
Methods for Clustered Competing Risks Data and
Causal Inference using Instrumental Variables for

Censored Time-to-event Data

by

Sai Hurrish Dharmarajan

A dissertation submitted in partial fulfillment
of the requirements for the degree of

Doctor of Philosophy
(Biostatistics)

in The University of Michigan
2018

Doctoral Committee:

Professor Douglas E. Schaubel, Chair
Research Assistant Professor Kevin He
Professor Jack D. Kalbfleisch
Professor Rajiv Saran



Sai H. Dharmarajan

shdharma@umich.edu

ORCID iD: 0000-0002-9287-5810

c© Sai H. Dharmarajan 2018



To my parents and my sister

ii



ACKNOWLEDGEMENTS

First and foremost I would like to thank my advisor, Prof. Douglas Schaubel, for

being an incredible mentor and guide. I am extremely grateful for his unflinching

support and patience over the last four years.

I would like to thank Prof. Kevin He, Prof. Jack Kalbfleisch and Prof. Rajiv

Saran for taking the time to serve on my dissertation committee as well as reading

this dissertation thoroughly and providing valuable feedback to improve its quality.

I would like to thank the many friends I’ve met over the past five years, for making

my graduate school experience memorable and ensuring that I’ll look back fondly on

the time I spent in the city of Ann Arbor. I would like to thank Tingting for being

supportive and bringing cheer always. Finally, I would like to thank my family for

their encouragement, inspiration and constant support. I dedicate this dissertation

to them.

iii



TABLE OF CONTENTS

DEDICATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii

ACKNOWLEDGEMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . iii

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi

LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii

LIST OF APPENDICES . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix

ABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . x

CHAPTER

I. Evaluating center performance in the competing risks setting:
Application to outcomes of wait-listed end-stage renal disease
patients . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Proposed Methods . . . . . . . . . . . . . . . . . . . . . . . . 4

1.2.1 Model and Likelihood . . . . . . . . . . . . . . . . . 4
1.2.2 Estimation . . . . . . . . . . . . . . . . . . . . . . . 6
1.2.3 Center Effect Measures: Cumulative Incidence . . . 10
1.2.4 Estimating Center Effects . . . . . . . . . . . . . . . 11

1.3 Score test of Correlation of Cause-specific Hazards . . . . . . 12
1.3.1 Correlation Score Test . . . . . . . . . . . . . . . . 14

1.4 Simulation Studies . . . . . . . . . . . . . . . . . . . . . . . . 14
1.5 Application . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
1.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

II. A semiparametric mixture component model with random
effects for the analysis of clustered competing risks data . . . 26

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
2.2 Setup and Model . . . . . . . . . . . . . . . . . . . . . . . . . 30

iv



2.3 Inference Procedures . . . . . . . . . . . . . . . . . . . . . . . 33
2.3.1 Estimation of Marginal Model Parameters . . . . . 33
2.3.2 Estimation of Dependence Parameters . . . . . . . . 35
2.3.3 Variance Estimation using perturbation resampling 36

2.4 Simulation Studies . . . . . . . . . . . . . . . . . . . . . . . . 38
2.5 Application . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
2.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

III. Weighted estimators of the complier average causal effect
on restricted mean survival time with observed instrument-
outcome confounders . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
3.2 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.2.1 Notation . . . . . . . . . . . . . . . . . . . . . . . . 48
3.2.2 Assumptions . . . . . . . . . . . . . . . . . . . . . . 50
3.2.3 Weighting . . . . . . . . . . . . . . . . . . . . . . . 51
3.2.4 Estimation . . . . . . . . . . . . . . . . . . . . . . . 53
3.2.5 Asymptotic Properties . . . . . . . . . . . . . . . . 55

3.3 Simulation Studies . . . . . . . . . . . . . . . . . . . . . . . . 57
3.4 Application . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
3.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

IV. Instrumental variable estimators of exposure effects for com-
peting risks data . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
4.2 Setup and Model . . . . . . . . . . . . . . . . . . . . . . . . . 70
4.3 Inference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

4.3.1 Estimation . . . . . . . . . . . . . . . . . . . . . . . 75
4.3.2 Variance Estimation using perturbation resampling 78

4.4 Simulation Studies . . . . . . . . . . . . . . . . . . . . . . . . 79
4.5 Application . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
4.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

APPENDICES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

BIBLIOGRAPHY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

v



LIST OF FIGURES

Figure

1.1 Analysis of Scientific Registry of Transplant Recipients (SRTR) Data:
Caterpillar Plots of Excess Cause-specific Cumuluative Incidence of
Death and Kidney Transplantation for 58 Organ Procurement Orga-
nizations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

4.1 Cumulative Incidence of death from CVD by dialysis modality, in the
first 4.5 years after initiation of dialysis . . . . . . . . . . . . . . . . 86

4.2 Cumulative Incidence of non-CVD death by dialysis modality, in the
first 4.5 years after initiation of dialysis . . . . . . . . . . . . . . . . 87

A.1 Scatter Plots of center-specific random effects (above) and Excess
Cause-specific Cumuluative Incidence (below) for the outcomes of
Transplant and Death for 58 OPOs . . . . . . . . . . . . . . . . . . 93

vi



LIST OF TABLES

Table

1.1 Estimating Regression Coefficients and Variance Components: Re-
sults from 500 Simulated Datasets . . . . . . . . . . . . . . . . . . . 16

1.2 Power and Type I error of proposed Correlation Score Test (CST),
and Likelihood Ratio (LR) tests. The null hypothesis is no correla-
tion between cause-specific hazards within center: Results from 500
Simulated Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

1.3 Estimating Center-Specific Effects: Results from 500 Simulations . . 19
1.4 Estimating Excess Cumulative Incidence: Results from 500 Simulation 20
2.1 Simulation results for one covariate setting with negatively correlated

cluster-specific random effects . . . . . . . . . . . . . . . . . . . . . 39
2.2 Results of application to SRTR data: Covariate Effects . . . . . . . 41
2.3 Results of application to SRTR data: Cluster Effects . . . . . . . . 41
3.1 Simulation results: Proposed IV estimators and propensity score

matching with ≈ 25% censored before L = 1825 and δ(L) = 499 . . 59
3.2 Simulation results: Proposed IV estimators and propensity score

matching with ≈ 25% censored before L = 1825 and δ(L) = 499 . . 60
3.3 Analysis of USRDS Data: Description of Study Cohort by Dialysis

Modality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
3.4 Analysis of USRDS Data: Results from IV and Naive analysis . . . 63
4.1 Simulation results comparing proposed IV method to a benchmark

method and naive regression method at different sample sizes under
independent censoring (∼ 16%) . . . . . . . . . . . . . . . . . . . . 80

4.2 Simulation results comparing proposed IV method to a benchmark
method and naive regression method at different sample sizes under
censoring (∼ 16%) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

4.3 Analysis of USRDS Data: Description of Study Cohort by Dialysis
Modality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

4.4 Analysis of USRDS Data: Results from IV and Naive analysis . . . 85
A.1 Estimating Center-Specific Effects: Results from 500 Simulated Datasets 91

vii



A.2 Analysis of Scientific Registry of Transplant Recipients (SRTR) Data:
Comparing Classification of Organ Procurement Organizations (OPOs)
based on Excess Cumulative Incidence (ECI) of Death and Kidney
Transplantation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

viii



LIST OF APPENDICES

Appendix

A. Appendix for Chapter I . . . . . . . . . . . . . . . . . . . . . . . . . . 90

B. Appendix for Chapter III . . . . . . . . . . . . . . . . . . . . . . . . . 94

ix



ABSTRACT

Competing risks data are commonly encountered in biomedical studies when sub-

jects are subject to failure from many distinct causes. In this dissertation, we propose

new methods for analyzing clustered competing risks data (Chapters 1 and 2) and

for instrumental variable analysis of censored time-to-event data (Chapters 3 and 4).

In Chapter 1, we consider the problem of evaluation of center performance on mul-

tiple competing events. We propose estimating center effects through cause-specific

proportional hazards frailty models that allow correlation among a centers cause-

specific effects. Estimation of our model proceeds via penalized partial likelihood

and is implemented in R. To evaluate center performance, we also propose a directly

standardized excess cumulative incidence (ECI) measure. Therefore, based on our

proposed methods, practitioners can evaluate centers either through the cause-specific

hazards or the cumulative incidence functions. We demonstrate, through simulations,

the advantages of the proposed methods to detect outlying centers, by comparing the

proposed methods and existing methods which assume uncorrelated random center

effects. In addition, we develop a Correlation Score Test to test the null hypothesis

that the competing event processes within a center are uncorrelated. Using data from

the Scientific Registry of Transplant Recipients, we apply our method to evaluate the

performance of Organ Procurement Organizations on two competing risks: (i) receipt

of a kidney transplant and (ii) death on the wait-list.

In Chapter 2, we propose to model the effects of cluster and individual-level co-

variates directly on the cumulative incidence functions of each risk through semipara-

metric additive regression models containing cluster-specific random effects. A unique

x



feature of our approach is that we model the dependency of failure times both within

and across causes among individuals within a cluster by allowing for the correlation

of cluster-specific random effects across causes. By decomposing the cause-specific

cumulative incidence functions using a mixture model representation, we are able to

estimate model parameters associated with all competing risks under consideration,

satisfying the constraint that the sum of cumulative incidence functions does not ex-

ceed one. We develop estimating equations for parameter estimation and test our

estimation procedure via simulations. We apply our method to multicenter compet-

ing risks data from the Scientific Registry of Transplant Recipients.

In Chapter 3, we turn our focus to causal inference in the censored time-to-event

setting in the presence of unmeasured confounders. Unmeasured confounding of the

relationship between a treatment and outcome of interest is a major concern in any

observational study. Instrumental variable (IV) analysis methods are able to control

for unmeasured confounding. However, IV analysis methods developed for censored

time-to-event data tend to rely on assumptions that may not be reasonable in many

practical applications, making them unsuitable for use in observational studies. In

this chapter, we develop weighted estimators of the complier average causal effect on

the restricted mean survival time. Our method is able to accommodate instrument-

outcome confounding and adjust for covariate dependent censoring, making it partic-

ularly suited for causal inference from observational studies. We establish the asymp-

totic properties and derive easily implementable asymptotic variance estimators for

the proposed estimators. Through simulation studies, we show that the proposed

estimators tend to be more efficient than propensity score matching based estimators

or inverse probability of treatment weighted estimators in certain situations, and tend

to perform as well in other situations. We apply our method to compare HD and PD

modalities for end stage renal disease (ESRD) patients using data from the United

States Renal Data System (USRDS).
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In Chapter 4, we develop an instrumental variable analysis method for competing

risks data. Very few methods have been developed to address the problem of unmea-

sured confounding in the competing risks setting. Further, existing methods focus

on estimating causal effects on a single, primary cause of interest. In doing so, these

methods tend to overlook important features of the exposure-outcome relationship

and ignore the interplay between causes. We develop a method that permits simul-

taneous inference of causal effects on the absolute risk or cumulative incidence of all

causes. By using a semiparametric mixture component model, we ensure that the

additivity constraint for the cause-specific cumulative incidence functions is satisfied.

Our method makes no restriction about the type of exposure or IV and is able to ac-

commodate exposure dependent censoring. We demonstrate finite sample properties

through simulation studies. Using data from the United States Renal Data System

(USRDS), we apply our method to compare HD and PD modalities for end stage

renal disease (ESRD) patients with respect to two competing outcomes: (i) risk of

death from cardiovascular diseases and (ii) risk of death from other causes.
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CHAPTER I

Evaluating center performance in the competing

risks setting: Application to outcomes of

wait-listed end-stage renal disease patients

1.1 Introduction

The availability of electronic health records and the demand for value-driven

healthcare have led to greatly increased interest in the methods for evaluation of

center performance (Ash et al., 2012). For continuous or binary outcomes, center

effects are usually estimated as either fixed or random effects models. Evaluation of

center performance is then generally carried out by comparing these estimated risk-

adjusted center effects to some fixed quantity, or the average center effect, or by using

graphical checks (Spiegelhalter et al., 2012).

The proposed methods are motivated by the end-stage renal disease (ESRD) set-

ting. There are thousands more patients in need of transplantation than there are

donor kidneys. As a result medically suitable ESRD patients are placed on a wait-

ing list. For example, in 2015, there were 98,956 patients on the kidney waiting list

at year-end, but only 11,594 deceased-donor kidney transplants (Hart et al., 2016).

In the United States, there are 58 wait-lists, each administered by an Organ Pro-

curement Organization (OPO). Our objective here is to evaluate OPOs with respect
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to (i) kidney transplantation and (ii) pre-transplant death (competing risks) among

wait-listed patients.

While there has been extensive research conducted into establishing methods for

institutional comparisons with respect to binary and continuous outcomes, apart from

a few recent studies, time-to-event outcomes have received considerably less attention.

He and Schaubel (2014a) assessed the standardized mortality ratio (SMR) measure

based on the Cox model and developed an alternative based on stratification. In

another study, He and Schaubel (2014b) developed a direct standardized measure of

center performance.

Oftentimes in clinical and epidemiological settings, there is more than one com-

peting outcome of interest. In such cases, there are two approaches to conceptualize

the event times for the competing risks. The first approach assumes that, for every

patient, a latent event time (Gail, 1975; Crowder, 2001) exists for each outcome and

only the minimum of these (Cox, 1959) is observed. Under this conceptualization, la-

tent event times must act independently in order for marginal quantities (e.g., cause-

or event-specific survival function) to be identifiable. A second approach, adopted

by us, assumes that only one event time, pertaining to the cause of failure, exists

for each subject (Kalbfleisch and Prentice, 2002). Data from such settings can now

be analyzed through the analysis of cause-specific hazards (Kalbfleisch and Prentice,

2002; ?).

With competing risks data, a comparison of centers with respect to all-cause mor-

tality has the potential to obscure important findings by averaging of dissimilar results

(Van Rompaye et al., 2010). An analysis by cause has the potential to yield more in-

terpretable and insightful conclusions (Putter et al., 2007). Fan and Schaubel (2016)

proposed, as a center performance measure, the difference between the estimated cu-

mulative incidence of transplant for patients at a given center and the average of the

estimated cumulative incidences. Based on similar techniques, Van Rompaye, Erik-
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son and Goetghebeur (2015) developed an ‘excess cause-specific cumulative incidence’

(ECI). For indirectly standardized measures, center performance is evaluated at the

patient mix or covariate distribution of each center. Although useful for internal

benchmarking, directly standardized measures are preferred for comparisons across

centers (Varewyck et al., 2014). Note that random center effects may be preferable

to fixed effects in the presence of small center sizes (Ash et al., 2012; Ohlssen et al.,

2006; Kalbfleisch and Wolfe, 2013).

Most existing methods for clustered competing risks model the within-cluster

dependence through a random effect, and concentrate on a single risk (or separate

models for each risk) (Katsahian and Boudreau, 2011; Do Ha et al., 2014). In contrast,

we propose a class of frailty models which allow a centers cause-specific random effects

be correlated. This approach utilizes the additional information available in the form

of correlation between cause-specific random effects within a center.

In this chapter, we develop a directly standardized ECI measure to contrast center

performance on competing outcomes. We utilize an easily implementable penalized

partial likelihood method (Ripatti and Palmgreen, 2000). Note that Gorfine and

Hsu (2011) and Gorfine et al. (2014) also developed frailty models for correlated

event times within-cluster. However, an Expectation-Maximization (EM) algorithm

was used which requires numerical integration at each E-step. In comparison, our

estimation procedure does not require any numerical integration and is implemented

through a single call to coxme function of the coxme package (Therneau, 2009).

If competing events are indeed uncorrelated, fitting separate models is appropriate

and easier than the proposed methods. Therefore, we also develop a convenient score

test for the presence of correlation between competing risks within-center. The score

test does not require fitting the joint model and, thus, provides an a priori checks

the appropriateness of using separate cause-specific models, in lieu of the proposed

methods.

3



1.2 Proposed Methods

1.2.1 Model and Likelihood

There are J centers or clusters, with each center j having nj members (j =

1, . . . , J) so that there are
∑J

j=1 nj = n individuals in the entire sample. For each

subject i(i = 1, ..., nj) in center j, let T 0
ij and Cij denote the failure time and the

censoring time, respectively, and let Xij be a vector of time-independent covariates.

The observed event time is then defined as Tij = min (T 0
ij, Cij). Each subject fails

due to one of K causes, we use ∆ij (∆ij ∈ {0, ..., K}) to indicate the cause of the

observed failure for subject i in center j, with ∆ij = 0 if T 0
ij > Cij. The observed

data consist of {Tij,∆ij,Xij, Aij} for i = 1, . . . , nj and (j = 1, . . . , J), where Aij = 1

if subject i belongs to center j and 0 otherwise.

Additionally, we define a vector of center-specific random effects or frailties, for the

jth center, γj = (γj1, ..., γjK)T , given which the event times for all subjects within

that center are assumed to be conditionally independent. Thus, the cause-specific

hazard function for cause k, for the subject i in the center j, is given by:

λijk(t|Xij, γjk) = lim
h↓0

1

h
Pr(t ≤ T 0

ij < t+ h,∆ij = k|T 0
ij ≥ t,Xij, γjk)

and is assumed to be following the proportional hazards model:

λijk(t|Xij, γjk) = λ0k(t) exp{βTkXij + γjk} (1.1)

for k = 1, .., K where β1, ...,βk and λ01, ...λ0k are cause-specific regression coefficients

and cause-specific baseline hazards respectively. Here, we assume that the vector of

covariates Xij is the same for all causes, but it can be replaced by cause-specific

vectors of covariates Xijk. The center-specific random effects imply a correlation

between the cause-specific hazards across subjects within a center. Further, by as-
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suming that the center-specific random effect vectors arise from a multivariate normal

distribution with mean zero and covariance matrix Vj, i.e., γj ∼ MVN(0,Vj), our

model allows for the association of different cause-specific hazards across individuals

within a center. It is important to note that our model implies that the cause-specific

hazards for different causes may be correlated across individuals within a center and

not that the cause-specific event times within each individual are correlated. Indeed,

as we do not adopt the latent failure time paradigm, our model is agnostic about the

existence of different cause-specific event times within each individual.

We focus on the case of K = 2 competing causes, and allow for center-specific ran-

dom effects for the two different causes to be negatively associated, i.e., Corr(γj1, γj2) ≤

0. To this end we reformulate the cause-specific hazards in equation (1.1) as

λij1(t|Xij, b
0
j , b

1
j) = λ01(t) exp{βT1Xij + b1

j + b0
j} (1.2)

λij2(t|Xij, b
0
j , b

2
j) = λ02(t) exp{βT1Xij + b2

j − b0
j} (1.3)

where b1
j + b0

j = γj1 and b2
j − b0

j = γj2. We have decomposed a center’s cause-specific

random-effect into two independent components: a shared random-effect, b0
j , acting

in opposite directions on the hazards of the two different risks, and a cause-specific

random effect component bkj . This implies that Cov(γj1, γj2) = −Var(b0
j). We further

assume that jointly bj = (b0
j , b

1
j , b

2
j) ∼ p(bj;Dj) = MVN(0,Dj(θj)), where Dj(θj) is

a diagonal covariance matrix with unknown parameters denoted by the vector θj.

We now construct the likelihood function for the model implied in equation (1.1) in

terms of the parameters (λ0(t),βTk ,θj). Note that, for any given subject, λij(t|Xij, bj) =∑K
k=1 λijk(t|Xij, bj). Thus, the cause-specific densities can be represented as fijk(t|Xij, bj) =

λijk(t|Xij, bj)Sij(t|Xij, bj) for k = {1, .., K}, where Sij(t|Xij, bj) = exp{−
∑K

k=1 λijk(t|Xij, bj)}.

Hence, the likelihood function can be written in terms of cause-specific hazard func-

tions. Let the at-risk indicator for subject i in center j be given by Yij(t) = I(Tij ≥ t).

5



Using the notation given in Section 1.2.1, we write the likelihood for subjects in center

j as:

Lj =

∫ nj∏
i=1

K∏
k=1

{
λ0k(Tij) exp{βTkXij + bTj Zijk}

}I(∆ij=k)

×

exp(−
t∫

0

Yij(u)λ0k(u) exp{βTkXij + bTj Zijk}du)

 p(bj;Dj(θj))dbj (1.4)

where the integral sign represents the unobserved frailties given by bj being integrated

out and Zijk are design vectors setup to obtain the cause-specific hazard models in

equations (1.2) and (1.3). Specifically, if subject i is in center j then Zij1 = (1, 1, 0)

and Zij2 = (−1, 0, 1), and if subject i does not belong to center j then Zij1 = Zij2 =

(0, 0, 0). It is important to note that for the construction of the above likelihood,

we assumed the following: (1) Conditional on {Xij,Zijk, bj}, the event times and

censoring times are independent and the censoring times are non-informative for

{βk, λ0k, k = 1, 2}, (2) Xij and bj are independent.

1.2.2 Estimation

It follows from equation (1.4) above that the overall likelihood of the data is given

by:

L =

∫ J∏
j=1

nj∏
i=1

K∏
k=1

{λ0k(Tij) exp{βTkXij + bTj Zijk}}I(∆ij=k)

× [exp(−Λ0k(Tij) exp{βTkXij + bTj Zijk})]× p(bj;Dj(θj))dbj, (1.5)

where Λ0k(Tij) exp{βTkXij + bTj Zijk} =
∫ Tij

0
Yij(u)λ0k(u) exp{βTkXij + bTj Zijk}du.

Let b = {b1
T , ..., bJ

T}T be a vector of all random-effects, obtained by stacking

the center-specific vectors of random effects bj, j = 1, ..., J . Correspondingly, we

define p(b;D(θ)) = MVN(0,D(θ)) such that D(θ) is a block-diagonal covariance

6



matrix composed of blocks formed by Dj(θj). We further assume that θj = θj′ =

(θ0, θ1, θ2); i.e., the center-specific random effect vectors, bj are i.i.d with Var(blj) =

θl, l = {0, 1, 2}.

