0. By compactness of the ball

||cα|| ≤ a0, we may assume the Lipshitz constant of Gα(x, y) (with respect to x, y)

to be bounded above by L. Define K(δ) to be the set of all points (x, y) ∈ K ×K

satisfying ||x− y|| ≥ δ > 0. Cover K(δ) using CK/ε
2d balls. Suppose Gα(x, y) = 0

for some (x, y) ∈ K(δ). Then by the Lipshitz bound, we must have ||Gα(x, y)|| ≤ Lε

for (x, y) that is a center of one of the CK/ε
2d covering K(δ).

The rest of the argument hinges on transferring the volume ||Gα(x, y)|| ≤ Lε to

parameter space. To do so, write Gα(x, y) in the form(
m1,1(x− y), m1,2(x− y), . . .

)
(cα)

and observe that every column in the resulting matrix is in RD and is all zeros

except for a single entry equal to πix − πiy, where πi denotes the projection to the
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ith coordinate, for some i ∈ {1, . . . , n}. The first D singular values of that matrix

are all equal to ||x− y|| ≥ δ. Thus, we may transfer volumes using Lemma III.1

and assert that the probability of Gα(x, y) = 0 for some (x, y) ∈ K(δ) relative to

||cα|| ≤ a0 is at most

CK
ε2d
× (nD)!LDεD

δDaD0
.

By taking the limit ε→ 0 and because D > 2d, it follows that Gα(x, y) = 0 for some

(x, y) ∈ K(δ) only for a set of cα of probability zero relative to the ball ||cα|| ≤ a0. By

taking the union of the probability zero sets with δ = 1, 1
2
, 1

22
, . . ., we may conclude

that Gα(x, y) = 0 for some (x, y) ∈ K ×K, x 6= y, only for a set of cα of probability

zero relative to ||cα|| ≤ a0. Equivalently, x → Fα(x) is injective for x ∈ K with

probability one relative to the ball ||cα|| ≤ a0 in parameter space.

The argument derives its power by simply refining the cover of K(δ) by using

smaller and smaller ε-balls. If dFα(x, v) is the tangent map at x applied to the

tangent vector v, then dFα(x, v) = Fα(v) because of the linearity of Fα(x) in x. If K

is a submanifold then T1K is the unit tangent bundle consisting of points (x, v) with

||v|| = 1. Injectivity may be proved by considering dFα(x, v) instead of Gα(x, y),

with Lemma III.1 invoked with σ ← 1.

3.3 Rank lemmas

In proving a version of the Whitney embedding theorem, the argument of Sauer

et al [47] reviewed above writes Gα(x, y) = M.cα and relies on explicit knowledge

of singular values of M. In general, singular values of M cannot be obtained so

explicitly. Instead, the approach is to first argue that M has rank D or greater for

every (x, y) ∈ K(δ) and then observe that

σδ = min
(x,y)∈K(δ)

σD (M) > 0
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because the Dth singular value σD(M) is continuous in x, y and K(δ) is compact.

The argument may then be completed by applying Lemma III.1 with σ ← σδ.

To support such an argument, we give a few rank lemmas in this section. The

first two lemmas are from [47]. Rank lemmas of this type are known in multivariate

approximation theory [32], although they are buried inside more sophisticated results.

Suppose z ∈ Rd. As noted already, the projection to the ith coordinate is denoted

by πi. If α = (α1, . . . , αd), αi ∈ Z+ ∪{0}, is a multi-index, then zα =
∏d

i=1 (πiz)αi as

usual and |α| =
∑d

i=1 |αi|. In later arguments, it is essential to take the gradient of

zα with respect to z. For notational convenience, we always denote zα by pα(z). The

index set ID+ is the set of all α such that |α| ≤ D+. By elementary combinatorics,

the cardinality of ID+ is
(
d+D+

D+

)
.

Suppose z1, z2, . . . , zD′ are distinct points in Rd. Then

(3.3)


pα(z1)

...

pα(zD′)


denotes the multivariate Vandermonde matrix with the column index α ∈ ID+ for

some D+. The dimension of the matrix is D′ × |ID+|, where |ID+| is the cardinality

of ID+ .

Lemma III.3 ([47]). For α ∈ ID+ and D+ ≥ D′ − 1, the rank of the Vandermonde

matrix (3.3) is equal to the number of its rows.

Proof. Following [47], let Q be a d × d orthogonal matrix drawn from the Haar

measure. If z1 and z2 are distinct, then πiz1 6= πiz2 for any i for Q outside a set

of measure 0. Therefore, we can find a Q such that π1Qz1, . . . , π1QzD′ are distinct.

We may interpolate arbitrary values at zj using a univariate polynomial p(π1Qz) of
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degree D′ − 1. Because we can write

p(π1Qz) =


pα(z1)

...

pα(zD′)

 (cα)

for a suitable choice of cα, it follows that the rank of (3.3) is equal to the number of

its rows.

Let

(3.4)


∇pα(z1)

...

∇pα(zD′)


be the multivariate incomplete Hermite matrix at z1, . . . , zD′ and with α ∈ ID+ .

Lemma III.4 ([47]). The rank of the incomplete Hermite matrix (3.4) is equal to

the number of its rows if D+ ≥ D′.

Proof. Arguing as in the previous lemma, we may assume πiQz1, . . . , πiQzD′ to be

distinct for i = 1, . . . , d. Following [47] and assuming Q to be the identity without

loss of generality, we may then find a polynomial pi(πiz) of degree D′ − 1 that

interpolates the ith component of the prescribed gradients at z1, . . . , zD′ . We may

then obtain the prescribed gradients from p(z) =
∫
p1 dπ1z+ · · ·+

∫
pd dπdz. Thus, a

linear combination of the columns of (3.4) can produce any prescribed gradients.

To obtain prevalence results with a fixed observation function, Lemmas III.3 and
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III.4 need to be combined into another lemma. Therefore, let

(3.5)



pα(z1)

...

pα(zD′)

∇pα(z1)

...

∇pα(zD′)


be the multivariate Hermite matrix at z1, . . . , zD′ and with α ∈ ID+ .

Lemma III.5. The rank of the Hermite matrix (3.5) is equal to the number of its

rows if D+ ≥ 2D′ − 1.

Proof. Suppose function values as well as gradients are prescribed at z1, . . . , zD′ . We

may obtain the prescribed gradients at z2, . . . , zD′ as in the previous proof in the

form p(z) =
∫
p2 dπ2z+ · · ·+

∫
pd dπdz. To obtain suitable function values as well as

the π1 component of the gradients, we may take the polynomial p(z) + q(π1z) with

q being a suitable univariate Hermite interpolant of degree 2D′ − 1.

A matrix M is said to be circulant if its subsequent rows are obtained by rotating

the first row. If the number of columns is n and the first row is a1, . . . , an, the second

row must be an, a1, . . . , an−1. The following lemma about circulant matrices will be

used in the next section to refine the discussion of [47].

Lemma III.6. Let M be a m×D′ circulant matrix whose first row is 1, 0j1 ,−1, 0j2,

where 0j1 is 0 repeated j1 times. The rank of M is equal to m if m ≤ dD′/2e.

Proof. We must have j1 + j2 = D′ − 2. Either j1 or j2 must be less than or equal

to (D′ − 2)/2. Because they are both integers, either j1 or j2 must be ≤ bD′−2
2
c.
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Without loss of generality, we assume j1 ≤ bD′/2c − 1. As the rows are rotated, the

−1 appears in column j1 + k+ 1 for k = 1, . . . ,m. The columns do not wrap around

because

j1 + m + 1 ≤ bD′/2c − 1 + dD′/2e+ 1 ≤ D′.

All those columns are linearly independent.

The final rank lemma is obvious from elementary linear algebra. We state it

explicitly because it is invoked often and has a key position in the framework of [47].

For the most part, the lemma is invoked silently.

Lemma III.7. If the rank of the matrix B is equal to the number of its rows, the

rank of the product AB is equal to the rank of A.

3.4 Review of Sauer et al [47]

In this section, we review the main results and proofs of [47]. Our aim is two-fold.

The review helps us prepare the ground for our results about prevalence with a fixed

observation map. Second, we point out and fix an error in [47], while presenting the

proof with greater formal precision and completeness. The error in [47] is a minor

one relative to the depth of ideas found in that paper. We also point out errors and

gaps in earlier mathematical treatments that are much more serious.

Let φ : Rn → Rn be a diffeomorphism that is at least C2. We adopt the following

convention:

Convention about x, y: If x1 is a point in Rn, then x2 = φ(x1), x3 = φ(x2), and

so on. Similarly, y2 = φ(y1), y3 = φ(y2), and so on. It must be noted that this

convention does not apply to z. For example, z1, . . . , zD′ are any distinct points

in Lemma III.3.
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The observation function is assumed to be the (at least twice continuously differen-

tiable) function o : Rn → R, which maps every state vector to a real number. If the

state vector is x1, the corresponding delay vector is

F0(x1) =


o(x1)

...

o(xD)

 ,

where D will be referred to as the embedding dimension.

Let K ⊂ Rn be a possibly fractal set of box counting dimension d. The set K is

assumed to be compact. The delay mapping F0 restricted to K may not be injective.

To examine the injectivity more generally, we perturb the observation function to

o(x) +
∑

α∈I2D−1

cαpα(x)

and examine injectivity in the ball ||cα|| ≤ a0 with a0 > 0 and fixed. The perturbed

delay vector becomes

Fα(x) = F0(x) +


pα(x1)

...

pα(xD)

 (cα),

with α ranging over I2D−1. We use Fα instead of Fcαto denote the delay vector for

simplicity and without risk of confusion. The two assumptions about CK made in

the previous section are carried forward.

Theorem III.8 ([47]). If D > 2d and φ has finitely many periodic points x of periods

less than 2D, the delay mapping x→ Fα(x) is injective for x ∈ K for a set of cα of

probability 1 relative to ||cα|| ≤ a0.

Theorem III.8 is less general than corresponding statements in [47]. Our aim is
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to exhibit techniques while forsaking generality. The manner in which more general

statements can be obtained is discussed later.

Proof. Define Gα(x1, y1) = Fα(x1) − Fα(y1). We then have Gα(x1, y1) = F0(x1) −

F0(y1) +M(cα), where

M = JV , J =


1 −1

. . . . . .

1 −1

 , V =



pα(x1)

...

pα(xD)

pα(y1)

...

pα(yD)


.

Here J is D × 2D and V is 2D × Dα, where Dα is the cardinality of I2D−1. The

proof turns on the determination of the rank of M. If xi and yi, 1 ≤ i ≤ D, are

2D distinct points, we may apply Lemmas III.3 and III.7 and immediately conclude

that the rank of M is D. However, if not all points are distinct, the rank of V is

obviously not equal to the number of rows. Several cases need to be considered to

determine the rank of M.

Case 1: both x1 and y1 are periodic of period less than 2D with x1 6= y1. The set

of such pairs (x1, y1) is finite (by assumption) and will be denoted by K1. There are

two subcases.

Case 1.1: x1 and y1 lie on distinct orbits. If soM can be written in a compressed
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form as M = JcVc with

Jc =

(
C1 C2

)
, Vc =



pα(x1)

...

pα(xp)

pα(y1)

...

pα(yq)


,

where p, q are the periods of x1, y1 (or D if the periods are greater than D), respec-

tively. Further, C1 is a D×p circulant matrix with first row 1, 0, . . . and C2 is a D×q

circulant matrix with first row −1, 0, . . .. The rank of Vc is equal to the number of

its rows by Lemma III.3 and Jc is nonzero. Therefore, we may assert that the rank

of M is 1 or greater.

Case 1.2: x1 and y1 lie on the same periodic orbit. In this case, we may write

Jc = C1, Vc =


pα(x1)

...

pα(xp)

 ,

where p is the period of x1, C1 is a D × p circulant matrix whose first row is of the

form 1, 0, . . . , 0,−1, 0, . . . .0. Again, we conclude that the rank of M is greater than

1.

Suppose Gα(x1, y1) = 0 for some (x1, y1) ∈ K1. Then Mcα = 0 and cα must lie

on a hyperplane of co-dimension 1 or greater. Because K1 is finite, we may assert

Gα(x1, y1) 6= 0 for all (x1, y1) ∈ K1 with probability 1 relative to the ball ||cα|| ≤ a0.

