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ABSTRACT

One of the important successes of string theory has been the AdS/CFT correspondence

which conjectures a mathematical equivalence between string theories (containing gravity)

and field theories. The main focus of this thesis is to understand AdS/CFT correspondence

more deeply, at the quantum level, in the context of Black Hole Entropy and Holographic

Wilson loops.

It has been recently shown that the topologically twisted index for 3d supersymmetric

Chern-Simons-matter theory (known as ABJM theory) in a certain limit reproduces the

Bekenstein-Hawking entropy of magnetically charged asymptotically AdS4 black holes. In

the first part of thesis, we investigate sub-leading logarithmic corrections in the large N

limit to the topologically twisted index in ABJM theory and black hole entropy in the dual

one-loop quantum supergravity, focusing on both the near horizon geometry and the full

AdS4 black hole background. We explicitly focus on understanding the quantum aspects of

microstate counting of the black hole entropy, which provides an invaluable benchmark for

quantum gravity theories.

Another aspect of this thesis is precision holography with supersymmetric Wilson loops.

The main idea of precision holography is to better understand string perturbation theory in

curved spaces beyond the semi-classical approximation, given exact results from localization.

The expectation value of Wilson loop operators can be computed exactly via supersymmet-

ric localization. Holographically, these operators are mapped to string configurations in the

gravity dual. In the large N limit, the on-shell string action reproduces the large coupling

limit of the gauge theory expectation value. There should be a precise match between the

sub-leading corrections to these limits as guided by AdS/CFT correspondence. Such preci-

sion tests have been done in the literature in the context of N = 4 SYM theory revealing

various subtleties in the choice of regularization scheme for one-loop computations.

xii



In the second part of thesis, we perform a test of this match at next-to-leading order

in string theory by computing the ratio between one-loop determinants of the quadratic

fluctuations around the classical string configurations dual to BPS latitude and circular

Wilson loops in both N = 4 SYM and ABJM theory. We find a match for sub-leading

corrections in the limit of small latitude angle, using zeta function regularization scheme.

Another crucial result of this calculation is that the string partition function is determined

entirely by some special modes, which points to a potential bulk localization.
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CHAPTER I

Introduction

Gravity is described by Einstein’s theory of general relativity and other interactions in

nature are described by gauge field theories. One of the most intriguing questions in the

history of science has been the quest to find a unified theory of the fundamental forces of

nature. String Theory has proved to be a promising candidate towards realizing this dream

of grand unification. It first originated in late 1960’s in order to understand the strong

interactions [1],[2]. After the discovery of QCD as the theory of hadrons, the focus of string

research shifted to the Plank scale domain of quantum gravity [3].

The most interesting questions in particle physics concern the numerous proposals for

new physics beyond the Standard Model that rely on strongly coupled dynamics. However,

the physics of strong interactions is extremely challenging and requires non-perturbative

techniques, which are poorly understood. Several plausible directions have been explored

in recent years, but only a small number of calculations are tractable in practice. The

gauge/gravity correspondence has been immensely useful in studying these strongly cou-

pled theories by identifying their dual string theory realization. In particular, the AdS/CFT

(Anti de Sitter/Conformal Field Theory) correspondence conjectures a mathematical equiv-

alence between string theories, containing gravity, and field theories.

The AdS/CFT correspondence was first put forward in 1997 by Maldacena [4] that

explicitly realizes the notion that certain field theories admit an equivalent description in
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terms of string theories. The most prominent and precise examples of such equivalences

are: (i) the duality between N = 4 supersymmetric Yang-Mills in four dimensions and

type IIB string theory on AdS5 × S5 and (ii) N = 6 supersymmetric Chern-Simon with

gauge group U(N)k × U(N)−k coupled to matter in three dimensions and type IIA string

theory on AdS4 × CP3. Generically, when the field theory is strongly coupled, the string

theory description is weakly coupled and reduces to supergravity. Naturally, most of the

explorations have been centered in understanding strong coupling gauge theory phenomena

using a weakly coupled gravity description enhanced with classical strings and branes in

the corresponding supergravity backgrounds. Going beyond the supergravity limit, that is,

solving the full string theory in curved spacetimes, such as AdS5×S5 or AdS4×CP3, with

Ramond-Ramond fluxes presents a formidable challenge. Given these technical difficulties,

it would be particularly illuminating to use AdS/CFT to understand quantum aspects of

string perturbation theory in these situations. There are various platforms where this dual-

ity can be explored. More generally, our goal is to understand the AdS/CFT correspondence

at the quantum level, in the context of Black Holes and Wilson Loops.

Black Holes provide an important theoretical laboratory for probing and testing the

fundamental laws of the universe. In 1974, Stephen Hawking showed that black holes are

thermodynamical systems with a temperature and entropy. Entropy is a measure of the

number of possible microscopic states of a system in thermodynamic equilibrium. The

Bekenstein-Hawking entropy of a black hole is proportional to the area of its event horizon.

S = kB
Area c3

4GN~
. (1.0.1)

This is an astonishing formula given the fact that a black hole is a solution of Einstein’s

equations, which are classical. Given the fundamental constants involved, its a surpris-

ing fusion of thermodynamical, relativistic, gravitational, and quantum aspects. Studying

corrections to the Bekenstein-Hawking entropy is crucial for a full understanding of the

microscopic degrees of freedom responsible for the macroscopic entropy.

2



String theory has successfully provided a framework for the microscopic counting of

the Bekenstein-Hawking entropy for a class of asymptotically flat black holes in the works

of Strominger and Vafa [5]. Furthermore, the quantum entropy formalism for extremal

black holes has been successfully applied in the literature to study logarithmic corrections

to the black hole entropy for a class of asymptotically flat black holes [6, 7, 8, 9]. How-

ever, formerly, no similar result exists for asymptotically AdS black holes. Only recently,

however, has an explicit example in AdS4/CFT3 emerged. It has been shown that in the

large-N limit the topologically twisted index of a certain Chern-Simons theory coupled to

matter, known as the ABJM theory, correctly reproduces the leading term in the entropy of

magnetically charged black holes in asymptotically AdS4 spacetimes [10]. Similar matches

have now been established in various other situations including: dyonic black holes [11],

black holes with hyperbolic horizons [12], and black holes in massive IIA theory [13, 14, 15].

Having established the microscopic counting, it is natural to embark on an exploration of

the sub-leading in N structure.

In our work, we studied logarithmic corrections to the topologically twisted index

in ABJM theory using numerical and analytical techniques and the corresponding one-

loop supergravity computation, focusing on both near horizon geometry and the full AdS4

black hole background. We also conceptually clarified the holographic dictionary for this

AdS4/CFT3 example and the role of attractor mechanism in asymptotically AdS space-

times.

Wilson Loops are an important class of gauge invariant non-local operators, which were

introduced as an order parameter for confinement. The study of quantum corrections in

the case of Wilson Loops is particularly promising in the context of AdS/CFT correspon-

dence because the expectation value of Wilson loops is determined by string worldsheets

[16, 17] and consequently pushes us to confront the underpinnings of string perturbation

theory more directly. The field theory side of the correspondence has recently provided a

3



plethora of exact results by means of supersymmetric localization. For example, in N = 4

Supersymmetric Yang-Mills (SYM) and in a N = 6 Cherns-Simons theory known as ABJM

[18], which are the field theory duals of string theories on AdS5 × S5 and AdS4 × CP 3,

respectively, exact expressions for the vacuum expectation value of some supersymmetric

Wilson loops have been obtained [19, 20]. These exact results provide fertile ground to bet-

ter understand the string perturbation theory in curved spaces beyond the semi-classical

approximation and have predictions for the gravity results beyond the leading order [19]

setting the stage for systematic explorations at quantum level.

For most observables, semiclassical physics is our only systematic approach to probe the

AdS/CFT correspondence beyond the leading classical limit and thus far many questions

have been dealt with on a case by case basis without a general framework. The main pre-

cept of semi-classical physics consists in integrating quadratic quantum fluctuations around

a well-defined classical background. When we get down to practical evaluations, however,

we must face the sometimes messy process of treating divergences, as typical of quantum

field theory but now with the added intricacies of being in curved space-time. Determining

the semiclassical one-loop effective action is equivalent, by definition, to the computation of

infinite dimensional functional determinants. Another emergent theme of this thesis is to

develop computational technology for string perturbation theory on the curved background.

In particular, we study determinants of general Laplace and Dirac operators in asymptoti-

cally AdS2 spacetimes using ζ-function regularization.

In the AdS/CFT context, it is then natural to extrapolate the exact field theory results

to the regime where they could be directly compared with the supergravity and semiclas-

sical approximations. This approach was attempted very early on in the insightful work of

Drukker, Gross and Tseytlin [21]; it did not, however, led to a match with the field theory

prediction. This discrepancy motivated much work [22, 23, 24, 25] that largely confirmed

the original discrepancy. A recent revival of this line of effort took place in [26, 27] which

considered, on the gravity side, the one-loop effective actions corresponding to the ratio
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of the expectation values of the 1
4 to the 1

2 BPS Wilson loops. Various groups have made

important subsequent contributions to this question [28] and recently a precise match has

been described, for the N = 4 SYM case, [29] after imposing a diffeomorphism preserving

cutoff. This reveals the subtleties in the choice of regularization scheme for one-loop com-

putations. We study the one-loop effective action for string configurations dual to latitude

Wilson Loops in N = 4 SYM and ABJM theory using ζ-function regularization and per-

turbative heat kernel method, respectively. We get an agreement with the expected field

theory result in the limit of small latitude angle.

The thesis is organized as follows:

• In chapter 2, we study the subleading logarithmic corrections in the large N limit

to topologically twisted index in ABJM theory and black hole entropy in the dual

one-loop quantum supergravity. We provide numerical evidence that the index con-

tains a subleading logarithmic term of the form −1/2 logN . On the holographic side,

this term naturally arises from a one-loop computation. However, we find that the

contribution coming from the near horizon states does not reproduce the field theory

answer. We give some possible reasons for this apparent discrepancy.

In chapter 3, within eleven dimensional supergravity we compute the logarithmic cor-

rection to the entropy of magnetically charged asymptotically AdS4 black holes with

arbitrary horizon topology. We find perfect agreement with the expected microscopic

result arising from the dual field theory computation of the topologically twisted in-

dex. Our result relies crucially on a particular limit to the extremal black hole case

and clarifies some aspects of quantum corrections in asymptotically AdS spacetimes.

These chapters are based on :

[30] J. T. Liu, L. A. Pando Zayas, V. Rathee, and W. Zhao, Toward Microstate

Counting Beyond Large N in Localization and the Dual One-loop Quantum Super-

gravity, 1707.04197
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[31] J. T. Liu, L. A. Pando Zayas, V. Rathee, and W. Zhao, A One-loop Test of

Quantum Black Holes in Anti de Sitter Space, 1711.01076

• In Chapter 4, we provide a field theory interpretation of the attractor mechanism

for asymptotically AdS4 dyonic BPS black holes whose entropy is captured by the

supersymmetric index of the twisted ABJM theory at Chern-Simons level one. We

holographically compute the renormalized off-shell quantum effective action in the

twisted ABJM theory as a function of the supersymmetric fermion masses and the

arbitrary vacuum expectation values of the dimension one scalar bilinear operators

and show that extremizing the effective action with respect to the vacuum expectation

values of the dimension one scalar bilinears is equivalent to the attractor mechanism

in the bulk. In fact, we show that the holographic quantum effective action coincides

with the entropy functional and, therefore, its value at the extremum reproduces the

black hole entropy.

This chapter is based on :

[32] A. Cabo-Bizet, U. Kol, L. A. Pando Zayas, I. Papadimitriou, and V. Rathee,

Entropy functional and the holographic attractor mechanism, JHEP 05 (2018) 155,

[1712.01849]

• In Chapter 5, we study the zeta-function regularization of functional determinants of

Laplace and Dirac-type operators in two-dimensional Euclidean AdS2 space. More

specifically, we consider the ratio of determinants between an operator in the pres-

ence of background fields with circular symmetry and the free operator in which the

background fields are absent. By Fourier-transforming the angular dependence, one

obtains an infinite number of one-dimensional radial operators, the determinants of

which are easy to compute. The summation over modes is then treated with care

so as to guarantee that the result coincides with the two-dimensional zeta-function

formalism. The method relies on some well-known techniques to compute functional

determinants using contour integrals and the construction of the Jost function from

scattering theory. Our work generalizes some known results in flat space. The ex-
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tension to conformal AdS2 geometries is also considered. We provide two examples,

one bosonic and one fermionic, borrowed from the spectrum of fluctuations of the

holographic 1
4 -BPS latitude Wilson loop.

This chapter is based on :

[33] J. Aguilera-Damia, A. Faraggi, L. Pando Zayas, V. Rathee, and G. A. Silva,

Functional Determinants of Radial Operators in AdS2, JHEP 06 (2018) 007, [1802.06789]

• In Chapter 6, using ζ-function regularization, we study the one-loop effective action

of fundamental strings in AdS5×S5 dual to the latitude 1
4 -BPS Wilson loop in N = 4

Super-Yang-Mills theory. To avoid certain ambiguities inherent to string theory on

curved backgrounds we subtract the effective action of the holographic 1
2 -BPS Wilson

loop. We find agreement with the expected field theory result at first order in the

small latitude angle expansion but discrepancies at higher order.

This chapter is based on :

[34] J. Aguilera-Damia, A. Faraggi, L. A. Pando Zayas, V. Rathee, and G. A. Silva,

Zeta-function Regularization of Holographic Wilson Loops, Phys. Rev. D98 (2018),

no. 4 046011, [1802.03016]

• In Chapter 7, we study the one-loop effective action of certain classical type IIA string

configurations in AdS4 × CP3. These configurations are dual to Wilson loops in the

N = 6 U(N)k ×U(N)−k Chern-Simons theory coupled to matter whose expectation

values are known via supersymmetric localization. We compute the one-loop effective

actions using two methods: perturbative heat kernel techniques and full ζ-function

regularization. We find that the result of the perturbative heat kernel method matches

the field theory prediction at the appropriate order while the ζ-function approach

seems to lead to a disagreement.

This chapter is based on :

[35] J. Aguilera-Damia, A. Faraggi, L. A. Pando Zayas, V. Rathee, and G. A. Silva,

Toward Precision Holography in Type IIA with Wilson Loops, JHEP 08 (2018) 044,
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[1805.00859]

• In Chapter 8, we study the holographic configurations dual to Wilson loops in higher

rank representations in the ABJM theory, which are described by branes with electric

flux along their world volumes. In particular, D2 and D6 branes with electric flux

play a central role as potential dual to totally symmetric and totally antisymmetric

representations, respectively. We compute the spectra of excitations of these brane

configurations in both, the bosonic and fermionic sectors. We highlight a number

of aspects that distinguish these configurations from their D3 and D5 cousins in-

cluding new peculiar mixing terms in the fluctuations and organize the spectrum of

fluctuations into the corresponding supermultiplets.

This chapter is based on :

[36] W. Mück, L. A. Pando Zayas, and V. Rathee, Spectra of Certain Holographic

ABJM Wilson Loops in Higher Rank Representations, JHEP 11 (2016) 113, [1609.06930]
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CHAPTER II

Microstate Counting Beyond Large N in

Localization and the Dual One-loop Quantum

Supergravity

2.1 Introduction

In this chapter, we study subleading corrections to the microstate counting of the entropy

of a class of magnetically charged asymptotically AdS4 black holes.

For a class of asymptotically flat black holes, Strominger and Vafa have demonstrated

that string theory provides a framework for the microstate counting of the Bekenstein-

Hawking entropy [5]. Moreover, Sen and collaborators have carried a successful program of

understanding logarithmic corrections to various black holes [6, 7, 8, 9].

In the context of the AdS/CFT correspondence [4], a microscopic counting of the

Bekenstein-Hawking entropy of a class of black holes has recently been presented by Benini,

Hristov and Zaffaroni [10, 11]. Understanding black hole entropy in this context is particu-

larly powerful because it does provide a practical path to a fully non-perturbative definition

of quantum gravity in asymptotically AdS spacetimes. The basic premise of [10] is that

the topologically twisted index of ABJM, namely the supersymmetric partition function

on S1 × S2 with background magnetic flux on S2 [37], counts the ground state degener-

acy of a superconformal quantum mechanics on S1, and that this counting enumerates the

microstates of the dual magnetically charged BPS black hole in AdS.
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It was in fact demonstrated in [10] that the topologically twisted index reproduces the

AdS black hole entropy at leading order in the large-N expansion. Here, we wish to extend

this correspondence to subleading order by examining the logarithmic corrections on both

the field theory and gravity sides of the duality.

In section 2.2 we start by reviewing the field theory computation of the topologically

twisted index and present numerical evidence pointing to a universal −1/2 logN correction.

We then turn to the gravity calculation in section 2.3, which first reviews the prescription

and special status of logarithmic corrections at the one-loop level. We then discuss the

dual calculation in the context of 11-dimensional supergravity, focusing on the contribution

coming from the near horizon limit of the magnetically charged BPS black hole solutions.

We also discuss the absence of potential contributions coming from the asymptotically

AdS4 region. In contrast with the index result, we find −2 logN from the quantum gravity

computation, and suggest possible reasons for this discrepancy in section 2.4.

2.2 The topologically twisted index beyond the large-N limit

The topologically twisted index for three dimensional N = 2 field theories was defined in

[37] (see other related work [38, 39, 40, 41, 42]) by evaluating the supersymmetric partition

function on S1×S2 with a topological twist on S2. When applied to the microstate counting

of magnetic AdS4 black holes, the index is computed for ABJM theory, and the topological

twist arises from the magnetic fluxes on S2 [10, 11]. Since these black holes are constructed

in the STU model truncation of four-dimensional SO(8) gauged supergravity, there are a

total of four U(1) gauge fields, with corresponding charges na satisfying the supersymmetry

constraint
∑
na = 2.

The topologically twisted index for ABMJ theory was worked out in [10], and reduces

to the evaluation of the partition function

Z(ya, na) =

4∏
a=1

y
− 1

2
N2na

a

∑
I∈BAE

1

det B

∏N
i=1 x

N
i x̃

N
i

∏
i 6=j

(
1− xi

xj

)(
1− x̃i

x̃j

)
∏N
i,j=1

∏
a=1,2(x̃j − yaxi)1−na

∏
a=3,4(xi − yax̃j)1−na

,

(2.2.1)
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where ya are the corresponding fugacities. The summation is over all solutions I of the

“Bethe Ansatz Equations” (BAE) eiBi = eiB̃i = 1 modulo permutations, where

eiBi = xki

N∏
j=1

(1− y3
x̃j
xi

)(1− y4
x̃j
xi

)

(1− y−1
1

x̃j
xi

)(1− y−1
2

x̃j
xi

)
,

eiB̃j = x̃kj

N∏
i=1

(1− y3
x̃j
xi

)(1− y4
x̃j
xi

)

(1− y−1
1

x̃j
xi

)(1− y−1
2

x̃j
xi

)
. (2.2.2)

Here k is the Chern-Simons level, and the two sets of variables {xi} and {x̃j} arise from

the U(N)k × U(N)−k structure of ABJM theory. Finally, the 2N × 2N matrix B is the

Jacobian relating the {xi, x̃j} variables to the {eiBi , eiB̃j} variables

B =

xl ∂e
iBj

∂xl
x̃l
∂eiBj

∂x̃l

xl
∂eiB̃j

∂xl
x̃l
∂eiB̃j

∂x̃l

 . (2.2.3)

See [10] for additional details.

It is convenient to introduce the chemical potentials ∆a according to ya = ei∆a and

furthermore perform a change of variables xi = eiui , x̃j = eiũj . In this case, the Bethe

ansatz equations become

0 = kui − i
N∑
j=1

∑
a=3,4

log
(

1− ei(ũj−ui+∆a)
)
−
∑
a=1,2

log
(

1− ei(ũj−ui−∆a)
)− 2πni,

0 = kũj − i
N∑
i=1

∑
a=3,4

log
(

1− ei(ũj−ui+∆a)
)
−
∑
a=1,2

log
(

1− ei(ũj−ui−∆a)
)− 2πñj .

(2.2.4)

where ni, ñj are integers that parametrize the angular ambiguities.

The topologically twisted index is evaluated by first solving these equations for {ui, ũj},

and then inserting the resulting solution into the partition function (2.2.1). This procedure

was carried out in [10] in the large-N limit with k = 1 by introducing the parametrization

ui = iN1/2 ti + π − 1
2δv(ti), ũi = iN1/2 ti + π + 1

2δv(ti), (2.2.5)
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where we have further made use of reflection symmetry about π along the real axis. In

the large-N limit, the eigenvalue distribution becomes continuous, and the set {ti} may be

described by an eigenvalue density ρ(t).

2.2.1 Evaluation of the index beyond the leading order in N

The leading order solution for ρ(t) and δv(t) was worked out in [10], and the resulting

partition function exhibits the expected N3/2 scaling of ABJM theory

Re logZ0 = −N
3/2

3

√
2∆1∆2∆3∆4

∑
a

na
∆a

. (2.2.6)

A similar result was extended to the context of asymptotically AdS4 black holes with hy-

perbolic horizon in [12]. We are, of course, interested in taking this solution beyond the

leading order. In the ABJM context, we expect the subleading behavior of the index to

have the form

Re logZ = Re logZ0 +N1/2f1(∆a, na) + logNf2(∆a, na) + f3(∆a, na) +O(N−1/2), (2.2.7)

where the functions f1, f2 and f3 are linear in the magnetic fluxes na. In principle, we

would like to systematically extend the analysis beyond the leading order in order to obtain

the analytic form of these functions. However, this appears to be a challenge, mainly due

to the presence of the (left and right) tails of the eigenvalue distribution. (These tails

correspond to the nearly vertical segments in figure 2.1.) We thus proceed with a numerical

investigation.

The main setup is to arrive at a numerical solution to the BAE (2.2.4) through multidi-

mensional root finding using the leading order distribution as the starting point. We have

implemented this in Mathematica using FindRoot. The solution is first obtained either with

MachinePrecision or with WorkingPrecision set to 30, and further refined using Working-

Precision set to 200 and default settings for AccuracyGoal and PrecisionGoal. Convergence

to a stable solution can be a bit delicate, since the BAE is highly sensitive to the tails; if

even a single eigenvalue is sufficiently displaced, then it is easy for FindRoot to fail. In
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Figure 2.1: The solution to the BAE for ∆a = {0.4, 0.5, 0.7, 2π − 1.6} and N = 60.
The solid lines correspond to the leading order expression obtained in [10].

Figure 2.2: The eigenvalue density ρ(t) and the function δv(t) for ∆a =
{0.4, 0.5, 0.7, 2π − 1.6} and N = 60, compared with the leading order expression.

most cases, we have been able to obtain numerical solutions up to N ≈ 200, although larger

values of N are possible with some refinement of the initial distribution. As an example,

the numerical solution for the ui and ũi eigenvalues for∆a = {0.4, 0.5, 0.7, 2π − 1.6} and

N = 60 is shown in figure 2.1. The corresponding eigenvalue density ρ(t) and function δv(t)

are shown in figure 2.2.

Once the eigenvalues are obtained, it is then simply a matter of numerically evaluating

the index (2.2.1) on the solution to the BAE. The main challenge here is the evaluation of

det B, as the Jacobian matrix is ill-conditioned. (This is why we work to high numerical

precision when solving the BAE.) For a given set of chemical potentials ∆a, we compute
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∆1 ∆2 ∆3 f1 f2 f3

π/2 π/2 π/2 3.0545 −0.4999 −3.0466
π/4 π/2 π/4 4.2215− 0.0491n1 −0.4996 + 0.0000n1 −4.1710− 0.2943n1

−0.1473n2 − 0.0491n3 +0.0000n2 + 0.0000n3 +0.0645n2 − 0.2943n3

0.3 0.4 0.5 7.9855− 0.2597n1 −0.4994− 0.0061n1 −9.8404− 0.9312n1

−0.5833n2 − 0.6411n3 −0.0020n2 − 0.0007n3 −0.0293n2 + 0.3739n3

0.4 0.5 0.7 6.6696− 0.1904n1 −0.4986− 0.0016n1 −7.5313− 0.6893n1

−0.4166n2 − 0.4915n3 −0.0008n2 − 0.0001n3 −0.1581n2 + 0.2767n3

Table 2.1: Numerical fit for Re logZ = Re logZ0 + f1N
1/2 + f2 logN + f3 + · · · . The

values of N used in the fit range from 50 to Nmax where Nmax = 290, 150, 190, 120
for the four cases, respectively. We made use of the fact that the index is in-
dependent of the magnetic fluxes when performing the fit for the special case
(∆a = {π/2, π/2, π/2, π/2}).

logZ for a range of N . We then subtract out the leading behavior (2.2.6) and decompose

the residuals into a sum of four independent terms

Re logZ = Re logZ0 +A+B1n1 +B2n2 +B3n3, (2.2.8)

where we have used the condition
∑

a na = 2. At this stage, we then perform a linear

least-squares fit of A and Ba to the function

f(N) = f1N
1/2 + f2 logN + f3 + f4N

−1/2 + f5N
−1 + f6N

−3/2. (2.2.9)

We are, of course, mainly interested in f2. However, since N ranges from about 50 to 200,

it is important to consider the first few inverse powers of N as well. (We have confirmed

numerically that the first subdominant term enters at O(N1/2), and that in particular terms

of O(N) are absent.)

The results of the numerical fit are presented in Table 2.1. Our main result is that the

numerical evidence points to the coefficient of the logN term being exactly −1/2. We thus

have

Re logZ = −N
3/2

3

√
2∆1∆2∆3∆4

∑
a

na
∆a

+N1/2f1(∆a, na)−
1

2
logN+f3(∆a, na)+O(N−1/2),

(2.2.10)
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where f1 and f3 remain to be determined. One may wonder whether their dependence

on the magnetic fluxes, na, follows the same leading order behavior, namely
∑

a na/∆a.

Unfortunately, examination of the table shows that this is not the case.

Although we have been unable to discern the general behavior of f1, for the special case

we find the approximate expression

f1 = 3.0545 ≈ 11π

8
√

2
=

π√
2

(
1

24
+

1

3
+ 1

)
. (2.2.11)

We have in fact extended the special case to k > 1. For k ∼ O(1), the eigenvalue distribution

retains the same features, but with appropriate scaling by k. Working specifically up to

k = 5 and with N up to 200, we find good evidence that in this case the partition function

takes the form

Re logZ(∆a = π/2) = −π
√

2k

3
N3/2 +

π√
2k

(
k2

24
+

1

3
+ 1

)
N1/2 − 1

2
logN + · · · , (2.2.12)

which may be compared with the ABJM free energy on S3

FABJM = −π
√

2k

3
N3/2 +

π√
2k

(
k2

24
+

1

3

)
N1/2 − 1

4
logN + · · · . (2.2.13)

While the leading O(N3/2) term is identical, the first subleading term in the topologically

twisted index picks up an additional contribution. In addition, the coefficients of the log

terms differ, and this suggests that the two expressions are capturing distinct features of the

holographic dual. Some similarities between the free energy and the topologically twisted

index were first pointed out in [40]. More generally, relations between partitions functions

on S3 and S2×S1 with a topological twist have recently been discussed in [43]. It would be

interesting to place our concrete, subleading in N , results within that more formal approach.

2.2.2 Perilous 1/N expansion

While the numerical evidence for −1/2 logN appears compelling, ideally this ought to

be backed up by an analytical expansion in the large-N limit. Such an expansion would
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naturally shed light on the f1 coefficient as well. However, as mentioned above, the tails

make it difficult to maintain a systematic treatment of the 1/N expansion. In particular,

the tails occur when the eigenvalues {ui, ũj} satisfy

ũi − ui ≈ ±∆a ⇒ δv(ti) ≈ ±∆a. (2.2.14)

In this case, the logs in the BAE, (2.2.4), for j near i are evaluated near zero. The resulting

large logs cause apparently subleading terms to become important, and hence mixes up

orders in the superficial 1/N expansion, as already noted in [10].

The leading order partition function may be obtained by properly accounting for the

large logs, and we suspect that a careful treatment would allow the computation to be

extended to higher orders. However, this remains a technical challenge, as can be seen

from the following illustration. In the large-N limit, it is natural to focus on the eigenvalue

density ρ(t) and the function δv(t). In the formal large-N expansion, both functions are

considered to be O(1), which is consistent with the plots in figure 2.2. However, their

leading-order slopes are discontinuous where the left and right tails meet the inner interval.

This gives rise to a δ-function divergence when working with their second derivatives. While

the divergence is unimportant at leading order, it presents difficulties at higher order.

Of course, as can be seen in figure 2.2, the actual solution does not have discontinuous

slope. As an estimate, we first note that the range where ρ(t) changes slope is of O(1/
√
N).

As a result, ρ′′(t) ∼ O(
√
N) near the transition points, and a similar estimate can be made

for δv(t). While this avoids the δ-function divergences, it nevertheless mixes up orders in the

formal large-N expansion. Furthermore, it is not just the second derivative, but all higher

derivatives as well that become important, even when considering just the first subleading

correction to the index.

2.3 One-loop quantum supergravity

Based on our numerical evidence, we conjecture that the topologically twisted index

has a universal logarithmic correction given by −1/2 logN , in contrast with the ABJM
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free energy that has the factor −1/4 logN . In the latter case, the field theory result was

reproduced by a one-loop supergravity computation in [44]. In particular, the standard

AdS4/CFT3 correspondence relates ABJM theory on S3 to M-theory on global AdS4 ×

S7/Zk [18]. The logarithmic term then originates purely from a ghost two-form zero mode

contribution on AdS4.

In the present case, however, we take ABJM theory on S2 × S1 with a topological

twist generated by background magnetic flux. This topological twist relevantly deforms the

ABJM theory to flow toward a superconformal quantum mechanics on S1. Holographically,

such an RG flow can be thought of as a Euclidean asymptotically AdS4 BPS magnetic black

hole, interpolating between the asymptotically AdS4 region and an AdS2× S2 near horizon

region. The solution can be embedded into 11-dimensional supergravity [45], and such an

embedding makes it also natural to consider the quantum correction from an 11-dimensional

point of view.

We are thus interested in computing the one-loop correction to the supersymmetric

partition function in the BPS black hole background that interpolates between asymptotic

AdS4 × S7 and AdS2 × M9 near the horizon, where M9 is a S7 bundle over S2. As a

simplification, however, we assume a decoupling limit exists, so that we can focus mainly

on the AdS2 × M9 near horizon geometry. Alternatively, corrections to the black hole

entropy may be considered via the quantum entropy function in the near horizon geometry

proposed in [46]. For extremal black hole with no electric charge, the quantum entropy

function reduces to the partition function of 11-dimensional supergravity compactified in

the near horizon geometry, and we are again led to AdS2 ×M9.

In the computation of one-loop corrections to the partition function, we focus on the

logarithmic term, as such a term, in odd dimensional spaces, arises purely from zero modes

(see [47] and [44] for a review). The effect of zero modes on the logarithmic term can be

naturally divided into two parts: the subtraction of zero modes from the trace of the heat

kernel to make the heat kernel well defined, and the integration over zero modes in the path

integral. Those two parts can be summarized schematically, for a given kinetic operator D
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of a physical field, as

∆FD = (−1)D(βD − 1)n0
D logL, (2.3.15)

where βD encodes the integration over zero modes in the path integral, and −1 is due to the

subtraction in the heat kernel. We use (−1)D to distinguish bosonic/fermionic contributions.