The integrand in equation (1.5) above can be viewed as the full likelihood of

the data under our model, composed of the conditional likelihood of the data given

random effects b, multiplied by the likelihood of the random effects. Taking the log,

we define:

lfull = lcond + lb =
J∑
j=1

nj∑
i=1

K∑
k=1

I(∆ij = k){log(λ0k(Tij)) + βTkXij + bj
TZijk}−

J∑
j=1

nj∑
i=1

K∑
k=1

Λ0k(Tij) + βTkXij + bj
TZijk + log |D|−

1
2 − 1

2
bTD−1b (1.6)

The above equation is a penalized log-likelihood for the observed data. As in Ripatti

and Palmgren (2000), treating b as a fixed effect and using profile likelihood to esti-

mate Λ0k(t) parameters, then plugging back the resulting Breslow (1974) estimator

Λ̂0k(t) into equation (1.6) yields the following penalized partial log-likelihood (PPLL):

lppll = l1 + lb =
J∑
j=1

nj∑
i=1

K∑
k=1

I(∆ij = k){βTkXij + bj
TZijk−

log
J∑
r=1

nj∑
q=1

Yqr(Tij) exp{βTkXqr + br
TZqrk}}+ log |D|−

1
2 − 1

2
bTD−1b. (1.7)

As recommended in Ripatti and Palmgren (2000), we suggest obtaining the estimates

of ((βk, b), k = {1, 2}) as solutions to the PPLL. To estimate θ we need to integrate

out b. As in Breslow and Clayton (1993), we use a Laplace saddle point approximation

to the integration of penalized partial likelihood LPPLL = exp(lppll), with respect to

db. Doing so, we obtain an expression for the log of the integrated likelihood as:

lINT = −1

2
log |D| − 1

2
log |K”(b̂)| −K(b̂)
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K(b̂) =
J∑
j=1

nj∑
i=1

K∑
k=1

I(∆ij = k){βTkXij+b̂
T
j Zijk−log

J∑
r=1

nj∑
q=1

Yqr(Tij) exp{βTkXqr+b̂
T
r Zqrk}}

+ log |D|−
1
2 − 1

2
b̂TD−1b̂

and b̂ denotes the solution to the partial derivatives of K(b) with respect to b, i.e., b̂

solves:

K ′(b) =

J∑
j=1

nj∑
i=1

K∑
k=1

I(∆ij = k)

[
Zijk−

∑J
r=1

∑nj

q=1 Yqr(Tij)Zqrk exp{βkXqr + br
TZqrk}∑J

r=1

∑nj

q=1 Yqr(Tij)exp{βkXqr + br
TZqrk}

]
−D−1b = 0.

(1.8)

The quantity K”(b̂) is the set of second partial derivatives of K(b) at b̂. K”(b̂) is also

the second partial derivative of lPPLL, evaluated at b̂. If we define H as the matrix

of second derivatives or Hessian of the PPLL with respect to (β, b), such that:

H =

H11 H12

H21 H22

 = −I(β, b) +

0 0

0 D−1


where I(β, b) = −∂2l1/∂(β, b)∂(β, b)

′
, then H(β, b̂)22 = K”(b̂). We then have:

lINT ≈ l1(β, b̂) + lb(θ, b̂)−
1

2
log |H(β, b̂)22| (1.9)

As demonstrated by Ripatti and Palmgren (2000), ignoring the last term on the

right hand side of equation (1.9) while estimating (β, b) leads to very little loss of

information. This corresponds to using the PPLL to estimate (β, b) via a Newton-

Raphson algorithm. We have the following estimating equation for β:

∂lPPLL/∂β =

8



J∑
j=1

nj∑
i=1

K∑
k=1

I(∆ij = k)

[
Xij −

∑J
j=1

∑nj

q=1 Yqr(Tij)Xqr exp{βkXqr + br
TZqrk}∑J

j=1

∑nj

q=1 Yqr(Tij) exp{βkXqr + br
TZqrk}

]
= 0

(1.10)

The estimating equation for b is similarly obtained by setting ∂lPPLL/∂b to zero,

and is identical to equation (1.8). Thus, equation (1.8), required for the saddle point

Laplace approximation, is automatically satisfied when PPLL is used to estimate b.

To estimate D(θ) we plug the estimated values (β̂) into equation (1.9) and solve for

θ that maximizes lINT . This gives us the following estimating equation:

−1

2

[
tr(D−1∂D

∂θ
) + tr(H−1

22

∂D−1

∂θ
)− b̂TD−1∂D

∂θ
D−1b̂

]
= 0 (1.11)

For a diagonal covariance matrix, as in our case, we obtain the following solution:

θ̂l =
(b̂l)T (b̂l) + tr(H l

22(b̂l)
−1

)

J
, l = {0, 1, 2} (1.12)

where b̂l = {b̂l1, ...., b̂lJ} and H l
22(b̂l) is the sub-matrix corresponding to b̂l terms.

The proposed estimation algorithm begins with an initial guess of θ, then alternates

between using the PPLL to estimate (β, b) as listed above and using equation (1.12)

to update θ until convergence. As suggested by Gray (1992), the variance of (β̂T , b̂T )T

is obtained as:

V̂ (β̂, b̂) = H(β̂, b̂)−1I(β̂, b̂)H(β̂, b̂)−1 (1.13)

To obtain the asymptotic distribution for (β̂, b̂, λ̂0k(s)), we assumed that the in-

crements λ̂0k(s) are independent of (β̂, b̂). Under this assumption we estimated the

variance of λ̂0k(s) via a non-parametric bootstrap approach where the values of (β̂, b̂)

were treated as fixed by setting Xβ̂ + b̂ as an offset in the linear predictor of the

instantaneous hazard. Thus, our desired asymptotic variance-covariance matrix for

(β̂, b̂, λ̂0k(s)) was obtained using equation (1.13) to estimate the variance of (β̂, b̂)
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and a non-parametric bootstrap approach to estimate the variance of λ̂0k(s). In do-

ing so we assume independence between λ̂0k(s) and (β̂, b̂). Our simulation studies

suggest this to be a safe assumption. In reality, the increments of λ̂0k(s) and (β̂, b̂)

may be weakly correlated. However, with increasing sample size one would expect

this correlation to get weaker and have a negligible impact on the standard errors of

estimates. Then, ignoring this correlation in return for substantial gains in compu-

tational efficiency seems appropriate. It should also be noted that, while using the

Laplace approximation to the marginal log-likelihood leads to little loss of informa-

tion, it might result in a slight underestimation of standard errors of fixed and random

effect parameters if the cluster sizes are very small, as demonstrated in Ripatti and

Palmgren (2000).

1.2.3 Center Effect Measures: Cumulative Incidence

We define the cumulative incidence function (CIF) of cause k for subject i at

center j as:

Fijk(t) = P (T 0
i ≤ t,∆i = k|Ai = j,Xij), (1.14)

the probability that an individual i in center j experiences a cause k event by time t.

To evaluate the performance of center j with respect to type k events, we first define

the average risk of events of type k at that center as Fjk(t) = EX [Fijk(t)], which is

estimated as:

F̂jk(t) = ÊX [Fijk(t)] =

∑nj

i=1 Fijk(t)

nj
(1.15)

Note that the above equation can be interpreted as potential risk for event k, at

time t, that would be observed if the entire study population was treated at center

j, assuming there are no unmeasured confounders. To compare the performance of

center j to that of other centers we difference this potential risk with the average of

such potential risks across all the centers. We call this measure the excess cumulative

10



incidence. This is denoted as δjk(t) = Fjk(t)− EA[Fjk(t)] and estimated as:

δ̂jk(t) = F̂jk(t)−
∑J

q=1 F̂qk(t)

J
(1.16)

1.2.4 Estimating Center Effects

We estimate cumulative incidence functions, defined in equation (1.14) using the

cause-specific hazards estimated from section 1.2. We note that the cause-specific

CIF for cause k, individual i at center j can be written as:

Fijk(t) =

t∫
0

Sij(s)λijk(s)ds, (1.17)

for which an estimate F̂ijk(t) is then obtained by plugging into equation (1.17) the

following estimated quantities:

λ̂ijk(s) = λ̂0k(s) exp(β̂kXij+b̂jZijk) ; Ŝij(s) = exp{−
2∑

k=1

Λ̂0k(s) exp(β̂kXij + b̂jZijk)}

where β̂k, b̂j are estimates obtained as detailed in Section 1.2.2, and Λ̂0k(t) =∫ t
0
λ̂0k(s)ds is the cumulative cause-specific baseline hazard function obtained by in-

tegrating the Breslow-Aalen (Breslow 1974) estimate of the cause-specific baseline

hazard function. Estimates of Fjk(t) and the excess cumulative incidence at center j,

δ̂jk(t), are subsequently obtained by plugging F̂ijk(t) into equations (1.14) and (1.16)

respectively.

To obtain the variance of the cause-specific cumulative incidence and excess cumu-

lative incidence functions, we apply a parametric bootstrap approach. Specifically, we

re-sample the estimated parameters β̂k, b̂j and λ̂0k(s) from their estimated asymptotic

distributions to obtain bootstrapped estimates of the cumulative incidence functions.

The variance of F̂jk(t) and δ̂jk(t) are estimated as variance of the corresponding boot-
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strapped estimates.

1.3 Score test of Correlation of Cause-specific Hazards

As mentioned in Section 1.2.1, equation (1.1), the cause-specific hazard function

for cause k, for the ith subject in center j, is assumed to follow:

λijk(t|Xi, γjk) = λ0k(t) exp{βTkXi + γjk}

Thus, the likelihood for the observed data in center j is:

Lj =

∫ nj∏
i=1

K∏
k=1

{λ0k(ti) exp{βTkXi + γjk}}∆ik(t)

×

exp(−
τ∫

0

Yi(u)λ0k(u) exp{βTkXi + γjk}dt)

 p(γj;V (θ))dγj (1.18)

To develop a score test of the correlation of cause-specific hazards within centers, we

consider a special case of the model in equation (1.1) when only K = 2 causes are

present. Assume that the center-specific random effects or frailty for cause 2 and

cause 1 differ by a multiplicative constant, i.e., γj2 = ωγj1, implying the following

specification for the cause-specific hazards:

λij1(t|Xi) = λ01(t) exp{βT1Xi + γj1}; λij2(t|Xi) = λ02(t) exp{βT1Xi + ωγj1}

(1.19)

The presence of a correlation between the cause-specific hazards within centers is

then assessed by testing H0 : ω = 0. When ω = 0, there is little evidence for a linear

relationship between center-specific random effects for causes 1 and 2. Conversely,

even if the center-specific random effects are not perfectly correlated as implied by

the specification in (19) but have a dependence of the form specified in model (1) we
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would expect to reject the test of H0 : ω = 0 in favor of Ha : ω 6= 0. This is because,

in case of any non-zero correlation between the center-specific random effects, the

specification in (19) with some ω 6= 0 should provide a better fit to the observed

data than that with ω = 0. Thus, we propose to test for the presence of correlation

between cause-sepcific hazards in model (1), i.e., H0 : Cov(γj1, γj2) = 0, using the

specification in (19) and testing H0 : ω = 0.

Under the joint model for the cause-specific hazards in (19), likelihood for observed

data in center j is given by:

Lj =

∫ nj∏
i=1

{λ01(ti) exp{βT1Xi + γj1}}∆i1(t){λ02(ti) exp{βT2Xi + ωγj1}}∆i2(t)

×[exp(−
τ∫

0

Yi(u)λ01(u) exp{βT1Xi+γj1}du)][exp(−
τ∫

0

Yi(u)λ02(u) exp{βT2Xi+ωγj1}du)]

× p(γj1; θ)dγj1. (1.20)

The marginal log-likelihood for the observed data at all centers is then given by:

log l(ω,βk, λ0k) =
J∑
j=1

nj∑
i=1

(
2∑

k=1

∆ik(t){log λ0k(ti)+{βTkXi}})+log

∫
Kj(zj, t)p(zj; θ)dzj

where zj = log γj1, and

Kj(z, t) = z
∑nj

i=1Ni1(t−)+ωNi2(t−)
j

×exp

−zj
 t∫

0

Yi(u)λ02(u) exp{βT2Xi}du

− zωj
 t∫

0

Yi(u)λ02(u) exp{βT2Xi}du

 .
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1.3.1 Correlation Score Test

Using the above formulation, the score test for correlation of the two cause-specific

hazards tests H0 : ω = 0. The score function is:

Uω(ω,βk, λ0k) =
∑
j

∫
{
∑nj

i=1 Ni2(ti)− (
∫ t

0
Yi(u)λ02(u) exp{βT2Xi}du)}zωj log zjKj(zj)p(zj; θ)dzj∫

Kj(zj)p(zj; θ)dzj

Setting ω = 0 and replacing βk, λ0k and θ with their estimates when ω = 0, we have:

Uω(ω,βk, λ0k) =
∑
j

∫
{
∑nj

i=1Ni2(ti)− (
∫ t

0
Yi(u)λ̂02(u) exp{β̂T2Xi}du)} log zjK̂j(zj)p(zj; θ̂)dzj∫

K̂j(zj)p(zj; θ)dzj

=
∑
j

M̂2j.l̂og zj

M̂2j is an estimate of the {
∑nj

i=1Ni2(ti) − (
∫ t

0
Yi(u)λ02(u) exp{βT2Xi}du)}, the sum

of the martingale residuals for cause 2 at center j; and l̂og zj = E[log zj|Oj], i.e., the

posterior expectation of the log frailties given the observed data in center j, Oj. If

the frailties zj are assumed to follow a log normal distribution, there is no closed form

expression for l̂og zj, however we can use the estimates γ̂j1 obtained by maximizing

the penalized partial log-likelihood for cause 1. Balan et al. (2016) note that the test

of H0 : ω = 0 can be carried out by testing if M̂2j and l̂og zj are correlated. Thus,

the correlation score test (CST) tests if there is a linear dependency between M̂2j

and l̂og zj and uses the regular t statistic from linear regression as the test statistic,

t = r
√

(J − 2)/(1− r2). Under H0 : ω = 0, asymptotically, t follows a t distribution

with J − 2 degrees of freedom.

1.4 Simulation Studies

In the first (of two) set of simulations, we evaluated the fixed effect parame-

ter estimators, variance components of the random effects, and Correlation Score
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Test. There were K = 2 competing risks, and J = 50 or J = 100 centers (con-

figurations 1 and 2, respectively). The center-specific random effects γj1, γj2 fol-

lowed a mean zero multivariate normal (MVN) distribution with variance components

σj = (σ2
1, σ

2
2, ρ12) = (0.25, 0.25,−0.5). Using the re-parameterization described in

Sections 1.2.1 and 1.2.2, this corresponds to the center-specific random effects vector

bj = (b0
j , b

1
j , b

2
j) being generated from a MVN with mean zero and diagonal covariance

matrix D with elements θj = (θ0, θ1, θ2) = (0.125, 0.125, 0.125). The sample size

within each center was fixed at nj = 20 or nj = 50 for different sub-configurations.

In addition, we considered a single N(0, 1) covariate Xi with regression coefficients

β1 = 0.5 and β2 = 1.25 for causes k = 1 and k = 2 respectively. Given βk,γj and the

covariate Xi we generated a failure time T 0
i for each subject within center j from an

exponential distribution with rate parameter µ =
∑2

k=1 µk =
∑2

k=1 exp(βkXi + γjk).

We assigned a cause of failure for subject i in center j given a failure at time t using

Pr(∆i = k|T 0
i = t) = µk/µ. Finally, all censoring occurred at time τ = 0.4 in all

configurations.

As shown in Table 1.1, the proposed method performs very well in estimating the

parameters of interest. Also in Table 1.1, we present results of simulations where the

center-specific random effects γj1, γj2 were generated from a mean zero MVN with

σj = (σ2
1, σ

2
2, ρ12) = (0.25, 0.25, 0), in order to assess the loss in efficiency due to

unnecessarily estimating a correlation parameter when the true random effects are

not correlated.

In Table 1.2, we evaluate the proposed CST and a likelihood ratio test (LRT)

of the correlation between cause-specific hazards, via H0 : ρ = 0. For each (J, nj)

configuration, the Type 1 error rate was calculated as the mean number of times

H0 when the random effects were generated from a mean zero MVN with σj =

(0.25, 0.25, 0). Similarly, the Power was the mean number of rejections when the

random effects were generated from a mean zero MVN with σj = (0.25, 0.25,−0.5).
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Table 1.1: Estimating Regression Coefficients and Variance Components: Results
from 500 Simulated Datasets

J nj
True
Value Bias ESD CP

True
Value Bias ESD CP

50 20 β1 0.5 0.007 0.075 0.946 0.5 0.000 0.075 0.954
β2 1.25 0.002 0.072 0.950 1.25 0.002 0.074 0.942
θ1 0.125 -0.003 0.068 – 0 0.022 0.036 –
θ2 0.125 -0.001 0.088 – 0.125 -0.027 0.095 –
θ3 0.125 0.005 0.087 – 0.125 -0.021 0.089 –

50 50 β1 0.5 -0.001 0.043 0.962 0.5 -0.001 0.043 0.962
β2 1.25 0.000 0.044 0.954 1.25 -0.004 0.046 0.944
θ1 0.125 -0.002 0.051 – 0 0.020 0.027 –
θ2 0.125 0.003 0.066 – 0.125 -0.020 0.073 –
θ3 0.125 -0.004 0.057 – 0.125 -0.026 0.069 –

100 20 β1 0.5 0.003 0.050 0.960 0.5 0.000 0.051 0.960
β2 1.25 0.001 0.051 0.946 1.25 0.001 0.053 0.942
θ1 0.125 -0.005 0.053 – 0 0.017 0.029 –
θ2 0.125 0.003 0.066 – 0.125 -0.019 0.074 –
θ3 0.125 -0.001 0.064 – 0.125 -0.021 0.065 –

100 50 β1 0.5 0.001 0.032 0.942 0.5 -0.001 0.033 0.944
β2 1.25 0.000 0.031 0.952 1.25 0.002 0.030 0.964
θ1 0.125 0.002 0.037 – 0 0.015 0.023 –
θ2 0.125 -0.001 0.043 – 0.125 -0.017 0.053 –
θ3 0.125 0.000 0.041 – 0.125 -0.012 0.049 –
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Table 1.2: Power and Type I error of proposed Correlation Score Test (CST), and
Likelihood Ratio (LR) tests. The null hypothesis is no correlation between cause-
specific hazards within center: Results from 500 Simulated Datasets

Number of Centers Subjects per Center Type I Error Power

(J) (nj) LRT CST LRT CST

50 20 0.006 0.032 0.416 0.358

50 50 0.028 0.026 0.782 0.692

100 20 0.022 0.048 0.710 0.654

100 20 0.034 0.036 0.982 0.960

The CST seems to do almost as well as the LRT, attaining a type I error rate closer

to the nominal 0.05 and achieving nearly as much power. More importantly, the CST

is carried out in much less computation time, since it does not require fitting the full

model.

In the second simulation study, we evaluated our estimators of the center-specific

random effects {γj1, γj2}. Again, K = 2, J = 50, and Xi ∼ N(0, 1) with regression

coefficients β1 = 0.5 and β2 = 1.25 for k = 1 and k = 2 respectively. Of the 50 centers,

we fixed the value of the random effects for center j′ and allowed the random effects

for the remaining 49 centers to come from a mean 0 MVN with σj = (σ2
1, σ

2
2, ρ12) =

(0.25, 0.25,−0.5). The sample size for each of these 49 centers, nj, j 6= j′ was set equal

to the random draw from a N(100, 402) variate bounded at 20. Given βk,γj and Xi,

we generated T 0
i from an exponential distribution with rate parameter µi =

∑2
k=1 µik,

where µik = exp(βkXi + γjk), and assigned a cause of failure using Pr(∆i = k|T 0
i =

t) = µik/µ. Censoring again occurred at time τ = 0.4.

We studied the performance of our estimators at different values of the random

effects {γj′1, γj′2} and at different nj′ values. We compared the proposed method to

an approach that fits separate frailty models for each k and therefore ignores the

correlation between the center-specific random effects. As shown in Table 1.3, the
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proposed method produces center effect estimates with smaller mean square error,

regardless of the center size and effect.

An expanded version of Table 1.3 is made available in Appendix (see Table A.1).

While both methods produce shrinkage, leveraging information on the correlation

structure of the center-specific random effects leads to estimates with reduced shrink-

age and higher rates of coverage. These gains in bias and coverage become more

pronounced with decreasing sample sizes, and as the true values of the center effects

deviate from the mean of the random effect distribution.

To examine our proposed excess cumulative incidence (ECI) center effect measure,

we conducted simulations where the center-specific effects {γj1, γj2} were known for

all centers. We set J = 50, with nj set equal to the maximum of 20 and a N(100, 402)

variate. Center-specific effects {γj1, γj2} were each fixed at one realization from a

MVN with mean 0 and σj = (σ2
1, σ

2
2, ρ12) = (0.25, 0.25,−0.5); theses were then treated

as true center effects. We set Xi ∼ N(0, 1), with β1 = 0.5 and β2 = 1.25 for causes 1

and 2 respectively. Failure times and causes were then generated as presented earlier.

Censoring was again at τ = 0.4. The true ECI for each center was calculated at

t = 0.3. In Table 1.4, we compare the proposed method with fitting separate cause-

specific Cox frailty models. In terms of mean squared error of the ECI estimates, the

proposed method generally out-performs the separate-models approach. A striking

example, from Table 1.4, is the ECI estimates for Center j = 23, whose true ECI

values for cause 1 and cause 2 are at opposite extremes.