Case 1 is now complete.

Case 2: Define K2(δ) to be the set of all (x1, y1) ∈ K ×K satisfying

1. ||x1 − y1|| ≥ δ,
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2. dist ((x1, y1),K1) ≥ δ. All distances in this chapter use the L2 or spectral norm.

The matrix M has a rank equal to D for each point in K2(δ), as we will prove by

breaking up case 2 into subcases.

Case 2.1: x1, . . . , xD, y1, . . . , yD are 2D distinct points. In this case,M = JV has

rank equal to D as noted at the beginning of the proof.

Case 2.2: x1, . . . , xD are distinct, y1, . . . , yD are distinct, and neither x1 nor y1 is

a periodic point of period less than 2D, but y1 = xj or x1 = yj for j ∈ {2, . . . , D}.

Without loss of generality, we assume y1 = xj.

In this case, the compressed form is M = JcVc with

Jc = (C1), Vc =


pα(x1)

...

pα(xD+j−1)

 ,

where C1 is D× (D+ j−1) circulant matrix with first row equal to 1, 0j−2,−1, 0D−1.

The −1 does not wrap around and the rank of C1 and therefore of M is D.

Case 2.3: x1 periodic of period less than 2D and y1 not so (or vice versa, which

may be ignored without loss of generality). In this case, the compressed form is

M = JcVc with

Jc = (C1, C2), Vc =



pα(x1)

...

pα(xp)

pα(y1)

...

pα(yD)


,

where p is the period of x1, C1 is a D × p circulant matrix with first row 1, 0, . . .,

and C2 is a D ×D circulant matrix with first row −1, 0, . . . The column rank of C2
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is equal to D and therefore the rank of M is also D.

We can now complete case 2 as follows. Suppose Gα(x1, y1) = 0 for some (x1, y1) ∈

K2(δ). By assumption (2) about CK , cover K2(δ) with CK/ε
2d or fewer ε-balls for

ε > 0. At this point, we introduce an assumption about L:

Assumption about L (1): The Lipshitz constant of Gα(x1, y1) with respect to

(x1, y1) ∈ K × K and with ||cα|| ≤ a0 is bounded by L. The existence of L

is a consequence of the compactness of K ×K, the compactness of ||cα|| ≤ a0,

and the differentiability assumption about the observation function o and the

diffeomorphism φ.

It then follows that ifGα(x1, y1) = 0 at some point (x1, y1) ∈ K2(δ), then ||Gα(x1, y1)|| =

||M(cα)|| ≤ Lε at the center of one of the ε-balls covering K2(δ). Define

σδ = min
(x1,y1)∈K2(δ)

σD (M) .

By compactness of K2(δ), σδ exists and is positive. By the transfer of volume Lemma

III.1, which is applied with r ← D, the probability of ||Gα(x1, y1)|| ≤ Lε relative to

the ball ||cα|| ≤ a0 at a point (x1, y1) ∈ K2(δ) is upper bounded by

Dα!LDεD

σDδ a
D
0

.

Because K2(δ) can be covered with CK/ε
2d or fewer ε-balls, the probability that

Gα(x1, y1) = 0 for some (x1, y1) ∈ K2(δ) is upper bounded by

CK
ε2d
× Dα!LDεD

σDδ a
D
0

.

BecauseD > 2d and by taking ε→ 0, we conclude that the probability ofGα(x1, y1) =

0 for some (x1, y1) ∈ K2(δ) relative to ||cα|| ≤ a0 is one. Case 2 is now complete.

To complete the proof of injectivity, take the union of the measure zero sets in

case 2 with δ = 1, 1
2
, 1

22
, . . . and the measure zero set in case 1. Outside of that
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measure 0 subset of the ball ||cα|| ≤ a0, we have Gα(x1, y1) 6= 0 for (x1, y1) ∈ K ×K

and x1 6= y1.

The ideas in the proof presented above are from [47], although our presentation is

more precise and formally complete. Theorem III.8 makes an assumption on periodic

points of period < 2D and not ≤ D as in [47]. To see why the more stringent

assumption is needed, we turn to [47, p. 611, case 3]. The case “x and y are not

both periodic with period ≤ w” is considered (w is D in our notation) and it is stated

that Jxy (which is Jc in our notation) is triangular of rank D. Unfortunately, that

statement is not correct.

To understand why that statement is not true, assume D = 6. Suppose x1 is a

periodic point of period 8 > D and that y1 = x5. Then Jc will be a 6 × 8 circulant

matrix which looks as follows:

1 0 0 0 −1 0 0 0

0 1 0 0 0 −1 0 0

0 0 1 0 0 0 −1 0

0 0 0 1 0 0 0 −1

−1 0 0 0 1 0 0 0

0 −1 0 0 0 1 0 0


.

Evidently, the rank of this matrix is 4 < D.

The easiest way to fix the minor error is to assume the number of periodic points

of period < 2D to be finite as we have done. However, Sauer et al [47] place condi-

tions on the box counting dimension of the set of periodic points of period p. The

conditions involving quantities such as rank(BCw
pq) are not easy to interpret and it

is unclear what they mean. The basic idea of assuming a bound on the box counting

dimension of periodic points of a certain period is a sound one. It can be developed
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fully using Lemma III.6 about the rank of circulant matrices and variations of that

lemma. We have not done so for two reasons. The proof becomes a great deal more

complicated, and at this point having a clear and complete account of the main ideas

appears more important than a slightly more general theorem. Additionally, if the

box counting dimension of the set of periodic points is greater than 1, then 1 will be

a characteristic multiplier that is repeated more than once, which is excluded in the

immersivity theorem.

The gaps in [54] and [2] are much less minor. In [54], it is assumed that the

delay map is an embedding in some neighborhood of the periodic points. The proof

of that assumption is unlikely to be as straightforward as assumed. Even granting

that assumption, the argument for transversality [54, p. 371] appears incomplete.

In particular, it does not consider the possibility that perturbing the delay map

of x may also perturb the delay map of x′, for example, when x′ = φ(x) and the

orbits of x, x′ overlap. There are yet other aspects of the proof we were not able

to verify. For example, [54, p. 370, case iii] seems to require x to be close to a

periodic point and x′ to be away from a periodic point. It is then asserted that

x, . . . , φ2m(x), x′, . . . , φ2m(x′) are distinct. How could that be true if x is a fixed

point? How is the possibility x′ = φ(x) handled?

The gaps in [2] also occur in handling overlaps of orbits and periodic points. The

main argument [2, p. 598] entirely ignores the possibility that orbits of x∗ and y∗

may overlap. Further, it is suggested that difficulties associated with fixed points

can be handled by adjusting the delays but no details are provided about carrying

out that suggestion.

Going back to the work of Sauer et al [47], a point in our proof of Theorem III.8

is worth calling to attention. In the proof, K2(δ) is covered with ε-balls and it is
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assumed that every ball center is in K2(δ). It is not sufficient to start with any cover

of K ×K because a ball center can be arbitrarily close to the diagonal or to a pair

of periodic points and σD(M) may become arbitrarily small.

If we say that a certain compact set s is covered by a certain number of ε-balls,

it is assumed that each ball has a center that lies in s. That assumption comes

up repeatedly in the proof of immersivity, which we now turn to. Once again all

the ideas are from [47]. Here K is assumed to be a smooth, closed, and compact

submanifold of dimension d and T1K denotes its unit tangent bundle. If x ∈ K and

v is tangent to K at x, then (x, v) ∈ T1K if and only if ||v|| = 1.

Theorem III.9. [47] If D > 2d − 1, K is invariant under φ, φ has finitely many

points x ∈ K of period less than D, and all characteristic multipliers of each of those

points are distinct, then x → Fα(x) is immersive over K with probability 1 relative

to the ball ||cα|| ≤ a0.

Proof. If x→ Fα(x) and v is a tangent vector to K at x, then we denote the vector

that v is mapped to by dFα(x, v). The following convention about v is an extension

of the convention about x, y explained earlier.

Convention about v: If v1 is tangent to K at x1, then v2 = ∂φ
∂x

∣∣∣
x1
v1, v3 = ∂φ

∂x

∣∣∣
x2
v2,

and so on. Because φ is a diffeomorphism, vi are all nonzero like v1.

We write dFα(x1, v1) = dF0(x1, v1) +N (cα), where

N = JH, J =


vT1

. . .

vTD

 , H =


∇pα(x1)

...

∇pα(xD)

 .

The proof will turn on the rank of N = JH. If x1, . . . , xD are distinct, the rank of

N is D because the rank of H is equal to the number of its rows by Lemma III.4
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and the rank of J is obviously D.

To study the rank of N , it is useful to define the following disjoint sets of T1K.

• K1 is the set of all (x1, v1) such that x1 is a periodic point of period less than D

and v1 is an eigenvector of the periodic point x1. By eigenvector of a periodic

point, we mean an eigenvector of the corresponding monodromy matrix.

• K2(δ) is the set of all (x1, v1) such that x1 is a periodic point of period less than

D and v1 is a linear combination of two eigenvectors of x1. It is also required

that

dist((x1, v1),K1) ≥ δ.

We will denote K2(0), where this last condition is not operative, by K2. Evi-

dently, K1 is a subset of K2.

• In general, Kr(δ), where r = 2, . . . , d, is defined as the set of (x1, v1) ∈ T1K such

that x1 is a periodic point of period D or less and v1 is a linear combination of

r eigenvectors of the periodic point x1.It is also required that

dist((x1, v1),Kr−1) ≥ δ.

We will denote Kr(0), where this last condition is not operative, by Kr. Evi-

dently, Kr−1 is a subset of Kr.

This sequence of cases stops at r = d and does not go up to r = n because we

are only interested in those eigenvectors of the periodic point x1that are also

tangent to K. The assumption about the invariance of K is used here.

• The final case is KD(δ) which consists of all points (x1, v1) ∈ T1K such that x1is

not periodic of period less than D and the distance to Kd is ≥ δ.
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The final case KD(δ) is the easiest to handle. In this case, x1, . . . , xD are distinct

and the rank of N is D as already mentioned.

In the case Kr(δ), the rank of N is in fact r or greater. To verify, suppose

(x1, v1) ∈ Kr(δ). Assume v1 = u1 + · · ·+ur, where ui are eigenvectors at the periodic

point x1. Assume v2 = v1 + · · ·+ vr, where vi are eigenvectors at point x2 obtained

by pushing ui along with the map φ. Likewise, if x1 is of period p, assume that

vp = w1 + · · ·+ wr.

Then the compressed form of N is N = JcHc with

Jc =



uT1 + · · ·+ uTr

vT1 + · · ·+ vTr

. . . wT
1 + · · ·+ wT

r

λ1u
T
1 + · · ·+ λru

T
r

. . .

λ1w
T
1 + · · ·+ λrw

T
r

λ2
1u
T
1 + · · ·+ λ2

ru
T
r

. . .



,

where λ1, . . . , λr are characteristic multipliers and the pattern is repeated until D

rows are obtained, and

Hc =


∇pα(x1)

...

∇pα(xp)

 .

The rank of Hc is equal to the number of its rows by Lemma III.4. The rank of Jc



74

is min(rp,D) because the Vandermonde matrix

1 1 . . . 1

λ1 λ2 . . . λr

...

λr−1
1 λr−1

2 λr−1
r


has full rank, the λi being distinct by assumption. Therefore, the rank of N is r or

greater for each (x1, y1) ∈ Kr(δ).

To complete the proof, we note that Kr is of dimension r− 1 for r = 1, . . . , d and

that T1K is of dimension 2d− 1. A new assumption about CK is useful.

Assumption about CK (3): It is assumed that Kr can be covered with CK/ε
r−1

ε-balls for r = 1, . . . , d. It is assumed that T1K and therefore KD(δ) can be

covered with CK/ε
2d−1 ε-balls.

We also extend the assumption about the Lipshitz bound L.

Assumption about L (2): It is assumed that the Lipshitz constant of dFα with

respect to (x1, v1) ∈ T1K for ||cα|| ≤ a0 is upper bounded by L. This assumption

too may be verified using compactness like the first assumption about L.

