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ABSTRACT

The classical Random Matrix Theory studies asymptotic spectral properties of random

matrices when their dimensions grow to infinity. In contrast, the non-asymptotic branch

of the theory is focused on explicit high probability estimates that we can obtain for large

enough, but fixed size random matrices. This goal naturally brings into play some beau-

tiful methods of high-dimensional probability and geometry, such as the concentration of

measure phenomenon.

One of the less understood random matrix models is a heavy-tailed model. This is

the case when the matrix entries have distributions with slower tail decay than gaussian,

e.g., with a few finite moments only. This work is devoted to the study of the heavy-tailed

matrices and addresses two main questions: invertibility and regularization of the operator

norm.

First, the invertibility result of Rudelson and Vershynin is generalized from the case

when the matrix entries are subgaussian to the case when only two finite moments are

required. Then, it is shown that the operator norm of a matrix can be reduced to the optimal

order O(
√
n) if and only if the entries have zero mean and finite variance. We also study

the constructive ways to perform such regularization. We show that deletion of a few

large entries regularizes the operator norm only if all matrix entries have more than two

finite moments. In the case with exactly two finite moments, we propose an algorithm that

zeroes out a small fraction of the matrix entries to achieve the operator norm of an almost

optimal order O(
√

ln lnn · n). Finally, if in the latter case the matrix has scaled Bernoulli

entries, we get a stronger regularization algorithm that provides a) O(
√
n)-operator norm

of the resulting matrix and b) simple structure of the “bad” submatrix to be zeroed out.

vi



CHAPTER 1

Introduction

1.1 Non-asymptotic random matrix theory

Random matrix theory is a beautiful area where the methods of probability, functional anal-
ysis, linear algebra, and combinatorics can be applied together to study the structure and
properties of the matrices taken from some probability distribution. Classical and powerful
way to understand the structure of the random matrix is to look at the matrix spectrum:
eigenvalues, eigenvectors, or singular values and vectors. The crucial observation that
makes results of the theory possible is that the spectrum stabilizes as the size of the matri-
ces (taken from some distribution over all the matrices) grows to infinity, so there are limit
laws for the distribution of the spectrum. Among the classical limit laws are, for example,
classical Wigner semicircular law for the limiting eigenvalue empirical measure distribu-
tion of random symmetric matrices, Tracy–Widom law for the limiting distribution of the
largest eigenvalue, Marchenko–Pastur law for the sample covariance matrices. A number
of great surveys and books are written on the subject, including [Tao12, AGZ10, Bor17].

But what if instead of the estimates in the limit we would like to get an explicit high
probability estimate for a large, but finite size random matrices? This is what non-asymptotic
branch of the theory concerned with.

One powerful tool for showing that some properties hold with high probability is the
concentration of measure phenomenon. It is a geometrical property of high dimensional
measure spaces, which states – in its simplest form – that the majority of the volume of
the unit sphere in Rn, when n is large, lies in a thin strip near the equator. In more general
versions, the concentration of measure guarantees that some complex expressions involv-
ing many independent random variables typically stay very close to a constant (expected
value). For detailed discussions of the concentration of measure phenomenon applications
to random matrices see, e.g., [Ver12, Tro15]. We also revisit some definitions and facts
relevant to this work later in Section 2.3. This idea bridges the study of random matri-
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ces with the geometry of high dimensional spaces, which turns out to be important in the
non-asymptotic random matrix theory both as a tool and as a source of new interesting
questions.

Geometric methods and explicit probability estimates for large finite matrices make this
area useful in application dealing with large high dimensional data objects (see, for exam-
ple, [Ver16, LLV18a]). Among the examples are graph and network analysis, statistics,
compressed sensing and more.

1.2 Overview of the results.

In this work we study random matrices with the elements in R via their real spectrum, i.e.
singular values and vectors. Singular values

smax(A) = s1(A) ≥ s2(A) ≥ . . . ≥ sn(A) = smin(A) ≥ 0

of a real m × n matrix A are the eigenvalues of the matrix
√
XTX . The largest and the

smallest singular values are especially informative as they determine the basic geometric
properties of A as a linear operator, namely, the norm of A and its inverse:

smax(A) = sup
‖x‖2=1

‖Ax‖2 =: ‖A‖, (1.1)

smin(A) = inf
‖x‖2=1

‖Ax‖2 = 1/‖A−1‖. (1.2)

Additionally, the condition number of the random matrix A is defined as the ratio of the
extreme singular values:

σ(A) := smax(A)/smin(A).

Good (i.e., not too large) condition number means that the matrix A would not distort the
metric too much, which can be important for geometric applications. From the other point
of view, bounded condition number implies the stability of a system of linear equations
Ax = b for any right hand side b ∈ Rm. Clearly, to bound the condition number, we have
to estimate the first singular value from above, and the last one from below.

In the first part of the work presented, we estimate (from below) the smallest singular
value of the heavy-tailed random matrices.
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1.2.1 Invertibility

The study of the smallest singular value of the random matrix A can answer the questions
like “what is the probability that A is singular?” or “if this probability is small (and thus A
is likely to be invertible), how large is the typical operator norm of the inverse?”

The invertibility problem was extensively studied from several angles, including the
methods of additive combinatorics ([TV10a, TV10b]), mathematical physics ([ESY10,
ESY09]), and geometric functional analysis. The latter one is the core of our approach.
Let us briefly list the previous work leading to our invertibility theorem for the heavy-tailed
matrices (Theorem 1.1), and then state the theorem. More complete overview of the related
work is given later in Section 3.1.

For the square matrices with independent standard Gaussian entries, limiting distribu-
tion of the smallest singular value was computed in [Ede88] and [Sza91]: it was proved
that for any ε ∈ (0, 1)

P{sn(A) ≤ εn−1/2} ≤ Cε,

where C =
√

2e (see [[Sza91], Theorem 1.2]). This result was later extended for more
general distributions and improved in a number of papers, including [Rud08, TV09] (ran-
dom sign matrices), [RV08] (finite fourth moment entries), [TV10b, TV08] (finite second
moment entries and non-zero mean), [Tik17] (entries with bounded density). In the paper
[RV08] the authors also got much more precise probability estimate for a narrower class of
subgaussian matrices. A random variable ξ is called subgaussian, if it has at least gaussian
tail decay, i.e., there exists a number K > 0 such that

P{|ξ| > t} ≤ 2 exp(−t2/K2), for all t > 0.

In particular, it implies that all the moments of ξ are finite, Eξp ≤ C
√
p, where C = C(K)

is a constant (see also [Ver12]). In [RV08], Rudelson and Vershynin have shown that an
n× n random matrix A with centered subgaussian random entries satisfies for every ε > 0

P
{
sn(A) ≤ εn−1/2

}
≤ Lε+ un, (1.3)

for some constants L > 0 and u ∈ (0, 1). Note that this implies linear probability decay
with ε (like in the gaussian case) until ε reaches an exponentially small probability level.
The latter is necessary since singularity probability for some (e.g. discrete) matrices is
non-zero. So, right hand side in (1.3) cannot always decay to zero with ε→ 0 as it does for
gaussian matrices. For example, in the case of i.i.d. symmetric Rademacher entries (every
entry is±1 with probability 0.5) the probability that two rows are equal up to sign is already
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greater than 0.5n. Clearly, this lower bounds singularity probability of such matrices.
Our work with K. Tikhomirov [RT15] shows that exactly the same probability estimate

holds for much more general class of heavy-tailed matrices, such that

A is n× n; the entries of A are i.i.d., with EAij = 0, EA2
ij = 1. (1.4)

Namely, we proved the following

Theorem 1.1. Let n ≥ n0 and let A be a heavy-tailed matrix satisfying (1.4). Then for any

ε > 0

P
{
sn(A) ≤ εn−1/2

}
≤ Lε+ un, (1.5)

where L > 1 and u ∈ (0, 1) are constants, depending only on distribution of Aij .

Another result of the same paper – geometric Theorem 1.2, providing a bound for
covering numbers for random ellipsoids in high dimensional spaces – naturally appeared
as a part of the proof of Theorem 1.1.

The proof of Theorem 1.1, as well as the prior result of Rudelson and Vershynin, is
based on a version of ε-net argument. One of the basic applications of the net argument is
as follows. Let us approximate the unit sphere Sn−1 := {‖x‖2 = 1} by a finite set of points
(net) in order to reduce complexity of the infimum in (1.2), and then use concentration of
measure techniques to conclude the result for every x ∈ Sn−1 (see, for example, [Ver12]).
This standard form of the argument is classic and elegant, and also too weak for the square
matrices.

In [RV08] a special net refinement (depending on the arithmetic structure of a random
vector) was introduced. In [RT15] we use yet another net refinement on the image of the
unit ball under the action of A. This led us to construct a O(

√
n)-net for a random ellipsoid

{Ax : ‖x‖2 = 1}. We proved the following geometric theorem:

Theorem 1.2. For any δ < 1/4 and n > n0(δ) there exists a subsetN ⊂ Bn
2 of cardinality

at most (6/δ)13nδ, such the for any n× n random matrix A satisfying (1.4)

A(Bn
2 ) ⊂

⋃
y∈A(N )

(
y +

C
√
n

δ
Bn

2

)
with probability at least 1− 4 exp(−δn/8). Here C > 0 is a universal constant.

This result can also be interpreted geometrically in terms of covering numbers. The
covering number N(S,K) for two subsets S and K of a vector space is defined as the
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smallest number of parallel translates of K sufficient to cover S. By Theorem 1.2, we
have an exponential bound on the covering number N(A(Bn

2 ), C
√
n

δ
Bn

2 ) ≤ (6/δ)13nδ with
high probability. Moreover, the covering is non-random and “universal” for all random
ellipsoids of the type {Ax : ‖x‖2 = 1}, independent from the distribution of the entries of
A (as long as A satisfies (1.4)).

1.2.2 Regularization of the norm

In the second part of the work we study the maximal singular value of a random matrix,
which is, as noted in (1.1), also its operator norm. Our goal is to impose a good upper
estimate on it in the heavy-tailed case.

If we consider a matrix A with independent standard Gaussian entries, then by the
classical Bai-Yin law (see, for example, [Tao12])

s1(A)/
√
n→ 2 almost surely,

as the dimension n → ∞. Moreover, the 2
√
n asymptotics holds for more general classes

of matrices. By [YBK88], if the entries of A have zero mean and bounded fourth moment,
then

‖A‖ = (2 + o(1))
√
n

with high probability. In the non-asymptotic regime, an application of Bernstein’s inequal-
ity (see, for example, in [Ver12]) gives

P{s1(A) ≤ t
√
n} ≥ 1− e−c0t2n for t ≥ C0

for the matrices with i.i.d. subgaussian entries. Here, c0, C0 > 0 are absolute constants.
The non-asymptotic extensions to more general distributions are also available, see [Seg00,
Lat05, BVH16, vH17a].

Note that the order
√
n is the best we can generally hope for. Indeed, if the entries of A

have variance C, then the typical magnitude of the Euclidean norm of a row of A is ∼
√
n,

and the operator norm of A cannot be smaller than that. So, it is natural to assume O(
√
n)

as the “ideal order” of the operator norm of an n× n i.i.d. random matrix.
We do not have ideal O(

√
n)-order in the heavy-tailed regime (1.4). It is suggested

by the fact that weak fourth moment is necessary for the convergence in probability of
‖A‖/

√
n when n grows to infinity (see [Sil89]). Moreover, an explicit family of examples,

constructed in [LS14], shows heavy-tailed matrices A that have ‖A‖ ∼ O(nα) for any
α ≤ 1 with substantial probability.
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A natural question is: what are the obstructions in the structure of A that cause too
large norm? Can we regularize the matrix restoring the “ideal norm”? Clearly, interesting
regularization would be the one that does not change A too much.

So, the first question to answer is when we can enforce the “ideal” ‖A‖ with high
probability by modifying just a small fraction of the entries? Let us assume nothing about
the distribution of the i.i.d. entries of A. Under what moment conditions the regularization
of the matrix norm is a local problem?

We answered these questions in our work with R. Vershynin [RV18]. We have shown
that local regularization (on a small submatrix of the matrix) is possible if and only if the
entries of A have zero mean and unit variance:

Theorem 1.3 (Local problem). Consider an n × n random matrix A satisfying (1.4), and

let ε ∈ (0, 1/6]. Then, with probability at least 1− 7 exp(−εn/12), there exists an εn× εn
submatrix of A such that replacing all of its entries with zero leads to a well-bounded

matrix Ã:

‖Ã‖ ≤ C ln ε−1

√
ε
·
√
n,

where C is a sufficiently large absolute constant.

Theorem 1.4 (Global problem). Consider an n × n random matrix An whose entries are

i.i.d. copies of a random variable that has either nonzero mean or infinite second moment,

and let ε ∈ (0, 1). Then

min
‖Ãn‖√
n
→∞ as n→∞

almost surely. Here the minimum is with respect to the matrices Ãn obtained by any modi-

fication of any εn× εn submatrix of An.

Our proof utilizes the cut norm and Grothendieck-Pietsch factorization for matrices
([Pie78, AN04]), and it combines the methods developed in [RT15] and [LLV17]. See
Section 4.1.1 for the proof overview and further discussion.

1.2.3 Constructive regularization and random graphs

Returning to the question about the obstructions: if the local regularization is possible (that
is, the matrix satisfies (1.4)), what exactly causes the norm of a centered random matrix A
to be too large? Is there a simple description of the small fraction of elements to be deleted,
or at least an algorithm that allows to determine them?
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This question is not answered in full in this work, but we present several partial results
obtained: for the matrices with more than two finite moments, for the adjacency matrices
of random graphs, and for the general case.

More than two finite moments

First natural guess would be that the only troublemakers are a few large entries of A, and
so we can obtain a result like Theorem 1.3 simply by zeroing them out. This intuition turns
out to be misleading. Only in the case when Aij have more than two finite moments the
truncation idea works and it is not hard to derive the following result from known bounds
on random matrices such as [vH17a, Seg00, AT16]:

Theorem 1.5 (2 + ε moments). Let ε ∈ (0, 1] and n > n0(ε). Consider any n× n random

matrix A with i.i.d. mean zero entries which satisfy E|Aij|2+ε ≤ 1. With probability at

least 1 − 2 exp(−nε/5), zeroing out at most n1−ε/9 largest entries of A leads to the matrix

Ã such that

‖Ã‖ ≤ 8
√
n.

The heavy-tailed model (1.4) is qualitatively harder: to find a small submatix, dele-
tion of which regularizes the norm, one have to account for the mutual positions of large
elements of A.

Sparse random graphs

Another case when it is clear how to regularize the operator norm is when the matrix is
Bernoulli. It is closely related to the work of Le, Levina and Vershynin [LLV17] (see also
the survey [LLV18a]) on inhomogeneous Erdős-Réniy random graphs. Inhomogeneous

Erdős-Réniy random graph G(n, pij) is a graph with n vertices, such that the edge between
i-th and j-th vertices is present with probability pij (independently of all other edges). Of-
ten (for example, in community detection problems), the question of interest is to estimate
some features of the probability matrix (pij) from random graphs drawn from G(n, pij).
Concentration of the adjacency matrix A around its expectation matrix EA, when it holds,
guarantees that such features can be recovered.

However, this concentration holds only in the case when the graph is dense (i.e. max-
imal expected degree of the vertices d := maxij npij > log n). For the sparse graphs,
especially when expected degree is constant, the regularization question appears. Can we
modify the graph on a small subset of its edges such that ‖A−EA‖ become well-bounded,
and so concentration will be restored? And which exactly modification can help us?

7



An answer was given in the work of Feige and Ofek [FO05]: with high probability,
it is enough to delete all the edges adjacent to the “heavy” vertices (n/d vertices with the
largest degrees). Le, Levina and Vershynin presented in [LLV17] a more general way to
regularize these edges, as well as a new approach to the proof. Using similar techniques,
we can check that it is actually enough to modify a much smaller subgraph of the graph
and also described the structure of this “bad” subgraph:

Theorem 1.6. Let G = G(n, (pij)) be an inhomogeneous Erdős-Rényi graph and let d

denotes its average expected degree d = max
ij

npij , d ≥ 5 and let r ≥ 1. Then for any n

large enough with probability at least 1− 6 · (10ne−d)−r we can enumerate the vertices of

G such that the adjacency matrix A has the following properties:

• if Ã is obtained from A by zeroing out the entries of top left s× s submatrix A0, then

‖Ã− EA‖ ≤ Cr3/2
√
d,

• A0 is a very small square part of A, as its size s . 10ne−d � n/d,

• A0 has no more than 40r ones in every column above its main diagonal.

The last condition means that we can direct the edges inside the “bad” (too dense)
subgraph such that every vertex will have a finite number of the outcoming edges (see also
discussion in the Remark 5.6).

General case

Finally, for general matrices with exactly two finite moments, weaker constructive versions
of Theorem 1.3 are possible. Based on simple individual correction of the entries, a bound
with an additional factor log n in the norm and weaker probability guarantees can be derived
from known general bounds on random matrices, such as the matrix Bernstein’s inequality
([Tro15]). One would apply the matrix Bernstein’s inequality for the entries truncated at
level

√
n to get that ‖Ã‖ ≤ ε−1/2

√
n · lnn (this is shown in Lemma 5.13).

More sophisticated regularization procedure, based on finding small fraction of “heavy”
rows and columns to delete, can regularize the norm to the order

√
n · log log n (see Theo-

rem 5.14 for the precise statement; the proof is based on the works [FO05, BVH16]).

8



1.3 Outline of the Dissertation

In Chapter 2 we gather useful definitions and notations, as well as several concentration
and discretization lemmas, that are going to be used throughout the text.

In Chapter 3 we prove invertibility Theorem 1.1 and covering Theorem 1.2 as its inter-
mediate step.

Chapters 4 and 5 are devoted to the study of smax, or, equivalently, operator norm of
the matrix. In Chapter 4 we prove that zero first and finite second moment is necessary and
sufficient condition for a square i.i.d. random matrix A to have a regularize version: an
another matrix Ā that differs from A in a small square sub-matrix only and has the operator
norm ‖Ā‖ ∼

√
n (Theorems 1.3 and 1.4).

Discussion of a possibility of constructive regularization starts in the Section 4.4. Then,
in Chapter 5 we discuss various results related to the constructive regularization: when
A has more than two finite moments (Section 5.1); when A is a Bernoulli matrix (Sec-
tion 5.2); and for the general case with extra

√
log log n term (Section 5.3). Also, in the

Section 5.2 we discuss the interpretation of Bernoulli matrices as adjacency matrices of the
Erdős-Réniy random graphs and the structure of a small “bad” sub-graph (to be deleted in
regularization).

Finally, in Chapter 6 we mention several open questions that are closely connected to
the research presented, and seem interesting for the future exploration.
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CHAPTER 2

Preliminaries

2.1 Notations

Throughout the work, positive absolute constant are denoted C,C1, c, c1, etc. Their values
may be different from line to line. However, sometimes, to avoid confusion, we add a
numerical subscript to the name of a constant defined within a statement (e.g. constant
C1.57 is the one that appears in Lemma 1.57).

We often write a . b to indicate that a ≤ Cb for some absolute constant C.
Given a finite set S, by |S| we denote its cardinality. By e1, e2, . . . , en we denote the

canonical basis in Rn. The standard inner product in Rn shall be denoted by 〈·, ·〉. Given
p ∈ [1,∞], ‖·‖p is the standard `p-norm. For `2, will will simply write ‖·‖. Given anm×n
matrix M and p, q ∈ [1,∞], by ‖M‖p→q we denote the operator norm of M considered as
the mapping from (Rn, ‖ · ‖p) to (Rm, ‖ · ‖q).

The discrete interval {1, 2, . . . , n} is denoted by [n]. If R is some subset of indices,
R ⊂ [n] × [n], let us denote by AR the matrix obtained from A by replacing by zero the
entries Aij with the indices (i, j) ∈ Rc:

AR := (Āij)
n
i,j=1, where Āij = Aij1{(i,j)∈R}.

We will often consider subsets of columns of the matrix, so when R = J × [n] we use a
simplified notation: for J ⊂ [n]

AJ := A[n]×J .

Finally, main probability model to be considered is the following:

A is n× n; the entries of A are i.i.d., with EAij = 0, EA2
ij = 1. (*)

We will sometimes refer to it as probability model (*), and explicitly describe all the
changes in the model we consider.
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2.2 Nets and covering numbers

In this section we give necessary definitions to be used later and briefly preview the role of
nets and covering numbers in this thesis. A detailed discussion of the subject can be found,
e.g., in [[Ver16], Section 4.2].

Definition 2.1 (ε-net). Let (T, d) be a metric space. For any subset K ⊂ T and ε > 0, a
subset N ⊂ K is called an ε-net of K if for every x ∈ K there exists x0 ∈ N such that
d(x, x0) ≤ ε. Equivalently, N is an ε-net of K if and only if K can be covered by balls
with centers in N and radii ε.

Usually, nets in Rn are defined with respect to Euclidean metric, i.e., for every x, y in
Rn define d(x, y) = ‖x − y‖. However, other metrics can be useful in special situations.
Moreover, Definition 2.1 generalizes without changes to pseudometrics. We will also con-
sider nets with respect to the pseudometric dA(x, y) := ‖A(x − y)‖, where x and y are
points in Rn and A is a linear operator (see Section 3.2.1).

Definition 2.2 (Covering numbers). The smallest possible cardinality of an ε-net of K is
called the covering number of K and is denoted N(K, ε). Equivalently, covering number
is the smallest number of closed balls with centers in K and radii ε whose union covers K.

Almost equivalent definition of the exterior covering number Next(K, ε) allows the
centers of ε balls to lie outside of K. It is not hard to check that

Next(K, ε) ≤ N(K, ε) ≤ Next(K, ε/2).

Finally, we can define the covering number for two general subsets S,K ⊂ T as the
smallest number of parallel translates of K sufficient to cover S, denoted as N(S,K).

It is a well-known fact (e.g. [[Ver16], Corollary 4.2.13]) that a unit ball in Rn have
ε-covering number at most

N(Bn
2 , ε) ≤

(
3

ε

)n
. (2.1)

In particular, this fact is used to bound the s1(A) = supx∈Sn−1 ‖Ax‖ for the random matrix
A with independent subgaussian entries. General idea is as follows: for every fixed x ∈
Sn−1 the norm of ‖Ax‖ is tightly bounded using subgaussian concentration, and then union
bound is taken over the ε-net on Sn−1 with the cardinality at most (3/ε)n.

However, in many interesting cases, including smallest singular value of subgaussian
matrices, the estimate (2.1) is too weak, so that union bound does not preserve good es-
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timates, holding for individual x ∈ Sn−1. This brings us to the need to consider net re-

finements – more complicated ε-nets of lower cardinality, specified to the subsets of Sn−1,
possessing additional nice properties.

It is probably not surprising that for the heavy-tailed matrices we need even more del-
icate net estimates: the tight subgaussian concentration is no longer available, so even
individual estimates on ‖Ax‖ with some fixed x are weaker. Net refinement idea is crucial
for the proofs of Theorems 1.1 and 1.2 (see also the discussion in the Section 3.2.1).

2.3 Concentration

A standard way to get some desired estimate on a random variable X with high probability

is to get this estimate for EX first, and then argue that X concentrates around its expecta-
tion. In this case X usually stays close to EX , and therefore satisfies a close estimate.

This work relies a lot on the good concentration properties of sums of subgaussian (and
sub-exponential) random variables, that is, such that grow not faster than standard normal
(respectively, exponential) random variables.

Definition 2.3 (subgaussian random variable). A random variable Y is called subgaussian

if its moments satisfy
E exp(Y 2/M2

2 ) ≤ e,

for some number M2 > 0. The minimal number M2 is called the subgaussian moment of
X , denoted as ‖Y ‖ψ2 .

Equivalently, ξ is subgaussian if there exists a number K > 0 such that

P{|ξ| > t} ≤ 2 exp
(
−t2/K2

)
, t > 0. (2.2)

It is easy to check that the smallest value of K satisfying (2.2) is equivalent to the subgaus-

sian norm of ξ (see, for example, [Ver12, Lemma 5.5]).

Definition 2.4 (sub-exponential random variable). Analogously, a random variable is called
sub-exponential if

E exp(Y/M1) ≤ e,

for some number M1 > 0. The minimal number M1 is called the sub-exponential moment
of Y , denoted as ‖Y ‖ψ1 .

The class of subgaussian random variables contains standard normal, Bernoulli, and
generally all bounded random variables. The class of sub-exponential random variables
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is exactly the class of squares of subgaussians. See [Ver12] for more information and
statements of standard concentration inequalities.

2.3.1 Some classical concentration inequality

The following inequalities are going to be used in the latter sections. The first one is a
standard Khintchine–type inequality (see, for example, [Hoe63]).

Lemma 2.5 (Khintchine’s inequality). Let r1, r2, . . . , rn be independent Rademacher ran-

dom variables. Then for any vector y ∈ Sn−1 the random variable
∑n

i=1 yiri is C2.5-

subgaussian, where C2.5 > 0 is a universal constant.

The sum of squares of subgaussian variables has good concentration properties; the
bound below follows from a standard “Laplace transform” argument (see, for example,
[Ver12, Corollary 5.17]):

Lemma 2.6 (Subexponential tails inequality). For any T > 0 there is L2.6 > 0 depending

on T with the following property: Let ξ1, ξ2, . . . , ξn be independent centered 1-subgaussian

random variables. Then

P
{ n∑
i=1

ξ2
i > L2.6n

}
≤ exp(−Tn).

For the bounded distributions we will use Bernstein’s inequality (see, for example,
[Ver16, Theorem 2.8.4]):

Lemma 2.7 (Bernstein’s inequality for bounded distributions). Let ξ1, . . . , ξn be indepen-

dent, mean zero random variables, such that |ξk| ≤ K almost surely for all i. Then, for

every t ≥ 0, we have

P

{∣∣∣∣∣
N∑
i=1

ξi

∣∣∣∣∣ ≥ t

}
≤ 2 exp

(
− t2/2

σ2 +Kt/3

)
.

Here σ2 =
∑N

i=1 Eξ2
i is the variance of the sum.

There are concentration inequalities that are applicable directly to sums of indepen-
dent random matrices, rather than individual random variables, like the following (see, e.g.
[Ver16, Theorem 5.4.1])
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Lemma 2.8 (Matrix Bernstein inequality). Let X1, . . . , XN be independent, mean zero,

n × n symmetric random matrices, such that ‖Xi‖ ≤ K almost surely for all i. Then, for

every t ≥ 0, we have

P

{∥∥∥∥∥
N∑
i=1

Xi

∥∥∥∥∥ ≥ t

}
≤ 2n exp

(
− t2/2

σ2 +Kt/3

)
.

Here σ2 =
∥∥∥∑N

i=1 EX2
i

∥∥∥ is the norm of the matrix variance of the sum.

The matrix Bernstein inequality can be extended to non-symmetric (or even non-square)
random matrix X , by applying it to a symmetric block matrix, having zero matrices in
diagonal blocks and X and XT in the off-diagonal. Resulting statement is the following:

Corollary 2.9 (Matrix Bernstein inequality for non-symmeric case). Let X1, . . . , XN be

independent, mean zero, m × n random matrices, such that ‖Xi‖ ≤ K almost surely for

all i. Then, for every t ≥ 0, we have

P

{∥∥∥∥∥
N∑
i=1

Xi

∥∥∥∥∥ ≥ t

}
≤ 2(n+m) exp

(
− t2/2

σ2 +Kt/3

)
.

Here

σ2 = max

(∥∥∥∥∥
N∑
i=1

EXT
i Xi

∥∥∥∥∥ ,
∥∥∥∥∥

N∑
i=1

EXiX
T
i

∥∥∥∥∥
)
.

Finally, for a special case of Bernoulli random variables, one can apply the following
classical inequality that provides a quite sharp result, sensitive to the expectations of the
individual variables (see, e.g. [Ver16, Theorem 2.3.1])

Lemma 2.10 (Chernoff’s inequality). Let ξi be independent Bernoulli random variables

with expectations Eξi = pi. Consider their sum SN =
∑N

i=1 ξi and denote its mean by

µ = ESN . Then, for any t > µ, we have

P{SN ≥ t} ≤ e−µ
(eµ
t

)t
.

2.3.2 Concentration inequality for random permutations

We will also need a concentration inequality for random permutations:

Lemma 2.11 (Concentration for random permutations). Consider two arbitrary vectors

a = (a1, . . . , an) ∈ Rn and x ∈ {−1, 1}n. Let π : [n]→ [n] denote a random permutation
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chosen uniformly from the symmetric group Sn. Then the random sum

S :=
n∑
i=1

aixπ(i)

is subgaussian, and

‖S − ES‖ψ2 ≤ C2.11‖a‖2.

The same inequality holds for the sum S ′ =
∑n

i=1 aπ(i)xi as well, since it has the same

distribution as S.

For the proof of this lemma we will need the following definition (essentially taken
from [MS86]). Let S be a finite set and d be a pseudometric on S. We say that (S, d) is
of length at most ` (for some ` > 0) if there is n ∈ N, positive numbers b1, b2, . . . , bn with
‖(b1, b2, . . . , bn)‖ ≤ ` and a sequence (Sk)

n
k=0 of partitions of S such that

1. S0 = {S};

2. Sn = {{s}}s∈S;

3. Sk is a refinement of Sk−1 for all k = 1, 2, . . . , n;

4. For each k ∈ {1, 2, . . . , n} and any Q,Q′ ∈ Sk such that Q ∪ Q′ is a subset of an
element of Sk−1, there is a one-to-one mapping φ : Q→ Q′ such that d(s, φ(s)) ≤ bk

for all s ∈ Q.

In particular, the above conditions on Sk imply that all elements of Sk have the same cardi-
nality.

Theorem 2.12 (see [MS86, Theorem 7.8]). Let (S, d) be a finite pseudometric space of

length at most ` and let µ be the normalized counting measure on S. Then for any function

f : S → R satisfying |f(s)− f(s′)| ≤ d(s, s′) (s, s′ ∈ S) and all t > 0 we have

µ
{∣∣∣f − ∫ f dµ

∣∣∣ ≥ t
}
≤ 2 exp

(
− t2

4`2

)
.

Remark 2.13. In [MS86], the above theorem is formulated for metric spaces. It is easy to
see that passing to pseudometrics does not change the picture.

Denote by Sn the set of permutations of [n] := {1, 2, . . . , n}.

Lemma 2.14. Let a = (a1, a2, . . . , an) be a non-zero vector and x = (x1, x2, . . . , xn) be

a vertex of the cube [−1, 1]n. Further, let µ be the normalized counting measure on Sn.
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Define a function f : Sn → R as

f(p) :=
n∑
j=1

xp(j)aj, p ∈ Sn.

Then

µ
{∣∣∣f − ∫ f dµ

∣∣∣ ≥ t
}
≤ 2 exp

(
− t2

64‖a‖2
2

)
, t > 0.