1.5 Application

We applied the proposed methods to evaluate Organ Procurement Organizations

(OPOs) with respect to two competing risks: (i) deceased-donor kidney transplanta-

tion (ii) death (prior to transplantation). We use data from the Scientific Registry of

Transplant Recipients (SRTR). The SRTR data system includes data on all donor,
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Table 1.3: Estimating Center-Specific Effects: Results from 500 Simulations

Proposed Method
Ignornig Correaltion
of Random Effects

nj′
True
Value Bias ESD ASE CP Relative MSE

20 γj′1 0.0 -0.019 0.231 0.322 0.988 1.113
γj′2 0.0 -0.015 0.239 0.305 0.980 1.084

γj′1 0.5 -0.175 0.241 0.297 0.970 1.232
γj′2 -0.5 0.168 0.249 0.327 0.972 1.248

γj′1 1.0 -0.276 0.244 0.276 0.870 1.252
γj′2 -1.0 0.397 0.244 0.354 0.838 1.700

40 γj′1 0.0 -0.007 0.222 0.263 0.988 1.093
γj′2 0.0 -0.015 0.209 0.243 0.986 1.041

γj′1 0.5 -0.097 0.208 0.232 0.946 1.203
γj′2 -0.5 0.108 0.214 0.271 0.974 1.274

γj′1 1.0 -0.141 0.203 0.209 0.916 1.242
γj′2 -1.0 0.268 0.221 0.306 0.914 1.799

60 γj′1 0.0 -0.010 0.202 0.231 0.968 1.098
γj′2 0.0 -0.005 0.187 0.210 0.976 1.074

γj′1 0.5 -0.066 0.195 0.200 0.962 1.142
γj′2 -0.5 0.070 0.209 0.240 0.958 1.148

γj′1 1.0 -0.097 0.168 0.178 0.948 1.227
γj′2 -1.0 0.219 0.219 0.276 0.890 1.666

80 γj′1 0.0 -0.018 0.181 0.210 0.988 1.095
γj′2 0.0 -0.020 0.179 0.191 0.964 1.080

γj′1 0.5 -0.071 0.180 0.180 0.954 1.170
γj′2 -0.5 0.066 0.180 0.218 0.970 1.153

γj′1 1.0 -0.105 0.161 0.161 0.894 1.206
γj′2 -1.0 0.193 0.201 0.256 0.918 1.554

100 γj′1 0.0 -0.020 0.170 0.194 0.976 1.095
γj′2 0.0 -0.015 0.157 0.176 0.978 1.065

γj′1 0.5 -0.076 0.15 0.167 0.964 1.171
γj′2 -0.5 0.059 0.197 0.203 0.932 1.123

γj′1 1.0 -0.095 0.141 0.149 0.928 1.218
γj′2 -1.0 0.155 0.196 0.242 0.944 1.494
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Table 1.4: Estimating Excess Cumulative Incidence: Results from 500 Simulation

Proposed Method
Ignornig Correlation
of Random Effects

Cause Center
True
Value Bias ESD ASE CP Relative MSE

1 14 -0.170 0.029 0.022 0.027 0.850 1.018
16 -0.096 0.024 0.029 0.034 0.926 0.750
17 -0.181 0.003 0.017 0.023 0.990 3.432
38 -0.138 0.017 0.024 0.029 0.958 1.226
1 -0.179 0.023 0.020 0.026 0.918 1.462
36 0.006 -0.009 0.038 0.038 0.932 0.950
4 -0.033 0.001 0.034 0.037 0.948 1.010
49 -0.070 0.018 0.029 0.034 0.944 0.777
32 -0.047 0.010 0.031 0.035 0.960 0.969
34 0.005 0.001 0.035 0.039 0.948 1.028
23 0.344 -0.022 0.045 0.047 0.934 1.279
19 0.118 -0.013 0.043 0.045 0.904 0.939
13 0.142 -0.015 0.044 0.046 0.942 1.036
15 0.127 -0.007 0.043 0.044 0.938 1.082
18 0.210 -0.022 0.047 0.048 0.904 0.988

2 26 -0.222 0.020 0.019 0.025 0.932 2.265
25 -0.140 0.014 0.027 0.029 0.936 1.196
20 -0.137 0.013 0.025 0.030 0.952 1.209
23 -0.199 0.014 0.021 0.025 0.950 2.122
5 -0.078 0.006 0.030 0.032 0.950 1.056
29 -0.017 0.004 0.034 0.033 0.922 0.954
11 -0.020 0.002 0.031 0.034 0.954 0.987
45 -0.043 0.006 0.032 0.033 0.934 0.965
34 -0.058 0.007 0.029 0.033 0.952 0.993
9 -0.009 0.001 0.031 0.033 0.946 1.016
41 0.203 -0.016 0.037 0.037 0.928 1.065
40 0.158 -0.012 0.035 0.036 0.934 1.076
31 0.157 -0.016 0.038 0.038 0.900 0.969
17 0.371 -0.020 0.037 0.034 0.902 1.327
14 0.111 -0.009 0.033 0.035 0.926 1.245
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wait-listed candidates, and transplant recipients in the U.S., submitted by the mem-

bers of the Organ Procurement and Transplantation Network (OPTN), and has been

described elsewhere. The Health Resources and Services Administration (HRSA),

U.S. Department of Health and Human Services provides oversight to the activities

of the OPTN and SRTR contractors.

The study cohort included patients wait-listed between 1/1/2010 and 4/30/2010.

Patients were followed from the date of listing until the earliest of receipt of a kid-

ney transplant, death, removal from wait-list, or the end of the observation period,

12/31/2012. Using the proposed methods, we compared OPOs across the U.S. with

respect to the cumulative incidence of receiving a deceased-donor transplant and the

cumulative incidence of death prior to transplantation. The time point we chose was

two years post wait-listing, an appropriate time horizon based on previous related

analyses (e.g., Fan and Schaubel, 2016). Patients receiving a living donor transplant

were treated as independently censored, which is appropriate from the perspective

that living-donor transplantation depends on many factors related to a patient’s spe-

cific circumstances and largely independent of OPO. Note that living-donor trans-

plantation was not a cause of our interest, rendering unappealing its inclusion as a

separate cause.

Our study population included n = 11, 759 patients across J = 58 OPOs across the

U.S. A total of 2,408 patients (20.5%) received a deceased-donor kidney transplant,

while 1,114 (9.5%) died first. We adjusted for the following patient-level covariates:

age at listing, race, sex, body mass index, primary renal diagnosis, panel reactive

antibody level and blood type. Owing to the large dimension of the covariate vector,

we used a two-stage approach, as done in Kalbfleisch and Wolfe (2013), to obtain

the risk-adjusted center effects (see also He and Schaubel, 2014b). Specifically, we

estimated the patient-level covariates at the first stage by fitting a Cox model stratified

by OPO. At the second stage, we estimated the cause-specific OPO effects by fitting
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the proposed model, using the patient-level linear predictor from the first stage as

an offset. The estimated variance components are given by σ̂j = (σ̂2
1, σ̂

2
2, ρ̂12) =

(0.619, 0.031, 0.210). The estimated correlation was determined to be statistically

significant, with the CST yielding a p-value of 0.021.

Figure 1 displays the estimated OPO-specific ECI’s at 2 years post-listing, along

with 95% confidence intervals. The ECIs of transplantation ranged from -0.120 to

0.404, and the ECIs of death ranged from -0.126 to 0.115. For a given OPO, a high

ECI for transplantation and a low ECI for death represent good performance. We

classified OPOs as low- or high-outliers based on the 95% confidence intervals.

We compared the proposed method to a method that ignores the correlation be-

tween the cause-specific center effects with respect to outlier classification (Table A.2).

While the two methods produced nearly identical classifications of OPOs based on

the incidence of transplant, the proposed method classified 6 more OPOs as outliers

than fitting separate frailty models by cause. This is a consequence of the reduction

in shrinkage in the ECI estimates by the proposed method, due to leveraging the

information on the correlation structure.

1.6 Discussion

In this chapter, we develop methods for evaluating center performance in the

competing risks setting. We propose estimating center effects through cause-specific

proportional hazards frailty models that allow correlation among a centers cause-

specific hazards. We also propose a score test to test for the presence of correlation

between a center’s cause-specific hazards.

In our application, the cause-specific center effects do not seem to be strongly

correlated. In scenarios where the correlation between cause-specific center effects is

on the higher side, as maybe the case, for example, if there exists an unmeasured

covariate influencing both outcomes, using the proposed method instead of currently

22



Figure 1.1: Analysis of Scientific Registry of Transplant Recipients (SRTR) Data:
Caterpillar Plots of Excess Cause-specific Cumuluative Incidence of Death and Kidney
Transplantation for 58 Organ Procurement Organizations
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available methods may produce a larger change in classification of centers than seen

here. Since fitting the proposed model may be computationally cumbersome, we

recommend first using the proposed CST, to determine if the proposed model is

warranted (the alternative being cause-specific frailty models).

As mentioned in Section 1.2.1, we assume that the patient-level covariates and

center-level random-effects are uncorrelated. In practice, covariates and random-

effects may be correlated, for example, sicker patients may prefer a center whose

case-mix adjusted outcomes are better. This violation of our model assumption will

lead to biased estimates of fixed effect parameters and consequently the center-level

random effects in our model. In our application, to avoid problems due to confounding

between the patient-level covariates and the OPO-specifc random-effects, we use a

two-stage approach to estimate the center random effects. In the first stage, we fit

a model stratified by OPO to estimate the regression parameters associated with a

large number of patient characteristics. In the second stage, we use the estimated

regression parameters as an offset in the linear predictor of the instantaneous hazard

in a random-effects model, that is, we estimate the random effects given Xβ̂, where

β̂ is estimated from the stratified model. This ensures that an unbiased estimate

of β̂ is used while estimating the random effects. Apart from accommodating for

confounding by patient-level covariates, the two-stage approach has an added benefit

of easing computational burden. Given the potential for confounding by patient-level

covariates, especially, in studies of center performance, we strongly recommend the

use of the two-stage approach in lieu of a joint estimation approach which ignores the

problem of confounding and is thereby bound to produce biased estimates of center

effects.

The random effects estimated using our proposed two-stage approach represent

an estimate of variation between centers after all the within center variation has been

accounted for accurately. It is possible that the random-effects may still be correlated
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with center-level averages of the covariates X, and that this variation could further be

partitioned into variation due to differences in center-level averages of the covariates

X and other remaining variation between centers. The question of adjusting further

for between-center differences while using a random-effects model may be a policy

decision rather than a methodological decision. Further adjustment for between-

center differences can be done using the between-method decomposition of covariates

as suggested by Sjölander et al. (2013), where center-level averages of the covariates

X are included as predictors.

25



CHAPTER II

A semiparametric mixture component model with

random effects for the analysis of clustered

competing risks data

2.1 Introduction

Competing risks data are encountered in biomedical studies when subjects are

subject to failure from many distinct causes or events. Our work here is motivated by

data arising from the end-stage renal disease (ESRD) setting where medically suitable

patients in need of a kidney transplant are placed on a waiting list. For our purposes,

this is when follow-up begins. While on the wait list, these patients may die before

receiving a transplant. In this case, the competing events are: (i) receipt of a kidney

transplant and (ii) pre-transplantation death while on the wait list.

In many situations, competing risks data cannot be considered independent and

appropriate methods are needed to account for the correlation across subjects. This is

also the case in our motivating application, since patients are clustered within trans-

plant centers, i.e., the center where the patient’s wait list registration was initiated.

In this chapter, we develop a method for the simultaneous analysis of the absolute

risk of different competing events in the ESRD setting, taking into consideration the

correlation of failure times across patients within the same transplant center.
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Early work on analyzing competing risks data was mostly focused on the es-

timation and modeling of cause-specific hazards or the instantaneous risk of an

event (Prentice and Kalbfleisch, 1978). Let T denote the time to first event and

ε ∈ {1, ..., K} denote the cause or type of failure, with K being the number of

distinct causes. Then, the cause-specific hazard for an event ε = k at time t is

λk(t) = lim∆t→0 Pr(t ≤ T < T + ∆t, ε = k)/(∆t). Another identifiable quantity from

competing risks data (T, ε) is the subdistribution or cumulative incidence function

for cause k: Fk(t) = Pr(T ≤ t, ε = k). The cumulative incidence function mea-

sures the absolute event-specific risk and presents a scientifically relevant alternative

to the cause-specific hazard function. Given its scientific relevance, direct modeling

of covariate effects on the cumulative incidence function has received a lot of focus

recently. Fine and Gray (1999), building on earlier work by Gray (1988) proposed

a Cox proportional hazards model for the subdistribution hazards; while, Sun et al.

(2006) explored an additive hazards model. Andersen et al. (2003) and Klein and

Anderson (2005) proposed a regression technique that utilizes pseudovalues from a

jackknife statistic constructed from the cumulative incidence curve in a generalized

estimating equation for estimation of covariate effects. Jeong and Fine (2007) pro-

posed parametric regression of the cumulative incidence functions using a simple form

of the Gompertz distribution for the log of the baseline cumulative subdistribution

hazard function. Scheike et al. (2008) proposed direct binomial regression of the

cumulative incidence function through a flexible semiparametric model where some

covariates have time-varying effects and others have constant effects.

The aforementioned methods focus on estimating covariate effects on the cumu-

lative incidence function of a primary cause of interest only, allowing an arbitrary

structure for other causes. Oftentimes, investigators may be interested in simultane-

ous analysis of the different causes and their interrelationship. In such cases, fitting

the aforementioned models separately by cause may not be desirable as information
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on between cause association is generally not available. Recently, Mao and Lin (2016)

developed a method based on semi-parametric transformation models that permits

joint inference on all competing events. Another joint modeling approach, studied by

Huang and Zhang (2008) and Chen (2010) takes into account the relationships among

failure times through an assumed copula. Yet, none of the methods mentioned so far

explicitly address the additivity constraint for the cumulative incidence functions,∑
k Pr(ε = k) = 1, that is, the constraint that a subject must eventually fail from

one and only one of the distinct causes.

The additivity constraint can be explicitly incorporated by employing a mixture

regression modeling framework. For example, Larson and Dinse (1985), Maller and

Zhou (2002), Lu and Peng (2008) and Choi and Huang (2014) use the mixture model

approach to decompose the model for cumulative incidence functions into a model for

failure time conditional on the cause of failure, Pr(T ≤ t|ε = k), and a model for the

marginal probability of the cause of failure, Pr(ε = k). Here, we use the mixture re-

gression modeling framework to develop semiparametric models for the cause-specific

cumulative incidence functions in the clustered competing risks data setting.

In many applications, competing risks data cannot be considered independent. For

instance, data from multicenter clinical trials and familial studies consist of clustered

subjects whose failure time distributions may be correlated. The analysis of clustered

competing risks data present two major challenges. First, methodologies developed

for clustered single failure time data are not directly applicable to the competing risks

setting. Second, methods need to appropriately account for correlation of event times

among subjects within the same cluster. Methods developed for analyzing clustered

competing risks data can broadly be categorized into: (1) methods designed for esti-

mation and inference of appropriately defined measures of associations among failure

times within clusters; and (2) regression methods for assessing covariate effects while

accounting for within-cluster correlation of event times.
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For measuring the association of the cause-specific failure times within a cluster,

Bandeen-Roche and Liang (2002) introduced a nonparametric cause-specific cross

hazard ratio for bivariate competing risks data; Cheng and Fine (2008) proposed

an alternative representation using bivariate hazard functions. Cheng et al. (2007)

derived nonparametric estimators of bivariate cause-specific hazard and cumulative

incidence functions, and proposed two association measures in terms of these bivari-

ate functions. These and a few other methods (Cheng 2010), do not accommodate

covariate effects and require joint cause-specific intensities to be specified for all cause

combinations. Scheike and Sun (2012) proposed a parametric regression model to es-

timate covariate effects on the cross-odds ratio for multivariate competing risks data.

The cross odds ratio is a measure of association between cause-specific failure times

within a cluster that can be represented in terms of the bivariate and univariate cu-

mulative incidence functions.

Methods for regression analysis of clustered competing risks data can be divided

into methods based on marginal and conditional approaches. Marginal approaches fo-

cus on estimating marginal effects of covariates from a population average regression

model while accounting for the dependence across individuals within a cluster. For

example, Zhou et al. (2012) proposed an extension of the proportional subdistribu-

tion hazards model with sandwich-type variance estimators to account for correlation

within clusters. Conditional approaches, on the other hand, seek to estimate both

the covariate effects and the within-cluster associations. Katsahian et al. (2006) and

Katsahian and Bodreau (2011) extended the Fine-Gray proportional subdistribution

hazards model for the clustered data setting by including a cluster-specific frailty or

random-effect term. Scheike et al. (2010) proposed an alternative semiparametric

random effects model under which the marginal model for the cumulative incidence

function does not depend on the distribution of the random effects. These studies

propose modeling strategies to estimate covariate and clustering effects on the abso-
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lute risk of a single, primary cause of interest. If interest lies in assessing multiple

causes, their models should be fitted repeatedly, focusing on each event separately.

However, given that the additivity constraint is not explicitly addressed, these models

may not hold simultaneously, making them difficult to interpret and unreliable for

prediction purposes.

In this chapter we develop a semiparametric random effects model for the anal-

ysis of clustered competing risks data. Our method permits simultaneous inference

of covariate effects on all competing risks and allows for correlation of failure times

across subjects within a cluster. The dependence parameters in our model has an

interpretation as a measure of association of failure times across subjects within a

cluster. In the subsequent sections, we first introduce some notations and describe

our modeling approach. Then, we describe an inference procedure for (i) regression

parameters of the marginal model measuring covariate effects and (ii) the dependence

parameters measuring the effect of clustering.

2.2 Setup and Model

Assume that there are n study subjects in total and that each comes from one of

J centers or clusters (hereafter, we use the two terms interchangeably). Each center

j , has nj members, such that
∑J

j=1 nj = n. For each subject i(i = 1, ..., nj) in cluster

j, let Tij and Cij denote the failure time and the censoring time, respectively. Let Xij

be a vector of subject-specific time-independent covariates and let Wij be another

covariate vector that includes 1 and may share some common components with Xij.

Assuming each subject fails due to one and only one ofK causes, we let εij ∈ {1, ..., K}

denote the cause of failure, Nijk(t) = I(Tij ≤ t, εij = k) be the counting process for

cause k, and let ∆ij = I(Tij ≤ Cij) be the observed-event indicator. Observed data for

each subject i in cluster j then consist of {Xij,Wij, T̃ij, ε̃ij}, where T̃ij = min (Tij, Cij)

is the observed event time, and ε̃ij = ∆ijεij is the observed event indicator.
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Further, to incorporate the additive constraint, we propose using the mixture

model representation for competing risks. In particular, the model for cause-specific

cumulative incidence functions is decomposed into a model for the distribution of

εij given the covariate vector Wij, Pr(εij = k|Wij), and a model for conditional

cumulative incidence function Pr(Tij ≤ t|εij = k,Xij). We adapt this approach to

the clustered data setting by including cluster-specific random effects in the models for

conditional cumulative incidence functions. Specifically,for the jth center, we define

a center-specific random effect aj affecting the model for the distribution of εij and

a K-variate vector of center-specific random effects or frailties, bj = (bj1, ..., bjK)T

affecting model for conditional cumulative incidence function. Given these center-

specific random effects, the event times for all subjects within that center are assumed

to be conditionally independent.

For ease of representation and without loss of generality, we write down our models

and describe our estimation procedure for K = 2, such that εij ∈ {1, 2}. We propose

the following probit regression model for the marginal distribution of εij given the

covariate vector Wij,

πk(Wij, aj) = Pr(εij = k|Wij, aj) = Φ((−1)k−1(γTWij + aj)), k ∈ {1, 2}, (2.1)

where Φ is the cumulative distribution function for a standard Normal variable. We

assume the following model for conditional cumulative incidence functions:

Pr(Tij ≤ t|εij = k,Xij, bjk) = 1− exp{−bjkt− ηk(t)− βTkXijt}, k ∈ {1, 2}. (2.2)
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This leads us to the following random effects model for the cause-specific cumulative

incidence function in the presence of clustering:

Fijk(t|bjk,Xij, aj,Wij) = πk(Wij, aj)(1− exp{−bjkt− ηk(t)− βTkXijt}), k ∈ {1, 2}.

(2.3)

Note that the additivity constraint is satisfied as
∑2

k=1 πk(Wij) = 1 by design.

We assume that the center-specific random effect terms, aj, in the probit regres-

sion model for the marginal distribution of εij are uncorrelated with the random

effect terms bj = (bj1, ..., bjK)T in the additive hazards model for conditional cumu-

lative incidence functions. Further, we assume that all random effects are normally

distributed, such that, aj ∼ N(0, θa) and

bj =

bj1
bj2

 ∼MVN

(0

0

 ,
θb11 θb12

θb12 θb22

).
Then, under model (3), the marginal cumulative incidence function can be written

as:

Fijk(t|Xij,Wij) = π̃k(Wij)(1− exp{−Hk(t)− βTkXijt})

where π̃k(Wij) = Eθa [Φ((−1)k−1(γTWij + aj))] = Φ((−1)k−1γ̃TWij), and Hk(t) =

ηk(t) − log(Eθbkk [exp(−bjkt)]). Note that a conditional probit model with Normal

random effects when marginalized yields a probit model with fixed-effect parameters

equal to the corresponding parameters in the conditional model scaled by
√

(1 + θa),

that is, γ̃ = γ/
√

(1 + θa).

We employ a two-stage estimation procedure for the parameters in model (3). In

the first stage, we estimate parameters of marginal model (4), namely γ, θa,βk and

Hk(t) and, in the second stage, we estimate the dependence parameters, θb11, θb22, θb12,

for model (3), i.e., the distributional parameters of the cluster-specific random effects
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for both causes. We describe the proposed estimation procedure in the section that

follows.

2.3 Inference Procedures

2.3.1 Estimation of Marginal Model Parameters

Let Gij(t) = Pr(Cij > t|Xij), then observe that, under conditional independence

between Cij and (Tij, εij), we have:

E

[
∆ijNijk(t)

Pr(Cij > t)

]
= E

[
E

{
∆ijNijk(t)

Gij(t)

∣∣∣∣Tij, εij,Xij

}]
= E(Nijk(t)) = Fijk(t). (2.4)

Scheike et al. (2008) proposed to estimate parameters for a semiparametric regression

model for the cumulative incidence functions by solving estimating equations based

on the weighted response ∆ijNijk(t)/Gij(t). As Gij(t) is usually not known, it could

be substituted with an estimate Ĝij(t) obtained from either a Kaplan-Meier (1958)

estimator of the censoring distribution, or an estimator based on a regression model,

like the Cox (1972) proportional hazards model, relating the censoring distribution to

covariates. Let DHk(t)(t) = ∂F
Hk(t),βk

ijk (t)/∂Hk(t) and Dβk
(t) = ∂F

Hk(t),βk

ijk (t)/∂βk(t).

If π̃k(Wij) were known, the parameters {Hk(t),βk} of the marginal model (3) can be

estimated using the following estimating equations:

UHk
(t,Hk(t),βk) =

J∑
j=1

nj∑
i=1

DHk
(t)

{
∆ijNik(t)

Ĝij(t)
− Fijk(t)

}
= 0 (2.5)

Uβk
(τ,Hk(t),βk) =

J∑
j=1

nj∑
i=1

τ∫
0

Dβk
(t)

{
∆ijNijk(t)

Ĝij(t)
− Fijk(t)

}
= 0 (2.6)

However, π̃k(Wij) is unknown and depends on the unknown parameters {γ, θa}.

To estimate {γ, θa} simultaneously, we propose and approach similar to the general-

ized estimating equations of order 2 (GEE2) approach proposed by Feddag (2014).
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Our estimating equations for {γ, θa} are motivated by examining the conditional

mean and empirical pairwise covariance of εij = k. We first note that εij is not

observed for all subjects. In the case that a subject is censored, i.e., when ε̃ij, and

censoring occurs at time T̃ij = t, the probability of εij = 1 conditional on T ≥ t is

denoted by gijk(t;γ,βk, Hk(t),Wij,Xij), where

gijk(t;γ,βk, Hk(t),Wij,Xij) = Pr(ε = k|Tij > t,Wij,βk, Hk(t))

=
πk(Wij) exp{−Hk(t)− βTkXijt}∑2
k=1 πk(Wij) exp{−Hk(t)− βTkXijt}

.

It follows that:

Pr(εij = k|ε̃ij, T̃ij = t,Wij,Xij) = E[I(ε̃ij = k)+I(ε̃ij = 0)gijk(t;γ,βk, Hk(t),Wij,Xij)].