The proof may now be completed easily. Suppose dFα(x1, v1) = 0 for some

(x1, v1) ∈ Kr(δ). Then ||dFα(x1, v1)|| ≤ Lε at the center of one of the CK/ε
r−1

balls covering Kr(δ). By the transfer of volume Lemma III.1, the probability of such

an event is upper bounded by

CK
εr−1

× Dα!Lrεr

σrδa
r
0

,

where σδ = min σr(N ) over (x1, v1) ∈ Kr(δ). The probability evidently goes to 0 as

ε → 0 leaving us with a measure zero set of cα where Fα is not immersive at some

point in Kr(δ) for r = 2, . . . , d. The sets K1 and KD(δ) are handled similarly.
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Theorem III.9 assumes K to be a closed and compact submanifold. That as-

sumption implies KD(δ) to be compact. If KD(δ) is compact, we may conclude that

minσD(N ) over (x1, v1) ∈ KD(δ) exists and is positive. The assumptions on K can

be reduced. However, the technicalities that arise (see [24]) are extraneous to the

main ideas in this chapter.

3.5 Perturbing the dynamical system

Let φ : Rd → Rd be a diffeomorphism, which is as before but with n = d. Let ψ(x)

denote ∂φ
∂x

. The vector in Rd with first component 1 and the others zero is denoted

by e1. The perturbed dynamical system is

φα(x) = φ(x) + e1 (pα(x)) (cα)

with α ∈ I2D−1, where D is the embedding dimension. It may be noted we are

only perturbing the first coordinate of φ. Because the observation function will be

assumed to be o = π1, it is enough to perturb only the first coordinate.

The delay vector under φ is

F0(x1) =


π1x1

...

π1xD

 .

Convention about x̃: It is assumed that x̃1 = x1 . Thereafter, it is assumed that

x̃2 = φα(x̃1), x̃3 = φα(x̃2),and so on.

The delay vector under φα is therefore

Fα(x1) =


π1x̃1

...

π1x̃D

 .
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It is worthy of notice that φα perturbs only the first component of φ. Because the

delay vector is built up using π1, φα must perturb the first component. If not,

the perturbation may not propagate to the delay vector at all. It turns out that

perturbing only the first component is also sufficient to obtain a prevalence theorem.

Our first task is to express Fα as a perturbation of F0. That can be done by

simply iterating the definition of φα:

x̃1 = x1

x̃2 = x2 + e1 (pα(x1)) (cα)

x̃3 = x3 + e1 (pα(x2)) (cα) + ψ(x2)e1 (pα(x1)) (cα) +O(c2
α).

Above and later, O(c2
α) is the same as O

(
||cα||2

)
. By following the pattern, we

obtain

(3.6)

x̃j = xj + e1 (pα(xj−1)) (cα) + ρj−1(x2, . . . , xj−1, pα(x1), . . . , pα(xj−2))(cα) +O(c2
α)

for j = 2, . . . , D. Here it is important to note that ρj−1 is linear in pα(x1), . . . , pα(xj−2).

For brevity, we will rewrite (3.6) as

(3.7) x̃j = xj + e1 (pα(xj−1)) (cα) + ρj−1(cα) +O(c2
α).

We then get

Fα(x1) = F0(x1) +

 0

V (x1)

 (cα) +O(c2
α),

with the matrix V (x1) defined by

V (x1) =



pα(x1)

pα(x2) + π1ρ2

...

pα(xD−1) + π1ρD−1


.



77

The next lemma is about the rank of V (x1).

Lemma III.10. If x1, . . . , xD−1 are distinct, the rank of V (x1) is equal to the number

of its rows.

Proof. Suppose we consider

V =



pα(x1)

pα(x2)

...

pα(xD−1)


.

The rank lemma III.3 tells us that the rank of V is equal to the number of its rows.

Now to produce a vector (a1, . . . , aD−1)T in the range of V (x1), we proceed as

follows. Define

a′1 = a1

a′2 = a2 − ρ(x1, a
′
1)

a′3 = a3 − ρ(x1, x2, a
′
1, a
′
2)

and so on. Because of the linearity of ρ in ai, the vector (cα) that satisfies V(cα) =

(a′1, . . . , a
′
D−1)T also satisfies V (x1)(cα) = (a1, . . . , aD−1)T .

The next lemma is similar. Part (c) of the following lemma is more general than

Lemma III.10 because we allow D+ > D.

Lemma III.11. The following matrices have rank equal to the number of rows:

1.

 V (x1)

V (y1)

 assuming x1, . . . , xD−1, y1, . . . , yD−1 to be distinct.

2.

 V (x1)

mk

 , where mk is the first k rows of V (y1), assuming x1, . . . , xD−1, y1, . . . , yk

to be distinct.
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3.



pα(x1)

pα(x2) + π1ρ2

...

pα(xD+−1) + π1ρD+−1


assuming x1, . . . , xD+−1 are distinct and D+ ≤ 2D.

Proof. Similar to the previous proof.

Our second task in this section is to obtain dFα(x1, v1) as a perturbation of dF0(x1, v1).

It is helpful to introduce another convention:

Convention about w: w1 = v1, w2 is obtained as ∂φα
∂x

∣∣∣
x̃1
w1, w3 is obtained as

∂φα
∂x

∣∣∣
x̃2
w2, and so on.

Thus, in effect we need to obtain perturbative expansions of wi. To do so, let us first

note that

∂φα
∂x

= ψ(x) + e1

(
∇pα(x)T

)
(cα).

We substitute the above equation into the iteration that defines wi and obtain

w1 = v1

w2 = ψ(x̃1)w1 + e1

(
vT1∇pα(x1)

)
(cα)

w3 = ψ(x̃2)w2 + e1

(
vT2∇pα(x2)

)
(cα) + %2 +O(c2

α)

and so on. If we now use (3.6) to substitute for x̃j, we obtain

wj = vj + e1

(
vTj−1∇pα(xj−1)

)
(cα) + %j−1(cα) +O(c2

α),

where ρj−1 is linear in

pα(x1), . . . , pα(xj−2),∇pα(x1), . . . ,∇pα(xj−2).
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We may then write

dFα(x1, v1) =


π1w1

...

π1wD


= dF0(x1, v1) +

 0

H(x1, v1)

 (cα) +O(c2
α),

where

H(x1, v1) =



vT1∇pα(x1)

vT2∇pα(x2) + π1%2

vT3∇pα(x3) + π1%3

...

vTD−1∇pα(xD−1) + π1%D−1


.

The second task for this section concludes with a lemma about the rank of H(x1, v1).

Lemma III.12. If x1, . . . , xD−1 are distinct, the rank of H(x1, v1) is equal to the

number of its rows.

Proof. The proof is similar to that of Lemma III.10. First consider

pα(x1)

...

pα(xD−1)

vT1∇pα(x1)

...

vTD−1∇pα(xD−1)


.

By Lemma III.5, the rank of this matrix is equal to the number of its rows. Suppose

we want to find (cα) such that H(x1, v1)(cα) equals a specified vector (a1, . . . , aD−1)T .
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To do so, we find a vector (cα) such that the matrix displayed above applied to cα is

equal to 

0

...

0

a′1

...

a′D−1


,

where a′1 = a1, a′2 = a2 − r2, where r2 is π%2 evaluated by replacing pα(x1) by 0 and

vT1∇pα(x1) by a1
′, and so on.

The third and final task of this section is to track the perturbation of fixed points

when the map φ is perturbed to φα.

Lemma III.13. Suppose z0 = φ(z0) and ψ(z0) has no eigenvalue equal to 1. Under

φ→ φα, the fixed point z0 perturbs to

z0(cα) = z0 + (I − ψ(z0))−1e1 (pα(z0)) (cα) +O(c2
α).

Proof. The function z0(cα) exists by the implicit function theorem. To obtain the

expansion given in the lemma, start with

φ(z0) + e1 (pα(z0)) (cα) = z0

differentiate with respect to cα and obtain ∂z0
∂cα

at cα = 0 using implicit differentiation.
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3.6 The setting for injectivity and immersivity theorems

In the case where φ is fixed and only the observation function o is perturbed,

injectivity and immersivity are proved with respect to the ball ||cα|| ≤ a0, where

a0 > 0 can be anything. Such a thing is plainly impossibly when φ is perturbed

to φα. Under a perturbation, the map may even fail to be well defined or might

blow-up in finite time. Therefore, we have to specify the setting for injectivity and

immersivity theorems more carefully.

We will assume that K is a compact sphere in Rd centered at the origin. The

map φα will be proved to be injective and immersive over K. It is assumed that

K+ is a compact sphere bigger than K and containing K. If x1 ∈ K, it is assumed

that x1, . . . , xD all remain in K+. In addition, a0 is assumed to be so small that

x̃1, . . . , x̃D all remain in K+ for all ||cα|| ≤ a0. Further assumptions are enumerated

below:

1. φα : Rd → Rd is assumed to be a diffeomorphism (for ||cα|| ≤ a0), that is C3 or

better.

2. The map φα has exactly m fixed points, denoted by ξ1(cα), . . . , ξm(cα).

3. The map φα has no other periodic points of period less than 2D.

4. All the fixed points are hyperbolic and π1ξi(cα) 6= π1ξj(cα) if i 6= j. This

assumption is made with the intention of simplifying the proof so as to bring

out the main techniques with greater clarity. Here we are essentially assuming

injectivity between fixed points.

5. We will also assume that dFα is immersive at each fixed point for the same

reason.
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Now we will recall a few basic facts about Lebesgue points. A point a ∈Rn is a

Lebesgue point of a measurable set A ⊂ Rn if

lim
ε→0

µ
(
A ∩

{
u
∣∣||u− a|| < ε

})
µ
({
u
∣∣||u− a|| < ε

}) = 1.

We will need the following basic lemma.

Lemma III.14. If every point of the measurable set B is a Lebesgue point of the

measurable set A, then µ(B − A) = 0.

Proof. Almost every point of A is a Lebesgue point of A [45]. Similarly, almost every

point of Ac, the complement of A, is a Lebesgue point of Ac. If a is a Lebesgue point

of A(c),

lim
ε→0

µ
(
A ∩

{
u
∣∣||u− a|| < ε

})
µ
({
u
∣∣||u− a|| < ε

}) = 0.

The lemma follows from these observations.

Lemma III.14 will be crucial to our proof that φα is an embedding with probability

1 relative to ||cα|| < a0. In the case where φ is fixed and only the observation function

is perturbed, the proofs of injectivity and immersivity consider the ball ||cα|| ≤ a0

all at once. Such a thing is not possible here. Instead, we have to pick c∗α satisfying

||c∗α|| < a0 and localize around it and that is where Lemma III.14 comes in.

In order to localize around c∗α, we adopt new notation that is centered at c∗α.

The re-centered diffeomorphism φ(x) + e1(pα(x))(c∗α) is denoted by Φ(x). Similarly,

Ψ denotes ψ(x) + e1(∇pα(x))(c∗α). When we localize around c∗α, Φα(x) will denote

Φ(x)+e1(pα(x))(cα). The fixed point ξj(c
∗
α) is denoted Σj. The fixed point ξj(c

∗
α+cα)

is denoted Σj(cα).

Convention about x, y updated: x1, x2, . . . are iterates of x1 under Φ. Similarly,

y1, y2, . . . are iterates of y1 under Φ.
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Convention about x̃ updated: x̃1 = x1 and x̃1, x̃2, . . . are iterates of x1 under Φα.

Convention about v updated: we assume (x1, v1) ∈ T1K and v2, v3, . . . are obtained

by iterating dΦ.

All the lemmas of the previous section continue to hold after re-centering. The delay

vector Fα(x) defined in the previous section will be denoted by F0(x) if cα is replaced

by c∗α. Similarly, if cα is replaced by c∗α + cα in the definition of Fα(x), we will denote

the re-centered delay vector by Fα(x).

We may write

Fα(x1) = F0(x1) +

 0

V(x1)

 (cα) +O(c2
α),

with the definition of V(x1) being the same as that of V (x1) but with ψ replaced by

Ψ. Likewise,

dFα(x1, v1) = dF0(x1, v1) +

 0

H(x1, v1)

 (cα) +O(c2
α),

with a similar alteration of the definition of H(x1, v1) to get H(x1, v1).