Proof. Without loss of generality, we can assume that |aj| ≥ |aj+1| (j = 1, 2, . . . , n − 1).
Define a pseudometric d on Sn: for any p, q ∈ Sn let

d(p, q) := |f(p)− f(q)|.

Further, we define a sequence of partitions (Sn,k)
n
k=0 of Sn: let Sn,0 := {Sn} and for each

k = 1, 2, . . . , n, let Sn,k consist of all subsets of Sn of the form

{p ∈ Sn : p(1) = i1, p(2) = i2, . . . , p(k) = ik}

for all {i1, i2, . . . , ik} ⊂ [n].
Now, let k ∈ {1, 2, . . . , n} and let Q,Q′ ∈ Sn,k be such that Q ∪ Q′ is a subset of an

element of Sn,k−1. Note that there are numbers i1, i2, . . . , ik, i′k such that p(j) = ij for all
j < k and p ∈ Q ∪ Q′; p(k) = ik for all p ∈ Q and p(k) = i′k for all p ∈ Q′. Define a
one-to-one mapping φ : Q→ Q′ by

φ(p)(j) := p(j) for j 6= k, p−1(i′k); φ(p)(k) := i′k; φ(p)(p−1(i′k)) := ik.

For any p ∈ Q, we have

d(p, φ(p)) ≤ 2|ak|+ 2|ap−1(i′k)| ≤ 4|ak|,

with the last inequality due to the fact that p−1(i′k) ≥ k. Thus, the space (Sn, d) is of length
at most 4‖a‖2. Applying Theorem 2.12, we get the result.

Proof of Lemma 2.11. Note that Lemma 2.14 directly implies Lemma 2.11 with C2.11 = 8

when a is not identically zero, and if a = 0, the statement of Lemma 2.11 is trivial.
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2.4 Discretization

Two-point distributions, such as Bernoulli or scaled Bernoulli, have an obvious advan-
tage of being a relatively “simple” example of random variables: having just two possible
values, they are relatively easy for direct computations. Also, stronger concentration in-
equalities (like Chernoff’s inequality, Lemma 2.10) are available in the case when random
variables in question are Bernoulli.

On the other hand, two-point distributions are already sophisticated enough to model
heavy-tailed random variables. Consider ξ such that

ξ =

1, with probability p;

0, otherwise.

For small p, say, p ∼ n−1, we have Eξ = p ∼ 0 and Eξ2 ∼ p. Centralizing and scaling ξ to
have second moment 1, we arrive to a random variable ψ ∼ p−1/2ξ such that for any ε > 0

lim
n→∞

Eψ2+ε = lim
n→∞

nε/2 =∞,

that is, a random variable with exactly two moments bounded (by a constant independent
from n). Clearly, varying the order of success probability p we can obtain “simple” random
variables with any certain number of finite moments.

In light of discussion above, sometimes it is convenient to represent a general a. s.
non-negative random variable via several scaled Bernoulli random variables. One straight-
forward way to do it is to observe that

X ≤
K∑
k=0

qkξk, ξk := 1{X∈[qk−1,qk)},

for any increasing sequence {qk}, such that X ∈ [q0, qK) almost surely (or K = ∞ and
{qk} →k ∞). Similarly we can approximate from below

X ≥
K∑
k=0

qk−11{X∈(qk−1,qk)}.

This approximation is used, for example, to prove global obstructions for the operator norm
regularization (Section 4.3). One of the important disadvantages of this approximation is
that random variables ξk are not independent.
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2.4.1 Approximation by independent Bernoulli

The following lemma allows us to approximate a general continuous random variable by a
sum of independent, scaled Bernoulli random variables.

Lemma 2.15 (Discretization). Consider a non-negative, continuous random variable X .

There exists a non-negative random variable X ′ satisfying the following.

1. EX ′ ≤ 4EX .

2. X ′ stochastically dominates X , i.e.

P {X ′ ≥ t} ≥ P {X ≥ t} for all t ≥ 0.

3. X ′ is a sum of scaled, independent Bernoulli random variables:

X ′ =
∞∑
k=0

qkξk (2.3)

where qk are non-negative numbers and ξk are independent Ber(2−k) random variables.

Proof. Set the values qk to be the quantiles of the distribution of X:

qk := min
{
t ≥ 0 : P{X ≥ t} = 2−k−1

}
, k = 0, 1, 2, . . .

(These values are well defined since the cumulative distribution function ofX is continuous
by assumption.) By definition, (qk) is an increasing sequence. Define X ′ by (2.3).

To check part 1, note that by definition,

EX ′ =
∞∑
k=0

qkEξk =
∞∑
k=0

qk2
−k. (2.4)

To lower bound EX , let us decompose X according to the values it can take. This gives

X ≥
∞∑
k=0

X1{X∈[qk,qk+1)} ≥
∞∑
k=0

qk1{X∈[qk,qk+1)}

almost surely. Taking expectation of both sides, we obtain

EX ≥
∞∑
k=0

qkP {X ∈ [qk, qk+1)} .
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Now, using the definition of qk, we have

P {X ∈ [qk, qk+1)} = P {X ≥ qk} − P {X ≥ qk+1} = 2−k−1 − 2−k−2 = 2−k−2.

This yields

EX ≥
∞∑
k=0

qk2
−k−2. (2.5)

Comparing (2.4) with (2.5), we conclude that EX ′ ≤ 4EX , which proves part 1 of the
lemma.

Let us prove part 2. If t ∈ [qk, qk+1) for some k = 0, 1, 2, . . ., then using the definitions
of X ′ and qk we obtain

P {X ′ ≥ t} ≥ P {X ′ ≥ qk+1} ≥ P {ξk+1 = 1} = 2−k−1

= P {X ≥ qk} ≥ P {X ≥ t} ,

as required.
It remains to check the domination inequality when t is outside the range [q0, q∞) where

q∞ := limk→∞ qk ∈ R+ ∪ {∞}. If t < q0, we have

P {X ′ ≥ t} ≥ P {X ′ ≥ q0} ≥ P {ξ0 = 1} = 1,

and the inequality in part 2 follows. If t ≥ q∞ then, using the continuity of the cumulative
distribution of X , we obtain

P {X ≥ t} ≤ P {X ≥ q∞} = lim
k→∞

P {X ≥ qk} = lim
k→∞

2−k−1 = 0,

and the inequality in part 2 follows again. The proof is complete.

Remark 2.16 (Bounded random variables). Suppose X ≤ M almost surely. Then, in the
second part of the conclusion of Lemma 2.15, X can be represented as a finite sum

X ′ :=
κ∑
k=0

qkξk

where qk are non-negative numbers, qk ∈ [0,M ], and ξk are independent Ber(pk) random
variables. Here pk = 2−k ≥ 1/M for k < κ and pκ = 1/M .

Remark 2.17 (Coupling). Stochastic dominance of X ′ over X in Lemma 2.15 implies that
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one can realize the random variables X and X ′ on the same probability space so that

X ′ ≥ X almost surely.

(See, for example, [Wol99, Section 4.3], or [Tho00, Chapter 1, Theorem 3.1]).
Moreover, in the same way we can construct a majorizing collection for any collection

of independent random variables. In particular, we can do it for all entries of a random
matrix A at once.

Lemma 2.15 is used in both invertibility and local obstructions for the norm regulariza-
tion theorems (Sections 3.2 and 4.2). Fast and controlled decay of the expectations of ξk
makes it especially convenient for computations.

The discretization X ′ constructed in Lemma 2.15 is not compatible with original ran-
dom variable X by size. Namely, we cannot expect that X ≥ c · X ′ for some chosen
constant c (although it is true for the expectations: EX ≥ c · EX ′). However, it is possible
to construct a two-side approximation by a sum of independent scaled Bernoulli. This will
be shown in the next section.

2.4.2 Two-side approximation by independent Bernoulli

Approximating “by size” we are bound to have a Bernoulli member of each order, namely,
we now take qk = 2k. Expectations of ξk are defined such that there exists a non-zero
scaled Bernoulli term of size greater than or equal to t with probability P{X ≥ t}, for any
t ≥ 1. As a result, we have the following lemma:

Lemma 2.18. Let X ≥ 0 a.s. random variable, such that EX = 1, X is not a.s. 1. Then

there exists a random variable

ξ =
∞∑
i=0

2iξi,

where ξi are independent 0− 1 Bernoulli random variables, such that

ξ/2 ≤ X < ξ a. s. when X ≥ 1.

Proof. Without loss of generality we can assume that X has continuous distribution.
Define:

ξ0 = 1 a.s.

ξi = 1 with probability
p̃i−1 − p̃i

1− p̃i
and 0 otherwise,
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where p̃i := P{X ≥ 2i}. Observe that

P{X ≥ 1} < 1,

hence, all p̃i < 1 and all ξi are well-defined.
We are going to show the stochastic domination, i.e. that

P{ξ/2 ≥ t} ≤ P{X ≥ t} < P{ξ ≥ t} for any t ≥ 1.

Indeed, consider t ≥ 1. Let i be such that t ∈ (2i−1, 2i]. Then

P{X ≥ t} > P{X ≥ 2i−1} = p̃i−1.

On the other hand,
P{ξ ≥ t} = P{ξ ≥ 2i} =

P{ at least one of the ξj, j ≥ i is non-zero } =

1− P{ all ξj = 0, j ≥ i} = 1−
∞∏
j=i

P{ξj = 0} =

1−
∞∏
j=i

[
1− p̃j−1 − p̃j

1− p̃j

]
= 1−

∞∏
j=i

[
1− p̃j−1

1− p̃j

]
= 1− (1− p̃i−1) = p̃i−1.

Moreover,

P{ξ/2 ≥ t} = P{ξ ≥ 2t} = P{ξ ≥ 2i+1} = p̃i ≤ P{X ≥ t}.

This completes the proof of Lemma 2.18.

2.5 Operator norm via `1 norm of rows and columns

The following simple result, known as the Schur bound [Sch11, p. 6, §2], states that the
operator norm of any matrix is dominated by the `1 norms of rows and columns. For
completeness, we state and prove the Schur bound here; the proof is almost identical to the
original one.

Lemma 2.19. For any m× k matrix A, we have

‖A‖ ≤
(

max
i
‖Ai‖1 ·max

j
‖Aj‖1

)1/2
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where Ai and Aj denote the rows and columns of A.

Proof. Recall that the operator norm can be computed as a maximum of the quadratic form:

‖A‖ = sup
‖x‖2=‖y‖2=1

|xTAy|.

Fix unit vectors x and y and express

|xTAy| =
∣∣∣∑
i,j

xiAijyj

∣∣∣
≤
∑
i,j

(
|xi|
√
|Aij|

)(√
|Aij||yj|

)
(by the triangle inequality)

≤
(∑

i,j

x2
i |Aij|

)1/2(∑
i,j

|Aij|y2
j

)1/2

(by the Cauchy-Schwarz inequality)

=
(∑

i

x2
i ‖Ai‖1

)1/2(∑
j

‖Aj‖1 y
2
j

)1/2

≤ max
i
‖Ai‖1/2

1 ·max
j
‖Aj‖1/2

1 (since ‖x‖2 = ‖y‖2 = 1).

Taking the maximum over all unit vectors x and y, we complete the proof.

This lemma will be a part of the proof of Theorem 1.3 for moderately large entries of
the matrix (in the Section 4.2.3).

Let us briefly summarize what else we saw in this chapter. Nets and covering numbers
are main tools in the proof of Theorem 1.1 (recall its intermediate result, Theorem 1.2,
which proves an estimate for the covering number for random ellipsoids).

Classical concentration inequalities, gathered in Section 2.3.1, will be of crucial use
throughout the whole text of the thesis. Concentration for random permutations (discussed
in Section 2.3.2) will be used in both proofs of Theorem 1.1 and Theorem 1.3 for sym-
metrization purposes, see Proposition 3.15 and Lemma 4.10 respectively.

The discretization by independent Bernoulli (discussed in Section 2.4.1) will be also
used for both Theorem 1.1 and Theorem 1.3. It will help us accurately quantify the number
of “bad” directions of a random operator defined by a heavy-tailed matrix. See also the
discussion in the beginning of Section 3.2.2.

In the following chapter we are going to proceed with the proof of invertibility Theo-
rem 1.1.
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CHAPTER 3

Smallest singular value: invertibility

3.1 Motivation and main results

The problem of determining the distribution of the smallest singular value sn(A) has been
given much attention in literature.

Convergence of (appropriately normalized) smallest singular values for a sequence of
random rectangular matrices with i.i.d. entries and growing dimensions was established
by Bai and Yin [BY08] (see also [Tik15], where the result is proved under optimal mo-
ment assumptions). For non-asymptotic results in this direction, we refer the reader to
papers [LPRTJ05, RV09] for the case of i.i.d. entries (see also [Tik16] where no moment
conditions are assumed); [ALPTJ11, ALPTJ10] for log-concave distributions of rows and
[SV13, MP14, KM15, Yas14, GLPTJ17] for more general isotropic distributions. We refer
to surveys [RV10, Ver12] (see also [Rud13]) for more information.

For random square matrices with independent standard Gaussian entries, the limiting
distribution of the smallest singular value was computed by Edelman [Ede88]; universality
of this result was established in [TV10a]. Further, for matrices with i.i.d. entries it was
shown in [TV08] and [TV10b] that, given any K > 0 there are R,L > 0 depending only
on K and the law of a11 such that P{sn(A + B) ≤ n−L} ≤ Rn−K for any non-random
matrix B satisfying ‖B‖ ≤ nK (we note that analogous results were recently obtained for
more general models of randomness allowing some dependence between the entries of A;
see, in particular, [NO14] and [GNT15]). In the case B = 0 which we study, those papers
do not provide optimal estimates for sn(A). A much more precise statement was proved
in [RV08] under the additional assumption that the entries of A are subgaussian; namely,
Rudelson and Vershynin showed that sn(A) satisfies a small ball probability estimate

P{sn(A) ≤ εn−1/2} ≤ Lε+ un, ε > 0,

where L > 0 and u ∈ (0, 1) depend only on the subgaussian moment of aij’s.
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The subgaussian condition on the entries is crucial in the proof of this result, as it
heavily relies on the assumption that ‖A‖ .

√
n with probability very close to one. In the

same paper [RV08], it was shown that sn(A) & n−1/2 with large probability provided that
the fourth moment of Aij is bounded, however, the statement is much weaker than in the
subgaussian case.

Our main goal was to relax as much as possible the moment assumptions on the entries
of A while keeping the small ball probability estimate as strong as in the subgaussian
theorem of [RV08]. The main result of this chapter is the following

Theorem 3.1. For any ṽ ∈ (0, 1] and ũ ∈ (0, 1) there are numbers L > 0, u ∈ (0, 1)

and n0 ∈ N depending only on ṽ and ũ with the following property. Let n ≥ n0 and let

A = (aij) be an n×n random matrix with i.i.d. entries such that Eaij = 0, Ea2
ij = 1. Let

sup
λ∈R

P{|a11 − λ| ≤ ṽ} ≤ ũ. Then for any ε > 0 we have

P
{
sn(A) ≤ εn−1/2

}
≤ Lε+ un.

Note that any random variable α with Eα = 0 and Eα2 = 1 obviously satisfies
sup
λ∈R

P{|α − λ| ≤ ṽ} ≤ ũ for some ṽ > 0 and ũ ∈ (0, 1) determined by the law of α.

Thus, the above statement does not require any additional assumptions on the matrix apart
from (1.4); by introducing the quantities ṽ and ũ we make the dependence of L and u on
the law of a11 more explicit.

The idea of the proof of Theorem 3.1 can be described as follows. Denote by A′ the
transpose of the first n− 1 columns of A. A principal component of the proof of [RV08] is
an analysis of the arithmetic structure of null vectors ofA′, which is described with the help
of the notion of the least common denominator (LCD). To show that null vectors ofA′ typi-
cally have an exponentially large LCD, the authors of [RV08] consider subsets S of the unit
sphere corresponding to vectors with small LCD, and show that inf

x∈S
‖A′x‖ > 0 with a large

probability. For this, they use the standard ε-net argument, when the infimum is estimated
by taking a Euclidean ε-netN on S and applying relation inf

x∈S
‖A′x‖ ≥ inf

y∈N
‖A′y‖− ε‖A′‖

together with the estimate ‖A′‖ ≤ C
√
n which holds with probability very close to one

under the subgaussian moment assumptions on the entries. In our setting, the principal dif-
ficulty consists in the fact that the condition (1.4) does not guarantee a good upper bound
for the operator norm ‖A′‖.

To deal with this fundamental issue, we “refine” the nets constructed in [RV08] by the
following estimate on a covering number of a random ellipsoid A(Bn

2 ):

Theorem 3.2. Let δ ∈ (0, 1/4] and n ≥ 1
4δ

. Then there is a (non-random) collection C of
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parallelepipeds in Rn with |C| ≤ exp(13nδ ln 2e
δ

) having the following property: For any

random matrix A satisfying (1.4), with probability at least 1− 4 exp(−δn/8) we have

∀ x ∈ Bn
2 ∃P ∈ C such that x ∈ P and A(P ) ⊂ Ax+

C
√
n

δ
Bn

2 .

Here, C > 0 is an absolute constant.

Indeed, it can be shown that Theorem 3.2 implies that, given an ε-net N on S, it is
possible to construct a subset Ñ ⊂ S of cardinality at most exp

(
13δn ln 2e

δ

)
|N |which is an

L′ε
√
n-net on S (for some L′ = L′(δ)) with respect to the pseudometric d(x, y) = ‖A′(x−

y)‖ with probability at least 1 − 4 exp(−δn/8). Then, inf
x∈S
‖A′x‖ ≥ inf

y∈Ñ
‖A′y‖ − L′ε

√
n,

so the argument does not depend any more on the value of ‖A′‖.

The rest of Chapter 3 is organized as follows: Section 3.2 contains a proof of the ge-
ometric Theorem 3.2, starting with the discussion of its proof strategy and some interpre-
tations of the result. Then, in Section 3.3.1, we collect some results from [RV08] that are
crucial to complete the proof of the main result Theorem 3.1 in Section 3.3.2.

3.2 Coverings of random ellipsoids

3.2.1 Discussion and proof overview

Let us briefly discuss geometric part of the argument: Theorem 3.2 and its more elegant

Corollary 3.3. For any δ ∈ (0, 1/4] and n ≥ 1
4δ

there exists a non-random subsetN ⊂ Bn
2

of cardinality at most exp(13nδ ln 2e
δ

) such that for any n×n matrix A satisfying (1.4), we

have

P
{
A(Bn

2 ) ⊂
⋃

y∈A(N )

(
y +

C ′
√
n

δ
Bn

2

)}
≥ 1− 4 exp(−δn/8)

for some absolute constant C ′ > 0.

A crucial feature of the results is that the set C in the theorem is non-random. Moreover,
C (as well as the set N from Corollary 3.3) provides a “universal” covering which is inde-
pendent of the distribution of the entries of A. Compared to Corollary 3.3, the statement
of Theorem 3.2 is more flexible as it enables us to choose the “anchor” points within the
parallelepipeds when constructing corresponding ε-net (this matter is covered in detail at
the beginning of Section 3.3.2).
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Note that if the entries of A have a bounded fourth moment then the operator norm
‖A‖ satisfies ‖A‖ ≤ L

√
n with probability close to one (see [YBK88] and [Lat05] for

precise statements), whence P{A(Bn
2 ) ⊂ L

√
nBn

2 } ≈ 1. If, moreover, the entries of A
are subgaussian then for some L > 0 depending only on the subgaussian moment we have
P{A(Bn

2 ) ⊂ L
√
nBn

2 } ≥ 1 − exp(−n). On the other hand, for heavy-tailed entries the
operator norm ofAmay have a higher order of magnitude compared to

√
nwith probability

close to one, so the trivial argument given above is not applicable. In our case with only two
finite moments, we take advantage of the fact that although large ‖A‖ implies the existence
of “bad” directions x ∈ Sn−1, such that ‖Ax‖2 �

√
n, with high probability there are only

few “bad” directions.
A little more precise description of the main idea of the Theorem 3.2 proof is as follows.

The collection C of parallelepipeds is constructed using a special subset D of diagonal
operators with diagonal elements in the interval (0, 1]. Namely, we defineD as the set of all
diagonal operators with diagonal entries in {1}∪{2−2k}∞k=0 and with determinants bounded
from below by exp(−δn). Then, for every operator D from D, we take a covering of the
ballBn

2 by appropriate translates of parallelepipedD(L′′n−1/2Bn
∞) (for some L′′ = L′′(δ)),

and let C be the union of such coverings over D. It turns out that Theorem 3.2 follows
almost immediately from the following relation:

P
{
∃ diagonal matrix D with diagonal entries in {1} ∪ {2−2k}∞k=0 such that

detD ≥ exp(−δn) and ‖AD‖∞→2 ≤
Cn√
δ

}
≥ 1− 4 exp(−δn/8).

(3.1)

In Section 3.2.3, we show that (3.1) holds true under condition (1.4); see Theorem 3.11.
Geometrically, this property means that it is possible to construct a random parallelepiped
P ⊂ [−1, 1]n with sides parallel to the standard coordinate axes, such that Vol(P ) ≥
exp(−δn) and A maps P inside the Euclidean ball Cn√

δ
Bn

2 with probability at least 1 −
4 exp(−δn/8). Note that parallelepiped P will be “narrow” along directions w ∈ Sn−1 for
which ‖Aw‖ is large.

To put Theorem 3.2 and Corollary 3.3 into more general context, note that they answer,
in particular, the following geometrically natural question: how many translates of the

Euclidean ball
√
nBn

2 (or its constant multiple) are needed to cover the random ellipsoid

A(Bn
2 )?

Recall that for two subsets S and K of a vector space the covering number N(S,K) is
defined as the smallest number of parallel translates of K sufficient to cover S. By Theo-
rem 3.2, N(A(Bn

2 ), C
√
n

δ
Bn

2 ) ≤ exp
(
13δn ln 2e

δ

)
with probability at least 1−4 exp(−δn/8).
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Another similar interpretation of the result obtained is in terms of the entropy number

of the operator A. If X and Y are two Banach spaces, then k-th entropy number of a linear
operator A : X → Y is defined as follows (see, e.g. [Pis99]):

ek := inf{ε > 0 : N(A(BX), εBY ) ≤ 2k−1},

where BX and BY are the unit balls in X and Y respectively, and k is an integer. By
Theorem 3.2, with probability at least 1 − 4 exp(−δn/8) we have that ek(A) .

√
n/δ for

k = d13
√

2nδ ln 2e
δ
e and any random operator A : (Rn, ‖.‖) → (Rn, ‖.‖), as long as its

matrix in the standard Euclidean basis satisfies probability model (*).
Finally, one more interpretation of these results, that will be of use for us, is related to

the net refinement (see Theorem 3.30 in Section 3.3.2). Recall that an ε-net N on a metric
space X is a subset of X such that any point of X is within distance at most ε from a point
of N (see also Section 2.2 in Preliminaries). It is easy to see that with probability at least
1 − 4 exp(−δn/8) the set N from Corollary 3.3 is a C

√
n

δ
–net on Bn

2 with respect to the
pseudometric d(x, y) := ‖A(x− y)‖ (x, y ∈ Bn

2 ).

3.2.2 Fitting a random vector into an `np -ball

By Dn we denote the set of all n × n diagonal matrices with diagonal elements belong-
ing to the interval (0, 1] (we will sometimes refer to such matrices as positive diagonal
contractions). Further, denote by D2

n the set of all n × n positive diagonal contractions
whose diagonal entries belong to the set {1} ∪ {2−2k}∞k=0. The set D2

n can be regarded as a
discretization of Dn.

In this section, we consider the following problem: Let X be a random vector in Rn

with i.i.d. coordinates. We want to find a random diagonal operator D taking values in Dn
such that D(X) is contained in an appropriate (fixed) multiple of the `np -ball everywhere

on the probability space and at the same time the determinant of D is typically “not too
small”. The statement to be proved is

Proposition 3.4. For any α ∈ (0, 1) there is a number L = L(α) > 0 with the following

property: Let δ ∈ (0, 1], p ∈ [1,∞) and let X = (x1, x2, . . . , xn) be a random vector on

(Ω,Σ,P) with i.i.d. coordinates such that E|xi|p < ∞. Then there is a random positive

diagonal contraction D taking values in Dn such that

‖DX‖pp ≤
L

δ
E‖X‖pp everywhere on the probability space, and E(detD)pα−p ≤ exp(δ).
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Remark 3.5. Proposition 3.4 is a foundation block of the proof. In Section 3.2.3, we will
amplify this result (the case p = 2) by proving its “matrix version” (Theorem 3.11). The
case p 6= 2 in this section is considered for completeness. It is not needed later for the
proofs of Theorems 3.1 and 3.2.

Remark 3.6. Note that a trivial definition of the diagonal operator D = (dij) by setting

djj
p := min

(
1,
L

δ

E‖X‖pp
‖X‖pp

)
, j = 1, 2, . . . , n,

gives an unsatisfactory distribution of the determinant. For example, if the entries of X are
{0, 1}-valued with probability of taking value 1 equal to 1/n, then E‖X‖pp = 1, and for
any m ≤ n we have

P{‖X‖pp = m} =

(
n

m

)
n−m

(
1− 1

n

)n−m
≥ 1

4mm
.

Thus, the above definition of D would give P{detD ≤ 2−n} ≥ 1
4
d2pL/δe−d2pL/δe.

Our construction of the required operator is more elaborate. Let us first describe the
idea informally. Assume that p = 1 and that X is our random vector with non-negative
i.i.d. coordinates with unit expectations. We consider a sequence of non-negative numbers
(levels) such that each coordinate exceeds k-th level with probability 2−k. The main ob-
servation is that X “does not fit” into the `n1 -ball Ln

δ
Bn

1 only if for some k there are much
more than 2−kn coordinates of X exceeding the level. We define the required operator D
so that its restriction to the “bad” coordinates is an appropriate dilation, while on all other
coordinates it acts isometrically. If there exist several “bad” levels the operator D will be
defined as a product of several diagonal operators. Moreover, it will be more convenient
to “replace” the vector X by a sum of independent vectors of two-valued variables (scaled
Bernoulli random variables, see also the discussion in the beginning of Section 2.4), such
that the sum is a majorant for X on the entire probability space.

The following coupling Lemma 3.7 is a quick corollary of Lemma 2.15. It constructs
the discretization by independent scaled Bernoulli random variables for all the elements of
a random vector (corresponding to a row of the random matrix) at once.

Lemma 3.7 (Coupling). Let Y = (Y1, Y2, . . . , Yn) be a random vector on a probability

space (Ω,Σ,P) with i.i.d. non-negative coordinates with everywhere continuous cdf and

EYi = 1. Then there is a vector Z = (Z1, Z2, . . . , Zn) on (Ω,Σ,P), and probability space

(Ω̃, Σ̃, P̃) and random vectors Ỹ = (Ỹ1, Ỹ2, . . . , Ỹn) and Z̃ = (Z̃1, Z̃2, . . . , Z̃n) on (Ω̃, Σ̃, P̃)

such that
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a)

Z =
∞∑
k=0

τk+1ξ
k,

where ξk = (ξk1 , ξ
k
2 , . . . , ξ

k
n) and ξki (i ≤ n, k = 0, 1, . . . ) are jointly independent 0-1

random variables with P{ξki = 1} = 2−k and (τk)
∞
k=1 is an increasing non-negative

sequence satisfying
∑∞

k=1 τk2
−k <∞.

b) Ỹ and Z̃ are equidistributed with Y and Z, respectively;

c) Z̃i ≥ Ỹi for all i ≤ n everywhere on (Ω̃, Σ̃, P̃).

Proof. Fix for a moment i ≤ n and consider the distributions of Yi and Zi. Taking

τk+1 := qk(Yi) := inf
{
t ≥ 0 : P{Yi ≥ t} = 2−k

}
, k ≥ 0,

by Lemma 2.15 and the condition EYi = 1, the first condition is satisfied and also Zi

stochastically dominates Yi.
Then, by the coupling Remark 2.17, there is a probability space (Ω̃i, Σ̃i, P̃i) and vari-

ables Ỹi and Z̃i on (Ω̃i, Σ̃i, P̃i) equidistributed with Yi and Zi, respectively, such that
Zi ≥ Yi everywhere on Ω̃i.

Finally, by taking (Ω̃, Σ̃, P̃) to be the product space
∏

i Ωi and naturally extending the
variables Ỹi, Z̃i to (Ω̃, Σ̃, P̃), we obtain the random vectors Ỹ , Z̃ satisfying the required
conditions.

The next lemma provides an actual construction of the required diagonal operator.

Lemma 3.8. For any α ∈ (0, 1) there is L = L(α) > 0 with the following property. Let

(τk)
∞
k=1 be an increasing non-negative sequence satisfying

∑∞
k=1 τk2

−k <∞, and let

Z̃ :=
∞∑
k=0

τk+1ξ
k,

where ξk = (ξk1 , ξ
k
2 , . . . , ξ

k
n) and ξki (i ≤ n, k = 0, 1, . . . ) are jointly independent 0-1

random variables with P{ξki = 1} = 2−k. Further, let δ ∈ (0, 1]. Then there is a random

positive contraction D̃ taking values in Dn such that

‖D̃Z̃‖1 ≤
L

δ
E‖Z̃‖1 =

Ln

δ

∞∑
k=0

τk+12−k everywhere on the probability space,

and E(det D̃)α−1 ≤ exp(δ).
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Proof. Let L ≥ 2e be a number which we will determine later. Now, for each k ≥ 0, define
random variables

νk := |{i : ξki 6= 0}|

and

ηk :=


(

δνk
L2−kn

)νk
, if δνk ≥ L2−kn;

1, otherwise.

As building blocks of the contraction D̃, let us consider random diagonal matrices D(k)

with

d
(k)
jj :=

1, if ξkj = 0;

min
(
1, L2−kn

δνk

)
, otherwise,

j = 1, 2, . . . , n.

Then detD(k) = ηk
−1 and ‖D(k)ξk‖1 ≤ L2−kn

δ
= L

δ
E‖ξk‖1 (deterministically). Note that

D(k) acts as a dilation on the span of {ei : ξki 6= 0} provided that νk ≥ L2−kn
δ

= L
δ
Eνk, and

as an isometry on the orthogonal complement. We construct the required contraction D̃ as
the product of contractions D(k) by setting D̃ :=

∏∞
k=0D

(k). Then

‖D̃Z̃‖1 ≤
∥∥∥ ∞∑
k=0

τk+1D
(k)ξk

∥∥∥
1
≤ Ln

δ

∞∑
k=0

τk+12−k =
L

δ
E‖Z̃‖1.

Note that

E
(
det D̃

)α−1
= E

∞∏
k=0

ηk
1−α =

∞∏
k=0

Eηk1−α.

Next, for every k ≥ 0 we have

Eηk1−α ≤ 1 +
∞∑

m=dL2−kn/δe

( δm

L2−kn

)m−αm
P
{
νk = m

}
≤ 1 +

∞∑
m=dL2−kn/δe

(eδ
L

)m (L2−kn

δm

)αm
.