This leads us to the following first order estimating equation γ based on the condi-

tional mean:

δj1 =

nj∑
i=1

{I(ε̃ij = k) + I(ε̃ij = 0)gijk(T̃ij)− π̃k(Wij)}

The above equation is supplemented with an equation based on the empirical pairwise

covariances within a cluster. Specifically, we define

δj2 =

nj∑
i=1

nj∑
i′=i

∆ij

Ĝij(T̃ij)

∆i′j

Ĝij(T̃i′j)

{
I(εij = 1)I(εi′j = 1)−

Eθa [Φ((−1)k−1(γTWij + aj))Φ((−1)k−1(γTWi′j + aj))]

}

Estimates of γ, θa are then obtained by solving:

Uγ,θa = DT

J∑
j=1

[δj1, δj2]T = 0 (2.7)
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where D is a matrix of derivatives, such that:

D =

∂δj1∂γ

∂δj1
∂θa

∂δj2
∂γ

∂δj2
∂θa

 .
The regression parameters of the marginal model can be estimated by starting with

arbitrary initial values and solving the above estimating equations (2.5), (2.6) and

(2.7) using an iterative algorithm until a pre-specified convergence criterion is satis-

fied. Upon convergence, we obtain estimators of γ, θa,βk, Hk, denoted by γ̂, θ̂a, β̂k, Ĥk

respectively.

2.3.2 Estimation of Dependence Parameters

To estimate dependence parameters {θb11, θb22, θb22}, we consider cross-moments

between a pair of subjects i, i′ within the same cluster, say j, experiencing a pair of

causes k, k′, where k ∈ 1, 2, k′ ∈ 1, 2. Let:

Vii′,j,kk′(t) = (Ĝij(t))
−1∆ijNijk(t)(Ĝi′j(t))

−1∆i′jNi′jk′(t) (2.8)

Let vii′,j,kk′(t) = E{Vii′,j,kk′(t)} = E{(Ĝij(t))
−1∆ijNijk(t)(Ĝi′j(t))

−1∆i′jNi′jk′(t)}. As

noted in Section 2, in our model, the cause-specific random effects within center j

follows a multivariate normal distribution with V ar(bj1) = θb11, V ar(bj2) = θb22 and

Cov(bj1, bj2) = θb12. It follows that:

vii′,j,12(t) = Eθa [π1j(Wij, aj)π2j(Wi′j, aj)](1− exp{−H1(t)−βT1Xijt}− exp{−H2(t)

− βT2Xi′jt}+ exp{θ12t
2 −H1(t)− βT1Xijt−H2(t)− βT2Xi′jt})

vii′,j,11(t) = Eθa [π1j(Wij, aj)π1j(Wi′j, aj)](1− exp{−H1(t)−βT1Xijt}− exp{−H1(t)
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− βT1Xi′jt}+ exp{θ1t
2 −H1(t)− βT1Xijt−H1(t)− βT1Xi′jt})

vii′,j,22(t) = Eθa [π2j(Wij, aj)π2j(Wi′j, aj)](1− exp{−H2(t)−βT2Xijt}− exp{−H2(t)

− βT2Xi′jt}+ exp{θ2t
2 −H2(t)− βT2Xijt−H2(t)− βT2Xi′jt})

Let Ij denote the set index for jth cluster, the above results leads us to consider the

following estimating equations for the dependence parameters:

Uθ12(τ, θ̂a, γ̂, Ĥ1, β̂1, Ĥ2, β̂2, Ĝ) =

τ∫
0

J∑
j=1

∑
i,i′∈Ij ,i 6=i′

{V̂ii′,j,12(t)− vii′,j,12(t, θ12, θ̂a, γ̂, Ĥ1, β̂1, Ĥ2, β̂2)}dt = 0 (2.9)

Uθ1(τ, θ̂a, γ̂, Ĥ1, β̂1, Ĝ) =

τ∫
0

J∑
j=1

∑
i,i′∈Ij ,i<i′

{V̂ii′,j,11(t)−vii′,j,11(t, θ1, θ̂a, γ̂, Ĥ1, β̂1)}dt = 0

(2.10)

Uθ2(τ, θ̂a, γ̂, Ĥ2, β̂2, Ĝ) =

τ∫
0

J∑
j=1

∑
i,i′∈Ij ,i<i′

{V̂ii′,j,22(t)−vii′,j,22(t, θ2, θ̂a, γ̂, Ĥ2, β̂2)}dt = 0

(2.11)

We denote the estimators obtained by solving equations (2.9), (2.10) and (2.11) as

θ̂12, θ̂1 and θ̂2 respectively.

2.3.3 Variance Estimation using perturbation resampling

To estimate the variance and to construct confidence intervals for our proposed es-

timators, we use a perturbation-based resampling method. We apply perturbing ran-
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dom variables directly to the estimating functions at the cluster-level to approximate

the distribution of the aforementioned estimators. Specifically, let {ξj, j = 1, ..., J}

be J independent copies of a positive random variable ξ from a known distribution

with unit mean and unit variance. Fixing the data at their observed values, per-

turbed estimators are obtained as the solution to the following perturbed estimating

functions:

U∗Hk
(t,Hk(t),βk) =

J∑
j=1

ξj

nj∑
i=1

DHk
(t)

{
∆ijNik(t)

G∗ij(t)
− Fijk(t)

}
= 0 (2.12)

U∗βk
(τ,Hk(t),βk) =

J∑
j=1

ξj

nj∑
i=1

τ∫
0

Dβk
(t)

{
∆ijNijk(t)

G∗ij(t)
− Fijk(t)

}
= 0 (2.13)

U∗γ,θa = DT

J∑
j=1

ξj[δj1, δj2]T = 0 (2.14)

U∗θ12(τ,γ
∗, H∗1 ,β

∗
1, H

∗
2 ,β

∗
2, G

∗) =

τ∫
0

J∑
j=1

ξj
∑

i,i′∈Ij ,i 6=i′
{V ∗ii′,j,12(t)− vii′,j,12(t, θ12, θ

∗
a,γ

∗, H∗1 ,β
∗
1, H

∗
2 ,β

∗
2)}dt = 0 (2.15)

U∗θ1(τ,γ
∗, H∗1 ,β

∗
1, G

∗) =

τ∫
0

J∑
j=1

ξj
∑

i,i′∈Ij ,i<i′
{V ∗ii′,j,11(t)−vii′,j,11(t, θ1, θ

∗
a,γ

∗, H∗1 ,β
∗
1)}dt = 0

(2.16)

U∗θ2(τ,γ
∗, H∗2 ,β

∗
2, G

∗) =

τ∫
0

J∑
j=1

ξj
∑

i,i′∈Ij ,i<i′
{V ∗ii′,j,22(t)−vii′,j,22(t, θ2, θ

∗
a,γ

∗, H∗2 ,β
∗
2)}dt = 0

(2.17)

where G∗ is the perturbed version of Ĝ, an estimator of the censoring distribution with

weights {ξj, j = 1, ..., J}, and V ∗ii′,j,kk′(t) = (G∗ij(t)
−1∆ijNijk(t)(G

∗
ij(t))

−1∆i′jNi′jk′(t).

The above perturbed estimating equations (2.12)-(2.17) are solved using the same pro-

cedures used to solve their unperturbed counterparts, estimating equations (2.5)-(2.7)
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and (2.9)-(2.11), to obtain estimators {γ∗, θ∗a,β∗k, H∗k , θ∗12, θ
∗
1, θ
∗
2}. By repeatedly gen-

erating {ξj, j = 1, ..., J}, say M times, we can obtain a large number of realizations

of the perturbed estimators, say - {γ∗(m), θ
∗(m)
a ,β

∗(m)
k , H

∗(m)
k , θ

∗(m)
12 , θ

∗(m)
1 , θ

∗(m)
2 ,m =

1, ....,M}.

It can be shown that the unconditional distribution of estimates {γ̂, θ̂a, β̂k, Ĥk, θ̂12, θ̂1, θ̂2}

can be approximated by the conditional distribution of the perturbed estimates given

the observed data (van der Vaart and Wellner, 1996). Thus, the variance and con-

fidence intervals of estimates {γ̂, θ̂a, β̂k, Ĥk, θ̂12, θ̂1, θ̂2} are estimated based on the

empirical distribution of {γ∗(m), θ
∗(m)
a ,β

∗(m)
k , H

∗(m)
k , θ

∗(m)
12 , θ

∗(m)
1 , θ

∗(m)
2 ,m = 1, ....,M}.

2.4 Simulation Studies

In this section we describe simulation studies carried out to evaluate our pro-

posed method. For the results presented in Tables 2.1 and 2.2, data were generated

as follows. The failure time Tij for each individual i in center j (j ∈ {1, ..., J})

was generated from model (2.3). First, a cause εij was generated from model (2.1),

where W = {1, Zij} and γ = (γ0, γ1) = (0.5,−0.5); and conditional on cause of

failure a time was generated from model (2.2), where Xij = Zij, β1 = 0.8, β2 =

0.5, η1(t) = t+ 0.5t2, η2(t) = t+ 0.5t2. The single covariate Zij was generated from a

Bernoulli distribution with a success probability of 0.5. The cluster-specific random

effects in the probit model (2.1), aj, were generated from a N(0, 0.49) distribution

and the random effects in the model (2.2) for the conditional cumulative incidence,

{(bj1, bj2), j = 1, ....J}, were generated from a multivariate normal distribution with

mean (0, 0) and variance components (θ1, θ2, θ12) = (0.4, 0.4,−0.2). In each case, a

censoring time for each individual was generated dependent on the covariate as follows

Cij ∼ Unif(1, 2) × Zij1 + Unif(0.25, 2) × (1 − Zij1). This setup lead to a censoring

rate of approximately 18%, and an occurrence rate of approximately 47% for cause 1

failures and 35% for cause 2 failures in all sample size configurations.
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Table 2.1: Simulation results for one covariate setting with negatively correlated
cluster-specific random effects

Parameter
True
Value BIAS SD SE CP

γ0 0.5 0.026 0.116 0.111 0.936
γ1 -0.5 -0.011 0.130 0.123 0.928
β1 0.8 -0.002 0.232 0.220 0.940
β2 0.5 0.053 0.251 0.258 0.928
θa 0.49 0.040 0.196 0.189 0.934
θb11 0.5 -0.069 0.321 0.276 0.882
θb22 0.5 -0.075 0.383 0.322 0.870
θb12 -0.25 -0.028 0.408 0.440 0.940

Bias, empirical bias of estimates; SD, empirical standard deviation; SE, mean of estimated standard
error via the proposed resampling method; CP, empirical coverage probability

Tables 2.1 displays the results of our numerical investigations for a setting with

J = 100 clusters and with varying sample size per cluster, generated as nj ∼

Unif{2, 3, 4, 5, 6, 7, 8, 9, 10}. To calculate the asymptotic standard errors of our es-

timators, we used the resampling procedure detailed in Section 2.3. Specifically, for

each simulated dataset we generated M = 100 realizations of {ξj, j = 1, ...., J}; where

ξj were independently distributed unit exponential random variables. Results shown

in Tables 2.1 indicates that our method produces nearly ubiased estimators for both

the marginal model parameters and the dependence parameters. The proposed re-

sampling method produces standard error estimates that are close to the empirical

standard errors and 95% confidence intervals that provide close to nominal coverage.

2.5 Application

We applied our proposed methods to data from the Scientific Registry of Trans-

plant Recipients (SRTR). The SRTR data consist of information on all donors, trans-

plant recipients and candidate patients on wait-lists across the U.S., submitted by

the members of the Organ Procurement and Transplantation Network (OPTN), and
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has been described elsewhere. We specifically studied the outcomes of candidates

wait-listed for a kidney transplant. To this end, the competing events in our analysis

were (i) receipt of a deceased donor kidney transplant (ii) death while on the wait-list.

As mentioned earlier, our data consisted of a natural clustering of patients within

transplant centers. Specifically, our study cohort consisted of 3,114 patients wait

listed for a kidney transplant between January 1st, 2002 and June 30th, 2002, across

52 transplant centers in UNOS Regions 1, 2 and 9. This included all transplant cen-

ters in the states of Connecticut, Delaware, District of Columbia, Maine, Maryland,

Massachusetts, New Hampshire, New Jersey, New York, Pennsylvania, Rhode Island,

West Virginia and Vermont. With these 52 transplant centers as the clustering units,

we estimated the effect of patient-level covariates and the effects of clustering on cu-

mulative incidence functions of the two competing events of interest. We followed

patients from the date of listing until the earliest of receipt of a kidney transplant,

death, removal from wait-list, or the end of the observation period, December 31st,

2008. As living-donor transplantation was not a cause of our interest, its inclusion as

a separate cause was not considered and patients receiving a living donor transplant

were treated as independently censored.

Of 3,114 patients, 51.2% received a deceased-donor kidney transplant and 19.2%

died before end of observation period. Our model included following patient-level

covariates for both causes: age at listing, race, sex, body mass index, primary renal

diagnosis, peak renal reactive antibody level and blood type. In Tables 2.2 and 2.3, we

present the results of our analysis. Firstly, we examine the various covariate effects on

the marginal probability of transplantation, denoted by γ̂, and the covariate effects

on conditional cumulative incidence of transplantation, β̂1, and pre-transplant death,

β̂2. The reference categories are Caucasian, blood type O, female, glomerulonephritis

for the primary renal disease diagnosis and BMI > 30.
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Table 2.2: Results of application to SRTR data: Covariate Effects

γ̂ β̂1 β̂2

Covariate Estimate SE Estimate SE Estimate SE

Intercept 2.257 0.268 0 0 0 0

Race

Black -0.283 0.078 -0.117 0.02 -0.023 0.032
Asian 0.001 0.275 -0.184 0.034 -0.095 0.067

Hispanic 0.013 0.162 -0.085 0.033 -0.127 0.04
Other -0.243 0.352 0.099 0.173 0.125 0.179

Blood Type

A 0.216 0.107 0.109 0.028 0.016 0.025
AB 0.456 0.159 0.343 0.077 0.019 0.073
B -0.103 0.115 0.042 0.023 -0.031 0.028

Gender

Male -0.028 0.069 0.006 0.023 0.006 0.02

Primary Renal Diagnosis

Polycystic kidney disease 0.382 0.175 0.011 0.042 -0.067 0.072
Diabetes -0.196 0.175 0.03 0.046 0.004 0.073

Hypertension -0.018 0.174 0.009 0.044 -0.05 0.068
Other diagnosis 0.173 0.17 0.028 0.034 0.027 0.073

Peak Reactive
Antibody -0.007 0.002 -0.002 0.0005 -0.001 0.0005

BMI

Low -0.092 0.397 0.069 0.083 0.122 0.19
Normal -0.036 0.082 0.019 0.022 0.063 0.035

Overweight 0.059 0.086 0.049 0.021 0.045 0.024

Age (in decades) -0.295 0.041 0.015 0.01 0.019 0.009

Table 2.3: Results of application to SRTR data: Cluster Effects

Parameter Estimate SE

θa 0.040 0.017
θb11 0.010 0.008
θb22 0.018 0.009
θb12 0.010 0.007

41



From Table 2.2, age at listing, BMI > 30, panel reactive antibody and being

African American demonstrated significant negative effects on the marginal proba-

bility of receiving a deceased donor kidney transplant. Being African American also

seemed to have a significant effect on the timing of receipt of transplant for patients

who eventually receive a transplant. In Table 2.3, we examine the effects of clustering

on the data. The results seem to indicate that, for our data, the clustering of patients

within transplant centers can be sufficiently addressed by including random effect

terms in the probit regression model for the marginal probability of transplantation.

2.6 Discussion

In this chapter we propose a semiparametric random effects model for clustered

competing risks data based on the mixture regression modeling framework. Our

method presents an approach to estimate covariate effects on cumulative incidence

functions of all competing causes simultaneously, while accounting for correlation

of event times across subjects within cluster. To the best of our knowledge, there

are no existing methods to deal with clustered or correlated competing risks data

that allow for joint inference on all cause-specific cumulative incidence functions.

Prominent methodologies focus on a single cause of interest and in doing so are not

able to capture the interplay between competing events. By explicitly addressing the

additivity constraint for cumulative incidence functions our method is able to provide

meaningful predictions of absolute risk of all causes at a specified time and inference

about marginal probabilities. Further, our method provides a quantification of the

effects of clustering both within and across causes.

A potential drawback of our method is that it might require data with longer

follow-up times. Essentially, our method requires sufficient information in the tail

of the event time distribution to be able to distinguish between the marginal model

for the type of event and the conditional model for the timing of an event given the
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type.
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CHAPTER III

Weighted estimators of the complier average

causal effect on restricted mean survival time with

observed instrument-outcome confounders

3.1 Introduction

A major concern in any study lacking randomized treatment assignment is the

potential for confounding of the relationship between the treatment and outcome of

interest. In the absence of randomization, estimation of the causal effect of treatment

generally requires an untestable and often unrealistic assumption regarding the treat-

ment selection mechanism. Specifically, it needs to be assumed that the treatment is

randomly assigned conditional on the observed covariates, i.e., there are no unmea-

sured confounders of the treatment-outcome association. Unmeasured confounding

can be overcome by conducting an instrumental variable (IV) analysis. This requires

the availability of an IV, which is a variable (a) that is associated with the treatment

of interest, (b) that has no direct effect on the outcome except through the treat-

ment of interest and (c) whose association with the treatment and the outcome is not

confounded by any unmeasured confounders. Such a variable, when available, can be

used to identify treatment effects without knowledge of the treatment selection mech-

anism (Imbens and Angrist (1994), Angrist et al. (1996)). Some common examples
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of IVs in the binary treatment setting include physician preferences for treatment

prescription, randomized encouragement to treatment, and treatment assignment in

randomized clinical trials with noncompliance.

With the use of instrumental variable methods in biomedical studies gaining pop-

ularity only recently, there has been very little research into developing methods for

IV analysis of right censored time-to-event data. For the randomized study setting,

Robins and Tsiatsis (1991) developed semiparametric estimators of the treatment

effect under a semiparametric structural accelerated failure time model for the out-

come. Loeys and Goetghebeur (2003) extended the approach proposed by Robins and

Tsiatsis (1991) to a proportional hazards model of treatment effect working with the

restriction that subjects randomized to control have no access to treatment. Baker

(1998) worked with discrete-time survival data and developed an estimator of the dif-

ference in hazards at a specific time between compliers in the treatment and control

groups of a randomized trial. This estimator is analagous to a standard IV estimator

applied to a survival outcome at a specific time but can result in negative estimates

of hazards and can be inefficient in certain situations. Seeking to gain efficiency, Nie

et al. (2011) utilized the mixture structure implied by the latent compliance model to

develop a plug-in non-parametric empirical maximum likelihood estimation approach

for the difference between compliers in the treatment and control groups of a random-

ized trial, with respect to survival probability at a specific time point. However, like

the method proposed by Loeys and Goetghebeur (2003), Nie et al. (2011) requires

that subjects randomized to the control group have no access to treatment. More

recently, Richardson et al. (2016) considered competing risks data and proposed non-

parametric estimators, decomposing the overall causal effect of treatment on survival

probability at a fixed time point into the sum of causal effects on cause-specific cu-

mulative incidence functions. Like the other authors mentioned above, these authors

assume independent censoring.
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A major drawback of all the aforementioned methods and a few others (eg.

Elashoff et al. (2012)), is that they do not take covariates into consideration and

thus do not allow for IV-outcome confounding. As such, these methods are not

suited for causal inference from observational data. Among the methods that do

permit inclusion of covariates, Mark and Robins (1993) considered an accelerated

failure time model for the outcome, Cuzick et al. (2007) considered a proportional

hazards model and Gong (2008) considered parametric survival models. More re-

cently, Tchetgen Tchetgen et al. (2015) proposed a control function approach to

estimate the difference in hazards at a specific time under an additive hazards model

for the outcome. This approach shares some similarity with approaches developed for

continuous instrumental variables in the censored time-to-event data setting which

assume an additive hazards model for the outcome (e.g., Li et al. (2015)). Yu et

al. (2016) extended the work of Cuzick et al. (2007) to the class of semiparametric

linear transformation models which include the proportional hazards model and pro-

portional odds model as special cases.

In this chapter, we develop an estimator for the treatment effect on the re-

stricted mean survival time (RMST) under unmeasured confounding of the treatment-

outcome association using a binary IV analysis. Being a cumulative treatment effect,

the effect of treatment on RMST may be of greater interest than the effect on survival

or hazard at a specific time point, especially in the presence of a treatment effect that

changes over time (Schaubel and Wei (2011)). To the best of our knowledge, only

one other author has studied IV analysis of RMST. Kjaersgaard and Parner (2016)

proposed a pseudo-outcome approach to determine treatment effects on RMST in a

setting with a continuous IV.

Our motivating example inovolves the comparison between peritoneal dialysis

(PD) and haemodialysis (HD), the two most frequently used dialysis modalities, with

respect to 5-year RMST among end stage renal disease (ESRD) patients. While
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kidney transplantation remains is preferred treatment for patients with ESRD, most

patients are placed on dialysis until a transplant is available or as their only therapy.

While many studies have compared the two modalities currently in use, results have

been conflicting with some studies have showing PD to be associated with a survival

advantage initially but no significant difference afterward (Fenton et al. (1997), Jaar

et al. (2005), Heaf et al. (2002), Kumar et al. (2014)) and others showing that

mortality rate is higher in patients receiving PD, especially older patients, than those

receiving HD (Kim et al. (2014), Weinhandl et al. (2010)). A key concerns in most

of the studies of this comparison is strong selection bias, as PD patients tend to be

younger and healthier, and as studies mostly only adjust for observed confounders.

This leads to the question, if unmeasured confounders were accounted for, which dial-

ysis modality would be preferred in terms of patient survival?

In an observational setting, such as ours, the assumption that the instrument of

choice is completely randomly assigned might not be valid. However, the random

assignment requirement may be met after adjusting for a set of observed instrument-

outcome confounders, making the instrument conditionally distributed “as good as

random”. These measured instrument-outcome confounders can be adjusted for by

including them in two stage regression models or through matching. Two stage regres-

sion modeling in the survival setting often requires additional modeling assumptions

(Li et al. (2015), Tchetgen Tchetgen et al. (2015)). Matching, on the other hand,

may be infeasible in the presence of even a moderate number of covariates, as in

our setting. For such situations, some authors (e.g., Frolich (2007)) have proposed

matching using the instrument propensity score, i.e., the conditional probability of

assignment to the instrument group encouraging treatment given covariates. An al-

ternative to matching and regression based estimators are inverse weighting based

estimators with weights based on the estimated instrument propensity score. Previ-

ously, Tan (2007) proposed an inverse probability of instrument weighted (IPIW) IV
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estimator, where subjects in each instrument group are weighted by the inverse of

the conditional probability of assignment to that instrument group. The weights pro-

posed by Tan (2006) are analogous to the traditional inverse probability of treatment

weight (IPTW) (Robins et al. (2000)) used for treatment comparisons in the uncon-

founded setting. In this chapter, we propose to use weights that, as will be shown

later, tend to produce more efficient estimators than matching or IPIW proposed by

Tan (2006). Further, unlike matching based estimators, we are able to derive easily

implementable asymptotic variance estimators for our proposed treatment effect es-

timators and thus do not have to rely on resampling based methods.