Finally, we note that the centered analogue of Gα(x1, y1) = Fα(x1) − Fα(y1) is

Gα(x1, y1) = Fα(x1)− Fα(y1).

3.7 Proof of injectivity

In this section, our purpose is to prove that Fα(x1), defined in section 5, is injective

for x1 ∈ K. The assumptions about CK and L are carried forward from earlier

sections, although the third assumption about CK is not necessary in its entirety.

Further assumptions will be stated as the need arises. Let us define ∆ is the minimum

distance between fixed points of Fα in K for ||cα|| ≤ a0.

Let us define A1,δ to be the set of cα satisfying
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1. ||cα|| < a0

2. Gα(ξj(α), x1) 6= 0 for j ∈ {1, . . . ,m} and x1 ∈ K with ||x1 − ξj(α|| ≥ 3δ for

each j ∈ {1, . . . ,m}.

In this section and the next, we always assume δ < ∆/3.

Lemma III.15. If D ≥ 2d+ 2, every point of ||cα|| < a0 is a Lebesgue point of A1,δ

and therefore the probability of A1,δ relative to the open ball ||cα|| < 1 is 1.

Proof. Pick c∗α satisfying ||c∗α|| < a0. We will use an argument centered at c∗α to show

that c∗α is a Lebesgue point of A1,δ.

Pick a1 > 0 so small that ||Σj(α)− Σj|| < δ for ||cα|| ≤ a1. Define K1,δ as the set

of x1 ∈ K such that ||x1 − Σj|| ≥ 2δ for each j ∈ {1, . . . ,m}.

Let us look at Gα(Σj(cα), x1). Using Lemma III.13 and the definition of V(x1),

we get

(3.8) Gα(Σj(cα), x1) = G0(Σj, x1) +M(cα) +O(c2
α)

with M = JV and

J =



1

−1 1

−1 1

. . .
...

−1 1


, V =

 V(x1)

π1(I −Ψ(Σj))
−1e1pα(Σj)

 .

There are two cases here. Suppose π1(I − Ψ(Σj))
−1e1 is nonzero. Then by Lemma

III.11 (b), the rank of V is equal to the number of its rows. Therefore, the rank

JV is D. If in fact the corner entry π1(I −Ψ(Σj))
−1e1 is zero, we can drop the last

column and first row of J and conclude that the rank of JV is D− 1. In either case,

the rank of M is D − 1 or greater.
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Define σδ = minσD−1(M), where the minimum is over x1 ∈ K1,δ and ||cα|| ≤ a1.

Cover K1(δ) with CK/ε
d ε-balls.

Assumption about L (3): In (3.8), the O(c2
α) term is upper bounded by L ||cα||2.

Like the earlier assumptions about L, this assumption too is a direct conse-

quence of compactness. The earlier assumptions used L as a bound on Lipshitz

constants. Here L is used as a bound on the Taylor series remainder.

Now suppose Gα(Σj(cα), x1) = 0 for some j ∈ {1, . . . ,m} and some x1 ∈ K1,δ.

Because the Lipshitz constant of Gα(Σj(cα), x1) with respect to x1 is bounded by L,

we must have ||Gα(Σj(cα), x1)|| ≤ Lε at an x1 that is at the center of one the balls

covering K1,δ.

Applying the nonlinear transfer of volume Lemma III.2 with r← D− 1 and σ ←

σδ, we find that the probability of ||Gα(Σj(cα), x1)|| ≤ Lε relative to ||cα|| ≤ ε1/2 < a1

is upper bounded by

Dα!2D−1LD−1ε(D−1)/2
/
σD−1
δ .

Because the number of fixed points is m and the number balls covering K1,δ is CK/ε
d,

the probability of Gα(Σj(cα), x1) = 0 for some j ∈ {1, . . . ,m} and some x1 ∈ K1,δ

relative to ||cα|| ≤ ε1/2 is upper bounded by

m× CK
εd
× Dα!2D−1LD−1ε(D−1)/2

σD−1
δ

.

Evidently, the probability goes to zero as ε→ 0 if D ≥ 2d+ 2. Thus, we have shown

that c∗α is a Lebesgue point of A1,δ proving the lemma.

Now define A2,δ to be the set of cα satisfying

1. ||cα|| < a0

2. Gα(x1, φα(x1)) 6= 0 for x1 ∈ K with ||x1 − ξj(α)|| ≥ 3δ for each j ∈ {1, . . . ,m}.
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Lemma III.16. If D ≥ 2d+ 1, every point of ||cα|| < a0 is a Lebesgue point of A2,δ

and therefore the probability of A2,δ relative to ||cα|| < a0 is 1.

Proof. As before, we pick c∗α satisfying ||c∗α|| < a0 and will give an argument centered

at c∗α to show that c∗α is a Lebesgue point of A1,δ. As before, pick a1 > 0 so small

that ||Σj(α)− Σj|| < δ for ||cα|| ≤ a1. As before, define K1,δ as the set of x1 ∈ K

such that ||x1 − Σj|| ≥ 2δ for each j ∈ {1, . . . ,m}.

Using (3.7), we get

(3.9) Gα(x̃1, x̃2) =


π1x1 − π1x2

...

π1xD − π1xD+1

+M(cα) +O(c2
α)

with M = JV and

J =



−1

1 −1

1 −1

1 −1


, V =



pα(x1)

pα(x2) + π1ρ2

...

pα(xD) + π1ρD


.

By Lemma III.11 (c), the rank of V is equal to the number of its rows. Therefore,

the rank of M = JV is equal to D.

Define σδ = minσD(M), where the minimum is over x1 ∈ K1,δ and ||cα|| ≤ a1.

Cover K1(δ) with CK/ε
d ε-balls.

Assumption about L (4): In (3.9), the O(c2
α) term is upper bounded by L ||c2

α||.

The first two assumptions about L are both obtained from upper bounds on

the derivative of Fα(x) or Fα(x) with respect to x. This assumption as well as

the preceding one are obtained from upper bounds on the second derivative. In

all cases, the assumptions are direct consequences of the compactness of K and

the ball ||cα|| ≤ a0.
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If Gα(x̃1, x̃2) = 0 for some x1 ∈ K1,δ, we must have ||Gα(x̃1, x̃2)|| ≤ Lε for some

x1 that is the center of one of the balls covering K1,δ. Using the nonlinear transfer

of volume Lemma III.2, we find the probability of Gα(x̃1, x̃2) = 0 for some x1 ∈ K1,δ

relative to the ball ||cα|| ≤ ε1/2 < a1 to be upper bounded by

CK
εd
× Dα!2DLDεD/2

σDδ
.

The limit of this probability as ε→ 0 is zero. It follows that c∗α is a Lebesgue point

of A2,δ completing the proof of this lemma.

Lemma III.16 allows us to conclude that the delay vectors of x1 and φα(x1) do

not coincide typically if x1is a little removed from the fixed points of φα. More

generally, we need to argue that the delay vectors of x1 and φk−1
α (x) do not coincide

for k = 3, . . . , D. To make that argument, we define Ak,δ to be the set of cα satisfying

1. ||cα|| < a0

2. Gα(x1, φ
k−1
α (x1)) 6= 0 for x1 ∈ K with ||x1 − ξj(α|| ≥ 3δ for each j ∈ {1, . . . ,m}

for k = 2, . . . , D.

Lemma III.17. For D ≥ 2d + 1 and k = 2, . . . , D, every point of ||cα|| < a0

is a Lebesgue point of Ak,δ and therefore the probability of Ak,δ relative to the ball

||cα|| < a0 is 1.

Proof. The proof is almost identical to that of the previous lemma, which is a special

case. The only significant difference occurs in the definition of V . In the general

case,

V =



pα(x1)

pα(x2) + π1ρ2

...

pα(xD+k−2) + π1ρD+k−2


.
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Note that Lemma III.11 (c) still applies, implying the rank of V to be equal to the

number of its rows, because D + k − 2 ≤ 2D.

The final lemma of this section pertains to the set Axy(δ). It is defined as the set

of all cα such that ||cα|| < a0 and Gα(x1, y1) 6= 0 provided

1. x1, y1 ∈ K

2. ||x1 − y1|| ≥ δ (which excludes the diagonal of K ×K)

3. ||x1 − ξj(α)|| ≥ 3δ and ||y1 − ξj(α)|| ≥ 3δ for j ∈ {1, . . . ,m}(so that both x1

and y1 stay away from fixed points)

4.
∣∣∣∣x1 − φk−1(y1)

∣∣∣∣ ≥ 2δ and
∣∣∣∣y1 − φk−1(x1)

∣∣∣∣ ≥ 2δ for k = 2, . . . , D (so that x1

does not come too close to the iterates of y1 and vice versa).

Lemma III.18. For D ≥ 4d + 2, every point of ||cα|| < a0 is a Lebesgue point of

Axy,δ and therefore the probability of Axy,δ relative to the ball ||cα|| < a0 is 1.

Proof. Again the argument begins by centering at some c∗α satisfying ||c∗α|| < a0.

However, the conditions on a1 this time are different. The radius a1 must be so small

that for ||cα|| ≤ a1 the following conditions are satisfied:

1. ||Σj(α)− Σj|| < δ

2. For any x1 ∈ K, ||x̃j − xj|| ≤ δ for j = 1, . . . , D.

The set Kxy,δ is defined as the set of (x1, y1) ∈ K × K satisfying the following

conditions:

1. ||x1 − Σj|| ≥ 2δ and ||y1 − Σj|| ≥ 2δ for j ∈ {1, . . . ,m}

2. ||x1 − y1|| ≥ δ
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3. ||x1 − yj|| ≥ δ and ||y1 − xj|| ≥ δ for j ∈ {2, . . . ,m}.

We have

(3.10) Gα(x1, y1) = G0(x1, y1) +M(cα) +O(c2
α).

The top row of M is zero. The rest of the D − 1 rows below are given by JV

J =


1 −1

. . .

1 −1

 , V =

 V(x1)

V(y1)

 .

By Lemma III.11, the rank of V is equal to the number of its rows. Therefore the

ranks of JV and M are both equal to D − 1.

Define σδ = minσD−1(M), where the minimum is over (x1, y1) ∈ Kxy,δ and ||cα|| ≤

a1. Cover Kxy with CK/ε
2d balls.

Assumption about L (5): The O(c2
α) term in (3.10) is upper bounded by L ||cα||2.

Suppose Gα(x1, y1) = 0 for some (x1, y1) ∈ Kxy,δ. Then we must have ||Gα(x1, y1)|| ≤

Lε for an (x1, y1) that is at the center of one of the balls covering Kxy,δ. Applying the

nonlinear transfer of volume Lemma III.2, we find the probability of Gα(x1, y1) = 0

for some (x1, y1) ∈ Kxy,δ relative to the ball ||cα|| ≤ ε1/2 < a1 to be upper bounded

by

CK
ε2d
× Dα!2D−1LD−1ε

D−1
2

σDδ
.

If D ≥ 4d+2, the limit of this probability as ε→ 0 is 0. Therefore, every c∗α satisfying

||c∗α|| < a0 is a Lebesgue point of Axy,δ, which completes the proof of the lemma.

We are now prepared to state and prove the main theorem of this section.
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Theorem III.19. Assuming a0 and φα satisfy the conditions laid down in section 6

and D ≥ 4d+ 2, the delay mapping Fα is injective on the set K with probability one

relative to the ball ||cα|| < a0.

Proof. The proof follows from Lemmas III.15, III.17, and III.18 by taking the limit

δ → 0 through a countable sequence.

3.8 Proof of immersivity

All the main techniques have been demonstrated in the proof of injectivity of the

delay mapping Fα. The assumption in section 6 that dFα is immersive at all fixed

points in K simplifies the proof of immersivity considerably.

Define AT,δ as the set of all cα satisfying ||cα|| < a0 and Fα is immersive at all

x1 ∈ K satisfying ||x1 − ξj(α)|| ≥ 3δ for j ∈ {1, . . . ,m}. In other words, we are

requiring dFα(x1, v1) 6= 0 if (x1, v1) ∈ T1K and x1 is removed from each periodic

point by at least 3δ.