In particular, for all k such that L2−kn/δ ≥ 1, using the relation L ≥ 2e, we obtain

Eηk1−α ≤ 1 + 2
(eδ
L

)dL2−kn/δe
,

and for all k satisfying L2−kn/δ < 1, we get

Eηk1−α ≤ 1 + 2
eδ

L

(
L2−kn/δ

)α
.
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Now, let us choose L = L(α) sufficiently large so that both

∑
k:L2−kn/δ≥1

2
(eδ
L

)dL2−kn/δe
and

∑
k:L2−kn/δ<1

2
eδ

L

(
L2−kn/δ

)α
are less than δ/2. Then, multiplying the estimates for Eηk1−α, we get

E
( ∞∏
k=0

ηk

)1−α
≤ exp(δ),

and the result follows.

Proof of Proposition 3.4. Fix admissible α, δ and p. Without loss of generality, the distri-
bution of the coordinates of the random vector X is continuous on the real line. Indeed,
otherwise we can replace every coordinate xi with |xi|+ui, where u1, u2, . . . , un are jointly
independent with x1, x2, . . . , xn and each ui is uniformly distributed on [0, θ] for a very
small parameter θ > 0 chosen so that E(|xi| + ui)

p ≈ E|xi|p. Then the random diagonal
contraction D constructed for the new vector X ′ := (|xi| + ui)

n
i=1, will also satisfy the

required properties with respect to X .
Set Y := (|x1|p, |x2|p, . . . , |xn|p) and let Ỹ , Z̃ be random vectors on a space (Ω̃, Σ̃, P̃)

constructed in Lemma 3.7 with respect to Y . By Lemma 3.8 and in view of the relation

Eξ ≥
∞∑
k=0

2−k−1τk(ξ)

we can find a random positive contraction D̃ on Ω̃ taking values in Dn such that for some
L = L(α) > 0 we have

‖D̃Ỹ ‖1 ≤ ‖D̃Z̃‖1 ≤
L

δ
E‖Z̃‖1 ≤

4L

δ
E‖Ỹ ‖1 everywhere on Ω̃

and
E(det D̃)α−1 ≤ exp(δ).

In general, the operator D̃ is not a function of Ỹ , which creates (purely technical) issues in
defining corresponding operator on the original space (Ω,Σ,P). For completeness, let us
describe an elementrary discretization argument resolving the problem:

Let {Bz} be a partition of Rn
+ into Borel subsets, indexed over z = (z1, z2, . . . , zn) ∈
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(Z ∪ {−∞})n and defined by

Bz :=
{
W ∈ Rn

+ : Wi ∈ (2zi−1, 2zi ] for all i = 1, 2, . . . , n
}

(we set Wi = 0 for zi = −∞). Further, for every z we let

Ω̃z :=
{
ω̃ ∈ Ω̃ : Ỹ (ω̃) ∈ Bz

}
and Qz := D̃(Ω̃z) = {M ∈ Dn : M = D̃(ω̃) for some ω̃ ∈ Ω̃z}. First, consider all
z ∈ (Z ∪ {−∞})n such that Ω̃z is non-empty. For each Ω̃z we can choose an operator Dz

such that detDz ≥ detM for all M ∈ Qz, and either Dz ∈ Qz or it is a limit point of the
elements from Qz (as a subspace of Dn ⊂ Rn2). Of course, the choice of Dz does not have
to be unique. Otherwise, if Ω̃z is empty then we set

Dz := min
(
1,

4L

δ
∑n

i=1 2zi
E‖Ỹ ‖1

)
Idn.

Finally, define a function h : Rn
+ → Dn by setting h(W ) := Dz for all W ∈ Bz and z ∈

(Z∪{−∞})n. Observe that h is Borel. Further, by the choice ofDz’s, we have deth(Ỹ ) ≥
det D̃ everywhere on Ω̃, whence E(deth(Ỹ ))α−1 ≤ exp(δ). Next, by the choice of setsBz,
we have ‖M(W )‖1 ≤ 2‖M ′(W ′)‖1 for any two couples (M,W ), (M ′,W ′) ∈ Qz × Bz.
Together with the conditions on D̃ and the definition of Dz’s, this implies ‖Dz(W )‖1 ≤
8LE‖Ỹ ‖1/δ for all W ∈ Bz, whence

‖h(W )W‖1 ≤
8L

δ
E‖Ỹ ‖1 everywhere on Rn

+.

Now, taking T := h(Y ), we obtain a random diagonal contraction on (Ω,Σ,P) such
that

‖T 1/pX‖pp = ‖TY ‖1 ≤
8L

δ
E‖X‖pp everywhere on Ω

and E(detT )α−1 ≤ exp(δ). Finally, setting D := T 1/p, we get the required operator.

The above statement can be “tensorized”. In what follows, we are interested only in the
case p = 2 and α = 1/2.

Proposition 3.9. There is an absolute constant C > 0 with the following property. Let

A = (aij) be an n × n random matrix satisfying (1.4), and let δ ∈ (0, 1]. Then there is a

random positive contraction D taking values in Dn such that the Euclidean norms of the

32



rows of AD are uniformly bounded by C√
δ

√
n everywhere on the probability space, and

E detD−1 ≤ exp(δn).

Proof. Indeed, for any i = 1, 2, . . . , n, let Di be the positive contraction defined with
respect to the i-th row of A using Proposition 3.4 (with parameters α = 1/2, p = 2),
so that D1, D2, . . . , Dn are jointly independent. Then the product of these contractions
D :=

∏n
i=1Di satisfies the required conditions.

Remark 3.10. It is not difficult to see that for any positive contraction M ∈ Dn there is an
element M̃ ∈ D2

n such that M̃ ≤
√

2M and det M̃−1 ≤ detM−2. Indeed, this follows
easily from the fact that for any number t ∈ (0, 1] there is t̃ ∈ {1} ∪

{
2−2k

}∞
k=0

with
t2 ≤ t̃ ≤

√
2t (the constant

√
2 on the right-hand side is achieved for t =

√
2/2 − o(1)).

Hence, the above statement implies that, given a matrix A satisfying (1.4) and a number
δ > 0, one can construct a random contraction D̃ taking values in D2

n such that each
row of AD̃ has Euclidean norm at most C√

δ

√
n (for some absolute constant C > 0), and

E det D̃−1/2 ≤ exp(δn).

3.2.3 Proof of the Theorem 3.2

The main result of the section is

Theorem 3.11. Let δ ∈ (0, 1] and letA = (aij) be an n×n random matrix satisfying (1.4).
Then

P
{
∃D ∈ D2

n : detD ≥ exp(−δn) and ‖AD‖∞→2 ≤
C3.11√
δ
n
}
≥ 1− 4 exp(−δn/8),

where C3.11 > 0 is a universal constant.

Remark 3.12. The above theorem can be seen as a way to “regularize” the random matrix
A by reducing its norm while preserving its “structure”. In this connection, let us men-
tion work [LLV17] where a very general problem of regularizing random matrices was
discussed (see [LLV17, Section 5.4]).

As we have mentioned in the introduction, Theorem 3.2 follows almost immediately
from the above statement; we give the proof of Theorem 3.2 at the very end of the section.
The section is organized as follows. First, we use D̃ constructed in Remark 3.10 to verify
Theorem 3.11 under an additional assumption that the entries of A are symmetrically dis-
tributed (see Proposition 3.14). Then, we will apply a symmetrization procedure to prove
Theorem 3.11 in full generality.
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The next proposition implies that for a random matrix A satisfying (1.4) with symmet-
rically distributed entries and the operator D̃ from Remark 3.10, the norm ‖AD̃‖∞→2 can
be efficiently bounded from above as long as D̃ is a Borel function of |A| (here and further
in the text, given a matrix B = (bij), by |B| we shall denote the matrix (|bij|)).

Proposition 3.13. Let K > 0 and let A be an n × n random matrix satisfying (1.4), with

symmetrically distributed entries. Further, let F ⊂ Dn be any countable subset. Denote by

E the event

E :=
{
∃D ∈ F : all rows of AD have Euclidean norms at most K

√
n
}
.

Then

P{∃D ∈ F : ‖AD‖∞→2 ≤ CKn} ≥ P(E)− exp(−n),

where C > 0 is an absolute constant.

Proof. Fix any admissible K and F . Clearly, for any n×n matrix B and a diagonal matrix
D, the Euclidean norms of rows of BD and |B|D are the same. Hence, we may assume
that there is a Borel function f : Rn×n

+ → F such that

E =
{

all rows of Af(|A|) have norms at most K
√
n
}
.

For any D ∈ F , let
ED := E ∩ {f(|A|) = D}.

Without loss of generality, P(ED) > 0 for any D ∈ F .
Next, as the unit cube [−1, 1]n is the convex hull of its vertices V = {−1, 1}n, we have

‖Af(|A|)‖∞→2 = sup
y∈Bn

∞

‖Af(|A|)y‖ = sup
v∈V
‖Af(|A|)v‖. (3.2)

Note that, given event ED, the entries of Af(|A|) = AD are symmetrically distributed,
so the distribution of ADv given ED is the same for any vertex v ∈ V . Fix a vertex v.

Observe that for any t > 0 we have

PED{‖ADv‖ > t} ≤ sup
B

P{‖B̃Dv‖ > t}, (3.3)

where by PED we denote the conditional probability given ED and the supremum is taken
over all matrices B = (bij) such that the rows of BD have Euclidean norms at most K

√
n,

and B̃ = (rijbij), with rij being jointly independent Rademacher (±1) variables. Fix any
admissible B = (bij).
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Then the variables 〈B̃Dv, ei〉, i = 1, 2, . . . , n, are jointly independent and, in view of
Lemma 2.5 and the choice of B, each variable K−1n−1/2〈B̃Dv, ei〉 is C2.5-subgaussian. By
Lemma 2.6, there is an absolute constant C > 0 such that

P{‖B̃Dv‖ > CKn} = P
{ 1

n

n∑
i=1

〈B̃Dv, ei〉2 > (CK)2n
}
≤ exp

(
−(1 + ln 2)n

)
.

Then, taking a union bound over 2n vertices of the unit cube and using (3.3) and (3.2), we
get an estimate

PED{‖AD‖∞→2 > CKn} ≤ 2n · sup
B

P{‖B̃Dv‖ > CKn} ≤ exp(−n).

Finally, clearly

P{‖AD‖∞→2 > CKn} ≤ P(Ec)+
∑
D

PED{‖AD‖∞→2 > CKn}P(ED) ≤ P(Ec)+exp(−n),

and the result follows.

Proposition 3.14. Let δ ∈ (0, 1] and let A = (aij) be an n × n random matrix satisfying

(1.4), with symmetrically distributed entries. Then

P
{
∃D ∈ D2

n : detD ≥ exp(−δn) and ‖AD‖∞→2 ≤
C3.14√
δ
n
}
≥ 1− 2 exp(−δn/4).

Proof. Fix any δ ∈ (0, 1]. In view of Remark 3.10, there is a random contraction D

taking values in D2
n such that each row of AD has the Euclidean norm at most C√

δ

√
n and

E detD−1/2 ≤ exp(δn/4). Denote by E the event

E :=
{

detD ≥ exp(−δn)
}
.

In view of the conditions on D and Markov’s inequality, we have

P(E) ≥ 1− exp(−δn/4).

Hence, by Proposition 3.13, taking F to be the set of all contractions from D2
n having

determinant at least exp(−δn), we obtain

P
{
∃D ∈ D2

n : detD ≥ exp(−δn) and ‖AD‖∞→2 ≤
C3.14√
δ
n
}
≥ 1− exp(−δn/4)− exp(−n)

for a universal constant C3.14 > 0.
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The next statement shall be used in a symmetrization argument within the proof of
Theorem 3.11; we think it may be of interest in itself.

Proposition 3.15. Let B = (bij) be a non-random n × n matrix such that the Euclidean

norm of every row is at most
√
n and such that

∣∣∣ n∑
j=1

bij

∣∣∣ ≤ √n, i = 1, 2, . . . , n.

Further, let πi (i = 1, 2, . . . , n) be independent random permutations uniformly distributed

on Πn, and denote by B̃ = (̃bij) the random n× n matrix with entries defined by

b̃ij := bi,πi(j).

Then

P{‖B̃‖∞→2 ≤ C3.15n} ≥ 1− exp(−n)

for a universal constant C3.15 > 0.

Proof. We will show that for any v ∈ {−1, 1}n we have

P{‖B̃v‖ > C3.15n} ≤ exp(−n− n ln 2)

for a sufficiently large universal constant C3.15 and then take the union bound over the ver-
tices of the cube.

Fix any v = (v1, v2, . . . , vn) ∈ {−1, 1}n and letm be the number of ones in (v1, . . . , vn).
Clearly, the random variables 〈B̃v, ei〉 (i = 1, 2, . . . , n) are independent. Next, for a fixed
i, the distribution of 〈B̃v, ei〉 coincides with that of the variable ξi :=

∑n
j=1 vπi(j)bij . By

Lemma 2.14 and in view of the condition on the rows of B, we have

P
{
|ξi − Eξi| > τ

}
≤ 2 exp

(
− τ 2

64n

)
, τ > 0.

Hence, the variables n−1/2(ξi − Eξi) (i = 1, 2, . . . , n) are C-subgaussian for an absoute
constant C > 0. In view of Lemma 2.6, we get that

P
{ n∑
i=1

(ξi − Eξi)2 > C̃n2
}
≤ exp(−n− n ln 2) (3.4)
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for some constant C̃ > 0. Finally, observe that

n∑
i=1

ξ2
i ≤ 2

n∑
i=1

(ξi − Eξi)2 + 2
n∑
i=1

(
Eξi
)2 (deterministically),

so, applying the estimate

∣∣Eξi∣∣ =
∣∣∣2m− n

n

n∑
j=1

bij

∣∣∣ ≤ √n
and (3.4), we obtain

P
{
‖B̃v‖2 > (2C̃ + 2)n2

}
= P

{ n∑
i=1

ξ2
i > (2C̃ + 2)n2

}
≤ exp(−n− n ln 2).

Proof of Theorem 3.11. Let Ã be an independent copy of A. Obviously

E
( n∑
j=1

ãij

)2

= E
n∑
j=1

ã2
ij = n

for every i = 1, 2, . . . , n. Then, in view of Markov’s inequality, each row of Ã satisfies

∣∣∣ n∑
j=1

ãij

∣∣∣ ≤√32n

δ
and

n∑
j=1

ã2
ij ≤

32n

δ

with probability at least 1− δ/16 > exp(−δ/8). Denote by Ẽ the event

Ẽ :=
{∣∣∣ n∑

j=1

ãij

∣∣∣ ≤√32n

δ
and

n∑
j=1

ã2
ij ≤

32n

δ
for all i = 1, 2, . . . , n

}
.

In view of the above, P(Ẽ) ≥ exp(−δn/8). Let π1, π2, . . . , πn be random permutations
uniformly distributed on Πn and jointly independent with Ã, and denote by B̃ = (̃bij) the
random matrix with entries b̃ij := ãi,πi(j) (i, j ≤ n). Then Proposition 3.15 yields

P
{
‖B̃‖∞→2 ≤ C3.15

√
nmax

i≤n

( n∑
j=1

ã2
ij

)1/2

| Ã
}
≥ 1− exp(−n),
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whence, in particular,

P
{
‖B̃‖∞→2 ≤ C3.15

√
32/δ n | Ẽ

}
≥ 1− exp(−n).

But B̃ is equidistributed with Ã given Ẽ , so that

P
{
‖Ã‖∞→2 ≤ C3.15

√
32/δ n | Ẽ

}
≥ 1− exp(−n).

Clearly, ‖ÃD‖∞→2 ≤ ‖Ã‖∞→2 for any contraction D ∈ Dn (deterministically), so we
obtain for the event E1 :=

{
‖ÃD‖∞→2 ≤ C3.15

√
32/δ n for all D ∈ Dn

}
:

P(E1) ≥ (1− exp(−n))P(Ẽ) ≥ 1

2
exp(−δn/8).

Next, the matrix 2−1/2(A−Ã) has symmetrically distributed entries, and satisfies conditions
of Proposition 3.14. Hence,

P
{
‖(A− Ã)D‖∞→2 ≤ C3.14

√
2/δ n for some D ∈ D2

n with detD ≥ exp(−δn)
}

≥ 1− 2 exp(−δn/4).

Conditioning on E1, we get

P
{
‖(A− Ã)D‖∞→2 ≤ C3.14

√
2/δ n for some D ∈ D2

n with detD ≥ exp(−δn) | E1

}
≥ 1− 2 exp(−δn/4)

P(E1)

≥ 1− 4 exp(−δn/8).

Note that, given E1, we have ‖AD‖∞→2 ≤ ‖(A − Ã)D‖∞→2 + C3.15

√
32/δ n for all con-

tractions D ∈ Dn. Combining this with the last formula, we obtain

P
{
‖AD‖∞→2 ≤ C3.14

√
2/δ n+ C3.15

√
32/δ n

for some D ∈ D2
n with detD ≥ exp(−δn) | E1

}
≥ 1− 4 exp(−δn/8).

Finally, sinceA is independent from E1, the conditioning in the last estimate can be dropped,
and we obtain the statement.

To complete the proof of Theorem 3.2, we will need two more technical lemmas:
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Lemma 3.16. For any δ ∈ (0, 1/2] and all n ∈ N we have

∣∣{D ∈ D2
n : detD ≥ exp(−δn)

}∣∣ ≤ (2e

δ

)4δn

.

Proof. Denote S := {D ∈ D2
n : detD ≥ exp(−δn)

}
. Note that for any matrixD ∈ S and

for any k ≥ 0, the number of diagonal elements of D equal to 2−2k is less than 2−k+1δn.
Hence, the cardinality of S can be estimated as

|S| ≤
∞∏
k=0

(
n

[2−k+1δn]

)
≤
∞∏
k=0

(e
δ

)2−k+1δn

2k2−k+1δn =
(e
δ

)4δn

24δn =
(2e

δ

)4δn

.

Lemma 3.17. For any n ∈ N andK ∈ [2, 2
√
n], the unit Euclidean ballBn

2 can be covered

by at most (2eK2)8n/K2
translates of the cube K√

n
Bn
∞.

Proof. First, note that for any y ∈ Bn
2 we have∣∣∣{i ≤ n : |yi| ≥

K

2
√
n

}∣∣∣ ≤ 4n

K2
.

Hence, it is sufficient to show that the set |{y ∈ Bn
2 : |supp(y)| ≤ 4n

K2}| can be covered
by at most (2eK2)8n/K2 translates of K

2
√
n
Bn
∞. A simple volumetric argument, together

with an estimate Vol(Bm
2 ) ≤

(
2πe
m

)m/2, implies that Bm
2 can be covered by at most 7m

translates of 1√
m
Bm
∞ (for any m ∈ N). As a consequence, we obtain a covering of Bd4n/K

2e
2

by at most 7d4n/K
2e translates of K

2
√
n
Bn
∞. Finally, the cardinality of the optimal covering of

|{y ∈ Bn
2 : |supp(y)| ≤ 4n

K2}| can be estimated from above by(
n

d4n/K2e

)
7d4n/K

2e ≤
(
2eK2

)8n/K2

.

Proof of Theorem 3.2. Let δ ∈ (0, 1/4] and n ≥ 1
4δ

. First, applying Lemma 3.17 with
K = 1/

√
δ, we see that Bn

2 can be covered by (2e/δ)8nδ translates of the dilated cube
1√
nδ
Bn
∞. Let

Q = {D ∈ D2
n : detD ≥ exp(−δn)}.

Then, in view of Lemma 3.16, we get thatBn
∞ can be covered by at most (2e/δ)4δn exp(δn)

parallelepipeds in such a way that for any y ∈ Bn
∞ and D ∈ Q, y is covered by a translate

ofD(Bn
∞). Combining the two coverings, we get a collection C of parallelepipeds covering
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Bn
2 such that

|C| ≤ (2e/δ)4δn exp(δn) · (2e/δ)8nδ = exp(δn+ 12nδ ln
2e

δ
),

and for any y ∈ Bn
2 and D ∈ Q, the set C contains a translate of D( 1√

nδ
Bn
∞) covering y.

Finally, applying Theorem 3.11, we get that with probability at least 1− 4 exp(−δn/8) for
some D ∈ Q we have AD(Bn

∞) ⊂ C3.11n√
δ
Bn

2 , implying

P
{
∀ x ∈ Bn

2 ∃ P ∈ C such that x ∈ P and A(P ) ⊂ Ax+
2 · C3.11

√
n

δ
Bn

2

}
≥ 1− 4 exp(−δn/8).

(the multiple “2” in the last formula appears because the translation −Ax + A(P ) is not
origin-symmetric in general).

Proof of 3.3. Fix n and δ, and let C be the collection of parallelepipeds defined in Theo-
rem 3.2. For each P ∈ C, choose a point yp ∈ P ∩Bn

2 , and let N := {yP : P ∈ C}. Then,
clearly,

|N | = |C| ≤ exp(δn+ 12nδ ln
2e

δ
),

and with probability at least 1 − 4 exp(−δn/8) for every x ∈ Bn
2 there is y = y(x) ∈ N

with −Ax+ Ay ∈ C
√
n

δ
Bn

2 . In short,

P
{
A(Bn

2 ) ⊂
⋃

y∈A(N )

(
y +

C
√
n

δ
Bn

2

)}
≥ 1− 4 exp(−δn/8).

3.3 The smallest singular value

Now, we proceed to the proof of the Theorem 3.1. As we already mentioned in Sec-
tion 3.1, it heavily relies on results obtained by Rudelson and Vershynin in papers [RV08]
and [RV09]. In the next section, we will state several intermediate results from those papers
that we will need in Subsection 3.3.2 to complete our proof.

3.3.1 Background results

A crucial step in the proof of [RV08, Theorem 1.2] is a decomposition of the unit sphere
into sets of “compressible” and “incompressible” vectors.
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Definition 3.18 (Sparse, compressible and incompressible vectors). Fix parameters θ, ρ ∈
(0, 1). A vector x ∈ Rn is called θn-sparse if |supp(x)| ≤ θn. A vector x ∈ Sn−1 is called
compressible if x is within Euclidean distance ρ from the set of all θn-sparse vectors.
Otherwise, x will be called incompressible. The set of all compressible unit vectors will
be denoted by Compn(θ, ρ), and the set of incompressible vectors — by Incompn(θ, ρ).
Sometimes, when the dimension n or the parameters θ, ρ are clear from the context, we
will simply write Comp, Incomp to denote the sets.

Remark 3.19. A similar decomposition of the unit sphere was already introduced in an ear-
lier paper [LPRTJ05] for the purpose of bounding the smallest singular value of rectangular
matrices.

Obviously, for any ε > 0 we have

P{sn(A) < εn−1/2} ≤ P
{

inf
y∈Comp

‖Ay‖ < εn−1/2
}

+ P
{

inf
y∈Incomp

‖Ay‖ < εn−1/2
}
.

Treatment of the compressible vectors is simpler due to the fact the the set Comp is “small”;
we will deal with this set in the first part of Section 3.3.2. Let us remark that, unlike in the
subgaussian result of [RV08], where an estimate for compressible vectors follows almost
directly from an analogue of Lemma 3.26 (see below) together with a standard covering
argument, in our case we will still need to use additional results (proved in Section 3.2.3)
as the norm ‖A‖ may be “too large”. We will need the following simple lemma:

Lemma 3.20. For any θ, ρ ∈ (0, 1] the set Comp = Compn(θ, ρ) admits a Euclidean

3ρ-net N ⊂ Comp of cardinality |N | ≤ (e/θ)θn
(

5
ρ

)θn.

Proof. Note that the definition of Comp implies that for any y ∈ Comp there is y′ ∈ Sn−1

such that |supp(y′)| ≤ θn and ‖y − y′‖ ≤ 2ρ. Hence, it is enough to show that one can
find a Euclidean ρ-net N on the set of θn-sparse unit vectors, with the required estimate
on |N |. This follows from a standard estimate on the cardinality of an optimal ρ-net on
Sbθnc−1, together with a bound for the binomial coefficient

(
n
bθc

)
.

Incompressible vectors have the important property that a significant portion of their co-
ordinates are of order n−1/2. In paper [RV08], this property was referred to as “incompress-
ible vectors are spread”. For reader’s convenience, we provide a proof of this fact below
(let us note once again that analogous concepts were already considered in [LPRTJ05]).

Lemma 3.21 ([RV08, Lemma 3.4]). For any θ, ρ ∈ (0, 1) and for any vector x ∈ Incompn(θ, ρ)

there is a subset of indices σ(x) ⊂ {1, 2, . . . , n} of cardinality at least 1
2
ρ2θn such that for
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all i ∈ σ(x) we have
ρ√
2n
≤ xi ≤

1√
θn
.

Proof. For every subset I ⊂ {1, 2, . . . , n}, let PI be the coordinate projection onto the span
of {ei : i ∈ I}. Let σ = σ(x) := σ1 ∩ σ2, where

σ1 =
{
i ≤ n : |xi| ≤

1√
θn

}
, σ2 =

{
i ≤ n : |xi| ≥

ρ√
2n

}
.

Since ‖x‖ = 1, we have |σc1| ≤ θn, and Pσc
1
(x) is a θn-sparse vector. Then the condition

that x is incompressible implies ‖Pσ1(x)‖ = ‖x− Pσc
1
(x)‖ > ρ. Hence,

‖Pσ(x)‖2 ≥ ‖Pσ1(x)‖2 − ‖Pσc
2
(x)‖2 ≥ ρ2 − n · ‖Pσc

2
(x)‖2

∞ ≥ ρ2/2. (3.5)

On the other hand, in view of the inclusion σ(x) ⊂ σ1, we get

‖Pσ(x)‖2 ≤ ‖Pσ(x)‖2
∞ · |σ| ≤

1

θn
· |σ|. (3.6)

Together (3.5) and (3.6) imply that |σ| ≥ 1
2
ρ2θn.

For incompressible vectors we will need the following basic estimate from [RV08].

Proposition 3.22 ([RV08, Lemma 3.5]). Let M be a random n × n matrix with column

vectors X1, X2, . . . , Xn, and let Hj (j = 1, 2, . . . , n) be the span of all column vectors

except the j-th. Then for every ε > 0 we have

P
{

inf
y∈Incomp(θ,ρ)

‖My‖ < ερn−1/2
}
≤ 1

θn

n∑
j=1

P{dist(Xj, Hj) < ε}.

In view of independence and equi-measurability of the columns of A in our model, the
above proposition yields for any ε > 0:

P
{

inf
y∈Incomp(θ,ρ)

‖Ay‖ < ερn−1/2
}
≤ 1

θ
P
{∣∣∣ n∑

i=1

X∗i Ain

∣∣∣ < ε
}
,

where X∗ = (X∗1 , X
∗
2 , . . . , X

∗
n) denotes a random normal unit vector to the span of the

first n− 1 columns of A. Obtaining small ball probability estimates for
∣∣∣ n∑
i=1

X∗i Ain

∣∣∣ was a

crucial ingredient of [RV08].
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Given a real-valued random variable ξ, define its Levy concentration function as

L(ξ, z) := sup
λ∈R

P{|ξ − λ| ≤ z}, z ≥ 0.

First, let us look at some well known estimates of L(ξ, v) and then state a stronger bound
from [RV08].

Theorem 3.23 (Rogozin, [Rog61]). Let n ∈ N, let ξ1, ξ2, . . . , ξn be jointly independent

random variables and let t1, t2, . . . , tn be some positive real numbers. Then for any t ≥
max
j
tj we have

L
( n∑
j=1

ξj, t
)
≤ C3.23 t

( n∑
j=1

(1− L(ξj))tj
2
)−1/2

,

where C3.23 > 0 is an absolute constant.

Obviously, if ξ is essentially non-constant, there are v > 0 and u ∈ (0, 1) such that
L(ξ, v) ≤ u. The following lemma is an elementary consequence of Theorem 3.23 (see
[LPRTJ05, Lemma 3.6] and [RV08, Lemma 2.6] for similar statements proved under addi-
tional moment assumptions on the variable).

Lemma 3.24. Let ξ be a random variable with L(ξ, ṽ) ≤ ũ for some ṽ > 0 and ũ ∈ (0, 1).

Then there are v′ > 0 and u′ ∈ (0, 1) depending only on ũ, ṽ with the following property:

Let ξ1, ξ2, . . . , ξn be independent copies of ξ. Then for any vector y ∈ Sn−1 we have

L
( n∑
j=1

yjξj, v
′
)
≤ u′.

Proof. By Theorem 3.23, for any y ∈ Sn−1 and any h ≥ max
j
|yj|ṽ, we have

L
( n∑
j=1

yjξj, h
)
≤ C3.23h

ṽ
√

1− ũ
.

Define v′ := ṽ
√

1−ũ
2C3.23

and consider two cases.
1) For every j = 1, . . . , n we have |yj| ≤

√
1−ũ

2C3.23
. Then v′ ≥ max

j
|yj|ṽ, and we obtain from

the above relation

L
( n∑
j=1

yjξj, v
′
)
≤ 1

2
.
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2) There is j0 such that |yj0| >
√

1−ũ
2C3.23

. Then we get

L
( n∑
j=1

yjξj, v
′
)
≤ L(yj0ξj0 , v

′) ≤ ũ.

Thus, we can take u′ := max(1/2, ũ).

Lemma 3.25 (“Tensorization lemma”, [RV08, Lemma 2.2]). Let α1, α2, . . . , αn be i.i.d.

random variables, and let ε0 > 0.

• Assume that

L(α1, ε) ≤ Lε for some L > 0 and for all ε ≥ ε0.

Then

P
{ n∑

j=1

αj
2 ≤ ε2n

}
≤ (CLε)n for all ε ≥ ε0,

where C > 0 is an absolute constant.

• Assume that L(α1, v
′) ≤ u′ for some v′ > 0 and u′ ∈ (0, 1). Then there are v > 0

and u ∈ (0, 1) depending only on u′, v′ such that

P
{ n∑

j=1

αj
2 ≤ vn

}
≤ un.

As a consequence of Lemmas 3.24 and 3.25, we get

Lemma 3.26. Let α be a random variable with L(α, ṽ) ≤ ũ for some ṽ > 0 and ũ ∈ (0, 1).

Then there are v > 0 and u ∈ (0, 1) depending only on ũ, ṽ with the following property:

Let A be an n × n random matrix with i.i.d. entries equidistributed with α. Then for any

y ∈ Sn−1 we have

P
{
‖Ay‖ ≤ v

√
n
}
≤ un.

Remark 3.27. Lemma 3.26 can be compared with [LPRTJ05, Proposition 3.4] and [RV08,
Corollary 2.7]; however, those statements were proved with additional assumptions on the
entries of A.

To get a stronger estimate than the one obtained in Lemma 3.24, the following notion
was developed in [RV08] and [RV09] (see also preceding work [TV09] by Tao and Vu).
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Definition 3.28 (Essential least common denominator). For parameters r ∈ (0, 1) and
h > 0 and any non-zero vector x ∈ Rn, define

LCDh,r(x) := inf
{
t > 0 : dist(tx,Zn) < min(r‖tx‖, h)

}
.