The treatment for ghosts is slightly different, and they are considered separately as in [44].

In summary, the total logarithmic correction is given by

∆F =
∑
{D}

(−1)D(βD − 1)n0
D logL+ ∆FGhost, (2.3.16)

where the summation is over physical fields.

For completeness, we shall first summarize the fields that have non-trivial zero modes

n0
D in AdS2 and their βD, although they are quite standard and well known in the literature

(see for example, the appendix of [9]). We then compute the logarithmic correction from

the physical sector and the ghost sector of 11-dimensional supergravity in the near horizon

geometry AdS2 ×M9.

2.3.1 The number and scalings of zero modes

The spectrum of a kinetic operator on a non-compact space, such as AdS2, typically

consists of two parts: a continuous part due to the non-compactness of the space, and

possibly a discrete part that contains a countably infinite number of eigenfunctions with

zero eigenvalue. The continuous part of the trace of the heat kernel in the case of AdSN is

well defined, whereas the zero modes from the discrete part, if any, should be subtracted

from the heat kernel. The formal sum that counts the number of zero modes in the compact

case is divergent when the space is non-compact,

n0 =
∑
j

ˆ
√
g d2x|φj(x)|2, (2.3.17)

where φj(x)’s are normalized to 1. Thus computing n0 requires regularization. For sym-

metric spaces G/H, n0 can be evaluated by working out explicit eigenfunctions, exchanging
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the sum and integral, and using a regularized volume as in [9, 44].

Here, we present another way of computing n0 using the general theorem in [48]. The

number of zero modes can be associated with the formal degree of the discrete series repre-

sentation of G corresponding to the given field, which occurs when G has a maximal torus

that is compact. For AdSN = SO(N, 1)/SO(N), they occur when N is even, and they can

be labeled in terms of the highest weight label (σ, n0), where σ = (nN−2
2
, nN−4

2
, . . . , n1),

with nN−2
2

> nN−4
2

> · · · > n1 > |n0|. Any vector bundle over AdSN can be labeled

by an irreducible representation of SO(N) (or Spin(N)) in terms of highest weight labels

τ = (hN
2
, hN−2

2
, . . . , h1), and in order to determine the number of zero modes for a given

field, one looks for the branching condition

1

2
< |n0| ≤ |h1| ≤ n1 ≤ · · · ≤ nN−2

2
≤ hN

2
. (2.3.18)

The number of zero modes is the sum of all degrees P (σ, n0) of discrete series representations

(σ, n0) that satisfies the branching condition, up to a normalization factor that only depends

on the dimension:

nτ0 =
Vol(AdSN )

cN

∑
(σ,n0)

P (σ, n0). (2.3.19)

For AdS2, P (n0) = n0 − 1
2 and cN = 2π, and a field is labeled by a single highest weight

label which is its spin. (General expressions for cN and P (σ, n0) can be found in section 6

of [48].) The branching condition, (2.3.18), implies that fields with spin greater than 1
2 have

zero modes, i.e. one-form, gravitino, and graviton fields. Moreover, using (2.3.19), one has

n0
g = 2× (−2π)

2π

(
2− 1

2

)
= −3,

n0
ψ = 2× (−2π)

2π

(
3

2
− 1

2

)
= −2,

n0
A = 2× (−2π)

2π

(
1− 1

2

)
= −1, (2.3.20)

where n0
g, n

0
ψ, n0

A are respectively the number of zero modes of a graviton, a gravitino and a

one form. We also used the fact that the regularized volume of AdS2 is −2π. These values,
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of course, coincide with the direct evaluation performed in [9].

The logarithmic part of the integration over zero modes in the path integral can be

obtained by dimensional analysis. Given a kinetic operator O, the path integral over zero

modes is given by

ˆ
Df |zero modes exp

(
−
ˆ
ddx
√
gfOf

)
=

ˆ
Df |zero modes ∼ LβOn

0
O , (2.3.21)

through which we define βO for an operator O. To obtain the logarithmic correction, it is

enough to find the L dependence of (2.3.21), which amounts to finding the L dependence in

the path integral measure. In the case of Euclidean AdS2N , all such zero modes arise due to

a non-normalizable gauge parameter λ, where f = Gλ with G representing the infinitesimal

gauge transformation. For example, let gµν = L2g
(0)
µν . The path integral measure of a p-form

in d dimensions is normalized as

ˆ
DA[p] exp

(
−Ld−2p

ˆ
ddx

√
g(0)g(0)µ1ν1g(0)µ2ν2 . . . g(0)µpνpAµ1...µpAν1...νp

)
= 1. (2.3.22)

Therefore, the correctly normalized measure is

D(L
d−2p

2 dλ[p−1]), (2.3.23)

where λ[p−1] is a non-normalizable (p−1)-form gauge parameter, and has no L dependence.

Such a measure gives L(d−2p)/2 per zero mode, and therefore contributes as L(d−2p)n0
p/2 in

the path integral. Thus βA[p]
= (d − 2p)/2 in d dimensions. One can carry out similar

computations for other fields, paying particular attention to the possible L dependence of

the gauge parameter, as in [9] and [6]. One then finds

βg =
d

2
, βψµ = d− 1, βA[p]

=
d− 2p

2
. (2.3.24)
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2.3.2 The logarithmic corrections

The 11-dimensional N = 1 gravitational multiplet consists of (gµν , ψµ, Cµνρ). The

fluctuation of the metric to the lowest order can be summarized as

hµν(x, y) =



hαβ(x)φ(y),

hαi =
∑

aA
a
α(x)Ka

i (y),

φ(x)hij(y),

(2.3.25)

where we use (xα, yi) to denote AdS2 and M9 coordinates, respectively, and Kai(y)∂i is a

killing vector of M9. The graviton zero modes therefore contribute in two ways: a graviton

in AdS2, and gauge fields corresponding to Killing vectors of M9.

From the near horizon geometry in [10] one can read off the metric on M9

ds2
9 = ∆

2
3ds2

S2 +
4

∆
1
3

4∑
i=1

1

Xi

(
dµ2

i + µ2
i (dψi +

ni
2

cos θdφ)2
)
, (2.3.26)

where we denote the coordinates on S2 by (θ, φ), Xi’s are constant with
∏
Xi = 1, ∆ =∑4

i=1Xiµ
2
i , and

∑4
i=1 µ

2
i = 1. The metric, (2.3.26), suggests the following seven Killing

vectors:

{
cosφ∂θ − cot θ sinφ∂φ +

∑
j

nj
2

sinφ

sin θ
∂ψj , − sinφ∂θ − cot θ cosφ∂φ +

∑
j

nj
2

cosφ

sin θ
∂ψj , ∂φ

}
,

{
∂ψi

}
, (2.3.27)

where i = 1, 2, 3, 4, and the Killing vectors span the algebra of the isometry group SU(2)×

U(1)4. Thus the logarithmic correction due to the 11-dimensional graviton is given by

∆Fh = (βh−1)(n0
g+7n0

A) logL =

(
11

2
− 1

)
[(−3)×1+(−1)×7] logL = −45 logL. (2.3.28)

A gravitino ψµ can either be an AdS2 gravitino and a spin-1/2 fermion on M9, or vice

versa. Ideally one would find the number of killing spinors of M9. Nevertheless, it is more
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convenient to reduce to four-dimensions first. In this case, the N = 2 gravitational multiplet

contains two gravitinos, which further decompose to two gravitinos on AdS2. As the number

of gravitinos only concerns the number of supersymmetries that are preserved, it should be

the same no matter whether one works directly in 11 dimensions, or through a reduction to

four dimensions. Thus, the contribution due to the gravitino is given by

∆Fψ = −
∑

(βψ − 1)n0
ψ logL = −(10− 1)[(−2)× 2] logL = 36 logL, (2.3.29)

where the minus sign is assigned as it is Grassmann odd.

The fluctuation of a 11 dimensional 3 form can be summarized as

C3(x, y) =



A0(x) ∧B3(y),

A1(x) ∧B2(y),

A2(x) ∧B1(y),

(2.3.30)

where the subscript represents the rank of the form, A(x) represents a form on AdS2 and

B(y) a form on M9. Note for M9 the Betti numbers b1 = 0 and b2 = 1. Therefore the

contribution from the 3-form, from the middle line in (2.3.30), is

∆FC = (βC − 1)n0
C logL =

(
5

2
− 1

)
[(−1)× 1] logL = −3

2
logL. (2.3.31)

We now turn to the treatment for ghosts, which requires special care. We therefore

compute them separately, and we only concern ourselves with ghosts that give rise to AdS2

zero modes. Therefore only the ghosts for the graviton, which gives a vector ghost cµ, and

the ghosts for the 3-form are considered. The BRST quantization of supergravity generally

provides a kinetic term c∗µ(−gµν2 − Rµν)cν with other off diagonal terms that are lower

triangular, which do not change the eigenvalues of the kinetic operator on cν . In our case,

Rµν is never zero, and therefore the graviton ghosts are not relevant to the logarithmic

correction.

The general action for quantizing a p-form Ap requires a set of (p − j + 1)-form ghost
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fields, with j = 2, 3, . . . , p+ 1, and the ghost is Grassmann even if j is odd and Grassmann

odd if j is even [49, 50]. Although for the (p−j+1)-form, the Laplacian operator (∆p−j+1)j

in the computation of the heat kernel requires an extra j − 1 removal of the zero modes,

the integration over the zero modes is unchanged. The result, as in Eq. (3.4) of [44], is

∆FGhost =
∑
j

(−1)j(βAp−j − j − 1)n0
Ap−j logL. (2.3.32)

Note for our case that b1 of M9 is zero. Therefore the only non-vanishing term is p = 3,

j = 2, which gives

∆FGhost = −3

2
logL. (2.3.33)

Finally, adding the contributions (2.3.28), (2.3.29), (2.3.31) and (2.3.33) leads to the

total logarithmic correction

∆F =

(
−45 + 36− 3

2
− 3

2

)
logL = −12 logL ∼ −2 logN, (2.3.34)

where in the last equality we used the AdS/CFT dictionary N ∼ L6, and neglected L

independent terms. We note that this result does not match with the logarithmic term of

the topologically twisted index, (2.2.10), which instead is conjectured to have coefficient

−1/2.

We finish this section by addressing a very natural question. In our computation we

have focused exclusively on the near horizon geometry. Given that the black holes we

are discussing are asymptotically AdS4, are there contributions that come precisely from

the asymptotic region? After all, the computation of [44] obtained logarithmic corrections

on the gravity side by studying quantum supergravity on AdS4 × S7 and found that the

entire contribution comes from a two-form zero mode in AdS4. The result of [44] perfectly

matches field theory results corresponding to the free energy of ABJM on S3. Our case,

however, pertains to a computation of ABJM on S2 × S1. In an elucidating discussion

about boundary modes presented in [51], the authors considered global aspects of AdS4

with S3 and S2 × S1 boundary conditions. In particular, they established that the Euler
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number depends on these boundary conditions and is, respectively, χ = 1 and χ = 0. This

result indicates the existence of a two-form zero mode in the case of S3 boundary conditions

which is precisely the two-form responsible for the successful match with the field theory free

energy. It also indicates the absence of the corresponding two-form zero mode for S2 × S1

boundary conditions. Moreover, the crucial use of S3 boundary conditions in the explicit

construction of the non-trivial two forms [48, 52, 53], also supports our claim.

Therefore, at least to this level of scrutiny, there is no contribution coming from the

asymptotically AdS4 region. It will, of course, be interesting to develop a systematic ap-

proach to dealing with asymptotically AdS contributions in the framework of holographic

renormalization.

2.4 Discussion

Given the disagreement in the computations, we shall discuss some of our underly-

ing assumptions. On the field theory side, the topologically twisted index reproduces the

Bekenstein-Hawking entropy of AdS black holes at leading order in the large-N expansion

[10, 12]. It is thus tempting to expect that the index provides an complete microstate de-

scription at all orders. To explore this possibility, we have performed a numerical investiga-

tion of the topologically twisted index and obtained a logarithmic correction of −1/2 logN .

We have attempted to reproduce this term by computing a one-loop partition function on

the supergravity side of the duality.

While AdS/CFT suggests that the corresponding one-loop partition function ought to

be computed in the full magnetic AdS4 black hole background, we made a decoupling

approximation and focused instead on the AdS2 × S2 near horizon region. Given the 11-

dimensional supergravity origin, only zero modes contribute to the logarithmic term, and

we find instead the term −2 logN from the bulk computation. In the next chapter, we

explore that the agreement would be restored working in the full black hole geometry in a

certain thermal-based limit.

Let us now discuss a number of other directions that would be nice to explore. One
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natural question is motivated by the universality of the result of [44]. Indeed, a large class of

field theory partition functions on S3 has a −1/4 logN correction for matter Chern-Simons

theories of various types [54, 55]. On the gravity side of the correspondence, the universality

of this result relies on the logarithmic term being given strictly by a two-form zero mode

in AdS4; it is thus independent of the Sasaki-Einstein X7 manifold where the supergravity

is defined [44]. It would be interesting to entertain a similar universality argument for the

correction we find here, namely −1/2 logN .

A more challenging question is: Can one obtain the full logarithmic correction to the

entropy, and not just the logN coefficient? One possibility is to tackle the theory directly in

four dimensions. In this case the heat kernel, being in an even dimensional space, contributes

in a more complicated way. A similar technical problem appears in the ’t Hooft limit where

the gravity dual theory lives on AdS4×CP3. It is worth pointing out an added difficulty in

the case of the magnetically charged black holes we are considering. For asymptotically flat

black holes, a typical practice is to consider particular N -correlated scalings of the charges;

this allows for the computation of corrections in various regimes. However, generic scalings

of the charges are not allowed in our case because the charges are constrained, for example,

by
∑
ni = 2. Alternatively, one could attempt a full supergravity localization following the

work [56] and the more recent effort in [57].

Of course, it is worth noting that the first subleading correction to the topologically

twisted index occurs at O(N1/2). In principle, it would be useful to obtain an analytic

expression for this correction, which we denoted f1(∆a, na) in (2.2.7). On the gravity side,

this term presumably originates from higher-derivative corrections to the Wald entropy.

While we have been as yet unable to find the analytic form of f1, it may be possible to do

so with additional numerical work.

Finally, it would be interesting to discuss other asymptotically AdS gravity configura-

tions forming AdS/CFT dual pairs. For example, we may consider black strings in AdS5

that are dual to topologically twisted four-dimensional field theories [58]. The topologically

twisted index for the dual four-dimensional field theories on S2 × T 2 has been constructed

in [59, 38] and its high temperature limit has recently been discussed in [60].
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CHAPTER III

One-loop test of Quantum Black Holes in the Anti

de Sitter Space

3.1 Introduction

In this chapter, we report on a computation of the one-loop effective action for a class

of asymptotically AdS4 black holes that matches precisely the coefficient of the logarithmic

correction arising from a microscopic description.

In the previous chapter, we studied corrections to the topologically twisted index using

a combination of numerical and analytical techniques and identified a logarithmic correc-

tion of the form −1
2 logN . A corresponding computation on the gravity side, focusing on

the near horizon contribution to the one-loop effective action and following the quantum

entropy formalism developed by Sen [61, 46], however, failed to match this microscopic re-

sult as showed in Chapter II. However, here we find perfect agreement when the one-loop

supergravity computation is performed in the full AdS4 black hole background, and not just

in the near horizon geometry. This suggests that, in contrast with asymptotically flat black

holes, the microscopic degrees of freedom of AdS black holes are sensitive to the background

in which they are embedded.
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3.2 Topologically Twisted Index in ABJM

On the microscopic side, the CFT dual to magnetically charged AdS4 black holes is

given by ABJM theory with background flavor fluxes turned on. ABJM theory is a three-

dimensional Chern-Simons-matter theory with U(N)k×U(N)−k gauge group and opposite

integer levels k and −k [18]. The matter sector contains four complex scalar fields CI , (I =

1, 2, 3, 4) in the bifundamental representation (N, N̄), together with their fermionic partners.

The theory is superconformal and has N = 6 supersymmetry generically, but for k = 1, 2,

the symmetry is enhanced to N = 8. Holographically, ABJM describes a stack of N M2-

branes probing a C4/Zk singularity, whose low energy dynamics are effectively described by

11 dimensional supergravity.

The presence of background fluxes implements a partial topological twist, and is crucial

for preserving supersymmetry when the theory is defined on Σg×S1, where Σg is a genus-g

Riemann surface corresponding to the horizon topology of the black hole. The topologically

twisted index is then defined as the supersymmetric partition function of the twisted theory,

Z(na,∆a) = Tr (−1)F e−βHeiJa∆a . It depends on the fluxes, na, through H and on the

chemical potentials ∆a. This index was constructed in [37] for N ≥ 2 supersymmetric

theories on S2 × S1 and computed via supersymmetric localization. It was then applied to

ABJM theory in [10], and evaluated in the large-N limit.

In the large-N limit, and at genus zero, the k = 1 index takes the form

F = −N
3/2

3

√
2∆1∆2∆3∆4

∑
a

na
∆a

+N1/2f1(∆a, na)

− 1

2
logN + f3(∆a, na) +O(N−1/2), (3.2.1)

where F = Re logZ. The leading O(N3/2) term was obtained in [10], and exactly repro-

duces the Bekenstein-Hawking entropy of a family of extremal AdS4 magnetic black holes

admitting an explicit embedding into 11d supergravity [45], once extremized with respect

to the flavor and R-symmetries. The O(N1/2) term can be identified with O(α′3R4) correc-

tions in the supergravity, and does not appear to have a simple form. On the other hand,
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the −1
2 logN term, obtained numerically in previous chapter, appears to be universal, and

is what we wish to reproduce from the gravity side.

In fact, the topologically twisted index can be defined on Riemann surfaces with arbi-

trary genus [59, 42], and there is a simple relation between the index on Σg×S1 and that on

S2×S1: FΣg×S1(na,∆a) = (1− g)FS2×S1( na
1−g ,∆a). Since the coefficient of the logarithmic

term in FS2×S1 does not depend on na we simply have

FΣg×S1(na,∆a) = · · · − 1− g
2

logN + · · · . (3.2.2)

We now demonstrate that this logarithmic correction naturally appears in the quantum

correction to the extremal magnetically charged AdS4 black hole.

3.3 One-loop Quantum Supergravity

Since the AdS4 black holes may be embedded in 11d supergravity [45], we will take a 11d

approach to the gravity calculation. Dimensional analysis shows that logarithmic corrections

come from one-loop determinants. The standard computation of such terms for black holes

in asymptotically flat spacetime reduces to the near horizon geometry [46]. However, in

Chapter II, the near horizon contribution was calculated to be −2 logN , resulting in a

mismatch with the field theory answer. Such a mismatch indicates that either somehow the

near horizon geometry is not enough to compute the quantum entropy, or the index does

not correctly count microstates in the sub-leading order.

In this chapter, we provide evidence for the first possibility by directly computing the

logarithmic correction to the entropy from its thermodynamical definition,

S = lim
β→∞

(1− β∂β) logZ[β, . . . ], (3.3.3)

where β is the inverse temperature. We work in the large AdS radius limit, L � 1, where

L ∼ N
1
6 by the AdS/CFT dictionary. Our focus is on the one-loop partition function, which
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can be written schematically as

Z1-loop[β, . . .] =
∑
D

(−1)D(1
2 log det′D) + ∆F0, (3.3.4)

whereD stands for kinetic operators corresponding to various fluctuating fields and (−1)D =

−1 for bosons and 1 for fermions. The prime indicates removal of the zero modes, which

are accounted for separately by

∆F0 = log

ˆ
[dφ]|Dφ=0, (3.3.5)

where exp(−
´
ddx
√
gφDφ) = 1.

For a stationary background, the logarithmic part of the one-loop determinant comes

from

− 1
2 log det′D =

(
1

(4π)
d
2

ˆ β

0
dtAd/2(β, . . . )− n0

)
logL+ · · · , (3.3.6)

where Ad/2(β, . . . ) =
´
dd−1x

√
g ad/2(x, x). For odd dimensional spacetimes, the Seeley-

De Witt coefficient a d
2
(x, x) vanishes due to the lack of a diffeomorphism invariant scalar

function of the metric with scaling dimension d [47]. The advantage of working in 11d is

then clear, as only the zero mode contributions remain. The structure of the logarithmic

term is then given by

logZ[β, . . . ] =
∑
{D}

(−1)D(βD − 1)n0
D logL+ ∆FGhost + · · · , (3.3.7)

where the ghost contributions are treated separately, as in [44], and βD is due to the

integration over zero modes, Eq. (3.3.5), in the path integral, as studied in various cases

of logarithmic contributions to the black hole entropy and the one-loop partition function

[8, 6, 7, 44].
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3.3.1 Magnetically charged AdS4 Black Holes

Our task at hand is thus to enumerate the zero modes of the fluctuations in the AdS4

magnetic black hole background. These black holes were originally obtained in [62], more

recently discussed in [63] and reviewed in [10]. They are solutions of N = 2 gauged super-

gravity with 3 vector multiplets, and with prepotential and FI gauging parameters

F = −2i
√
X0X1X2X3, ξΛ =

1

2
, Λ = 1, . . . , 4. (3.3.8)

The family of black holes admits background fluxes F a, a = 1, . . . , 4 over a Riemann surface

horizon Σg. The BPS condition requires

1

2π

∑
a

ˆ
Σg

F a = χ(Σg). (3.3.9)

The solutions are parametrized by four fluxes na and the genus of the horizon, g, subject

to the above BPS constraint. The metric of the solution can be put in the form

ds2 = U2(r) dτ2 + U−2(r) dr2 + h2(r)ds2
Σg , (3.3.10)

where U(r) = eK(r)r2(1 − a
2gr2 )2 and h(r) = 2eK(r)r2 in the extremal case. A more com-

prehensive review, including non-extremal solutions, is found in [64].

These black holes may be uplifted as solutions to 11d supergravity, with fields consisting

of a metric gµν , a three-form field Cµνρ and a gravitino Ψµ. From an 11d perspective, we

are interested in their zero mode fluctuations on a background which is locally of the form

M4 × S7, where M4 has metric given by Eq. (3.3.10), and the 7-sphere is squashed in the

process of turning on magnetic flux. Given an 11d kinetic operator, one can decompose it

to a M4 part and a S7 part. Since compactness of S7 leads to non-negative eigenvalues,

zero modes of the 11d supergravity fields are thus simultaneously zero modes in M4 and

S7. As a result, we only need to consider the massless Kaluza-Klein sector, corresponding

to the fields of 4d N = 8 gauged supergravity, and to seek out their zero modes in the AdS4

black hole background.
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3.3.2 Metric and Fermion zero modes

From a four-dimensional perspective, the fluctuating fields we must consider include the

metric, p-forms, and fermions. We first demonstrate that the metric and fermions do not

have any zero modes in the black hole background. This leaves the p-forms, we we turn to

below. For the metric, a zero mode requires a pure gauge mode with a non-normalizable

gauge parameter. To show it cannot exist, it is enough to focus on the asymptotic metric,

ds2 =
dr2

r2
+ r2(dt2 + ds2

Σg). (3.3.11)

For a pure gauge deformation, hµν = ∇µην +∇νηµ, normalizability demands

hrr = 2∇rηr ∼ 1/r4,

hri = ∇rηi +∇iηr ∼ 1/r2,

hij = ∇iηj +∇jηi ∼ O(1). (3.3.12)

Thus asymptotically ηi ∼ 1/r and ηr ∼ 1/r3. As a result

‖η‖2 =

ˆ
√
ggµνηµηνd

4x ∼
ˆ ∞

(r4η2
r + η2

i )dr <∞, (3.3.13)

and the gauge parameter is thus normalizable.

A similar argument can be made for the gravitino to show the absence of zero modes.

In particular, potential gravitino zero modes correspond to would be pure gauge modes

ψµ = Dµε (where Dµ is the supercovariant derivative), however with non-normalizable

spinor ε. Working with the metric (3.3.11), we can see that ε ∼ 1/r2 is required for ψµ to

be normalizable. Since this makes ε normalizable as well, we conclude that there are no

gravitino zero modes in this background.
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3.3.3 p-form zero modes

We now turn to an examination of p-form zero modes. Recall that, for zero modes of

Ap in a compact space, one requires 〈dAp, dAp〉 = 0 with respect to the standard inner

product on p-forms. This amounts to requiring Ap to be closed. But Ap and Ap + dαp−1

are gauge equivalent, and the redundant contributions in the path integral are canceled by

the Faddeev-Popov procedure. Therefore the number of the zero modes is the dimension of

the p-th de-Rham cohomology.

We are of course interested in a non-compact space, in which case there are several

complications, especially with infinite volume. First, the physical spectrum only includes

forms with finite action, as the weight in the Euclidean path integral is e−S . Second,

for a non-normalizable p − 1 form, the gauge transformation dαp−1 can be normalizable

and included in the physical spectrum, yet the Faddeev-Popov procedure can only cancel

gauge transformations with normalizable αp−1. The result is a physical spectrum with some

pure gauge modes with non-normalizable gauge parameters, a situation which is ubiquitous

in one-loop gravity computations in AdS [8, 7]. Third, there are usually infinitely many

such modes, making the number of zero modes infinite. Mathematically, the first two

complications lead one to consider L2 cohomology, Hp
L2(M,R) by replacing the de-Rham

chain complex by one consisting of L2 p-forms whose exterior derivative is also L2 [52]. The

third complication simply states that dimHp
L2(M,R) can be unbounded.

A further subtlety in the non-compact case is the difference between Hp
L2(M,R) and,

Hp
L2(M,R), the space of L2 harmonic p-forms. As in [48], a transverse condition on the

gauge field is imposed when heat kernel method is applied. It is, therefore, more precise

to identify the space of concern to be Hp
L2(M,R). The number n0

p of p-form zero modes is

then given by the regularized dimension

n0
p = dimRHp

L2(M,R) =

ˆ
R

∑
n

Anp ∧ ?Anp , (3.3.14)

where {Anp} is a set of orthonormal basis functions, and the integral is defined as the finite

piece after regularization.
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Before turning to a full accounting of zero modes, we make an observation that will prove

useful below. When the manifold is compact the Euler characteristic is given by χ(M) =∑
p(−1)pdimHp(M,R), and a similar relation still holds for non-compact manifolds in the

class known as conformally compact manifolds (see Corollary 8.1 in [65]). A conformally

compact manifold is a manifold with boundary whose metric admits expansions near the

boundary

ds2 =
du2

α(u)2u2
+
hijdx

idxj

u2
, (3.3.15)

where the boundary is at u = 0, with α(0) 6= 0 and hij(0) well defined. For such a

manifold of even dimension it was proved in [65] that HiL2 = Hk
DR(M,∂M) for i < n

2 and

HiL2 = Hk
DR(M) for i > n

2 . The appropriate modification of the Gauss-Bonnet theorem

states

ˆ Reg

Pf(R) = 2
∑
i<n

2

(−1)idimH i
DR(M,∂M)

+ (−1)
n
2 dimRH

n
2

L2(M,R), (3.3.16)

where H i
DR(M,∂M) stands for the relative de-Rham cohomology, and the Gauss-Bonnet

integral is regularized. It follows from the definition that an asymptotic AdS manifold is

a conformally compact manifold and Eq. (3.3.16) applies to determine dimRH
n
2

L2(M,R) for

the AdS4 black hole. Indeed, an explicit version of the above formula was applied in [51] to

elucidate aspects of quantum inequivalence in AdS4.

In applying the thermodynamic entropy (3.3.3), we take the extremal limit of the non-

extremal AdS4 black hole. In this case, the topology of the non-extremal black hole is

homotopic to its horizon Σg due to the contractible (t, r) directions. Thus the Euler char-

acteristic of the non-extremal black hole is simply χBH = 2(1 − g). It also indicates that

all but the second relative de-Rham cohomology vanish. Therefore, using Eq. (3.3.16), one

obtains

n0
2 = dimRH2

L2(M,R) =

ˆ Reg

Pf(R) = χBH = 2(1− g), (3.3.17)

and moreover these are the only possible zero modes in the black hole background.

33



The regularized dimension, n0
2, can be negative for higher genus. In fact, this is a general

feature of regularized dimensions defined as above. For example, in the case of AdS2,

dimRH1
L2(AdS2,R) = −1 and such negative dimensions occurs in various computations

of the macroscopic logarithmic contributions to BPS black holes in asymptotically flat

spacetime [6, 7].

3.3.4 Two-form zero modes from 11d SUGRA

What we have seen above is that the logarithmic correction only comes from two-form

zero modes in in the asymptotically AdS4 black hole background. This result is essentially

the same as in [44], however with the difference that here the 11d space is only locally

M4×S7, where M4 is the AdS black hole. (This difference manifests itself as n0
2 = χAdS = 1

for global AdS4 with S3 boundary, in contrast to Eq. (3.3.17) for the black hole.) However,

the Kaluza-Klein procedure, when performed properly, is equally valid in both cases.

The straightforward reduction of 11d supergravity on squashed S7 does not yield any

two-forms in four dimensions, as there are no non-trivial 1-cycles for the 11d three-form

Cµνρ to be reduced on. However, the quantization of Cµνρ introduces 2 two-form ghosts

that are Grassmann odd, 3 one-form ghosts that are Grassmann even and 4 scalar ghosts

that are Grassmann odd [49], and the two-form ghosts will contribute to the log term.

The 11d two-form ghost A2 has action

S2 =

ˆ
A2 ∧ ?(δd+ dδ)2A2, (3.3.18)

and the logarithmic term in the one-loop contribution to the entropy is thus, according to

Eqs. (3.3.4)-(3.3.7),

logZ1-loop[β, . . .] = (2− β2)n0
2 logL+ · · · , (3.3.19)

where β2 comes from integrating the zero modes in the path integral, and the minus sign

takes care of the Grassmann odd nature of A2. The zero mode path integral becomes sim-

ply
´

[dA2]|zero modes, and to find the logarithmic contribution in this term, one looks at

the L dependence by dimensional analysis, as in [44]. The properly normalized measure
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is
´
d[Aµν ] exp(−L7

´
d11x

√
g(0)g(0)µνg(0)ρσAµρAνσ) = 1, where we single out the L depen-

dence of the metric, g
(0)
µν = 1

L2 gµν . Thus the normalized measure is
∏
x d(L

7
2Aµν). For each

zero mode, there is a L
7
2 factor. Thus in the logarithmic determinant, one has β2 = 7

2 .

Combining Eqs. (3.3.17) and (3.3.19), the logL contribution to the thermal entropy in the

extremal background is thus

logZ1-loop[β, . . . ] = −3(1− g) logL+ · · · . (3.3.20)

3.3.5 Extremal Black Hole Entropy

The coefficient of the logarithmic term in Eq. (3.3.20) does not depend on β. In fact,

due to the vanishing of the Seeley De-Witt coefficient, it can only depend on β through

regularized n0
p’s, which, due to the asymptotic AdS condition, are topological. Therefore

Eq. (3.3.3) gives simply S1-loop = −3(1 − g) logL + · · · . As this is β independent, it is

also valid in the extremal limit, β →∞. Finally, the AdS/CFT dictionary establishes that

L ∼ N1/6 leading to a logarithmic correction to the extremal black hole entropy of the form

S1-loop = −1− g
2

logN + · · · , (3.3.21)

which perfectly agrees with the microscopic result, (3.2.2).