Lemma III.20. For D ≥ 4d, every point of ||cα|| < a0 is a Lebesgue point of AT,δ

and therefore the probability of AT,δ relative to ||cα|| < a0 is 1.

Proof. We center at c∗α satisfying ||c∗α|| < a0 as before. Again as before, we assume

a1 to be so small that ||Σj(cα)− Σj|| < δ for ||cα|| ≤ a1.

Define KT,δ to be the set of all (x1, v1) ∈ T1K satisfying ||x1 − Σj|| ≥ 2δ for

j ∈ {1, . . . ,m}. Then

(3.11) dFα(x1, v1) = dF0(x1, v1) +N (cα) +O(c2
α)

with

N =

 0

H(x1, v1)

 .
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By Lemma III.12, the rank of N is D − 1.

Define σδ = minσD−1(N ), where the minimum is taken over (x1, v1) ∈ KT,δ and

||cα|| ≤ a1. Cover KT,δ with CK/ε
2d−1 ε-balls.

Assumption about L (5): In (3.11), the O(c2
α) term is upper bounded by L ||cα||2.

Here, we are effectively assuming a bound on the third derivative of Fα(x1) with

respect to x1 over the compact sets x1 ∈ T1K and ||cα|| ≤ a0.

If dFα(x1, v1) = 0 for some (x1, v1) ∈ KT,δ, then we must have ||dFα(x1, v1)|| for

some (x1, v1) that is at the center of one of the ε-balls covering KT,δ. The nonlinear

transfer of volume lemma III.2 implies that the probability of dFα(x1, v1) = 0 for

some (x1, v1) ∈ KT,δ relative to ||cα|| ≤ ε1/2 < a1 is upper bounded by

CK
ε2d−1

× Dα!2D−1LD−1ε
D−1
2

σD−1
δ

.

If D ≥ 4d, this probability goes to zero as ε → 0. Therefore, every ||c∗α|| < a0 is a

Lebesgue point of AT,δ, proving the lemma.

We are now prepared to state and prove the immersivity theorem.

Theorem III.21. Suppose a0 and φα satisfy the assumptions laid down in section 6

and suppose D ≥ 2d. The delay map Fα is then immersive at every point of K with

probability 1 relative to the ball ||cα|| < a0.

Proof. The proof follows by taking δ → 0 through a countable sequence in the

previous Lemma III.20 and using the assumption made in section 6 about immersivity

at fixed points.

3.9 Discussion

The delay map may be viewed in light of the Whitney embedding theorem [24].

However, it has some characteristics of its own. One of these is the possibility that
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orbits of two distinct points can overlap. There are other distinctive characteristics

related to periodic orbits and eigenvectors.

In this article, we showed how to prove that the delay map is an embedding

using the concept of Lebesgue points. For the delay map Fα(x) with o = π1 to be an

embedding with probability 1 relative to the ball ||cα|| < 1, we require the embedding

dimension to satisfy D ≥ 4d+ 2.

We conjecture that the delay mapping is an embedding for D ≥ 2d + 1. The

more restrictive 4d+ 2 requirement comes in when applying the nonlinear transfer of

volume lemma. The extra dimensions are used to absorb the effect of the nonlinear

term. Some evidence for this conjecture may be found in chapter 2 of this thesis.

In our opinion, it would be desirable to obtain prevalence versions of classical

theorems such as the Kupka-Smale theorem [41]. The differential topology proofs

rely heavily on the bump function and genericity is weaker than almost sureness in

probability. It is hoped that the technique based on Lebesgue points introduced here

will be useful in that regard.



CHAPTER IV

Prediction of dynamical time series using kernel based
regression and smooth splines

4.1 Introduction

The problem of time series prediction is to use knowledge of a signal x(t) for

0 ≤ t ≤ T and infer its value at a future time t = T+tf , where tf is positive and fixed.

A time series is not predictable if it is entirely white noise. Any prediction scheme

has to make some assumption about how the time series is generated. A common

assumption is that the observation x(t) is a projection of the state of a dynamical

system with noise superposed [13]. Since the state of the dynamical system can be of

dimension much higher than 1, delay coordinates are used to reconstruct the state.

Thus, the state at time t may be captured as

(4.1) (x(t), x(t− τ), . . . , x(t− (D − 1)τ))

where τ is the delay parameter and D is the embedding dimension. Delay coordinates

are (generically) effective in capturing the state correctly provided D ≥ 2d+1, where

d is the dimension of the underlying dynamics [47].

Farmer and Sidorowich [13] used a linear framework to compute predictors appli-

cable to delay coordinates. It was soon realized that the nonlinear and more general

framework of support vector machines would yield better predictors [33, 36, 37]. De-
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tailed computations demonstrating the advantages of kernel based predictors were

given by Mller et al [37] and are also discussed in the textbook of Schlkopf and

Smola [48]. Kernel methods still appear to be the best, or among the best, for the

prediction of stationary time series [34, 46].

A central question in the study of noisy dynamical time series is how well that

noise can be removed to recover the underlying dynamics. Lalley, and later Nobel,

[29, 31, 30] have examined hyperbolic maps of the form xn+1 = F (xn), with F : Rd →

Rd. It is assumed that observations are of the form yn = xn+εn, where εn is iid noise.

They proved that it is impossible to recover xn from yn, even if the available data

yn is for n = 0,−1,−2, . . . and infinitely long, if the noise is normally distributed.

However, if the noise satisfies |εn| < ∆ for a suitably small ∆, the underlying signal

xn can be recovered. The recovery algorithm does not assume any knowledge of F .

The phenomenon of unrecoverability is related to homoclinic points. If the noise

does not have compact support, with some nonzero probability, it is impossible to

distinguish between homoclinic points.

Lalley [31] suggested that the case of flows could be different from the case of maps.

In discrete dynamical systems, there is no notion of smoothness across iteration. In

the case of flows, the underlying signal will depend smoothly on time but the noise,

which is assumed to be iid at different points in time, will not. Lalley’s algorithm for

denoising relies on dynamics and, in particular, on recurrences. In the case of flows,

we rely solely on smoothness of the underlying signal for denoising. As predicted by

Lalley, the case of flows is different. Denoising based on smoothness of the underlying

signal alone can handle normally distributed noise or other noise models. Thus, our

algorithms are split into two parts: first the use of smooth splines to denoise, and

second the use of kernel based regression to compute the predictor. Only the second
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part relies on recurrences.

Prediction of discrete dynamics, within the framework of Lalley [29], has been

considered by Steinwart and Anghel [50] (also see [7]). Suppose xn = F n(x0) and

x̃n = xn + εn is the noisy state vector. The risk of a function f is defined as∫ ∫
|F (x) + ε1 − f(x+ ε2)|2 dν(ε1) dν(ε2) dµ(x),

where ν is the distribution of the noise and µ is a probability measure invariant

under F and with compact support. Thus, the risk is a measure of how well the

noisy future state vector can be predicted given the noisy current state vector. It is

proved that kernel based regression is consistent with respect to this notion of risk

for a class of rapidly mixing dynamical systems. Although the notion of risk does not

require denoising, consistency of empirical risk minimization is proved for additive

noise εn of compact support as in [29]. In the case of empirical risk minimization,

compactness of added noise is not a requirement imposed by the underlying dynamics

but is assumed to make it easier to apply universality theorems.

Our results differ in the following ways. We consider flows and not discrete time

maps. In addition, we work with delay coordinate embedding [47] and do not require

the entire state vector to be observable. Finally, we prove convergence to the exact

predictor, which goes beyond consistency. The convergence theorem we prove is not

uniform over any class of dynamical systems. However, we do not assume any type of

decay in correlations or rapid mixing. Non-uniformity in convergence is an inevitable

consequence of proving a theorem that is applicable to any compact invariant set of

a generic finite dimensional dynamical system [1, 20, 51]. This point is further

discussed in section 2, which presents the main algorithm as well as a statement of

the convergence theorem. Section 3 presents a proof of the convergence theorem.

In section 4, we present numerical evidence of the effectiveness of combining spline
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smoothing and kernel based regression. The algorithm of section 2 is compared to

computations reported in [37] and the spline smoothing step is found to improve

accuracy of the predictor considerably. The numerical examples bring up two points

that go beyond either consistency or convergence. First, we explain heuristically

why it is not a good idea to iterate 1-step predictor k-times to predict the state k

steps ahead. Rather, it is a much better idea to learn the k-step predictor directly.

Second, we point out that no currently known predictor splits the distance vector

between stable and unstable directions, a step which was argued to be essential for

an optimal predictor by Viswanath et al [59]. The heuristic explanation for why

iterating a 1-step predictor k times is not a good idea relies on the same principle.

The concluding discussion in section 5 points out connections to related lines of

current research in parameter inference [34, 35] and optimal consistency estimates

for stationary data [23].

4.2 Prediction algorithm and statement of convergence theorem

Let dU
dt

= F(U), where F ∈ Cr(Rd,Rd), r ≥ 2, define a flow that may be limited to

an open subset of Rd with compact closure. Let Ft(U0) be the time-t map with initial

data U0. It is assumed that U(t;U0), t ∈ R, is a trajectory of the flow whose initial

point U(0;U0) is U0 ∈ Rd. Let µ̃ be a compactly supported invariant probability

measure of the flow-map Ft for t > 0 and let X̃ be its support. It is assumed that

the initial point ω̃ is drawn from the measure µ̃. For ω̃ ∈ X̃, the trajectory U(t; ω̃)

exists for all t ∈ R and is unique. In addition, the flow is assumed to be ergodic with

respect to the measure µ̃.

Let π : Rd → R be a generic nonlinear projection. Let u(t; ω̃) = πU(t; ω̃) be the

projection of the random trajectory U(t; ω̃). By the embedding theorem of Sauer
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et al [47], we assume that the delay coordinates give a Cr diffeomorphism into the

state space implying that U(t; ω̃) can be recovered from the delay vector, with delay

τ > 0,

(u(t; ω̃), u(t− τ ; ω̃), . . . , u(t− (D − 1)τ ; ω̃))

for D ≥ 2d+ 1. This delay vector is denoted by u(t; τ ; ω̃).

As a consequence of the Cr embedding, there is a measure µ compactly supported

in RD that corresponds to µ̃. The measure µ is ergodic and invariant under the flow

lifted via the embedding. Denote the compact support of µ by X. For every point ω̃

in X̃, there corresponds a unique point ω in X and vice versa. Because the prediction

algorithm is based on delay coordinates and not the state vector, it is more convenient

to work in the embedding space RD and in terms of ω and µ. Therefore, we will rely

on the bijective correspondence between X and X̃ and use the notation u(t; τ ;ω)

instead of u(t; τ ; ω̃) and u(t;ω) instead of u(t; ω̃). With these conventions, u(t; τ ;ω)

can be thought of as the path in RD with u(0; τ ;ω) = ω. Similarly, u(t;ω) can be

thought of as a real-valued signal with u(0;ω) = ω1, where ω1 is the first component

of ω ∈ RD. In later arguments, the assumption that ω is µ-distributed will be

significant, and so will be the ergodicity of the flow with respect to µ.

Given the signal u(t;ω), it is assumed that the recorded observations are uη(jh;ω) =

u(jh;ω) + εj, where εj is iid noise. Following Eggermont and LaRiccia [10, 11], we

assume that Eεj = 0 and E |εj|κ <∞ for some κ > 3. To avoid inessential technical-

ities it is assumed that τ/h ∈ Z+ so that the delay is an integral multiple of the time

step h. In particular, we set τ = nh. Similarly, we assume tf = nfτ , nf ∈ Z+, where

tf is the look-ahead into the future. The noisy delay coordinates uη(jh; τ ;ω) are as-

sumed to be available for j = 0, . . . , (N + nf )n, which implies that the observation

interval of uη(t;ω) is t ∈ [−(D − 1)τ,Nτ + tf ].
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The exact predictor F : RD → R is a Cr function such that F (u(t; τ ;ω)) = u(t+

tf ;ω) for ω ∈ X. Lemma IV.3 proves uniqueness and existence of the exact predictor

F . The exact predictor F corresponds to a fixed tf > 0, but that dependence is not

shown in the notation. The problem as considered by Mller et al [37] is to recover

the exact predictor F from the noisy observations uη(jh;ω). Let |·|ε denote Vapnik’s

ε-loss function. The algorithm of Mller et al computes fm such that the functional

(4.2)
1

Nn+ 1

Nn∑
j=0

|f(uη(jh; τ ;ω))− uη(jh+ τ ;ω)|ε + Λ ||f ||2Kγ

is minimized for f = fm in the reproducing kernel Hilbert spaceHKγ corresponding to

the kernelKγ. The kernelKγ is assumed to be given byKγ(x, y) = exp
(
−

∑D
i=1(xi−yi)2

γ2

)
.