We note that later we shall choose r sufficiently small and h to be a small multiple of
√
n. Thus, most of the coordinates of LCDh,r(x) · x are within a small distance to integers.

For a detailed discussion of the above notion, we refer to [Rud13].
The next statement is proved in [RV09].

Theorem 3.29 ([RV09, Theorem 3.4]). Let ξ1, ξ2, . . . , ξn be independent copies of a cen-

tered random variable such that L(ξi, v) ≤ u for some v > 0 and u ∈ (0, 1). Further, let

x = (x1, x2, . . . , xn) ∈ Sn−1 be a fixed vector. Then for every h > 0, r ∈ (0, 1) and for

every

ε ≥ 1

LCDh,r(x)
,

we have

L
( n∑
i=1

xiξi, εv
)
≤ C3.29ε

r
√

1− u
+ C3.29 exp

(
−2(1− u)h2

)
,

where C3.29 is a universal constant.

Thus, in order to get a satisfactory small ball probability estimate for the infimum over
incompressible vectors, it is sufficient to show that the random normal X∗ has exponen-
tially large LCD with probability close to one. This will be done in the second part of
Section 3.3.2. As for the set Comp, our treatment of the random normal will be based on
results of Section 3.2.3.

3.3.2 Proof of the Theorem 3.1

In this section we give a proof of Theorem 3.1 stated in the introduction. Let us start with
a version of Theorem 3.2 more convenient for us:

Theorem 3.30. Let δ ∈ (0, 1/4], n ≥ 1
4δ

, ε ∈ (0, 1/2], S ⊂ Sn−1, and let N ⊂ S be a

Euclidean ε-net on S. Then there exists a (deterministic) subset Ñ ⊂ S with

|Ñ | ≤ exp
(
13δn ln

2e

δ

)
|N |

such that for any n × n random matrix A satisfying (1.4), with probability at least 1 −
4 exp(−δn/8) the set Ñ is a ( εC?

δ

√
n)–net on S with respect to the pseudometric d(x, y) :=

‖A(x− y)‖ (x, y ∈ Sn−1), where C? > 0 is an absolute constant.
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Proof. Fix parameters n and δ, and let C be the collection of parallelepipeds from Theo-
rem 3.2 covering Bn

2 . Define a set C̃ :=
{
εP +y : P ∈ C, y ∈ N , S∩ (εP +y) 6= ∅

}
and

for every P̃ ∈ C let yP̃ be a point in the intersection S∩P̃ . Finally, set Ñ := {yP̃ : P̃ ∈ C̃}.
Informally speaking, C̃ is a “product” of the rescaled collection ε · C and the net N . For
each parallelepiped in C̃ having a non-empty intersection with S, we take one (arbitrary)
point from this intersection to construct the refined net Ñ . What remains is to check that
with high probability Ñ is indeed a ( εC

δ

√
n)–net on S with respect to the pseudometric

d(x, y) := ‖A(x− y)‖.
Observe that

|Ñ | = |C̃| ≤ |C| · |N | ≤ exp
(
13δn ln

2e

δ

)
|N |.

Next, let A be an n× n random matrix satisfying (1.4), and define event E as

E :=
{
∀ x ∈ Bn

2 ∃P ∈ C such that x ∈ P and A(P ) ⊂ Ax+
C
√
n

δ
Bn

2

}
.

By Theorem 3.2, we have P(E) ≥ 1− 4 exp(−δn/8).
Fix any point x ∈ S. By the definition ofN , there is a vector y ∈ N such that ε−1(x−

y) ∈ Bn
2 . Hence, for any point ω ∈ E on the probability space, there is a parallelepiped

P = P (ω) ∈ C such that ε−1(x− y) ∈ P and

Aω(P ) ⊂ Aω
(
ε−1(x− y)

)
+
C
√
n

δ
Bn

2 .

Note that S∩(εP +y) ⊃ {x} 6= ∅, whence P̃ := εP +y ∈ C̃, and, from the above relation,

Aω(P̃ ) ⊂ Aωx+
εC
√
n

δ
Bn

2 ,

whence
AωyP̃ − Aωx ⊂

εC
√
n

δ
Bn

2 ,

where yP̃ ∈ Ñ . We have shown that

E ⊂
{
∀x ∈ S ∃y = y(x) ∈ Ñ such that ‖A(x− y)‖ ≤ εC

√
n

δ

}
,

and the result follows.

Remark 3.31. Let us note that a weaker version of Theorem 3.30, with condition Ñ ⊂ S

dropped, can be proved by applying Corollary 3.3 instead of Theorem 3.2.

At this point, a significant part of our argument follows the same scheme as in [RV08].
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In the first part of this section, we are dealing with compressible vectors.

Proposition 3.32 (Compressible vectors). Let α be a centered random variable with unit

variance such that L(α, ṽ) ≤ ũ for some ṽ > 0 and ũ ∈ (0, 1). Then there are numbers

θ3.32, v3.32 > 0 and u3.32 ∈ (0, 1) depending only on ṽ, ũ with the following property: Let

n ∈ N and let A be an n×n random matrix with i.i.d. entries equidistributed with α. Then

for Comp = Compn(θ3.32, θ3.32) we have

P
{

inf
y∈Comp

‖Ay‖ < v3.32

√
n
}
≤ 5u3.32

n.

Proof. Without loss of generality, we can assume that n is large. First, note that by
Lemma 3.26 we have a strong probability estimate for any fixed unit vector: there are
v > 0 and u ∈ (0, 1) depending on ṽ, ũ such that for any y ∈ Sn−1 we get

P{‖Ay‖ < v
√
n} ≤ un. (3.7)

In order to obtain a uniform estimate over a set S = Compn(θ, θ) for some small pa-
rameter θ, we will take a net N ⊂ S constructed in Lemma 3.20 and refine it with the
help of Theorem 3.30 to get a net Ñ with respect to pseudometric ‖A(x − y)‖. We will
apply Theorem 3.30 with parameter δ defined as the largest number in (0, 1/4] so that
exp
(
13δn ln 2e

δ

)
≤ u−n/3. Let us describe the procedure in more detail.

First, define parameter θ ∈ (0, 1/6] as the largest number satisfying the inequalities(
5e

θ2

)θn
≤ u−n/3 and

3θC?
δ
≤ v

2
.

Let S be as above. By Lemma 3.20, there is a 3θ-net N ⊂ S on S (with respect to the
usual Euclidean metric) of cardinality |N | ≤ ( 5e

θ2
)θn. Now, by Theorem 3.30, there is a

deterministic subset Ñ ⊂ S having the following properties:

• |Ñ | ≤ exp
(
13δn ln 2e

δ

)
· |N | ≤ u−n/3 ·

(
5e
θ2

)θn ≤ u−2n/3;

• With probability at least 1 − 4 exp(−δn/8) for every y ∈ S there exists x(y) ∈ Ñ
such that

‖A(x− y)‖ ≤ 3θ · C?
δ

√
n ≤ v

2

√
n.

Applying the union bound over Ñ to relation (3.7), we get

P{‖Ay′‖ < v
√
n for some y′ ∈ Ñ} ≤ |Ñ |un ≤ un/3.
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On the other hand, the second property of Ñ implies that

P
{

inf
y∈S
‖Ay‖ < inf

y∈Ñ
‖Ay‖ − v

√
n

2

}
≤ 4 exp(−δn/8).

Combining the two estimates, we get

P{‖Ay‖ < v
√
n/2 for some y ∈ S} ≤ un/3 + 4 exp(−δn/8),

and the result follows with u3.32 := max{u1/3, exp(−δ/8)}.

Remark 3.33. It is not difficult to see that Proposition 3.32 can be stated and proved in the
same way for A which is not square, but instead is an n − 1 × n matrix with i.i.d. entries
equidistributed with α. Indeed, for n large enough we can assume that γ ·n < (n− 1) < n

for γ as close to one as we want (the values of θ3.32, u3.32 and v3.32 may differ in that case).
This will be important for us later.

Remark 3.34. Proposition 3.32 could be proved by a completely different argument based
on [Tik15, Proposition 13] and not using results of Section 3.2.3 at all. However, we prefer
to have a “uniform” treatment of both compressible and incompressible vectors.

Let us turn to estimating the infimum over incompressible vectors. As we already dis-
cussed in Section 3.3.1, it suffices to show that the random unit normal vector to the span of
the first n−1 columns ofA has exponentially large LCD with probability very close to one.
This property is verified in Theorem 3.39 below. We start with some auxiliary statements.
First, note that Theorem 3.29 together with Lemma 3.25 imply that anti-concentration prob-
ability for a single vector can be estimated in terms of the LCD of the vector. Namely, the
bigger LCD(x) is, the less is the probability that the image Ax concentrates in a small ball:

Lemma 3.35 (Small ball probability for a single vector; see [RV08, Lemma 5.5]). Let

h > 0, r ∈ (0, 1) and let α be a random variable satisfying L(α, ṽ) ≤ ũ for some ṽ > 0

and ũ ∈ (0, 1). Then there is L3.35 ≥ 1 depending only on ṽ, ũ with the following property:

Let A′ be an n− 1× n random matrix with i.i.d. elements equidistributed with α. Then for

any vector x ∈ Sn−1 and any

ε ≥ ṽ ·max
( 1

LCDh,r(x)
, exp(−2(1− ũ)h2)

)
we have

P{‖A′x‖ < ε
√
n} ≤ (L3.35ε/r)

n−1.
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Proof. Fix any vector x ∈ Sn−1 and denote Y = (Y1, Y2, . . . , Yn−1) := A′x. Note that, in
view of Theorem 3.29, we have

L
(
Yi, ε

)
≤ C3.29ε

r
√

1− ũ
+ C3.29 exp

(
−2(1− ũ)h2

)
≤ C3.29(1 + ṽ−1)ε

r
√

1− ũ
, i ≤ n,

for any ε satisfying conditions of the lemma. Hence, by Lemma 3.25,

P
{ n−1∑

i=1

Yi
2 ≤ ε2(n− 1)

}
≤
(C ′(1 + ṽ−1)ε

r
√

1− ũ

)n−1

.

The above statement is useful for incompressible vectors: the following Lemma 3.36
shows that incompressible vectors have LCD at least of order

√
n. The lemma is taken

from papers [RV08, RV09], and its proof is included for completeness.

Lemma 3.36 (see [RV09, Lemma 3.6]). For every θ, ρ ∈ (0, 1) there are q3.36 = q3.36(θ, ρ) >

0 and r3.36 = r3.36(θ, ρ) > 0 such that for every h > 0 any vector x ∈ Incompn(θ, ρ) satisfies

LCDh,r3.36(x) ≥ q3.36

√
n.

Proof. Set a := 1
2
ρ2θ and b := ρ/

√
2. We choose r = r3.36 := b

√
a
2

= 1
2
ρ2
√
θ and

q = q3.36 :=
(
1/
√
θ + 2r

a

)−1
=
√
θ/3.

Let x ∈ Incompn(θ, ρ), h > 0 and assume that LCDh,r(x) < q
√
n. Then, by definition

of least common denominator, there exist p ∈ Zn and λ ∈ (0, q
√
n) such that

‖λx− p‖ < rλ < rq
√
n =

1

6
ρ2θ
√
n =

1

3
a
√
n. (3.8)

It is easy to check that for a vector with such norm the set

σ̃(x) :=
{
i ≤ n : |λxi − pi| < 2/3

}
has a cardinality at least (1− a2

4
)n. Further, by Lemma 3.21, the set of “spread” coordinates

σ(x) has cardinality at least an. Hence, the set I(x) := σ(x) ∩ σ̃(x) is non-empty, and
|I(x)| > a

2
n. For any i ∈ I(x) we have

|pi| < λ|xi|+
2

3
<

q√
θ

+
2rq

a
= 1

(in the last step we used our definition of q). Since p ∈ Zn, we get that pi = 0 for all
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i ∈ I(x).
Finally, due to the definition of I(x) and our choice of r, denoting by PJ the coordinate

projection on a span {i ∈ J : ei}, we obtain

‖λx− p‖2 ≥ ‖λPI(x)‖2 > λ2|I(x)| ρ
2

2n
= λ2ρ

2a

4
= (rλ)2,

which contradicts (3.8) and, hence, the assumption that LCDh,r(x) < q
√
n.

Let n ∈ N, h > 0, θ, ρ ∈ (0, 1), and let q3.36 and r3.36 be as in the above statement.
Following [RV08], we consider the “level sets” Sk of Incompn(θ, ρ) defined as

Sk = Sk(θ, ρ, h) :=
{
x ∈ Incompn(θ, ρ) : k ≤ LCDh,r3.36(x) < 2k

}
, k ≥ 0.

In the proof of the theorem below we will partition Incompn(θ, ρ) into subsets of vectors
having LCD’s of the same order:

Incompn(θ, ρ) =
⊔

k=2i,i≥i0

Sk, (3.9)

where, using Lemma 3.36, we introduce the lower bound i0 := log2(q3.36

√
n/2) (we have

Sk = ∅ for all k < q3.36

√
n/2). Following [RV08], we are going to combine estimates for

individual sets Sk.
A principal observation made in [RV09] and [RV08] is that the sets Sk admit Euclidean

ε-nets of relatively small cardinality. We give both the formal statement and its proof from
[RV09] below for the sake of completeness:

Lemma 3.37 ([RV09, Lemma 4.8]). For any θ, ρ ∈ (0, 1) there is L = L(θ, ρ) > 0 such

that for every h ≥ 1 and k > 0 the set Sk admits a Euclidean (4h/k)-net of cardinality at

most
(
kL/
√
n
)n.

Proof. In view of Lemma 3.36, we can assume that k ≥ q3.36

√
n/2. Further, without loss

of generality 4h
k
< 2; otherwise a one-point net works.

Fix for a moment a point x ∈ Sk. Then, by definition of the “level sets”, k ≤
LCDh,r3.36(x) < 2k. By definition of LCD, there exists p = p(x) ∈ Zn such that

‖LCDh,r3.36(x) · x− p‖ ≤ h.

Hence, ∥∥∥x− p

LCDh,r3.36(x)

∥∥∥ ≤ h

k
<

1

2
.
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It is a simple planimetric observation that if we normalize the vector p/LCDh,r3.36(x), the
distance to the unit vector x cannot increase more than twice:∥∥∥x− p

‖p‖

∥∥∥ ≤ 2h

k
.

Thus, the set
Nint :=

{ p

‖p‖
: p = p(x) for some x ∈ Sk

}
is a 2h/k-net for Sk. How many different p ∈ Zn we have to consider? Note that for any
x ∈ Sk, the norm of p(x) cannot be too large: since ‖x‖ = 1, LCDh,r3.36(x) < 2k and
4h/k < 2, we get

‖p(x)‖ ≤ LCDh,r3.36(x) + h < 3k.

Hence, all vectors p ∈ Zn in the definition of Nint belong to the Euclidean ball of radius
3k centered at the origin. Standard volumetric argument shows that there are at most (1 +

Ck/
√
n)n integer points in this ball for a sufficiently large constant C > 0. Recall that

k ≥ q3.36

√
n/2, whence

|Nint| ≤
(

1 +
Ck√
n

)n
≤
( kL√

n

)n
for an appropriate number L = L(θ, ρ) > 0. The net Nint does not have to be contained
in Sk. But, by a standard argument, we can “replace” Nint with a 4h/k-net of the same
cardinality, and with elements from the set Sk.

Together with Theorem 3.30, the above lemma gives

Lemma 3.38. For any θ, ρ ∈ (0, 1) there is L3.38 = L3.38(θ, ρ) ≥ 1 such that for every h ≥ 1

and k > 0 there is a finite subset N ⊂ Sk of cardinality at most
(
kL3.38/

√
n
)n with the

following property. The event

{
For every y ∈ Sk there is y′ = y′(y) ∈ N such that ‖A(y − y′)‖ ≤ hL3.38

√
n/k

}
has probability at least 1− 4 exp(−n/32).

Now, we can prove

Theorem 3.39. Let α be a centered random variable of unit variance such thatL(α, ṽ) ≤ ũ

for some ṽ > 0 and ũ ∈ (0, 1). Then there exist q, s, w, r > 0 depending only on ṽ, ũ

with the following property: letX1, X2 . . . , Xn−1 be random n-dimensional vectors whose

coordinates are jointly independent copies of α. Consider any random unit vector X∗
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orthogonal to {X1, X2, . . . , Xn−1}. Then

P
{

LCDs
√
n,r(X

∗) < exp(qn)
}
≤ 2 exp(−wn).

Proof. Without loss of generality, we can assume that n is a large number and that ṽ ≤ 1.
Denote by A′ the n−1×n matrix with rows X1, X2, . . . , Xn−1. Then, by the definition of
X∗, we have A′X∗ = 0 almost surely. Let θ3.32 and u3.32 be defined as in Remark 3.33 (with
A′ replacing A). Then, by Proposition 3.32 and Remark 3.33, we have

P
{
X∗ ∈ Compn(θ3.32, θ3.32)

}
≤ 5u3.32

n ≤ exp(−wn)

for w > 0 such that, say, exp(−2w) > u3.32, and provided that n is large. Thus, it is enough
to prove that

P
{

LCDs
√
n,r(X

∗) < exp(qn), X∗ ∈ Incompn(θ3.32, θ3.32)
}
≤ exp(−wn)

for small enough r, w, s, q depending only on ṽ, ũ. We start by defining r := r3.36(θ3.32, θ3.32).
Note that, by Lemma 3.36, we have

Incompn(θ3.32, θ3.32) ⊂
{
x ∈ Sn−1 : LCDs

√
n,r(x) ≥ q3.36

√
n
}

for any s > 0, and, in particular for s defined by s := ṽr
4L2

3.38L3.35
, where L3.38 = L3.38(θ3.32, θ3.32)

and L3.35 are taken from Lemmas 3.38 and 3.35, respectively, and q3.36 = q3.36(θ3.32, θ3.32). Let
us emphasize that no vicious cycle is created here in regard to interdependence between s
and r. Finally, we let q := 2s2(1− ũ) (w will be defined at the very end of the proof).

We will make use of representation (3.9) of the set Incompn(θ3.32, θ3.32). Denote

K :=
{

2i : i ∈ [log2(q3.36

√
n)− 1, qn/ ln 2] ∩ N

}
.

Then, in view of Lemma 3.36, we have

{
x ∈ Incompn(θ3.32, θ3.32) : LCDs

√
n,r(x) < exp(qn)

}
⊂
⊔
k∈K

Sk.

It is sufficient to prove that

P{X∗ ∈ Sk} ≤ 5 exp(−n/32) for all k ∈ K. (3.10)

Indeed, since |K| < qn, the union bound over K will conclude the theorem.
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In turn, (3.10) will follow as long as we show that

P{A′x = 0 for some x ∈ Sk} ≤ 5 exp(−n/32) for all k ∈ K.

Fix for a moment any k ∈ K and let Nk be the subset of Sk of cardinality at most
(kL3.38/

√
n)n, constructed in Lemma 3.38 (with h := s

√
n). Further, take ε := ṽr

√
n

2kL3.38L3.35
.

Note that, in view of the definition of q and K, we have k ≤ exp(2s2(1− ũ)n). Hence, for
n large enough, ε satisfies the condition of Lemma 3.35:

ε ≥ ṽ ·max
(1

k
, exp

(
− 2s2(1− ũ)n

))
≥ ṽ ·max

( 1

LCDh,r(x)
, exp(−2(1− ũ)h2)

)
.

Hence,

P
{
‖A′y‖ ≥ ε

√
n for all y ∈ Nk

}
≥ 1− |Nk|(L3.35ε/r)

n−1

≥ 1−
(kL3.38√

n

)n(L3.35ε

r

)n−1

≥ 1− kL3.38√
n
·
( ṽ

2

)n−1

≥ 1− 2−n exp(2s2(1− ũ)n),

where the last relation follows by the assumption ṽ ≤ 1. Finally, note that, since s ≤ 1/4,
the last quantity is bounded from below by 1 − 2−n/2. Applying the definition of Nk in
Lemma 3.38 and noticing that hL3.38

√
n/k ≤ ε

√
n/2, we get

P
{
‖A′y‖ ≥ ε

√
n/2 for all y ∈ Sk

}
≥ 1− 4 exp(−n/32)− 2−n/2 ≥ 1− 5 exp(−n/32).

This proves (3.10) and implies the result.

Proof of Theorem 3.1. Without loss of generality, the dimension n is large. Let A = (aij)

be an n×n random matrix with i.i.d. centered entries with unit variance such that for some
ṽ > 0 and ũ ∈ (0, 1) we have L(aij, ṽ) ≤ ũ. We define θ := θ3.32(ṽ, ũ) and v := v3.32(ṽ, ũ),
where θ3.32, v3.32 are taken from Proposition 3.32, and let q, s, w, r be as in Theorem 3.39
(with respect to ṽ, ũ). We will prove a small ball probability bound for sn(A).

It is sufficient to consider the parameter domain ε ∈
(
θṽ exp(−qn), 1

]
. We have

P
{
sn(A) < εn−1/2

}
≤ P

{
inf

y∈Compn(θ,θ)
‖Ay‖ < v

√
n
}

+ P
{

inf
y∈Incompn(θ,θ)

‖Ay‖ < εn−1/2
}

≤ 5u3.32
n + P

{
inf

y∈Incompn(θ,θ)
‖Ay‖ < εn−1/2

}
,
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where we have applied Proposition 3.32. Further, by Proposition 3.22, we have

P
{

inf
y∈Incompn(θ,θ)

‖Ay‖ < εn−1/2
}
≤ 1

θ
P
{∣∣∣ n∑

i=1

X∗i ain

∣∣∣ < ε

θ

}
,

where X∗ denotes a random unit normal vector to the span of the first n− 1 columns of A.
In view of Theorem 3.29, this last relation implies

P
{

inf
y∈Incompn(θ,θ)

‖Ay‖ < εn−1/2
}
≤ θ−1P

{
LCDs

√
n,r(X

∗) < θṽε−1
}

+
C3.29ε

θṽr
√

1− ũ
+ C3.29 exp

(
−2s2(1− ũ)n

)
.

Finally, noticing that θṽε−1 ≤ exp(qn) and applying Theorem 3.39, we get

P
{

inf
y∈Incompn(θ,θ)

‖Ay‖ < εn−1/2
}
≤ 2θ−1 exp(−wn)

+
C3.29ε

θṽr
√

1− ũ
+ C3.29 exp

(
−2s2(1− ũ)n

)
.

Together with an estimate for the compressible vectors, this implies the result.
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CHAPTER 4

Operator norm: regularization

4.1 Motivation and main results

When a certain mathematical or scientific structure fails to meet reasonable expectations,
one often wonders: is this a local or global problem? In other words, is the failure caused
by some small, localized part of the structure, and if so, can this part be identified and
repaired? Or, alternatively, is the structure entirely, globally bad? Many results in math-
ematics can be understood as either local or global statements. For example, not every
measurable function f : R → R is continuous, but Lusin’s theorem implies that f can
always be made continuous by changing its values on a set of arbitrarily small measure.
Thus, imposing continuity is a local problem. On the other hand, a continuous function
may not be differentiable, and there even exist continuous and nowhere differentiable func-
tions. Thus imposing differentiability may be a global problem. In statistics, the notion
of outliers – small, pathological subsets of data, the removal of which makes data better –
points to local problems.

So, is bounding the norm of a random matrix a local or a global problem? To be
specific, consider n × n random matrices A with independent and identically distributed
(i.i.d.) entries. Recall that the operator norm of A is defined by considering A as a linear
operator on Rn equipped with the Euclidean norm ‖ · ‖2, i.e.

‖A‖ = max
x6=0

‖Ax‖2

‖x‖2

.

Suppose that the entries of A have zero mean and bounded fourth moment, i.e. EA4
ij =

O(1). Then, as it was shown in [YBK88],

‖A‖ = (2 + o(1))
√
n

with high probability. Note that the order
√
n is the best we can generally hope for. Indeed,
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if the entries of A have unit variance, then the typical magnitude of the Euclidean norm of
a row of A is∼

√
n, and the operator norm of A can not be smaller than that. Moreover, by

[BSY88, Sil89] the bounded fourth moment assumption is nearly necessary for the bound

‖A‖ = O(
√
n). (4.1)

To put this precisely, consider an infinite array of i.i.d. random variables {Aij : i, j =

1, 2, . . .}, and the sequence of n × n random matrices An := (Aij)i,j=1,...,n. Then for
almost surely convergence fourth moment is necessary and sufficient (EA4

11 = ∞ implies
a.s. lim sup ‖An‖2/n = ∞, see [BSY88]). For convergence in probability, zero mean
EA11 = 0 and the weak fourth moment (n2P{|A11| ≥ n} = o(1)) are necessary and
sufficient, see [Sil89].

A number of quantitative and more general versions of these bounds are known [Seg00,
Lat05, Vu05, BVH16, vH17a, vH17b].

Now let us postulate nothing at all about the distribution of the i.i.d. entries of A. It
still makes sense to ask: is enforcing the ideal bound (4.1) for random matrices a local or

a global problem? That is, can we enforce the bound (4.1) by modifying the entries in a
small submatrix of A? We have shown that this is possible if and only if the entries of A
have zero moment and finite variance. The “if” part is covered by the following theorem.

Theorem 4.1 (Local problem). Consider an n×n random matrix A with i.i.d. entries that

have zero mean and unit variance, and let ε ∈ (0, 1/6]. Then, with probability at least

1 − 7 exp(−εn/12), there exists an εn × εn submatrix of A such that replacing all of its

entries with zero leads to a well-bounded matrix Ã:

‖Ã‖ ≤ C ln ε−1

√
ε
·
√
n,

where C is a sufficiently large absolute constant.

Remark 4.2 (Optimality). The dependence on ε in Theorem 4.1 is best possible up to the
ln ε−1 factor. To see this, let p := 2ε/n and suppose Aij take values ±1/

√
p with probabil-

ity p/2 each and value 0 with probability 1−p. Then Aij have zero mean and unit variance
as required. The expected number of non-zero entries in A equals pn2 = 2εn. Thus the
number of the rows of A containing these entries is bigger than εn with high probability.
(This is a standard observation about the balls-into-bins model.) Therefore, no εn × εn

submatrix can contain all the non-zero entries of A. In other words, Ã must contain at least

56



one non-zero entry of A, and thus it has magnitude

‖Ã‖ ≥ 1
√
p
&

√
n√
ε
.

This shows that the dependence on ε in Theorem 4.1 is almost optimal.

By rescaling, a more general version of Theorem 4.1 holds for any finite variance of
the entries. The two main assumptions in this theorem – mean zero and finite variance –
are necessary in Theorem 4.1. Without either of them, the problem becomes global in a
strong sense: the desired O(

√
n) bound can not be achieved even after modifying a large

submatrix. This is the content of the following result.

Theorem 4.3 (Global problem). Consider an n × n random matrix An whose entries are

i.i.d. copies of a random variable that has either nonzero mean or infinite second moment,1

and let ε ∈ (0, 1). Then

min
‖Ãn‖√
n
→∞ as n→∞

almost surely. Here the minimum is with respect to the matrices Ãn obtained by any modi-

fication of any εn× εn submatrix of An.

It should be noted that while Theorem 4.1 becomes harder for smaller ε, Theorem 4.3
becomes harder for larger ε, those near 1.

We prove Theorem 4.3 in Section 4.3. The argument is considerably simpler than for
Theorem 4.1. Indeed, the nonzero mean forces the sum of the entries of Ãn to be & n2, and
the infinite second moment forces the Frobenius norm of Ãn (the square root of the sum of
the entries squared) to be� n2 with high probability. Either of these two bounds can be
easily used to show that the operator norm of Ãn is�

√
n.

4.1.1 Overview of the proof

The approach to the proof of Theorem 4.1 utilizes and advances the ideas described in
the previous chapter (wile proving invertibility Theorem 3.1), and combines them with the
methods developed recently in [LLV17]. We first control the cut norm of A and then pass
to the operator norm using Grothendieck-Pietsch factorization. Let us describe these steps
in more detail.

1Although this is a minor terminological distinction, in this theorem we prefer to talk about second mo-
ment rather than variance. This is because the second moment EX2 of a random variable X is always defined
in the extended real line, while the variance Var(X) = E(X −EX)2 is undefined if the mean EX is infinite.
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The operator norm of a matrix A, as we already mentioned, is defined by considering
A as a linear operator on the (finite dimensional) space `2, i.e.

‖A‖ = ‖A : `2 → `2‖.

Rather than bounding the operator norm of a random matrix A directly, we shall compare
it with two simpler norms,

‖A‖∞→2 = ‖A : `∞ → `2‖ = max
x 6=0

‖Ax‖2

‖x‖∞

and

‖A‖2→∞ = ‖A : `2 → `∞‖ = max
x 6=0

‖Ax‖∞
‖x‖2

.

The simplest of the three is the 2 → ∞ norm. A quick check reveals that it equals the
maximum Euclidean norm of the rows AT

i of A:

‖A‖2→∞ = max
i∈[n]
‖Ai‖2. (4.2)

The next simplest norm is∞→ 2, which can be conveniently computed as

‖A‖∞→2 = max
x∈{−1,1}n

‖Ax‖2. (4.3)

This norm is equivalent within a constant factor to the cut norm from the computer science
literature [BJR10, AN04], where the maximum is taken over {0, 1}n. The hardest of the
three is the operator norm,

‖A‖ = max
x∈Sn−1

‖Ax‖2. (4.4)

To see why the difficulty in bounding these norms rises this way, note that one has to control
n random variables in (4.2), 2n random variables in (4.3), and infinitely many random
variables in (4.4).

How large do we expect the three norms to be for random matrices? For a simple
example, let us first consider a Gaussian random matrix A with i.i.d. N(0, 1) entries. Then
it is not difficult to check that

‖A‖2→∞ ∼
√
n, ‖A‖∞→2 ∼ n, ‖A‖ ∼

√
n. (4.5)

Indeed, note that the rows of A have Euclidean norms
√
n on average, so the bound on the
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2→∞ norm follows by union bound and using Gaussian concentration. The bound on the
∞ → 2 norm follows from (4.3) by using Gaussian concentration for the normal random
vector Ax and taking the union bound over {−1, 1}n. The bound on the operator norm is a
non-asymptotic version of Bai-Yin’s law, see e.g. [Ver12, Theorem 5.32].

One might wonder if (4.5) holds not only in the Gaussian case but generally for random
matrices A with i.i.d. entries that have zero mean and unit variance. In particular, it would
be wonderful if the three norms were always related to each other as follows:

‖A‖ . ‖A‖∞→2√
n

. ‖A‖2→∞ .
√
n. (4.6)

This, however, would be too optimistic to expect, since the bound ‖A‖ .
√
n cannot

hold without higher moments assumptions as we mentioned in Section 4.1. Nevertheless,
we will obtain a version of (4.6) after removal a small fraction of rows of A. With high
probability, we will be able to find subsets of rows J1 ⊂ J2 ⊂ J3 with cardinalities |Ji| ≤
εn and such that

‖AJc
3
‖ .
‖AJc

2
‖∞→2√
n

. ‖AJc
1
‖2→∞ .