3.4 Conclusion

It is worth highlighting that the supergravity one-loop computation is universal in the

sense that it applies to any asymptotically AdS4 black hole that can be embedded in 11d

supergravity under the mild condition that the seven-dimensional compactification manifold

has vanishing first homology. There is a similar universal behavior in the one-loop effective

action in AdS4 [44] which matches perfectly with the logarithmic correction of the super-

symmetric partition function on S3. It would be interested to establish the universality of

the logarithmic corrections to the black hole entropy from the field theory side as well.

Our precise example, when taken in conjunction with Chapter II and [66], clarifies that
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the quantum entropy function that has been so successful in the context of asymptotically

flat black holes needs to be revisited in the context of asymptotically AdS black holes.

Arguably, the connection between degrees of freedom residing at the horizon and other

potential hair degrees of freedom needs to be better understood by revisiting previous

approaches [67, 68].

It was crucial in our result that we took a particular thermal-based limit to the extremal

black hole agreeing with some observations in the literature [46, 69]. This limiting procedure

raises the specter that perhaps supersymmetric computations contain some information

about slightly non-extremal systems in which case a window into capturing more dynamical

information, such as Hawking radiation, could be opening.

Therefore, the non-extremal black hole background only admits 2-form zero modes,

with n0
2 = 2(1 − g). Our task is thus to identify the relevant 2-forms originating from 11d

supergravity on M4 × S7 and to sum up their contributions according to Eq. (3.3.7).
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CHAPTER IV

Entropy functional and the holographic attractor

mechanism

4.1 Introduction

Recently, there has been an explicit realization of AdS4/CFT3 example that yielded

impressive results for the microstate counting of black hole entropy [10]. Under a series

of assumptions, more crucially an identification of chemical potentials and an extremiza-

tion procedure, a perfect large N match between the topologically twisted index and the

black hole entropy was established [10]. Under similar assumptions matches have now been

established in various other situations including: dyonic black holes [11], black holes with

hyperbolic horizons [12], and black holes in massive IIA theory [13, 14, 15].

The goal of this chapter is largely motivated by a desire to conceptually clarify, within

the standard AdS/CFT dictionary, the various assumptions made in [10]. Consider, for

example, the role of the attractor mechanism which is a key intuition building concept in

our understanding of black holes in supergravity theories [70, 71, 72]. It roughly states that

the black hole entropy is determined by extremization of the central charge in the moduli

space. A decade after its original formulation, the attractor mechanism intuition took an

upgraded incarnation - the entropy formula [73] - which accommodates higher curvature

corrections and weakens the hold of supersymmetry. There is, however, an important

conceptual difference between the attractor mechanism in flat space and its counterpart in
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asymptotically AdS spacetimes. In asymptotically flat spacetimes the attractor mechanism

is loosely associated with no-hair theorems. In asymptotically AdS spacetimes this intuition

is lacking due to the natural existence of hair. Moreover, in the context of the AdS/CFT

most of the key properties of the duality are precisely defined in the asymptotic region, not

close to the horizon. This dichotomy between boundary and horizon data has been pointed

out before and discussed in the context of Wald entropy formula in [74]. Here we address

it via the AdS/CFT correspondence.

Recall that in the attractor mechanism one extremizes the central charge with respect

to the moduli [72]. We demonstrate that for asymptotically AdS black holes in gauged su-

pergravity, the attractor mechanism can be reinterpreted using exclusively boundary data.

More precisely, using the AdS/CFT dictionary, we compute the renormalized off-shell quan-

tum effective action in the twisted ABJM theory as a function of the supersymmetric fermion

masses and the arbitrary vacuum expectation values of the dimension one scalar bilinear

operators. This effective action coincides with the entropy functional and we show that its

extremization with respect to the vacuum expectation values of the dimension one scalar

bilinears is equivalent to the attractor mechanism. We thus provide a strictly field theoretic

interpretation of the attractor mechanism in the context of N = 2 gauged supergravity and

a rigorous understanding of the beautiful results of [10].

This chapter is organized as follows. In section 4.2, we review the relevant structure

of N = 2 gauge supergravity and provide a universal formula for the regularized on-shell

action in terms of the effective superpotential for general dyonic black holes introduced in

[75]. Section 4.3 is devoted to key aspects of the holographic dictionary. We derive the su-

persymmetric boundary counterterms and discuss the supersymmetric boundary conditions

for the scalars. Moreover, we determine the renormalized operators dual to bulk fields and

we compute the renormalized quantum effective action for dyonic BPS black holes. Using

this quantum effective action, in section 4.4 we obtain one of the key results of the chap-

ter: a holographic interpretation of the attractor mechanism. We conclude in section 4.5.

Some technical details are relegated to two appendices. In appendix A we explicitly discuss

various parameterizations of the STU model, and in B we review the radial Hamiltonian
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formulation of the bulk dynamics.

4.2 Effective superpotential for dyonic black holes

We are mostly interested in black hole solutions of the Abelian U(1)4 N = 2 gauged

supergravity in four dimensions, often referred to as the gauged STU model, which is a

consistent truncation of N = 8 gauged supergravity [76, 45]. With appropriate supersym-

metric boundary conditions, this theory is holographically dual to a sector of the ABJM

theory at Chern-Simons level one. Most of our analysis, however, applies broadly to N = 2

gauged supergravity and we begin by briefly reviewing some general properties.

4.2.1 N = 2 gauged supergravity

As an example of the generality of our approach we describe the U(1)4 theory using the

general framework of N = 2 gauged supergravity in four dimensions. In this language the

U(1)4 theory consists of the gravity multiplet coupled to nV = 3 vector multiplets and no

hypermultiplets. Since the gauge group is Abelian, the scalars in the vector multiplets are

neutral and so the only charged fields present are the two gravitini. This is usually referred

to as Fayet-Iliopoulos (FI) gauging.1 The gauge fields that couple to the gravitini are a

linear combination of the graviphoton and the nV vectors from the vector multiplets, ξΛA
Λ
µ

, with Λ = 0, 1, . . . , nV . The constants ξΛ are called the FI parameters. For the U(1)4

theory the FI parameters are all equal, i.e.

ξ0 = ξ1 = ξ2 = ξ3 = ξ > 0, (4.2.1)

where the value of the constant ξ depends on the normalization of the vector fields in the

Lagrangian. For general FI parameters we define 2ξ ≡
√
ξ2

0 + ξ2
1 + ξ2

2 + ξ2
3 . We keep ξ

arbitrary in order to facilitate comparison with different conventions in the literature.

The complex scalars zα in the vector multiplets, with α = 1, . . . , nV , parameterize a

special Kähler manifold – an nV -dimensional Hodge-Kähler manifold which is the base of

1Throughout this chapter we consider only purely electric gauging.
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a symplectic bundle with the covariantly holomorphic sections

V = eK(z,z̄)/2(XΛ, FΛ), (4.2.2)

where K is the Kähler potential. In certain symplectic frames there exist a second degree

homogeneous function F (X), called the prepotential, such that FΛ = ∂ΛF . For the STU

model (in the duality frame of purely electric gaugings) the prepotential is

F = −2i
√
X0X1X2X3, (4.2.3)

and so

FΛ =
F

2XΛ
. (4.2.4)

The holomorphic sections define the embedding ambient space

〈V,V〉 ≡ eK(z,z̄)
(
XΛFΛ −X

Λ
FΛ

)
= i, (4.2.5)

which in turn defines the Kähler potential in terms of the holomorphic sections

K = − log
(
i(X

Λ
FΛ −XΛFΛ)

)
. (4.2.6)

The corresponding Kähler metric is given by

Kαβ̄ = ∂α∂β̄K. (4.2.7)

The above data completely determines the bosonic part of the N = 2 gauged super-

gravity action to be

S =
1

2κ2

ˆ
M
d4x
√
−g
(
R− Gαβ̄∂µzα∂µz̄β̄ − 2IΛΣF

Λ
µνF

Σµν −RΛΣε
µνρσFΛ

µνF
Σ
ρσ − V

)
+ SGH,

(4.2.8)
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where

SGH =
1

2κ2

ˆ
∂M

d3x
√
−γ 2K, (4.2.9)

is the Gibbons-Hawking term and we have normalized the fields such that the gravitational

constant κ2 = 8πG4 appears as an overall factor in front of the action, as appropriate for

comparing our results with the large-N limit of the dual ABJM theory. We use the standard

− + + + signature for the metric and we have reversed the signs of the symmetric matrices

IΛΣ and RΛΣ relative to the usual convention in the supergravity literature (e.g. [77, 78])

since with our definition the eigenvalues of IΛΣ are positive definite. Moreover, with our

normalization of the vector multiplet scalars the scalar metric is related to the Kähler metric

(4.2.7) as

Gαβ̄ = 2Kαβ̄ = 2∂α∂β̄K. (4.2.10)

The real symmetric matrices IΛΣ and RΛΣ are given by

IΛΣ = −ImNΛΣ, RΛΣ = −ReNΛΣ, det(I) > 0, (4.2.11)

where the period matrix NΛΣ is defined through the relations

FΛ = NΛΣX
Σ, ∂ᾱFΛ = NΛΣ∂ᾱX

Σ
. (4.2.12)

Whenever a prepotential exits the period matrix can be expressed as (see e.g. [78])

NΛΣ = FΛΣ + 2i
Im (FΛP )XP Im (FΣΦ)XΦ

XΩIm (FΩΨ)XΨ
, (4.2.13)

where

FΛΣ ≡ ∂ΛFΣ = ∂Λ∂ΣF =
F

4XΛXΣ

(
1− 2 dΛΣ

)
. (4.2.14)

The last equality applies only to the STU model prepotential (4.2.3).
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Finally, the scalar potential is obtained from the holomorphic superpotential

W ≡
∑

Λ

ξΛX
Λ, (4.2.15)

through the identity

ξ2L2V = eK
(
Kαβ̄DαWDβ̄W − 3WW

)
, (4.2.16)

where the Kähler covariant derivatives are defined as

Dα ≡ ∂α + ∂αK, Dᾱ ≡ ∂ᾱ + ∂ᾱK, (4.2.17)

and L is the AdS4 radius.2 It is also useful to introduce the real superpotential

W = −
√

2

ξL
eK/2|W |, (4.2.18)

in terms of which the scalar potential takes the form

V = 4Gαβ̄∂αW∂β̄W −
3

2
W2. (4.2.19)

Even after specifying the gauging, i.e. the FI parameters, and the prepotential F , there

are still two potential ambiguities in specifying the theory completely. From a strict bulk

point of view these ambiguities are loosely speaking “gauge choices”, in the sense that they

do not affect physical quantities, but they do change the parameterization of the solutions.

Understanding these gauge freedoms, therefore, is important in order to compare different

choices in the literature. More importantly, however, these gauge freedoms in the bulk are

often lifted by imposing boundary conditions on the fields, and so not all choices are a

priory directly compatible with holography.

The first gauge freedom is related to a phase factor introduced in the Killing spinor

projections, and hence in the BPS equations. This is discussed in [77], as well as in [63]

2Notice that 1/ξL corresponds to the gauge coupling, often denoted by g in the supergravity
literature.
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for the case of purely magnetic solutions (see around eq. (4.16) there). In [77], a constraint

for the phase factor is derived and its universal solution in terms of the symplectic sections

is obtained, which leads to unambiguous BPS equations, without any additional constraint

on the symplectic sections. For purely magnetic solutions the constraint derived in [77] sets

the phase factor to zero, in agreement with the choice made in [63]. Below we provide an

alternative derivation of these BPS equations through Hamilton-Jacobi (HJ) theory, and so

we implicitly treat this phase factor in the same way as [77].

The second ambiguity arises in the specification of the symplectic sections XΛ(z) in

terms of the physical scalar fields zα in the vector multiplets. Since there are nV + 1

symplectic sections XΛ but only nV complex scalars zα, there is an inherent redundancy in

specifying the functions XΛ(z). This redundancy is eliminated by a gauge-fixing condition,

that can be visualized as a choice for the embedding of the nV -dimensional complex surface

spanned by the physical scalars in the vector multiplets inside the ambient space spanned

by the sections XΛ. Different embeddings do not affect physical quantities such as the real

superpotential, the scalar potential, the Kähler metric and the period matrix (of course up

to field redefinitions of the physical scalars), but they do transform non-trivially the Kähler

potential and the holomorphic superpotential. In appendix A we summarize a number of

different embeddings of the STU model scalars that have been used in the literature, and

we show explicitly how the N = 2 supergravity quantities defined above transform. This is

important for translating known black hole solutions to different parameterizations of the

STU model, as well as for understanding the holographic dictionary.

4.2.2 Ansatz for static dyonic solutions

We are interested in static solutions of the N = 2 supergravity action (4.2.8) that can

potentially carry both magnetic and electric charge. Such solutions can be parameterized
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by the Ansatz

ds2
B = dr2 + e2A(r)

(
−f(r)dt2 + dσ2

k

)
, k = 0,±1,

AΛ
B = aΛ(r)dt+ pΛ

( ˆ
dθ ωk(θ)

)
dϕ, zαB = zαB(r), z̄β̄B = z̄β̄B(r), (4.2.20)

so that the field strengths of the Abelian gauge fields take the form

FΛ
B = dAΛ

B = ȧΛ dr ∧ dt+ pΛωk(θ) dθ ∧ dϕ. (4.2.21)

In this Ansatz dσ2
k = dθ2 + ω2

k(θ)dϕ
2 is the metric on Σk = {S2, T 2, H2} respectively for

k = 1, 0,−1, namely

ωk(θ) =
1√
k

sin(
√
k θ) =


sin θ, k = 1,

θ, k = 0,

sinh θ, k = −1.

(4.2.22)

In the case of H2 the non-compact hyperbolic space must be quotiened by a discrete sub-

group of the isometry group, i.e., a Fuchsian group, in order to get a compact Riemann

surface of genus g > 1.

Inserting the Ansatz (4.2.20) in the field equations following from the N = 2 supergrav-
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ity action (4.2.8) results in the following set of coupled equations

2Ȧ
(

3Ȧ+
ḟ

f

)
− Gαβ̄ żα ˙̄zβ̄ + V − 2ke−2A + e−4AIΛΣ

(
4e2Af−1ȧΛȧΣ + pΛpΣ

)
= 0, (4.2.23a)

Ä+ Ȧ
(

3Ȧ+
ḟ

2f

)
+

1

2

(
V − 2ke−2A + e−4AIΛΣ

(
4e2Af−1ȧΛȧΣ + pΛpΣ

) )
= 0, (4.2.23b)

f̈ + ḟ
(

3Ȧ− ḟ

2f

)
+ 2kfe−2A − 2fe−4AIΛΣ

(
4e2Af−1ȧΛȧΣ + pΛpΣ

)
= 0, (4.2.23c)

2Gαβ̄ ¨̄zβ̄B + 2∂γGαβ̄ ż
γ
B

˙̄zβ̄B + 2∂γ̄Gαβ̄ ˙̄zγ̄B ˙̄zβ̄B − 2∂αGγβ̄ ż
γ
B

˙̄zβ̄B + 2Gαβ̄
(

3Ȧ+
ḟ

2f

)
˙̄zβ̄B − ∂αV

+ e−4A∂αIΛΣ

(
4e2Af−1ȧΛȧΣ − pΛpΣ

)
− 4f−1/2e−3A∂αRΛΣȧ

ΛpΣ = 0, (4.2.23d)

2Gαβ̄ z̈αB + 2∂γGαβ̄ ż
γ
B ż

α
B + 2∂γ̄Gαβ̄ ˙̄zγ̄B ż

α
B − 2∂β̄Gαγ̄ żαB ˙̄zγ̄B + 2Gαβ̄

(
3Ȧ+

ḟ

2f

)
żαB − ∂β̄V

+ e−4A∂β̄IΛΣ

(
4e2Af−1ȧΛȧΣ − pΛpΣ

)
− 4f−1/2e−3A∂β̄RΛΣȧ

ΛpΣ = 0, (4.2.23e)

∂r

(
2IΛΣe

Af−1/2ȧΣ −RΛΣp
Σ
)

= 0, (4.2.23f)

where a dot · denotes a derivative with respect to the radial coordinate r. The last equation,

which comes from the Maxwell equation, can be integrated to obtain

2IΛΣe
Af−1/2ȧΣ −RΛΣp

Σ = −qΛ, (4.2.24)

where the integration constants qΛ are electric charges associated with the Abelian gauge

fields AΛ
B.

4.2.3 Effective superpotential and first order equations

First order flow equations for static solutions of N = 2 gauged supergravity are known

not only for BPS black holes [77], but also for several examples of non-extremal black holes

[79, 80, 81, 82, 83, 84, 78]. In all these cases, the procedure for deriving the first order

equations involves writing the on-shell action as a sum of squares. Although this procedure

is sufficiently general for static and spatially homogeneous solutions, in practice only a

limited number of flow equations can be obtained this way. HJ theory, however, provides

a systematic and general procedure for deriving first order equations, even for non-static
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and spatially dependent solutions.3 For any solution of the action (4.2.8) these first order

equations are given in (B.13), where the Hamilton principal functional S plays the role of a

generalized effective superpotential. In particular, HJ theory provides an equation – the HJ

equation – for the effective superpotential, which can therefore be determined systematically

by seeking a solution to the HJ equation.

For static solutions of the form (4.2.20) the general first order equations following from

HJ theory were obtained in [75, 85].4 The result can be summarized as follows: given a

solution U(z, z̄, A) of the effective superpotential equation

4Gαβ̄∂αU∂β̄U −
1

2
(3 + ∂A)U2 = Veff , (4.2.25)

where

Veff = V − 2ke−2A + e−4AIΛΣp
ΛpΣ + e−4AIΛΣ

(
qΛ −RΛMp

M
) (
qΣ −RΣNp

N
)
, (4.2.26)

any solution of the first order equations

Ȧ = −1

2
U , ḟ

f
= −∂AU , żαB = 2Gαβ̄∂β̄U , żβ̄B = 2Gαβ̄∂αU ,

ȧΛ =
1

2
e−Af1/2IΛΣ

(
RΣMp

M − qΣ

)
,

(4.2.27)

automatically solves the second order equations (4.2.23).5 As was shown in [75] (which

3See appendix B for the Hamiltonian formulation of the theory described by the N = 2 La-
grangian (4.2.8).

4Some of the earlier works, e.g. [81, 82] also employ the HJ method, but only for special cases
where the effective superpotential is a function of the scalar fields only. Another approach to first
order equations for static black holes was presented in [86], but that formulation uses a scalar field
as the radial coordinate and amounts to a rewriting of the second order equations of motion. In
particular, the first order equations derived in [86] are strictly on-shell, in the sense that every single
solution of the equations of motion is governed by a different effective superpotential.

5One may ask the converse question, namely whether for any solution of the second order
equations (4.2.23) there is a superpotential U(z, z̄, A) such that the first order equations (4.2.27)
hold. This is an interesting and subtle question. Locally in field space this should indeed be the
case. Globally, however, a different superpotential U(z, z̄, A) may be necessary in different patches in
field space in order to describe a full solution of the second order equations of motion. This happens
when e.g. the variables z, z̄ and A are not monotonic functions of the radial coordinate. However,
for supersymmetric black holes the function U(z, z̄, A) is related to the true superpotential of the
theory and so it exist globally in field space.
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focused on the case k = 0), these flow equations follow from the HJ equation associated

with the Hamiltonian constraint in (B.9), using the separable ansatz

S = − 1

κ2

ˆ
d3x
√
σk

(
e3Af1/2U(z, z̄, A) + 2qΛa

Λ
)
. (4.2.28)

The HJ equation then reduces to the superpotential equation (4.2.25) for the function

U(z, z̄, A), and the flow equations (B.13) reduce to the first order equations (4.2.27).

4.2.4 Regularized on-shell action

Given Hamilton’s principal function (4.2.28) we can easily evaluate the on-shell action

with a radial UV cutoff for any solution of the form (4.2.20). We first observe that the only

term containing second order derivatives in the Lagrangian (4.2.8) is the bulk Ricci scalar.

Using the decomposition (B.3) of the bulk Ricci scalar allows one to isolate the terms that

contain two derivatives in the radial coordinate. Assuming there is a horizon at r = rh the

on-shell action (4.2.8) evaluated with a radial cutoff ro takes the form

Sreg =
1

κ2

ˆ
rh

d3x
√
−γ K +

ˆ ro

rh

dr L, (4.2.29)

where L is the radial Lagrangian (B.6) and the total derivative term from the Ricci scalar

evaluated on the cutoff has canceled against the Gibbons-Hawking term. Since the Hamil-

tonian (B.8) vanishes on-shell, the regularized on-shell action becomes

Sreg =
1

κ2

ˆ
rh

d3x
√
−γ K +

ˆ ro

rh

dr

ˆ
d3x
(
πij γ̇ij + παż

α + πβ̄ ˙̄zβ̄ + πiΛȦ
Λ
i

)
=

1

κ2

ˆ
rh

d3x
√
−γ K +

ˆ ro

rh

dr

ˆ
d3x
( dS

d γij
γ̇ij +

dS
d zα

żα +
dS
d z̄β̄

˙̄zβ̄ +
dS

dAΛ
i

ȦΛ
i

)
=

1

κ2

ˆ
rh

d3x
√
−γ K + S|ro − S|rh , (4.2.30)

where we have used the expressions (B.11) for the canonical momenta. We should point

out that this expression for the regularized on-shell action holds for any diffeomorphism

invariant two-derivative theory of gravity coupled to matter fields and for any solution of
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the equations of motion. It follows solely from HJ theory.

For static solutions of the form (4.2.20) we have seen that the HJ functional S is given

by (4.2.28), and so the only term remaining to evaluate is the trace of the extrinsic curvature

K = 3Ȧ+
ḟ

2f
, (4.2.31)

on the horizon. Ȧ vanishes on the horizon, while the blackening factor f behaves as

f = 4πT (uh − u) +O(uh − u)2, (4.2.32)

where the domain wall coordinate u is related to the radial coordinate r through the defi-

nition [75]

∂r = −
√
fe−A∂u. (4.2.33)

It follows that

e3Af1/2 ḟ

2f

∣∣∣∣∣
rh

= − 1

2
e2A∂uf

∣∣∣∣
uh

= 2πT e2A
∣∣
uh
. (4.2.34)

Hence, the Lorentzian regularized on-shell action for any solution of the form (4.2.20) is

given by

Sreg = − 1

κ2

ˆ
ro

d3x
√
σk e

3Af1/2U +
(
aΛ(ro)− aΛ(rh)

)
QΛ

ˆ
dt+

2πT

κ2

ˆ
dtAh, (4.2.35)

where

Ah = Vol(Σk) e
2A
∣∣
h
, (4.2.36)

is the area of the horizon,

QΛ ≡ −
2qΛ

κ2
Vol(Σk), (4.2.37)

are the electric charges, and Vol(Σk) is the area of the compact surface Σk.
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4.2.5 Supersymmetric superpotential and BPS equations for dyonic black

holes

The superpotential equation (4.2.25) admits the exact solution

UBPS = −
√

2

ξL
eK/2|W + ie−2AZ|, (4.2.38)

where W is the holomorphic superpotential given in (4.2.15) and Z is the central charge

Z = −
√

2 ξL
(
pΛFΛ + qΛX

Λ
)
, (4.2.39)

provided the magnetic charges satisfy the Dirac quantization condition

pΛ = − L√
2
nΛ,

∑
Λ

nΛ = 2k. (4.2.40)

This is precisely the superpotential obtained in [77] for dyonic BPS black holes of the U(1)4

gauged supergravity by using the Bogomol’nyi argument of writing the on-shell action as

a sum of squares. Our derivation, however, is entirely different, and relies solely on HJ

theory. A similar derivation of this superpotential using HJ theory was given in [78, 85].

The identification of the exact superpotential (4.2.38) with the true superpotential coming

from the supersymmetry variation of the fermionic fields, together with the flow equations

(4.2.27), imply that supersymmetric solutions of the action (4.2.8) satisfy the BPS equations

Ȧ =
1√
2ξL

eK/2|W + ie−2AZ| ,

ḟ

f
=

√
2

ξL
eK/2∂A|W + ie−2AZ| ,

żαB = −
√

2

ξL
Kαβ̄∂β̄

(
eK/2|W + ie−2AZ|

)
,

żβ̄B = −
√

2

ξL
Kαβ̄∂α

(
eK/2|W + ie−2AZ|

)
,

ȧΛ =
1

2
e−Af1/2IΛΣ

(
RΣMp

M − qΣ

)
.

(4.2.41)
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Recall that the dots · in these equations denote a derivative with respect to the radial

coordinate r defined through the ansatz (4.2.20).

Near extremal superpotential The ambiguities in taking extremal limits of black

holes are well known [87, 69]. It is also understood that to capture certain aspects of

extremal black holes, such as the thermodynamics, it is necessary to start from the corre-

sponding non-extremal solutions and approach the extremal ones in a limiting process, as

has been done, for example, in computations of the entropy function [61]. In particular,

in order to evaluate the on-shell action for BPS solutions using the regularized expression

(4.2.35) it is necessary to evaluate it first on near extremal solutions and then take the ex-

tremal limit. The reason for this is that the temperature T → 0 in the extremal limit, while

the integral over the Euclidean time gives a factor of β = 1/T → ∞. Starting with near

extremal solutions renders β finite and T non-zero, leading to an expression that admits a

well defined limit as T → 0.

One of the advantages of the HJ method is that it provides an equation for the effective

superpotential U , for both supersymmetric and non-supersymmetric black holes. In order

to determine the superpotential for near-extremal black holes, therefore, one can solve

(4.2.25) in perturbation theory around the BPS superpotential. Inserting the near extremal

superpotential

U = UBPS + ε∆U , (4.2.42)

where ε is the near extremality parameter, in the superpotential equation (4.2.25) one finds

that the first order correction away from extremality satisfies the linear equation

4Gαβ̄∂αUBPS∂β̄∆U + 4Gαβ̄∂α∆U∂β̄UBPS − 3UBPS∆U − ∂A(UBPS∆U) = 0. (4.2.43)

However, for the purpose of regularizing the extremal limit of the on-shell action we

need not solve this equation to determine the functional form of the first order correction
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∆U . Instead, it suffices to prove the following two properties:

(i) ε ∝ T ν , ν > 1, (ii) ∆U = O(e−3r/L) as r →∞. (4.2.44)

The second property is straightforward to prove. Using the first order equations (4.2.27) to

replace the superpotential UBPS and its derivatives in (4.2.43) with the radial derivatives

of the fields, as well as the asymptotic identities A ∼ r/L and φ ∼ 1 as r → ∞ for

asymptotically AdS4 solutions, the linear equation (4.2.27) becomes

(∂r + 3/L) ∆U = 0, (4.2.45)

which implies condition (ii) in (4.2.44). Condition (i) can be translated to a statement

about the near extremal mass. Namely, our analysis in section 4.3 implies that

M −MBPS = O(T ν), (4.2.46)

where ν is the same exponent as in condition (i). However, it is known that ν = 2 for near

extremal black holes with an AdS2 near horizon geometry [88].

4.3 Holographic renormalization and the quantum effective

action

We now have the necessary ingredients in order to construct the holographic dictio-

nary for the theory defined by the bulk action (4.2.8) and appropriate supersymmetric

boundary conditions. We will later identify this theory with a sector of the topologically

twisted ABJM theory at Chern-Simons level one. We begin this section by determining the

boundary counterterms that render the Dirichlet variational problem well posed. We then

derive the additional finite terms required to impose the desired supersymmetric boundary

conditions on the scalars. Having determined all necessary boundary terms, we identify

the renormalized operators dual to the bulk fields and obtain general expressions for the
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renormalized partition function and effective action for any solutions of the form (4.2.20).

4.3.1 Supersymmetric boundary counterterms and boundary conditions

The solution (4.2.38) to the superpotential equation implies that the local boundary

counterterms compatible with supersymmetry are given by [89, 90]

Sct =
1

κ2

ˆ
d3x
√
−γ W

(
1− k

2
Im
(
W−1Zm

)
R[γ]

)
, (4.3.47)

where the real superpotential W is defined in (4.2.18) and Zm denotes the magnetic part

of the central charge (4.2.39), i.e.

Zm ≡ −
√

2 ξLpΛFΛ. (4.3.48)

Several comments are in order here. Firstly, to obtain this expression from (4.2.38) we have

Taylor expanded for small e−2A and truncated the resulting expansion to O(e−2A), since

higher order terms vanish as the UV cutoff is removed. Moreover, we have covariantized

the warp factor by replacing ke−2A → R[γ]/2 and set the electric charges to zero since they

contribute terms finite and non-local in the gauge potentials AΛ
i . In contrast, the magnetic

charges contribute to the divergent terms, but they are local in the gauge potentials and

therefore are acceptable as local covariant counterterms. Despite setting the electric charges

to zero in (4.3.47), we should stress that these local counterterms are valid for any solution of

the theory, charged or uncharged, supersymmetric or not, since these counterterms coincide

with the asymptotic solution of the HJ equation for any value of the electric and magnetic

charges subject to the quantization condition (4.2.40).

A second remark concerns the fact that in the counterterms (4.3.47) we have included,

besides the divergent terms, all finite local terms dictated by the supersymmetric superpo-

tential (4.2.38). This choice of finite local counterterms renders the boundary term (4.3.47)

invariant under reparameterizations of the symplectic sections XΛ and hence applicable to

any parameterization of the STU model. More importantly, as we argue below, this choice

is also dictated by supersymmetry.
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In order to write down the possible local finite counterterms it is necessary to pick a spe-

cific parameterization of the symplectic sections XΛ(z). From now on we will mostly work

in the Pufu-Freedman (PF) parameterization summarized in appendix A, since this param-

eterization is compatible with supersymmetric boundary conditions and the holographic

dictionary, but it is also particularly convenient for discussing the dual theory. Using the

Fefferman-Graham expansions of the vector multiplet scalars in the PF parameterization

given in (A.13) and decomposing the scalars in real and imaginary part as

zα = Xα + iYα, z̄ᾱ = Xα − iYα, Xα, Yα ∈ R, (4.3.49)

one can easily conclude that the finite terms in (4.3.47) are schematically of the form

(a) XαX βX γ , XαX βYγ , XαYβYγ , YαYbYγ , (b) XαR[γ], YαR[γ]. (4.3.50)

Were we to impose Dirichlet boundary conditions on all scalars Xα and Yα, such terms

would correspond to a choice of renormalization scheme, since the induced fields Xα and

Yα would be identified with the covariant sources of the dual operators. However, supersym-

metry requires that Xα and Yα be quantized in opposite quantizations [91] and comparing

with the ABJM theory further specifies that the real part Xα of the vector multiplet scalar

is dual to dimension one scalar operators, while the imaginary part Yα is dual to dimen-

sion two operators [92]. It follows that Xα should satisfy Neumann or mixed boundary

conditions, while Yα must satisfy Dirichlet boundary conditions. Hence, the finite terms

involving Xα do not correspond to scheme dependence, since Xα is identified with the dual

operator instead of its source. As we will see shortly, the freedom of choosing the coefficient

of finite local terms of the form (4.3.50) involving Xα corresponds instead to the freedom

of interpreting the boundary conditions Xα as Neumann or mixed.