In Section 3.2, we begin with a description of the notation and assumptions re-

quired for our method. We then derive the asymptotic properties of our proposed

estimators; proofs of which are provided in the Appendix. In Section 3.3, we evaluate

the performance of our estimators in finite samples. In Section 3.4, we apply our

methods to compare HD and PD modalities using data from the United States Renal

Data System (USRDS). Finally, in Section 3.5, we provide a discussion.

3.2 Methods

3.2.1 Notation

Our data consist of subjects randomized to one of two levels of a binary instru-

mental variable. Henceforth, we refer to these two levels of the IV as encourage-

ment toward the treatment and encouragement towards control. For each subject

i(i = 1, ..., n), the binary IV is denoted by Zi, with Zi = 1 for subjects randomized

to receive encouragement toward treatment and Zi = 0 for subjects randomized to

receive encouragement toward control. While the effect of the randomly assigned

encouragement status may sometimes be of interest, the goal of an IV analysis is to

estimate the causal effect of the treatment actually received.
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To this end, we use Rubin’s potential outcome framework to define quantities of

interest. We first define a vector of potential treatment outcomes for each subject

as Ai
∗ = (Ai(0), Ai(1)), where Ai(0) and Ai(1) denote the treatment that subject i

would have received had they been randomized to receive Zi = 0 and Zi = 1, respec-

tively. Then, under the so-called consistency assumption (Rubin, 2005), the observed

treatment Ai = Ai(0)I(Zi = 0) + Ai(1)I(Zi = 1). Based on the vector of potential

treatment outcomes, subjects can be grouped into four complier classes: subjects

with Ai
∗ = (0, 1) are compliers (i.e., they receive treatment only if encouraged toward

treatment); subjects withAi
∗ = (1, 1) are always takers (i.e., they always receive treat-

ment); subjects with Ai
∗ = (0, 0) are never takers (i.e., they never receive treatment);

and subjects with Ai
∗ = (1, 0) are defiers (i.e., they receive treatment only if en-

couraged toward control and vice-versa). We further define Ti(z, ai(z)), the potential

time-to-event that would be observed if subject i is randomized to Z = z and actually

receives treatment ai(z), for all combinations of (z, ai(z)). In the absence of censoring,

an IV analysis estimates the causal effect of the treatment received on subjects in the

complier class, i.e., an IV analysis estimates δ = E[Ti(1, 1) − Ti(0, 0)|Ai∗ = (0, 1)].

This is commonly referred to as the local average treatment effect (LATE) or the

complier average causal effect (CACE).

Let Ti denote the time-to-event, which is subject to right censoring by Ci. We

let Xi be a vector of observed time-independent covariates that, in the absence of

adjustment, could potentially confound the instrument-outcome relationship. We let

∆i = I(Ti ≤ Ci) be the observed event indicator. The observed data for each sub-

ject i, then consists of {T̃i,∆i,Xi, Ai}, where T̃i = min (Ti, Ci) represents observation

time. The presence of censoring generally implies that the mean survival time is not

identifiable. As such, we propose to measure the causal effect in terms of the RMST.

The RMST at a given time L is defined as the E(min(T, L)), where it is required

that L ≤ τ with τ denoting the maximum observation time. Note that RMST is also

49



equal to the area under the survival curve in the interval [0, L].The causal effect of

interest then becomes, δ(L) = E[min(Ti(1, 1), L)−min(Ti(0, 0), L)|Ai∗ = (0, 1)].

3.2.2 Assumptions

To estimate the CACE, we make the following six assumptions:

A1. Stable unit treatment value assumption (SUTVA).

Also called the no interference assumption, SUTVA states that each subject’s

potential outcomes are not affected by the randomly assigned encouragement

status of other subjects in the population. This allows us to consider each

subject’s potential outcomes as a function of only their encouragement status

and treatment.

A2. Independence of instrument. Zi ⊥ Ai(0), Ai(1), Ti(0, 0), Ti(0, 1), Ti(1, 0), Ti(1, 1)|Xi.

This assumption states that the potential outcomes are independent of the ran-

domly assigned encouragement status, conditional on the observed covariates.

Essentially, we are assuming that conditioning on the observed covariate vector,

the IV is independent of unmeasured confounders.

A3. Exclusion Restriction. Ti(0, 1) = Ti(1, 1), Ti(1, 0) = Ti(0, 0)|Xi.

This assumption states that the IV can affect the outcome only by affecting the

treatment received.

A4. Non-zero causal effect of Z on A: E(Ai(1)− Ai(0)) > 0.

The IV, encouragement status, is assumed to have a positive effect on the actual

treatment received.

A5. Monotonicity: Ai(1) ≥ Ai(0).

This asumption says that the potential treatment received under encouragement

toward treatment is greater than or equal to that under encouragement toward

control. This rules out the existence of the defiers class.
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A6. Independent Censoring. Ci ⊥ Ti|Zi,Xi.

Censoring is assumed to be independent of time-to-event given the observed

covariates and encouragement status.

Under assumptions A1-A5 and in the absence of censoring, the CACE can be recov-

ered from observed quantities as:

δ(L) =
E[min(Ti, L)|Zi = 1]− E[min(Ti, L)|Zi = 0]

E[Ai|Zi = 1]− E[Ai|Zi = 0]
(3.1)

However, in the presence of censoring, assumption A6 permits the construction of an

inverse probability of censoring weighted estimator of the quantity in the numerator

of equation (3.1).

3.2.3 Weighting

To account for measured confounders of the instrument-outcome relationship, we

re-weight the data using weights based on the instrument propensity score, defined

as,

e(X) = Pr(Z = 1|X). (3.2)

Owing to the balancing property of the propensity score, conditioning on e(X) retains

independence of the IV and unmeasured confounders, and using weights based on

e(X) sufficiently adjusts for confounding due to X. Furthermore, assumptions A2,

A3 and A6 which condition on X, can also be written by conditioning on e(X)

instead.

We propose using two different weights, namely, a matching weight intially studied

by Li et al. (2013), and an overlap weight initially developed by Li et al. (2016). Both

of these weights are based on the instrument propensity score. The matching weight

(MW) was developed as a weighting analogue to paired matching on the propensity
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score and is expressed as,

MW =
min{e(X), (1− e(X))}

Ze(X) + (1− Z)(1− e(X))
. (3.3)

Li et al. (2013) show that, in the unconfounded setting, the estimator of treatment

effect obtained using the MW is asymptotically equivalent to the estimator obtained

from one-to-one paired matching on the propensity score. Essentially, using the MW

then provides a method to make treatment comparisons using all the subjects in the

data and thus provides a more efficient alternative to matching where unmatched

subjects are discarded. Further, unlike matching, the weighting approach leads to

more accurate variance calculation and simpler asymptotic analysis. These appealing

attributes of the MW motivate us to investigate its use for the setting with unmea-

sured confounders. Thus, we develop a MW estimator of the CACE that can be

viewed as a more efficient alternative to the instrument propensity score matching

based estimator.

The overlap weights (OW) were proposed by Li et al. (2016) for the comparison

of binary treatments in the unconfounded setting. The OW are target to estimate the

treatment effect in a sub-population with the most overlap, that is, a sub-population

of subjects who could appear with substantial probability in either treatment group.

The overlap weights belong to a broader class of covariate balancing weights in the

binary treatment setting which includes MW and IPIW. As Li et al. (2016) show,

among this class, the overlap weights based estimator has the minimum asymptotic

variance. Further, as the authors note, the overlap weights are in a sense asymp-

totically equivalent to matching. Specifically, a matching analysis based on exact

matching of subjects on the same discrete design points (or small neighborhood, for

continuous variables) would use weights equivalent to the overlap weights estimated

from a saturated propensity score model with an indicator for each design point.

52



Here, we propose using the OW to estimate the CACE, with the weights expressed

as,

OW =
e(X)(1− e(X))

Ze(X) + (1− Z)(1− e(X))
. (3.4)

We compare the proposed weights to the inverse instrument probability weights

(IPIW) proposed by Tan (2006), and expressed as,

IPIW =
1

Ze(X) + (1− Z)(1− e(X))
(3.5)

As mentioned earlier, the IPIW weights seek to achieve covariate balance across in-

strument groups by re-weighting subjects in each group by the probability of being

assigned to the observed instrument group. The IPIW weights may become very large

when the propensity score approaches 0 or 1, leading to biased and highly inefficient

estimates of treatment effect. As will be seen in our simulation studies, the weights

we propose are able to guard against this as they are bounded between 0 and 1.

3.2.4 Estimation

In this section we develop an estimator, δ̂(L), of the CACE on the RMST in

presence of measured time-independent confounders of the instrument-outcome and

instrument-treatment relationship, Xi. We first concentrate on estimating the quan-

tities in the numerator of (3.1).

Let Ni(t) = ∆iI(Ti ≤ t) be the observed event counting process indicator and

Yi(t) = ∆iI(Ti ≥ t) be the observed at-risk process indicator. Further, define IV

level-specific versions dNiz(t) = I(Zi = z)dNi(t) and Yiz(t) = I(Zi = z)Yi(t), where

z ∈ {0, 1}. Then, in the absence of censoring, an estimate of the cumulative hazard

Λz(t) when randomly assigned to IV level Z = z can be obtained using the weighted
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Nelson-Aalen estimator,

Λ̂z(t) =
n∑
i=1

t∫
0

wei (β̂)dNiz(s)∑n
i=1w

e
i (β̂)Yiz(s)

, (3.6)

where wei (β̂) are weights based on a model-based estimate of the IV propensity score,

e(Xi). We assume that the IV assignment givenXi follows a logistic regression model

with parameters β, such that:

Pr(Zi = 1|Xi) = logit−1(XT
i β).

Here, we do not distinguish between the type of weight as the expression for the

estimator is the same regardless of the type of weight, that is, wei (β̂) could be equal

to the MW, OW or IPIW.

To adjust for covariate dependent censoring, we weight each subject’s contribution

at time t by the inverse of the probability of being uncensored at time t, i.e., each

subject’s contribution in (3.3) is multiplied by wci (t) = P (Ci ≥ t|Xi)
−1. As the true

censoring distribution is unknown in most cases, an estimate ŵci (t) can be obtained

non-parametrically or by fitting separate Cox proportional hazards models to the

censoring distribution at each level of the IV. For example, if the censoring time

for subjects assigned to IV level Z = z is modeled using the following proportional

hazards model λciz(t) = λ0z(t) exp(XT
i θ0z), then, an estimate for wci (t) when randomly

assigned to IV level Z = z is given by ŵci (t; θ̂z) = exp(Λ̂0z(t; θ̂z) exp(XT
i θ̂z)). Thus, in

the presence of covariate-dependent censoring, the weighted Nelson-Aalen estimator

of the cumulative hazard Λz(t) is given by

Λ̂z(t) =
n∑
i=1

t∫
0

ŵci (s; θ̂z)w
e
i (β̂)dNiz(s)∑n

i=1 ŵ
c
i (s; θ̂z)w

e
i (β̂)Yiz(s)

. (3.7)
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Let µT,z(L) = E[min(Ti, L)|Zi = z] denote the average RMST at IV level Z = z. An

estimator µ̂T,z is obtained as:

µ̂T,z(L) =

L∫
0

Ŝz(t)dt, (3.8)

where Ŝz(t) = exp(−Λ̂z(t)). Thus, an estimate of the numerator in equation (3.1) is

given by µ̂T,1(L)− µ̂T,0(L).

The denominator in (3.1) is estimated as the difference in the weighted average of

actual treatment received between the two IV levels. Let µA,z = E[Ai|Zi = z], then

an estimate of the denominator in (3.1) is given by:

µ̂A,1 − µ̂A,0 =

∑n
i=1w

e
i (β̂)AiI(Zi = 1)∑n

i=1w
e
i (β̂)I(Zi = 1)

−
∑n

i=1w
e
i (β̂)AiI(Zi = 0)∑n

i=1w
e
i (β̂)I(Zi = 0)

. (3.9)

Thus, an estimate of the complier average causal effect in the presence of covariate-

dependent censoring and observed instrument-outcome confounders is given by:

δ̂(L) =
µ̂T,1(L)− µ̂T,0(L)

µ̂A,1 − µ̂A,0
. (3.10)

3.2.5 Asymptotic Properties

The following two theorems summarize the asymptotic behavior of our proposed

estimator.

THEOREM 1: Under assumed regularity conditions (a.) to (g.) in Appendix, Λ̂z(t) =

Λ̂z(t; β̂) converges almost surely and uniformly to Λz(t) for t ∈ [0, τ ], and n1/2{Λ̂z(t)−

Λz(t)} converges asymptotically to a zero mean Gaussian process with covariance func-
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tion σz(s, t) = E{Φiz(s)Φiz(t)}, where

Φiz(t) = Φiz1(t) + Φiz2(t) + Φiz3(t) + Φiz4(t);

Φiz1(t) = {hz(t) + dz(t)}TΩ−1(β0)n
−1/2

n∑
i=1

ψi(β0)

Φiz2(t) = {gz(t) + fz(t)}TΩ−1
C (θ0z)n

−1/2

n∑
i=1

ψCi (θ0z)

Φiz3(t) =
n∑
i=1

t∫
0

qz(s, t)b(s;β0,θ0z)
−1dMC

i (s)

Φiz4(t) =
n∑
i=1

t∫
0

wei (β0), wCi (s;θ0z)b(s;β0,θ0z)
−1dMiz(s)

dMiz(s) = dNiz(s)− Yiz(s)dΛz(s)

dMC
i (s) = dNC

i (s)− Yi(s)dΛC
z (s)

The expressions Ω−1(β0)n
−1/2

∑n
i=1ψi(β0) and Ω−1

C (θ0z)n
−1/2

∑n
i=1ψ

C
i (θ0z) rep-

resent the influence functions for the logistic model (for the IV assignment) and Cox

model (for censoring) respectively. Explicit expressions for these influence functions

and for the other parameters above are given in the Appendix. The consistency of

Λ̂z(t; β̂) is proved through the consistency of β̂ and application of the continuous

mapping theorem and the Strong Law of Large Numbers. The proof of asymptotic

normality follows from expressing n1/2{Λ̂z(t) − Λz(t)} as a sum of independent and

identically distributed mean zero variates. Multivariate Central Limit theorem can

then be used to show asymptotic normality at a fixed time point, t, while various

empirical process results can be used to establish convergence to a Gaussian process.

We refer to the Appendix for a detailed sketch of the proof which utilizes some of

the ideas in Schaubel and Wei (2011), where, in Theorem 1, the authors establish the

asymptotic properties for the doubly inverse weighted estimator of treatment group-

specific cumulative hazard functions.
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THEOREM 2: Under regularity conditions (a.) - (g.) in Appendix, δ̂(t) =
µ̂T,1(t;β̂)−µ̂T,0(t;β̂)

µ̂A,1(β̂)−µ̂A,0(β̂)

converges almost surely to δ(t) for t ∈ [0, τ ], and n1/2{δ̂(t)−δ(t)} converges asymptoti-

cally to a mean zero Gaussian process with covariance function σδ(s, t) = E{ξi(s)ξi(t)},

where

ξi(t) = ξi1(t) + ξi2(t);

ξi1(t) = QTΩ−1(β0)
n∑
i=1

ψi(β0)

ξi2(t) = {µA,1(t)− µA,0(t)}−1

n∑
i=1

Σi(t)

A detailed sketch of the proof with explicit expressions and definitions for the quan-

tities QT and Σi(t) is given in the Appendix. The covariance function is estimated

by replacing the limiting values with their empirical counterparts.

3.3 Simulation Studies

Simulation studies were conducted to assess the finite sample properties of the

proposed CACE estimator and the associated asymptotic standard error estimator.

We also demonstrate the benefits of using an IV analysis method by comparing the

proposed IV analysis methods to a ‘naive’ analysis. In a ‘naive’ analysis, it is as-

sumed that there is no unmeasured confounding. Thus, one proceeds to estimate the

average treatment effect by adjusting only for the observed covariates, as done in the

unconfounded setting. In the unconfounded setting, treatment comparisons can still

be made by using propensity score matching or inverse weighting based methods but

rather than the instrument propensity score, the treatment propensity score, that

is, the probability of receiving the actual treatment is used. For example, to obtain

a matching based estimator of the average treatment effect in the ‘naive’ analysis,

57



subjects are matched across treatment groups on the treatment propensity score and

the difference estimates of RMST between treated and untreated subjects is averaged

across matched sets. Similarly, the inverse-weighting based estimator of the treatment

effect is simply equal to the difference in inverse weighted estimates of RMST in the

treatment and untreated groups, using weights based on the treatment propensity

score.

For our simulations, under assumptions A1 − A6 , data were generated for a setting

with two observed instrument-outcome confounders, {X1, X2} and one unmeasured

confounder, Xu. For each subject, X2 was generated from a Bern(0.6) distribution

and X1 and Xu were generated from two separate univariate N(0, 0.5) distributions.

Given covariate values, the level of IV that each subject was randomized to was gen-

erated from the logistic model, Pr(Z = 1) = logit−1(−0.5 + 3X1 + X2). The actual

treatment receipt status was then generated from the logistic model: Pr(A = 1) =

logit−1(−0.5+Z+0.25X1+0.25X2+0.25Xu). Event times T were then generated from

an exponential model with rate λT = 0.01(−2−A−0.5X1+0.5X2−0.25Xu). Censoring

times C were generated from an exponential model with rate λc = 0.01(−λ0−1.5X2),

where λ0 was set to {1, 2.5} to correspond to a high (∼ 47%) and moderate (∼ 25%)

level of censoring. For each censoring scenario, the performance of the estimators was

evaluated at sample sizes n = 500, 1000, 2000. In all scenarios, we were interested in

estimating the complier average causal effect on the RMST at L = 1825 (i.e., 5 years,

if the time scale were in days). The results discussed in this section are based on 1000

Monte Carlo simulations.

Tables 3.1 and 3.2 display a comparison of the three different weighting estimators

and a propensity score matching approach in an IV analysis and a naive analysis at

sample sizes n = 500, 1000 and 2000 in a setting with ∼ 25% censoring. As expected,

a naive analysis that ignored confounding seemed to produce systematically biased
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Table 3.1: Simulation results: Proposed IV estimators and propensity score
matching with ≈ 25% censored before L = 1825 and δ(L) = 499

Naive Analysis IV Analysis

Method
Percent

Bias ESD
Percent

Bias ESD
Relative

MSE ASE CP

n = 500

IPTW / IPIW -53 54 6 436 1.52 476 0.99
MW -53 54 5 301 0.72 334 0.97
OW -53 55 4 309 0.77 340 0.97

Matching -53 60 1 354 1 1 1

n = 1000

IPTW / IPIW -55 40 2 313 1.75 336 0.99
MW -55 40 2 207 0.77 230 0.98
OW -55 40 2 211 0.79 234 0.98

Matching -55 44 -5 236 1 1 1

n = 2000

IPTW / IPIW -55 40 -4 170 1.13 224 0.99
MW -55 40 -2 139 0.75 158 0.98
OW -55 40 -1 141 0.78 161 0.98

Matching -55 44 -10 155 1 1 1

For Naive Analysis
IPTW = {Ae(X) + (1−A)(1− e(X))}−1

MW -MatchingWeight = min{e(X), (1− e(X))}{Ae(X)+(1−A)(1−e(X))}−1

OW - Overlap Weight = e(X)(1− e(X)){Ae(X) + (1−A)(1− e(X))}−1

For IV Analysis
IPIW = {Ze(X) + (1− Z)(1− e(X))}−1

MW -MatchingWeight = min{e(X), (1− e(X))}{Ze(X)+(1−Z)(1−e(X))}−1

OW - Overlap Weight = e(X)(1− e(X)){Ze(X) + (1− Z)(1− e(X))}−1
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Table 3.2: Simulation results: Proposed IV estimators and propensity score
matching with ≈ 25% censored before L = 1825 and δ(L) = 499

Naive Analysis IV Analysis

Method
Percent

Bias ESD
Percent

Bias ESD
Relative

MSE ASE CP

n = 500

IPTW / IPIW -45 71 -5 512 1.14 474 0.97
MW -45 72 -3 411 0.73 376 0.96
OW -44 72 -4 421 0.77 384 0.96

Matching -42 82 11 478 1 1 1

n = 1000

IPTW / IPIW -49 51 -4 395 1.59 343 0.96
MW -49 52 -3 284 0.82 269 0.95
OW -48 52 -3 284 0.82 275 0.95

Matching -47 58 -3 314 1 1 1

n = 2000

IPTW / IPIW -49 51 -3 230 1.1 238 0.97
MW -49 52 0 193 0.77 192 0.96
OW -48 52 0 197 0.8 195 0.95

Matching -47 58 -6 218 1 1 1

For Naive Analysis
IPTW = {Ae(X) + (1−A)(1− e(X))}−1

MW -MatchingWeight = min{e(X), (1− e(X))}{Ae(X)+(1−A)(1−e(X))}−1

OW - Overlap Weight = e(X)(1− e(X)){Ae(X) + (1−A)(1− e(X))}−1

For IV Analysis
IPIW = {Ze(X) + (1− Z)(1− e(X))}−1

MW -MatchingWeight = min{e(X), (1− e(X))}{Ze(X)+(1−Z)(1−e(X))}−1

OW - Overlap Weight = e(X)(1− e(X)){Ze(X) + (1− Z)(1− e(X))}−1
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estimates at all sample sizes. With ∼ 25% of the data being censored, the naive anal-

ysis estimates produced estimates that had a relative bias of 53 − 55%. At a higher

censoring rate of ∼ 47%, the relative bias for the naive analysis estimates ranged from

42− 50%.

For the IV analysis, in terms of bias, the performance of the inverse weighted esti-

mators seemed comparable to that of the propensity score based matching estimator.

The proposed MW and OW estimators, however, outperformed the matching based

estimator with respect to efficiency, measured in terms of mean squared error (MSE),

at all sample sizes and all levels of censoring. The OW and MW based estimators

had a MSE ranging from 0.7 - 0.8 times of that of the matching based estimators.

The IPIW weights, on the other hand, were less efficient than matching with relative

MSE ranging from 1.1 - 1.6. The asymptotic standard error estimators approximated

the true standard deviation well and, correspondingly provided confidence intervals

with appropriate coverage probabilities. The proposed asymptotic variance estimator

provided 95% confidence intervals that covered the true parameter with probability

97% - 99% when ∼ 25% of the data were censored and with probability 95% - 97%

when ∼ 47% of the data were censored.

3.4 Application

We applied our methods compare HD and PD modalities for end stage renal

disease (ESRD) patients using data from the United States Renal Data System (US-

RDS). Previous studies of this question have yielded conflicting results providing no

conclusive evidence for or against the use of PD. This suggests that an IV analysis

might be in order to adequately address unmeasured treatment-outcome confounding

and shed some valuable insight on the problem.