The kernel bandwidth parameter γ and the Lagrange multiplier Λ are both deter-

mined using cross-validation. This method approximates the exact predictor F for

tf = τ . If tf = nfτ , nf ∈ Z+, the approximation is iterated nf times. We will

compare our predictor against that of Mller et al using some of the same examples

and the same framework as they do in section 4.

In our algorithm, the first step is to apply spline smoothing. In particular, we

apply cubic spline smoothing [8] to compute a function us(t;ω), t ∈ [−(D−1)τ,Nτ+

tf ] such that the functional

(4.3)
1

(N + nf +D − 1)n+ 1

(N+nf )n∑
j=−(D−1)n

(uη(jh;ω)− ũ(jh))2 + λ

∫ Nτ+tf

−(D−1)τ

ũ′′(t)2 dt

is minimum for ũ = us(·;ω) over ũ ∈ W 2,2[−(D − 1)τ,Nτ + tf ], where W 2,2[a, b]

denotes the Sobolev space of twice-differentiable functions g : [a, b] → R with the

norm ||g||2 = ||g||22 + ||g′||22 + ||g′′||22. The parameter λ is determined using five-fold

cross-validation. The minimizer us(t;ω) depends upon the noise-free signal u(t;ω) as

well as the instantiation of the iid noise in uη(jh;ω) for −(D−1)n ≤ j ≤ (N +nf )n.

However, the dependence on the iid noise is not shown in the notation.
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The second step of our algorithm is similar to the method of Mller et al. The

predictor f1 is computed as

(4.4) f1 = argmin f∈Hk
1

Nn+ 1

Nn∑
j=0

(f(us(jh; τ ;ω))− us(jh+ tf ;ω))2 + Λ ||f ||2Kγ .

Both the parameters γ and Λ are determined using five-fold cross-validation. Here

nf and therefore tf are fixed because we seek to approximate the exact predictor with

lookahead fixed at tf . As explained in section 4, it is significant that the predictor

directly optimizes with a lookahead of tf . Iterating a τ -step predictor nf times gives

worse predictions.

The second step (4.4) differs from the algorithm of Mller et al in using the spline

smoothed signal us(t;ω) in place of the noisy signal uη(t;ω). Our algorithm relies

mainly on spline smoothing to eliminate noise. Yet another difference is that we

use the least squares loss function in place of the ε-loss function. This difference

is a consequence of relying on spline smoothing to eliminate noise. As explained

by Christmann and Steinwart [7], the ε-loss function, Huber’s loss, and the L1 loss

function are used to handle outliers. However, spline smoothing eliminates outliers,

and we choose the L2 loss function because of its algorithmic advantages.

We now turn to a discussion of the convergence of the predictor f1 to the exact

predictor F . The first step is to assess the accuracy of spline smoothing. We quote

the following lemma, which is a convenient restatement of a result of Eggermont

and LaRiccia [10, 11] (see pages 132 and 133 of [11]). In the lemma, Wm,2[a, b]

denotes the Sobolev space of m-times differentiable functions g : [a, b] → R with

norm ||g||2 =
∑m

j=0

∣∣∣∣g(j)
∣∣∣∣2

2
.

Lemma IV.1. Assume 2 ≤ m ≤ r. Suppose that u(t;ω) is a signal defined for t ∈ R

with ω ∈ X. For j = −(D− 1)n, . . . , Nn+nf , let yj = u(jh;ω) + εj, where h = τ/n
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and where εj are iid random variables. It is further assumed that Eεj = 0, Eε2j = σ2,

and E |εj|κ <∞ for some κ > 3. Let us(t) ∈ Wm,2[−(D− 1)τ,Nτ + tf ] be the spline

that minimizes the functional

1

n(N +D − 1) + nf + 1

(N+nf )n∑
j=−(D−1)n

(ũ(jh)− yj)2 + λ

∫ Nτ+tf

−(D−1)τ

∣∣ũ(m)(t)
∣∣2 dt

over ũ ∈ Wm,2[−(D − 1)τ,Nτ ]. Assume

λ =

(
log(n(N + nf +D − 1))

n(N + nf +D − 1)

) 2m
2m+1

.

Let p = P (n,N,∆, ω) be the probability that

||us(·;ω)− u(·;ω)||∞ > ∆ > 0,

where the ∞-norm is over the interval [−(D − 1)τ,Nτ + tf ]. Then

lim
n→∞

P(n,N,∆, ω) = 0

.

Some remarks about the connection of this lemma to the algorithm given by (4.3)

and (4.4) follow. First, the lemma assumes a fixed choice of λ (the relevant theorem

in [10, 11] in fact allows λ to lie in an interval). In our algorithm, λ is determined

using cross-validation because of its practical effectiveness [60].

Second, the probability P(n,N,∆, ω) (which may be interpreted as the probability

that spline smoothing fails to denoise effectively) depends on ω and therefore on the

particular trajectory. If P(n,N,∆, ω) depends on ω only though a bound on the

m-th derivative of u(t;ω), t ∈ [−(D − 1)n, nN ], the bound would be uniform for

all trajectories on the compact invariant set X. The achievability part of Stone’s

optimality result [52] gives such a bound but the algorithm in that proof does not

appear practical. Proving a similar result for smooth splines based on the existing
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literature does not appear entirely straightforward. In the L2 norm, some uniform

bounds have been proved for smooth splines by Gyrfi et al [21]. A bound on the

L2 norm can be combined with a bound on the the m-th derivative using a Sobolev

inequality to obtain an ∞-norm bound. Although the rate of convergence would be

slightly sub-optimal, it would suffice for our purposes. However, the result of Gyrfi

et al is for expectations and not for convergence in probability, and an argument

using Chebyshev’s inequality does not give strong bounds.

The convergence analysis of the second half of the algorithm also alters the al-

gorithm slightly. In particular, the use of cross-validation to choose parameters is

not a part of the analysis. To state the convergence theorem, we first fix ε > 0.

By the universality theorem of Steinwart [49], we may choose Fε ∈ HKγ such that

||Fε − F ||∞ < ε in a compact domain that has a non-empty interior and contains

the invariant set X. The convergence theorem also makes the technical assumption

ε2/ ||Fε||2Kγ < 1, which may always be satisfied by taking ε small enough.

The choice of the kernel-width parameter γ is important in practice. In the

convergence proof, the choice of γ is not explicitly considered. However, γ still plays

a role because ||Fε||Kγ depends upon γ.

The parameter Λ in (4.4) is fixed as Λ = ε2/ ||Fε||2Kγ for the proof. Next we pick

δ = ε1/2 and ` ∈ Z+ such that the covering of the invariant set X using boxes of

dimension 2−` ensures that the variation of Fε (as well as that of the exact predictor

F and f3, which is defined later) within each box is bounded by δ/4.

Suppose A1, . . . , AL are boxes of dimension 2−` that cover X in the manner hinted

above. We next choose T ∗ such that the measure of the trajectories (with respect to

the ergodic measure µ) that sample each one of the boxes Aj adequately (in a sense

that will be explained) is greater than 1 − ε if the time interval of the trajectory
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exceeds T ∗.

The parameter ∆ is a bound on the infinite norm accuracy of the smooth spline

as in Lemma IV.1. Choose ∆ > 0 small enough that

B1∆1/2

Λ
=
B1∆1/2 ||Fε||2K

ε2
< ε1/2,

where B1 is a constant specified later. The main purpose of increasing n is to make

spline smoothing accurate. However, the following condition requiring n to be large

enough is assumed in the proof:

B1h
1/2

Λ
=
B1τ

1/2 ||Fε||2K
ε2n1/2

< ε1/2.

Within this set-up, we have the following convergence theorem.

Theorem IV.2. For ε > 0, T > T ∗, N = T/τ , and Λ, ∆ chosen as above, we have

µ

{
x ∈ X

∣∣∣∣|f1(x)− F (x)| > 3
√
ε

}
<

8ε

1− ε
,

when f1 is constructed (or learnt) from the signal uη(t;ω), t ∈ [−(D − 1)τ,Nτ ],

for {ω ∈ X} of µ-measure greater than 1 − ε and with probability 1 − P(n,N,∆, ω)

(probability of successful denoising in the spline-smoothing step) tending to 1 in the

limit n→∞.

Nonuniform bounds implying a form of weak consistency are considered by Stein-

wart, Hush, and Scovel [51]. However, the algorithm of (4.3) and (4.4) does not fit

into the framework of [51]. The application of spline smoothing to produce us(t;ω)

means that us(t;ω) may not be stationary, and our method of analysis does not rely

on verifying a weak law of large numbers as in [51]. The analysis summarized above

and given in detail in the following section relies on ∞-norm bounds.
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4.3 Proof of convergence

We begin the proof with a more complete account of how the embedding theorem

is applied. Let dU
dt

= F(U), where F ∈ Cr(Rd,Rd), r ≥ 2, be a flow. Let Ft(U0)

be the time-t map with initial data U0. Let Ṽ ⊂ Rd be an open set with compact

closure. If U0 ∈ Ṽ , it is assumed that Ft(U0) is well-defined for −τD ≤ t ≤ nfτ = tf ,

where D is the embedding dimension.

Assumption: For embedding dimension D ≥ 2d + 1 and a suitably chosen delay

τ > 0, the map

x→ (πx, πF−τx, πF−2τx, . . . , πF−(D−1)τx)

is a Cr diffeomorphism between Ṽ and its image in RD. This assumption is gener-

ically true [47]. This map is called the delay embedding. Denote the image of Ṽ

under the delay embedding by V .

The invariant measures µ̃ and µ as well as X̃, X, ω̃, ω, u(t;ω), and u(t; τ ;ω) are

as defined earlier. It is assumed that X̃ ⊂ Ṽ , which implies X ⊂ V .

Lemma IV.3. Suppose dU(t)
dt

= F(U(t)) for −τD ≤ t ≤ tf , U(0) = U0 ∈ Ṽ . Denote

the delay vector (
πU0, πF−τU0, . . . , πF−(D−1)τU0

)
by U0,τ so that U0,τ ∈ V . There exists a unique and well-defined Cr function F :

V → R, called the exact predictor, such that

F (U0,τ ) = πFtf (U0)

for all U0,τ ∈ V . In particular, F (u(t; τ ;ω)) = u(t + tf ;ω) for all t ∈ R and all

ω ∈ X.

Proof. To map U0,τ ∈ V to πFtf (U0), first invert the delay map to obtain the point

U0 in Ṽ , advance that point by tf by applying Ftf , and finally project using π. Each
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of the three maps in this composition is Cr or better. The predictor must be unique

because Ftf is uniquely determined by the flow.

Remark. The embedding theory of Sauer et al [47] may be applied to the compact

invariant set X̃ without enclosing it in the open set Ṽ . Indeed, if the box count-

ing dimension of X̃ is d′, the embedding dimension need only satisfy D ∈ Z+ and

D > 2d′. That can be advantageous because we may have d′ much smaller than d.

However, there are two difficulties if X̃ is a fractal set. First, tangent spaces cannot

be defined and we cannot assert the delay map to be a diffeomorphism although

it will be one-one generically. Second, we will need to extend F to the closure of

an open neighborhood of X in RD to apply the universality theorem, and such an

extension cannot be made from X if X is a fractal set. Both these difficulties go

away if we take Ṽ to be a submanifold that contains X̃. If d′ is the dimension of Ṽ ,

we would only require D > 2d′. For simplicity, we have assumed Ṽ to be an open

set.

The following convexity lemma is an elementary result of convex analysis [12]. It

is stated and proved for completeness.