Since the real and imaginary parts of the vector multiplet scalars should satisfy different

boundary conditions, it is necessary to formulate the variational problem in terms of Xα
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and Yα. To this end we decompose the scalar canonical momenta defined in appendix B as

πα d zα + πβ̄ d z̄β̄ = πα(dXα + i dYα) + πβ̄(dX β̄ − idY β̄) = πXα dXα + πYα dYα, (4.3.51)

and so the canonical momenta conjugate to Xα and Yα are respectively

πXα = (πα + πᾱ), πYα = i(πα − πᾱ). (4.3.52)

Using the counterterms (4.3.47) we then define the renormalized canonical momenta

Πij = πij +
dSct

d γij
, Πi

Λ = πiΛ +
dSct

dAΛ
i

, ΠXα = πXα +
dSct

dXα
, ΠYα = πYα +

dSct

d Ȳα
,

(4.3.53)

which are associated with the variational principle

d(Sreg + Sct) =

ˆ
d3x
(

Πij d γij + Πi dAΛ
i + ΠXα dXα + ΠYα dYα

)
. (4.3.54)

This variational principle corresponds to Dirichlet boundary conditions on the scalars Yα

and so we must not add any other boundary term that changes the variational problem

for these fields. However, we need to add a very specific finite boundary term in order to

impose Neumann or mixed boundary conditions on the scalars Xα, while at the same time

preserving supersymmetry.

An important point that is often confusing is that Neumann and mixed boundary condi-

tions can in fact refer to the same boundary conditions – one must first specify the Dirichlet

theory with respect to which the Neumann boundary conditions are obtained via a Legen-

dre transformation. Different renormalization schemes in the Dirichlet problem correspond

to different definitions of what we refer to as the Neumann theory. This should become

clear from the general procedure for imposing Neumann or mixed boundary conditions in

the renormalized theory [93, 94], which we now review in the context of supersymmetry.

In order to impose generic mixed boundary conditions on Xα we must start with the
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renormalized action corresponding to the Dirichlet problem (4.3.54). As we mentioned

earlier, this variational problem picks a specific set of finite local counterterms that would

correspond to a choice of renormalization scheme, had we imposed Dirichlet boundary

conditions. Any choice of such finite terms is in principle acceptable for the Dirichlet

problem, unless there are additional constraints, e.g. supersymmetry. At this point it is

useful to summarize the results of [90] in relation to supersymmetric boundary conditions

for scalar fields.

• Finite terms of type (a) in (4.3.50) are Weyl invariant but generically cannot be

supersymmetrized individually. As a result, the coefficient of such terms is fixed to

the value dictated by the supersymmetric superpotential and does not correspond

to a choice of supersymmetric scheme. This result was shown for a general field

theory background in [92] and [90], but in flat space it is well known that in order to

make the vacuum energy zero (as required by supersymmetry) the supersymmetric

superpotential must be used as a counterterm.6

• Finite terms of the form (b) in (4.3.50) can be made Weyl invariant by replacing the

Ricci scalar with the conformal Laplacian, and they can also be supersymmetrized.

Therefore, supersymmetry alone does not fix the coefficient of such terms and they

correspond to a choice of supersymmetric scheme in the Dirichlet problem.

• It was shown in [90] that starting with a supersymmetric Dirichlet problem, the

corresponding Neumann problem is supersymmetric as well. This amounts to the

statement that the relevant Legendre transformation can be supersymmetrized.

Combining these results for supersymmetric Dirichlet and Neumann boundary con-

ditions with the procedure for imposing mixed boundary conditions in the renormalized

theory [93, 94], it is straightforward to see how mixed boundary conditions interplay with

supersymmetry. Recall that starting with the Dirichlet problem (4.3.54), imposing mixed

6There is a caveat to this rule, however, related to the quadratic term in the Taylor expansion
of the superpotential around the fixed point. The supersymmetric superpotential can be used as a
counterterm iff the coefficient of the quadratic term is proportional to ∆−, and not ∆+ [95].
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boundary conditions on the scalars Xα requires adding a finite boundary term of the form7

(see Table 2 in [93])

Sv =

ˆ
d3x
√
−γ JvαXα +

ˆ
d3x
√
−γ v(X ), (4.3.55)

where

Jvα ≡ −
1√
−γ

ΠXα − ∂αv(X ), (4.3.56)

is identified with the source of the dual scalar operator and v(X ) is an arbitrary (polynomial)

function. Adding this term to (4.3.54) leads to the variational principle

d(Sreg+Sct+Sv) =

ˆ
d3x

((
Πij +

1

2
(JvαXα + v(X )) γij

)
d γij + Πi

Λ dAΛ
i + ΠYα dYα + Xα d Jvα

)
.

(4.3.57)

From these expressions we can draw the following general conclusions.

Finite terms of type (a): Supersymmetry aside, a choice of scheme in the Dirichlet

problem specified by terms of type (a) in (4.3.50) is mapped to a shift in the function v(X )

for mixed boundary conditions. Adding, for example, the finite term

ˆ
d3x
√
−γ λαβγXαX βX γ , (4.3.58)

where λαβγ are arbitrary constants specifying a choice of scheme in the Dirichlet problem,

leads to a shift in the renormalized canonical momenta according to

Πij → Πij +
1

2

√
−γ λαβγXαX βX γγij , ΠXα → ΠXα + 3

√
−γ λαβγX βX γ . (4.3.59)

Keeping the scalar source Jv fixed, we see that this shift in the renormalized canonical

momenta is equivalent to shifting the function v(X ) defining the mixed boundary conditions

7 More general mixed boundary conditions are possible, where the deformation function v is
allowed to depend on other fields present, provided Dirichlet boundary conditions are imposed on
these fields. In the present theory we could take v(X ,Y, γij). We will comment on such more general
mixed boundary conditions below.
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as

v(X )→ v(X ) + λαβγXαX βX γ . (4.3.60)

Therefore, one can move this type of terms between the counterterms and the function

v(X ) freely, but the total value of this cubic coupling in the renormalized action is fixed

and uniquely determined by the scalar boundary conditions, which require Jv to be kept

fixed. The same holds also for the other terms of type (a) in (4.3.50), but those terms

correspond to a shift v(X ) by a more general function ∆v(X ,Y) (see comment in footnote

7), and they also modify the momenta ΠYα .

There are two simple corollaries of this observation. Firstly, marginal mixed boundary

conditions on the scalars can also be viewed as Neumann boundary conditions. In partic-

ular, if the function v(X ) corresponds to a marginal deformation, then it can be entirely

absorbed in a choice of scheme for the original Dirichlet problem. Secondly, in combina-

tion with the results of [90] summarized above, the total value of the marginal scalar terms

is fixed by supersymmetry, but these terms can still be moved between the counterterms

and the function v(X ). Namely, starting with a supersymmetric Dirichlet problem, i.e. the

value of the couplings λαβγ is fixed by the superpotential of the theory, then the correspond-

ing Neumann boundary condition is supersymmetric, but any mixed boundary condition

breaks supersymmetry. However, starting with a generic value of the cubic couplings in the

Dirichlet problem such that supersymmetry is broken, then the corresponding Neumann

problem is not supersymmetric, but a very specific mixed boundary condition is. There-

fore, with our choice to include the full supersymmetric superpotential in the counterterms

as in (4.3.47), we have to impose Neumann boundary conditions on the scalars Xα since

any mixed boundary condition will break supersymmetry. Hence, supersymmetry dictates

that starting with the counterterms (4.3.47), we must set the function v(X ) to zero.

Finally, an interesting situation arises specifically for the finite local terms of the form

XαYβYγ . Since such terms are linear in the scalars Xα, they drop out of the Legendre

transform with respect to Xα. This can be seen immediately from (4.3.55) and (4.3.56) by

taking v(X ,Y) = λαβγXαYβYγ , or equivalently, by changing the scheme by such a term in
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the original Dirichlet problem. It follows that starting with the value of this coupling in

the Dirichlet problem dictated by the superpotential of the theory, such that the Dirichlet

problem is supersymmetric, adding a term of the form λαβγXαYβYγ and performing the

Legendre transform with respect to Xα trivially preserves supersymmetry since the final

result of the Legendre transformation is identical with that obtained from the original

supersymmetric Dirichlet problem. This is precisely the observation made in section 3.8

of [96]. However, adding such a term is not trivial because it changes the definition of

the scalar source Jα, which affects the calculation of physical observables, e.g. correlation

functions. Indeed, it was by looking at the three-point function 〈O∆=1O∆=2O∆=2〉 that the

authors of [96] were able to determine the correct value of this cubic coupling.

Finite terms of type (b): The above observations apply to terms of type (b) in

(4.3.50) as well, except that such terms correspond to a choice of supersymmetric scheme in

the Dirichlet problem, and so supersymmetry does not fix their overall coefficient. Moreover,

in contrast to the analogous terms in four dimensions considered in [90], in three dimensions

the type (b) terms involving the scalars Xα are linear in Xα and so they drop out of the

Legendre transform, exactly as the terms XαYβYγ we just discussed. It follows that such

terms trivially preserve supersymmetry in the Legendre transformed theory, but they do

affect the definition of the sources Jα of the dimension one operators and, hence, some

argument is required in order to fix the coefficients of such terms.

Such an argument is provided by the requirement that the sources of the dimension one

operators, namely

Jα ≡ −
1√
−γ

ΠXα , (4.3.61)

vanish on supersymmetric solutions. Notice that we choose to impose Neumann boundary

conditions since, as in the case of type (a) terms, mixed boundary conditions can be traded

for a choice of scheme in the original Dirichlet problem, without affecting the actual value

of the source Jα. Terms of type (b) in the counterterms contribute a constant multiple of

the Ricci curvature R[γ] in the renormalized canonical momenta ΠXα . Hence, for solutions

with k = ±1 the sources Jα are shifted by a constant non-zero term. Requiring that the

58



BPS equations coincide with the condition of vanishing scalar sources, i.e. Jα|BPS = 0,

unambiguously determines the coefficients of the type (b) terms proportional to Xα in

the counterterms to be the ones given in (4.3.47). This amounts to including the full

supersymmetric effective superpotential for magnetic BPS solutions in the counterterms.8

Notice that we are able to use this argument to determine the coefficient of the finite terms

proportional to the Ricci curvature in the counterterms because we are considering BPS

solutions with a non-zero boundary curvature, i.e. k = ±1. As we pointed out earlier,

these terms are analogous to the terms XαYβYγ discussed in [96], except that those terms

contribute to the sources Jα a term proportional to YβYγ , i.e. to the square of the sources

of the dimension two operators. Since the sources Yα vanish in the background solutions

considered in [96], this shift in the source Jα is not visible in the BPS equations, which

is why the authors of [96] have to use the scalar three-point functions to determine the

coefficient of this term.

4.3.2 Renormalized holographic observables

The outcome of the analysis in the previous subsection is that the renormalized gener-

ating function in the dual supersymmetric theory is given by

W
[
g(0)ij , A

Λ
(0)i,Y

α
−, J

+
α

]
≡ Sren = lim

ro→∞
(Sreg + Sct + Sv=0) , (4.3.62)

where Sreg is the regularized on-shell action, including the Gibbons-Hawking term, Sct are

the boundary counterterms defined in (4.3.47), and Sv=0 is the Legendre transform (4.3.55),

8It may be useful to point out that [92] sets the coefficients of the finite terms of type (b) in
(4.3.50) to zero in the choice of supersymmetric counterterms, while [97] does not specify them
arguing that they drop out of the Legendre transform. Although the coefficient of the finite terms
YαR[γ] is indeed a choice of supersymmetric scheme, since Dirichlet boundary conditions are imposed
on Yα, we have argued that the coefficient of the terms XαR[γ] is in fact determined by the value
of the source of the dimension one operators in BPS solutions. Despite the fact that, as correctly
pointed out in [97], supersymmetry is (trivially) preserved for any value of the coefficient of XαR[γ]
because such terms cancel out in the Legendre transform, demanding that the single trace source of
the dimension one operators in BPS solutions vanishes uniquely determines the coefficients of XαR[γ]
in the supersymmetric counterterms to be those dictated by the supersymmetric superpotential, as
in (4.3.47).
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with the function v(X ) set to zero. This generating function depends on the sources

g(0)ij = lim
r→∞

(e−2r/Lγij), AΛ
(0)i = lim

r→∞
AΛ
i ,

Yα− = lim
r→∞

(er/LYα), J+
α = lim

r→∞
(e2r/LJv=0

α ). (4.3.63)

Differentiating W
[
g(0)ij , A

Λ
(0)i,Y

α
−, J

+
α

]
with respect to these sources gives the corre-

sponding one-point functions in the presence of sources. Namely,

〈T ij〉 = lim
r→∞

(
e2r/L

( 2√
−γ

Πij + Jv=0
α Xαγij

))
=

2√
−g(0)

d W
d g(0)ij

,

〈J iΛ〉 = lim
r→∞

(
1√
−γ

Πi
Λ

)
=

1√
−g(0)

d W

dAΛ
(0)i

,

〈O∆=2
α 〉 = lim

r→∞

(
e−r/L

1√
−γ

πYα

)
=

1√
−g(0)

d W
dYα−

,

〈Oα∆=1〉 = lim
r→∞

(
er/LXα

)
= Xα− =

1√
−g(0)

d W

d J+
α
. (4.3.64)

These one-point functions satisfy the following Ward identities, which can be deduced from

the first class constraints (B.9) in the radial Hamiltonian formulation of the bulk dynamics

[94]

−Dj
(0)〈Tij〉+ 〈Oα∆=1〉∂iJ+

α + 〈Oα∆=2〉∂iYα− +

(
〈J jΛ〉+

2

κ2
εjkl(0)RΛΣ(0)FΣ

(0)kl

)
FΛ

(0)ij = 0,

(4.3.65a)

D(0)i〈J iα〉 = 0, (4.3.65b)

− 〈T ii 〉+ 2J+
α 〈Oα∆=1〉+ Yα−〈O∆=2

α 〉 = 0. (4.3.65c)

The Legendre transform of the generating functional (4.3.62) with respect to any of

the sources is the quantum effective action for the vacuum expectation value (VEV) of the

corresponding operator. As we will show in the next section, the entropy functional for BPS

black holes of the supergravity action (4.2.8) is related to the effective action obtained by

Legendre transforming the generating functional (4.3.62) with respect to the source J+
α of

the dimension one scalar operators. The resulting quantum effective action is a functional
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of the VEVs Xα− = 〈Oα∆=1〉 and takes the form

Γ[(g(0)ij , A
Λ
(0)i,Y

α
−,Xα−

)
] = W

[
g(0)ij , A

Λ
(0)i,Y

α
−, J

+
α

]
−
ˆ
d3x Xα−J+

α = lim
ro→∞

(Sreg + Sct) .

(4.3.66)

Notice that the Legendre transform simply removes the term Sv=0 in the generating function

and so the effective action of the Neumann theory coincides with the generating function

of the Dirichlet one [93]. Earlier computations of this effective action, up to two derivatives

in the derivative expansion, appeared for a number of different examples in [98, 93, 99, 94].

4.3.3 The BPS limit and black hole thermodynamics

For solutions of the form (4.2.20) all the renormalized observables can be related to the

corresponding effective superpotential U . Using the counterterms (4.3.47) and the expres-

sion (4.2.35) for the regularized on-shell action one finds that the renormalized partition

function is given by

W = − 1

κ2

ˆ
ro→∞
d3x
√
σk e

3Af1/2(U − Uq=0
BPS) + µΛQΛ

ˆ
dt+

2πT

κ2

ˆ
dtAh

+
1

κ2

ˆ
ro→∞
d3x
√
σk e

3Af1/2Xα ∂

∂Xα
(U − Uq=0

BPS), (4.3.67)

where Uq=0
BPS stands for the supersymmetric superpotential (4.2.38), with the electric charges

set to zero. Moreover, the area of the horizon Ah and the electric charges QΛ were defined

respectively in (4.2.36) and (4.2.37), and we have introduced the electric chemical potentials

µΛ ≡ aΛ(∞)− aΛ(rh). (4.3.68)

Notice that the last term in (4.3.67) corresponds to the Legendre transform Sv=0 and,

therefore, the effective action (4.3.66) becomes

Γ = − 1

κ2

ˆ
ro→∞
d3x
√
σk e

3Af1/2(U − Uq=0
BPS) + µΛQΛ

ˆ
dt+

2πT

κ2

ˆ
dt Ah. (4.3.69)

The one-point functions (4.3.64) can also be evaluated in terms of the effective superpo-
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tential. The general expressions for the one-point functions for any background of the form

(4.2.20) are given in eq. (3.34) of [75]. Using the supersymmetric counterterms (4.3.47)

these expressions become

〈Ttt〉 =
1

κ2
lim
r→∞

e3A(U − Uq=0
BPS),

〈Taa〉 = − 1

κ2
lim
r→∞

e3A
(

1 +
1

2
∂A

)
(U − Uq=0

BPS),

〈J iΛ〉 = − 2

κ2
qΛ dit,

〈O∆=2
α 〉 = − 1

κ2
lim
r→∞

e2r/L ∂

∂Yα

(
1−Xα ∂

∂Xα

)
(U − Uq=0

BPS),

〈Oα∆=1〉 = lim
r→∞

(
er/LXα

)
. (4.3.70)

The extremal limit These quantities can be evaluated explicitly in the extremal limit,

corresponding to the exact superpotential (4.2.38). As we pointed out earlier, in order to

evaluate some of these observables in the extremal limit, it is necessary to start from near

extremal solutions and take the zero temperature limit in the end. Since all observables are

expressed in terms of a generic effective superpotential U , evaluating them on near extremal

solutions amounts to using the near extremal superpotential (4.2.42). For large radial cutoff

ro this can be expanded to obtain

U − Uq=0
BPS = UBPS − Uq=0

BPS + ε∆U

= −
√

2

ξL
eK/2|W |

(
−e−2AIm (W−1Ze) +O(e−4A)

)
+ ε∆U , (4.3.71)

where Ze denotes the electric part of the central charge (4.2.39), i.e.

Ze ≡ −
√

2 ξLqΛX
Λ. (4.3.72)

Using this expansion, and the Pufu-Freedman parameterization of the STU model dis-

cussed in appendix A, we find that the effective action (4.3.69) for near extremal black holes
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takes the form

Γ =
2

κ2

ˆ
d3x
√
σk (mΛ − µΛ)qΛ +

2πT

κ2

ˆ
dt Ah −

1

κ2

ˆ
ro→∞
d3x
√
σk e

3Af1/2ε∆U , (4.3.73)

where

m0 ≡ 1

8
(Y1
−+Y2

−+Y3
−), mα ≡ −1

8

(
(−1)dα1Y1

− + (−1)dα2Y2
− + (−1)dα3Y3

−

)
, α = 1, 2, 3.

(4.3.74)

Notice that ∑
Λ

mΛ = 0. (4.3.75)

Moreover, the second property in (4.2.44) of the near extremal superpotential ensures that

the last term in (4.3.73), which is proportional to ∆U , is finite as the cutoff is removed at

fixed ε. Moreover, the first result in (4.2.44) implies that as ε → 0, this term gives a zero

contribution to the Euclidean effective action, and so only the first two terms in (4.3.73)

can potentially contribute in the extremal limit. The term involving the area of the horizon

has a finite extremal limit, but the integrand of the first term in (4.3.73) is not proportional

to the temperature and so it seems to lead to a divergent contribution to the extremal

Euclidean effective action due to the infinite periodicity of the Euclidean time, i.e. β →∞.

We therefore conclude that supersymmetric solutions must satisfy the boundary condition

mΛ = µΛ. (4.3.76)

This condition relates the sources Yα− of the dimension two scalar operators to the electric

chemical potentials and, therefore, is an additional requirement for the Dirichlet boundary

conditions on the scalars Yα and the gauge fields AΛ
i to be supersymmetric. Provided the

condition (4.3.76) holds, therefore, the effective action for BPS solutions is given by the

area of the horizon, namely

ΓBPS[Xα− ;mΛ, nΛ] =
2πT

κ2

ˆ
dt Ah[Xα− ;mΛ, nΛ], (4.3.77)

63



where we have kept the temperature as a regulator in the off-shell effective action. It is

only after Wick rotation to Euclidean signature that the temperature will cancel against

the perimeter of the Euclidean time circle. It should be stressed that at this point the

horizon area is not equal to the extremal entropy since it is evaluated at arbitrary VEVs

Xα− = 〈Oα∆=1〉. ΓBPS[Xα− ;mΛ, nΛ] is the field theory quantum effective action for these

VEVs. As we will show in the next section, the extremization of this effective action, at

fixed magnetic fluxes nΛ, is the field theory realization of the attractor mechanism in the

bulk.

The area of the horizon can be evaluated explicitly for BPS black holes using the exact

superpotential (4.2.38). This is because the effective superpotential vanishes on the horizon

[77], i.e.9

UBPS|h = 0, (4.3.78)

and therefore

e2A
∣∣
h

= − iW−1Z
∣∣
h

= i
√

2 ξL W−1(pΛFΛ + qΛX
Λ)
∣∣
h
. (4.3.79)

Inserting this expression for the warp factor in (4.3.77) we arrive at the following general

expression for the effective action of dyonic BPS black holes of the U(1)4 gauge supergravity:

ΓBPS[Xα− ;mΛ, nΛ] =
2πT

κ2

ˆ
dt

ˆ
d2x
√
σk i
√

2 ξLW−1(pΛFΛ + qΛX
Λ)
∣∣∣
h
. (4.3.80)

In the next section we will evaluate this effective action explicitly, first on magnetic and then

dyonic BPS black holes. Notice that this effective action depends on the UV parameters

Xα− , mΛ, nΛ and, therefore, it is necessary to know the full black hole solutions to correctly

evaluate it. In particular, it is not sufficient to evaluate the effective action using the near

horizon solutions, since this does not determine the relation between the parameters of the

near horizon solutions to the physical UV modes Xα− , mΛ and nΛ.

Using the exact superpotential (4.2.38), we can also evaluate the one-point function

9The fact that the effective superpotential U vanishes on the horizon, even for non-BPS black
holes, follows from the first order equations (4.2.27) and the near horizon behavior of the blackening
factor in (4.2.32).
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(4.3.70) for BPS black holes. A straightforward calculation determines

〈Ttt〉 = − 2

κ2
mΛqΛ, 〈Tta〉 = 〈Tab〉 = 0, 〈J iΛ〉 = − 2

κ2
qΛ dit,

〈O∆=2
α 〉 =

1

4κ2

(
q0 − (−1)dα1q1 − (−1)dα2q2 − (−1)dα3q3

)
, 〈Oα∆=1〉 = Xα(0).

(4.3.81)

These expressions for the one-point functions of BPS solutions have a number of important

consequences. Firstly, using the definition of the fermion masses mΛ in (4.3.74) and the

VEVs of the dimension two operators in (4.3.81) we deduce that

〈O∆=2
α 〉 dYα− =

2

κ2
qΛ dmΛ. (4.3.82)

In combination with the effective action (4.3.73) this result implies that

∂

∂mΛ

ˆ
dt Ah[Xα− ;mΛ, nΛ] = 0, (4.3.83)

or equivalently

∂

∂Yα−

ˆ
dt Ah[Xα− ;mΛ, nΛ] = 0, (4.3.84)

and so the BPS effective action is extremized with respect to the sources of the dimension

two operators, with the extremal values given by the chemical potentials as in (4.3.76).

This observation will play a central role in our field theory interpretation of the attractor

mechanism.

Another implication of the supersymmetric one-point functions (4.3.81) is that the su-

persymmetric mass of dyonic BPS black holes is [100, 94]

M = − 2

κ2
mΛqΛVol(Σk), (4.3.85)

and, as a direct consequence of the relation (4.3.76), satisfies the BPS relation

M − µΛQΛ = 0. (4.3.86)

Finally, collecting the above results, we can evaluate the Euclidean on-shell action, which
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is holographically identified with the grand canonical potential, i.e. the Gibbs free energy,

for dyonic BPS black holes:

I = −WE
BPS = −ΓE

BPS = −S, (4.3.87)

where S is the extremal entropy, evaluated at the extremum of the effective action. This

result agrees with that obtained in [97], as well as [13] in the case of AdS4 black holes without

scalars. Our derivation, however, provides an explicit proof that, as anticipated in [97], the

free energy of extremal asymptotically AdS black holes is a direct consequence of imposing

the BPS relation (4.3.86) in the quantum statistical relation for general asymptotically AdS

black holes [100]

I = β(M − ST − µΛQ
Λ), (4.3.88)

and taking the extremal limit.

4.4 Holographic attractor mechanism and the entropy func-

tional

In this section we will demonstrate that extremizing the holographic quantum effective

action (4.3.80) for BPS black holes with respect to the VEVs of the dimension one scalar

operators determines the correct supersymmetric values for these VEVs. Moreover, we will

show that the value of the effective action at the extremum coincides with the black hole

entropy. This provides a purely field theoretic extremization principle, which we dub the

holographic attractor mechanism.

Evaluating the effective action (4.3.80) explicitly as a function of the UV parameters

Xα− , mΛ and nΛ is a formidable task: it requires knowledge of the general – not necessarily

regular in the interior – solution of the BPS equations, with arbitrary Xα− , in closed form.

This is necessary in order to express explicitly the area of the horizon in terms of the

arbitrary scalar VEVs Xα− at the UV. However, we will see that knowledge of this solution

is not necessary in order to obtain the extremal entropy. In particular, we will demonstrate
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by means of a concrete example that extremizing the effective action with respect to the

scalar VEVs is equivalent to extremizing the expression (4.3.80) for the effective action with

respect to the values of the physical scalars on the horizon. If one knowns the exact BPS

black hole solution corresponding to the extremum of the effective potential, then the values

of the UV VEVs at the extremum can be determined as well.

The BPS swampland The metric ansatz (4.2.20) is designed so that the first order

equations (4.2.27) take the simplest form. However, to obtain explicit black hole solutions

it is convenient to reparameterize the metric by defining

e2A = r̄2h(r̄), f =
b(r̄)

r̄2h2(r̄)
, dr =

h
1
2 (r̄)

b
1
2 (r̄)

dr̄. (4.4.89)

The ansatz (4.2.20) then becomes

ds2 = h(r̄)b−1(r̄)dr̄2 − h−1(r̄)b(r̄)dt2 + h(r̄)r̄2dσ2
k,

AΛ = aΛ(r̄)dt+ pΛ
(ˆ

dθ ωk(θ)
)

dϕ, zα = zα(r̄), (4.4.90)

while the BPS equations (4.2.41) take the form

b
1
2 (r̄)h−

1
2 (r̄)A′ =

1√
2ξL

eK/2|W + ie−2AZ| ,

b
1
2 (r̄)h−

1
2 (r̄)

f ′

f
=

√
2

ξL
eK/2∂A|W + ie−2AZ| ,

b
1
2 (r̄)h−

1
2 (r̄)z′α = −

√
2

ξL
Kαβ̄∂β̄

(
eK/2|W + ie−2AZ|

)
,

b
1
2 (r̄)h−

1
2 (r̄)z̄′β̄ = −

√
2

ξL
Kαβ̄∂α

(
eK/2|W + ie−2AZ|

)
,

2r̄2h(r̄)a′Λ = IΛΣ
(
RΣMp

M − qΣ

)
, (4.4.91)

where ′ denotes a derivative with respect to the radial coordinate r̄.

Since the BPS equations (4.4.91) are first order, their general solution contains nV + 3

real and nV complex integration constants, i.e. one for each equation. One of the real inte-

gration constants is related to rescaling of the radial coordinate r̄ and is fixed by requiring
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that the solution is asymptotically AdS4 with radius L. A second real integration constant

is fixed by a suitable regularity condition in the interior, such as the existence of a smooth

horizon. Moreover, as we have seen in the previous section in eq. (4.3.76), supersymme-

try relates the nV + 1 electric chemical potentials to the nV sources of the dimension two

operators. The general supersymmetric asymptotically AdS4 solution is therefore parame-

terized by 2nV real integration constants: nV independent electric chemical potentials and

nV VEVs for the dimension one operators. The chemical potentials, however, are a bound-

ary condition and can therefore be set to any desired value. The VEVs of the dimension

one operators, on the other hand, are dynamically determined by the theory. Namely, they

are fixed by extremizing the quantum effective action, evaluated on the BPS swampland,

i.e. the general supersymmetric solution with nV arbitrary scalar VEVs, for given chemical

potentials.

4.4.1 Magnetic BPS black holes

For real scalars and vanishing electric charges the BPS equations (4.4.91) are suffi-

ciently simple to be written explicitly. In the Pufu-Freedman parameterization, discussed

in appendix A, they take the form

b
1
2 (r̄)h−

1
2 (r̄)A′ =

1

4L
√

(1− (z1)2)(1− (z2)2)(1− (z3)2)

[
4
(
1 + z1z2z3

)
−
√

2 Le−2A
(
p0(1− z1)(1− z2)(1− z3) + p1(1− z1)(1 + z2)(1 + z3)

+ p2(1 + z1)(1− z2)(1 + z3) + p3(1 + z1)(1 + z2)(1− z3)
)]
,

b
1
2 (r̄)h−

1
2 (r̄)

f ′

f
=

√
2 e−2A√

(1− (z1)2)(1− (z2)2)(1− (z3)2)

(
p0(1− z1)(1− z2)(1− z3)

+ p1(1− z1)(1 + z2)(1 + z3) + p2(1 + z1)(1− z2)(1 + z3) + p3(1 + z1)(1 + z2)(1− z3)
)
,

b
1
2 (r̄)h−

1
2 (r̄)z′α = − (1− (zα)2)

4L
√

(1− (z1)2)(1− (z2)2)(1− (z3)2)

[
4
(
zα + z1z2z3/zα

)
+
√

2 Le−2A
(
p0(1− z1)(1− z2)(1− z3)− (−1)dα1p1(1− z1)(1 + z2)(1 + z3)

− (−1)dα2p2(1 + z1)(1− z2)(1 + z3)− (−1)dα3p3(1 + z1)(1 + z2)(1− z3)
)]
,

a′Λ = 0. (4.4.92)
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General magnetic BPS solution The general solution of the BPS equations (4.4.92)

can be sought in the form of an asymptotic expansion in the UV. In particular, ensuring

that the solution is asymptotically AdS4 with radius L, we write

h(r̄) =
√

1 + h(1)L/r̄ + h(2)(L/r̄)2 + · · · ,

b(r̄) =
r̄2

L2
+ b(−1)r̄/L+ b(0) + b(1)L/r̄ + b(2)(L/r̄)2 + · · · ,

vα(r̄) = 1 + v(1)
α L/r̄ + v(2)

α (L/r̄)2 + v(3)
α (L/r̄)3 + · · · , (4.4.93)

where the functions vα determine the scalars zα through the relations

z1 =
1− v1

1 + v1
, z2 =

1− v2

1 + v2
, z3 =

1− v3

1 + v3
. (4.4.94)

Inserting these expansions in the BPS equations (4.4.92) we find up to the first two

subleading orders

b(−1) = h(1), b(0) = h(2) + k, h(2) =
1

8

(
3(h(1))2 − 4

∑
α

(v(1)
α )2

)
,

v
(2)
1 =

1

4

(
4k − 4n2 − 4n3 − h(1)v

(1)
1 + 2(v

(1)
1 )2 − 2v

(1)
2 v

(1)
3

)
,

v
(2)
2 =

1

4

(
4k − 4n1 − 4n3 − h(1)v

(1)
2 + 2(v

(1)
2 )2 − 2v

(1)
1 v

(1)
3

)
,

v
(2)
3 =

1

4

(
4k − 4n2 − 4n1 − h(1)v

(1)
3 + 2(v

(1)
3 )2 − 2v

(1)
2 v

(1)
1

)
. (4.4.95)

We have determined these expansions up to the terms h(5), b(3), v
(5)
α , but there is no good

reason to reproduce the lengthy expressions for the coefficients here. The crucial property

of this solution of the BPS equations is that the coefficients h(1) and v
(1)
α are arbitrary

integration constants, while all higher order terms are uniquely determined in terms of these.