√
n. (4.7)

where the inequalities hide a factor that depends on ε.

The first step in proving (4.7) is to find a small set J1 with |J1| . εn and such that

‖AJc
1
‖2→∞ .

√
n (4.8)

with high probability. In other words, we would like to bound all rows of A simultaneously
by O(

√
n) after removing a few columns of A. To show this we first focus on one row,

where we need to bound a sum of independent random variables (the squares of the row’s
entries). In Theorem 4.6 we show how to bound sums of independent random variables
almost surely by gently damping the summands. Damping, or reweighting down, is a
softer operation than removing entries. It allows us to treat in Section 4.2.2 all columns
simultaneously without much effort, thus proving (4.8). The argument in this step is similar
to the one developed to fit a random vector into an `np -ball (Section 3.2.2). We still need to
improve the dependence between the number of removed columns and the resulting 2→∞
norm; this will ultimately lead to the optimal dependence on ε in Theorem 4.1.

At the next step, we extend J1 to a bigger set of rows J2 with |J2| . εn and so that

‖AJc
2
‖∞→2 . n. (4.9)

Suppose for a moment that we are not concerned about removal of any columns. It is not

59



too hard to show the general bound

E‖A‖∞→2 .
√
nE‖A‖2→∞, (4.10)

for a random matrix A with independent, mean zero entries; we prove this in Lemma 4.8.
However, this bound is not very helpful in our situation. We need to work with the matrix
AJc

1
instead of A, which is not trivial: the removal of the columns in J1 that we did in

the first step made the entries of AJc
1

dependent. In Lemma 4.9, we first prove a variant of
(4.10) forAJc

1
under an additional symmetry assumption on the distribution of the entries of

A. Then we manage to remove this assumption with a delicate symmetrization argument,
which we develop in the rest of Section 4.2.2, with the final result being Theorem 4.13.
The general idea of this step again follows the ideas from the previous chapter (proof of
Theorem 3.2). However here we need to produce much more delicate symmetrization
argument to obtain (4.9) with a logarithmic dependence on ε.

Next, we pass from∞ → 2 norm to the operator norm in Section 4.2.2. This is done
by using Grothendieck-Pietsch factorization (Theorem 4.14), a result that yields the first
inequality in (4.7) for completely arbitrary, even non-random, matrices. This reasoning
was recently used in a similar context in [LLV17].

The argument we just described works under the additional assumption that the entries
of A be O(

√
n) almost surely. To be specific, such boundedness assumption is needed

to make the damping argument in Step 1 work with mild, logarithmic dependence on ε.
The contribution of the entries that are larger than

√
n are controlled in Section 4.2.4 by

showing that there can not be too many of them. The unit variance assumption implies that
there are O(1) such large entries per column on average. This does not mean, of course,
that all columns will have O(1) large entries with high probability; in fact there could be
columns with ∼ log n/ log log n large entries. But we will check in Lemma 4.17 that the
number of such heavy columns is small; removing them will lead to the desired bound
O(
√
n) on the operator norm for the matrix with large entries. We develop this argument

in Proposition 4.20 and Corollary 4.22, and derive the full strength of Theorem 4.1 in the
end of Section 4.2.4.

Theorem 4.3 is proved in Section 4.3.
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4.2 Local problem

4.2.1 Damping a sum of independent random variables

Remark 4.4. Both results and methods of this section follow closely the ones of Sec-
tion 3.2.2. The only important improvement is that we obtain better (logarithmic) depen-
dence on ε in (4.13) in trade of the additional boundedness assumption. For the sake of
integrity of the exposition, we decided to keep this section self-contained, and re-introduce
everything needed for the further sections with the most convenient notations.

Let X1, . . . , Xn be non-negative i.i.d. random variables with EXi ≤ 1. The linearity of
expectation gives the trivial bound

E
n∑
i=1

Xi ≤ n.

Here we will be interested in a stronger result – that the sum be O(n) almost surely instead
of in expectation. To do this, we will be looking for random weights

W1, . . . ,Wn ∈ [0, 1]

that make the “damped” sum satisfy

n∑
j=1

WjXj = O(n) almost surely.

To make the damping as gentle as possible, we are looking for largest possible weights Wi,
hopefully very close to 1.

To get started, let us consider the simple case where n = 1 and try to damp one random
variable.

Lemma 4.5 (Damping a random variable). Let X be a random variable such that

X ≥ 0 and EX ≤ 1.

Let ε ∈ (0, 1). There exists a random variable W taking values in [0, 1] and such that

XW ≤ ε−1 almost surely; (4.11)

1 ≤ EW−1 ≤ 1 + ε. (4.12)
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Proof. Fix a level L ≥ 1 whose value we will choose later, and define

W := min(1, L/X).

To check (4.11), we have

XW = min(X,L) ≤ L almost surely.

Next, the lower bound in (4.12) holds trivially since W ≤ 1. For the upper bound, we have

EW−1 = Emax(1, X/L) ≤ E(1 +X/L) ≤ 1 +
1

L
,

where we used the assumption that EX ≤ 1. Setting L = ε−1 completes the proof.

Now let us address the damping problem for general number n of random variables,
which we described in the beginning of this section. Applying Lemma 4.5 for each random
variable Xi, we get weights Wi such that

n∑
j=1

WjXj ≤ ε−1n almost surely;

1 ≤ E
( n∏
j=1

Wj

)−1

≤ (1 + ε)n = 1 +O(εn)

for small ε. Note that this would be exactly the result proved in Proposition 3.4 in the case
p = 2. We will now considerably improve both these bounds, making only one mild extra
assumption that Xi = O(n) almost surely.

Theorem 4.6 (Damping a sum of random variables). Let X1, . . . , Xn be i.i.d. random

variables such that

0 ≤ Xj ≤ Kn and EXj ≤ 1

for some K ≥ 1. Let ε ∈ (0, 1/2). There exist random variables W1, . . . ,Wn taking values

in [0, 1] and such that

n∑
j=1

WjXj ≤ CK log(ε−1) · n almost surely; (4.13)

1 ≤ E
( n∏
j=1

Wj

)−1

≤ 1 + ε. (4.14)
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Proof. Step 1: Bernoulli distribution. Let us first prove the theorem in the particular case
where Xj are scaled Bernoulli random variables. Assume that Xj can take values q and 0,
and

P {Xj = q} = p ≥ 1

Kn
. (4.15)

Let ν denote the (random) number of nonzero Xj’s:

ν := |{j : Xj 6= 0}| , then Eν = pn.

Here is how we will define the weights Wj . If Xj = 0 then clearly there is no need to
damp Xj so put Wj = 1. The same applies if the number ν of non-zero Xj’s does not
significantly exceed its expectation pn. Otherwise we damp all terms by the same amount
Wj ∼ pn/ν. Formally, we fix some parameter L = L(K, ε) whose value we will determine
later, and set

Wj :=

1, if ν ≤ Lpn or Xj = 0

Lpn/ν, if ν > Lpn and Xj 6= 0.

Let us check (4.13). In the event when ν ≤ Lpn, we have

n∑
j=1

WjXj =
ν∑
j=1

1 · q = qν ≤ qLpn = Ln · EX1.

And in the event when ν > Lpn, we have

n∑
j=1

WjXj =
ν∑
j=1

Lpn

ν
· q = Lpnq = Ln · EX1.

as before. Thus, we showed that

n∑
j=1

WjXj ≤ Ln · EX1 ≤ Ln almost surely. (4.16)

Let us now check (4.14). Since the lower bound is trivial, we will only have to check
the upper bound. We will again split the calculation into two cases based on the size of ν.
If ν ≤ Lpn then all Wj = 1, so we trivially get

E− := E
( n∏
j=1

Wj

)−1

1{ν≤Lpn} ≤ 1.
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If ν > Lpn, then the definition of Wj gives

E+ := E
( n∏
j=1

Wj

)−1

1{ν>Lpn} = E
( ν

Lpn

)ν
1{ν>Lpn}

=
n∑

k=dLpne+1

( k

Lpn

)k
P {ν = k} .

Since ν ∼ Binom(n, p), we have

P {ν = k} =

(
n

k

)
pk ≤

(enp
k

)k
,

using a standard consequence of Stirling’s approximation. Thus

E+ ≤
n∑

k=dLpne+1

( e
L

)k
≤
( e
L

)Lpn
,

provided that L ≥ 10. Thus we showed that

E
( n∏
j=1

Wj

)−1

≤ E− + E+ ≤ 1 +
( e
L

)Lpn
≤ 1 +

( e
L

)L/K
(4.17)

where in the last step we used the assumption that p ≥ 1/Kn that we made in (4.15).
Now that we have the bounds (4.16) and (4.17), it is enough to choose

L := CK log
(1

ε

)
which implies that E ≤ 1 + ε. The proof for the Bernoulli distribution is complete.

Step 2. General distribution. Let us now now prove the theorem in full generality.
First we discretize the distribution of Xj using Lemma 2.15. This result requires Xj to be
continuous, which can be arranged by a standard approximation argument. For example,
we can add a small Gaussian independent component to Xj and then let the variance of this
component go to zero. Taking into account Remarks 2.16 and 2.17, we obtain independent,
non-negative random variables X ′j that satisfy EX ′j ≤ 4 and such that

Xj ≤ X ′j =
κ∑
k=1

Xjk.
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Here Xjk are independent random variables; each Xjk can take values qk and 0, and

P {Xjk = qk} = pk

with
pk = 2−k ≥ 1

Kn
for k < κ, pκ =

1

Kn
. (4.18)

The argument will be similar to step 1 of the proof. For each level k we let νk denote
number of non-zero Xjk’s:

νk := |{j : Xjk 6= 0}| , then Eν = pkn.

Again, for each level k define the weights Wjk like in step 1:

Wjk :=

1, if νk ≤ Lpkn or Xjk = 0

Lpkn/νk, if νk > Lpkn and Xjk 6= 0.

Then we set

Wj :=
κ∏
k=1

Wjk, j = 1, . . . , n.

Let us check (4.13). We have

n∑
j=1

WjXj ≤
n∑
j=1

WjX
′
j =

n∑
j=1

κ∑
k=1

WjXjk ≤
κ∑
k=1

n∑
j=1

WjkXjk, (4.19)

since Wj ≤ Wjk by construction. Now, for each level k, we can use step 1 of the proof,
where we showed in (4.16) that

n∑
j=1

WjkXjk ≤ Ln · EX1k.

Substituting into (4.19), we obtain

n∑
j=1

WjXj ≤ Ln ·
κ∑
k=1

EX1k = Ln · EX ′1 ≤ 5Ln (4.20)

by construction.
Let us now check (4.14). The lower bound is trivial, and we will only have to check the

upper bound. For each level k, we can use step 1 of the proof, where we showed in (4.17)
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that

E
( n∏
j=1

Wjk

)−1

≤ 1 +
( e
L

)Lpkn
≤ 1 + e−Lpkn,

which is true as long as L ≥ 10. Then, by construction we have

E
( n∏
j=1

Wj

)−1

= E
κ∏
k=1

( n∏
j=1

Wjk

)−1

=
κ∏
k=1

E
( n∏
j=1

Wjk

)−1

(by independence)

≤
κ∏
k=1

(
1 + e−Lpkn

)
≤ exp

( κ∑
k=1

e−Lpkn
)

where in the last step we used the inequality 1 + x ≤ ex. Recall from (4.18) that the expo-
nents pk form a decreasing geometric progression with values 2−k until the last (smallest)
term of order 1/Kn. So this last term dominates the sum

∑κ
k=1 e

−Lpkn, and we obtain

E
( n∏
j=1

Wj

)−1

≤ exp(2e−L/2K). (4.21)

Now that we have the bounds (4.20) and (4.21), it is enough to choose

AijL := C4.6K log
(1

ε

)
with C4.6 ≥ 6K and the right hand side of (4.21) will be bounded by

exp(2ε3) ≤ exp(ε/2) ≤ 1 + ε,

as claimed. The proof of the theorem is complete.

4.2.2 Controlling the bounded entries: three matrix norms

In this section we prove Theorem 4.1 under the additional assumption that all entries Aij
of A are not too large. Specifically, let us assume that

|Aij| ≤
√
n

2
almost surely. (4.22)
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The 2→∞ norm of random matrices

Lemma 4.7 (Bounding 2 → ∞ norm by removing a few columns). Consider an n × n

random matrix A with i.i.d. entries Aij which have mean zero and at most unit variance

and satisfy (4.22). Let ε ∈ (0, 1/2]. Then with probability at least 1 − exp(−εn), there

exists a subset J ∈ [n] with cardinality |J | ≤ εn such that

‖AJc‖2→∞ ≤ C
√

ln ε−1 ·
√
n.

Proof. We apply Theorem 4.6 for the squares of the elements in each row of A, i.e. for the
random variables (a2

i1, . . . , a
2
in). This gives us random weights Wij ∈ [0, 1] which satisfy

for each i ∈ [n] that

n∑
j=1

WijA
2
ij ≤ C log(ε−1)n a.s.; E

( n∏
j=1

Wij

)−1

≤ exp(ε).

To make the same system of weights work for all rows, we define

Vj :=
n∏
i=1

Wij ∈ [0, 1], j ∈ [n].

Then obviously Vj ≤ Wij for every i, and so

n∑
j=1

VjA
2
ij ≤ C log(ε−1)n ∀i a.s.; E

( n∏
j=1

Vj

)−1

≤ exp(εn). (4.23)

We will remove from A the columns whose weights Vj are too small, namely those in

J := {j ∈ [n] : Vj < e−2}.

Let us first check that

|J | ≤ εn with probability at least 1− exp(−εn), (4.24)

as we claimed in the lemma. Indeed, if |J | > εn then using that all Vj ∈ [0, 1] we have

Z :=
n∏
j=1

Vj ≤
∏
j∈J

Vj < e−2εn.
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But the probability of this event can be bounded by Markov’s inequality:

P
{
Z < e−2εn

}
= P

{
Z−1 > e2εn

}
≤ e−2εnEZ−1 ≤ e−εn,

where in the last bound we used (4.23). This proves (4.24).
It remains to check that all rows Bi of the matrix B = A[n]×Jc

0
are bounded as claimed.

We have

‖Bi‖2
2 =

∑
j∈Jc

A2
ij ≤ e2

∑
j∈Jc

VjA
2
ij (by definition of J)

≤ e2

n∑
j=1

VjA
2
ij (since all Vj ≤ 1)

≤ e2C ln(ε−1)n (by (4.23)).

Taking the square root of both sides completes the proof.

From 2→∞ norm to∞→ 2 norm

Now we will control the∞ → 2 norm of a random matrix. Our first task is to bound the
∞ → 2 norm by the simpler 2 → ∞ norm. The resulting comparison inequalities are
interesting in their own right; we state them in Lemmas 4.8 and 4.10. The ultimate result
of this section is Theorem 4.13, which gives an optimal bound O(n) on the∞ → 2 norm
of a random matrix after removing a small fraction of columns.

The first method is based on flipping the signs of the entries independently at random.
Here is the main result of this section.

Lemma 4.8 (From 2 → ∞ to∞ → 2). Let A be an n × n random matrix whose entries

are independent, mean zero random variables. Then

E‖A‖∞→2 ≤ C
√
n · E‖A‖2→∞.

Proof. Let εij be independent Rademacher random variables (which are also independent
of A) and consider the random matrix

Ã := (εijAij).
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A basic symmetrization inequality (see [LT13, Lemma 6.3]) yields

E‖A‖∞→2 ≤ 2E‖Ã‖∞→2.

Condition on A; the randomness now rests in the random signs (εij) only. It suffices to
show that the conditional expectation satisfies

E‖Ã‖∞→2 .
√
n · ‖A‖2→∞. (4.25)

Recalling (4.3), we have
‖Ã‖∞→2 = max

x∈{−1,1}n
‖Ãx‖2. (4.26)

According to the matrix-vector multiplication, we can express ‖Ãx‖2 as a sum of indepen-
dent random variables

‖Ãx‖2
2 =

n∑
i=1

ξ2
i where ξi := 〈Ãi, x〉 =

n∑
j=1

εijAijxj.

Fix x ∈ {−1, 1}n. Using independence and (4.2), we get

Eξ2
i =

n∑
j=1

(Aijxij)
2 =

n∑
j=1

A2
ij ≤ ‖A‖2

2→∞,

so

E
n∑
i=1

ξ2
i ≤ n‖A‖2

2→∞. (4.27)

Moreover, the standard concentration results ([Ver12, Lemma 5.9]) show that each ξi is a
subgaussian random variable, and we have

‖ξi‖2
ψ2

=
∥∥∥ n∑
j=1

εijAijxj

∥∥∥2

ψ2

.
n∑
j=1

(Aijxij)
2 ≤ ‖A‖2

2→∞.

Thus ξ2
i is a sub-exponential random variable (see [Ver12, Lemma 5.9]) and

‖ξ2
i ‖ψ1 . ‖ξi‖2

ψ2
. ‖A‖2

2→∞. (4.28)

Applying Bernstein’s concentration inequality [Ver12, Corollary 5.17] together with
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(4.27) and (4.28), we obtain

P

{
n∑
i=1

ξ2
i ≥ n‖A‖2

2→∞ + tn‖A‖2
2→∞

}
≤ exp(−ctn)

for all t ≥ 1. Thus we obtained a bound on ‖Ãx‖2
2 =

∑n
i=1 ξ

2
i . It remains to recall (4.26)

and take a union bound over x ∈ {−1, 1}n. It follows that the inequality

‖Ã‖2
∞→2 ≤ (1 + t)n‖A‖2

2→∞

holds with probability at least

1− 2n exp(−ctn) ≥ 1− exp [(1− ct)n] ,

where t ≥ 1 is arbitrary. Integration of these tails implies (4.25).

We will need a minor variation of Lemma 4.8 that can be applied even when some of
the columns of A are removed.

Lemma 4.9 (From 2 → ∞ to ∞ → 2 for symmetric distributions). Let A be an n × n

random matrix whose entries are independent, symmetric random variables. Let J ⊂ [n]

be a random subset, which is independent of the signs of the entries of A. Then

‖AJ‖∞→2 ≤ C
√
n‖AJ‖2→∞

with probability at least 1− e−n.

Proof. It is quite straightforward to check this result by modifying the proof of Lemma 4.8.
By the symmetry assumption, the matrix Ã := (εijAij) has the same distribution as A.
Conditioning on A and J leaves all randomness with the signs (εij), as before. Then we
repeat the rest of the proof of Lemma 4.8 for the submatrix AJ . In the end, we choose t to
be a large absolute constant to complete the proof.

So, the only part of Lemma 4.8 that does not work for a matrix with removed columns
is the symmetrization part. In the following two sections we will develop the tools to
overcome the extra symmetry assumption we have to add in Lemma 4.9.

We just showed how to convert an ∞ → 2 bound to a 2 → ∞ bound for random
matrices by using random signs. Alternatively, one can use random permutations for the
same purpose, and obtain the following bound.
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Lemma 4.10 (From 2 → ∞ to ∞ → 2). Let A be an n × n random matrix with i.i.d.

entries. Then

E‖A‖∞→2 ≤ C
√
n · E‖A‖2→∞ + CE‖A1‖2,

where 1 = (1, 1, . . . , 1) denotes the vector whose all coordinates equal 1.

Before we turn to the proof, note that the only difference between Lemmas 4.8 and 4.10
is the term E‖A1‖2. It makes its appearance since there is no mean zero assumption on the
entries. This term is usually quite innocent. Note also that (4.3) trivially implies that

E‖A‖∞→2 ≥ E‖A1‖2,

so we have to control this term anyway.

Proof. Let us apply a random independent permutation πi to the elements of each row of
A. The resulting matrix Ã has the same distribution of A due to the i.i.d. assumption.
Condition on A; the randomness now rests in the random permutations πi only. It suffices
to show that the conditional expectation satisfies

E‖Ã‖∞→2 ≤ C
√
n · ‖A‖2→∞ + C‖A1‖2, (4.29)

Similarly to the proof of Lemma 4.8, we express ‖Ãx‖2 as a sum of independent random
variables

‖Ãx‖2
2 =

n∑
i=1

ξ2
i where ξi := 〈Ãi, x〉 =

n∑
j=1

Ai,πi(j)xj. (4.30)

The concentration inequality for random permutations (Lemma 2.11) states that each ξi is
a subgaussian random variable, and we have

‖ξi − Eξi‖ψ2 . ‖Ãi‖2 ≤ ‖A‖2→∞.

Just like in the proof of Lemma 4.8, this implies that

‖(ξi − Eξi)2‖ψ1 . ‖A‖2
2→∞.

Since the expectation is bounded by the ψ1 norm (see e.g. [Ver12, Definition 5.13]), we
conclude that

E(ξi − Eξi)2 . ‖(ξi − Eξi)2‖ψ1 . ‖A‖2
2→∞
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and thus

E
n∑
i=1

(ξi − Eξi)2 . n‖A‖2
2→∞.

Applying Bernstein’s inequality like in Lemma 4.8, we find that

P

{
n∑
i=1

(ξi − Eξi)2 ≥ n‖A‖2
2→∞ + tn‖A‖2

2→∞

}
≤ exp

[
−cmin(t2, t)n

]
for all t ≥ 0. Thus, for any t ≥ 1 we have with probability at least 1− exp(−tn) that

n∑
i=1

(ξi − Eξi)2 ≤ (1 + t)n‖A‖2
2→∞. (4.31)

From (4.30) we see that we are almost done; we just need to remove Eξi from our
bound. To this end, note that

‖Ãx‖2
2 =

n∑
i=1

ξ2
i ≤ 2

n∑
i=1

(ξi − Eξi)2 + 2
n∑
i=1

(Eξi)2. (4.32)

We have already bounded the first sum. As for the second one, the definition of ξ in (4.30)
yields

Eξi =
2m− n

n

n∑
j=1

Aij =
2m− n

n
〈Ai, 1〉

where m denotes the number of ones in xj and AT
i is the i-th row of A. Thus

n∑
i=1

(Eξi)2 =
(2m− n

n

)2
n∑
i=1

〈Ai, 1〉2 ≤ ‖A1‖2
2.

We substitute this and (4.31) into (4.32) and obtain that for any t ≥ 1,

‖Ãx‖2
2 ≤ 2(1 + t)n‖A‖2

2→∞ + 2‖A1‖2
2

with probability at least 1− exp(−tn).
It remains to recall (4.26) and take a union bound over x ∈ {−1, 1}n. It follows that

the inequality
‖Ã‖2

∞→2 ≤ 2(1 + t)n‖A‖2
2→∞ + 2‖A1‖2

2 (4.33)
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holds with probability at least

1− 2n exp(−ctn) ≥ 1− exp [(1− ct)n]

where t ≥ 1 is arbitrary. Integration of these tails implies (4.29).

It is worthwhile to mention a high-probability version of Lemma 4.10.

Lemma 4.11 (From 2→∞ to∞→ 2 with high probability). Let A be an n× n random

matrix with i.i.d. entries. Then with probability at least 1− e−n we have

‖A‖∞→2 ≤ C
√
n · E‖A‖2→∞ + CE‖A1‖2,

where 1 = (1, 1, . . . , 1) denotes the vector whose all coordinates equal 1.

Proof. At the end of the proof of Lemma 4.10, we obtained inequality (4.33) which states
(for large constant t) that

‖Ã‖∞→2 ≤ C
√
n · ‖A‖2→∞ + C‖A1‖2

with probability at least 1− e−n. Note that

‖A‖2→∞ = ‖Ã‖2→∞ and ‖A1‖2 = ‖Ã1‖2

deterministically. Indeed, it is easy to check that permutations of the elements of the rows
of A do not affect these two quantities. It follows that

‖Ã‖∞→2 ≤ C
√
n · ‖Ã‖2→∞ + C‖Ã1‖2

with probability at least 1 − e−n. It remains to note that Ã has the same distribution as
A.

Recall from Section 4.1.1 that ideally, we would want

‖A‖2→∞ .
√
n and ‖A‖∞→2 . n

with high probability. But this is too good to be true in our situation, where we assume
only two moments for the entries of A. Nevertheless, we will now show that these bounds
still hold, albeit with exponentially small probability.
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Lemma 4.12 (2→∞ and∞→ 2 norms with tiny probability). LetA be an n×n random

matrix whose entries are i.i.d. random variables with mean zero and at most unit variance.

Let δ ∈ (0, 1/2). Then

‖A‖2→∞ ≤ 2δ−1
√
n and ‖A‖∞→2 ≤ Cδ−1n (4.34)

with probability at least 1
2

exp(−δ2n).

Proof. We will first bound below the probability of the event

E :=
{
‖A‖2→∞ ≤ 2δ−1

√
n and ‖Ã1‖2 ≤ 2δ−1n

}
and then use Lemma 4.11 to control ‖A‖∞→2.

Recall from (4.2) that

‖A‖2→∞ = max
i∈[n]
‖Ai‖2 and ‖Ã1‖2

2 =
n∑
i=1

〈Ai, 1〉2

where AT
i denote the rows of A. Thus E ⊂

⋂n
i=1 Ei where

Ei :=
{
‖Ai‖2 ≤ 2δ−1

√
n and |〈Ai, 1〉| ≤ 2δ−1

√
n
}

are independent events. This reduces the problem to bounding the probability of each event
Ei below.

The assumptions on the entries of A imply that

E‖Ai‖2
2 ≤ n and E〈Ai, 1〉2 ≤ n.

Using Chebyshev’s inequality, we see that

P
{
‖Ai‖2 > 2δ−1

√
n
}
≤ δ2

4
and P

{
|〈Ai, 1〉| > 2δ−1

√
n
}
≤ δ2

4
.

Then a union bound yields

P(Ei) ≥ 1− δ2

2
.

By independence of the events Ei, this implies

P(E) ≥
(

1− δ2

2

)n
≥ exp(−δ2n).
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Next we apply Lemma 4.11, which states that the event

F :=
{
‖A‖∞→2 ≤ C

√
n · E‖A‖2→∞ + CE‖A1‖2

}
is likely:

P(F) ≥ 1− exp(−n).

It follows that

P(E ∩ F) ≥ exp(−δ2n)− exp(−n) ≥ 1

2
exp(−δ2n).

It remains to note that by definition of E and F , the event E ∩ F implies the inequalities in
(4.34).

In the previous section, we were able to prove the optimal bounds

‖A‖2→∞ .
√
n and ‖A‖∞→2 . n

for a random matrix A, but they only hold with exponentially small probability. We claim
that the probability of success can be increased to almost 1 if we are allowed to remove a
few columns of A. We already proved this fact for the 2 → ∞ norm in Lemma 4.7. It is
time to handle the∞→ 2 norm.

Theorem 4.13 (Bounding∞→ 2 norm by removing a few columns). Consider an n× n
random matrix A with i.i.d. entries Aij which have mean zero and at most unit variance

and satisfy (4.22). Let ε ∈ (0, 1/2]. Then with probability at least 1 − 2 exp(−εn), there

exists a subset J ∈ [n] with cardinality |J | ≤ εn such that

‖AJc‖∞→2 ≤ C
√

ln ε−1 · n.

Proof. Step 1: Defining the two key events. We will be interested in the two key events
that suitably control the 2→∞ and∞→ 2 norms of a random matrix. Thus, for a random
matrix B and numbers r,K ≥ 0, we define

E2→∞(B, r,K) :=
{
∃J, |J | ≤ rεn : ‖BJc‖2→∞ ≤ K

√
ln ε−1 ·

√
n
}
,

E∞→2(B, r,K) :=
{
∃J, |J | ≤ rεn : ‖BJc‖∞→2 ≤ K

√
ln ε−1 · n

}
.
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In terms of these events, we want to show that

P (E∞→2(A, 1, C)c) ≤ 2 exp(−εn),

while Lemma 4.7 can be stated as

P (E2→∞(A, 1, C ′)) ≥ 1− exp(−εn).

for some absolute constant C ′. Since the latter event is so likely, intersecting with it would
not cause much harm. Indeed, we will show that the bad event

B := E2→∞(A, 1, C ′) ∩ E∞→2(A, 1, C)c

satisfies
P(B) ≤ exp(−n/2). (4.35)

This would finish the proof, since we would then have

P (E∞→2(A, 1, C)c) ≤ exp(−n/2) + exp(−εn) ≤ 2 exp(−εn)

as required.

Step 2: Symmetrization. As an intermediate step, let us bound the probability of a
symmetrized version of B, namely the event

B̃ := E2→∞(Ã, 1, 2C ′) ∩ E∞→2(Ã, 1, C/2)c

where
Ã := A− A′

and A′ is an independent copy of the random matrix A. We claim that

P(B̃) ≤ exp(−n). (4.36)

To prove this claim, choose a subset J , |J | ≤ εn, that minimizes ‖ÃJc‖2→∞. Recall
from (4.2) that the 2 → ∞ norm of a matrix is determined by the Euclidean norms of
the columns and thus does not depend on the signs of the matrix elements. Thus J is
independent of the signs of the elements of Ã. This makes it possible to use Lemma 4.9 for
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the matrix Ã and the random set J c. It gives

‖ÃJc‖∞→2 .
√
n‖ÃJc‖2→∞ (4.37)

with probability at least 1− exp(−n).
Then, turning to B̃, we can bound its probability as follows:

P(B̃) ≤ P(B̃ and (4.37)) + exp(−n).

To prove the claim, it remains to check that B̃ and (4.37) can not hold together. Assume
they do; then

‖ÃJc‖∞→2 .
√
n · 2C ′

√
ln ε−1

√
n .
√

ln ε−1 · n,

which contradicts the event E∞→2(Ã, 1, C/2)c in the definition of B̃ for a suitably chosen
constant C. This completes the proof of the claim (4.36).

Step 3. Using the small-probability bounds. The last piece of information we will
use is the conclusion of Lemma 4.12 for δ := 1/(2 ln ε−1). It states that the good event

G := E2→∞(A′, 0, C ′) ∩ E∞→2(A′, 0, C/2)

is likely to happen:

P(G) ≥ 1

2
exp

(
− n

4 ln ε−1

)
. (4.38)

Note in passing that there is no guarantee that this statement would hold for the same
constants C and C ′ as we chose in the definition of B above. However, we can make this
happen by adjusting these constants upwards as necessary. The reader can easily check
both (4.36) and (4.38) would still hold after such an adjustment.

We claim that
B ∩ G ⊂ B̃. (4.39)

To see this, recall that each of B, G and B̃ is defined an an intersection of two events,
one controlling 2 → ∞ norm and the other, ∞ → 2 norm. Thus it suffices to check the
inclusion for each of these two parts separately. Namely, the claim (4.39) would follow at
once if we show that

E2→∞(A, 1, C ′) ∩ E2→∞(A′, 0, C ′) ⊂ E2→∞(Ã, 1, 2C ′) and

E∞→2(A, 1, C)c ∩ E∞→2(A′, 0, C/2) ⊂ E∞→2(Ã, 1, C/2)c.