Lemma IV.4. Let L1(f) and L2(f) be convex and continuous in f , where f ∈ H

and H is a Hilbert space. If w ∈ ∇Li(f), the subgradient at f , assume that

Li(f + g)− Li(f)− 〈w, g〉 ≥ λ 〈g, g〉 /2

for λ > 0, all g ∈ H, and i = 1, 2. Let f1 = argminL1(f) and f2 = argminL2(f).

Suppose that

|L1(f)− L2(f)| ≤ δ

for ||f || ≤ r, and assume that ||f1|| < r and ||f2|| < r. Then,

||f1 − f2||2 ≤
2δ

λ
.
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Proof. Because f1 minimizes L1(f), we have 0 ∈ ∇L1(f1). Thus,

L1(f2)− L1(f1) ≥ λ ||f2 − f1||2 /2.

Similarly, L2(f1)−L2(f2) ≥ λ ||f2 − f1||2 /2. By adding the two inequalities, we have

||f2 − f1||2 ≤
|L1(f2)− L1(f1) + L2(f1)− L2(f2)|

λ
≤ 2δ

λ
,

proving the lemma. This last step relies on ||Li(f1)− Li(f2)|| ≤ δ and the assumption

||f1|| , ||f2|| < r.

If u(t;ω), t ∈ [−(D − 1)τ,Nτ + tf ], is the noise-free signal, our arguments are

phrased under the assumption that |u(t;ω)− us(t;ω)| ≤ ∆. This assumption is

realized with probability 1−P(n,N,∆, ω), which tends to 1 as n increases (by Lemma

IV.1). For convenience, we denote P(n,N,∆, ω) by p. The probability that uη(t;ω)

is successfully denoised by smooth splines so that |u(t;ω)− us(t;ω)| ≤ ∆ is then

1− p.

In general, a Cr function defined on an embedded submanifold can be extended

to an open neighborhood of the submanifold using a partition of unity. Because

V ⊂ RD is an embedded submanifold, X ⊂ V , and the exact predictor F is defined

on V , it follows that there exists M > 0 such that F can be extended to Y , where

Y = {y| ||y − ω||∞ ≤M for some ω ∈ X} .

We will always assume ∆ < M so that the spline-smoothed signal maps to Y under

delay embedding with probability greater than 1 − p. Without loss of generality,

we assume M ≤ 1. The convergence proof will assess the approximation to F with

respect to the measure µ. Therefore, the manner in which the extension is carried out
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is not highly relevant. The sole purpose of the extension is to facilitate an application

of the universality theorem for Gaussian kernels.

Let

(4.5) B = sup
ω∈X
||ω||∞ +M

Thus, B is a bound on the size of the embedded invariant set with ample allowance

for error in spline smoothing.

Let us(t;ω) denote the spline-smoothed signal and u(t;ω) the noise-free signal

with ω ∈ X. Define

W1(f) =
1

Nn+ 1

Nn∑
j=0

(f(us(jh; τ ;ω))− us(jh+ tf ;ω))2 + Λ ||f ||2K ,

where tf = nfτ , nf ∈ Z+, and K is any smooth and positive kernel defined over

Y × Y . The kernel K will be specialized to the Gaussian kernel Kγ when applying

the universality theorem. Define

W2(f) =
1

Nn+ 1

Nn∑
j=0

(f(u(jh; τ ;ω))− u(jh+ tf ;ω))2 + Λ ||f ||2K

using the noise-free signal u(t;ω). Let T = Nτ and define

W3(f) =
1

T

∫ T

0

(f(u(t; τ ;ω))− u(t+ tf ;ω))2 dt+ Λ ||f ||2K .

For Λ > 0, all three functionals are strictly convex and have a unique minimizer. The

unique minimizers of W1, W2, and W3 are denoted by f1, f2, and f3, respectively.

The functional W1 is the same as in (4.4), the second step of the algorithm. Thus,

f1 is the computed approximation to the exact predictor F .

The following lemma bounds the minimizers of W1(f), W2(f), W3(f) in norm by

B/Λ1/2.

Lemma IV.5. The minimizer f1 satisfies ||f1||K ≤
B

Λ1/2 with probability greater than

1− p. The minimizers f2 and f3 satisfy ||f2||K ≤
B

Λ1/2 and ||f3||K ≤
B

Λ1/2 .



107

Proof. Because f1 minimizes W1(f), we must have W1(f1) ≤ W1(0). We have

W1(0) ≤ B2 with probability greater than 1 − p. Thus, Λ ||f1||2K ≤ W1(f1) ≤

W1(0) ≤ B2 and the stated bound for ||f1||K follows. The bounds for f2 and f3 are

proved similarly.

Lemma IV.6. Assume 0 < Λ ≤ 1 and |u(t;ω)− us(t;ω)| ≤ ∆ for t ∈ [−(D−1)τ, T ].

For f ∈ HK with ||f ||K ≤
B

Λ1/2 , we have |W1(f)−W2(f)| ≤ B2
1∆

Λ
. Here B1 depends

only on B and the kernel K. The kernel K is assumed to be C2.

Proof. First, we note that ||f ||∞ ≤ c0 ||f ||K and ||∂f ||∞ ≤ c1 ||f ||K , where ∂ is

the directional derivative of f in any direction. By a result of Zhou (part (c) of

Theorem 1 of [61]), we may take c0 = ||K(x, y)||∞ and c1D
−1/2 = ||K(x, y)||∞ +∑

||∂xiK(x, y)||∞+
∑∣∣∣∣∂xi∂xjK(x, y)

∣∣∣∣
∞, where D is the embedding dimension and

the ∞-norm is over x, y ∈ Y . If we define B′1 using

(4.6) B′1 = max(B, c0B, c1B),

it follows that both ||f ||∞ and ||∂f ||∞ (where ∂ is a directional derivative in any

direction) are bounded above by B′1/Λ
1/2 .

We may write

(4.7) |W1(f)−W2(f)| ≤ 1

Nn+ 1

Nn∑
j=0

4B′1
Λ1/2

 |f(us(jh; τ ;ω))− f(u(jh; τ ;ω))|

+ |us(jh; τ ;ω)− u(jh; τ ;ω)|

 .

Here
4B′1
Λ1/2 is used an upper bound on |f(us(jh; τ))| + |f(u(jh; τ))| + |us(jh; τ)| +

|u(jh; τ)|. The bound of B′1/Λ
1/2 on |f | is justified by the previous paragraph. The

same bound on |us| and |u| follows from B′1 < B and Λ ≤ 1.

Now, |us(jh; τ ;ω)− u(jh; τ ;ω)| ≤ ∆ implies that

|f(us(jh; τ ;ω))− f(u(jh; τ ;ω))| ≤ B′1∆/Λ1/2
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by the bound on ||∂f ||∞. By replacing B′1 with max(B′1, 1) if necessary, we have

|us(jh; τ ;ω)− u(jh; τ ;ω)| ≤ ∆ ≤ B′1∆/Λ1/2.

The proof is completed by utilizing these bounds in (4.7) and defining B1 as B1 =

√
8B′1.

Lemma IV.7. Assume 0 < Λ ≤ 1. With probability greater than 1−p, ||f1 − f2||K ≤

B1∆1/2

Λ
.

Proof. Follows from Lemmas IV.5, IV.6, and IV.4. Lemma IV.4 is applied with

r = B
Λ1/2 , δ =

B2
1∆

Λ
, and λ = 2Λ. The choice of r is justified by Lemma IV.5

and the choice of δ is justified by Lemma IV.6. To justify the choice of λ, note

that W1(f) and W2(f) can both be written as Wi(f) = L(f) + Λ ||f ||2K with L

a convex functional. The identity 〈f + g, f + g〉K = 〈f, f〉K + 〈2f, g〉K + 〈g, g〉K

shows that 2f is the unique subgradient at f for Λ ||f ||2K . Thus, if w ∈ ∇Wi(f)

(the subgradient of Wi is unique and may be obtained explicitly), we must have

Wi(f + g)−Wi(f)− 〈w, g〉K ≥ Λ 〈g, g〉K , justifying the choice of λ.

Lemma IV.8. Assume 0 ≤ Λ ≤ 1. For f ∈ HK and ||f ||K ≤
B

Λ1/2 , we have

|W2(f)−W3(f)| ≤ B2
1h

Λ
.

Proof. We will argue as in Lemma IV.6 and assume that ||f ||∞, and ||∂f ||∞ are

bounded by B′1/Λ
1/2.

Suppose α ∈ [0, 1]. In the difference

1
h

∫ (k+1)h

kh
(f(u(t; τ ;ω))− u(t+ tf ;ω))2 dt− (1− α) (f(u(kh; τ ;ω))− u(kh+ tf ;ω))2

−α (f(u((k + 1)h; τ ;ω))− u((k + 1)h+ tf ;ω))2 ,

we may apply the mean value theorem to the integral and argue as in Lemma IV.6

to upper bound the difference by (B′1)2 h/Λ. The proof is completed by summing

the differences from k = 0 to k = Nn− 1 and dividing by Nn.
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Lemma IV.9. Assume 0 ≤ Λ < 1. Then ||f2 − f3|| ≤ B1h1/2

Λ
.

Proof. Follows from Lemmas IV.5, IV.8, and IV.4. Lemma IV.4 is applied with

r = B
Λ1/2 , δ =

B2
1h

Λ
, and λ = 2Λ. The choices of r, δ, and Λ are justified using Lemmas

IV.5 and IV.8 and an additional argument as in the proof of Lemma IV.7.

Choose ε > 0. At this point, we specialize K to a kernel for which the universality

theorem of Steinwart applies. For example, K = Kγ. We may then find Fε ∈ HK

such that ||Fε − F ||∞ ≤ ε, where the ∞-norm is over Y . In fact, we will need the

difference |Fε(x)− F (x)| to be bounded by ε only for x ∈ X. The larger compact

space Y is needed to apply the universality theorem and for other RKHS arguments.

Lemma IV.10. Let Λ = ε2/ ||Fε||2K ≤ 1. If f3 minimizes W3(f), we have

1

T

∫ T

0

(f3(u(t; τ ;ω))− u(t+ tf ;ω))2 dt ≤ Λ ||Fε||2K + ε2 = 2ε2.

In addition, ||f3||2K ≤ 2 ||Fε||2K .

Proof. We have

1

T

∫ T

0

(f3(u(t; τ ;ω))− u(t+ tf ;ω))2 dt ≤ W3(f3),

W3(f3) ≤ W3(Fε) because f3 is the minimizer, and

W3(Fε) ≤ ε2 + Λ ||Fε||2K .

This last inequality uses
∫

(Fε(u(t; τ ;ω)) − u(t + tf ;ω))2 dt =
∫

(Fε(u(t; τ ;ω)) −

F (u(t; τ ;ω))2 dt. The proof of the first part of the lemma is completed by com-

bining the inequalities. To prove the second part, we argue similarly after noting

||f3||2K ≤ W3(Fε)/Λ.

Consider half-open boxes in RD of the form

Aj1,j2,...,jD =

[
j1

2`
,
j1 + 1

2`

)
× · · · ×

[
jD
2`
,
jD + 1

2`

)
,
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with ` ∈ Z+and ji ∈ Z. The whole of RD is a disjoint union of such boxes. Because

X is compact, we can assume that X ⊂ ∪Lj=1Aj, where the union is disjoint, each Aj

is a half-open box of the form above, and Aj ∩X 6= φ for 1 ≤ j ≤ L.

We will pick ` to be so large, that each box has a diameter that is bounded as

follows: √
D

2`
<

δ

4
√

2D1/2 ||∂2K||1/22,∞ ||Fε||K
.

Here δ > 0 is determined later, and ||∂2K||2,∞ is the ∞-norm in the function space

C2(Y × Y ). Lemma IV.10 tells us that ||f3||K ≤
√

2 ||Fε||K , and therefore (by part

(c) of Theorem 1 of [61]) ||∂f3||∞ ≤
√

2D1/2 ||∂2K||1/22,∞ ||Fε||K . As a consequence of

our choice of `, x, y ∈ Aj implies that

(4.8) |f3(x)− f3(y)| < δ/4,

bounding the variation of f3 within a single cell Aj. Because the exact predictor F

is Cr, r ≥ 2, and X is compact, we may also assert that

(4.9) |F (x)− F (y)| < δ/4

for x, y ∈ Aj by taking ` larger if necessary.