Notice that the undetermined coefficients v
(1)
α correspond to the VEVs of the dimension one

operators, namely

Xα− = −L
2
v(1)
α , (4.4.96)

and hence, provided we find a way to fix the integration constant h(1), this solution is the
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desired BPS swampland that we should use to evaluate the effective action (4.3.80).

Series resummation and the Cacciatori-Klemm solution Remarkably, setting

the arbitrary integration constants in the solution (4.4.93) to h(1) = 0 and

v
(1)
1 = ± (k − n1 − n2)(k − n1 − n3)√

(k − n1 − n2)(k − n1 − n3)(k − n2 − n3)
,

v
(1)
2 = ± (k − n1 − n2)(k − n2 − n3)√

(k − n1 − n2)(k − n1 − n3)(k − n2 − n3)
,

v
(1)
3 = ± (k − n1 − n3)(k − n2 − n3)√

(k − n1 − n2)(k − n1 − n3)(k − n2 − n3)
, (4.4.97)

where the signs are correlated, the expansions for h(r̄) and b(r̄) truncate, while those for

vα(r̄) can be resummed. The result is the Cacciatori-Klemm solution [62, 63]

h(r̄) =

√∏
Λ

(
αΛ +

βΛ

r̄

)
, g(r̄) =

(
r̄

L
+
c L

r̄

)2

, (4.4.98)

v1 =

√
(α2 + β2/r̄)(α3 + β3/r̄)

(α0 + β0/r̄)(α1 + β1/r̄)
, v2 =

√
(α1 + β1/r̄)(α3 + β3/r̄)

(α0 + β0/r̄)(α2 + β2/r̄)
, (4.4.99)

v3 =

√
(α2 + β2/r̄)(α1 + β1/r̄)

(α0 + β0/r̄)(α3 + β3/r̄)
,

where the real constants αΛ, βΛ and c satisfy the constraints [62, 63, 10]

αΛ = 1,
∑

Λ

βΛ = 0, nΛ = c+
β2

Λ

L2
. (4.4.100)

The effective action and its extremization We now show that the Cacciatori-

Klemm solution is obtained by evaluating the effective action (4.3.80) on the solution

(4.4.93) with h(1) = 0, and extremizing with respect to the VEVs v
(1)
α . Since we do not know

the swampland solution in cosed form, we cannot explicitly obtain the effective action as a

function of the VEVs v
(1)
α . However, from the expression (4.3.80) follows that the effective

action depends on the VEVs v
(1)
α only through the value of the vector multiplet scalars on

the horizon, namely

zα|h = zαh (v
(1)
β ). (4.4.101)
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From the counterterms (4.3.47) and the definition (4.3.61) of the sources of the dimension

one scalar operators follows that on supersymmetric vacua (mΛ = 0 because we consider

purely magnetic solutions here)

d ΓBPS[Xα− ;mΛ = 0, nΛ]

dXα−
= −J+

α = 0, (4.4.102)

and so such vacua correspond to the extrema of the effective action. Moreover, provided

det

(
∂zβh

∂v
(1)
α

)
6= 0, (4.4.103)

which we will assume, the chain rule

∂ΓBPS

∂v
(1)
α

=
∂zβh

∂v
(1)
α

∂ΓBPS

∂zβh
, (4.4.104)

implies that the extrema of the effective action as function the VEVs v
(1)
α correspond to its

extrema as function of the values zαh of the scalars on the horizon. This result provides a

holographic interpretation of the attractor mechanism, as the extremization of the quantum

effective action in the dual theory with respect to the VEVs of the dimension one operators.

For the purely magnetic black holes we can verify explicitly that extremizing the effective

action with respect to the scalars on the horizon, or equivalently the scalar VEVs, reproduces

the values zαh on the horizon obtained from the Cacciatori-Klemm solution. From the

expression (4.3.80) for the effective action follows that as a function of the values zαh of the

scalars on the horizon it takes the form

ΓBPS ∝ (1 + z1
hz

2
hz

3
h)−1

(
p0(1− z1

h)(1− z2
h)(1− z3

h) + p1(1− z1
h)(1 + z2

h)(1 + z3
h)

+ p2(1 + z1
h)(1− z2

h)(1 + z3
h) + p3(1 + z1

h)(1 + z2
h)(1− z3

h)
)
. (4.4.105)

The extrema of this function are

z1
∗ =

1−
√

x2x3

x0x1

1 +
√

x2x3

x0x1

, z2
∗ =

1−
√

x1x3

x0x2

1 +
√

x1x3

x0x2

, z3
∗ =

1−
√

x2x1

x0x3

1 +
√

x2x1

x0x3

, (4.4.106)
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where

x0 = 1 +
4(n0 − k/2)2 + 1− n2

0 − n2
1 − n2

2 − n2
3

2
√

(1− n0n1 − n0n2 − n0n3 − n1n2 − n1n3 − n2n3)2 − 4n0n1n2n3

,

x1 = 1 +
4(n1 − k/2)2 + 1− n2

0 − n2
1 − n2

2 − n2
3

2
√

(1− n0n1 − n0n2 − n0n3 − n1n2 − n1n3 − n2n3)2 − 4n0n1n2n3

,

x2 = 1 +
4(n2 − k/2)2 + 1− n2

0 − n2
1 − n2

2 − n2
3

2
√

(1− n0n1 − n0n2 − n0n3 − n1n2 − n1n3 − n2n3)2 − 4n0n1n2n3

,

x3 = 1 +
4(n3 − k/2)2 + 1− n2

0 − n2
1 − n2

2 − n2
3

2
√

(1− n0n1 − n0n2 − n0n3 − n1n2 − n1n3 − n2n3)2 − 4n0n1n2n3

. (4.4.107)

Using the solution of the conditions (4.4.100), namely

βΛ = ± L

4

(
4(nΛ − k

2 )2 + 1− (n2
0 + n2

1 + n2
2 + n2

3)√
(k − n1 − n2)(k − n1 − n3)(k − n2 − n3)

)
, k = ±1,

c =
k

2
− β2

1 + β2
2 + β2

3 + β1β2 + β2 + β3 + β1β3

2L2
, (4.4.108)

it is straightforward to verify that the values (4.4.106) of the scalars on the horizon are

exactly those obtained from the solution (4.4.98), and hence, the corresponding value of the

effective action coincides with the black hole entropy. Moreover, since we know this solution

in closed form, we determine that the scalar VEVs that extremize the effective potential

are given by (4.4.97), or equivalently

〈O1
∆=1〉 = ± L

2

(
(k − n1 − n2)(k − n1 − n3)√

(k − n1 − n2)(k − n1 − n3)(k − n2 − n3)

)
,

〈O2
∆=1〉 = ± L

2

(
(k − n1 − n2)(k − n2 − n3)√

(k − n1 − n2)(k − n1 − n3)(k − n2 − n3)

)
,

〈O3
∆=1〉 = ± L

2

(
(k − n1 − n3)(k − n2 − n3)√

(k − n1 − n2)(k − n1 − n3)(k − n2 − n3)

)
, (4.4.109)

with the overall signs correlated.

The above analysis demonstrates that the entropy functional for purely magnetic BPS

solutions of the U(1)4 theory should be identified with the quantum effective action for the

dimension one scalar operators in the twisted ABJM model at Chern-Simons level one. In

particular, the purely magnetic black holes correspond to zero chemical potentials for the
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currents J iΛ. The value of the quantum effective action on its extremum coincides with the

extremal black hole entropy, as well as the Witten index in the twisted ABJM model. In

order to turn on the chemical potentials in the supersymmetric index discussed in [37, 10, 11]

it is mandatory to consider dyonic black holes in the bulk – it is not possible for the chemical

potentials to be non-zero for electrically neutral black holes. With non-zero electric chemical

potentials µΛ, the supersymmetric index coincides with the quantum effective action for the

dimension one operators in the twisted ABJM model at Chern-Simons level one, deformed

by the supersymmetric fermion masses mΛ = µΛ. This effective action, given by (4.3.80),

coincides with the black hole entropy at the extremal value of the scalar VEVs for the

dimension one operators.

4.4.2 Dyonic BPS black holes

As we have just argued, the supersymmetric index discussed in [37, 10, 11], with ar-

bitrary fugacities, should be matched to the quantum effective action (4.3.80), evaluated

on the BPS swampland with non-zero chemical potentials. The corresponding dyonic BPS

solution can be sought in the form of a UV expansion, analogous to (4.4.93) for the purely

magnetic solutions. As we discussed at the beginning of this section, at fixed chemical po-

tentials this solution depends on nV arbitrary VEVs for the dimension one scalar operators.

The identity (4.3.84) implies that the BPS effective action is extremized with respect to

the sources Yα− of the dimension two operators, with the extremal values of these sources

related to the electric chemical potentials as in (4.3.76). It follows that further extremizing

the effective action with respect to the VEVs Xα− of the dimension one operators amounts

to extremizing the effective action with respect to the complex modes zα− = Xα− + iYα−,

which appear at leading order in the Fefferman-Graham expansion of the scalars zα, given

in (A.13). The same argument as for the magnetic black holes and real scalars above then

implies that extremizing the effective action with respect to zα− = Xα− + iYα− is equivalent

to extremizing it with respect to the complex values zαh of the scalars on the horizon. The

latter corresponds to the attractor mechanism [11] and this result, therefore, extends our

holographic interpretation of the attractor mechanism as the extremization of the quantum
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effective action to general dyonic BPS solutions. The BPS black solutions corresponding

to the extremum of the effective action in the dyonic case are those found in [101] and

the corresponding entropy functional was discussed in [102]. These solutions can be used

to obtain the values of the VEVs of the dimension one operators at the extremum of the

effective action in terms of the magnetic and electric charges, but we will not compute these

VEVs explicitly here.

4.5 Conclusion

One of our main results is a clarification of the holographic renormalization paradigm

for asymptotically AdS4 black holes in N = 2 gauged supergravity. Along these lines and

with the hope of providing a purely field theoretic interpretation for some of the assump-

tions made in the comparison with the microscopic entropy via topologically twisted index

computations, we have found a boundary interpretation for the attractor mechanism.

Our conceptual home for the attractor mechanism in asymptotically AdS spacetimes

that are solutions of N = 2 gauged supergravity shows that it is equivalent, on the field

theory side, to extremizing the quantum effective action with respect to certain VEVs. Our

formulation of the mechanism retains some features of the original formulation in asymp-

totically flat spacetimes but exploits the inner workings of the AdS/CFT dictionary. For

example, instead of extremizing with respect to moduli, as in the asymptotically flat case,

we extremize with respect to VEVs in the asymptotically AdS case. Rather than extremiz-

ing the central charge that appears in the original formulation of attractor mechanism, we

extremize the quantum effective action as follows from the entropy formula formalism.

We have resolved some conceptually challenging issues in the path toward the identi-

fication of the topologically twisted index and black hole entropy. In particular, we have

clarified the nature of: (i) the field theoretic need for extremization and its connection

with the attractor mechanism, (ii) the proper identification of scalar VEVs and the precise

relations to the chemical potentials.

There are a number of open problems that would be interesting to tackle using the
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results we have obtained in this work. An obvious but technically challenging problem is

to repeat our analysis for rotating asymptotically AdS4 black holes and, more importantly,

asymptotically AdS5 ones. For rotating black holes it is much more difficult to obtain first

order equations and to derive general expressions for the on-shell action, but AdS5 black

holes introduce additional complications of a completely different nature. In particular, su-

persymmetry on four dimensional curved backgrounds is generically anomalous [103, 90]10,

which leads to anomalous contributions in the BPS relations among the conserved charges

of supersymmetric AdS5 black holes.

Moreover, having clarified the connection with the entropy formula, it would be quite

interesting to extend our findings to include an interpretation of the quantum entropy

formula [46]. Indeed, after a preliminary discussion in Chapter II and [66] focusing on

the near horizon degrees of freedom, some quantum corrections to the black hole entropy

have been matched using an approach that focuses on the asymptotic degrees of freedom

in Chapter III.

10This anomaly was implicitly present in the analysis of [104] as well, but was not recognized as
such.

75



CHAPTER V

Functional Determinants of Radial Operators in

AdS2

5.1 Introduction

There are many situations in the AdS/CFT correspondence where one ends up comptut-

ing determinants in AdS2 and its generalizations. The original discussion of the holographic

dual to the 1
2 -BPS Wilson loop made used of AdS2 determinants for the first time [21]. The

list of one-loop effective action problems that can be tackled exploiting the fact that AdS2

is a homogeneous space is rather large. For example, it naturally includes the one-loop

effective actions of supersymmetric D3 and D5 branes dual to Wilson loops in N = 4 SYM

in the symmetric and anti-symmetric representations, respectively [105, 106]. Given that

the worldvolume of these configurations are AdS2×S2 and AdS2×S4, the one-loop effective

actions reduce also to determinants on AdS2 [107, 108, 25]. A similar class of one-loop effec-

tive action appears also in the context of ABJM as shown in Chapter VIII. In the context of

localization of supersymmetric field theories there have been some natural appearances of

AdS2 [109, 12, 110, 111]. Determinants of AdS2 operators have also figured prominently in

logarithmic corrections to the entropy of extremal black holes [8]. When the worldvolume

geometry is not AdS2 new methods need to be developed; we have discussed in fair detail

the case of the 1
4 -BPS holographic Wilson loop in Chapter VI, using the results of the this

chapter.
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Motivated by the above richness of applications, in this chapter we discuss determinants

of general Laplace and Dirac operators in asymptotically AdS2 spacetimes. We use the

regularization method chosen par excellence in curved spaces: ζ-function regularization.

These methods have a long an fruitful history, dating back over four decades, starting with

the pioneering works of [112, 113]; for a more complete list of references see [114]. Much of

our exposition and results follows quite closely the vast literature in the subject of functional

determinants which has a very solid branch anchored in the more mathematical tradition

starting in [115]; for a more complete list of references see [116]. In the bulk of the chapter

we make an effort to help the interested reader find the original versions of our arguments

in the literature. We owe a particularly great debt to the work of Dunne and Kirsten [117].

This work could be simply described as an extension of theirs to the case of asymptotically

AdS2 spacetime rather than flat space.

The chapter is organized as follows. In section 5.2 we summarize the main results of our

work, namely, we present ζ-function regularize of radial Laplace-like operators. In section

5.3 we present a number of explicit examples. The systematic derivation of our results is

developed in section 5.4. We conclude in section 5.5 where we also point out some interesting

directions that can be pursued in relations to the current work.

5.2 Main results and discussion

5.2.1 Preamble

Throughout this chapter we will work on the disk model of Euclidean AdS2 (or H2)

with metric

ds2 = L2
(
dρ2 + sinh2 ρ dτ2

)
, ρ ≥ 0 , τ ∼ τ + 2π . (5.2.1)

For simplicity we set L = 1 but we will reinstate the radius in the final expressions. We

are interested in Laplace and Dirac-type operators defined in the geometry (5.2.1) in the
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presence of additional background fields. Specifically, we consider operators of the form

O = −gµνDµDν +m2 + V , (bosons)

O = −i
(
/D + /∂Ω

)
− iΓ01 (m+ V ) +W , (fermions)

(5.2.2)

(5.2.3)

where the covariant derivative Dµ = ∇µ − iqAµ includes a U(1) gauge field. Here m and q

are arbitrary mass and charge parameters, respectively. It should be clear from the outset

that, even though we use the same notation, m, q, V and Aµ need not be the same for

bosons and fermions. In the latter case we have included an extra connection, dΩ (notice

the absence of i, thus implying it cannot be gauged away), whose origin is motivated by

thinking of these operators as coming from some other geometry that is conformal to AdS2.

We also clarify that W and V are not matrix-valued. Rather, they are scalar functions.

Our goal is to compute the ratio of determinants of the operators (5.2.2) and (5.2.3)

with the corresponding free operators obtained by setting Aµ = Ω = V = W = 0. For

generic choices of the background fields, this is an extremely difficult task and can only be

handled on a case by case basis. Considerable progress can be made, however, if one assumes

circular symmetry. Consequently, we restrict ourselves to configurations where Aρ = 0 and

Aτ = A(ρ), as well as V = V (ρ), W = W (ρ) and Ω = Ω(ρ). The condition Aρ = 0 is

actually a gauge choice, while the remaining assumptions imply circular symmetry.

A recurring notion in the following sections is the regularity of the eigenfunctions of the

operators in question. Accordingly, the background fields must also be regular. Given the

topology of AdS2, this translates to

A(ρ) −→
ρ→0

ρ1+ε , ∂ρΩ(ρ) −→
ρ→0

ρε , ε ≥ 0 , (5.2.4)

so that the 1-forms A(ρ)dτ and ∂ρΩ(ρ)dρ are well-defined at the origin. At infinity the

gauge field and connection behave like

A(ρ) −→
ρ→∞

A∞ , ∂ρΩ(ρ) −→
ρ→∞

0 . (5.2.5)
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On the other hand, the potentials are assumed to decay at least as

V (ρ) −→
ρ→∞

e−ρ

ρ2+ε
W (ρ) −→

ρ→∞

e−
ρ
2

ρ1+ε
. (5.2.6)

Simply put, the background fields must behave in such a way that all the integrals appearing

below are finite. These fall-off conditions imply that the operators become effectively free

for large ρ,

O −→
ρ→∞

Ofree , (5.2.7)

except for the presence of a constant gauge field, which does not affect in any substantial

way the validity of the results.

The spectral problem at hand is intrinsically two-dimensional but the assumption of

circular symmetry reduces it to a one-dimensional calculation. Upon Fourier-transforming

the τ dependence the relevant radial operators become

Ol = − 1

sinh ρ
∂ρ (sinh ρ ∂ρ) +

(l − qA)2

sinh2 ρ
+m2 + V , l ∈ Z , (bosons) (5.2.8)

Ol = −iΓ1

(
∂ρ +

1

2
coth ρ+ ∂ρΩ

)
+ Γ0

(l − qA)

sinh ρ
− iΓ01 (m+ V ) +W , l ∈ Z+

1

2
.(fermions)

(5.2.9)

As a first attempt to reconstruct the full determinant one could write

ln
detO

detOfree

?
=

∞∑
l=−∞

ln
detOl

detOfree
l

. (5.2.10)

The trouble with this expression, however, is that, even though the ratio detOl
detOfree

l

is well

defined, the sum over Fourier modes typically diverges. To give it meaning one could, for

example, regulate the sum by imposing a sharp cutoff at |l| = Λ and subtract the divergent

pieces. In some contexts, an underlying symmetry might even cancel the divergences alto-

gether. A cutoff regularization, however, might conflict with symmetries of curved spaces,

in particular diffeomorphism invariance, rendering this approach not entirely satisfying. A
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more geometric approach is desirable.

One would like to insist on the idea of reconstructing the two-dimensional determinants

as a product over one-dimensional ones, since the latter are relatively easy to compute.

The purpose of this work is to provide a regularization scheme that coincides with the

two-dimensional ζ-function formalism, that is,

ln
detO

detOfree
≡ −ζ̂ ′O(0)− ln(µ2)ζ̂O(0) , ζ̂O(s) ≡ ζO(s)− ζfree(s) , (5.2.11)

where µ is a mass scale that parametrizes the ambiguity in the renormalization of the deter-

minant. The same definitions apply to the radial operators Ol, although the renormalization

scale is absent in one dimension. For fermions, we define the determinant and ζ-function of

the first order operator in terms of the squared one as

detO ≡
(
detO2

) 1
2 , ζO(s) ≡ 1

2
ζO2(s) . (5.2.12)

In this context, the correct version of (5.2.10) is

ζO(s) =
∞∑

l=−∞
ζOl(s) . (5.2.13)

This relation is as usual generically not well-defined in the entire complex s-plane, only for

large enough Re s. The problem in the present work then boils down to finding the analytic

continuation to s = 0 of the whole sum and not each individual term separately.

5.2.2 Results

Concerning the bosonic case, our main result is

ln
detO

detOfree
= ln

detO0

detOfree
0

+

∞∑
l=1

(
ln

detOl
detOfree

l

+ ln
detO−l
detOfree

−l
+

2

l
ζ̂O(0)

)
− 2 (ln (µL) + γ) ζ̂O(0)

+

ˆ ∞
0

dρ sinh ρ ln

(
sinh ρ

2

)
V − q2

ˆ ∞
0

dρ
A2

sinh ρ

ζ̂O(0) = −1

2

ˆ ∞
0

dρ sinh ρ V ,
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where γ ≈ 0.57721 is the Euler-Mascheroni constant. In turn, the ratio of radial determi-

nants for each Fourier mode can be computed as

ln
detOl

detOfree
l

= lim
ρ→∞

ln
ψl(ρ)

ψfree
l (ρ)

, (5.2.14)

where ψl(ρ) is the solution to the homogeneous equation for Ol that is regular at ρ = 0,

Olψl = 0 , ψl(ρ) −→
ρ→0

ρ|l| . (5.2.15)

The normalization is chosen so that the leading coefficient in the small ρ expansion matches

that of the free solution appearing in the denominator1 of (5.2.14).

Similarly, for fermionic operators we get

ln
detO

detOfree
=

∞∑
l= 1

2

(
ln

detOl
detOfree

l

+ ln
detO−l
detOfree

−l
+

2

l + 1
2

ζ̂O(0)

)
− 2 (ln (µL) + γ) ζ̂O(0)

+

ˆ ∞
0

dρ sinh ρ ln

(
sinh ρ

2

)(
(m+ V )2 −W 2 −m2

)
− q2

ˆ ∞
0

dρ
A2

sinh ρ

−
ˆ ∞

0
dρ sinh ρW 2 ,

ζ̂O(0) = −1

2

ˆ ∞
0

dρ sinh ρ
(

(m+ V )2 −W 2 −m2
)
,

where

ln
detOl

detOfree
l

= lim
ρ→∞

(
ln

ψ
(i)
l (ρ)

ψ
(i) free
l (ρ)

+ Ω(ρ)− Ω(0)

)
. (5.2.16)

Here ψ
(i)
l (ρ) is any of the two components of the regular spinor solution to the first order

homogeneous equation,

Olψl = 0 , ψl(ρ) −→
ρ→0

ρ|l|−
1
2 . (5.2.17)

The small ρ behavior is displayed only for the leading component2. As for bosons, this

1This is completely analogous to the usual initial conditions ψ(0) = 0, ψ′(0) = 1 imposed on the
homogeneous functions appearing in the Gelfand-Yaglom method. In two and higher dimensions,
however, the centrifugal barrier implies that the regular solution actually vanishes as a power law
depending on the Fourier mode, so ψ′(0) = 1 must be generalized.

2The other component goes as ρ|l|+
1
2 with a coefficient that depends on the behavior of the
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component should be normalized so that its behavior at the origin coincides with that of

the free solution to be inserted in (5.2.16). We stress that any of the two components can

be used in (5.2.16).

A few comments are in order. Our results are simple generalizations of those in flat

space [117]; mainly replace ρ → sinh ρ for the radial dependence and ρ dρ → sinh ρ dρ

in the integration measure. This is related to the fact that, by construction, zeta-function

regularization is diffeomorphism invariant, even though expressions (5.2.14) and (5.2.16) are

written in a particular coordinate system. Also, it is reassuring to check that ζ̂O(0) coincides

with the general formula in terms of the Seeley coefficient [21, 47] (see also appendix C)

ζ̂O(0) = a2(1|O)− a2(1|Ofree) . (5.2.18)

Another important point is that in an infinite space such as AdS2 there is actually no

freedom in choosing the boundary conditions once one imposes that the eigenfunctions are

regular everywhere. An intermediate step in the derivation (5.2.14) and (5.2.16) involves

putting the system in a finite box of radius R where boundary conditions are indeed relevant.

However, the R→∞ limit eliminates all traces of these.

As one would expect from circular symmetry, the two-dimensional determinants can be

written as a sum of one-dimensional radial determinants. It is important to emphasize,

however, that all results are finite and do not require further regularization. It is still useful

to compare with the momentum cut-off prescription widely used in context of holographic

Wilson loops [23][26][27][118]. To that end, we notice that the sums over Fourier modes in

(5.2.14) and (5.2.16) are rendered finite by the presence of the term 1
l ζ̂O(0),

ζ̂O(0)
Λ∑
l=1

1

l
= ζ̂(0) (ln Λ + γ) +O(Λ−1) , (5.2.19)

which cancels a ln Λ divergence in (5.2.10). It was not obvious a priori that the correct

coefficient was ζ̂O(0). In the fermionic case, it is also crucial to include the Ω term in (5.2.16)

potentials at the origin (see (5.4.128)).
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so that the sum is free of linear divergences. In retrospect, this justifies the rescaling of the

boundary conditions done in [27]. Finally, zeta-function regularization systematically fixes

all the finite terms in (5.2.14) and (5.2.16) that depend explicitly on the background fields,

which a cut-off method could not possibly foresee.

5.2.3 Conformal AdS2 spaces

A simple generalization of the methods presented here include functional determinants

defined on spaces that are conformally equivalent to AdS2, namely,

ds2
M = Mds2 , (5.2.20)

where the conformal factor M is smooth everywhere so as to not change the topology3. The

Laplace and Dirac operators in the two geometries, are related by using

ea
M

=
√
Mea, wab

M
= wab − 1

2M

(
∂aMeb − ∂bMea

)
, (5.2.21)

where ∂aM = eaµ∂µM and e
a
µe
µ
b = δ

a
b . Some Dirac matrix algebra then shows

∇2
M

=
1

M
∇2, /∇M =

1√
M

(
/∇+

/∂M

4M

)
. (5.2.22)

This leads us to consider more general operators of the form

OM = M−1O , O = −gµνDµDν +m2 + V , (bosons)

OM = M−
1
2O , O = −i

(
/D + /∂Ω

)
− iΓ01 (m+ V ) +W , (fermions)

(5.2.23)

(5.2.24)

where O is defined in the AdS2 geometry as before. Notice that any potential terms origi-

nally appearing in OM = −D2
M + · · · or OM = −i /DM + · · · will need to be rescaled by M or

M
1
2 in order to write them in this fashion. In the fermionic case there is an additional con-

3Of course, any two-dimensional geometry is conformally equivalent to any other two-dimensional
geometry. This is, however, a local statement. The emphasis here is that the conformal factor does
not blow up anywhere so the topology is still that of a disk.
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tribution 1
4
/∂ lnM coming from the spin connection in (5.2.22), which we have absorbed in

/∂Ω. As before we assume that the conformal factor depends only on the radial coordinate;

circular symmetry would otherwise be lost. The gauge field is unaffected by the rescaling.

The determinants ofOM andO are connected by the standard Weyl anomaly calculation

(see appendix C). Taking the ratio with the free operator on AdS2 we find

ln

(
detOM
detOfree

)
= ln

(
detO

detOfree

)
+

1

4π

ˆ
d2σ
√
g lnM

[
m2 + V − 1

6
R+

1

12
∇2 lnM

]
(5.2.25)

for bosons, while for fermions the anomaly reads

ln

(
detOM
detOfree

)
= ln

(
detO

detOfree

)
+

1

4π

ˆ
d2σ
√
g lnM

[
(m+ V )2 −W 2 +

1

12
R− 1

24
∇2 lnM

]
.

(5.2.26)

In each expression the first term on the right hand side can be computed using the results

of the previous section. The second term accounts for the rescaling. We have assumed

that M → 1 as ρ→∞ so the space is asymptotically AdS2, which explains the absence of

boundary terms.

5.3 Examples

In this section we apply the methods developed here to two examples borrowed from

the literature on holographic Wilson loops [119, 26, 27]. See Chapter VI.

5.3.1 Bosons

For the bosonic case we take

OM = M−1O , O = −gµνDµDν + V , Dµ = ∇µ + iAµ , (5.3.27)
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with

M(ρ) = 1 +
sin2 θ(ρ)

sinh2 ρ
, A(ρ) = 1− 1 + cosh ρ cos θ(ρ)

cosh ρ+ cos θ(ρ)
, V (ρ) = −∂ρA(ρ)

sinh ρ
. (5.3.28)

The function θ(ρ) is given by

sin θ(ρ) =
sinh ρ sin θ0

cosh ρ+ cos θ0
, (5.3.29)

where 0 ≤ θ0 ≤ π
2 is a parameter. The free operator corresponds to

Ofree ≡ O|
θ0=0

= OM |θ0=0
= −∇2 . (5.3.30)

Let us use our result (5.2.14) to compute the ratio of determinants between O and Ofree.

We will include the effect of the Weyl anomaly in (5.2.25) at the end. First,

ζ̂O(0) = −1

2

ˆ ∞
0

dρ sinh ρ V = sin2 θ0

2
. (5.3.31)

Similarly,

ˆ ∞
0

dρ sinh ρ ln

(
sinh ρ

2

)
V = −1

2
θ0 sin θ0 + cos θ0 ln cos

θ0

2
, (5.3.32)

and ˆ ∞
0

dρ
A2

sinh ρ
= − sin2 θ0

2
− 2 ln cos

θ0

2
. (5.3.33)

Next, notice that the general solution to the differential equation

Olψl = 0 , Ol = − 1

sinh ρ
∂ρ (sinh ρ ∂ρ) +

(l +A)2

sinh2 ρ
− ∂ρA

sinh ρ
, l ∈ Z , (5.3.34)
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is

ψl(ρ) =
(

tanh
ρ

2

)−l
e−W(ρ)

(
C1 + C2

ˆ
dρ
(

tanh
ρ

2

)2l e2W(ρ)

sinh ρ

)
, ∂ρW(ρ) =

A(ρ)

sinh ρ
.

(5.3.35)

Since W(ρ) is finite at ρ = 0, we see that for l < 0 the regular solution corresponds to

C2 = 0, whereas for l > 0 we must set C1 = 0. Making sure that the normalization is the

same as for the free solution we find

ψl(ρ) =



cos θ02
(
2 tanh ρ

2

)−l
(cosh ρ+ 1)√

cosh2 ρ+ 2 cosh ρ cos θ0 + 1
l ≤ 0

(
2 tanh ρ

2

)l√
cosh2 ρ+ 2 cosh ρ cos θ0 + 1

(l + 2) cos θ02 (cosh ρ+ 1)

(
l +

2 (cosh ρ+ 1)2 cos2 θ0
2

cosh2 ρ+ 2 cosh ρ cos θ0 + 1

)
l ≥ 0

.

(5.3.36)

Thus,

ln
detOl

detOfree
l

=



ln cos
θ0

2
l ≤ 0

− ln cos
θ0

2
+ ln

(
l + 2 cos2 θ0

2

l + 2

)
l ≥ 0

. (5.3.37)

Happily, the sum over Fourier modes can be computed in closed form. Indeed,

∞∑
l=1

(
ln

detOl
detOfree

l

+ ln
detO−l
detOfree

−l
+

2

l
ζ̂O(0)

)
=

∞∑
l=1

(
ln

(
l + 2 cos2 θ0

2

l + 2

)
+

2

l
sin2 θ0

2

)

= − ln Γ

(
2 cos2 θ0

2

)
− 2 ln cos

θ0

2
+ 2γ sin2 θ0

2
.

Notice that were it not for the ζ̂O(0)-term, the sum would have been divergent, which is
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precisely the situation faced in [23, 26, 27]. Putting everything together we arrive at

ln
detO

detOfree
= − ln Γ

(
2 cos2 θ0

2

)
+ 2 cos2 θ0

2
ln cos

θ0

2
+ sin2 θ0

2
− 1

2
θ0 sin θ0

= −γ
2
θ2

0 +

(
19

96
+

γ

24
− π2

48

)
θ4

0 +O
(
θ6

0

)
, (5.3.38)

where we have set µ = 1 for simplicity. Finally, we compute the Weyl anomaly relating the

determinants of OM and O. It reads

1

4π

ˆ
d2σ
√
g lnM

[
V − 1

6
R+

1

12
∇2 lnM

]
=

(
1

3
+ 2 cos2 θ0

2

)
ln cos

θ0

2
− 1

2
sin2 θ0

2
+

1

2
θ0 sin θ0 .