Both these inclusions are straightforward to check from the definitions of the events E2→∞
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and E∞→2, remembering that Ã = A − A′ and using triangle triangle inequality. This
verifies the claim (4.39).

The event B is determined by A, and G is determined by A′ only. Thus B and G are
independent, and (4.39) gives

P(B)P(G) = P(B ∩ G) ≤ P(B̃).

Thus, using (4.36) and (4.38), we conclude that

P(B) ≤ P(B̃)/P(G) ≤ 2 exp
(
− n+

n

4 ln ε−1

)
≤ exp(−n/2).

We have shown (4.35) and thus have completed the proof of the theorem.

From∞→ 2 norm to the operator norm

In Theorem 4.13, we gave an optimal O(n) bound for the∞→ 2 norm of a random matrix
with few removed columns. We will now convert this into an optimal O(

√
n) bound for

the operator norm. This can be done by applying a form of Grothendieck-Pietsch theorem
(see [LT13, Proposition 15.11]), which has been used recently in [LLV17, section 3.2] in a
similar context.

Theorem 4.14 (Grothendieck-Pietsch). Let B be a k × m real matrix and δ > 0. Then

there exists J ⊂ [m] with |J | ≤ δm such that

‖BJc‖ ≤ 2‖B‖∞→2√
δm

.

Applying Theorem 4.13 followed by Grothendieck-Pietsch theorem, we obtain the fol-
lowing result.

Lemma 4.15 (Bounding the operator norm by removing a few columns). Consider an n×n
random matrix A with i.i.d. entries Aij which have mean zero and at most unit variance

and satisfy (4.22). Let ε ∈ (0, 1]. Then with probability at least 1 − 2 exp(−εn/2), there

exists a subset J ∈ [n] with cardinality |J | ≤ εn such that

‖AJc‖ ≤ C

√
ln ε−1

ε
·
√
n.

Proof. Apply Theorem 4.13 for ε/2 instead of ε. We obtain a subset of columns J1 ⊂ [n],
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|J1| ≤ εn/2, which satistfies

‖AJc
1
‖∞→2 ≤ C

√
ln ε−1 · n (4.40)

with probability at least 1− 2 exp(−εn/2).
Next apply Grothendieck-Pietsch Theorem 4.14 for the matrix AJc

1
and for δ = ε/2.

We obtain a further subset J2 ⊂ J c1 , |J2| ≤ δ|J c1 | ≤ εn/2, such that the removal of columns
in both J := J1 ∪ J2 leads to

‖AJc‖ ≤
2‖AJc

1
‖∞→2√
δ|J c1 |

. C

√
ln ε−1

ε
·
√
n.

In the last inequality, we used the bound (4.40) and that δ = ε/2 and |J c1 | ≥ n − εn/2 ≥
n/2. The proof is complete.

We are ready to prove a partial case of Theorem 4.1, for the matrices whose entries are
O(
√
n). It follows by applying Lemma 4.15 for A and AT separately, and then superposing

the results.

Proposition 4.16 (Bounded entries). Consider an n×n random matrixA with i.i.d. entries

Aij which have mean zero and at most unit variance and satisfy (4.22). Let ε ∈ (0, 1]. Then

with probability at least 1 − 4 exp(−εn/2), there exists an εn × εn submatrix of A such

that replacing all of its entries with zero leads to a well-bounded matrix Ã:

‖Ã‖ ≤ C

√
ln ε−1

ε
·
√
n.

Proof. Apply Lemma 4.15 for A and AT. We obtain that with probability at least 1 −
4 exp(−εn/2), there exists sets I and J with at most εn indices in each, and such that

‖A[n]×Jc‖ .
√

ln ε−1

ε
·
√
n and ‖AIc×[n]‖ .

√
ln ε−1

ε
·
√
n. (4.41)

We claim that Ã := A(I×J)c satisfies the conclusion of the proposition. The support of this
matrix, (I×J)c, is a disjoint union of two sets, [n]×J c and Ic×J . Then, using the triangle
inequality, we have

‖A(I×J)c‖ ≤ ‖A[n]×Jc‖+ ‖AIc×J‖.

We already controlled the first term in (4.41). As for the second term, since adding columns
can only increase the operator norm, we have ‖AIc×J‖ ≤ ‖AIc×[n]‖, which we also bounded
in (4.41). The proof is complete.
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4.2.3 Controlling the moderately large entries: Bernoulli matrices

In the previous section, we proved a partial case of Theorem 4.1 that controls relatively
small entries of A, those of the order O(

√
n). Larger entries will be controlled in this

section.
The following general lemma will help us analyze the patterns such large entries can

form.

Lemma 4.17 (Bernoulli random matrix). Let B be an n× n random matrix whose entries

are independent Bernoulli random variables with mean p. Let ε ∈ (0, 1/2]. Consider the

rows of B with more than 21pn + 2 ln ε−1 ones. Then with probability 1 − exp(−εn/2),

these rows have at most εn ones altogether.

To see the connection to our original problem, we will later choose the entries of B to
be the indicators of the large entries of A.

Proof. Let Si denote the number of ones in the i-th row of B. Then ESi = pn. A standard
application of Chernoff’s inequality shows that

P {Si > t} ≤ e−2t for t ≥ 21pn. (4.42)

Let K ≥ 21pn be a number to be chosen later. (We will eventually choose K as 21pn +

2 ln ε−1 as in the statement of the lemma.) Define the random variables

Xi := Si1{Si>K}.

The quantity of interest is the total number of ones in the heavy rows, and it equals
∑n

i=1 Xi.
To control this sum of independent random variables, we can use the standard Bernstein’s
trick (commonly called Chernoff’s bound), where we use Markov’s inequality after expo-
nentiation. We obtain

P

{
n∑
i=1

Xi > εn

}
≤ e−εnE exp

( n∑
i=1

Xi

)
=
[
e−εEeX1

]n
, (4.43)

where the last equality follows by independence and identical distribution. Now, by defini-
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tion of X1 we have

EeX1 = EeX11{X1=0} + EeX11{X1 6=0} ≤ 1 + EeS11{S1>K}

= 1 +

∫ ∞
eK

P
{
eS1 > u

}
du

= 1 +

∫ ∞
K

P {S1 > t} et dt (by a change of variables)

≤ 1 +

∫ ∞
K

e−2tet dt (using (4.42) for t ≥ K ≥ 21pn)

= 1 + e−K ≤ exp(e−K).

Substituting this bound into (4.43), we conclude that

P

{
n∑
i=1

Xi > εn

}
≤ exp

[
(−ε+ e−K)n

]
≤ exp(−εn/2),

if we choose K so that e−K ≤ ε/2. To finish the proof, recall that our argument works
if K satisfies the two conditions: K ≥ 21pn and e−K ≤ ε/2. We thus choose K :=

21pn+ 2 ln ε−1 and complete the proof.

Corollary 4.18 (Bernoulli random matrix). Let B be an n × n random matrix whose en-

tries are independent Bernoulli random variables with mean p. Let ε ∈ (0, 1]. Then with

probability at least 1 − 2 exp(−εn/4), there exists an εn × εn submatrix of B such that

replacing all of its entries with zero leads to a matrix B̃ whose rows and columns have at

most 21pn+ 4 ln ε−1 ones each.

Proof. Apply Lemma 4.17 for B and BT with ε/2 instead of ε, and take the intersection of
the two good events. With the required probability, we obtain a set of εn bad entries of B
whose removal makes all rows and columns of B contain at most 21pn + 2 ln ε−1 ones. It
remains to note that these εn entries can be trivially placed in some εn × εn submatrix of
B, and deletion of the whole εn× εn submatrix can only decrease the number of non-zero
elements in the rows and columns of the residual part.

Remark 4.19 (Random graphs). It is not difficult to obtain a version of Corollary 4.18 for
symmetric random matrices. This version can be interpreted as a statement about Erdős-
Rényi random graphs G(n, p), with B playing the role of the adjacency matrix. It states
that with high probability, one can make all degrees of a G(n, p) random graph bounded by
O(pn+ ln ε−1) after removing the internal edges from a sub-graph with εn vertices.
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We will use Corollary 4.18 to deduce Theorem 4.1 for matrices with moderately large
entries. Namely, we assume here that all entries of A satisfy

Aij = 0 or
√
n

2
≤ |Aij| ≤

5
√
n√
ε
. (4.44)

Proposition 4.20 (Moderately large entries). Consider an n × n random matrix A with

i.i.d. entries which satisfy EA2
ij ≤ 1 and (4.44). Let ε ∈ (0, 1/2]. Then with probability at

least 1 − 2 exp(−εn/4), there exists an εn × εn submatrix of A such that replacing all of

its entries with zero leads to a well-bounded matrix Ã:

‖Ã‖ ≤ C ln ε−1

√
ε
·
√
n. (4.45)

Proof. Consider the matrix B whose elements are indicators of moderately large entries of
A, i.e.

Bij := 1{Aij 6=0}.

Then Bij are i.i.d. Bernoulli random variables with mean

p := EBij = P {Aij 6= 0} ≤ P
{
|Aij| ≥

√
n

2

}
≤ 4

n
. (4.46)

(In the last inequality, we used Chebyshev’s inequality and the assumption EA2
ij ≤ 1.)

Corollary 4.18 applied to B gives us an εn × εn submatrix of A such that the number of
non-zero elements in every row and column of Ã (obtained by zeroing out the elements of
A outside that submatrix) is bounded by

21pn+ 4 ln ε−1 . ln ε−1, (4.47)

where we used (4.46) in the last bound.
Moreover, assumption (4.44) shows that all entries of Ã are bounded in absolute value

by 5
√
n/
√
ε. This and (4.47) imply that the `1 norm of all rows Ãi and columns Ãj can be

bounded as follows:
max
i,j

(
‖Ãi‖1, ‖Ãj‖1

)
.

√
n√
ε
· ln ε−1.

Applying Lemma 2.19 leads to (4.45).
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4.2.4 Controlling the large entries and proof of Theorem 4.1

Finally, we will need to prove Theorem 4.1 for very large entries – now we assume that all
entries of A satisfy

Aij = 0 or |Aij| >
5
√
n√
ε
. (4.48)

There are typically very few such entries, as the following simple result shows.

Lemma 4.21 (Few very large entries). Consider an n × n random matrix A with i.i.d.

entries which satisfy EA2
ij ≤ 1 and (4.48). Let ε ∈ (0, 1/2]. Then with probability at least

1− exp(−εn), the matrix A has at most εn non-zero entries.

Proof. Using Chebyshev’s inequality and the assumption that EA2
ij ≤ 1, we see that the

probability that a given entry is nonzero is

P {Aij 6= 0} ≤ P
{
|Aij| >

5
√
n√
ε

}
≤ ε

25n
.

Thus the expected number of non-zero entries inA is at most εn/25. A standard application
of Chernoff’s inequality gives

P {A has more than εn nonzero entries} ≤ e−εn.

The proof is complete.

Since a set of εn indices can be always placed in an εn × εn submatrix, we can state
Lemma 4.21 as follows.

Corollary 4.22 (Very large entries). Consider an n×n random matrix A with i.i.d. entries

which satisfy EA2
ij ≤ 1 and (4.48). Let ε ∈ (0, 1/2]. Then with probability at least

1− exp(−εn), all non-zero entries of A are contained in an εn× εn submatrix.

We are going to assemble Proposition 4.16 for the bounded entries of A, Proposi-
tion 4.20 for moderately large entries, and Corollary 4.22 for very large entries. The
εn × εn sub-matrices that appear in these results are possibly different. The following
simple lemma will help us to combine them into one.

Lemma 4.23. Let B be a matrix. Zeroing out any submatrix of B cannot increase the

operator norm more than twice.

Proof. Let B̃ denotes the matrix obtained by zeroing out a submatrix of B spanned by the
index set I × J . Triangle inequality gives

‖B̃‖ ≤ ‖BI×Jc‖+ ‖BIc×[n]‖ ≤ ‖B‖+ ‖B‖.
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The last inequality follows from the fact that zeroing out any subset of rows or columns
cannot increase the operator norm.

Proof of Theorem 4.1. Decompose A into a sum of three n× n matrices with disjoint sup-
port,

A = B +M + L, (4.49)

where B contains bounded entries of A – those that satisfy |Aij| ≤
√
n/2, the matrix

M contains moderately large entries – those for which
√
n/2 < |Aij| ≤ 5

√
n/ε, and L

contains large entries – those satisfying |Aij| > 5
√
n/ε.

To bound B, let us subtract the mean and first bound

G := B − EB.

The entries of this matrix have zero mean and satisfy

EG2
ij = Var(Bij) ≤ EB2

ij ≤ EA2
ij = 1

(where we used the moment assumption) and

‖Gij‖∞ = ‖Bij − EBij‖∞ ≤ 2‖Bij‖∞ ≤
√
n.

Thus we can apply Proposition 4.16 for 0.5G. It says that with probability at least 1 −
4 exp(−εn/2), the removal of a certain εn × εn submatrix of G leads to a well-bounded
matrix G̃, i.e.

‖G̃‖ .
√

ln ε−1

ε
·
√
n.

Next, we bound EB, a matrix whose entries are the same. Thus

‖EB‖ = n
∣∣EBij

∣∣ = n
∣∣E(Aij −Bij)

∣∣ (since EAij = 0)

= n
∣∣EAij1|Aij |>

√
n/2

∣∣ (by definition of A1)

≤ n
(
EA2

ij

)1/2(P {|Aij| > √n/2} )1/2 (by Cauchy-Schwarz inequality)

≤ n · 1 · 2/
√
n ≤ 2

√
n (by Chebyshev’s inequality). (4.50)

To bound M and L, note that

EM2
ij ≤ EA2

ij = 1 and EL2
ij ≤ EA2

ij = 1.

Thus, Proposition 4.20 can be applied to M : with probability 1 − exp(−εn/4) there exist
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a εn× εn submatrix of M , the removal of which leads to a matrix M̃ , such that

‖M̃‖ ≤ C ln ε−1

√
ε
·
√
n.

Proposition 4.22 can be applied to L. We can interpret its conclusion as follows: with
probability 1 − 2 exp(−εn) there exist a εn × εn submatrix of L, the removal of which
leads to an identically zero matrix L̃, i.e.

‖L̃‖ = 0.

Now, let us embed the three εn × εn submatrices of A we just constructed into one
3εn × 3εn submatrix and zero out this whole submatrix. By Lemma 4.23, the norms of
G̃, EB, M̃ and L̃ will not increase more than twice as a result of this operation. Taking
intersection of the three good events, we conclude that with the probability at least

1− 4 exp(−εn/2)− 2 exp(−εn/4)− exp(−εn) ≥ 1− 7 exp(−εn/4)

there exists an 3εn× 3εn submatrix of A such that replacing all of its entries by zero leads
to a well-bounded matrix Ã:

‖Ã‖ .
√

ln ε−1

ε
·
√
n+ 2

√
n+

ln ε−1

√
ε
·
√
n+ 0 .

ln ε−1

√
ε
·
√
n.

This proves the conclusion of Theorem 4.1 with 3ε instead of ε, where ε ∈ (0, 1/2] is
arbitrary. By rescaling, Theorem 4.1 holds also as originally stated. This concludes the
proof of Theorem 4.1.

4.3 Global problem

In this section we prove Theorem 4.3, which states that either nonzero mean or infinite sec-
ond moment make it impossible to repair the matrix norm by removing a small submatrix.
We will first prove a non-asymptotic version version of this result. Once this is done, an
application of Borel-Cantelli Lemma will quickly yield Theorem 4.3.

Proposition 4.24 (Global problem: non-asymptotic regime). Consider an n × n random

matrixAwhose entries are i.i.d. random variables that have either nonzero mean or infinite

second moment, and let ε ∈ (0, 1). Then, for any M > 0 there exists n0 that may depend

only on ε, M and the distribution of the entries, and such that for any n > n0 the following
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event holds with probability at least 1− e−n: every (1− ε)n× (1− ε)n submatrix A′ of A

satisfies

‖A′‖ ≥M
√
n.

Before we prove this proposition, let us pause to see its connection to the matrix Ãn of
Theorem 4.3. Proposition 4.24 yields that this matrix satisfies

‖Ãn‖ ≥M
√
n.

Indeed, modifying an εn×εn submatrix always leaves some (1−ε)n× (1−ε)n submatrix
A′ intact, so we can apply Proposition 4.24 for that submatrix.

4.3.1 Infinite second moment

Here we will prove the part of Proposition 4.24 about infinite second moment; the case of
nonzero mean will be treated in Section 4.3.2. Let us start with the following lemma which
will help us treat a fixed submatrix.

Lemma 4.25. Consider an m × m random matrix B whose entries are i.i.d. random

variables with infinite second moment. Then, for any M > 0 there exists m0 that may

depend only on M and the distribution of the entries, and such that for any m > m0 we

have

‖B‖ ≥M
√
m

with probability at least 1− exp(−M2m).

Proof. By assumption, we have EB2
ij = ∞. Therefore, for any M > 0 one can find a

truncation level K that depends only on M and the distribution, and such that the truncated
random variables

B̄ij := Bij1|Bij |≤K satisfy EB̄2
ij ≥ 2M2. (4.51)

(This follows easily from Lebesgue’s monotone convergence theorem.)
Consider the matrix B̄ with entries B̄ij . We have

‖B‖ ≥ 1√
m
‖B‖F ≥

1√
m
‖B̄‖F .

86



Then we bound the failure probability as follows:

P
{
‖B‖ < M

√
m
}
≤ P

{
‖B̄‖F < Mm

}
= P

{
m∑

i,j=1

B̄2
ij < M2m2

}

≤ P

{
m∑

i,j=1

(B̄2
ij − EB̄2

ij) < −M2m2

}

where we used (4.51) in the last step.
Apply Hoeffding’s inequality for the random variables B̄2

ij and use that they are bounded
by K2 by construction. The probability above gets bounded by

exp
(
− M4m2

2K2

)
.

If m > 2K2/M2 = m0, this probability can be further bounded by exp(−M2m), as
claimed.

Proof of Proposition 4.24 for infinite second moment. We can assume without loss of gen-
erality that M is large enough depending on ε. (Indeed, once the conclusion of the propo-
sition holds for one value of M it automatically holds for all smaller values.)

Apply Lemma 4.25 for an m×m matrix A′n with m = (1− ε)n, and then take a union
bound over all

(
n
m

)2 possible choices of such submatrices. It follows that the conclusion of
Proposition 4.24 holds with probability at least

1−
(
n

m

)2

exp(−M2m).

By Stirling’s approximation, we have
(
n
m

)
≤ (en/m)m. Using this and substituting m =

(1− ε)n, we bound the probability below by

1− exp
[(

2 log
e

1− ε
−M2

)
(1− ε)n

]
.

If the value of M is sufficiently large depending on ε, this probability is larger than 1 −
exp(−n), as claimed. Proposition 4.24 for infinite second moment is proved.

4.3.2 Nonzero mean

Now we will prove the part of Proposition 4.24 about nonzero mean. We can assume here
that the second moment of the entries Aij is finite, as the opposite case was treated in
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Section 4.3.1. As before, we will first focus on one submatrix. In the following lemma we
make an extra boundedness assumption, which we will get rid of using truncation later.

Lemma 4.26. Consider an m × m random matrix B whose entries are i.i.d. random

variables that satisfy

EBij = µ > 0, EB2
ij ≤ σ2, |Bij| ≤ K

√
m a.s.

Then, for any M > 0 there exists m0 that may depend only on µ, σ, K and M , and such

that for any m > m0 we have

‖B‖ ≥ µm

2

with probability at least 1− exp(−M2m).

Proof. Notice that

‖B‖ ≥ 1

m

m∑
i,j=1

Bij.

(To check this inequality, recall that ‖B‖ ≥ xTBx for any unit vector x; use this for the
vector x whose all coordinates equal 1/

√
m.) Then we can bound the failure probability as

follows:

P
{
‖B‖ < µm

2

}
≤ P

{
m∑

i,j=1

Bij <
µm2

2

}
≤ P

{
m∑

i,j=1

(Bij − EBij) < −
µm2

2

}

where we used that EBij = µ in the last step.
Apply Bernstein’s inequality for the random variables Bij and use that they have vari-

ance at most σ2 and are bounded by K
√
m by assumption. The failure probability gets

bounded by

exp
(
− µ2m4/8

σ2m2 +K
√
m/3

)
.

Ifm is large enough depending µ, σ,K andM , then this probability can be further bounded
by exp(−M2m), as claimed.

Next, we will use truncation to get rid of the boundedness assumption in Lemma 4.26
and thus prove the following.

Lemma 4.27. Consider an m × m random matrix B whose entries are i.i.d. random

variables that satisfy

EBij = µ > 0, EB2
ij ≤ σ2.
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Then, for any M > 0 there exists m0 that may depend only on µ, σ, K, M and the

distribution of the entries, and such that for any m > m0 we have

‖B‖ ≥M
√
m (4.52)

with probability at least 1− exp(−M2m).

Proof. Choosing m0 large enough depending on M and the distribution of Bij , we can
make sure that for any m ≥ m0 the truncated random variables

B̄ij := Bij1|Bij |≤M
√
m satisfy EB̄ij ≥ EBij −

µ

2
=
µ

2
.

(This follows easily from Lebesgue’s monotone convergence theorem.)
Let us consider the event that all entries of B are appropriately bounded:

E :=
{
|Bij| ≤M

√
m for all i, j ∈ [n]

}
.

Suppose for a moment that (4.52) fails, so we have ‖B‖ < M
√
m. Since the inequality

‖B‖ ≥ maxi,j |Bij| is always true, the event E must hold in this case. This in turn implies
that the truncation has no effect on the entries, i.e. B̄ij = Bij for all i, j.

We have shown that in the event of the failure of (4.52), we may automatically assume
that the entries of B are appropriately bounded. Therefore the failure probability satisfies

P
{
‖B‖ < M

√
m
}

= P
{
‖B̄‖ < M

√
m
}

where B̄ denotes the matrix with the truncated entries B̄ij . It remains to apply Lemma 4.26
for the random matrix B̄, noting that truncation may only decrease the second moment.
The failure probability gets bounded by exp(−M2m), as claimed.

Proof of Proposition 4.24 for non-zero mean. As we mentioned in the beginning of this
section, we can assume that the entries Bij have finite second moment σ2. Then the con-
clusion of the proposition follows by exact same union bound argument as in the end of
Section 4.3.1 (just use Lemma 4.27 instead of Lemma 4.25 there.)
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4.3.3 Proof of Theorem 4.3

We will prove a stronger fact that

min
‖A′n‖√
n
→∞ as n→∞ almost surely, (4.53)

where the minimum is taken over all (1 − ε)n × (1 − ε)n submatrices A′n of An. As we
mentioned below Proposition 4.24, this would imply the conclusion of Theorem 4.3, since
modifying an εn× εn submatrix leaves some (1− ε)n× (1− ε)n sub-matrix intact.

Fix any M > 0 and consider the events

En :=
{

min
‖A′n‖√
n
≥M

}
, n = 1, 2, . . .

where the minimum has the same meaning as before. By Proposition 4.24, there exists n0

such that
P(Ecn) ≤ e−n for all n > n0.

In particular, the series
∑∞

n=1 P(Ecn) converges. The Borel-Cantelli lemma then implies
that the probability that infinitely many Ecn occur is 0. Equivalently, with probability 1 there
exists N such that En hold for all n ≥ N .

We have shown that for any M > 0, with probability 1 there exists N such that

min
‖A′n‖√
n
≥M for all n ≥ N.

Intersecting these almost sure events for M = 1, 2, . . ., we conclude (4.53). Theorem 4.3
is proved.

4.4 Discussion of Theorem 4.1

There are several possible extensions of Theorem 4.1. Let us list some of them and then
discuss the constructiveness question in more details.

1. It is natural to expect a version Theorem 4.1 even if the entries of A are not identi-

cally distributed. Our argument relies on the identical distribution in several places,
including discretization arguments (proof of Theorem 4.6) and symmetrization (proofs
of Lemmas 4.10 and 4.11).

2. A version of Theorem 4.1 should hold for symmetric matrices A with independent en-
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tries on and above the diagonal. A simplest way to get this result would be to use
Theorem 4.1 to control the parts of A above and below the diagonal separately, and then
combine them. However, for this argument one would need a version of Theorem 4.1
for non-identical distributed entries.

3. It would be good to remove the logarithmic factor ln ε−1 from the bound in Theorem 4.1,
or to show that this factor is necessary. Such bound would be optimal up to an absolute
constant factor.

4. Finally, while Remark 4.2 states that the dependence on ε in Theorem 4.1 is optimal in
general, this dependence might be dramatically improved under a natural boundedness
assumption. Namely, suppose that the entries of A are O(

√
n) almost surely. (In fact,

most of the proof – until Section 4.2.4 – was done under this additional assumption.) In
this case, is the dependence of the norm on ε logarithmic in Theorem 4.1, i.e.

‖Ã‖ ≤ C ln(ε−1)
√
n? (4.54)

In fact, for the partial case of Bernoulli matrices such that np = c0 = const (where p
is a probability of a non-zero entry) this bound can be quickly deduced from Corollary
4.18.

Indeed, after renormalization that imposes matrix elements to have variance one (so
we deal with the scaled Bernoulli matrix with Bij = O(p−1/2)), we can see that such
matrices satisfy the boundedness assumption, as Bij = O(p−1/2) = O(

√
n/
√
c0) =

O(
√
n). Then, by Corollary 4.18 after a deletion of εn× εn submatrix we get a matrix

B̃ with all rows and columns having at most

21pn+ 4 ln ε−1 ≤ 100c0 ln ε−1

non-zero elements of order O(
√
n). Hence,

max
i,j

(
‖B̃i‖1, ‖B̃j‖1

)
.
√
n · ln ε−1.

Applying Lemma 2.19 leads to (4.54).

5. Theorem 4.1 does not indicate what sub-matrix should be removed to improve the norm;
it is rather an existential result. It would be nice to have an explicit description of a

submatrix to be removed.

The last question was resolved in some partial cases in the previous related work. For
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example, for Bernoulli random variables, a variant of Theorem 4.1 was proved by U. Feige
and E. Ofek [FO05]; see [LLV17] for an alternative argument and more general way to reg-
ularize such matrices. Suppose the entries of an n× n matrix B are independent Bernoulli
random variables with mean p ∈ (0, 1). If one removes the heavy rows and columns –
those containing more than 2pn ones, then the resulting matrix B′ satisfies the optimal
norm bound ‖B′ − EB′‖ = O(

√
pn). To see that this bound is consistent with that of

Theorem 4.1, divide both sides by
√
p to normalize the variance of the entries. Moreover,

one can quickly check using concentration that the number of heavy rows and columns in
B is typically small. With a little more work, one can even place all ones from the heavy
rows and columns into a small submatrix (see Lemma 4.17 and Section 5.2 below). Thus,
Feige-Ofek’s result is an example of Theorem 4.1, and in this example we actually have an
explicit recipe of regularization: removal of the heavy rows and columns. Note, however,
that the results of [FO05, LLV17] hold for symmetric matrices as well, while we do not
know how to immediately extend Theorem 4.1 for symmetric matrices (the requirement of
the identical distribution of entries of A prevents doing simple symmetrization tricks).

Weaker (constructive) versions of Theorem 4.1, with an additional factor log n in the
norm bound and weaker probability guarantees, can be derived from known general bounds
on random matrices, such as the matrix Bernstein’s inequality (Lemma 2.8). One would
apply the matrix Bernstein’s inequality for the entries truncated at level

√
n, and control

the larger entries as in Section 4.2.4.
In the next chapter we discuss several more approaches to a constructive “improvement”

of the random matrix structure, in particular, to the regularization of its operator norm.
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CHAPTER 5

Constructive regularization

One may naturally wonder what exactly causes the norm of a mean zero random matrix
A to be too large. A natural guess is that the only troublemakers are a few large entries
of A. Indeed, this is exactly how the necessity of the fourth moment for (4.1) was shown
in [BSY88, Sil89]. So we may ask – can we obtain a result like Theorem 4.1 simply by
zeroing out a few largest entries of A?

The answer is no. A counterexample is a sparse Bernoulli matrix A, whose i.i.d. entries
take values±

√
n with probability 1/2n each and 0 with probability 1−1/2n. It is not hard

to check that A is likely to have a row whose norm exceeds c
√
n log n/ log log n �

√
n,

and consequently we have ‖A‖ �
√
n. In other words, without removal of any entries the

norm of A is too large. However, if we are to remove any entries based purely on their
magnitudes, we must remove them all. (Recall that all non-zero elements of A have the
same magnitude

√
n.) But removal of all nonzero entries of A is not a local intervention,

since such entries can not be placed in a small submatrix (as we explained in Remark 4.2).

In Chapter 5 we will discuss some algorithms that bound the operator norm of a random
matrix, changing only a small fraction of the matrix entries. First, if the matrix entries have
more than two bounded moments, then the approach discussed above actually works: we
can zero out a few of the largest entries of the matrix A to make the norm O(

√
n). This is

demonstrated in Section 5.1.
Then, if the entries of the matrix are scaled Bernoulli random variables (e.g. like in

the counterexample above) a simple regularization procedure is possible: to ensure that
the norm is O(

√
n), it is enough to zero out (or otherwise reweigh) a small fraction of the

matrix rows and columns that have too many non-zero entries. This was proved earlier in
[FO05, LLV17]. In Section 5.2 we improve upon these results by showing how to construct
a small sub-matrix to zero out for the norm regularization. We also obtain a nice structural
description of the sub-matrix to be deleted (see Theorem 5.3).
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Finally, in Section 5.3 we state and prove the regularization algorithm that allows to
work with general matrices which entries have only two finite moments. It allows to bound
the norm to the order

√
log log n · n with high probability after zeroing out nε rows and

columns of the matrix for any ε > 0 of our choice (see Theorem 5.14).

5.1 More than two finite moments

Under slightly stronger moment assumptions than in Theorem 4.1, zeroing out a few large
entires does bring the norm of A down. The following result can be quickly deduced by
truncation from known bounds on random matrices such as [vH17a, Seg00, AT16].

Theorem 5.1 (2 + ε moments). For any ε ∈ (0, 1] there exists n0 = n0(ε) such that

the following holds for any n > n0(ε). Consider an n × n random matrix A with i.i.d.

mean zero entries which satisfy E|Aij|2+ε ≤ 1. Then, with the probability at least 1 −
2 exp(−nε/5), there exists a integer K ≤ n1−ε/9 such that the matrix Ã obtained by zeroing

out K largest entries of A satisfies

‖Ã‖ ≤ 9
√
n.