We conducted an IV analysis to estimate the effect of dialysis modality on the

restricted mean survival at 5 years (L = 1825 days) since ESRD incidence. Our
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study population consisted of incident dialysis patients initiating dialysis between

01/01/2009 and 12/31/2014. A potential instrument is the dialysis facility-level vari-

ation in PD usage, defined as the facility-specific proportion of patients initiating

dialysis with PD. We used a dichotomized version of this instrument, with patients

in facilities with PD usage above the national average of PD usage defined as be-

ing randomized to receiving the instrument of encouragement toward PD. Owing

to the nature of our analysis we excluded small dialysis facilities defined as having

< 10 PD patients and < 50 patients in total. After this step, our study cohort had

164,837 patients distributed across 929 dialysis facilities in the United States. To

avoid introducing patient-level confounding between the instrument and unmeasured

confounders, historical data from 2006-08 was used to determine PD usage. The mean

PD usage rate within facility varied from 1.8% to 54.6% with a mean of 14.5% and

median of 12.5%. The correlation between facility-level mean PD usage in 2006-08

and 2009-14 was 0.57, and the dichotomized PD encouragement status was signifi-

cantly associated (β = 0.1, p < 0.0001) with individual PD uasge in a model adjusting

for available patient-level covariates, suggesting potential for a good instrument.

Table 3.3 presents a comparison of patients initiating dialysis on PD and HD with

respect to age, comorbidities and primary renal diagnosis. On average, PD patients

were indeed 5 years younger and healthier in terms of having fewer comorbidities than

HD patients. While these patient-level factors are observed and can be adjusted for in

a regression analysis, it is plausible that other unmeasured patient-level confounders

might influence both the choice of dialysis modality and survival, thus, necessitating

an IV analysis. The likelihood of unmeasured confounding seems greater knowing

that every available risk factor in Table 3.3 is more prevalent for HD than PD pa-

tients.

Based on historical evidence as important predictors, we included the follow-

ing patient-level covariates in the logistic regression model for estimating the instru-
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Table 3.3: Analysis of USRDS Data: Description of Study Cohort by Dialysis Modal-
ity

Covariate Haemodialysis
Peritoneal
Dialysis

Standardized
Difference

Percent Died 53 36 -36.3
Age (Years) 63.6 58.1 -36.5

Primary Renal Diagnosis

Diabetes 46 43 -5.9
Hypertension 28 26 -4.6

Glomerulonephritis 8 15 22.3
Other 17 15 -5.5

Comorbidities

Alcohol Use 2 1 -11.6
ASHD 21 13 -21.3
Cancer 8 5 -11.9
CHF 33 16 -39.5

COPD 10 4 -22.4
CVA 10 6 -13.7

Diabetes 11 7 -12.1
Drug Use 1 0 -10.7

PVD 14 9 -17.4
Tobacco Use 7 6 -2.9

Table 3.4: Analysis of USRDS Data: Results from IV and Naive analysis

Method IV Analysis Naive Analysis

Method Estimate 95% Interval Estimate 95% Interval

IPIW 87.5 (17.8 , 157.1) 118.4 (107.5 , 129.1)
MW 88.5 (18.1 , 158.8) 102.0 (88.5 , 115.5)
OW 87.5 (17.9 , 157.0) 118.2 (108.9 , 127.6)
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ment propensity score: year of ESRD incidence, age at dialysis initiation, gender,

race, ethnicity (Hispanic or not), primary renal diagnosis (glomerulonephritis (GN)

diabetes, hypertension, and others), and binary comorbidity indicators for the pres-

ence of cancer, diabetes, athlero-sclerotic heart disease (ASHD), congestive heart fail-

ure (CHF), chronic obstructive pulmonary disease (COPD), cerebrovascular accident

(CVA), peripheral vascular disease (PVD), elicit drug use, tobacco use, and alcohol

consumption. The censoring distribution in each instrument-level was estimated us-

ing separately fitted Cox hazards regression models including all the aforementioned

patient-level covariates. The estimated propensity score and censoring probabilities

was then used to construct the weighted estimator in equation (3.7).

In Table 3.4 we present the results from the IV analysis and the corresponding

‘naive’ analysis for each of the proposed inverse-weighting based estimators. For the

‘naive’ analysis, we ignored the presence of unmeasured confounders of the treatment-

outcome relationship, i.e., we estimated the causal effect as the difference in inverse

weighted estimates of RMST in the treatment and control groups, using weights based

on the treatment propensity score. Both the IV and naive analysis showed the use of

PD to be beneficial. The IV analysis indicated that initiating dialysis using PD may

lead to a gain in 5-year RMST of nearly 3 months.

3.5 Discussion

In this chapter, we develop a weighted estimator of the complier average causal

effect on the restricted mean survival time. The proposed method addresses un-

measured confounding of the treatment-outcome relationship in the censored time-

to-event setting. A unique feature of our approach it that it accomodates observed

instrument-outcome confounding, such that one only needs to assume that the instru-

ment is randomly assigned conditional on some observed covariates. This makes the

proposed estimator particularly suited for causal inference from observational studies.
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The weights we propose to use, namely the matching weight and the overlap weight

tend to outperform the IPIW proposed by Tan (2006) and propensity score matching

in terms of MSE even in the presence of moderate variability in instrument propensity

score. This was seen to be the case even when we explored using a variance stabi-

lized version of IPIW weights (results not shown here), with simulation results being

nearly identical to that presented here. This is mainly because, unlike the IPIW,

both the MW and OW are bounded between 0 and 1 and are thus less sensitive to ex-

treme weights. Further, an advantage of using the proposed weighted estimators over

matching is the availability of easily implementable asymptotic variance estimators

which are derived in this chapter. Future research could concentrate on improving

these estimators further by developing a doubly robust version of the MW and OW

based estimators of the CACE.

To the best of our knowledge, this is the first study of a binary IV analysis of

RMST. The only other study of an IV analysis method for estimating causal effects

on the RMST (Kjaersgaard and Parner (2016)) was in the context of a contionuous

IV and used a pseudo-observation appraoch. As Kjaersgaard and Parner (2016) point

out, a major limitation of the pseudo-observation approach is that censoring is re-

quired to be independent of covariates and instrument. In comparison, the proposed

method only requires the assumption that censoring and survival times are indepen-

dent conditional on covariates and instrument. Future research could concentrate

on developing methods that further relax this assumption by allowing censoring to

depend on treatment.
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CHAPTER IV

Instrumental variable estimators of exposure

effects for competing risks data

4.1 Introduction

With the issue of unmeasured confounding arising in many clinical investigations

based on observational data, instrumental variable (IV) analysis methods have been

gaining in popularity in biomedical research. As the name suggests, these methods

exploit the availability of an IV, a variable that is (a) associated with the exposure

of interest, (b) has no direct effect on the outcome except through the exposure of

interest and (c) is not subject to any unmeasured confounding itself. Such methods

seek to overcome unmeasured confounding of the exposure-outcome association. Es-

sentially, the availability of an IV permits the identification of exposure or treatmet

effects without knowledge of the treatment selection mechanism (Imbens and Angrist

(1994), Angrist et al. (1996)).

With an origination in econometrics, IV analysis methods have been widely used

in empirical economic research, but have only recently made their way to biomedical

studies. Consequently, while IV estimation of exposure effects is well established for

continuous and binary outcomes, there has been little research into developing meth-

ods for IV analysis of censored time-to-event data. In one of the first methodological
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investigations in this area, Robins and Tsiatis (1991) developed semiparametric esti-

mators of the treatment effect under a semiparametric structural accelerated failure

time model for the outcome in the randomized study setting, that is, a setting with a

binary exposure and no exogenous covariates. The authors required that all censoring

be administrative or fixed at a certain known time point. Loeys and Goethburger

(2003) extended the approach proposed by Robins and Tsiatsis to a proportional

hazards model of the treatment effect, under independent censoring. Other notable

studies of IV methods for censored time-to-event data in the randomized setting, in-

clude studies by Baker (1998), Nie et al. (2011), Elashoff et al. (2012). More recently,

Richardson et al. (2016) proposed non-parametric treatment effect estimators in the

competing risks setting, decomposing the overall causal effect of treatment on survival

probability at a fixed time point into the sum of causal effects on the cause-specific

cumulative incidence functions. Other studies (e.g., Mark and Robins (1993), Cuzick

et al. (2007), Frolich (2007)) have proposed methods to control for exogenous covari-

ates in the binary exposure setting.

For a continuous exposure, and in the presence of exogenous covariates, Li et

al. (2015) proposed a two stage least squares (2SLS) approach to estimate the ef-

fect of exposure assuming an additive hazards model for the outcome. Chan (2015)

subsequently showed that for the additive hazards model, exposure-dependent cen-

soring could be accommodated using a control function or two stage residual inclusion

(2SRI) approach for estimation. This was further elaborated on by Tchetgen Tch-

etgen (2015), who also considered binary exposures. Kjaersgaard and Parner (2016)

proposed a pseudo-observation approach which requires censoring to be independent

of covariates and instrument. Zheng et al. (2017) extended the method proposed by

Li et al. (2015) to the competing risk setting by assuming an additive subdistribu-

tion hazards model for the cause of interest. Like Li et al. (2015), the authors also

proposed to use a 2SLS approach to estimate the exposure effect, and required that
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censoring be independent of exposure.

In this chapter, we develop an IV analysis method to estimate the effect of an

exposure of interest on the cumulative incidence functions (CIFs) in the competing

risks setting. Competing risks data are encountered in biomedical studies when sub-

jects are subject to failure from many distinct causes or events. Unlike the method

proposed by Zheng et al. (2017), which also address competing risks but focus on

a single primary cause of interest, the method developed in this chapter permits si-

multaneous inference of the exposure effect on all competing causes. Our work here

is specifically motivated by the comparison between peritoneal dialysis (PD) and

haemodialysis (HD), the two most frequently used dialysis modalities, with respect

to cardiovascular (CVD) and non-cardiovascular (non-CVD) mortality among end

stage renal disease (ESRD) patients in the 5 years following initiation of dialysis.

Thus, in our case, the two different competing events are: cardiovascular death and

non-cardiovascular death. While many studies have compared the two modalities

currently in use with respect to overall survival, very few studies have examined the

difference in cause-specific mortality rates across modalities. Some registry based

studies seem to suggest that PD use may be associated with an increased risk in

myocardial infarction (Johnson et al. (2009), Kim et al. (2015)), contributing to a

higher rate of CVD death in PD patients. However, as PD patients tend to be younger

and healthier, and as studies mostly only adjust for observed confounders, selection

bias is a concern for most of the observational studies of comparison between PD and

HD patients. Thus, here, we seek to answer the question, if unmeasured confounders

were accounted for, which dialysis modality is more successful in terms of CVD and

non-CVD mortality?

Competing risks data are often analyzed through modeling of cause-specific haz-

ards or the instantaneous risk of an event (Prentice and Kalbfleisch, 1978). Let T

denote the time to first event and ε ∈ {1, ..., K} denote the cause or type of failure,
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with K being the number of distinct causes. Then, the cause-specific hazard for an

event ε = k at time t is λk(t) = lim∆t→0 Pr(t ≤ T < T + ∆t, ε = k)/(∆t). More re-

cent wrk has focused on modeling another identifiable quantity from competing risks

data, the subdistribution or cumulative incidence function for the kth cause-specific

event: Fk(t) = Pr(T ≤ t, ε = k). The cumulative incidence function measures the

absolute event-specific risk and presents a scientifically relevant alternative to the

cause-specific hazard function. Many techniques have been proposed for direct mod-

eling of covariate effects on the subdistributuion function. For example, Fine and

Gray (1999) proposed a Cox proportional hazards model for the subdistribution haz-

ards, Sun et al. (2006) explored an additive hazards model, Andersen et al. (2003)

and Klein and Anderson (2005) proposed a pseudo-value based approach, Jeong and

Fine (2007) proposed parametric regression of the cumulative incidence functions, and

recently, Scheike et al. (2008) proposed direct binomial regression of the cumulative

incidence function through a flexible semiparametric model where some covariates

have time-varying effects and others have constant effects.

The aforementioned methods focus on estimating covariate effects on the cumu-

lative incidence function of a primary cause of interest only, allowing an arbitrary

structure for other causes. Investigators may often be interested in a simultane-

ous analysis of the different cause-specific events. In such cases, while using any of

the aforementioned methods, the model for each cause has to be fitted separately.

However, fitting the models repeatedly, for each cause, may not be appropriate as

these models may not hold simultaneously. Recently, Mao and Lin (2016) devel-

oped a method based on semi-parametric transformation models that permits joint

inference on all competing events. However, none of the methods mentioned above

explicitly address the additivity constraint for the cumulative incidence functions,∑
k Pr(ε = k) = 1, that is, the constraint that a subject must eventually fail from

one and only one of the many distinct causes.
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The additivity constraint can be explicitly incorporated using a mixture regression

modeling framework. Notable studies of the mixture regression modeling framework

include Larson and Dinse (1985), Maller and Zhou (2002), Lu and Peng (2008) and

Choi and Huang (2014). In this approach, the model for cumulative incidence func-

tions is decomposed into a model for failure time conditional on the cause of failure,

Pr(T ≤ t|ε = k), and a model for the marginal probability of the cause of failure,

Pr(ε = k). In this chapter, we develop IV-estimators for competing risks data under a

semiparametric mixture component model on the cumulative incidence functions. In

essence, we develop a method to identify exposure effects on the cumulative incidence

functions of all causes simultaneously in the presence of unmeasured confounding.

Our method is able to accommodate exposure dependent censoring and control for

observed instrument outcome covariates.

In Section 4.2, we begin with a description of the semiparametric mixture re-

gression model and lay out the assumptions required for our method. In Section

4.3, we describe the estimation procedure and the resampling method used to obtain

asymptotic variance estimators. In Section 4.4, we evaluate the performance of our

estimators in finite samples.

4.2 Setup and Model

Consider a setting where subjects can fail from one and only one of K causes with

ε ∈ {1, ..., K} denoting the cause of failure. Let T and C denote the failure time and

the censoring time, respectively, with T̃ = min(T,C) denoting the observed event

time. Further, let ∆ = I(T ≤ C) be the observation indicator, so that ε̃ = ∆ε is the

observed event indicator. We are interested in estimating the effect of an exposure Xe

on the cumulative incidence functions for each competing risk. However, we assume

that this effect is subject to confounding by an unobserved covariate Xu which is

correlated with Xe. We also allow for the presence of some observed subject-specific
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time-independent covariates Xo.

As noted earlier, we seek to develop a method that permits simultaneous infer-

ence on all cause-specific cumulative incidence functions. To this end, using the

mixture model representation for competing risks we decompose the model for cause-

specific cumulative incidence functions into a model for the cause of failure, ε, given

(Xe, Xu,Xo), and a model for conditional cumulative incidence function Pr(T ≤ t|ε =

k,Xe, Xu,Xo). By doing so, we ensure that the additivity constraint for cumulative

incidence functions is met.

For ease of representation and without loss of generality, we write down our mod-

els and describe our estimation procedure for K = 2, such that ε ∈ {1, 2}. We

assume the following probit regression model for the marginal distribution of ε given

(Xe, Xu,Xo):

I{ε = 1|Xe, Xu,Xo} = I{γ0 + γToXo + γeXe + ξ(Xu) > 0}, (4.1)

where ξ(Xu) is a mean-zero residual error dependent on the unobserved confounder

Xu but independent of Xo. We further assume the following additive hazards model

for conditional cumulative incidence functions:

Pr(T ≤ t|ε = k,Xe, Xu,Xo) = 1−exp{−ηk(t)−βTkoXot+βkeXet+bk(Xu)t}, k ∈ {1, 2},

(4.2)

where bk(Xu) is dependent on Xu. This leads us to the following model for the

cumulative incidence function of cause 1:

F1(t|Xe, Xu,Xo) =

E[I{γ0 +γToXo+γeXe+ξ(Xu) > 0}]{1−exp{−η1(t)−βT1oXot+β1eXet+b1(Xu)t}},

(4.3)
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and the following model for the cumulative incidence function of cause 2:

F2(t|Xe, Xu,Xo) =

E[1−I{γ0+γToXo+γeXe+ξ(Xu) > 0}]{1−exp{−η2(t)−βT2oXot+β2eXet+b2(Xu)t}}.

(4.4)

As Xu is not observed and as a confounder correlated with Xe, naively fitting

models (4.3) and (4.4) using observed data will lead to inconsistent estimates of

the effect of the endogenous variable on the cause-specific cumulative incidence. To

this end, we propose an instrumental variable approach that enables the consistent

estimation of γe, β1e, β2e. For this, we assume the availability of an instrumental

variable XI , such that:

Xe = αc +αToXo + αIXI + ν, (4.5)

where αc,α
T
o and αI are coefficients for a constant intercept term, the observed or

exogenous covariates and the instrumental variable, respectively in a linear model

generating the endogenous variableXe. The above model also contains a residual error

term, ν, that depends on the unobserved confounder Xu, so that Cov(Xu, ν|XI ,Xo) 6=

0. This induces confounding of the exposure-outcome relationship.

Given model (4.5), consistent estimation of γe, β1e, β2e is possible using the control

function approach assuming the following standard IV conditions:

A1. ν is a mean zero normal random variable with E(ν|XI ,Xo) = 0, that is, ν is

uncorrelated with XI ,Xo.

A2. αI 6= 0 in model (4.5)

A3. XI is uncorrelated with (Xu, T, ε) given Xe

A4. Xo is uncorrelated with Xu
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A5. ξ(Xu), b1(Xu), b2(Xu) are mean zero normal random variables such that:

(a) ξ(Xu) = γνν + eξ, where eξ ∼ N(0, σ2
ξ )

(b) b1(Xu) = β1νν + eb1 , where eb1 ∼ N(0, σ2
b1

)

(c) b2(Xu) = β2νν + eb2 , where eb2 ∼ N(0, σ2
b2

),

where eξ, eb1 and eb2 are independent and normally distributed residual errors

that are uncorrelated with ν and XI ,Xo.

A6. C ⊥ T |Xe, XIXo.

Assumption A1 states that the residual error ν in model (4.5) is uncorrelated with

the observed covariates and the instrumental variable implying that there is no un-

observed confounding of the effect of XI and Xe. Further, A1 implies that model

(4.5) can be fitted using ordinary least squares regression using XI ,Xo as covariates.

Assumption A2 and A3 are standard IV conditions that specify that an instrumental

variable must have a non-zero effect on the exposure and must only affect the outcome

through the exposure variable. Assumption A4 emphasizes that Xo are exogenous

variables independent of Xu. Assumption A5 relates the residual terms in models

(4.2), (4.3) and (4.4) to the residual term in model (4.5). This relation allows the use

of a control function or two-stage residual inclusion approach to consistently estimate

the parameters in these models. To see this, consider the model for the CIF of cause

1 given (Xe,Xo, Xu). Taking expectation over the distribution of observed variables,

i.e., with respect to (Xu|Xe, XI ,Xo), we have:

F1(t|Xe, XI ,Xo) = E{F1(t|Xe, Xu,Xo)|Xe, XI ,Xo}

= E{I{γ0 + γToXo + γeXe + ξ(Xu) > 0}

{1− exp[−η1(t)− βT1oXot+ β1eXet+ b1(Xu)t]}|Xe, XI ,Xo}

= E{I{γ0 + γToXo + γeXe + γνν + eξ > 0}
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{1− exp[−η1(t)− βT1oXot+ β1eXet+ β1ννt+ eb1t]}|Xe, XI ,Xo}

=


∞∫

−∞

I{γ0 + γToXo + γeXe + γνν + eξ > 0}dF (eξ)


∞∫

−∞

{1− exp[−η1(t)− βT1oXot+ β1eXet+ β1ννt+ eb1t]}dF (eb1)


= Φ{γ∗0 + γ∗To Xo + γ∗eXe + γ∗νν}

{1− exp[−H1(t)− βT1oXot+ β1eXet+ β1ννt]}

The second and third equality above follow from assumption A5. In the last equality,

we write H1(t) = η1(t)+ log(Eσ2
b1

[exp(−eb1t)] and γ∗ = γ/
√

1− ρ2
ξ,ν , where ρξ,ν is the

correlation between ξ(Xu) and ν. More generally, we can write the model for cause

k CIF given (Xe, XI , Xo) as:

F1(t|Xe, XI ,Xo) =

Φ{γ∗0 + γ∗To Xo + γ∗eXe + γ∗νν}{1− exp[−Hk(t)− βTkoXot+ βkeXet+ βkννt]} (4.6)

Intuitively, the residual ν can be thought of as capturing any variation in the distribu-

tion of (T, ε) that is attributable to unobserved correlates of Xe. As these unobserved

correlates must include all confounders of the relationship between (T, ε) and Xe,

ν can be used as a proxy for the unobserved confounders. For this reason, in the

above parametrization of the cause-specific CIFs, the terms γ∗νν and βkνν are re-

ferred to as control functions, similar to the control functions used in IV estimation

of linear and non-linear models. As ν is not observed, for estimation, we use a con-

sistent estimate obtained from an OLS fit of model (4.5) instead, that is, we use

ν̂ = Xe − α̂0 + α̂oXo − α̂IXI while estimating parameters in model (4.6). Thus, pa-

rameters in model (4.6) is estimated through a ‘two-stage residual inclusion’ (2SRI)

procedure.
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Note that by estimating parameters in model (4.6) we are able to recover (γ0,γo, γe)

up to a multiplicative constant; that is, we identify (γ∗0 ,γ
∗
o , γ

∗
e ). However, if ξ(Xu) is

assumed to be a realization of standard normal random variable, i.e., V ar(ξ(Xu)) = 1,

then the parameter ρξ,ν is identified using an estimate of V ar(ν) from the first stage

OLS regression. Subsequently parameters (γ0,γo, γe) are identified exactly.

The independent censoring assumption A6 required to accommodate right cen-

sored data, is weaker than that used by Li et al. (2015), Zheng et al. (2017) and

other papers which use a two-stage least squares (2SLS) approach to IV analysis of

censored time-to-event data. As demonstrated by Chan (2015), the 2SRI or con-

trol function approach can accommodate censoring that depends on the endogenous

variable Xe whereas 2SLS approaches require that censoring be independent of Xe.

4.3 Inference

4.3.1 Estimation

Assuming that the study contains n subjects, we note that the observed data for

each subject i, i ∈ {1, ..., n}, consists of {Xei, XIi,Xoi, T̃i, ε̃i}. In the first stage of our

estimation procedure we regress Xei on (XIi,Xoi). We use OLS to obtain parameter

estimates (α̂0, α̂o, α̂I) for model (4.5). Using these estimates and the observed Xei,

we estimate the subject-specific residuals in model (4.5) as ν̂i = Xei − α̂0 + α̂oXoi −

α̂IXIi. These ν̂i are used instead of ν as predictors in model (4.6). Thus, the second

stage of our estimation procedure involves estimating parameters of model (4.6) with

predictors (Xoi, Xei, ν̂i).

To describe the estimation of model (4.6), we introduce some additional notation.