(5.3.39)

Combining this with the previous expression we find

ln
detOM
detOfree

= − ln Γ

(
2 cos2 θ0

2

)
+

(
1

3
+ 4 cos2 θ0

2

)
ln cos

θ0

2
+

1

2
sin2 θ0

2

=

(
1

12
− γ

2

)
θ2

0 +

(
101

576
+

γ

24
− π2

48

)
θ4

0 +O
(
θ6

0

)
. (5.3.40)

The reason we have expanded our results for small θ0 is to compare them against the

perturbative technique developed in [28]. While we spare the details of the calculation, we

confirm that the leading terms in (5.3.38) and (5.3.40) are in fact reproduced, independently,

by this method. It would be interesting to extend the perturbative method to next order

in the expansion parameter and check that it also reproduces the O
(
θ4

0

)
terms.

5.3.2 Fermions

As a fermionic example we consider the operator

OM = M−
1
2O , O = −i

(
/D +

1

4
/∂ lnM

)
− iΓ01 (1 + V ) +W , Dµ = ∇µ +

i

2
Aµ ,

(5.3.41)

87



where M(ρ) and A(ρ) are the same as before and

V (ρ) =
1√
M(ρ)

− 1 , W (ρ)=
sin2 θ(ρ)√
M(ρ) sinh2 ρ

. (5.3.42)

The free operator reads

Ofree = O|
θ0=0

= OM |θ0=0
= − /∇− iΓ01 . (5.3.43)

This time the relevant formulas are (5.2.16) and (5.2.26). We find

ζ̂O(0) = −1

2

ˆ ∞
0

dρ sinh ρ
(

(m+ V )2 −m2 −W 2
)

= sin2 θ0

2
,

(5.3.44)

(5.3.45)

as well as

ˆ ∞
0

dρ sinh ρ ln

(
sinh ρ

2

)(
(m+ V )2 −W 2 −m2

)
= 2 cos θ0 ln cos

θ0

2
, (5.3.46)

together with ˆ ∞
0

dρ sinh ρW 2 = 2 sin2 θ0

2
− 1

2
θ0 sin θ0 , (5.3.47)

and

lim
ρ→∞

(Ω(ρ)− Ω(0)) = lim
ρ→∞

1

4
ln

(
M(ρ)

M(0)

)
=

1

2
ln cos

θ0

2
(5.3.48)

The integral involving the gauge field is the same as in the bosonic example. Solving the

differential equation, however, is more involved in this case given the spinor structure of

the fields. The radial problem is

Olψl = 0 , Ol = −iσ1

(
∂ρ +

1

2
coth ρ+

1

4
∂ρ lnM

)
− 1

sinh ρ
σ2

(
l +

1

2
A
)

+ σ3 (1 + V ) +W ,

(5.3.49)
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with l ∈ Z+ 1
2 . Letting

ψl(ρ) =

 ul(ρ)

vl(ρ)

 , (5.3.50)

we can solve algebraically for ul(ρ) to find4

− 1

sinh ρ
∂ρ (sinh ρ ∂ρvl(ρ)) +

(l + B)2

sinh2 ρ
vl(ρ)− ∂ρB

sinh ρ
vl(ρ) = 0 , (5.3.51)

where

B =
1

2
A− sinh ρ

(
1

2
coth ρ+

1

4
∂ρ lnM

)
. (5.3.52)

Equation (5.3.51) has the same form as its bosonic counterpart (5.3.34), but we write its

general solution slightly differently,

vl(ρ) =
(

tanh
ρ

2

)−l+ 1
2
e−W(ρ)

(
C1 + C2

ˆ
dρ
(

tanh
ρ

2

)2l−1 e2W(ρ)

sinh ρ

)
, ∂ρW(ρ) =

B(ρ) + 1
2

sinh ρ
.

(5.3.53)

When defined in this way, the prepotential W is finite at ρ = 0, making the analysis

simpler. We then get

u
(−)
l (ρ) =

(
2 tanh ρ

2

)−l− 1
2(

l − 1
2

) √
2 (cosh ρ+ cos θ0)

cosh2 ρ+ 2 cosh ρ cos θ0 + 1

(
l +

1

2
− cosh2 ρ+ 2 cosh ρ cos θ0 + 1

2 (cosh ρ+ cos θ0)

)
,

v
(−)
l (ρ) =

i
(
2 tanh ρ

2

)−l− 1
2 sinh ρ

2
(
l − 1

2

) √
2

cosh ρ+ cos θ0
,

(5.3.54)

4Notice that M = (1 + V +W )
2

which considerably simplifies the calculations.
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for l ≤ −1
2 , and

u
(+)
l (ρ) =

i
(
2 tanh ρ

2

)l+ 1
2

2 cos θ02

√
(cos θ0 + cosh ρ)

(
1 + 2 cos θ0 cosh ρ+ cosh2 ρ

)
(2l + 1)(2l + 3)

× (2 cos θ0 + (2l + 1) cos θ0 + cosh ρ (2l + 1 + 2 cos θ0) (2 cos θ0 + cosh ρ)) ,

(5.3.55)

v
(+)
l (ρ) =

(
2 tanh ρ

2

)l+ 1
2 (2l − 1)

cos θ02 sinh ρ
√

2 (cos θ0 + cosh ρ)(2l + 1)

×

(
cos θ0 +

(2l + 1 + cos θ0)
(
1 + (2l + 1) cosh ρ+ cosh2 ρ

)
(2l − 1)(2l + 3)

)
,

(5.3.56)

for l ≥ 1
2 . The overall normalization constants have been chosen so that the behavior at

the origin coincides with (5.4.128) for l ≥ 1
2 and (5.4.129) for l ≤ −1

2 .

Expanding for ρ→∞ and making the quotient with the free solutions we can compute

the sum over Fourier modes, which yields

∞∑
l= 1

2

(
ln

detOl
detOfree

l

+ ln
detO−l
detOfree

−l
+

2

l + 1
2

ζ̂O(0)

)
=
∞∑
l= 1

2

(
ln

(
l + 1

2 + cos θ0

l + 3
2

)
+

2

l + 1
2

sin2 θ0

2

)

= − ln Γ

(
2 cos2 θ0

2

)
+ 2γ sin2 θ0

2
.

(5.3.57)

Note that the sum is rendered finite due to the presence of both the ζ̂O(0) and the

(Ω(∞)− Ω(0)) terms.
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Collecting all the pieces, we finally obtain

ln
detO

detOfree
= − ln Γ

(
2 cos2 θ0

2

)
+

(
1

2
+ 2 cos θ0

)
ln cos

θ0

2
− 7

4
sin2 θ0

2
+
θ0

2
sin θ0

=
1

2

(
1

2
− γ
)
θ2

0 +
1

384

(
57 + 16γ − 8π2

)
θ4

0 + O
(
θ6

0

)
, (5.3.58)

where we have set µ = 1 for simplicity. In order to obtain the determinant of OM (θ0), we

still have to compute the Weyl anomaly contribution, which in this case reads

1

4π

ˆ
d2σ
√
g lnM

[
(m+ V )2 −W 2 +

1

12
R− 1

24
∇2 lnM

]
=

7

4
sin2 θ0

2
+

11

6
ln cos

θ0

2

(5.3.59)

thus arriving to the following expression

ln
detOM
detOfree

= − ln Γ

(
2 cos2 θ0

2

)
+ 2 cos θ0 ln cos

θ0

2
+

7

3
ln cos

θ0

2
+
θ0

2
sin θ0

=
1

2

(
11

12
− γ
)
θ2

0 +
1

576

(
59 + 24γ − 12π2

)
θ4

0 + O
(
θ6

0

)
. (5.3.60)

Note the first term is in perfect agreement with the perturbative result reported in [28]. As

in the bosonic case, it would be interesting to check the next order in (5.3.60) by extending

the perturbative analysis proposed in [28] up to O
(
θ4

0

)
.

5.4 Derivation

Having discussed the results of the chapter and some simple examples, in this section we

provide a detailed derivation of equations (5.2.14) and (5.2.16). The procedure essentially

mimics the approach taken for flat space in [117]. For the treatment of fermionic determi-

nants we follow [120, 121]. We point the reader to these references for any omitted details,

although we do try to make the discussion self-contained. See also [122, 117, 121, 114, 123].

The main goal is to find the analytic continuation of expression (5.2.13) to s = 0. This is

achieved in three steps: i) finding a useful integral representation of the radial zeta functions

using scattering data; ii) give meaning to the sum over Fourier modes when evaluated at

s = 0 by an appropriate subtraction; iii) analytically continue the subtracted terms via
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Riemann zeta-function.

Before we proceed, a brief comment on notation. It is customary to parametrize the

eigenvalues of the AdS2 operators (5.2.2) and (5.2.3) by

λ(ν) = ν2 + ν2
0 , ν0 =

√
1

4
+m2 , (bosons)

λ(ν) = ±
√
ν2 + ν2

0 , ν0 = m, (fermions)

(5.4.61)

(5.4.62)

and we adhere to this notation through the rest of the chapter. As will become clear below,

the variable ν has the interpretation of a radial momentum.

5.4.1 ζ-function as a contour integral

Consider the bosonic operator (5.2.2). We assume it to be Hermitian and positive

definite. Suppose for the moment that the eigenvalues are discrete. This can be achieved

by putting the system in a finite spherical box of radius R and eventually taking R → ∞.

For simplicity, we exclude the possibility of zero modes. The spectrum then consists of a

finite number of (bound) states with 0 < λ < ν2
0 and an infinite number of (scattering)

states with λ > ν2
0 . The zeta-function is symbolically defined as

ζO(s) ≡
∑
n

λ−sn , (5.4.63)

where n runs over the full spectrum. Although obviously not valid at s = 0, this rep-

resentation of ζO(s) does have meaning in regions of the complex s-plane where the sum

converges5, and motivates the definition (5.2.11) of the regularized determinant6. However,

in order to compute the quantities ζO(0) and ζ ′O(0) one must first analitically continue the

sum to an expression that is well-defined at the origin. Precisely, the main objective in

this section is to provide the details of the continuation procedure for operators in AdS2

displaying circular symmetry. Under these conditions the spectral problem is separable and

5If λn ∼ nk, k > 0 for n→∞, then Re s > 1
k .

6The mass scale µ appears because of the rescaling λ → µ2λ needed to make the eigenvalues
dimensionless in (5.4.63).
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the zeta-function can always be written as

ζO(s) =
∑
l∈Z

ζOl(s) , ζOl(s) ≡
∑
i

λ−s(l,i) , (5.4.64)

where i labels the eigenvalues of the radial operators Ol given in (5.2.8). In general, it is

not enough to simply continue ζOl(s) to s = 0 and then sum over Fourier modes since the

resulting series will be divergent.

The first step is to find a more suitable representation of the zeta-function. This can be

done by trading the sum over i in (5.4.64) for a contour integral via the residue theorem. In

terms of the momentum ν introduced in (5.4.61), the zeta-function for the radial operators

can be written as [124]

ζOl(s) =

˛
γ

dν

2πi

(
ν2 + ν2

0

)−s
∂ν ln fl(ν) , (5.4.65)

where fl(ν) is a holomorphic function that has simple zeros at the location of the eigenvalues

λ(l,i) = ν2
(l,i) + ν2

0 and γ is a path enclosing them all (see figure 5.1). The logarithm is there

Figure 5.1: Left: contour in the complex ν-plane for the integral (5.4.65). Right: after
deforming the contour, the integral is performed over the branch cut at the positive
imaginary axis.

to ensure that the residue at each pole is equal to 1. How do we find such a function fl(ν)?
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Imagine solving the differential equation Olψ = λ(ν)ψ. Being second order, it will have

two independent solutions. These will depend on ν, which at this point is an unspecified

parameter. The first consideration we need to make is that we restrict the spectral problem

to functions that are smooth everywhere. In particular, for AdS2, this means regularity7 at

ρ = 0. Up to an overall normalization, there is a unique solution satisfying this requirement.

Call it φ(l,ν)(ρ). The second observation is that the actual eigenvalues are determined by

the boundary conditions. For the Dirichlet case, for example, we impose φ(l,ν)(R) = 0.

This relation should be understood as an equation for ν, having in general infinitely many

solutions ν = ν(l,i). Extending the domain to the entire complex ν-plane, we identify

fl(ν) ≡ φ(l,ν)(R). Indeed, this function has a simple zero whenever ν corresponds to one of

the eigenvalues of the operator Ol.

The countour integral can be manipulated using standard techniques of complex anal-

ysis. To that end, notice that the function
(
ν2 + ν2

0

)−s
has branch points at ν = ±iν0. We

choose to place the branch cuts along the imaginary axis, as shown in figure 5.1. Taking

into account the symmetry ν → −ν we can deform the path so that it surrounds one of the

cuts. The integrand then picks up a phase e±iπs on each side of the cut and we find

ζOl(s) =
sinπs

π

ˆ ∞
ν0

dν
(
ν2 − ν2

0

)−s
∂ν lnφ(l,iν)(R) . (5.4.66)

The above representation of the zeta-function is typically not defined at s = 0 due to the

large ν behavior of φ(l,iν), and its analytic continuation will depend on the details of the

operator at hand.

The behavior improves if we subtract the contribution of some reference (free/solvable)

operator8 so that the difference becomes

ζ̂Ol(s) ≡ ζOl(s)− ζfree(s) =
sinπs

π

ˆ ∞
ν0

dν
(
ν2 − ν2

0

)−s
∂ν ln

φ(l,iν)(R)

φfree
(l,iν)(R)

. (5.4.67)

7Moreover, near the origin the operator reduces to that in flat space and the AdS features
become irrelevant.

8At large energies the interactions become irrelevant and one expects φ(l,iν)(R) to be proportional

to φfree(l,iν)(R).
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This subtraction is further justified by remembering that we are mainly interested in the

R→∞ limit, where additional divergences related to the IR cutoff R appear. The integral

at s = 0 is now finite and we can write

ζ̂ ′Ol(0) = − ln
φ(l,iν0)(R)

φfree
(l,iν0)(R)

+ lim
ν→∞

ln
φ(l,iν)(R)

φfree
(l,iν)(R)

, ζ̂Ol(0) = 0 . (5.4.68)

Such a simple expression for the derivative of the zeta-function is valid only because the ra-

dial operators Ol are one-dimensional. Notice from (5.4.61) that λ(iν0) = 0, so the function

φ(l,iν0)(ρ) is the regular solution to the homogeneous equation Olψ = 0. This equation is

typically much easier to solve than the full eigenvalue problem, if not analytically, numeri-

cally. The large ν limit, on the other hand, will be shown to vanish in the bosonic case after

a proper normalization. Of course, this is nothing but the Gelfand-Yaglom representation of

one-dimensional determinants [125, 124]. For d = 2 we still need to sum over Fourier modes.

As mentioned above, the sum is divergent at s = 0, so we are not ready yet. Nonetheless,

ζ̂ ′Ol(0) will appear in the final answer.

A similar line of reasoning can be followed for other boundary conditions, even in pres-

ence of zero modes, leading to analogous formulas for ζ̂O(s) [124, 117, 125]. Indeed, with a

few modifications, it can also be applied for the fermionic operators (5.2.3) [121, 126]. In this

case, since the differential equation is first order, only half of the components of the spinor

eigenfunctions can be constrained by the (local) boundary conditions. A standard choice

are bag boundary conditions [47]. Another subtlety is that fermionic operators usually

posses negative eigenvalues, leading to an ambiguity in the definition of the zeta-function.

This ambiguity can be avoided by considering instead the squared operator, which is second

order and is assumed to have a strictly positive spectrum. It is important to emphasize,

however, that the eigenvalues of O2 should already be determined by those of O. In other

words, no additional or incompatible boundary conditions should be imposed on the second

half of the eigenspinors when dealing with the second order operator. This last statement

means that in the countour representation of ζO2
l
(s), it is enough to consider the regular

solution to the eigenvalue problem Olψ = λ(ν)ψ and not O2
l ψ = λ(ν)2ψ. For convenience
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we explicitly separate the positive and negative eigenvalue sectors and write

ζ̂O2
l
(s) =

sinπs

π

ˆ ∞
ν0

dν
(
ν2 − ν2

0

)−s
∂ν

(
ln
φ+

(l,iν)(R)

φ+ free
(l,iν) (R)

+ ln
φ−(l,iν)(R)

φ− free
(l,iν) (R)

)
. (5.4.69)

Here φ±(l,ν)(R) is some combination, determined by the choice of boundary conditions, of

the components of the regular solution to the first order equation Olψ± = ±
√
ν2 + ν2

0 ψ
±.

The spectrum of the free massive Dirac operator is symmetric, so φ+ free
(l,ν) (R) = φ− free

(l,ν) (R),

but this is not necessarily the case for interacting operators. Notice the appearance of

λ(ν)−2s as opposed to λ(ν)−s, meaning that we are squaring the eigenvalues and therefore

computing ζ̂O2
l
(s). Evaluating at s = 0 we get

ζ̂ ′O2
l
(0) = − ln

φ+
(l,iν0)(R)

φ+ free
(l,iν0)(R)

− ln
φ−(l,iν0)(R)

φ− free
(l,iν0)(R)

+ lim
ν→∞

(
ln
φ+

(l,iν)(R)

φ+ free
(l,iν) (R)

+ ln
φ−(l,iν)(R)

φ− free
(l,iν) (R)

)
,

ζ̂O2
l
(0) = 0 .

(5.4.70)

Again, the computation of the zeta-function for the full fermionic operator requires a sum-

mation over the (half-integer) Fourier modes, so we are not allowed to take s = 0 at this

moment.

5.4.2 Free eigenfunctions, Jost function and boundary conditions

We are interested in operators of the form (5.2.2) and (5.2.3) for which the background

fields decay sufficiently fast at infinity, so that they become effectively free. Therefore, it is

not surprising that the free eigenfunctions play a preponderant role in the analysis. Their

exact form will be displayed below. For the moment we focus on some of their properties.

Let h
(l,ν)
± (ρ) be the two linearly independent eigenfunctions of the operator Ofree

l . They

satisfy

Ofree
l h

(l,ν)
± (ρ) = λ(ν)h

(l,ν)
± (ρ) , (5.4.71)

where the eigenvalues are parametrized as in (5.4.61). In the fermionic case these are

actually two-component eigenspinors and should carry an additional label specifying the sign
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of the eigenvalues. The notation ± refers to the fact that, asymptotically, these solutions

become in- and out-going waves,

h
(l,ν)
± (ρ) ∼ e(−

1
2
±iν)ρ , ρ→∞ , (5.4.72)

as follows directly from the differential equation. Square-integrability requires that ν ∈ R;

the modulating factor e−
ρ
2 is compensated by the integration measure

√
g = sinh ρ ∼

eρ, yielding a plane wave orthogonality relation. It is important to mention, however,

that neither h
(l,ν)
+ (ρ) nor h

(l,ν)
− (ρ) are regular at ρ = 0, and therefore not actually square-

integrable. Rather, after an appropriate choice of relative normalizations, the free regular

solution is given by the combination

φfree
(l,ν)(ρ) =

i

2

(
h

(l,ν)
− (ρ)− h(l,ν)

+ (ρ)
)
. (5.4.73)

Its small ρ expansion is again dictated by the differential equation and reads

φfree
(l,ν)(ρ) ∼ ρ|l| , ρ→ 0 , (bosons)

φfree
(l,ν)(ρ) ∼ ρ|l|−

1
2 , ρ→ 0 , (fermions)

(5.4.74)

(5.4.75)

For fermions only for the leading component is shown; the other component goes like ρ|l|+
1
2 .

The overall constant will depend on the exact normalization of h
(l,ν)
± , the choice of which is

arbitrary.

Consider now the interacting case. In general, finding the regular solution is pro-

hibitively complicated. Nevertheless, there are two statements that are generally true.

The first is that, precisely because it is regular, the behavior of φ(l,ν)(ρ) at ρ = 0 is the

same as for the free solution. The second property stems from the previous observation that

the operators become free for large ρ, meaning that the regular solution can be expanded
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as9

φ(l,ν)(ρ) −→
ρ→∞

i

2

(
gl(ν)h

(l,ν)
− (ρ)− ḡl(ν)h

(l,ν)
+ (ρ)

)
. (5.4.76)

This is only true asymptotically, of course. The coefficient gl(ν) is called Jost function

and plays a central part in the calculation of functional determinants. In fact, the the

ratio ln (gl(ν)/ḡl(ν)) is precisely the phase shift from scattering theory that determines the

density of eigenvalues. In the free case the above relation becomes exact with gfree
l (ν) = 1.

Let us use the properties we have just discussed to see what happens to the zeta-function

when we take the infinite space limit R → ∞. To this purpose, note that for imaginary

values of the radial momentum, the function h
(l,iν)
+ (R) is exponentially decaying, whereas

h
(l,iν)
− (R) blows up. Therefore, the ratio between the regular interacting solution and the

free one becomes

lim
R→∞

φ(l,iν)(R)

φfree
(l,iν)(R)

= gl(iν) . (5.4.77)

This gives the following expression for the zeta-function of the bosonic operator (5.2.2)

ζ̂O(s) =
sinπs

π

∑
l∈Z

ˆ ∞
ν0

dν
(
ν2 − ν2

0

)−s
∂ν ln gl(iν) . (5.4.78)

A similar simplification occurs in the fermionic case (5.2.3), yielding

ζ̂O2(s) =
sinπs

π

∑
l∈Z+ 1

2

ˆ ∞
ν0

dν
(
ν2 − ν2

0

)−s
∂ν ln gl(iν) , (5.4.79)

where ln gl(iν) ≡ ln g+
l (iν) + ln g−l (iν) includes the contribution from the positive and

negative eigenvalue sectors. Technically, the above expressions define the zeta function in

terms of scattering data.

Besides the introduction of the Jost function in the two formulas above, the R → ∞

limit has another, crucial, consequence on the zeta function: it makes the dependence on

9Given that the gauge field goes to a constant A(ρ) → A∞ for ρ → ∞, the asymptotics of

the regular solution is more naturally expanded in terms of the shifted eigenfunctions h
(l−A∞,ν)
± (ρ).

At large ρ, however, these differ from their un-shifted version only by a normalization, making the
definition (5.4.76) of the Jost function still viable.
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the specific choice of boundary conditions disappear. Take for example the case of Neumann

boundary conditions. The only modification one needs to make in ζ̂O(s) is the replacement

φ(l,iν)(R)→ ∂ρφ(l,iν)(R). It is easy to see that upon taking the ratio with the corresponding

free solution, the large R limit will again be given by the Jost function. The same is true

for more general boundary conditions and for spinor fields. We then conclude that the

determinants in AdS2 are insensitive to the choice of boundary conditions one makes in the

intermediate step of putting the system in a finite box.

As pointed out several times already, the sum over Fourier modes is ill-defined for s = 0.

In what follows, we will perform the analytic continuation of (5.4.78) and (5.4.79). The

general strategy is to subtract as many terms as necessary inside the integral such that

the series becomes convergent at s = 0. The dangerous region is obviously l → ∞, but

also ν ∼ l → ∞, so the calculation involves extracting the asymptotic behavior of gl(iν)

in this regime. This can be done by constructing a representation of the Jost function in

terms of the free eigenfunctions h
(l,ν)
± (ρ), the Green’s function for the free operator and

the background fields. The subtracted terms need to be added back and the analytic

continuation is done using the well-known properties of the Riemann zeta-function.

5.4.3 Bosons

In this section we exhibit the derivation of (5.2.14). We split the radial operator (5.2.8)

into a free part and an interaction,

Ol = Ofree
l + U(ρ) , U(ρ) = V (ρ) +

A(ρ)2

sinh2 ρ
− 2lA(ρ)

sinh2 ρ
. (5.4.80)

where the free operator is given by

Ofree
l = − 1

sinh ρ
∂ρ (sinh ρ ∂ρ) +

l2

sinh2 ρ
+m2 , l ∈ Z . (5.4.81)

It will be important in what follows to keep in mind that there is a l-dependent term in the

potential U(ρ).
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5.4.3.1 Free eigenfunctions

The bosonic free eigenfunctions satisfying (5.4.71) read

h
(l,ν)
± (ρ) =

√
2

πν

∣∣∣∣∣ Γ (1 + iν)

Γ
(

1
2 + iν + |l|

)∣∣∣∣∣ e−iπ|l|Q|l|− 1
2
∓iν(cosh ρ) ,

(
h

(l,ν)
±

)∗
= h

(l,ν)
∓ , (5.4.82)

where Q
|l|
− 1

2
∓iν(cosh ρ) are associated Legendre functions of the second kind. The condi-

tion that ν ∈ R is necessary for square-integrability, as can be seen from the asymptotic

expansions

h
(l,ν)
± (ρ) ≈

√
2

ν

∣∣∣∣∣ Γ (1 + iν)

Γ
(

1
2 + iν + |l|

)∣∣∣∣∣ Γ
(

1
2 ∓ iν + |l|

)
Γ (1∓ iν)

e(−
1
2
±iν)ρ , ρ→∞ . (5.4.83)

The combination

φfree
(l,ν)(ρ) ≡ i

2

(
h

(l,ν)
− (ρ)− h(l,ν)

+ (ρ)
)

=

√
πν

2

∣∣∣∣∣Γ
(

1
2 + iν + |l|

)
Γ (1 + iν)

∣∣∣∣∣P−|l|− 1
2
±iν (cosh ρ) , (5.4.84)

namely, the imaginary part of the eigenfunctions, is proportional to the associated Legendre

function of the first kind and is regular at ρ = 0 with

φfree
(l,ν)(ρ) ≈

√
πν

2

∣∣∣∣∣Γ
(

1
2 + iν + |l|

)
Γ (1 + iν)

∣∣∣∣∣ 1

Γ (1 + |l|)

(ρ
2

)|l|
, ρ→ 0 . (5.4.85)

As a matter of convenience, the normalization of the eigenfunctions has been chosen so that

their Wronskian is independent of ν:

h
(l,ν)
− (ρ)∂ρh

(l,ν)
+ (ρ)− h(l,ν)

+ (ρ)∂ρh
(l,ν)
− (ρ) =

2i

sinh ρ
. (5.4.86)

Regardless of the normalization, this property allows us to construct the Green’s function

G(l,ν)(ρ, ρ′) =
i

2
sinh ρ′

(
h

(l,ν)
− (ρ)h

(l,ν)
+ (ρ′)− h(l,ν)

+ (ρ)h
(l,ν)
− (ρ′)

)
θ(ρ− ρ′)

= sinh ρ′
(
φfree

(l,ν)(ρ)h
(l,ν)
+ (ρ′)− φfree

(l,ν)(ρ)h
(l,ν)
− (ρ′)

)
θ(ρ− ρ′) ,

(5.4.87)
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which satisfies (
Ofree
l − λ(ν)

)
G(l,ν)(ρ, ρ′) = −δ(ρ, ρ′) . (5.4.88)

Finally, we need to continue the eigenfunctions to imaginary momentum, ν → iν, and

extract their asymptotic behavior for l→∞ and fixed α ≡ ν
|l| with 0 < α < 1. We find

h
(l,iν)
+ (ρ) ≈

√
α

π| sin (πν) |
(
1− α2

) ν+|l|
2
(
α2 sinh2 ρ+ 1

)− 1
4 e−|l|η(ρ) ,

φfree
(l,iν)(ρ) ≈ i

√
α| sin (πν) |

π

(
1− α2

)− ν+|l|
2
(
α2 sinh2 ρ+ 1

)− 1
4 e|l|η(ρ) ,

(5.4.89)

(5.4.90)

where

η(ρ) = α ln

(
α cosh ρ+

√
1 + α2 sinh2 ρ

)
− ln

(
cosh ρ+

√
1 + α2 sinh2 ρ

)
+ ln sinh ρ .

(5.4.91)

5.4.3.2 Regular solution and Jost function

In order to compute the zeta-function using (5.4.78), we first need to construct a solution

to the eigenvalue problem that is regular at the origin. With the help of the free Green’s

function (5.4.87), we can invert the differential equation and write it in Lippmann-Schwinger

form,

φ(l,ν)(ρ) = φfree
(l,ν)(ρ) +

ˆ ρ

0
dρ′G(l,ν)(ρ, ρ′)U(ρ′)φ(l,ν)(ρ

′) . (5.4.92)

In principle the integral above extends to ρ′ → ∞, but our choice of Green’s function

truncates it to ρ′ ≤ ρ. This choice is dictated by the fact that we want to control the

behavior of the solution at ρ = 0 to ensure that it is regular. Notice that G(l,ν)(ρ, ρ) = 0,

so the normalization φ(l,ν)(ρ) ≈ φfree
(l,ν)(ρ), with the same leading coefficient in the series

expansion, is fixed by the integral equation.

Replacing the Green’s function (5.4.87) in (5.4.92), taking ρ → ∞ and by means of

(5.4.76), we arrive to the following expression for the Jost function

gl(ν) = 1 +

ˆ ∞
0

dρ sinh ρ h
(l,ν)
+ (ρ)U(ρ)φ(l,ν)(ρ) . (5.4.93)
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Of course, this expression still involves the unknown function φ(l,ν)(ρ) and can be solved

iteratively as an expansion in powers of the potential U . However, as we will confirm below,

it is sufficient to solve for the regular solution only up to second order. After some algebra

one gets10

ln gl(ν) =

ˆ ∞
0

dρ sinh ρ h
(l,ν)
+ (ρ)U(ρ)φfree

(l,ν)(ρ)

−
ˆ ∞

0
dρ sinh ρ

(
h

(l,ν)
+ (ρ)

)2
U(ρ)

ˆ ρ

0
dρ′ sinh ρ′

(
φfree

(l,ν)(ρ
′)
)2
U(ρ′) +O(U3) ,

(5.4.94)

where we have taken the logarithm since that is what actually enters in the ζ-function.

The next step involves continuing the Jost function to imaginary values of the radial

momentum and extracting its limiting behavior for large ν and large l. Remember that the

goal is to subtract from ln gl(iν) as many terms as necessary so that the sum over Fourier

modes in (5.4.78) becomes convergent at s = 0. Clearly we can discard all terms that

decay faster than l−1. Introducing the asymptotic expansions of the eigenfunctions given

in (5.4.89) and (5.4.90) into (5.4.94) we obtain

ln gl(iν) =
1

2|l|

ˆ ∞
0

dρ
sinh ρU(ρ)√
α2 sinh2 ρ+ 1

− 1

4l2

ˆ ∞
0

dρ
sinh ρU(ρ)e−2|l|η(ρ)√

α2 sinh2 ρ+ 1

ˆ ρ

0
dρ′

sinh ρ′U(ρ′)e2|l|η(ρ′)√
α2 sinh2 ρ′ + 1

+O(l−2) .