We will deduce Proposition 5.1 from the following general bound [BVH16, Remark 3.13]
(version for rectangular matrices):

Theorem 5.2 (Bandeira-van Handel). Let X be an n × n matrix whose entries Xij are

independent centered random variables. Then there exists for any ε ∈ (0, 1/2] a constant

cε such that for every t ≥ 0

P{‖X‖ ≥ (1 + ε)6σ + t} ≤ n exp(−t2/cεσ2
∗),

where

σ := max(σ1, σ2), where σ1 = max
i

∑
j

E(X2
ij), σ2 = max

j

∑
i

E(X2
ij);

σ∗ := max
ij
‖Xij‖∞.

Proof of Theorem 5.1. Let us call an entry Aij large if |Aij| > R := n1/2−ε/8, otherwise
call the entry small.

We claim that there are very few large entries with high probability, and we can check
this by the same argument as in Lemma 4.21. Indeed, the 2 + ε moment assumption and
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Chebyshev’s inequality give

P {Aij is large} = P {|Aij| > R} < 1

R2+ε
≤ 1

n1+ε/8
, (5.1)

where the last inequality follows by our choice of R. Thus the expected number of large
entries is at most n2/n1+ε/8 = n1−ε/8. A standard application of Chernoff’s inequality (see
e.g. [Ver16, Chapter 2]) gives

P
{
A has more than n1−ε/9 large entries

}
≤
(en1−ε/8

n1−ε/9

)n1−ε/9

,

which can be further bounded by exp(−n1/2) if n is sufficiently large in terms of ε. Hence
we can zero out all large large entries of A. It remains to show that the result of this
operation, which we denote by Ã, has norm at most 8

√
n with high probability.

For convenience, let us subtract the mean, and first bound

G := Ã− EÃ,

which is an n×n random matrix with independent mean zero entriesGij . By Theorem 5.2,
for any t > 0, we have

P{‖G‖ ≥ 7σ + t} ≤ n exp(−ct2/σ2
∗), (5.2)

where c > 0 is a constant and

σ2 := max

{
max
i

∑
j

E(G2
ij),max

j

∑
i

E(G2
ij)

}
, σ∗ := max

ij
‖Gij‖∞.

In our case,
EG2

ij = Var(Ãij) ≤ EÃ2
ij ≤ EA2

ij ≤ 1

(where we used the moment assumption) and

‖Gij‖∞ = ‖Ãij − EÃij‖∞ ≤ 2‖Ãij‖∞ ≤ 2R.

Hence
σ ≤
√
n and σ∗ ≤ 2R.
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Then, using (5.2) with t =
√
n, we conclude that

P{‖G‖ ≥ 8
√
n} ≤ n exp(−cn/4R2) ≤ exp(−nε/5) (5.3)

where the last inequality holds due to the definition of R, if n is sufficiently large in terms
of ε.

Finally, we need to bound the contribution of the mean EÃ which we subtracted in
defining G. This can be done by the exactly same argument as we used in the proof of
Theorem 4.1 in Section 4.2.4. We repeat it here for completeness. Note that all entries of
EÃ are the same, thus

‖EÃ‖ = n
∣∣EÃij∣∣ = n

∣∣E(Aij − Ãij)
∣∣ (since EAij = 0)

= n
∣∣EAij1|Aij |>R

∣∣ (by definition of Ã)

≤ n
(
EA2

ij

)1/2(P {|Aij| > R}
)1/2 (by Cauchy-Schwarz)

≤ n · 1 · n−1/2 ≤ n1/2, (5.4)

where we used the moment assumption and a weaker form of the bound (5.1).
Concluding, it follows from (5.3) and (5.4) that with probability at least exp(−nε/5),

we have
‖Ã‖ ≤ ‖Ã− EÃ‖+ ‖EÃ‖ ≤ 9

√
n.

The proof of Proposition 5.1 is complete.

5.2 Bernoulli random matrices and random graphs

Random matrices with the entries distributed as scaled Bernoulli distributed is an another
case when local regularization of the norm can be made in a simple constructive way.

We can view any symmetric n× n Bernoulli random matrix B as an adjacency matrix
of a random graph (on n vertices, so that the edge between i and j is present if and only
if Bij 6= 0). In this graph interpretation, to regularize the norm of the adjacency matrix
means to obtain a version of the original graph, for which certain graph algorithms (such as
spectral methods for community detection) are guaranteed to work with high probability.
This is why for the graph applications it is especially important to be able to regularize
operator norm of the matrix locally and constructively.

The main part of this section is Theorem 5.3. It justifies the work of the Adjacency
Matrix Decomposition algorithm, that finds a small sub-matrix of the original matrix (i.e.,
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a small sub-graph of the original random graph), which one needs to zero out for the norm
regularization. Another result of Theorem 5.3 is a description of the “bad” sub-graph to be
deleted. It turns out that, with high probability, one can direct the edges of this subgraph
without cycles, such that every its vertex will have constant outcoming degree.

We start the next section with a short overview of the norm regularization question in
the graph interpretation. Namely, we will discuss concentration on Erdős-Rényi graphs, its
connection to the graph density and to the number of bounded moments of the standardly
scaled adjacency matrix. Then we state Theorem 5.3 and Adjacency Matrix Decomposi-
tion algorithm. Then, in Section 5.2.3, we will discuss in more details the connection to
the earlier results, such as [LLV17, FO05]. After that, we will prove Theorem 5.3 in the
Section 5.2.4.

5.2.1 Concentration on random graphs

We consider random graphs generated from inhomogeneous Erdős-Rényi modelG(n, (pij)),
that is, every graph has exactly n vertices and the edges are formed independently with
given probabilities pij . This is a generalization of the classical Erdős-Rényi model G(n, p)

where all edge probabilities are equal to p.
One of the crucial applications of such random graphs is that they can be successfully

used to model large (non-random) networks. One can use this model to infer various net-
work properties, such as the network radius, the node degree distribution, or community
structure. These inference procedure will work only if a single realization of the network
(represented by the random adjacency matrix A) is close to the population mean, or the
true model, EA (which is not known). If A is close to EA, then the observed A retains
some good properties of EA (such as eigenstructure, necessary for the spectral methods,
or approximate block structure, revealing the communities within the network). Then the
algorithms that proved to work on EA will work almost as efficiently on A, the matrix that
we actually observe. See a survey [LLV18b] for much more detailed discussion of this
property, also called concentration of the random graph and its applications to the network
analysis.

Concentration of the random graph depends on a crucial parameter of the graph G,
namely its, generalized maximal expected degree

d := max
ij

npij.

Clearly, d measures expected sparsity of a random graph. It is known that if the graph is
dense (d is at least of order O(log n)), then the concentration usually takes place. Indeed,
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the adjacency matrix A of the graph G with d ≥ C log(n) satisfies with high probability

‖A− EA‖ = O(
√
d) (5.5)

(see [FO05, LR15]). The estimate (5.5) means concentration as soon as ‖EA‖ �
√
d.

Note that this is the case for the classical Erdős-Rényi model (if d = np, then ‖EA‖ = d)
and for all the cases when pij are of similar order (so that maximum in the definition of d
gives correct information about the expected degree of a vertex of G).

When d is less than O(log n) (graph G is too sparse) the estimate (5.5) does not take
place and there is no good concentration. In this case the natural question is whether and
how can we modify the original graph to achieve the same concentration for the regularized
version:

‖Ã− EA‖ = O(
√
d). (5.6)

Finally, consider for simplicity the standard Erdős-Rényi model G(n, p) and let us
normalize the adjacency matrix to have second moment one (the same scale we consider
throughout the majority of this text, including Theorems 4.1 and 4.3). ThenBij := Aij/

√
p

and EB2
ij = EA2

ij/p ∼ 1. Note that (5.6) is equivalent to the familiar bound

‖B̃ − EB‖ = O(
√
n),

and sparse regime d ∼ const corresponds to the case when p ∼ n−1, and EB2+ε
ij ∼ nε/2

unbounded for n → ∞ for any ε > 0. So, this is the case when the matrix elements have
exactly two finite moments.

Keeping this in mind, we will stick to the original (5.6) normalization until the end of
Section 5.2, as it is standard for the random graphs literature and was used in predecessor
results such as [LLV17, FO05].

5.2.2 Graph regularization theorem and Adjacency Matrix Decompo-
sition algorithm

We show that for the regularization (5.6) it is enough to delete a small sub-matrix A0 of
the adjacency matrix A, and that A0 itself has a reasonable structure. Let us give some
notations and then state our main decomposition theorem for random (adjacency) matrices.
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If A = (Aij)
n
i,j=1, then we denote

A \ A0 :=

0, if (i, j) ∈ A0;

Aij, otherwise.

By symmetric permutation (or symmetric swap) of the rows and columns of A we mean a
pair of permutations, exchanging i-th row with j-th row of A, and then i-th column with j-
th column. For two subsets of rows (and columns) we denote it {i1, . . . , ik} ↔ {j1, . . . , jk}.

Theorem 5.3. LetG = G(n, (pij)) be an inhomogeneous Erdős-Rényi graph and d denotes

its maximal expected degree d = max
ij

npij , d ≥ 5 and let r ≥ 1. Then for any n large

enough with probability at least

1− 6 · (10ne−d)−r (5.7)

there exists a symmetric permutation π(A) of the graph adjacency matrix A with the fol-

lowing structure:

(a) A top left s × s submatrix of A0 ⊂ π(A) has no more than 40r ones in each column

above its main diagonal (and, from symmetry, as well in every row to the left from

main diagonal), and s ≤ 10ne−d;

(b) All the rows and columns of π(A)\A0 have at most 12d ones. In particular, the matrix

π(A) concentrates on the complement of A0, namely,

‖π(A) \ A0 − EA‖ ≤ Cr3/2
√
d.

Remark 5.4. In the proof of Theorem 5.3 obtain the following probability estimate for the
good event:

1− 3 max{(10ne−d)−r, exp(−ne−d/4)}.

As it is shown in the end of Section 5.2.4 (proof of Theorem 5.3), the polynomial term
dominates if we can take any

n > 27r2ed. (5.8)

Note that inequality (5.8) is always satisfied for n large enough, given that d � log n.
Indeed, this implies 27r2ed � elogn = n. And for d & log n regularization is not needed,
since, as we mentioned above,

‖A− EA‖ = O(
√
d) as long as d = Ω(log n).
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Algorithm 1: Adjacency Matrix Decomposition
Input: A - symmetric n× n matrix with aij ∈ {0, 1}, d, r
Output: π(A) with the structure described in Theorem 5.3 and Figure 1
1. Find {i1, . . . , iξ1}— all the rows of A with more than 12d ones;

make a swap {i1, . . . , iξ1} ↔ {1, . . . , ξ1}
2. Find {i1, . . . , iξ2}— all non-empty columns inside the block {1, . . . , ξ1} × [n];

make a swap {j1, . . . , jξ2} ↔ {ξ1 + 1, . . . , ξ1 + ξ2}
Let A0 := A{1,...,ξ1+ξ2}×{1,...,ξ1+ξ2}. We expect to have concentration on A \ A0.
3. Set A′ := A0, k = 1.
4. While [A′ is not empty and k ≤ blog2(10ne−d)c] repeat

4a. Find {i1, . . . , im1}— all the rows of A′ with more than 40r ones;
make a swap {i1, . . . , im1} ↔ {1, . . . ,m1}

4b. A′ := {1, . . . ,m1} × {1, . . . ,m1},
k := k + 1

Table 5.1: Regularization algorithm

Finally, note that in the most interesting case when d is a large constant independent from
n (A is very sparse and yet the size of A0 is a very small fraction of n), n0 := 5r2ed is a
constant and it is enough to take n ≥ n0.

10ne−d

n

A01

A02

A \ A0

Figure 5.1: The adjacency matrix structure: short rows in A02, short columns in A01, concentration on the rest

Remark 5.5. A crucial feature of this theorem is that a symmetric permutation π(A) with
the claimed structure can be obtained in a constructive way for any sample graphG(n, (pij)),
see Adjacency Matrix decomposition Algorithm below. If A is an adjacency matrix of
a sample graph G taken form the probability model G(n, (pij)) with d being its maxi-
mal expected degree, then Theorem 5.3 justifies that the algorithm works with probability
1−O((ne−d)−r).
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Remark 5.6 (Graph interpretation). To conclude the first section, let us discuss what the
result of Theorem 5.3 means in terms of vertices and edges of the sample graphG = (V,E).
Assume thatGwas taken from the inhomogeneous Erdős-Rényi model and d is its maximal
expected degree.

Theorem 5.3 claims that with high probability G = (V,E) can be decomposed into two
subgraphs G1 = (V1, E1) and G2 = (V2, E2) in the following way.

Set of edges is decomposed into two non-intersecting subsets E = E1 t E2. Here,
E1 is a subset of the edges defined by A0 being symmetric sub-matrix of the adjacency
matrix of the graph (note that symmetric permutations of an adjacency matrix correspond
to enumerations of the graph vertices, i.e. they do not change the graph itself). We define
sets of vertices in a natural way:

V1 = {all ends of the edges in E1},

V2 = {all ends of the edges in E2}.

The subgraph G2 = (V2, E2) has all the vertices of degree at most 8d, and its adjacency
matrix satisfies concentration property (5.5). And the subgraph G1 = (V1, E1) is

• small: it has at most 10ne−d vertices, all in 1-neighborhood of ”heavy” vertices, that
is the vertices of G with the degree more than 12d,

• its edges can be directed without cycles, such that every vertex in G1 will have at
most 40r outcoming edges.

Indeed, Theorem 5.3 provides us with the ordering of vertices of G1 such that if we
direct the edges E1 according to this order, from smaller to larger index, every vertex will
have at most 40r outcoming edges. It is enough to note that the collection of ways to direct
the edges with respect to some enumeration coincides with the collection of ways to do it
cycle free (see, for example, [Koz12]).

5.2.3 Prior work on random graphs regularization

Originally, it was proved in [FO05], that given a random symmetric Bernoulli matrix, ze-
roing out all its rows and columns with more than O(d) non-zero elements brings the norm
of the matrix to the order O(

√
d). Here, d is expected number of the non-zero elements

in each row. In terms of random graphs, this means to delete all the edges adjacent to the
high-degree vertices. However, if high-degree vertices are exactly the “important” vertices
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of the graph, cutting all the edges adjacent to them might change the structure of the graph
too much.

The following more delicate regularization theorem was proved in [LLV17]:

Theorem 5.7 (Le-Levina-Vershynin). Consider a random graph from the inhomogeneous

Erdős-Rényi model G(n, (pij)), and let d = maxij npij . For any r ≥ 1, the following holds

with probability at least 1−n−r. Consider any subset consisting of at most 10n/d vertices,

and reduce the weights of the edges incident to those vertices in an arbitrary way. Let d′

be the maximal degree of the resulting graph. Then the adjacency matrix A′ of the new

(weighted) graph satisfies

‖A′ − EA‖ ≤ Cr3/2(
√
d+
√
d′).

Regularization procedure proposed by Theorem 5.7 is simple and flexible. Comparing
to the regularization we propose in Theorem 5.3, the disadvantage of our approach is that
we zero out a fraction of the entries, whereas Theorem 5.7 allows an arbitrary reweighing
of the matrix entries. However, Theorem 5.3 shows that we can localize all the required
changes to a small subgraph (which was not directly guaranteed by Theorem 5.7). Addi-
tional advantage of our result is the description of the “bad” submatrix A0.

The idea of our work was inspired by the following decomposition theorem, used for
the proof of Theorem 5.7 ([Theorem 2.6, [LLV17]]):

Lemma 5.8 (Adjacency Matrix Decomposition-1). Consider a random directed graph from

taken the inhomogeneous Erdős-Rényi model, and let d = max
ij

npij . For any r ≥ 1, with

probability 1−3n−r, we can decompose the set of edges [n]× [n] into three classesN,R,C

so that the following properties are satisfied for the adjacency matrix A:

1. The graph concentrates on N , namely, ‖(A− EA)N‖ ≤ Cr3/2
√
d.

2. Each row of AR and each column of AC has at most 32r ones.

Moreover, all elements of R are within at most n/d columns of A, and all elements of C

are within at most n/d rows of A.

In [LLV17] this theorem was used to identify the heaviest rows and columns of A (and
then bound norms of AR. AC and AH in the different ways). However, this result is
of independent interest, as it describes the structure of a random graph, in particular, of
its part containing the high-degree vertices. The disadvantage of Lemma 5.8 is that the
decomposition was obtained in a completely non-constructive way: it finds a block N ′
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such that the norm ‖(A − EA)N ′‖∞→2 concentrates, and then uses Grothendieck-Pietsch
factorization (see [Pie78, LT13] or [LLV17] for discussion) to conclude that the operator
norm concentrates on a large sub-matrices of N ′. The Grothendieck-Pietsch step makes it
impossible to actually find classes N , R and C for any given sample matrix.

Our proof uses the known regularization result (Theorem 5.7) to improve the descrip-
tion of the set of heavy vertices. The observation playing a crucial role in this improvement
is quite obvious by itself: with the high probability the quantity of heavy vertices of G
is much smaller than n/d used in Theorem 5.7. The main step of the construction (an
inductive decomposition procedure) is similar to the one used for the proof of Lemma 5.8.

Before we proceed to the proof, let us state an almost immediate corollary of the The-
orem 5.7 (effectively a version of the Theorem 5.7 that is convenient for us for the later
use):

Corollary 5.9. Let G = G(n, (pij)) be an inhomogeneous Erdős-Rényi model and d =

maxij npij . Then for any r, d ≥ 1 with the probability at least 1 − 2n−r the following

holds. Let us consider all the vertices of the graph with degrees larger than 12d and reduce

the weights of their vertices in arbitrary way such that all degrees become bounded by 12d,

then the adjacency matrix A′ of a new graph concentrates:

‖A′ − EA‖ ≤ Cr3/2
√
d.

To derive this corollary from Theorem 5.7 it is easy to check that there are at most
n/d rows having too many (more than 12d) non-zero elements with probability at least
1−n−r. We will use only a simple version of Corollary 5.9, when the reduction of weights
is performed by deletion of all edges adjacent to vertices with degrees more than O(d).

5.2.4 Proof of the Theorem 5.3

The proof of Theorem 5.3 is constructive: it follows the steps of the Adjacency Matrix
Decomposition algorithm (Table 5.1). First, we will prove three lemmas, estimating “prob-
ability losses” at Step 1, Step 2 and at one iteration of the Step 4 (see also Figure 2), and
then combine their results in the end of the section.

Lemma 5.10 shows that the number of high-degree vertices in G = G(n, pij) is at most
O(ne−d/d) with high probability (compare with n/d� ne−d/d that was used in [LLV17]):
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Lemma 5.10. Let A be an adjacency matrix of the graph G(n, pij) with the maximal ex-

pected degree d (i.e. d = maxnpij), assume that d ≥ 5. Then with the probability

1− 2 exp(−ne−d)

the number of the rows of A with more than 12d non-zero elements is at most ne−d/d.

Proof. By definition, A is a symmetric matrix such that all its entries below main diago-
nal are independent Bernoulli random variables. Then if we define A1 := (ãij)

n
i,j=1 and

A2 := (āij)
n
i,j=1 by

ãij =

0, if i < j;

aij, otherwise;

and

āij =

0, if i > j;

aij, otherwise;

then both A1 and A2 have independent entries and expected number of ones in any row of
A1 or A2 is at most d, as ∑

j

pijn ≤ max
j
pij · n = d.

Hence, by Chernoff’s inequality,

P{ a row of A1 has more than 6d ones } ≤
(
ed

6d

)6d

≤ e−4d.

Let χ1 be a set of rows of A1 with more than 6d ones, χ1 ⊂ {1, . . . , n}. Then

E{|χ1|} = E
n∑
i=1

1{ i-th row is in χ1 } = n · P{ i-th row is in χ } ≤ ne−4d.

Again, by Chernoff’s inequality,

P{|χ1| >
ne−d

2d
} ≤

(2ende−4d

ne−d
)ne−d/2d ≤ exp(−ne−d).

Similarly, if χ2 is a subset of rows A2, containing more than 6d ones, then

P{|χ2| >
ne−d

2d
} ≤ exp(−ne−d).

Hence, with probability 1− 2 exp(−ne−d) all but ne−d/d rows of A = A1 +A2 contain at
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most 12d ones.

As the conclusion of this lemma and Corollary 5.9, we expect to have concentration on
n(1 − e−d/d) × n(1 − e−d/d) sub-matrix A′. The next lemma shows that A \ A′ is very
sparse (regardless of the fact that it contains the heaviest rows and columns).

Lemma 5.11. Let A be an adjacency matrix of the graph G(n, pij) with the maximal ex-

pected degree d = maxnpij . Let d ≥ 5 and m = ne−d/d. Then with the probability

1− exp(−ne−d/4)

the following holds for allm×n blocks ofA. IfB = I×[n] is any such block (I ⊂ {1, . . . , n},
|I| = m), then its m× (n−m) part B \ (I × I) has at most 9ne−d non-empty columns.

Proof. Consider one m × n block B = I × [n] ⊂ A. Let B̄ = B \ (I × I), then B̄ has
independent entries and expected number of ones in every column of B̄ is at most e−d < 1.
Hence, by Chernoff’s inequality,

P{ a column in the block is non-empty} ≤ e

ed
≤ e1−d.

Let χB̄ be a set of non-empty columns in B̄, χB ⊂ {1, . . . , n} \ I (by definition of B̄ all
the columns in I are empty). Then

E{|χB̄|} = n · P{ i-th row is in χB̄ } ≤ n · e1−d.

Again, by Chernoff’s inequality and taking a union bound over all m× n blocks in A,

P{ there exists a m× n block A′ with |χA′ | > 9ne−d}

≤
(
n

m

)
· P{|χA′| > 9ne−d}

≤
(
n · ed
ne−d

)ne−d/d

·
(
e2

9

)9ne−d

≤ exp

[
ne−d

(
d+ 1

d
+

ln d

d
+ 18− 9 ln 9

)]
≤ exp(−ne−d/4),

for all d ≥ 5. Lemma 5.11 is proved.
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The next lemma uses the same technique as Lemmas 5.10 and 5.11. It is needed for the
inductive decomposition of the non-empty part of heavy columns into two parts (the one
with light rows and the one with light columns, see also Figure 3 below). It shows that with
high probability any small square sub-block of A has constant number of ones in half of its
columns.

Lemma 5.12. Let A be an adjacency matrix of the graph G(n, pij) with the maximal ex-

pected degree d = maxnpij , assume that d ≥ 5. Let k ∈ Z+ and we consider square

sub-matrices of the size 2mk × 2mk, where mk = b10ne−d2−kc. Let r ≥ 1. Then with the

probability

1− 2 · exp(−40 ln 2 · nrke−d2−k)

all 2mk × 2mk blocks of A have no more than mk columns with at least 40r non-zero

elements.

Proof. First, let us decompose A into the sum of two matrices (upper and lower triangular)
with independent entries, as we did in Lemma 5.10,A = A1+A2. Let us fix one 2mk×2mk

block A′ and estimate the expected number of heavy columns (i.e. containing at least 40r

non-zero elements) in A′ ∩ A1 and in A′ ∩ A2 separately.
Consider a fixed 2mk × 2mk sub-matrix. In both cases, the expected number of ones

in one column is at most 2mkp ≤ 20de−d2−k and probability that some column contains
more than 20r ones is bounded by Chernoff’s inequality by(

e · 20de−d2−k

20r

)20r

≤ d20re(1−d)20r2−20kr.

Let χA′1 be the set of columns in A′ ∩ A1 with more than 20r ones, χA′1 ⊂ {1, . . . , 2mk}.
Then

E{|χA′1|} ≤ 20ne−d2−k · d20re(1−d)20r2−20kr.

By Chernoff’s inequality again,

P{|χA′1| > mk/2} ≤ 1 · (4e · e(1−d)20r2−20krd20r)5ne−d2−k

.

Clearly, the same estimate holds for the heavy rows ofA′∩A2, so, if χA′ be a set of columns
in A′ with more than 40r ones, then

P{|χA′ | > mk} ≤ 2(4e · e(1−d)20r2−20krd20r)5ne−d2−k
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Now, taking a union bound over all 2mk × 2mk blocks in A,

P{ there exists a 2mk × 2mk block A′ with |χA′ | > 10ne−d2−k}

≤
(

n

2mk

)2

· P{|χA′ | > 10ne−d2−k}

≤ 2

[( n · e
20ne−d2−k

)8

· 4e · e(1−d)20r2−20krd20r

]5ne−d2−k

≤ 2

[
2k(8−16r) · 2−4kr 4e

208
e(1+d)8+(1−d)20rd20r

]5ne−d2−k

. (5.9)

We will use that
2−4kr 4e

208
e(1+d)8+(1−d)20rd20r ≤ 1

for any k ≥ 1, r ≥ 1 and d ≥ 5. Indeed, 4e8

208
< 1 and to check

exp(−4 ln 2kr + 8d+ 20r − 20dr + 20r ln d) ≤ 1

it is enough to show that

8d+ 18r − 20dr + 20r ln d ≤ 0 (5.10)

for r and d as considered (since −4 ln 2kr ≤ −2r for k ≥ 1). Finally, (5.10) is satisfied, as
for d ≥ 5

8d+ 18r − 20dr + 20r ln d ≤ 8d+ 18r − 20r(d− d/3))

= 8d+ 18r − 40/3dr

≤ (8− 40/3)dr + 18r

≤ (18− 16/3d)r < 0, (5.11)

as the product of a negative and a positive numbers.
Hence,

(5.9) ≤ 2
[
2k(8−16r)

]5ne−d2−k

≤ 2 exp[−40 ln 2rkne−d2−k].

This concludes the proof of Lemma 5.12.

Now we are ready to combine all probability estimates obtained to prove that Adjacency
Matrix Decomposition algorithm achieves the claimed results, i.e. to prove Theorem 5.3.

Proof of Theorem 5.3. First, let us find all the rows of A with more than 12d ones and
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perform a symmetric swap, placing then on the top of the matrix. Let {1, . . . , ξ1} be
their new indices. Then, consider columns of A that are non-empty within the block
{1, . . . , ξ1} × {ξ1 + 1, . . . , n}. Let us place them into positions {ξ1 + 1, . . . , ξ2} by an-
other symmetric swap. We define A0 := {1, . . . , ξ2} × {1, . . . , ξ2}.

ne−d/d

n

Step 1: heavy rows/columns are dashed

ne−d/d

9ne−d

n

0

0

Step 2: A0 is dashed

Figure 5.2: Construction of A0

So, all the rows and columns with the indices {ξ2 + 1, . . . , n} contain at most 10d ones
by construction, and this property will be preserved as all further symmetric permutations
will happen within rows and columns with the indices in {1, . . . , ξ2}. Hence, by Corol-
lary 5.9 we will have the concentration outside A0:

P{‖π(A) \ A0 − EA‖ > Cr3/2
√
d} ≤ 2n−r, (5.12)

so, condition (b) of Theorem 5.3 is satisfied.
Also note that with high probability the size ofA0 is at mostm×m, wherem = 10ne−d.

Indeed, consider exceptional events

Ẽ1 := {ξ1 > ne−d/d}, Ẽ2 := {ξ2 − ξ1 > 9ne−d}.

By Lemmas 5.10 and 5.11

P(Ẽ1) ≤ 2 exp(−ne−d), PẼ1(Ẽ2) ≤ exp(−ne−d/4),

and
P(ξ2 > 10ne−d) = P(Ẽ1 ∪ Ẽ2) ≤ 3 exp(−ne−d/4). (5.13)

To conclude the proof of Theorem 5.3 we just need to permute the rows and columns
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of A0 to satisfy the structure condition (a). We proceed with the algorithm: set A′ := A0,
find all the columns inA′ with more than 40r ones, make a symmetric swap assigning them
indices {1, . . . ,m1} (for some m1 ≤ m). Then note that due to the symmetry of A′, the
restriction A′ \ ({1, . . . ,m1} × {1, . . . ,m1}) already satisfies the structure condition (a).
So we redefine A′ to be just the exceptional minor, A′ := {1, . . . ,m1} × {1, . . . ,m1} and
repeat with the new A′ (see Figure 3 below).

m

≥ m
2

Step 1

m
2

Step 1 + symmetry

m
2

m
4

m
8. . .

Inductive steps

Figure 5.3: Inductive decomposition A0. Dotted lines – “light” rows or columns

By definition, the algorithm makes at most k = blog2(10ne−d)c steps and, clearly, in
the end condition (a) is satisfied for the matrix A0 \ A′. So, we just need to show that with
high probability A′ will be empty after k steps.

To estimate this probability, note that if the size of the matrixA′ decreases at least twice
at every step, then on the complement of Ẽ1 ∪ Ẽ2 we have as required: A′ = 0 after k steps.
Let us introduce several notations:

A′j := A′ after j steps of the algorithm.

So, we obtain a mj ×mj matrix A′j for j = 1, . . . , k. Let Ej be the j-th exceptional event:

Ej := { there are mj/2 columns with more that 40r ones in Aj }.

Then we need to bound P(E) = P(
⋃k
j=0 Ej). Note that on

⋂j−1
i=0 Eci the size ofAj is bounded

above mj ≤ 10ne−d2−j . So, by Lemma 5.12,

P(Ej ∩
j−1⋂
i=1

Eci ) ≤ 2 exp(−40 ln 2 · nrje−d2−j).
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Therefore, we can estimate the probability of the exceptional event

E :=
k⋃
j=1

Ej =
k⋃
j=1

(
Ej ∩

j−1⋂
i=1

Eci

)

using the union bound:

P(E) ≤ 2
k∑
j=1

exp(−40 ln 2 · rjne−d2−j).

Then, let us upper bound every member of the sum by the maximal one, which is the one
with j = k, since j·2−j is a decreasing function for j ∈ Z+. Recall that k = blog2(10ne−d)c.
So,

P(E) ≤ 2 log2(10ne−d)· exp(−40 ln 2 · rne−d log2(10ne−d)(10ne−d)−1)

≤ 2 log2(10ne−d) · exp(−4 ln 2 · r log2(10ne−d))

≤ 2
log2(10ne−d)

(10ne−d)2r

≤ 2

(10ne−d)r
. (5.14)

So, by (5.12), (5.13) and (5.14) we will get to an adjacency matrix satisfying both
conditions (a) and (b) after blog(10ne−d)c steps of the Algorithm 1 with the probability at
least

1− 2n−r − 3 exp(−ne−d/4)− 2(10ne−d)−r ≥ 1− 6 max{(10ne−d)−r, exp(−ne−d/4)}.

The polynomial term dominates as long as n is large enough, in particular, n > 27r2ed.
This follows from the fact that

(10m)r ≤ exp(m/4) (5.15)

when m = 27r2, and that the right hand side grows faster with m for m > 27r2. To check
(5.15), let us note that x > 8 lnx for x ≥ 27. As r ≥ 1, we have that 8 ln(27r) ≤ 27r,
thus, 8r ln(

√
270r) ≤ 27r2. Finally, this implies

r ln 10 · 27r2 ≤ 27r2

4
,

which is exactly (5.15) with m = 27r2. This concludes the proof of Theorem 5.3.
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5.3 General matrices with exactly two finite moments

Now, suppose that we have a general matrix with the entries having zero mean and finite
second moment (no specific distribution assumptions, or extra moments assumptions are
made). Theorem 4.1 does not provide an answer how to find the small submatrix to be
deleted – it is rather an existential result. So, what can we do to regularize the norm?