For ease of presentation, we use the following vector notation for the predictors:

Xi = {Xoi, Xei, ν̂i} and Wi = {1,Xoi, Xei, ν̂i}. The corresponding parameters are

denoted by β = {β0,βo, βe, βν} and γ∗ = {γ∗0 ,γ∗o , γ∗e , γ∗ν}. Using this notation, we
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estimate the following models for cause-specific CIFs:

Fik(t|Xe, XI ,Xo) = Φ{(−1)kγ∗TWi}{1− exp[−Hk(t)− βTkXit]}. (4.7)

Let Nik = I(Ti ≤ t, εi = k) be the counting process indicator for cause k and let

Gi(t) = Pr(Ci > t|Xi), then observe that, under conditional independence between

Ci and (Ti, εi), we have:

E

{
∆iNik(t)

Gi(t)

}
= E

[
E

{
∆iNik(t)

Gi(t)
|Ti, εi

}]
= E(Nik(t)) = Fik(t),

where we condition on the predictors {Xi,Wi}. Scheike et al. (2008) proposed to

estimate parameters for a semiparametric regression model for the cumulative in-

cidence functions by solving estimating equations based on the weighted response

∆iNik(t)/Gi(t). As Gi(t) is usually not known, it could be substituted with an esti-

mate Ĝi(t) obtained from either a non-parametric Kaplan-Meier estimator of the cen-

soring distribution or an estimator based on a regression model, like the Cox propor-

tional hazards model, relating the censoring distribution to covariates. LetDHk(t)(t) =

∂F
Hk(t),βk

ik (t)/∂Hk(t) and Dβk
(t) = ∂F

Hk(t),βk

ik (t)/∂βk(t). If Φ{(−1)kγ∗TWi} were

known, the parameters {Hk(t),βk} in (4.7) can be estimated using the following

estimating functions:

UHk(t)(t,Hk(t),βk) =
n∑
i=1

DHk
(t)

{
∆iNik(t)

Ĝi(t)
− Fik(t)

}
(4.8)

Uβk
(τ,Hk(t),βk) =

n∑
i=1

τ∫
0

Dβk
(t)

{
∆iNik(t)

Ĝi(t)
− Fik(t)

}
. (4.9)

However, Φ{(−1)kγ∗TWi} is unknown and depends on the unknown parameter vector

γ∗. To estimate γ∗, we propose another set of estimating equations motivated by

examining the conditional probability that εi = k. Note that εi is not observed
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for all subjects. In the case that a subject is censored, i.e., when ε̃i, and censoring

occurs at time T̃i = t, the probability of εi = 1 conditional on T ≥ t is denoted by

gik(t;γ
∗,βk, Hk(t),Wi,Xi), where

gik(t;γ
∗,βk, Hk(t),Wi,Xi) = Pr(ε = k|Ti > t,Wi,βk, Hk(t))

=
Φ{(−1)kγ∗TWi} exp{−Hk(t)− βTkXit}∑2
k=1 Φ{(−1)kγ∗TWi} exp{−Hk(t)− βTkXit}

.

It follows that,

Pr(εi = k|ε̃i, T̃i = t,Wi,Xi) = E[I(ε̃i = k) + I(ε̃i = 0)gik(t;γ,βk, Hk(t),Wi,Xi)].

This leads us to the following estimating function for γ:

Uγ∗ =
n∑
i=1

Wi{I(ε̃i = k) + I(ε̃i = 0)gik(t;γ
∗,βk, Hk(t),Wi,Xi)− Φ{(−1)kγ∗TWi}}.

(4.10)

Thus, the regression parameters of the marginal model can be estimated by starting

with arbitrary initial values and solving the above estimating equations (4.8), (4.9)

and (4.10) using an iterative algorithm until a pre-specified convergence criterion is

satisfied. Upon convergence, we obtain estimators of γ∗,βk, Hk, denoted by γ̂∗, β̂k, Ĥk

respectively.

As noted earlier, in model (4.7), γ∗ = γ/
√

1− ρξ,ν . For a probit outcome model,

under the assumption that V ar(ξ(Xu)) = 1, we have γν = ρξ,ν/σν , where σν is

the standard deviation of ν. An estimate of the standard deviation of ν, σ̂ν can

be obtained from the first stage OLS fit of model (4.5). The estimated quantities

σ̂ν and γ̂∗ν can then be used to obtain an estimate of ρξ,ν using the relation γ∗ν =

(ρξ,ν/σν)/
√

1− ρξ,ν . Thus, the parameters γ = {γ0,γo, γe, γν} are identified as both

γ̂∗ν and the residual variance of the so-called selection model (4.5), σ2
ν , are identified.
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4.3.2 Variance Estimation using perturbation resampling

To estimate the variance and to construct confidence intervals for our proposed

estimators, we use a perturbation-based resampling method. We apply perturbing

random variables directly to the contributions of each subject. In the first stage, this

translates to fitting a weighted least squares regression model to the data with subject-

specific weights set equal to the value of perturbing random variables. In the second

stage, the perturbing random variables are applied directly to the estimating functions

at the subject-level to approximate the distribution of the estimators. Specifically,

let {ωi, i = 1, ..., n} be n independent realizations of a positive random variable ω

from a known distribution with unit mean and unit variance. Fixing the data at their

observed values, perturbed estimators {α̃0, α̃o, α̃e} are obtained by fitting a WLS

regression with subject-sepcific weights ωi. These parameter estimates are then used

to estimate ν̃, a perturbed version of ν̂. Using ν̃ and with the remaining data fixed at

their observed values, perturbed estimators of parameters in model (4.7) are obtained

as the solution to the following perturbed estimating functions:

ŨHk(t)(t,Hk(t),βk) =
n∑
i=1

ωiDHk
(t)

{
∆iNik(t)

G̃i(t)
− Fik(t)

}
(4.11)

Ũβk
(τ,Hk(t),βk) =

n∑
i=1

ωi

τ∫
0

Dβk
(t)

{
∆iNik(t)

G̃i(t)
− Fik(t)

}
(4.12)

Ũγ∗ =
n∑
i=1

ωiWi{I(ε̃i = k) + I(ε̃i = 0)gik(t;γ,βk, Hk(t),Wi,Xi)−Φ{(−1)kγ∗TWi}},

(4.13)

where G̃ is the perturbed version of Ĝ, an estimator of the censoring distribution with

weights {ωi, i = 1, ..., n}. The above perturbed estimating equations (4.11)-(4.13)

are solved using the same procedures used to solve their unperturbed counterparts,

estimating equations (4.8)-(4.10), to obtain estimators {ν̃, γ̃, β̃k, H̃k}. By repeatedly
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generating {ωi, i = 1, ..., n}, say M times, we can obtain a large number of realizations

of the perturbed estimators, say - {ν̃(m), γ̃(m), β̃
(m)
k , H̃

(m)
k ,m = 1, ....,M}.

It can be shown that the unconditional distribution of estimates {ν̂, γ̂, β̂k, Ĥk} can

be approximated by the conditional distribution of the perturbed estimates given the

observed data (van der Vaart and Wellner, 1996). Thus, the variance and confidence

intervals of estimates {ν̂, γ̂, β̂k, Ĥk} are estimated based on the empirical distribution

of {ν̃, γ̃(m), β̃
(m)
k , H̃

(m)
k ,m = 1, ....,M}.

4.4 Simulation Studies

Simulation studies were conducted to assess the finite sample properties of the

proposed method. In the first simulation study, the performance of the proposed

method was examined in a setting with a continuous instrumental variable and in-

dpendent censoring. To do so, under assumptions A1 − A6 , data for K = 2 com-

peting risks were generated for a setting with one observed exogenous covariate, Xo,

generated from a Bern(0.5) distribution, and one instrumental variable XI , gen-

erated from a N(0.25, 1) distribution. Subsequently, the exposure or endogenous

variable was generated from the following linear model: Xe = 0.5XI + ν, where

ν ∼ N(0, 0.5), represented the influence of an unmeasured confounder, say Xu, on

the exposure. The residual error terms correlated with the unmeasured confounder

in models (4.3) and (4.4) were then generated from the following three linear models:

(i) ξ(Xu) = ν + eξ, where eξ ∼ N(0, 0.1), (ii) b1(Xu) = ν + eb1 , where eb1 ∼ N(0, 0.1)

and (iii) b2(Xu) = ν+ eb2 , where eb2 ∼ N(0, 0.75). Given the generated residual error

terms, the exogenous covariate and exposure values, a cause and time of failure were

generated from models (4.3) and (4.4) for each subject with the parameter values set

to {γ0, γo, γe} = {−0.5, 0.5, 0.5}, {β1o, β1e} = {0.5, 0.5}, {β2o, β2e} = {0.5, 0.5} and

η1(t) = η2(t) = t + 1.5t2. Finally, a censoring time for each subject was generated

from a Unif(0.5, 1.25) distribution.
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Table 4.1: Simulation results comparing proposed IV method to a bench-
mark method and naive regression method at different sample sizes under
independent censoring (∼ 16%)

Benchmark Naive Method Proposed IV Method

Parameter Bias ESD Bias ESD Bias ESD ASE CP

n = 250

γe 0.018 0.223 0.583 0.182 0.016 0.222 0.282 0.990
β1e -0.038 0.726 0.408 0.546 -0.017 0.667 0.710 0.947
β2e -0.037 0.297 0.412 0.209 -0.043 0.288 0.295 0.938

n = 500

γe 0.018 0.143 0.507 0.138 0.019 0.161 0.181 0.980
β1e -0.023 0.479 0.430 0.376 -0.023 0.483 0.479 0.940
β2e -0.041 0.197 0.403 0.140 -0.041 0.202 0.199 0.944

n = 1000

γe 0.007 0.098 0.506 0.091 0.009 0.113 0.123 0.970
β1e -0.023 0.319 0.435 0.258 -0.022 0.322 0.332 0.940
β2e -0.029 0.135 0.403 0.100 -0.028 0.140 0.136 0.930

Bias, Empirical Bias of Estimates; ESD, sample standard deviation; ASE, mean of esti-
mated standard error via resampling method; CP, empirical coverage probability of 95%
interval

Simulation results at sample sizes n = 250, 500 and 1000 are presented in Table 4.1.

The proposed method was compared to a benchmark method, wherein the true value

of ν was used while estimating the parameters and a naive method wherein a model

using only the observed covariates Xo and Xe was fit to the data. As shown in Table

4.1, ignoring unmeasured confounding, as done in the naive method, seemed to lead

to highly biased estimates of the exposure effect. The proposed IV method, on the

other hand, did almost as well as the benchmark method with respect to bias and

empirical stnadard deviation. The proposed resampling-based standard errors pro-

vided a reasonable approximation of the empirical standard deviation and coverage

rates around the nominal rate of 95%.

In a second simulation study, the performance of the proposed method in a setting

with a binary instrumental variable and exposure-dependent censoring was examined.
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Table 4.2: Simulation results comparing proposed IV method to a benchmark
method and naive regression method at different sample sizes under censoring
(∼ 16%)

Benchmark Naive Method Proposed IV Method

Parameter Bias ESD Bias ESD Bias ESD ASE CP

n = 250

γe 0.039 0.208 0.522 0.173 0.028 0.233 0.286 0.982
β1e -0.036 0.563 0.549 0.388 -0.044 0.573 0.603 0.976
β2e 0.027 0.259 0.483 0.183 0.019 0.268 0.264 0.942

n = 500

γe 0.016 0.149 0.497 0.126 0.015 0.168 0.179 0.966
β1e -0.044 0.384 0.552 0.26 -0.044 0.389 0.399 0.956
β2e 0.003 0.173 0.467 0.121 0.002 0.179 0.178 0.946

n = 1000

γe 0.017 0.104 0.497 0.087 0.014 0.115 0.122 0.962
β1e -0.033 0.26 0.575 0.174 -0.035 0.261 0.272 0.964
β2e -0.003 0.126 0.459 0.085 -0.006 0.129 0.124 0.944

Bias, Empirical Bias of Estimates; ESD, sample standard deviation; ASE, mean of esti-
mated standard error via resampling method; CP, empirical coverage probability of 95%
interval

The exogenous covariate Xo and the residual error terms reflecting the influence of an

unmeasured confounder on the exposure-outcome relationship were generated in the

same manner as in the first simulation study. However, the instrumental variable, XI

was generated from a Bern(0.6) distribution and the exposure was generated from the

linear model: Xe = XI +ν. The parameter values of models (4.3) and (4.4) were fixed

at {γ0, γo, γe} = {−0.5, 0.5, 0.5}, {β1o, β1e} = {0.5, 0.5}, {β2o, β2e} = {0.5, 0.5} and

η1(t) = η2(t) = 0.8t+ 1t2. The censoring time was dependent on the value of the ex-

posure and was generated as: Unif(0.4, 1.2)×I(Xe > 0)+Unif(0.8, 1.2)×I(Xe < 0).

Table 4.2 displays results of the second simulation study at sample sizes n = 250, 500

and 1000. As was the case with independent censoring, the naive method seemed to

produce highly biased estimates, while the proposed IV method seemed to do nearly

as well as the method using the true value of the unmeasured confounder. The per-
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turbation resampling method seemed to estimate the standard error of the parameter

estimates well, with the corresponding 95% confidence intervals producing a coverage

rate ranging from 94% - 98% in all sample sizes. All results discussed in this section

are based on 500 Monte Carlo simulations.

4.5 Application

We applied our method to compare HD and PD modalities for end stage renal

disease (ESRD) patients using data from the United States Renal Data System (US-

RDS). Specifically, we sought to differentiate the two modalities with respect to two

competing risks: (i) death from cardiovascular diseases (CVD) and (ii) death from

other causes. While very few studies have studied the association between cardio-

vascular mortality and dialysis modality, many previous studies have compared HD

and PD modalities with respect to all cause mortality. However, these studies have

yielded conflicting results providing no conclusive evidence for or against the use of

PD. This suggests that an IV analysis might be in order to adequately address un-

measured treatment-outcome confounding and shed some valuable, new insight on

the comparison between modalities, especially for a cause-specific comparison.

We conducted an IV analysis to examine the association between dialysis modality

and the risk of death from cardiovascular diseases and other causes at 5 years since

ESRD incidence. Our study population consisted of incident dialysis patients initi-

ating dialysis between 01/01/2009 and 12/31/2009 and belonging to ESRD Network

11. This network serves dialysis patients in the midwestern states of Michigan, Min-

nesota, North Dakota, South Dakota and Wisconsin. The instrument in our analysis

was the dialysis facility-level variation in PD usage, defined as the facility-specific

proportion of patients initiating dialysis with PD. Given the nature of our analysis

we excluded small dialysis facilities defined as having < 10 PD patients and < 50

patients in total. After this step, our study cohort had 2,001 patients distributed
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across 59 dialysis facilities. To avoid introducing patient-level confounding between

the instrument and unmeasured confounders, historical data from 2006-08 was used

to determine PD usage. The mean PD usage rate within facility varied from 3.5% to

33.9% with a mean of 12.1% and median of 10.2%. The correlation between facility-

level mean PD usage in 2006-08 and 2009-14 was 0.57, and the mean PD usage within

facility was significantly associated (β = 0.531, p < 0.0001) with individual PD usage

in a model adjusting for available patient-level covariates, suggesting potential for a

good instrument.

Table 4.3 presents a comparison of patients initiating dialysis on PD and HD with

respect to age, comorbidities and primary renal diagnosis. On average, PD patients

were younger by about 5 years and healthier in terms of having a lower prevalence of

comorbidities than HD patients. While these observed patient-level factors can be ad-

justed for in a regression analysis, it is plausible that other unmeasured patient-level

confounders might influence both the choice of dialysis modality and survival, thus,

necessitating an IV analysis. Further, given that almost every available risk factor in

Table 4.3 is more prevalent for HD than PD patient, unmeasured confounding seems

likely.

Based on historical evidence as important predictors, we adjusted for the fol-

lowing patient-level risk-factors: age at dialysis initiation, gender, race, ethnicity

(Hispanic or not), primary renal diagnosis (glomerulonephritis (GN) diabetes, hyper-

tension, and others), and binary comorbidity indicators for the presence of cancer, dia-

betes, athlero-sclerotic heart disease (ASHD), congestive heart failure (CHF), chronic

obstructive pulmonary disease (COPD), cerebrovascular accident (CVA), peripheral

vascular disease (PVD), elicit drug use, tobacco use, and alcohol consumption. The

censoring distribution was estimated using a Cox hazards regression model including

all the aforementioned patient-level covariates and the treatment.

In Table 4.4 we present the results from the IV analysis and the corresponding
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Table 4.3: Analysis of USRDS Data: Description of Study Cohort by Dialysis Modal-
ity

Covariate Haemodialysis
Peritoneal
Dialysis

Standardized
Difference

Died 69 % 50 % -29 %
CVD death 22.4 % 21.2 % -2.0 %

Non-CVD death 69.1 % 49.5 % -28.7 %
Age (Years) 64.2 59.3 -0.229

Primary Renal Diagnosis

Diabetes 41.2 42.4 1.8
Hypertension 26.8 27.8 1.5

Glomerulonephritis 8.4 14.1 12.8
Other 23.6 15.6 -14.1

Comorbidities

Alcohol Use 2.8 2.5 -1.1
ASHD 26.1 19.7 -10.7
Cancer 11.6 9.1 -5.8
CHF 37.4 19.7 -28.2

COPD 11.8 7.1 -11.4
CVA 9.5 9.1 -1.1

Diabetes 11.9 9.1 -6.5
Drug Use 1.4 1.0 -2.4

PVD 15.6 9.1 -14.0
Tobacco Use 7.9 10.1 5.4
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Table 4.4: Analysis of USRDS Data: Results from IV and Naive analysis

Parameter IV Analysis Naive Analysis

Parameter Estimate 95% Interval Estimate 95% Interval

γe 1.507 (0.035 , 2.979) 0.458 (0.131 , 0.785)
β1e 0.102 (-0.473 , 0.678) -0.055 (-0.097 , -0.014)
β2e 0.190 (-0.409 , 0.788) -0.046 (-0.088, -0.005)

‘naive’ analysis for each of the proposed inverse-weighting based estimators. For the

‘naive’ analysis, we ignored the presence of unmeasured confounders of the treatment-

outcome relationship and proceeded as we did for the naive analysis in the Simulation

studies. The naive analysis showed the use of PD to be associated with a statistically

significant increase in the marginal risk of death from CVD. This result was con-

firmed in the IV analysis. The cumulative incidence curves for CVD mortality and

non-CVD mortality for a subject with average covariate values, from the naive and

IV analysis, are presented in Figure 4.1 and Figure 4.2 respectively. Also plotted in

these figures are the non-parametric estimate of the CIF obtained using the Aalen-

Johansen estimator. The non-parametric estimate is not adjusted for unobserved and

observed confounders. In terms of non-CVD mortality, both the IV and naive analysis

indicated a significant survival benefit for PD patients at 4.5 years.

Our findings seem to support findings of Johnson et al. (2009) and Kim et al.

(2015), who noted a significantly increased risk of death from CVD and CVD events

for PD patients. Both these studies were registry analyses of a patient population

from a country other than the United States. Further, while they adjusted for a rich

set of observed covariates, neither study addressed unmeasured confounding.

4.6 Discussion

In this chapter we develop an instrumental variable analysis method for addressing

unmeasured confounding in the competing risks setting. Our method can be used for
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binary or continuous exposures, and unlike previously developed methods for com-

peting risks data (Zheng et al. (2017), Richardson et al. (2016)), can accommodate

exposure-dependent censoring. The main strength of the developed method, however,

lies in its ability to estimate the effect of an exposure of interest on the absolute risk

of all causes, simultaneously. We use a semiparametric mixture component model

that guarantees that
∑K

k=1 Fk(∞) = 1. In this regard, our method permits an in-

vestigator to take into account all causes or event types. Prominent methodologies

centered on direct modeling of the CIFs force investigators to focus on a single cause

of interest. When these methodologies are extended to perform IV analysis in the

competing risks setting, as done in Zheng et al. (2017), important features of the

exposure-outcome relationship and the interplay between causes tend to get over-

looked. Thus, the method developed in this chapter provides a unique approach to

adjusting for unmeasured confounding in the competing risks setting and by simulta-

neously modeling exposure effects on all causes, provides a deeper understanding of

the exposure-outcome relationship.
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APPENDIX A

Appendix for Chapter I

In this Appendix we present an expanded version of simulation results presented

in Table 3 of Chapter II, a tabulation of the results mentioned in Section 2.5 and

a scatter plot of the estimated center-specific random effects and ECIs of the two

outcomes - transplantation and death - for the data analysis detailed in Section 2.5.

Table 1 in this document compares the proposed method to a method ignoring the

correlation between cause-specific random effects within a center with respect to Bias,

Empirical Standard Deviation, Asymptotic Standard Error and Coverage Probability

of center effect estimates.

Table 2 in this document compares the proposed method to a method that ig-

nores the correlation between the cause-specific center effects with respect to outlier

classification.