(5.4.95)

Notice that the first line involves a term of order O(l0) coming from (5.4.80). However, this

will cancel when summing over positive and negative Fourier modes. By the same token,

subleading contributions to eigenfunctions where not considered in (5.4.89) and (5.4.90), as

they are insensitive to the sign of l. A priori, the second line also involves a O(l0) term,

but this is really not so. It can be seen that in the saddle point approximation, which is

10Use ln
(
1 + ax+ bx2

)
= ax+

(
b− 1

2
a2
)
x2 +O(x3) and

ˆ b

a

dxf(x)

ˆ x

a

dyf(y) =
1

2

(ˆ b

a

dxf(x)

)2

.
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justified in the limit we are studying, the integral over ρ′ yields

ˆ ρ

0
dρ′

sinh ρ′U(ρ′)e2|l|η(ρ′)√
α2 sinh2 ρ′ + 1

≈ 1

2|l|
sinh2 ρU(ρ)e2|l|η(ρ)

α2 sinh2 ρ+ 1
+O(l−2) . (5.4.96)

Since each nested integral results in a factor of 1/l, higher orders in U in the Lippmann-

Schwinger expansion (5.4.92) are not necessary for the subtraction. This way we arrive at

the following expression for the asymptotic behavior of the Jost function

ln gasym
l (iν) + ln gasym

−l (iν) ≡ 1

|l|

ˆ ∞
0

dρ
sinh ρ V (ρ)(

1 + α2 sinh2 ρ
) 1

2

+
α2

|l|

ˆ ∞
0

dρ
sinh ρA(ρ)2(

1 + α2 sinh2 ρ
) 3

2

.

(5.4.97)

Recall that the dependence on the radial momentum enters through α = ν/|l|. One can

easily see that

lim
ν→∞

(
ln gasym

l (iν) + ln gasym
−l (iν)

)
= 0 . (5.4.98)

Similarly, expanding 5.4.94 for large ν and fixed l one finds11

lim
ν→∞

ln gl(iν) = 0 . (5.4.99)

The fact that this limit vanishes is a consequence of the choice of normalization of the

regular solution.

5.4.3.3 Analytic continuation

The analytic continuation of the zeta-function (5.4.78) to s = 0 is achieved by splitting

the sum as

ζ̂O(s) = ζ̂f (s) + ζ̂d(s) , (5.4.100)

11We omit the explicit expansions of the eigenfunctions in this limit since they are even simpler
than the ones presented above.
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where

ζ̂f (s) =
sinπs

π

ˆ ∞
ν0

dν
(
ν2 − ν2

0

)−s
∂ν ln g0(iν)

+
sinπs

π

∞∑
l=1

ˆ ∞
ν0

dν
(
ν2 − ν2

0

)−s
∂ν
(
ln gl(iν) + ln g−l(iν)− ln gasym

l (iν)− ln gasym
−l (iν)

)
,

ζ̂d(s) =
sinπs

π

∞∑
l=1

ˆ ∞
ν0

dν
(
ν2 − ν2

0

)−s
∂ν
(
ln gasym

l (iν) + ln gasym
−l (iν)

)
.

Here we have separated the mode l = 0 and combined the l > 0 and l < 0 terms into a

single sum. The main point is that ζf (s) is now convergent at s = 0, since by construction

of gasym
l (iν) it goes as O(l−2) for l → ∞. Thus, we can simply take its derivative and

evaluate

ζ̂f (0) = 0 ,

ζ̂ ′f (0) = − ln g0 (iν0)−
∞∑
l=1

(
ln gl (iν0) + ln g−l (iν0)− ln gasym

l (iν0)− ln gasym
−l (iν0)

)
.

(5.4.101)

Again, ζ̂ ′f (0) is guaranteed to be finite. On the other hand, ζd(s) is still divergent at s = 0

and needs continuation. The improvement is that this sum is easier to handle. Indeed, the

general formulas

ˆ ∞
a

dx
(
x2 − a2

)−s d

dx

((
1 + b2x2

)−n/2)
= −

Γ
(
s+ n

2

)
Γ (1− s) b2s

Γ
(
n
2

)
(1 + a2b2)s+

n
2

, (5.4.102)

ˆ ∞
a

dx
(
x2 − a2

)−s d

dx

(
x2
(
1 + b2x2

)−n/2)
= −

Γ
(
s+ n

2 − 1
)

Γ (1− s) b2(s−1)
(
(n− 2) a2b2 − 2s

)
2Γ
(
n
2

)
(1 + a2b2)s+

n
2

,

(5.4.103)

allow us to explicitly perform the integration over the radial momentum and find

ζd(s) = −
Γ
(
s+ 1

2

)
Γ (1− s)

Γ
(

1
2

) ˆ ∞
0

dρ (sinh ρ)2s+1

(
V (ρ)R1(s, ρ) +

A(ρ)2

sinh2 ρ
R2(s, ρ)

)
,

(5.4.104)
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where

R1(s, ρ) =
sinπs

π

∞∑
l=1

1

l1+2s

(
1 +

ν2
0 sinh2 ρ

l2

)−(s+ 1
2)
, (5.4.105)

R2(s, ρ) =
sinπs

π

∞∑
l=1

1

l1+2s

(
ν2

0 sinh2 ρ

l2
− 2s

)(
1 +

ν2
0 sinh2 ρ

l2

)−(s+ 3
2)
. (5.4.106)

In order to continue these sums, we again subtract and add back the asymptotic behavior

of the summand that makes the series divergent when s = 0, namely,

R1(s, ρ) =
sinπs

π

∞∑
l=1

1

l1+2s

(1 +
ν2

0 sinh2 ρ

l2

)−(s+ 1
2)
− 1

+
sinπs

π

∞∑
l=1

1

l1+2s
,

R2(s, ρ) =
sinπs

π

∞∑
l=1

1

l1+2s

(ν2
0 sinh2 ρ

l2
− 2s

)(
1 +

ν2
0 sinh2 ρ

l2

)−(s+ 3
2)

+ 2s


− 2s sinπs

π

∞∑
l=1

1

l1+2s
.

Recognizing the last term in each expression as the Riemann zeta function, we arrive at

R1(s, ρ) =
sinπs

π

∞∑
l=1

1

l1+2s

(1 +
ν2

0 sinh2 ρ

l2

)−(s+ 1
2)
− 1

+
sinπs

π
ζR(2s+ 1) ,

R2(s, ρ) =
sinπs

π

∞∑
l=1

1

l1+2s

(ν2
0 sinh2 ρ

l2
− 2s

)(
1 +

ν2
0 sinh2 ρ

l2

)−(s+ 3
2)

+ 2s


− 2s sinπs

π
ζR(2s+ 1) .

Since each sum in square brackets is now convergent for s = 0, we readily find12

R1(0, ρ) =
1

2
, R′1(0, ρ) =

∞∑
l=1

1

l

[(
1 +

ν2
0 sinh2 ρ

l2

)− 1
2

− 1

]
+ γ ,

R2(0, ρ) = 0 , R′2(0, ρ) = ν2
0 sinh2 ρ

∞∑
l=1

1

l3

(
1 +

ν2
0 sinh2 ρ

l2

)− 3
2

− 1 .

(5.4.107)

(5.4.108)

12Actually, R2(s, ρ) was already convergent at s = 0. However, its term by term derivative was
not, so the procedure was still necessary.
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This is the desired continuation. Then,

ζ̂d(0) = −1

2

ˆ ∞
0

dρ sinh ρ V (ρ) , (5.4.109)

and

ζ̂ ′d(0) = −
ˆ ∞

0
dρ sinh ρ

(
ln

(
sinh ρ

2

)
+ γ

)
V (ρ) +

ˆ ∞
0

dρ
A(ρ)2

sinh ρ

−
∞∑
l=1

1

l

ˆ ∞
0

dρ sinh ρ

[(
1 +

ν2
0 sinh2 ρ

l2

)− 1
2

V (ρ)− V (ρ)− ν2
0

l2

(
1 +

ν2
0 sinh2 ρ

l2

)−1

A(ρ)2

]

= −
ˆ ∞

0
dρ sinh ρ

(
ln

(
sinh ρ

2

)
+ γ

)
V (ρ) +

ˆ ∞
0

dρ
A(ρ)2

sinh ρ

−
∞∑
l=1

(
ln gasym

l (iν0) + ln gasym
−l (iν0)− 1

l

ˆ ∞
0

dρ sinh ρ V (ρ)

)
.

In the last step we have recognized the asymptotic form (5.4.97) of the Jost function

evaluated at ν = ν0. Combining the expressions for ζ̂f (0), ζ̂d(0), ζ̂ ′f (0) and ζ̂ ′d(0) we arrive

at

ζ̂O(0) = −1

2

ˆ ∞
0

dρ sinh ρ V (ρ) ,

ζ̂ ′O(0) = − ln g0 (iν0)−
∞∑
l=1

(
ln gl (iν0) + ln g−l (iν0) +

2

l
ζ̂(0)

)
+ 2γζ̂(0)

−
ˆ ∞

0
dρ sinh ρ ln

(
sinh ρ

2

)
V (ρ) +

ˆ ∞
0

dρ
A(ρ)2

sinh ρ
.

(5.4.110)

(5.4.111)

Notice that ln gasym
l (iν0) cancels out at the end so it is no longer needed. Finally, by

means of (5.4.77), (5.4.68) and (5.4.99), gl(iν0) is identified with the determinant of the

radial operator Ol and the full renormalized determinant (5.2.11) becomes our main result

(5.2.14). Once the radius of AdS2 is reinstated, the dimensionless quantity Lµ appears.
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5.4.4 Fermions

We now move on to the derivation of the fermionic expression (5.2.16). As in the bosonic

case, the full operator splits into

Ol = Ofree
l − iΓ01U(ρ) , U(ρ) = −Γ0 ∂ρΩ(ρ)− i q Γ1

A(ρ)

sinh ρ
+ V (ρ)− iΓ01W (ρ) .

(5.4.112)

The matrix −iΓ01 in front of U is a matter of convenience. The free fermionic radial operator

is

Ofree
l = −iΓ1

(
∂ρ +

1

2
coth ρ

)
+ Γ0

l

sinh ρ
− iΓ01m, l ∈ Z+

1

2
. (5.4.113)

From now on we will work with the following representation of the Dirac matrices,

Γ0 = −σ2 , Γ0 = σ1 ⇒ −iΓ01 = σ3 . (5.4.114)

5.4.4.1 Free eigenfunctions

Unlike the bosonic case, the free operator (5.4.113) has positive and negative eigenvalues.

It is sufficient, however, to restrict ourselves to λ > 0, since the λ < 0 sector can be obtained

from the former by a simple operation. The eigenfunctions for l ≥ 1
2 and l ≤ −1

2 are also

related to each other, so we will work with strictly positive Fourier modes. This is not to

say that we are neglecting three out of the four possible sectors.

The spinor eigenfunctions satisfying (5.4.71) with λ > 0 and l ≥ 1
2 read

h
(l,ν)
± (ρ) =

√
Γ
(
l + 1

2 ∓ iν
)

Γ
(

1
2 ± iν

)
Γ
(
l + 1

2 ± iν
)

Γ
(

1
2 ∓ iν

)√2
(

tanh
ρ

2

)l− 1
2
(

2 cosh
ρ

2

)−1±2iν
ψ

(l,ν)
± (ρ) ,

(5.4.115)
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where

ψ
(l,ν)
± (ρ) =


(
λ(ν) +m

λ(ν)−m

) 1
4

tanh
ρ

2
F

(
l +

1

2
∓ iν, 1∓ iν; 1∓ 2iν;

1

cosh2 ρ
2

)

±
(
λ(ν)−m
λ(ν) +m

) 1
4

F

(
l +

1

2
∓ iν,∓iν; 1∓ 2iν;

1

cosh2 ρ
2

)
 .

(5.4.116)

The combination

φfree
(l,ν)(ρ) ≡ i

2

(
h

(l,ν)
− (ρ)− h(l,ν)

+ (ρ)
)

=
1

Γ
(
l + 1

2

)√π

2

∣∣∣∣∣Γ
(
l + 1

2 ∓ iν
)

Γ
(

1
2 ∓ iν

) ∣∣∣∣∣ (tanh
ρ

2

)l− 1
2
(

cosh
ρ

2

)−1+2iν
ψ(l,ν)(ρ) , (5.4.117)

with

ψ(l,ν)(ρ) =


− ν

l + 1
2

(
λ(ν) +m

λ(ν)−m

) 1
4

tanh
ρ

2
F

(
l +

1

2
− iν, 1− iν; l +

3

2
; tanh2 ρ

2

)
i

(
λ(ν)−m
λ(ν) +m

) 1
4

F

(
l +

1

2
− iν,−iν; l +

1

2
; tanh2 ρ

2

)
 ,

(5.4.118)

is regular at the origin. As before, the condition ν ∈ R is imposed by square-integrability.

The solutions for the remaining three sectors can be obtained by simple operations, namely,

l ≤ −1

2
, λ(ν) > 0 −→ (iσ1)h

(−l,ν)
± (ρ)

∣∣∣
m→−m

,

l ≥ 1

2
, λ(ν) < 0 −→ (iσ2)h

(l,ν)
± (ρ) ,

l ≤ −1

2
, λ(ν) < 0 −→ (iσ3)h

(−l,ν)
± (ρ)

∣∣∣
m→−m

.

(5.4.119)

The normalization of the eigenspinors has been chosen so that they satisfy

h
(l,ν)
− (ρ)h

(l,ν)
+ (ρ)

T
− h(l,ν)

+ (ρ)h
(l,ν)
− (ρ)

T
=

2iσ2

sinh ρ
, (5.4.120)
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in all four sectors. This identity allow us to construct the Green’s function

G(l,ν)(ρ, ρ′) =
i

2
sinh ρ′

[
h

(l,ν)
− (ρ)h

(l,ν)
+ (ρ′)

T
− h(l,ν)

+ (ρ)h
(l,ν)
− (ρ′)

T
]
σ3 θ(ρ− ρ′) ,

= sinh ρ′
[
φfree

(l,ν)(ρ)h
(l,ν)
+ (ρ′)

T
− h(l,ν)

+ (ρ)φfree
(l,ν)(ρ

′)
T
]
σ3 θ(ρ− ρ′) ,

(5.4.121)

which satisfies (
Ofree
l − λ(ν)

)
G(l,ν)(ρ, ρ′) = −δ(ρ, ρ′) . (5.4.122)

Notice that

G(l,ν)(ρ, ρ) = − i
2
σ1 , (5.4.123)

as follows from the coincidence limit of the step function. Since we will need them shortly,

we present the asymptotic behavior of the solutions h
(l,iν)
+ (ρ) and φfree

(l,iν)(ρ) in the region

where (l + 1
2)→∞ and ν = α(l + 1

2) with 0 < α < 1,

h
(l,iν)
+ (ρ) ≈ F(ρ) e−(l+ 1

2
)η(ρ)

 1 + 1
l+ 1

2

(
A(ρ)− im

2α

)
−1+
√

1+α2 sinh2 ρ
α sinh ρ

(
1 + 1

l+ 1
2

(
B(ρ) + im

2α

))
 ,

φfree
(l,iν)(ρ) ≈ G(ρ) e(l+ 1

2
)η(ρ)

 1 + 1
l+ 1

2

(
C(ρ)− im

2α

)
−1+
√

1+α2 sinh2 ρ
α sinh ρ

(
1 + 1

l+ 1
2

(
D(ρ) + im

2α

))
 ,

(5.4.124)

(5.4.125)

where η(ρ) was defined in (5.4.91) and the rest of the functions involved satisfy the relations

F(ρ)G(ρ) =
iα

2
√

1 + α2 sinh2 ρ
, B(ρ) = A(ρ) +

1 +
√

1 + α2 sinh2 ρ

2(1 + α2 sinh2 ρ)

C(ρ) = −A(ρ) , D(ρ) = −A(ρ)− −1 +
√

1 + α2 sinh2 ρ

2(1 + α2 sinh2 ρ)

(5.4.126)

As we will show below, the explicit forms of the functions F(ρ), G(ρ) and A(ρ) do not play

any role in the computation, so we do not present them here. Notice that we have included

the first sub-dominant term.
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5.4.4.2 Regular Solution and Jost function

We now consider the eigenvalue problem for the full operator (5.4.112). The regular

solution is constructed using the Lippmann-Schwinger equation, with the help of the free

Green’s function (5.4.121),

φ(l,ν)(ρ) = φfree
(l,ν)(ρ) +

ˆ ρ

0
dρ′G(l,ν)(ρ, ρ′)σ3 U(ρ′)φ(l,ν)(ρ

′) . (5.4.127)

Naively one would think that φ(l,ν)(ρ) −→ φfree
(l,ν)(ρ) as ρ → 0. However, a more careful

analysis reveals that13

φ(l,ν)(ρ) ≈ φfree
(l,ν)(ρ) +G(l,ν)(ρ, ρ)σ3 U(ρ)

ˆ ρ

0
dρ′φfree

(l,ν)(ρ
′)

≈ i

Γ
(
l + 1

2

)√π

2

∣∣∣∣∣Γ
(
l + 1

2 − iν
)

Γ
(

1
2 − iν

) ∣∣∣∣∣ (ρ2)l− 1
2

(
λ−m
λ+m

) 1
4

 i
λ+m+ V (0)−W (0)

2l + 1
ρ

1

 .

(5.4.128)

This is consistent with the behavior obtained by studying the differential equation near

the origin. Accor dingly, for l ≤ −1
2 and λ > 0, we have

φ(l,ν)(ρ) ≈ 1

Γ
(
|l|+ 1

2

)√π

2

∣∣∣∣∣Γ
(
|l|+ 1

2 − iν
)

Γ
(

1
2 − iν

) ∣∣∣∣∣ (ρ2)|l|− 1
2

(
λ+m

λ−m

) 1
4

 1

i
λ−m− V (0)−W (0)

2|l|+ 1
ρ

 ,

(5.4.129)

and similarly for the remaining two sectors. At any rate, the normalization of the regular

solution is fixed by the normalization of the free eigenfunctions (5.4.115).

The Jost function can be extracted from the large ρ behavior of the solution by means

13Both G(l,ν)(ρ, ρ) and U(ρ) are finite at ρ = 0, so the leading behavior is dictated by φfree(l,ν)(ρ).
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of its definition (5.4.76). A direct evaluation yields14

gl(ν) = 1 +

ˆ ∞
0

dρ′ sinh ρ′h
(l,ν)
+ (ρ′)TU(ρ′)φ(l,ν)(ρ

′) . (5.4.130)

As in the bosonic case, it will be sufficient to retain terms up to second order in the potential

U(ρ) so that

ln gl(ν) =

ˆ ∞
0

dρ sinh ρ h
(l,ν)
+ (ρ)TU(ρ)φfree

(l,ν)(ρ)

−
ˆ ∞

0
dρ sinh ρ h

(l,ν)
+ (ρ)TU(ρ)h

(l,ν)
+ (ρ)

ˆ ρ

0
dρ′ sinh ρ′ φfree

(l,ν)(ρ
′)TU(ρ′)φfree

(l,ν)(ρ
′) + O(U3) .

(5.4.131)

We now need to continue the Jost function to imaginary radial momentum and extract

its asymptotic behavior in the region
∣∣l + 1

2

∣∣ → ∞ and ν = α
∣∣l + 1

2

∣∣ (0 < α < 1). In the

sector of positive l and positive λ we can make use of the asymptotic expansions presented

above. The calculation proceeds much like the bosonic case with the proviso that the

eigenfunctions have spinorial structure. However, the fermionic potential is l-independent

and now subleading orders in (5.4.124)-(5.4.125) do contribute. Again resorting to a saddle

point approximation we find

ln g+
l (iν) =

iα

2

ˆ
dρ

sinh ρ
(
U

(0)
hφ + 1

l+ 1
2

U
(1)
hφ

)
√

1 + α2 sinh2 ρ
+

α2

4(2l + 1)

ˆ ∞
0

dρ
sinh3 ρUhh Uφφ

(1 + α2 sinh2 ρ)
3
2

+O
(
l−2
)
,

(5.4.132)

14As in the bosonic case, the effect of the shift in the Fourier mode due to the constant asymptotic
value of the gauge field can be absorbed in the definition of the Jost function.
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where

U
(0)
hφ = (U11 − U22)− 1

α sinh ρ
(U12 + U21)−

√
1 + α2 sinh2 ρ

α sinh ρ
(U12 − U21) , (5.4.133)

U
(1)
hφ = − im

α
(U11 + U22)− U22

1 + α2 sinh2 ρ
+

α sinh ρ

2(1 + α2 sinh2 ρ)
(U12 + U21) ,

Uhh = U11 + U22

(
−1 +

√
1 + α2 sinh2 ρ

α sinh ρ

)2

+
−1 +

√
1 + α2 sinh2 ρ

α sinh ρ
(U12 + U21) ,

Uφφ = U11 + U22

(
1 +

√
1 + α2 sinh2 ρ

α sinh ρ

)2

− 1 +
√

1 + α2 sinh2 ρ

α sinh ρ
(U12 + U21) .

As was previously mentioned, these expressions are independent of the function A(ρ) ap-

pearing in the asymptotic expansions of h
(l,ν)
+ (ρ) and φfree

(l,ν)(ρ).

The remaining three sectors of solutions are obtained by performing the operations

(5.4.119), which amount to the substitutions U → (iσi)
TU(iσi) and m→ ±m in the above

formulæ. After summing over all four sectors and discarding a ν-independent term we

identify the potentially divergent part as

ln gasym
l (iν) + ln gasym

−l (iν) ≡ 2

l + 1
2

ˆ ∞
0

dρ sinh ρ
(U11 +m) (U22 +m)−m2√

1 + α2 sinh2 ρ

+
α2

2(l + 1
2)

ˆ ∞
0

dρ sinh3 ρ
(U11 − U22)2 − (U12 + U21)2(

1 + α2 sinh2 ρ
) 3

2

,

(5.4.134)

where we made use of the definition below (5.4.79). Note that

lim
ν→∞

(
ln gasym

l (iν) + ln gasym
−l (iν)

)
= 0 . (5.4.135)

On the other hand, a similar calculation but in the limit of large ν and fixed l yields

lim
ν→∞

(ln gl (iν) + ln g−l (iν)) = 2i

ˆ
dρ (U21 − U12) , (5.4.136)

which is non-vanishing. This is an effect of the normalization (5.4.128).

112



5.4.4.3 Analytic continuation

The analytic continuation of (5.4.79) proceeds much in the same way as for bosons. We

split the sum over Fourier modes as

ζ̂O2(s) = ζ̂f (s) + ζ̂d(s) , (5.4.137)

where

ζ̂f (s) =
sinπs

π

∞∑
l= 1

2

ˆ ∞
ν0

dν
(
ν2 − ν2

0

)−s
∂ν
(
ln gl(iν) + ln g−l(iν)− ln gasym

l (iν)− ln gasym
−l (iν)

)
,

ζ̂d(s) =
sinπs

π

∞∑
l= 1

2

ˆ ∞
ν0

dν
(
ν2 − ν2

0

)−s
∂ν
(
ln gasym

l (iν) + ln gasym
−l (iν)

)
.

(5.4.138)

The series in ζf (s) is now convergent at s = 0 and we find

ζ̂f (0) = 0 ,

ζ̂ ′f (0) = −
∞∑
l= 1

2

(
ln gl(iν0) + ln g−l(iν0)− ln gasym

l (iν0)− ln gasym
−l (iν0)− 2i (U12 − U21)

)
,

(5.4.139)

Were it not for the last term, coming from (5.4.136), the sum over Fourier modes would

suffer from a linear divergence. In turn, to compute ζd(s) we make use of the asymptotic

form of the Jost function given in (5.4.134) and the results (5.4.102)-(5.4.103) to perform

the momentum integrals, thus obtaining

ζ̂d(s) =−
2Γ
(
s+ 1

2

)
Γ (1− s)

Γ
(

1
2

) ˆ ∞
0

dρ (sinh ρ)2s+1
(
(U11 +m) (U22 +m)−m2

)
R1(s, ρ)

(5.4.140)

−
Γ
(
s+ 1

2

)
Γ (1− s)

2Γ
(

1
2

) ˆ ∞
0

dρ (sinh ρ)2s+1
(

(U11 − U22)2 − (U12 + U21)2
)
R2(s, ρ) .

The sums R1(s, ρ) and R2(s, ρ) become equal to (5.4.105) and (5.4.106), respectively, after

shifting l→ l− 1
2 ∈ N

+ and using ν0 = m. The shift is a legal operation since we have not

set s = 0 yet and the sums are convergent. Surely, the continuation of R1(s, ρ) and R2(s, ρ)
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is the same as before. Hence we arrive at

ζd(0) =−
ˆ ∞

0
dρ sinh ρ

(
(U11 +m) (U22 +m)−m2

)
ζ̂ ′d(0) =− 2

ˆ ∞
0

dρ sinh ρ

(
ln

(
sinh ρ

2

)
+ γ

) (
(U11 +m) (U22 +m)−m2

)
+

1

2

ˆ ∞
0

dρ sinh ρ
(

(U11 − U22)2 − (U12 + U21)2
)

−
∞∑
l= 1

2

(
ln gasym

l (iν0) + ln gasym
−l (iν0)− 2

l + 1
2

ˆ ∞
0

dρ ρ
(
(U11 +m) (U22 +m)−m2

))
,

where we have used the expression (5.4.134) to recognize ln gasym
l (iν0) + ln gasym

−l (iν0).

Collecting all the pieces we obtain

ζ̂O2(0) =−
ˆ ∞

0
dρ sinh ρ

(
(U11 +m) (U22 +m)−m2

)
ζ̂ ′O2(0) =− 2

∞∑
l= 1

2

(
ln g+

l (iν0) + ln g+
−l (iν0)− i

ˆ
dρ (U21 − U12) +

1

l + 1
2

ζO2(0)

)
+ 2γζ̂O2(0)

− 2

ˆ ∞
0

dρ sinh ρ ln

(
sinh ρ

2

)(
(U11 +m) (U22 +m)−m2

)
+

1

2

ˆ ∞
0

dρ sinh ρ
(

(U11 − U22)2 − (U12 + U21)2
)
,

(5.4.141)

where we have made explicit that since λ(iν0) = 0, the Jost functions g+
l (iν0) and g−l (iν0)

coincide. Finally, through (5.4.77), (5.4.70) and (5.4.136) we identify

ζ̂ ′O2
l
(0) = −2 ln g+

l (iν0)− i
ˆ ∞

0
dρ (U12 − U21) . (5.4.142)

Writing the potential components in terms of the background fields and recalling that

ζ̂O(s) = 1
2 ζ̂O2(s) we arrive at our main result (5.2.16) for the determinant of a fermionic

operator.

5.5 Conclusion

In this chapter we have explicitly computed the determinants for a general class of

circularly-symmetric bosonic and fermionic operators in AdS2 and spaces that are con-
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formally AdS2. In this context there are a number of options depending on the regu-

larization technique used. Some widely used regularization techniques are not explicitly

diffeormophism invariant. Our main result is to have obtained answers that are completely

aligned with the zeta-function regularization method. Consequently, and importantly, we

now have diffeormphic-invariant expressions for such determinants.

Our driving motivation has been to enlarge the arsenal of tools required to push the

AdS/CFT correspondence into its precision regime. An important limitation of our com-

putation is that it exploits, in a crucial manner, the angular symmetry of the problem.

Namely, we are able to turn the problem into effectively a one-dimensional one due to the

symmetry. There are many problems in this class, some we have mentioned but others are

less obvious such as the one-loop correction to the anti-parallel lines. It would be interesting,

however, to have a better understanding of the form of the determinant independently of the

symmetries and ultimately a computational approach that is intrinsically two-dimensional.

The drive to less symmetric situations is not merely an academic goal. There are examples

which are under control from the localization point of view but where the symmetry is not

preserved [127]. More general methods are still needed and it would be valuable to develop

them.

Precision holography has largely focused on the results provided by supersymmetric

localization. It would be great to connect with the efforts developed in the context of

integrability [128],[129]. Integrability provides a wide field to explore from the point of semi-

classical gravity computations. Ultimately, one would hope to tackle questions with less or

no supersymmetry and where integrability does not play a role. We also expect that our

methods will find use in other problems possibly related to one-loop gravity computations

in the context of corrections to black hole entropy, as determinants in AdS2 have already

been found in many works starting with [8] and its sequels.

115



CHAPTER VI

Zeta-function Regularization of Holographic

Wilson Loops

6.1 Introduction

The most studied examples at the quantum level are the holographic duals of the 1
2 -

BPS and 1
4 -BPS Wilson loops in N = 4 SYM. In the semi-classical approximation the

one-loop corrections are equivalent to computations of determinants of certain Laplace-like

operators in curved spaces. Determinant of operators in curved space have a long history

in physics and also in mathematics as sources of spectral information. There are, indeed,

various computational methods that have already been applied in the context of holographic

Wilson loops. For example, the expectation value of the holographic 1
2 -BPS Wilson loop was

originally computed using ζ-function techniques in [21] and subsequently revisited using the

Gelfand-Yaglom approach in [23]. More recently the better-defined problem of computing

the difference of the effective actions of the holographic 1
4 - and 1

2 -BPS strings has received

particular attention since supersymmetric localization provides a precise answer. The first

attempts were reported in [26, 27]. These two groups used a Gelfand-Yaglom based method

to tackle the problem but did not find a match with the field theory prediction. Ultimately,

after a careful analysis, the mismatch was traced back to a change in topology from the

disk to the cylinder and the use of a diffeomorphism-invariant IR cutoff [29].

A more immediate motivation for developing ζ-function regularization techniques stems
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from the fact that using perturbative heat kernel techniques to the first nontrivial order

in the latitude angle, the authors of [28] found a match between the gauge and gravity

calculations for the expectation value of the 1
4 -BPS latitude Wilson loop. This suggests

that ζ-function might be the correct framework to compute the one-loop determinants for

the spectrum of fluctuations of the string; it also attacks the problem directly on the disk

rather than mapping it to the cylinder as done in [23, 26, 27, 29]. The holographic dual to

the 1
2 -BPS Wilson loop is a fundamental string with AdS2 worldsheet. For this homogeneous

space one can address its one-loop effective action with results dating back to [130, 131]

as was done in [21, 25]. For the 1
4 -BPS, however, the space is no longer homogeneous and

new technology is required to evaluate the determinants. In this chapter we approach the

computation of one-loop determinants using recent results of ζ-function regularization of

Laplace-like operators in conformally AdS2 spaces that are reported in Chapter V. There is a

strong general motivation to develop ζ-function regularization. Starting with the insightful

works of [112],[113], ζ-function regularization methods have shown to be highly reliable in

various areas of applications [114]; we hope that generalizing such methods will find natural

applications in several contexts.

We show that the ζ-function regularized answer matches at leading order in the small

latitude angle but receives correction at higher order, leading to a mismatch with the

expected field theory answer.

The rest of the chapter is organized as follows. In section 6.2 we briefly review some

of the most salient features of the semiclassical approach to holographic Wilson loops.

Section 6.3 presents a summary of the result of our companion paper where we obtained

explicit expressions for determinants of general Laplace-like operators in conformally AdS2

spacetimes. Section 6.4 determines the ratio of the latitude to the 1
2 -BPS holographic

Wilson loops. We conclude in section 6.5.
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6.2 Latitude Wilson loops

For this chapter to be self-contained we briefly review some of the most salient features

of the holographic Wilson loops we discuss. This subject has been the center of a lot of

investigation recently and we refer the reader to the works [26, 27] for omitted details.