As it was already mentioned in the end of Section 4.4, it is easy to show that deletion
of the large entries regularizes the norm to the order

√
n · lnn. Indeed,

Lemma 5.13. Consider an n× n random matrix A with i.i.d. entries that have zero mean

and unit variance, and let ε ∈ (0, 1]. Then, for any c ≥ 1, with probability at least 1−4n1−c,

one can replace with zeros an εn×εn submatrix of A containing all elements Aij such that

|Aij| > 5
√
n√
ε

to get a matrix Ã with the norm

‖Ã‖ ≤ 10c

√
n√
ε
· lnn.

Proof. By Lemma 4.21, with probability 1− exp(−εn), all but εn entries of the matrix A
are large such that |Aij| ≤ 5

√
n√
ε

. Let us zero out an εn× εn submatrix containing all these
large entries. Let Ã be the resulting matrix.

Exactly in the same way as we have checked in the proof Theorem 4.1 in Section 4.2.4,
‖EÃ‖ ≤

√
n and by triangle inequality

‖Ã‖ ≤ ‖B‖+ ‖EÃ‖, where B := Ã− EÃ.

The matrix B has zero mean elements such that |Bij| ≤ 10
√
n√
ε

and EB2
ij ≤ 1 (also like in

the proof of Theorem 4.1). Note that

B =
∑
i,j

Eij,

where Eij are an n× n matrices with one non-zero element each:

Eij := (eijkl)
n
k,l=1 =

Bkl, if i = k, j = l

0, otherwise.

Let us apply matrix Bernstein concentration inequality (Corollary 2.9) to the
∑

ij E
ij . For
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r ≥ 1 (to be specified below), take t = r
√
n lnn, then

P

{∥∥∥∥∥∑
i,j

Eij

∥∥∥∥∥ ≥ r
√
n lnn

}
≤ 4n exp

(
− r2n ln2 n

3σ2 + 2
3
Kr
√
n lnn

)
,

where K = max ‖Eij‖ and σ2 = max
(∥∥∥∑ij EEij(Eij)T

∥∥∥ ,∥∥∥∑ij E(Eij)TEij
∥∥∥).

We have σ2 ≤ n as the elements of the matrices EEij(Eij)T and E(Eij)TEij are
EB2

ij ∈ [0, 1]. Also, K = ‖Eij‖ ≤ 10
√
n√
ε

, thus

P{‖B‖ ≥ r
√
n lnn} ≤ 4n exp(−r

√
ε

10
lnn).

Taking r = 10cε−1/2, we obtain

P

{
‖B‖ ≥ 10c

√
n√
ε

lnn

}
≤ 4n1−c.

This concludes the proof of Lemma 5.13.

We can also relax extra lnn to extra
√

ln lnn if we adopt more complex (but still local
and constructive) regularization procedure.

Theorem 5.14 (Constructive regularization). SupposeA is a random n×nmatrix with i.i.d.

symmetric entries Aij such that EA2
ij = 1. Let us denote 2−k-quantiles of the distribution

of |Aij| as

qk := inf{t : P{|Aij| > t} ≤ 2−k}. (5.16)

Let ε ∈ (0, 1/2) and Ã be the original matrix A after deletion of

• elements Aij such that |Aij| > qk1

• rows and columns of A that contain more than (cε2
−kn) elements such that

qk−1 < |Aij| ≤ qk for some k ≤ k1

where k1 = dlog2
25n
ε
e, cε = 50/ε. Then with probability 1 − 9n−9 the regularization

described above is local (changes at most 2εn rows 2εn columns), and

‖Ã‖ ≤ Ccε
√
n · ln lnn.

Here C > 0 is an absolute constant.

Theorem 5.14 will be proved in the next Section 5.3.1, followed by the discussion of
the Theorem 5.14 conditions and potential improvements in the Section 5.3.2.
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5.3.1 Proof of Theorem 5.14

General idea of our proof is the following. First, with high probability the regularization
procedure described does not change the entries Aij with |Aij| �

√
n/ lnn ∼ qk0 (Propo-

sition 5.15). So, the matrix S = Ã · 1{|Aij |≤qk0} has independent bounded entries and its
norm is O(

√
n). This is shown in Lemma 5.16 (with a simple application of Theorem 5.2).

Because we also zero out the large entries such that |Aij| ≥ qk1 , we are left to bound
M = Ã·1{qk0<|Aij |≤qk1}. For this part we use the proof strategy of Feige and Ofek (made for
Bernoulli random matrices, see [FO05, CRV15]). Entries at every “level” |Aij| ∈ (qk−1, qk]

are bounded by the entries of qk-scaled Bernoulli matrices. We bound the norm of each of
these Bernoulli matrices separately. Extra

√
ln lnn factor appears when we sum up ln lnn

levels.
We will need several auxiliary results for the proof of Theorem 5.14. The first one

checks that the regularization is likely to be local, and also does not change the entries in
A that are small enough:

Proposition 5.15. Let ε ∈ (0, 1/2). Suppose A is a random n×n matrix with i.i.d. entries

Aij such that EAij = 0, EA2
ij = 1. Let qk be the quantiles of the distribution of Aij defined

by (5.16) and

erowki := |j : |Aij| ∈ (qk−1, qk]| and ecolki := |j : |Aji| ∈ (qk−1, qk]|

be the number of entries on the level k in i-th row or column of A. Then, let

RK
heavy :=

∣∣{i : ∃k ∈ K, such that erowki > cε · 2−kn}
∣∣ ;

TKheavy :=
∣∣{i : ∃k ∈ K, such that ecolki > cε · 2−kn}

∣∣
denote the number of “heavy” rows and columns on the levels k ∈ K. Let k1 = dlog2

25n
ε
e

and k0 = blog2
c1n
lnn
c for some c1 < 1/12. With probability at least 1− 6n−10,

• RK
heavy < εn, TKheavy < εn for K = {k0 + 1, . . . , k1},

• RK
heavy = 0, TKheavy = 0 for K = {1, . . . , k0},

• |Aij : |Aij| > qk1| ≤ εn.

Proof. Fix a row i and a level k ∈ {k0+1, . . . , k1}. By Chernoff’s inequality (Lemma 2.10),

P{erowki > cε · 2−kn} ≤
(
e

cε

)cε2−kn

.
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Taking union bound over k = k0, . . . , k1,

P{∃k ∈ {k0 + 1, . . . , k1} : erowki > cε · 2−kn} ≤
k1∑

k=k0+1

(
e

cε

)cε2−kn

≤ 2 ·
(
e

cε

)cε2−k1n

≤ 2 ·
(
e

cε

)cεεn/50n

≤ 2 · eε
50

<
ε

4
,

if we take cε = 50/ε (we used that geometric series in k can be it estimates by its largest
term). Then,

E|{i : ∃k ∈ {k0 + 1, . . . , k1}, such that erowki > cε · 2−kn}| ≤
nε

4
.

Finally, by Chernoff’s inequality, for K = {k0 + 1, . . . , k1},

P{|RK
heavy| ≥ nε} ≤ (e/4)nε ≤ exp(−nε/2).

Clearly the same estimate is true for the heavy columns.
Now, for K = {0, . . . , k0} we can repeat almost the same argument:

P{∃k ∈ {0, . . . , k0} : erowki > cε · 2−kn} ≤
k0∑
k=0

(
e

cε

)cε2−kn

≤ 2 ·
(
e

cε

)cε2−k0n

≤ 2 ·
(eε

50

)50 lnn/c1ε

≤ n−11

for n large enough.

E|{i : ∃k ∈ {0, . . . , k0}, such that erowki > cε · 2−kn}| ≤ n−10,

then, for K = {0, . . . , k0},
P{|RK

heavy| ≥ 1} ≤ en−10

Clearly the same estimate is true for the heavy columns. Finally, with probability at least

1− 2en−10 − 2 exp(−nε/2) ≥ 1− 6n−10

all four good events hold.
Then, note that P{|Aij| > qk1} = 2−k1 ≤ ε

25n
. Then exactly the same argument as

in Lemma 4.21 (the part of proof of Theorem 4.1 for very large entries) implies that with
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probability at least 1− e−εn matrix A3 contains at most εn non-zero entries.

The following lemma checks that the matrix A restricted to the small enough entries
has a norm of order

√
n:

Lemma 5.16. Suppose A is a random n × n matrix with symmetric i.i.d. entries Aij such

that EA2
ij = 1. Let qk be 2−k-quantiles of the distribution of |Aij| defined by (5.16). Let S

contains the entries of A that satisfy |Aij| ≤ qk0 , where k0 := blog2
c1n
lnn
c with some positive

constant c1 small enough. Then with probability at least 1− n−9 we have

‖S‖ ≤ 8
√
n.

Proof. Note that

P{|Aij| > qk0} = 2−k0 ≥ lnn

c1n
≥ P

{
|Aij| >

√
c1n

lnn

}
,

so, all the elements in S are such that |Aij| ≤ qk0 ≤
√
c1n/ lnn. Then the norm of S can

be estimated by Bandeira-van Handel Theorem 5.2, exactly in the same way it was done in
the proof of Theorem 5.1 (with K :=

√
c1n
lnn

).
The application of Theorem 5.2 with t =

√
n gives

P{‖A1‖ ≥ 8
√
n} ≤ n exp(− c

4c1

lnn) ≤ n · n−10 = n−9,

if we take any c1 ≤ c/40 (c here is a constant defined by Theorem 5.2).

To bound the norm of the rest, we will use several known results for Bernoulli random
matrices. The following two lemmas are the versions of [Lemma 22, [CRV15]], in modi-
fication from the proof of [Lemma 12, [CRV15]], and [Lemma 22, [CRV15]]. Originally
they were proved in [FO05] for symmetric Bernoulli matrices – adjacency matrices of the
random graphs – but their proofs follow without modifications for the non-symmetric case.

Lemma 5.17. Let B be a n × n Bernoulli 0-1 matrix with P{Bij = 1} = p. Let B̃ be

the matrix obtained from B by zeroing out some rows and columns of B, such that B̃ has

at most C0np positive entries in every row and column. Let e(S, T ) :=
∑

i∈S,j∈T B̃ij (i.e.

number of non-zero elements in the submatrix spanned by S × T ).

Then with probability at least 1− n−10 for any S, T ⊂ [n] one the following holds:

(A) e(S, T ) ≤ C1|S||T |p, or
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(B) e(S, T ) · log
(
e(S,T )
|S||T |p

)
≤ C2|T | log

(
n
|T |

)
,

where C1 and C2 are constants independent from S, T and n. Moreover, C2 is independent

from C0 and C1 = C0 · e.

The second lemma is a deterministic statement. It shows that bounded rows and columns,
and one of the two tail conditions (A) or (B) are enough to bound the quadratic form 〈Bu, v〉
for all unit vectors u and v:

Lemma 5.18. Let B be an n × n matrix with 0-1 elements and p > 0, such that every its

row and column contains at most C3np ones and for any S, T ⊂ [n] either condition (A) or

(B) (from Lemma 5.17) holds . Then for any u, v ∈ Sn−1

∑
i,j:|uivj |≥

√
p/n

Bij|uivj| ≤ C5.18
√
np,

where C5.18 = C(C0, C1, C2, C3). In particular, C5.18 ≤ 8e · C0.

The next lemma is a version of [Claim 2.7, [FO05]]. Original claim bounds a con-
tribution of the “light couples” to the quadratic form

∑
ij∈LMijuivj , where Mij were

Bernoulli random variables, u = (ui)
n
i=1 and v = (vj)

n
j=1 were some fixed unit vectors,

and L := {i, j ∈ [n] : |uivj| ≤ 1/
√
n}. In our version Mij are no longer Bernoulli, so the

definition of the “light couples” would depend on the absolute values |Mij|.
The possibility of additional conditioning on an index subset Q will be explored later

when we apply Lemma 5.19 to the regularized matrix (with some rows and columns
deleted).

Lemma 5.19. Consider an n × n random matrix M with independent symmetric entries

and EM2
ij ≤ 1. Consider two vectors u = (ui)

n
i=1 and v = (vj)

n
j=1 such that u, v ∈ Sn−1.

Denote the eventMlight
ij = {|Mij||uivj| ≤

√
2/n} and Q ⊂ [n] × [n] is an index subset.

Then for any constant C ≥ 2

|
∑
ij

uiMij1{(i,j)∈Q}1Mlight
ij

vj| ≤ C
√
n

with probability at least 1− 2 exp(−Cn/2).

Proof. Let Rij := Mij1{(i,j)∈Q}1Mlight
ij

. Note that Rij are centered due to the symmetric
distribution of Mij , and they are independent as Mij are. So we can apply Bernstein’s
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inequality for bounded distributions (Lemma 2.7) to bound the sum:

P{|
∑
ij

uiRijvj| ≥ t} ≤ 2 exp

(
− t2/2

σ2 +Kt/3

)
,

where
K = max

i,j
|uiRijvj| ≤

√
2/n and σ2 =

∑
ij

E(uiRijvj)
2.

Note that ER2
ij ≤ EM2

ij , as R2
ij ≤M2

ij almost surely, and EM2
ij ≤ 1. So,

σ2 =
∑
ij

u2
iER2

ijv
2
j ≤

∑
i,j

u2
i v

2
j = 1,

as
∑

i u
2
i =

∑
j v

2
j = 1. So, taking t = C

√
n, we obtain

P{|
∑
(i,j)

uiMij1{(i,j)∈Q}1Mlight
ij

vj| ≥ C
√
n} ≤ 2 exp(−Cn/2)

for any C ≥ 2. This concludes the statement of the lemma.

Finally, we will use the following simple lemma about the rate of growth about of the
2−k-quantiles of |Aij|.

Lemma 5.20. For every “level” k = 0, . . . , k1 we have

qk ≤ 2(k+1)/2 (5.17)

Proof. Indeed, we can trivially estimate

A2
ij ≥

k1+1∑
k=1

q2
k−11{|Aij |∈(qk−1,qk]}.

Hence, due to the moment condition EA2
ij = 1,

1 = EA2
ij ≥

k1+1∑
k=1

q2
k−12−k =

k1∑
k=0

q2
k2
−k−1.

Multiplying each side by to, we have an estimate for the sum

k1∑
k=0

q2
k2
−k ≤ 2. (5.18)
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As all the term are non-negative, for any k = 0, . . . , k1 we have

qk2
−k/2 ≤

√√√√ k1∑
k=0

q2
k2
−k ≤

√
2.

This proves Lemma 5.20.

Now we are ready to combine these results to prove the key part of Theorem 5.14: the
bound for the norm M̃ = Ã · 1{qk0<|Aij |≤qk1}.

Proposition 5.21. Suppose A is a random n × n matrix with i.i.d. symmetric entries Aij
with EA2

ij = 1. Let qk be 2−k-quantiles defined by (5.16) and let Ã be its regularized

version after we deleted rows and columns that contain more than (cε2
−kn) elements such

that qk−1 ≤ |Aij| < qk for some k ∈ {k0 + 1, . . . , k1}. Here cε = 50/ε, k0 := blog2
c1n
lnn
c

(for c1 defined in Lemma 5.16) and k1 = dlog2
25n
ε
e. Let

M̃ := Ã · 1{|Ãij |∈(qk0 ,qk1 ]}.

Then with probability at least 1− 2n−9 we have

‖M̃‖ ≤ Cε
√
n ln lnn.

Here, Cε = C · cε where C is an absolute constant.

Proof. Step 1. Net approximation.
Let N be a 1/2-net on Sn−1 with cardinality |N | ≤ 5n (the existence of such net is a

standard fact that can be found, e.g. in [Ver16]). We will use a simple net approximation
of the norm (see, e.g. [Lemma 4.4.1, [Ver16]]), namely,

‖M̃‖ ≤ 4 max
u,v∈N

〈M̃u, v〉 = 4 max
u,v∈N

|
∑
ij

M̃ijuivj|.

We will split the sum into two parts and bound each of them separately (this part is a variant
of Feige and Ofek argument, presented in [FO05, CRV15]), based on the absolute value of
the element. Let M := A · 1{|Aij |∈(qk0 ,qk1 ]}.

For any fixed u, v ∈ N and every i, j ∈ [n] we can define an event

Mlight
ij = {|Mij||uivj| ≥

√
2/n}.
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Then,

max
u,v∈N

|
∑
ij

M̃ijuivj|

≤ max
u,v∈N

|
∑
ij

M̃ij(1Mlight
ij

+ 1(Mlight
ij )c)uivj|

≤ max
u,v∈N

|
∑
ij

M̃ij1Mlight
ij

uivj|+ max
u,v∈N

|
∑
ij

M̃ij1(Mlight
ij )cuivj|.

Step 2. Light members.
By Lemma 5.19, for any fixed u, v ∈ Sn−1 and a fixed subset of indices Q (assuming

that Qc is a set of rows and columns to delete),

|
∑
ij

uiMij1{(i,j)∈Q}1Mlight
ij

vj| > 12
√
n (5.19)

with probability at most 2 exp(−6n). Now, taking union bound over 5n choices for u, as
many choices for v, and 22n choices for the row and column subset Qc, we obtain that

P{|
∑
ij

uiM̃ij1Mlight
ij

vj| ≤ 12
√
n} ≥ 1− 2 exp(−n). (5.20)

Step 3. Other members.
The second term can be roughly bounded by the sum of absolute values:

|
∑
ij

M̃ij1(Mlight
ij )cuivj|

≤
∑
ij

|M̃ij|1(Mlight
ij )c |uivj|

≤
∑
ij

(

k1∑
k=k0+1

qk1{|M̃ij |∈(qk−1,qk]})1{|Mij ||uivj |≥
√

2/n}|uivj|

Note that as long as 1{|M̃ij |∈(qk−1,qk]} = 1 we also have that |Mij| ≤ qk. Indeed, |Mij| > qk

implies either |M̃ij| > qk or |M̃ij| = 0. In any case, |M̃ij| /∈ (qk−1, qk]. So, the last
expression is bounded above by

∑
ij

k1∑
k=k0+1

qk1{|M̃ij |∈(qk−1,qk]}1{qk|uivj |≥
√

2/n}|uivj|
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Using Lemma 5.20, we can further estimate

1{qk|uivj |≥
√

2/n} ≤ 1{2(k+1)/2|uivj |≥
√

2/n} = 1{|uivj |≥
√

2−k/n}.

As a result, we got

|
∑
ij

M̃ij1(Mlight
ij )cuivj| ≤

k1∑
k=k0+1

qk
∑

ij:|uivj |≥
√

2−k/n

1{|M̃ij |∈(qk−1,qk]}|uivj|. (5.21)

Step 4. Bernoulli matrices. For each “level” k = k0 + 1, . . . , k1 let us define a matrix

Bk = (Bk
ij)

n
i,j=1 := 1{|Mij |∈(qk−1,qk]}

It has independent Bernoulli entries with EBk
ij = 2−k. Note that the matrix

B̃k = (B̃k
ij)

n
i,j=1 := 1{|M̃ij |∈(qk−1,qk]}

is obtained fromB by zeroing out some rows and columns, such that new maximal degree is
at most cεn2−k. So, we can apply Lemma 5.17 to B̃k to conclude that one of the conditions
on the number of ones in sub-blocks (A) or (B) holds with probability at least n−10.

So, with probability at least 1 − n−10|k1 − k0| we can apply Lemma 5.18 to every B̃k

with k = k0 + 1, . . . , k1. Which means that by Lemma 5.18,∑
ij:|uivj |≥

√
2−k/n

B̃k
ij|uivj| ≤ C5.18

√
2−kn for every k = k0 + 1, . . . , k1. (5.22)

Step 5. Conclusion. Note that the number of terms in the sum

|k1 − k0| ≤ log2

25n

ε
− log2

c1n

lnn
+ 2 ≤ 2 log2 lnn (5.23)

for all large enough n.
So, we can combine the estimates (5.21) and (5.22) to claim that with probability at

least 1− 2n−10 log2 lnn ≥ 1− n−9

|
∑
ij

M̃ij1(Mlight
ij )cuivj| ≤ C5.18

k1∑
k=k0

qk
√

2−kn.

To estimate right hand side, recall that C5.18 ≤ 8ecε. Also, by Cauchy-Schwarz, (5.18) and
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the number of terms estimate (5.23), we have that

k1∑
k=k0

qk
√

2−k ≤

√√√√ k1∑
k=k0

q2
k2
−k

√√√√ k1∑
k=k0

1 ≤ 4
√

ln lnn.

Finally, combining this with the estimate for the light part (5.20), we get

‖M̃‖ ≤ 12
√
n+ 4C5.18

√
n · ln lnn . cε

√
n · ln lnn

with probability at least 1− 2e−n − n−9 ≥ 1− 2n−9 for all n large enough.

Proof of Theorem 5.14. Decompose A into a sum of three n × n matrices with disjoint
support,

A = S +M + L,

where S contains the entries of A that satisfy |Aij| ≤ qk0 , the matrix M contains the entries
for which qk0 < |Aij| ≤ qk1 , and L contains large entries – those satisfying |Aij| > qk1 .
Here, qk0 and qk1 are quantiles of the distribution of Aij , defined by (5.16), and k0 :=

blog2
c1n
lnn
c (with a small constant c1 defined in the Lemma 5.16), k1 = dlog2

25n
ε
e.

By Lemma 5.15, there is an event E (with P{E} ≥ 1− 6n−10), on which a) the regular-
ization procedure of Theorem 5.14 is local (changes at most εn rows, εn columns and εn
entries of A) and b) S does not have rows or columns that are too “heavy”.

Hence, when E holds, the regularization does not touch the elements of S, deletes the
heavy rows and columns in M (let us call the resulting matrix M̃ ) and completely zeroes
out L, as all its non-zero entries are greater than qk1 . So,

Ã = S + M̃,

Now we are going to estimate the norms of S and M̃ separately. Elements of S are
independent (since they are obtained by independent individual truncations from the i.i.d.
elements Aij) and have zero mean (since Aij have symmetric distribution). So, we can
apply Lemma 5.16 to conclude that

P{‖S‖ > 8
√
n} ≤ n−9.

Finally, the norm of M̃ is estimated in Proposition 5.21. We proved that

P{‖Ã2‖ > Ccε
√
n · ln lnn} ≤ 2n−9.
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Hence, we have that
‖Ã‖ . cε

√
n · ln lnn

and the regularization process described in Theorem 5.14 is local with probability at least
1− 6n−10 − n−9 − 2n−9 ≥ 1− 9n−9. Theorem 5.14 is proved.

5.3.2 Discussion of Theorem 5.14

Dependence on ε

Theorem 5.14 shows that
‖Ã‖ ≤ Ccε

√
n · ln lnn.

with cε = 50/ε. Thus, the dependence of the resulting matrix norm on the fraction of the
entries to be deleted is of order 1/ε. This is worse than order ln ε−1/

√
ε dependence (that

we obtained in Theorem 4.1), and, of course, 1/
√
ε (that we conjectured in Remark 4.2 as

optimal).
However, with a slightly more complex version the algorithm presented in Theorem 5.14

the norm can be locally regularized to the order c′ε
√

log log n · n with

c′ε =
ln(ε−1)√

ε
.

Namely, we could do the same rows and columns regularization as described in Theo-
rem 5.14 with cε ∼ ln(ε−1), only up to the level qk2 with k2 = dlog2

n
4
e. For the entries Aij

such that |Aij| ∈ (qk2 , qk1 ] we would need to do a separate regularization procedure, like the
one we used in Section 4.2.3. Considering the rows of A with more than c2−k2n+ 2 ln ε−1

elements such that qk2 < |Aij| ≤ qk1 , we can prove that with highh probability they do not
have more than O(εn) such elements collectively. As in Lemma 4.17, deletion of all such
elements achieves the norm of order

√
n ln(ε−1)/

√
ε.

We will still have extra
√

ln lnn factor from the estimate for Aij such that |Aij| ≤ qk2 .
So, we decided to concentrate on simpler regularization algorithm in Theorem 5.14, as the
ε-dependence loss is still negligible comparing with the extra

√
ln lnn term.

Dependence on n

The main disadvantage of our result is, of course, that the resulting norm ‖Ã‖ �
√
n.

The reason for the extra n-dependent term is that in the proof we consider restrictions of A
to the discretization “levels” independently, and independently estimate their norms. The
second moment assumption gives us that

∑
q2
k2
−k ∼ 1. However, the best we can hope for
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a norm of one “level” (after proper regularization) is qk
√
n2−k (since this is an expected

L2-norm of a restricted row). Thus, we end up summing square roots of the converging
series,

∑
qk2
−k/2, which can be as large as square root of the number of summands (ln lnn

in our case).

Symmetry assumption

Another additional condition we have is symmetric distribution of the entries. We use
this to keep zero mean after various truncations by absolute value. A simple argument
that helped us before to claim that the mean cannot change too much in truncation (e.g.
in the proof of Theorems 4.1 and 5.1) does not work when the level of truncation is low
enough (like we have in Lemmas 5.16 or 5.19). The standard symmetrization techniques
also would not work since we combine the convex norm function with truncation (zeroing
out of some rows), which is not convex. But it is likely that some regularization procedure
(in flavor of the one we used in Theorem 3.11 and 4.13 for ‖.‖∞→2) would work for the
Theorem 5.14.

Conjectured optimal regularization

Finally, what would be an ideal conjectured way to locally regularize the norm? Clearly,
we have to delete all the rows and columns with L2-norm greater than

√
n. Is this enough?

A result by Seginer ([Seg00]) shows that in expectation the norm of the matrix with
i.i.d. elements is bounded by the largest norm of its row or column. However, note that
after cutting “heavy” rows and columns we lose independence of the entries in the resulting
matrix, so the result of Seginer cannot be directly applied.

It would be desirable to remove extra
√

log log n term, and to simplify the regularization
procedure in the Theorem 5.14, proving something like the following

Conjecture 5.22. Consider an n× n random matrix A with i.i.d. mean zero variance one

elements. Let Ri(A) and Ti(A) denote the i-th row and column vector of the matrix A

respectively. Let Ã be the matrix that obtained from A by zeroing out all rows and columns

such that

‖Ri(A)‖m ≥ CE‖Ri(A)‖m, ‖Ti(A)‖m ≥ CE‖Ti(A)‖m (5.24)

for some Lm-norm to be specified (e.g. m = 2).

Then with probability 1− o(1) the operator norm satisfies ‖Ã‖ ≤ C ′
√
n.
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CHAPTER 6

Further directions

In the end of the Chapter 5 we discussed an open question regarding constructive regu-
larization of the norms of the square matrices with i.i.d. entries having exactly two finite
moments. In this chapter we would like to collect several more open questions related to
the work described in this thesis.
• Optimal moment assumptions. The key step of our proof of the heavy-tailed in-

vertibility theorem (Theorem 3.2 – construction of the universal covering) requires finite
second moment assumption. But it is an open question to identify an optimal moment con-
dition for the invertibility estimate (1.5) for square random matrices having i.i.d. elements.

For example, in the case of random rectangular matrices prior work [LPRTJ05, RV09]
was extended by K. Tikhomirov ([Tik16]) to the matrices with no assumptions on moments
at all. However, this argument works only for the matrices of the size m × n such that
m ≤ δn for some constant δ < 1.
• Intermediate singular values. The work discussed above, in particular, answers the

question if smin and smax typically have the same order as in “ideal” gaussian case: for
smin = sn the answer is “yes,” and for smax = s1 the answer is “no” (but local regulariza-
tion is possible).

It would be interesting to know the answer for the other sk, 1 < k < n. The distribution
of all sk for “ideal” square matrices is known: sk ∼ n+1−k√

n
(see [Sza90] for the Gaussian

case, [RV09] and [Wei17] imply the same estimate for subgaussian under an additional
mild assumption). Is there a threshold k0, such that for k > k0 the order of sk stays the
same for the heavy-tailed matrices, and for k < k0 it is not? How does the size of the
submatrix to be deleted depend on k > 1? One way to approach this question is try to
combine refined net and regularization techniques developed in [RV18, RT15] with the
analysis of the projections onto subspaces in the flavor of [Wei17].
• Non-identically distributed entries. We use the i.i.d. entries assumption in Theo-

rem 1.1 several times, in particular, adopting from [RV08] the small ball probability esti-
mate via LCD (least common denominator is a notion that measures the additive structure
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of the vector). One approach to relax identical distribution condition is is to generalize the
notion of LCD of a vector to the several not identically distributed vectors, and prove a new
small ball probability estimate with it. For example, this can be done in a simple partial
case of several Bernoulli vectors.

The lower bound for smin for the matrices with the non-identically distributed entries
would help, in particular, to improve probability estimates for the sparse random matrices
(in continuation of the work [LR11]).
• Restricted singular values Another objects to look at are restricted singular values.

For example, smallest singular value of an m× n matrix A restricted on a closed T ⊂ Rn

is defined geometrically as
smin(A;T ) := inf

x∈T
‖Ax‖2.

In their recent paper Tropp and Oymak ([OT15]) employ Lindeberg’s technique ([Lin22])
to bound a restricted smallest singular value of the matrices with no identical distribution
assumed:

|smin(A;T )− (Em(T ))+| �
√
m+ n

with high probability. Here, Em(T ) is a m-excess width of the set T :

Em(T ) := Emin
t∈T

(
√
m+ g · t/‖t‖),

where g ∼ N(0, I).
This work requires at least fourth finite moment of the entries Aij as well as indepen-

dence of the entries. It is interesting to relax moment conditions required to make a high
probability estimate, as well as allow some dependence (for example, to assume isotropic
rows).
• Markov matrices An interesting matrix associated with the Erdös-Rényi random

graph is Markov kernel matrix that was recently studied in the works of Chafaı̈, Bordenave,
Caputo, and Piras (see [BCCP17, BCC12]).

Markov matrix is a transition probability matrix for a random walk on the underlying
graph, for example, an Erdös-Rényi random graph. A natural way to define it is to take
(Xjk)j,k>1 independent identically distributed non-negative random variables (under cer-
tain regularity conditions), then M is the n × n random Markov matrix with i.i.d. rows
defined by Mjk = Xjk/(Xj1 + . . . + Xjn). The paper [BCC12] studies the properties of
the limiting empirical measure of the eigenvalues of M , which is, informally, character-
izes the behavior of the random walk in the long run. The results obtained are based on a
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non-asymptotic estimate for N :

P{smin(
√
nM − z Id) ≤ n−b} ≤ n−a, (6.1)

where |z| ≤ C and a, b, C > 0 are the absolute constants. This is an invertibility estimate of
the type obtained in Theorem 3.1, valid for a broader class of matrices (with dependencies
and shift). At the moment, (6.1) is proved under condition that elements Mij have bounded
density, which automatically implies that underlying Erdös-Rényi graph has to be complete.
The authors believe that a similar estimate should hold without boundedness condition, and
clearly it would be good to extend the results for the case of non-complete (potentially,
sparse) random graphs.
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