The next lemma is about taking a trajectory that is long enough that each of the

sets Aj is sampled accurately. By assumption X is the support of µ. However, we

may still have µ(Aj) = 0 for some j. In the following lemma and later, it is assumed

that all Aj with µ(Aj) = 0 are eliminated from the list of boxes covering X.

Lemma IV.11. Let χAj denote the characteristic function of the set Aj. There exist

T ∗ > 0 and a Borel measurable set

Sε,T ∗ ⊂ X
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such that ω ∈ Sε,T ∗ implies that for all T ≥ T ∗ and j = 1, . . . , L∣∣∣∣ 1

T

∫ T

0

χAj (u(t; τ ;ω)) dt− µ(Aj)

∣∣∣∣ ≤ εµ(Aj).

and with µ (Sε,T ∗) > 1− ε.

Proof. To begin with, consider the set A1. By the ergodic theorem,

lim
T→∞

1

T

∫ T

0

χA1 (u(t; τ ;ω)) dt = µ(A1)

for ω ∈ S ⊂ X with µ(S) = 1. Let

As,ε =

{
ω ∈ X

∣∣∣∣∣∣∣∣ 1

T

∫ T

0

χA1(u(t; τ ;ω)) dt− µ(A1)

∣∣∣∣ > εµ(A1) for some T ≥ s

}
.

The sets As,ε shrink with increasing s. Then the measure of ∩∞s=1As,ε under µ is zero.

Therefore, there exists s1 ∈ Z+ such that µ(As1,ε) < ε/L.

We can find s2, . . . , sL similarly by considering the sets A2, . . . , AL. The lemma

then holds with T ∗ = max(s1, . . . , sL).

Lemma IV.12. Suppose that ω ∈ Sε,T ∗, T ≥ T ∗, and Λ = ε2/ ||Fε||2K ≤ 1. Suppose

that f3 minimizes W3(f), which is defined using u(t;ω), T , and Λ . Then

µ
{
x ∈ X

∣∣|f3(x)− F (x)| ≥ δ
}
<

8ε2

δ2(1− ε)
.

Proof. Denote the set
{
x ∈ X

∣∣|f3(x)− F (x)| ≥ δ
}

by Sδ. Let J be the set of all

j = 1, . . . , L such that |f3(x)− F (x)| ≥ δ for some x ∈ Aj. Evidently, Sδ ⊂ ∪j∈JAj,

and it is sufficient to bound the measure of ∪j∈JAj.

By (4.8) and (4.9), if|f3(x)− F (x)| ≥ δ for some x ∈ Aj then for any y ∈ Aj, we

have

|f3(y)− F (y)| ≥ |f3(x)− F (x)| − |f3(x)− f3(y)| − |F (x)− F (y)|

>
δ

2
.(4.10)
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For ω ∈ Sε,T ∗ , we have

1
T

∫ T
0

(f3(u(t; τ ;ω)− u(t+ tf ;ω))2 dt

= 1
T

∫ T
0

(f3(u(t; τ ;ω)− F (u(t; τ ;ω))2 dt

≥ 1
T

∫ T
0

(f3(u(t; τ ;ω)− F (u(t; τ ;ω))2
∑

j∈J χAj (u(t; τ ;ω)) dt

= 1
T

∑
j∈J
∫ T

0
(f3(u(t; τ ;ω))− F (u(t; τ ;ω))2χAj (u(t; τ ;ω)) dt

≥ δ2

4T

∑
j∈J
∫ T

0
χAj (u(t; τ ;ω)) dt

≥ δ2

4
µ (∪j∈JAj) (1− ε),

where the first inequality holds because Aj are disjoint, the second inequality holds

because |f3(y)− F (y)| > δ/2 follows from (4.10) for y = u(t; τ ;ω) ∈ Aj with j ∈ J ,

and the final inequality is a consequence of Lemma IV.11 and ω ∈ Sε,T ∗ .

Applying Lemma IV.10, we get

δ2

4
µ

(⋃
j∈J

Aj

)
(1− ε) ≤ 2ε2,

completing the proof of the lemma.

Lemma IV.13. Suppose ω ∈ Sε,T ∗ and that the signals u(t;ω) and uη(t;ω) are used

to define Wi(f), i = 1, 2, 3. Suppose that f1, f2, and f3 minimize W1(f), W2(f),

and W3(f), respectively, with T ≥ T ∗ and Λ = ε2/ ||Fε||2K ≤ 1. Then

µ

{
x ∈ X

∣∣∣∣|f1(x)− F (x)| > δ +
B1h

1/2
+B1∆1/2

Λ

}
<

8ε2

δ2(1− ε)

with probability greater than 1− p.

Proof. Follows from Lemmas IV.7, IV.9, and IV.12.

The above lemma implies Theorem IV.2 with the choice of δ, n, and ∆ specified

above it.
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4.4 Numerical illustrations

We compare three methods to compute an approximate predictor f . The first

method is that of Mller et al [37] given in (4.2). The second method is exactly

the same but with the least squares regression function. The third method is the

convergent algorithm given by (4.3) and (4.4).

When comparing the methods, we always used the same noisy data for all three

methods. There can be some fluctuation due to the instance of noise that is added

to the exact signal x̃(t) as well as the segment of signal that is used. The effect of

this fluctuation on comparison is eliminated by using the same noisy data in each

case. In addition, reported results are averages over multiple datasets. For all three

methods, the error in the approximate predictor is estimated by applying it to a

noise-free stretch of the signal as in [37], which is standard because the object of

each method is to approximate the exact predictor.

The first signal we use is the same as in [37], except for inevitable differences in

instantiation. The Mackey-Glass equation

dx̃(t)

dt
= −0.1x̃(t) +

0.2x̃(t−D)

1 + x̃(t−D)10
,

with D = 17, is solved with time step ∆t = 0.1 and transients are eliminated

to produce the exact signal x̃(t). This signal will of course have rounding errors

and discretization errors, but those are negligible compared to prediction errors.

The standard deviation of the Mackey-Glass signal is about 0.23. An independent

normally distributed quantity of mean zero is added at each point so that the ratio

of the variance of the noise to that of the signal (0.232) is equal to the desired

signal-to-noise ratio (SNR).

To confirm with [37], the Mackey-Glass signal was down-sampled so that nh = 1



114

Figure 4.1: Root mean square errors in the prediction of the Mackey-Glass signal with tf = 1 as
a function of the signal to noise ratio. The superiority of the method using smooth
splines is evident.

and n = 1. The spline smoothing method would fare even better if we chose h = .1.

The delay and the embedding dimension used for delay coordinates were τ = 6 and

D = 6, as in [37]. The size of the training set was N = 1000. For cross-validation,

the γ/2D parameter was varied over {0.1, 1.5, 10.0, 50.0, 100.0}, and the Λ parameter

was varied over {10−8.5, 10−8, . . . , 10−0.5} for least squares with or without spline

smoothing but over {10−10, 10−6, 10−2, 102} for the more expensive support vector

regression. For support vector regression, the ε was varied over {0.01, 0.05, 0.25}.

The phenomenon we will demonstrate is far more pronounced than the slight gains

obtained using more extensive cross-validation. For support vector regression, we

were able to reproduce the relevant results reported in [37].1

Figure 4.1 demonstrates that (4.2) produces predictors that are corrupted by

errors in the inputs or delay coordinates. The method with spline smoothing is more

accurate and deteriorates less with increasing SNR. For the Mackey-Glass plots in

Figures 4.1, 4.2, and 4.3, each point is an average over 480 independent datasets in

the case of least squares with or without spline smoothing and over 48 data sets in

the case of support vector regression. In all cases, using half as many datasets does

1The RMS error of 0.017 reported for tf = 1 with SNR of 22.15% in [37] appears to be a consequence of an
unusually favorable noise or signal. The typical RMS error is around 0.03. We eliminate the effect of unusual
datasets by taking averages over multiple datasets.
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Figure 4.2: Comparison of the 1-step least squares predictor (without spline smoothing) iterated tf
times with the tf -step predictor (without spline smoothing). The latter is seen to be
superior.

Figure 4.3: The plot on the left uses SNR of 0.2 and the plot on the right uses 0.4. The method
using smooth splines does better in all instances.

not change the picture.

A tf = nfτ predictor can be obtained by iterating a τ -step predictor nf times, and

this strategy is sometimes used to save cost [37]. This is not a good idea as explained

in [59] and as shown in Figure 4.2. An optimal predictor would need to roughly split

the distance to the nearest training sample such that the component of the distance

along unstable directions is small and with the component along stable directions

allowed to be much larger. The balance between the two components depends upon

tf , and therefore, iterating a one-step predictor is not a good strategy.

In Figure 4.1, we see that spline smoothing becomes more and more advantageous

as noise increases. The situation in Figure 4.3 is a little different. When tf is
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small, spline smoothing does help more for the noisier SNR of 0.4 compared to 0.2.

However, for larger tf , even though spline smoothing helps, it does not help more

when the noise is higher. This could be because as tf increases capturing the correct

geometry of the predictor becomes more and more difficult, and this difficulty may

be constraining the accuracy of the predictor.

The MacKey-Glass example is a delay-differential equation and does not come

under the purview of our convergence theorem. The Lorenz example, ẋ = 10(y −

x), ẏ = 28x − y − xz, ż = −8z/3 + xy, is a dynamical system with a compact

invariant set and comes under the purview of the convergence theorem. The Lorenz

signal has a standard deviation of 7.9. For the Lorenz plots of Figure 4.4, each point

is an average over 160 datasets each with N = 1000. The picture did not change

even with many fewer datasets.

Figure 4.4 compares h = .01 and h = .1 for Lorenz. In both cases, the embedding

dimension is d = 10, the delay parameter is τ = 1, and the lookahead is tf = h.

It may be seen that spline smoothing is less effective when h = 0.1 as compared to

h = 0.01. A typical Lorenz oscillation has a period of about 0.75, and when h = 0.1

the resolution is too low causing too much discretization error. Smooth splines are

less effective in reconstructing the noise-free signal if the grid on the time axis does

not have sufficient resolution. The left half of Figure 4.4 shows an example where

prediction using spline smoothing improves accuracy by a factor of 100 with h = 0.01.

4.5 Discussion

For the prediction of dynamical time series, we have shown that flows are quite

different from maps. In the case of flows, the time series can be denoised by relying

solely on the smoothness of the underlying flow. The predictor can be derived by
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Figure 4.4: The advantage of spline smoothing for Lorenz is much less on the right with h = 0.1
than on the left with h = 0.01.
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applying kernel-based regression to the denoised signal. The resulting predictor

converges to the exact predictor under conditions described by Theorem IV.2.

As far as dynamical time series are concerned, the parameter estimation problem

[34, 35] is complementary to prediction. Much of the existing theory is for maps and

with the assumption of rapid mixing. For flows, smooth splines or a similar technique

may prove an effective method to denoise in the context of parameter estimation as

well.

The convergence theorem given here does not give rates and is not uniform. Ob-

taining rates with uniformity over a class of flows will probably require rapid mixing

assumptions as in the case of maps [23, 50]. Rapid mixing results for flows may be

found in [4] for example.

With respect to rates and uniformity, there are two more issues that would need to

be considered. First, convergence of smooth splines in the ∞-norm must be proved

with explicit bounds that depend only on the norm of the m-th derivative. A more

significant point is that rates of convergence for a given lookahead tf may not be

the best direction. As pointed out in [59], the question of how large tf can be given

a signal of length T appears to have implications for the prediction algorithm and

not just to its analysis. There is no evidence that existing algorithms including the

one in this chapter are capable of predicting as far into the future as an optimal

algorithm should.

The smooth spline idea is primarily local and so are the optimality results of Stone

[52]. Stone’s algorithm for achievability is to find a local scale and to fit a polynomial

using linear least squares within that local region. It is perhaps worth noting that

the same idea has a dynamical analog. In its dynamical version [57], the noisy

dynamical time series is embedded within Euclidean space using delay coordinates.
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The embedding will be necessarily noisy. However, the embedded manifold can be

smoothed locally using linear techniques.
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