Figure 1 contains two scatterplots. Above is a scatterplot of the center-specific

random effects for cause 1 (Transplantation) and cause 2 (Death). Below is a scat-

terplot of the ECI for cause 1 (Transplantation) and ECI for cause 2 (Death).
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Table A.1: Estimating Center-Specific Effects: Results from 500 Simulated Datasets

Proposed Method
Ignornig Random Effects

Correlation

nj′
True
Value Bias ESD ASE CP Bias ESD ASE CP

20 γj′1 0.0 -0.022 0.234 0.324 0.985 -0.027 0.246 0.337 0.995
γj′2 0.0 -0.013 0.243 0.306 0.975 -0.018 0.253 0.315 0.975

γj′1 0.5 -0.175 0.241 0.298 0.965 -0.217 0.249 0.310 0.965
γj′2 -0.5 0.172 0.249 0.328 0.975 0.227 0.250 0.337 0.940

γj′1 1.0 -0.276 0.243 0.277 0.880 -0.326 0.249 0.285 0.825
γj′2 -1.0 0.403 0.243 0.355 0.835 0.566 0.233 0.363 0.680

40 γj′1 0.0 -0.011 0.226 0.264 0.985 -0.016 0.237 0.273 0.990
γj′2 0.0 -0.008 0.208 0.243 0.985 -0.012 0.213 0.250 0.980

γj′1 0.5 -0.098 0.214 0.233 0.940 -0.129 0.222 0.240 0.925
γj′2 -0.5 0.112 0.217 0.271 0.970 0.155 0.227 0.278 0.935

γj′1 1.0 -0.139 0.204 0.208 0.910 -0.177 0.210 0.214 0.890
γj′2 -1.0 0.265 0.220 0.307 0.920 0.406 0.226 0.313 0.780

60 γj′1 0.0 -0.003 0.197 0.231 0.970 -0.008 0.205 0.237 0.965
γj′2 0.0 -0.006 0.188 0.210 0.975 -0.009 0.193 0.214 0.980

γj′1 0.5 -0.057 0.196 0.199 0.965 -0.084 0.199 0.204 0.965
γj′2 -0.5 0.065 0.213 0.241 0.960 0.100 0.214 0.245 0.935

γj′1 1.0 -0.091 0.169 0.178 0.955 -0.122 0.172 0.181 0.920
γj′2 -1.0 0.218 0.217 0.276 0.880 0.333 0.219 0.281 0.800

80 γj′1 0.0 -0.015 0.175 0.209 0.995 -0.024 0.183 0.215 0.995
γj′2 0.0 -0.022 0.178 0.191 0.970 -0.028 0.185 0.194 0.965

γj′1 0.5 -0.071 0.177 0.180 0.960 -0.095 0.183 0.184 0.950
γj′2 -0.5 0.065 0.181 0.218 0.970 0.089 0.186 0.222 0.965

γj′1 1.0 -0.107 0.160 0.161 0.895 -0.134 0.164 0.163 0.855
γj′2 -1.0 0.195 0.198 0.255 0.920 0.283 0.202 0.259 0.810

100 γj′1 0.0 -0.026 0.164 0.195 0.990 -0.036 0.171 0.199 0.985
γj′2 0.0 -0.018 0.154 0.176 0.980 -0.025 0.159 0.179 0.970

γj′1 0.5 -0.081 0.147 0.167 0.965 -0.103 0.150 0.170 0.945
γj′2 -0.5 0.058 0.200 0.203 0.925 0.077 0.207 0.206 0.915

γj′1 1.0 -0.099 0.137 0.149 0.930 -0.124 0.141 0.151 0.885
γj′2 -1.0 0.157 0.191 0.241 0.945 0.232 0.196 0.245 0.890
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Table A.2: Analysis of Scientific Registry of Transplant Recipients (SRTR) Data:
Comparing Classification of Organ Procurement Organizations (OPOs) based on Ex-
cess Cumulative Incidence (ECI) of Death and Kidney Transplantation

Classification of
OPOs Ignornig
Correlation of

Random Effects

Classification of OPOs Using Proposed Method

Based on ECI of Transplant Based on ECI of Death

Low
Outlier

Not an
Outlier

High
Outlier

Low
Outlier

Not an
Outlier

High
Outlier

Low Outlier 17 1 0 16 1 0

Not an Outlier 0 24 2 5 23 1

High Outlier 0 1 13 0 0 12
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Figure A.1: Scatter Plots of center-specific random effects (above) and Excess Cause-
specific Cumuluative Incidence (below) for the outcomes of Transplant and Death for
58 OPOs
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APPENDIX B

Appendix for Chapter III

In this Appendix we present a sketch of the proof of THEOREM 1 and THEO-

REM 2 in Chapter 4.

Proof of THEOREM 1

To establish the asymptotic properties of the estimator proposed in the section

2.4, we first assume the following regularity conditions for i = 1, ...., n:

a. {T̃i,∆i,Xi, Ai}are independent and identically distributed

b. Xi is bounded almost surely

c. Λz(τ) <∞, where τ is some pre-specified time-point

d. Pr(Zi = z|Xi) > 0 for z = {0, 1}

e. Positive definiteness of the matrix Ω(β0) = E[X⊗2
i pi(β0)(1 − pi(β0))], where

pi(β0) = Pr(Zi = 1|Xi)
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With respect to censoring, we assume that the censoring time for subjects assigned

to IV level Z = z follows a proportional hazards model λciz = λ0z(t) exp(XT
i θ0z).

Then, an estimate for wci (t) when randomly assigned to IV level Z = z is given

by ŵci (t; θ̂z) = exp(Λ̂0z(t; θ̂z) exp(XT
i θ̂z)). Here, we assume that Λ̂0z(t; θ̂z) is the

Breslow-Aalen estimator for Λ0z(t), so that:

Λ̂0z(t; θ̂z) =
1

n

n∑
i=1

t∫
0

dN c
i (s)

B
(0)
c (s; θ̂)

, (B.1)

whereB
(d)
c (s; θ̂) = n−1

∑n
i=1 Yi(s)X

⊗d
i exp{(XT

i θ̂z)} for d = 0, 1, 2 with a⊗0 = 1, a⊗1 =

a, a⊗2 = aaT for a vector a. Further, θ0z is assumed to be estimated through partial

likelihood by θ̂z, the solution of the score equation, Uc(θ) = 0, where:

Uc(θ) =
n∑
i=1

τ∫
0

Xi − X̄c(t,θ)dN c
i (t), (B.2)

X̄c(t,θ) =
B

(1)
c (s; θ)

B
(0)
c (s; θ)

. (B.3)

With these assumptions on the censoring model, to accomodate covariate-dependent

censoring, we assume the following additional regularity conditions:

f. Continuity of the following functions:

b
(1)
c (s;θ) = ∂

∂θ
b

(0)
c (s;θ), b

(2)
c (s;θ) = ∂

∂θ∂θT
b

(0)
c (s;θ),

where b
(d)
c (s;θ) is the limiting value of B

(d)
c (s;θ) ford = 0, 1, 2 with b

(0)
c (s;θ)

and b
(1)
c (s;θ) bounded and b

(2)
c (s;θ) bounded away from 0 for t ∈ [0, τ ] and θ

in an open set

g. Positive definiteness of the matrix Ωc(θ) =
∫ τ

0
vc(t,θ)bc(t,θ)dΛc

0(t), where

vc(t,θ) = b
(2)
c (t,θ)/b

(0)
c (t,θ) − x̄c(t,θ) and x̄c(t,θ) = b

(1)
c (s; θ)/b

(0)
c (s; θ) is the

limiting value of X̄c(t,θ)
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As noted in the paper, under assumed regularity conditions a. - g., the consistency

of Λ̂z is easily proved through the consistency of β̂ and θ̂, the continuous mapping

theorem, and the Uniform Strong Law of Large Numbers (USLLN). With respect to

asymptotic normality, we begin with the decomposition:

n1/2(Λ̂z(t)− Λz(t)) = α̂z1(t) + α̂z2(t) + α̂z3(t) + α̂z4(t)

where

α̂z1(t) = n1/2{Λ̂z(t; β̂, θ̂z, Λ̂
c
0z)− Λz(t;β0, θ̂z, Λ̂

c
0z)}

α̂z2(t) = n1/2{Λ̂z(t;β0, θ̂z, Λ̂
c
0z)− Λz(t;β0,θ0z, Λ̂

c
0z)}

α̂z3(t) = n1/2{Λ̂z(t;β0,θ0z, Λ̂
c
0z)− Λz(t;β0,θ0z,Λ

c
0z)}

α̂z4(t) = n1/2{Λ̂z(t;β0,θ0z,Λ
c
0z)− Λz(t)}

for z ∈ {0, 1}, with Λ̂z(t) = Λ̂z(t; β̂, θ̂, Λ̂
c
0z) and

Λ̂z(t;β0, θ̂z, Λ̂
c
0z) =

1

n

n∑
i=1

t∫
0

ŵci (s; θ̂z)w
e
i (β0)dNiz(s)

n−1
∑n

l=1 ŵ
c
l (s; θ̂z)w

e
l (β0)Ylz(s)

ŵci (s; θ̂z) = exp(Λ̂0z(s; θ̂z) exp(XT
i θ̂z))

Λ̂z(s;β0,θ0z, Λ̂
c
0z) =

1

n

n∑
i=1

t∫
0

ŵci (s;θ0z)w
e
i (β0)dNiz(s)

n−1
∑n

l=1 ŵ
c
l (t;θ0z)wel (β0)Ylz(s)

ŵci (s;θ0z) = exp(Λ̂c
0z(s;θ0z) exp(XT

i θ0z))

Λ̂z(t;β0,θ0z,Λ
c
0z) =

1

n

n∑
i=1

t∫
0

wci (s;θ0z)w
e
i (β0)dNiz(s)

n−1
∑n

l=1 w
c
l (s;θ0z)wel (β0)Ylz(s)

wci (s;θ0z) = exp(Λc
0z(s) exp(XT

i θ0z))

96



We can express α̂z1(t) as follows:

α̂z1(t) = n−1/2

n∑
i=1

t∫
0

{
wei (β̂)

B(s; β̂, θ̂z)
− wei (β0)

B(s;β0, θ̂z)

}
ŵci (s; θ̂z)dNiz(s), (B.4)

where B(s;β0, θ̂z) = n−1
∑n

i=1 ŵ
c
i (s; θ̂z)w

e
i (β0)Yiz(s), so that α̂z1(t) = α̂z11(t) +

α̂z12(t), where:

α̂z11(t) = n−1/2

n∑
i=1

t∫
0

{
wei (β̂)− wei (β0)

B(s; β̂, θ̂z)

}
ŵci (s; θ̂z)dNiz(s)

α̂z12(t) =
n∑
i=1

t∫
0

wei (β0)

{
1

B(s; β̂, θ̂z)
− 1

B(s;β0, θ̂z)

}
ŵci (s; θ̂z)dNiz(s).

With respect to α̂z11(t), by a linear Taylor series expansion, we have:

n1/2{wei (β̂)− wei (β0)} = aTi (β0)(β̂ − β0), (B.5)

where, as defined in the paper, aTi (β0) =
∂we

i (β)

∂β

∣∣∣
β0

. Further, from maximum likeli-

hood theory:

n1/2{β̂ − β0} = Ω−1(β0)n
−1/2

n∑
i=1

ψi(β0) + op(1) (B.6)

Combining the above results, we have:

n1/2{wei (β̂)− wei (β0)} = aTi (β0)Ω−1(β0)n
−1/2

n∑
i=1

ψi(β0) + op(1) (B.7)

Using the above result, then applying SLLN and continuity, as n → ∞, we can

re-express α̂z11(t) as:

α̂z11(t) = hTz (t)Ω−1(β0)n
−1/2

n∑
i=1

ψi(β0) + op(1) (B.8)
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hz(t) = E

[ t∫
0

ŵci (s; θ̂z)ai(β0)

E[ŵci (s; θ̂z)w
e
i (β0)Yiz(s)]

dNiz(s)

]
(B.9)

With respect to α̂z12(t), combining a Taylor expansion with B.3

n1/2{B−1(s; β̂, θ̂z)−B−1(s;β0, θ̂z)} = −B
β(s;β0, θ̂z)

B(s;β0, θ̂z)2
Ω−1(β0)n

−1/2

n∑
i=1

ψi(β0)+op(1)

(B.10)

where we define:

Bβ(s;β0, θ̂z) =
∂B(s;β, θ̂z)

∂β

∣∣∣
β0

=
1

n

n∑
i=1

Yiz(t)w
e
i (β0)ŵci (s; θ̂z)ai(β0), (B.11)

which converges almost surely to bβ(s;β0, θ̂z) = E[Yiz(t)w
e
i (β0)ŵci (s; θ̂z)ai(β0)]. Then,

applying SLLN and continuity:

α̂z12(t) = dTz (t)Ω−1(β0)n
−1/2

n∑
i=1

ψi(β0) + op(1) (B.12)

dz(t) =

t∫
0

bβ(s;β0, θ̂z)

b(s;β0, θ̂z)
dNiz(s), (B.13)

where b(s;β0, θ̂z) = E[ŵci (s; θ̂z)w
e
i (β0)Yiz(s)] Combining the above results,

α̂z1(t) = {hz(t) + dz(t)}TΩ−1(β0)n
−1/2

n∑
i=1

ψi(β0) + op(1). (B.14)

As we did for α̂z1(t), we can write α̂z2(t) = α̂z21(t) + α̂z22(t), where

α̂z21(t) = n−1/2

n∑
i=1

t∫
0

wei (β0)B(s;β0, θ̂z)
−1{ŵci (s; θ̂z)− ŵci (s;θ0z)}dNi(s) (B.15)

α̂z22(t) =
n∑
i=1

t∫
0

wei (β0)

{
1

B(s;β0, θ̂z)
− 1

B(s;β0,θ0z)

}
ŵci (s;θ0z)dNiz(s). (B.16)
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Through standard partial likelihood theory (Fleming and Harrington, 1991),

n1/2(θ̂z − θ0z) = Ω−1
c (θ0z)n

−1/2

n∑
i=1

ψc
i (θ0z) + op(1) (B.17)

Ωc(θ) =

τ∫
0

vc(t,θ)bc(t,θ)dΛc
0(t), (B.18)

ψc
i (θ) =

τ∫
0

{Xi − x̄c(t,θ)}dM c
i (t). (B.19)

Using a Taylor expansion, the SLLN and continuity,

n1/2{ŵci (s; θ̂)− ŵci (s;θ0z)} = ŵci (s;θ0z)k
T
i (s,θ0z)Ω

−1
c (θ0z)n

−1/2

n∑
i=1

ψc
i (θ0z) + op(1)

(B.20)

kTi (s,θ0z) =

s∫
0

exp{XT
i θ0z − x̄c(u,θ0z)}dΛc

0z(u). (B.21)

Substituting the above expression into α̂z21(t), then applying SLLN,

α̂z21(t) = gTz (t)Ω−1
c (θ0z)n

−1/2

n∑
i=1

ψc
i (θ0z) + op(1) (B.22)

gTz (t) = E

[ t∫
0

wei (β0), ŵci (s;θ0z)bz(s;β0,θ0z)
−1ki(s)dNiz(s)

]
. (B.23)

With respect to α̂z22(t), through another Taylor series expansion,

n1/2{B−1(s;β0, θ̂z)−B−1(s;β0,θ0z)} = −B
θ(s;β0,θ0z)

B(s;β0,θ0z)2
Ω−1
c (θ0z)n

−1/2

n∑
i=1

ψci (θ0z)+op(1)

(B.24)

where we define:

Bθ(s;β0,θ0z) =
∂B(s;β0,θ)

∂θ

∣∣∣
θ0z

=
1

n

n∑
i=1

Yiz(s)w
e
i (β)ŵci (s;β,θ0z)ki(s), (B.25)
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which converges almost surely to bθ(s;β0,θ0z) = E[Yiz(s)w
e
i (β0)ŵci (s;β,θ0z)ki(s)].

Substituting into expression for α̂z22(t), and again applying SLLN and using continu-

ity:

α̂z22(t) = fTz (t)Ω−1
c (θ0z)n

−1/2

n∑
i=1

ψc
i (θ0z) + op(1) (B.26)

fz(t) =

t∫
0

bθ(s;β0,θ0z)

b(s;β0,θ0z)
dΛz(s). (B.27)

Combining the above results,

α̂z2(t) = {gz(t) + fz(t)}TΩ−1
c (θ0z)n

−1/2

n∑
i=1

ψci (θ0z) + op(1). (B.28)

With respect to α̂z3(t) we can write:

α̂z3(t) = n−1/2

n∑
i=1

t∫
0

wei (β0)B(s;β0,θ0)−1{ŵci (s;θ0z)− wci (s;θ0z)}dNi(s). (B.29)

Applying the Functional Delta Method,

n1/2{ŵci (s;θ0)− wci (s;θ0z)} = wci (s;θ0z)n
1/2{Λ̂c

i(s;θ0z)− Λc
i(s)} (B.30)

= wci (s;θ0z)n
−1/2

n∑
l=1

s∫
0

exp{θT0zXi}
Bc(u,θ0z)

dMC
l (u) = op(1). (B.31)

Substituting this expression into the above expression for α̂z3(t), changing the orders

of integration and summation, then applying the SLLN,

α̂z3(t) = n−1/2

n∑
i=1

t∫
0

qz(s, t)b(s;β0,θ0z)
−1dMC

i (s) (B.32)

qz(s, t) = E

[
exp{θ0z

TXi}
t∫

u

wei (β0), wCi (s;θ0z)b(s;β0,θ0z)
−1dNiz(s)

]
. (B.33)
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Finally, the quantity, α̂z4(t) can be written as

α̂z4(t) = n−1/2

n∑
i=1

t∫
0

wei (β0), wCi (s;θ0z)b(s;β0,θ0z)
−1dMiz(s). (B.34)

Thus, combining the above results,

n1/2{Λ̂z(t)− Λ(t)} = n−1/2

n∑
i=1

Φiz(t) + op(1) (B.35)

where Φiz(t) as defined in Theorem 1 is:

Φiz(t) = {hz(t) + dz(t)}TΩ−1(β0)n
−1/2

n∑
i=1

ψi(β0)

+{gz(t) + fz(t)}TΩ−1
C (θ0z)n

−1/2

n∑
i=1

ψCi (θ0z)

+n−1/2

n∑
i=1

t∫
0

qz(s, t)b(s;β0,θ0z)
−1dMC

i (s)

+n−1/2

n∑
i=1

t∫
0

wei (β0), wCi (s;θ0z)b(s;β0,θ0z)
−1dMiz(s).

As n → ∞, n1/2{Λ̂z(t) − Λ(t)} behaves like asume of independent and identically

distributed mean 0 random variates. Therefore, by the multivariate central limit theo-

rem, for any finite set of (say k) time points, the vector n1/2[{Λ̂z(t1)−Λ(t1)}, ...., {Λ̂z(tk)−

Λ(tk)}] converges to a mean zero multivariate normal distribution. Using techniques

in Bilias, Gu and Ying (1997), n1/2{Λ̂z(t)− Λ(t)} can be shown to be tight (Pollard

(1990), van der Vaart and Wellner (1996)); so that n1/2{Λ̂z(t) − Λ(t)} converges to

a mean zero Gaussian process with covariance function E{Φiz(s)Φiz(t)} for any pair

of time points (s, t) ∈ [0, τ ]× [0, τ ].
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Proof of THEOREM 2

With respect to asymptotic normality, we begin with the decomposition:

n1/2(δ̂(t)− δ(t)) = γ̂1(t) + γ̂2(t)

where

γ̂1(t) = n1/2{δ̂(t; µ̂A,1, µ̂A,0, µ̂T,1, µ̂T,0)− δ̂(t;µA,1, µA,0, µ̂T,1, µ̂T,0)}

γ̂2(t) = n1/2{δ̂(t;µA,1, µA,0, µ̂T,1, µ̂T,0)− δ(t)}

We can express γ̂1(t) as follows:

γ̂1(t) = n−1/2

n∑
i=1

[R−1(β̂)−R−1(β0)]{µ̂T,1(t)− µ̂T,0(t)} (B.36)

where

R(β̂) = µA,1(β̂)− µA,0(β̂)

R(β0) = µA,1(β0)− µA,0(β0)

µA,z(β̂) =

∑n
i=1w

e
i (β̂)AiI(Zi = z)∑n

i=1w
e
i (β̂)I(Zi = z)

µA,z(β0) =

∑n
i=1w

e
i (β0)AiI(Zi = z)∑n

i=1w
e
i (β0)I(Zi = z)

With respect to the expression for γ̂1(t), by a linear Taylor series expansion:

n1/2{R−1(β̂)−R−1(β0)} = −R
β(β0)

R(β0)2
(β̂ − β0) + op(1) (B.37)

where, we define:
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Rβ(β0) =
∂R(β)

∂β

∣∣∣
β0

=
∑

z∈{0,1}

[∑n
i=1 I(Zi = z)I(Ai = 1)aei (β0)∑n

i=1 I(Zi = z)wei
−
∑n

i=1 WzI(Zi = z)I(Ai = 1)aei (β0)

(
∑n

i=1 I(Zi = z)wei )
2

]
(B.38)

where Wz =
∑n

i=1 I(Zi=z)I(Ai=1)we
i∑n

i=1 I(Zi=z)we
i

and from maximum likelihood theory:

n1/2{β̂ − β0} = Ω−1(β0)n
−1/2

n∑
i=1

ψi(β0) + op(1) (B.39)

Combining the above results, we have:

n1/2{R−1(β̂)−R−1(β0)} = −R
β(β0)

R(β0)2
Ω−1(β0)n

−1/2

n∑
i=1

ψi(β0) + op(1) (B.40)

Using the above result, and by application of strong law of large numbers and conti-

nuity, as n→∞, we can write γ̂1(t) as:

γ̂1(t) = QTΩ−1(β0)n
−1/2

n∑
i=1

ψi(β0) + op(1) (B.41)

where Q = E[−R
β(β0)

R(β0)2
].

We can write γ̂2(t) as:

γ̂2(t) = n1/2[{µ̂T,1(t)− µ̂T,0(t)} − {µT,1(t)− µT,0(t)}] 1

µA,1(t)− µA,0(t)

= n1/2

[{ t∫
0

Ŝ1(u)− S1(u)dt

}
−
{ t∫

0

Ŝ0(u)− S0(u)dt

}]
1

µA,1(t)− µA,0(t)

Note that, as Λ̂z(t) converges almost surely to Λz(t) (Theorem 1), through continuity,

Ŝz(t) converges almost surely to Sz(t). This implies that
∫ t

0
Ŝz(u)du

a.s−→
∫ t

0
Sz(u)du,

which in turn implies the almost surely convergence of δ̂(t) to δ(t) in t ∈ [0, τ ]. Fur-

103



ther, by functional Delta Method, n1/2(Ŝz(u)−Sz(u)) = −Sz(u)n1/2{Λ̂z(u)−Λz(u)}.

By integrating, we get that n1/2{
∫ t

0
Ŝz(u)−Sz(u)dt} = −n1/2

∫ t
0
Sz(u){Λ̂z(u)−Λz(u)}.

Switching the order of integration, and substituting µT,z(t) =
∫ t

0
Sz(u)dt, we obtain:

n1/2{µ̂T,z(t)− µT,z(t)} = −n1/2

t∫
0

{µT,z(t)− µT,z(u)}d{Λ̂z(u)− Λz(u)} (B.42)

Using results from Theorem 1, this can be written as:

n1/2{µ̂T,z(t)− µT,z(t)} = −n−1/2

n∑
i=1

t∫
0

{µT,z(t)− µT,z(u)}dΦiz(u) + op(1), (B.43)

such that, asymptotically,

γ̂2(t) = {µA,1(t)− µA,0(t)}−1n−1/2

n∑
i=1

Σi(t);

Σi(t) =

t∫
0

{µT,0(t)− µT,0(u)}dΦi0(u)−
t∫

0

{µT,1(t)− µT,1(u)}dΦi1(u)

Thus, combining the above results,

n1/2(δ̂(t)− δ(t)) = n−1/2

n∑
i=1

ξi(t) + op(1)

where, ξi(t), as defined in Theorem 2 is given by:

ξi(t) = QTΩ−1(β0)
n∑
i=1

ψi(β0) + {µA,1(t)− µA,0(t)}−1

n∑
i=1

Σi(t)

Following results from Theorem 1, n1/2(δ̂(t)−δ(t)) behaves like a sum of independent

and identically distributed mean 0 random variates. Hence, by multivariate central

limit theorem n1/2[{δ̂(t1)− δ(t1)}, ..., {δ̂(tk)− δ(tk)}]. Further, using arguments anal-

ogous to those used in the proof of Theorem 1, n1/2(δ̂(t) − δ(t)) converges to with
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covariance function E{ξi(s)ξi(t)} for any pair of time points (s, t) ∈ [0, τ ]× [0, τ ].
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