The 1
4 -BPS latitude Wilson loop (in the fundamental representation of SU(N)) is defined

as [132, 119]

W (C) =
1

N
TrP exp

˛
C
ds
(
iAµẋ

µ + |ẋ|ΦI n
I(s)

)
,

where P denotes path ordering along the loop and C labels a curve parametrized as

xµ(s) = (cos s, sin s, 0, 0) , nI(s) = (sin θ0 cos s, sin θ0 sin s, cos θ0, 0, 0, 0), s ∈ (0, 2π)

For θ0 = 0, this operator was shown to preserve half of the supersymmetries and its ex-

pectation value was evaluated exactly, under certain conjectures [Gaussian], by [133] and

[134]. The definitive proof was provided by Pestun via the by now thoroughly exploited

supersymmetric localization technique [19]. The answer, exact in the gauge group rank N

and the t’ Hooft coupling λ, is

〈W 〉circle =
1

N
L1
N−1

(
− λ

4N

)
eλ/8N . (6.2.1)

More generally, for arbitrary values of θ0, the vacuum expectation value of this operator is

conjectured to be given by a simple re-scaling of the ’t Hooft coupling λ → λ′ = λ cos2 θ0

in the above exact expression [132, 119, 135].

The dual 1
2 -BPS string has an AdS2 ⊂ AdS5 worlsheet with disk topology,

ds2 = dρ2 + sinh2ρ dτ2, ρ ≥ 0 , τ ∼ τ + 2π . (6.2.2)

On the other hand, the 1
4 -BPS string worldsheet forms a cap through the north pole of
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S2 ⊂ S5 and the induced geometry is asymptotic to AdS2,

ds2
M = M(ρ) ds2, M(ρ) = 1 +

sin2 θ(ρ)

sinh2 ρ
, sin θ(ρ) =

sinh ρ sin θ0

cosh ρ+ cos θ0
, (6.2.3)

where 0 ≤ θ0 ≤ π
2 is the latitude angle. The 1

2 -BPS solution corresponds to θ0 = 0.

The string action can be evaluated on-shell on this classical solution. The result, after an

appropriate renormalization, is [132]

S(0) = −
√
λ cos θ0 . (6.2.4)

Since 〈W 〉 ' exp
(
−S(0)

)
= exp

(√
λ cos θ0

)
, we recover, at the leading classical level, the

expectation (6.2.5) from field theory.

Comparing the one-loop effective actions of the 1
4 and 1

2 -BPS strings, as discussed in

[26, 27], and anticipated in [23] leads to a better defined string theory problem since both

dual strings have world-sheets with disk topology. The general expectation is that the

issues related to ghost zero modes and other aspects of string perturbation theory on curved

spacetimes might cancel upon considering the difference of effective actions. The exact field

theory answer at large λ is

〈W 〉latitude

〈W 〉circle

' exp

(√
λ(cos θ0 − 1)− 3

2
ln cos θ0 + . . .

)
. (6.2.5)

The leading order term in the large λ expansion was matched against a particular string

worldsheet identified in [132]. In recent years, there has been a strong effort in computing

the −(3/2) ln cos θ0 term from the string theory one-loop effective action [26, 27, 28, 29]. In

this work we approach this question using ζ-function regularization.

At the semiclassical level, the fluctuations of the fundamental string dual to the 1
4 -BPS
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Wilson loop were thoroughly studied in [26, 27]. The spectrum involves the operators

O1(θ0) = M−1 (−gµν∇µ∇ν + 2) , O2(θ0) = M−1 (−gµν∇µ∇ν + V2) ,

O3±(θ0) = M−1 (−gµνDµDν + V3) , Dµ = ∇µ ± iAµ ,

O±(θ0) = M−
1
2

(
−i
(
/D +

1

4
/∂ lnM

)
− iΓ01 (1 + V )±W

)
, Dµ = ∇µ ±

i

2
Aµ ,

(6.2.6)

with gµν and ∇µ evaluated for the AdS2 metric (6.2.2), Aρ = 0, Aτ = A and

V2(ρ) = −2 sin2 θ(ρ)

sinh2 ρ
, V3(ρ) = −∂ρA(ρ)

sinh ρ
, V (ρ) =

1√
M(ρ)

− 1 ,

W (ρ) =
sin2 θ(ρ)√
M(ρ) sinh2 ρ

, A(ρ) = 1− 1 + cosh ρ cos θ(ρ)

cosh ρ+ cos θ(ρ)
.

(6.2.7)

The difference in 1-loop effective actions with the 1
2 -BPS string is then

e−∆Γ1-loop
effective(θ0) =


(

det O+(θ0)
det O+(0)

)4 (
det O−(θ0)
det O−(0)

)4

(
det O1(θ0)
det O1(0)

)3 (
det O2(θ0)
det O2(0)

)3 (
det O3+(θ0)
det O3+(0)

)1 (
det O3−(θ0)
det O3−(0)

)1


1
2

. (6.2.8)

The powers in the fermionic determinants reflect the Majorana nature of the spinors in

Lorentzian signature.

The main difficulty in evaluating the above determinants is that the space is not ho-

mogeneous as is the case for θ0 = 0 where the results of [130, 131] are readily applied. A

perturbative approach, valid for small values of θ0, was taken in [28] leading to the following

evaluation of the one-loop effective action

∆Γ1-loop
effective(θ0) = −3

4
θ2

0 +O
(
θ4

0

)
, (6.2.9)

which coincides, to this order, with the expected field theory answer ∆Γ1-loop
effective(θ0) =

3
2 ln cos θ0 as follows from Eq. 6.2.5. We will reproduce the perturbative result in this

chapter and consider the more general problem at arbitrary θ0.
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6.3 Zeta-function regularization on AdS2

In this section we recall a number of results for determinants of Laplace- and Dirac-like

operators in AdS2 from Chapter V. The method applies to operators defined on the AdS2

geometry (6.2.2) and in the presence of external fields. Concretely, we consider general

operators of the form:

Ō = −gµνDµDν +m2 + V , (bosons)

Ō = −i
(
/D + /∂Ω

)
− iΓ01 (m+ V ) +W , (fermions)

(6.3.10)

(6.3.11)

with Dµ = ∇µ− iqAµ. Under the assumption of circular symmetry, these operators can be

expanded into their Fourier components

Ōl = − 1

sinh ρ
∂ρ (sinh ρ ∂ρ) +

(l − qA)2

sinh2 ρ
+m2 + V , l ∈ Z , (bosons)

Ōl = −iΓ1

(
∂ρ +

1

2
coth ρ+ ∂ρΩ

)
+ Γ0

(l − qA)

sinh ρ
− iΓ01 (m+ V ) +W , l ∈ Z+

1

2
, (fermions)

(6.3.12)

where we have set Aρ = 0 and Aτ = A(ρ), as well as V = V (ρ), W = W (ρ) and Ω = Ω(ρ).

Appropriate regularity conditions at the origin and fall-off conditions at infinity are required

for the background fields (see chapter V for further details).

The ratio of determinants between the operators (6.3.10)-(6.3.11) and their free counter-

parts, obtained by setting A = Ω = V = W = 0, is defined using ζ-function regularization

ln
det Ō

det Ōfree
≡ −ζ̂ ′Ō(0)− ln(µ2)ζ̂Ō(0) , ζ̂Ō(s) ≡ ζŌ(s)− ζfree(s) , (6.3.13)

where µ is the renormalization parameter. Extending previous results [117] it is shown in

Chapter V that these ratios are given by simple expressions. The result for bosons reads

ln
det Ō

det Ōfree
= ln

det Ō0

det Ōfree
0

+

∞∑
l=1

(
ln

det Ōl
det Ōfree

l

+ ln
det Ō−l
det Ōfree

−l
+

2

l
ζ̂Ō(0)

)
− 2

(
γ + ln

µ

2

)
ζ̂Ō(0)

+

ˆ ∞
0

dρ sinh ρ ln (sinh ρ)V − q2

ˆ ∞
0

dρ
A2

sinh ρ
,

ζ̂Ō(0) = −1

2

ˆ ∞
0

dρ sinh ρ V ,
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whereas for fermions we have

ln
det Ō

det Ōfree
=

∞∑
l= 1

2

(
ln

det Ōl
det Ōfree

l

+ ln
det Ō−l
det Ōfree

−l
+

2

l + 1
2

ζ̂Ō(0)

)
− 2

(
γ + ln

µ

2

)
ζ̂Ō(0)

+

ˆ ∞
0

dρ sinh ρ ln (sinh ρ)
(

(m+ V )2 −W 2 −m2
)
− q2

ˆ ∞
0

dρ
A2

sinh ρ
−
ˆ ∞

0
dρ sinh ρW 2,

ζ̂Ō(0) = −1

2

ˆ ∞
0

dρ sinh ρ
(

(m+ V )2 −W 2 −m2
)
,

with γ ≈ 0.57721, the Euler-Mascheroni constant. In turn, the ratio for Fourier modes is

computed as

det Ōl
det Ōfree

l

=



ψl(∞)

ψfree
l (∞)

, (bosons)

ψ
(i)
l (∞)

ψ
(i) free
l (∞)

eΩ(∞)−Ω(0) , (fermions)

(6.3.14)

where ψl(ρ) is the solution to the homogeneous equation that is regular at ρ = 0,

Ōlψl = 0 , ψl(ρ) −→
ρ→0


ρ|l| , (bosons)

ρ|l|−
1
2 , (fermions).

(6.3.15)

For fermions ψ
(i)
l (ρ) is one (either) of the two components of the regular spinor solution

to the first order homogeneous equation. The overall normalization of ψl in (6.3.14) is not

important as long as the leading coefficient of the small ρ expansion matches that of the

free solution1 ψfree
l .

For the 1
4 -BPS strings we are interested in, the operators do not precisely take the form

1This is analogous to the usual conditions ψ(0) = 0, ψ′(0) = 1 imposed on the homogeneous solu-
tions in the application of the Gelfand-Yaglom method to 1d determinants with Dirichlet boundary
condition at the origin. In two and higher dimensions, the centrifugal barrier imposes the regu-
lar solution to vanish as a power law depending on the angular momentum, therefore generically
ψ′(0) = 0.
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(6.3.10) or (6.3.11), but rather they are conformally related to them

O = M−1Ō , (bosons)

O = M−
1
2 Ō . (fermions)

(6.3.16)

(6.3.17)

This can be understood as the effect of a Weyl rescaling of the metric by a function M(ρ),

which we assume to be smooth everywhere with M(ρ) → 1 for ρ → ∞. Happily, the

determinants of O and Ō are related by an anomaly calculation (cf. appendix A of [21]).

Indeed2,

ln

(
detO

det Ōfree

)
= ln

(
det Ō

det Ōfree

)
+

1

4π

ˆ
d2σ
√
g lnM

[
m2 + V − 1

6
R+

1

12
∇2 lnM

]
(6.3.18)

for bosons, while for fermions the result is

ln

(
detO

det Ōfree

)
= ln

(
det Ō

det Ōfree

)
+

1

4π

ˆ
d2σ
√
g lnM

[
(m+ V )2 −W 2 +

1

12
R− 1

24
∇2 lnM

]
.

(6.3.19)

6.4 One-loop effective action

In this section we apply the general results quoted in the previous section to the holo-

graphic description of the 1
4 -BPS latitude Wilson loops in N = 4 SYM [119]. We refer the

reader to the extensive literature for details; in particular to [26, 27, 28, 29].

Before plunging into the calculation of each individual ratio in (6.2.8), it is useful to

combine the full spectrum of operators and gain some insight into the cancellations that

occur in the one-loop effective action. Recall that, according to the discussion in section

6.3 (see eqns. (6.3.18) and (6.3.19)), the computation of each determinant is divided into

two parts: an anomaly due to the Weyl transformation that maps the induced geometry

(6.2.3) to AdS2, and the ratio for the corresponding rescaled operators. Notice that for the

2Boundary terms involving the extrinsic curvature and the normal derivative of the conformal
factor do not contribute in the present case (see Chapter V for details).
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operators (6.2.6),

O(θ0 = 0) = Ō(θ0 = 0) = Ōfree. (6.4.20)

Let us focus on the Weyl anomaly first. One can check that the potential and mass

terms for the 1
4 -BPS operators (6.2.6) satisfy

8×
(

(1 + V )2 −W 2
)
− 3× 2− 3× V2 − 2× V3 = −R+∇2 lnM , (6.4.21)

a relation which is in fact a general feature of the gauge-fixed Nambu-Goto string, where the

right hand side is recognized as the curvature of the induced metric, R[Mg] = M−1
(
R[g]−∇2 lnM

)
.

The contribution from the curvature and conformal factor terms in (6.3.18)-(6.3.19) is

(
8×

(
1

12

)
− 8×

(
−1

6

))
R+∇2 lnM

(
8×

(
− 1

24

)
− 8×

(
1

12

))
= 2R−∇2 lnM .

(6.4.22)

We then find that the modification to the ratio of determinants due to the rescaling of the

metric is3

anomaly :
1

4π

ˆ
d2σ
√
g R lnM = −

(
θ0 sin θ0 + 4 cos2 θ0

2
ln cos

θ0

2

)
. (6.4.23)

Unlike the case where one maps the induced worldsheet metric to flat space [29], the anomaly

is non-vanishing4. This is an effect of the curvature of AdS2 and is perfectly compatible

with the conformal invariance of the string action [21] (see also appendix B of [136]).

We now move on to the computation of the determinants on AdS2 using (6.3.14) and

(6.3.14), starting with the total zeta-function at the origin

ζ̂tot(0) = 3ζ̂Ō1
(0) + 3ζ̂Ō2

(0) + ζ̂Ō3+
(0) + ζ̂Ō3−(0)− 4ζ̂Ō+

(0)− 4ζ̂Ō−(0) . (6.4.24)

3The attentive reader may notice an unexpected non-trigonometric (linear) dependence θ0 in
(6.4.23). This comes about because the primitive involves inverse trigonometric functions which
when evaluated at the endpoints and for θ0 ∈ (0, π2 ) simplify to the above expression.

4In that case the conformal factor is M(ρ) sinh2 ρ. This becomes singular as ρ → ∞, which
forces the introduction of a large cut-off to regulate the divergences. Consequently, boundary terms
must be added. These cancel, as does the bulk contribution since R = 0.
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This quantity determines the dependence of the one-loop effective action on the renor-

malization scale. Equations (6.3.14) and (6.3.14) show a slightly different combination of

potentials than in (6.4.21), namely,

8×
(

(1 + V )2 −W 2 − 1
)
− 3× V2 − 2× V3 = ∇2 lnM , (6.4.25)

which by itself does not vanish. When integrated, however, it does,

ˆ ∞
0

dρ sinh ρ∇2 lnM = sinh ρ ∂ρ lnM
∣∣∣∞
0

= 0 ⇒ ζ̂tot(0) = 0 . (6.4.26)

As a consequence, no ambiguity related to the choice of renormalization scale, µ, affects the

effective action. The above cancellation also means that the Fourier sum of the combined

bosons and fermions one-dimensional radial determinants does not need regularization5, in

accordance with the calculations of [26, 27].

A related quantity involving the same combination of potentials as ζ̂tot(0) is the sum of

ln (sinh ρ) integrals in (6.3.14) and (6.3.14), which when added to the Weyl anomaly gives

anomaly + ln sinh ρ :

ˆ ∞
0

dρ sinh ρ

(
1

2
R lnM + ln (sinh ρ)∇2 lnM

)
= −2 ln cos

θ0

2
.

(6.4.27)

As we will see, this terms cancels the reminder that was found in [26, 27]. We can also keep

track of the contribution coming from the gauge field, easily seen to vanish:

A2 : 1× (1)2 + 1× (−1)2 − 4×
(

1

2

)2

− 4×
(
−1

2

)2

= 0 . (6.4.28)

In contrast, the last term in (6.3.14) involving the fermionic potential gives

W 2 : −8×
ˆ ∞

0
dρ sinh ρW 2 = 4θ0 sin θ0 − 16 sin2 θ0

2
. (6.4.29)

5Each term in (6.4.24) is responsible for subtracting the divergence in the sum over Fourier
modes in each individual determinant (see (6.3.14) and (6.3.14)).
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Ultimately, this expression accounts for the mismatch with the gauge theory prediction

(6.2.5).

Finally, one can check that the radial determinants at fixed Fourier mode coincide with

those presented in [26, 27]. Therefore,

∑
l

ln
det Ōl

det Ōfree
l

: −3 ln cos θ0 + 2 ln cos
θ0

2
. (6.4.30)

In hindsight this was to be expected since the calculation involves solving a set of homo-

geneous equations in AdS which translate into those of [26, 27] after an appropriate Weyl

transformation of the metric and properly adjusting the potentials and connection terms.

The difference in the present case is that instead of imposing a sharp Dirichlet boundary

condition at small but finite value of ρ as in [26, 27], here we only require regularity of the

solutions at the center of the disk. Nevertheless, the answer is the same.

Putting all the above results together, the final expression for the difference in the

one-loop effective actions of the 1
4 and 1

2 -BPS strings is

∆Γ1-loop
effective(θ0) =

3

2
ln cos θ0 + 2

(
4 sin2 θ0

2
− θ0 sin θ0

)
= −3

4
θ2

0 +O
(
θ4

0

)
. (6.4.31)

As indicated above, when taking the small θ0 limit, our holographic answer coincides with

the field theory prediction (6.2.5), just as in the perturbative ζ-function computation of

[28].

Let us briefly comment on this result. Recall that the works of [26, 27] computed

the effective action by looking only at the sum of the radial determinants, finding the

reminder ln cos θ02 in (6.4.30). Recently, it was argued in [29] that this term is corrected

for if a diffeomorphism-invariant regulator is used in the calculation, producing a match

between the string theory calculation and the gauge theory prediction. In contrast, the ζ-

function formalism is automatically diffeomorphism-invariant, and we see that this reminder

disappears due to the combination (6.4.27). Alas, there is an extra contribution coming from

the fermionic potential W 2 that yields a mismatch with the gauge theory calculation. At
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the moment we dare not speculate about the origin of this term.

For completness, we present the results for each individual determinant in the spectrum.

Taking into account (6.4.20)

ln

(
det O1(θ0)

det O1(0)

)
= θ0 sin θ0 +

1

2
sin2 θ0

2
+

(
7

3
+ 2 cos θ0

)
ln

(
cos

θ0

2

)
=

7

12
θ2

0 +O
(
θ4

0

)
,

ln

(
det O2(θ0)

det O2(0)

)
= −θ0 sin θ0 +

9

2
sin2 θ0

2
+

(
7

3
+ 2 cos θ0

)
ln

(
cos

θ0

2

)
− 2 ln (Γ (cos θ0))− ln (cos θ0)

=

(
1

12
− γ
)
θ2

0 +O
(
θ4

0

)
,

ln

(
det O3±(θ0)

det O3±(0)

)
=

1

2
sin2 θ0

2
+

(
7

3
+ 2 cos θ0

)
ln

(
cos

θ0

2

)
− ln (Γ (cos θ0))− ln (cos θ0)

=
1

2

(
1

6
− γ
)
θ2

0 +O
(
θ4

0

)
,

ln

(
det O±(θ0)

det O±(0)

)
=

1

2
θ0 sin θ0 +

(
7

3
+ 2 cos θ0

)
ln

(
cos

θ0

2

)
− ln (Γ (cos θ0))− ln (cos θ0)

=
1

2

(
11

12
− γ
)
θ2

0 +O
(
θ4

0

)
.

Our results match the perturbative heat kernel calculation of [28]. Notice that the first ratio

is entirely an effect of the Weyl anomaly, since the rescaled operators for the 1
4 -BPS and

the 1
2 -BPS solutions coincide. Actually, we have checked that all the ratios for the rescaled

operators, without including the anomaly, also match with the perturbative method for a

fixed AdS2 metric. It would be interesting to extend the perturbative heat kernel results of

[28] to the next order in θ0.

6.5 Conclusion

In this chapter we have computed the difference of one-loop effective actions of the 1
4 -

and 1
2 -BPS strings using ζ-function regularization. We were encouraged and motivated by

a previous perturbative heat kernel computation reporting agreement with the field theory

prediction at the first nontrivial order in the latitude angle θ0 [28]. It is worth highlighting

that we tackled the computation directly on the hyperbolic disk rather than mapping the

problem to a cylinder, as has been traditionally done [23, 26, 27, 29]. Along these lines, it
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would be an elucidating step to adapt our results to compute the ζ-function for circularly

symmetric operators defined on the flat cylinder geometry. This would shed some light

on the role of the diffeomorpism-invariant regulator advocated in [29]. We hope to pursue

these directions in the near future.

Alas, our complete computation shows that at higher order in θ0 the agreement is lost.

We are thus, left facing a puzzle. Armed with the supersymmetric localization answer

we can indulge in a form of answer analysis. As stated before, the remainder of previous

calculations does not appear in our approach since ζ-function regularization is explicitly

diffeormorphism invariant. One identifiable culprit for the discrepancy we now faced is the

term proportional to W 2 in the expression for the fermions. We suspect that ultimately

some aspects of chiral symmetry might be at play, as suggested in [137] in a different context.

Another potential problem underlying our discrepancy could be supersymmetry. We do not

see how to move forward in this direction at the moment but find it quit plaussible to be

the cause of the discrepancy. This work is a push in understanding the role of technical

methods needed to tackle precision computations in holography and we are certain that its

application will go beyond the one presented here.
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CHAPTER VII

Precision Holography in Type IIA with Wilson

Loops

7.1 Introduction

The advent of localization techniques has provided a plethora of exact results relevant

for the field theory sides of AdS/CFT correspondence, that is, for N = 4 SYM [19] and

for ABJM [138]. In this context, it is then natural to extrapolate the exact field theory

results to the regime where they could be directly compared with the supergravity and

semiclassical approximations. This approach was attempted very early on in the insightful

work of Drukker, Gross and Tseytlin [21]; it did not, however, led to a match with the

field theory prediction. This discrepancy motivated much work [22, 23, 24, 25] that largely

confirmed the original discrepancy. A recent revival of this line of effort took place in

[26, 27] which considered, on the gravity side, the one-loop effective actions corresponding

to the ratio of the expectation values of the 1
4 to the 1

2 BPS Wilson loops. Various groups

have made important subsequent contributions to this question [28] and recently a precise

match has been described, for the N = 4 SYM case, [29] after imposing a diffeomorphism

preserving cutoff.

In this chapter we take one step in the direction of extending some of the techniques

developed thus far to the context of the AdS/CFT pair AdS4 ×CP3/ABJM. We hope that

by turning our attention to the AdS4/ABJM pair we can gather complementary information
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to the one already available and ultimately learn about string perturbation theory in curved

backgrounds with Ramond-Ramond fluxes. There are, indeed, a number of exact results

obtained via localization of the ABJM theory starting with the free energy of the theory

on S3 [138] but most importantly to us there are various exact results for supersymmetric

Wilson loops for the 1
2 BPS [20] and, more recently, for the 1

6 BPS configuration [139]. We

consider one-loop effective actions of string configurations dual to those supersymmetric

Wilson loops in ABJM. Our focus is in understanding some aspects of the picture of precision

holography, that is, the matching of sub-leading corrections on the string theory side with

the prediction of field theory. As the first step in attacking the N = 6 case, in this first work

we provide all the details to set the wheels of precision holography in AdS4 × CP3/ABJM

with Wilson loops in motion.

The rest of the chapter is organized as follows. We briefly review the field theory

status of the expectation values of the relevant Wilson loops in section 7.2. In section 7.3

we discuss the classical string configurations and in section 7.4 we present the quadratic

fluctuations. The string theory semiclassical one-loop effective action is equivalent to the

computations of quotients of determinants. In section 7.5 we consider the perturbative

computation of determinants to first non-trivial order in the latitude angle θ0. Section 6

tackles the computation of the one-loop effective actions using ζ-function regularization.

We conclude with some comments and open problems in section 7.6. We relegate a number

of more technical aspects to a series of appendices, including: conventions D, geometric

data E, an explicit discussion of regularity conditions for the gauge fields F, and details of

the fermionic reduction G.

7.2 The 1
6-BPS Latitude Wilson Loop

The ABJM theory is a three-dimensional Chern-Simons-matter theory with U(N)k ×

U(N)k gauge group where the subindices indicate the Chern-Simons level [18]. The matter

sector contains four complex scalar fields CI , (I = 1, 2, 3, 4) in the bifundamental represen-

tation (N, N̄) and the corresponding complex conjugate in the (N̄,N) representation; the
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theory also contains fermionic superpartners (see [18] for details).

To build 1
6 supersymmetric Wilson loops, one starts considering only one of the gauge

fields of the whole U(N)×U(N) gauge group, denoted by Aµ. To preserve supersymmetry

we need to include a contribution from the matter sector. The main intuition comes from

the construction of supersymmetric Wilson loops in N = 4 SYM. However, in the absence

of adjoint fields, an appropriate combination of bi-fundamentals, CI , namely [140, 141, 142]

is required:

WR =
1

dim[R]
TrR P

ˆ (
iAµẋ

µ +
2π

k
|ẋ|M I

JCIC̄
J

)
ds, (7.2.1)

where R denotes the representation. It was shown in [140, 141, 142] that the above operator

preserves 1
6 of the 24 supercharges when the loop is a straight line or a circle and the matrix

takes the form M I
J = diag (1, 1,−1,−1).

A remarkable result of [138] was to show that the computation of the vacuum expectation

values of these Wilson loops reduces to a matrix model. Namely, the Wilson loop vev is

obtained by inserting TrR e
µi inside the following partition function:

Z(N, k) =
1

(N !)2

ˆ N∏
i=1

dµi
2π

dνi
2π

∏
i<j

(
2 sinh

µi−µj
2

)2 (
2 sinh

νi−νj
2

)2

∏
i,j

(
2 cosh

µi−νj
2

)2 exp

[
ik

4π

∑
i

(µ2
i − ν2

i )

]
.

(7.2.2)

A particularly impressive exact result was the computation of the supersymmetric free

energy of ABJM on S3 in terms of Airy functions [143, 144] which elucidated various aspects

of the interpolation between week and strong coupling in the context of ABJM. The results

that are more relevant for our current work pertain exact evaluations of Wilson loops. The

construction of the Wilson loop presented above in equation (7.2.1) does not capture the

1
2 BPS string configurations. These involved the introduction of a superconnection [145].

The exact expectation values of the 1
2 - and certain 1

6 -BPS Wilson loops were presented in

[20] and take the general form

〈W
1
2
� 〉 =

1

4
csc

(
2π

k

)
Ai
[(

2
π2k

)−1/3 (
N − k

24 −
7
3k

)]
Ai
[(

2
π2k

)−1/3 (
N − k

24 −
1
3k

)] , (7.2.3)
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where the denominator is recognized as the partition function of the ABJM theory obtained

in [54, 55]. The above result and many others in this class are exact to all orders in 1/N ,

up to exponentially small corrections in N . Recently, in [139], a matrix model for the exact

evaluation of the latitude BPS Wilson loops has been proposed. The expectation value for

any genus of the fermionic (in the sense of the superconnection [145]) latitude Wilson loop

is given in terms of Airy functions by (see equations (1.3) and (5.44) in [139]),

〈W
1
6
F (ν)〉ν = −

ν Γ(−ν
2 ) Ai

[(
2
π2k

)−1/3 (
N − k

24 −
6ν+1

3k

)]
2ν+2

√
π Γ
(

3−ν
2

)
sin
(

2πν
k

)
Ai
[(

2
π2k

)−1/3 (
N − k

24 −
1
3k

)] , (7.2.4)

where ν = sin(2α) cos θ0, the angle α can be freely chosen and determines the coupling to

matter, the geometric parameter we are interested in is θ0, and 0 ≤ ν ≤ 1. The beautiful

result above is the culmination of an impressive series of papers [146, 147, 148, 149] (see

also[150, 151]).

The fermionic latitude Wilson loop maps to a type IIA string configuration in the

AdS4 × CP3 background with endpoints moving in a circle inside CP3. When expanded to

the regime of validity of the holographic computation, namely, taking the leading genus-

zero expansion in the above, it has been shown to coincide with the semi-classical string

computation of the 1
6 -BPS Wilson loop expectation value [152].

〈W
1
6
F (ν)〉ν |g=0 = −ι

2−ν−2 κν Γ
(
− ν

2

)
√
π Γ
(

3
2 −

ν
2

) (7.2.5)

We will consider the ratio of 1
6 -BPS Wilson loop expectation value with the 1

2 -BPS one,

dual to a circular Wilson loop. Therefore, the field theory prediction to be matched to

our computation of the one-loop effective action of the string configuration takes the form

(ν = cos θ0)

∆Γ1-loop
effective(θ0) = ln

[
〈W

1
6
F (ν)〉ν

〈W
1
2
F (1)〉1

]
= ln

(
1

π
cot

(
π

cos θ0

2

))
− ln

(
sin2 θ0

2

)

+ 2 ln Γ

(
cos2 θ0

2

)
− ln

(
Γ(cos θ0)

)
− ln

(
cos θ0

)
=

1

2
θ2

0 +O(θ4
0).

(7.2.6)
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Anticipating the use of a perturbative result using heat kernel techniques, in the last line

above we have expanded the field theory answer for small latitude angle θ0.

7.3 String Configurations Dual to Supersymmetric Wilson

Loops

In this section we review the classical string configurations dual to the fermionic latitude

family of BPS Wilson loops. We present these results for the convenience of the reader and

to set up our notation but refer the interested reader to the original literature [140, 141, 142]

for the 1
2 BPS cofiguration and [152] for the latitude 1

6 BPS configuration.

7.3.1 The AdS4 × CP3 background

The Euclidean AdS4 (EAdS4) metric is written as an H2 × S1 foliation,

ds2
EAdS4

= cosh2 u
(
sinh2 ρ dψ2 + dρ2

)
+ sinh2 u dφ2 + du2 . (7.3.7)

Similarly, the metric on CP3 is taken to be

ds2
CP3 =

1

4

[
dα2 + cos2 α

2

(
dϑ2

1 + sin2 ϑ1 dϕ
2
1

)
+ sin2 α

2

(
dϑ2

2 + sin2 ϑ2 dϕ
2
2

)
+ cos2 α

2
sin2 α

2
(dχ+ cosϑ1 dϕ1 − cosϑ2 dϕ2)2

]
. (7.3.8)

The full metric is

ds2 = L2
(
ds2
EAdS4

+ 4 ds2
CP3

)
, L2 =

R3

4k
. (7.3.9)

Finally, the remaining background fields are

eΦ =
2L

k
, F(4) = −3ikL2

2
vol (AdS4) , F(2) =

k

4
dA , (7.3.10)
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where

vol (AdS4) = cosh2 u sinhu sinh ρ dψ ∧ dρ ∧ du ∧ dφ ,

A = cosαdχ+ 2 cos2 α

2
cosϑ1 dϕ1 + 2 sin2 α

2
cosϑ2 dϕ2 .

(7.3.11)

(7.3.12)

The factor of i in F(4) is due to the Euclidean continuation. The 2-form is proportional to

the Kahler form in CP3.

7.3.2 Classical String Solution

The classical 1/6-BPS string solution we are interested in has

u = 0 ,

α = 0 ,

ρ′ = − sinh ρ ,

ϑ′1 = − sinϑ1 ,

ψ = τ ,

ϕ1 = τ .

(7.3.13)

The induced metric is then

ds2 = L2A
(
dτ2 + dσ2

)
, A = sinh2 ρ+ sin2 ϑ2

1 = ρ′2 + ϑ′21 . (7.3.14)

The solution to (7.3.13) involves the latitude parameter θ0. We write,

sinh ρ =
1

sinhσ
, sinϑ1 =

1

cosh (σ + σ0)
, cos θ0 = tanhσ0. (7.3.15)

The induced geometry is disk shaped and asymptotes AdS2 at the boundary. The 1/2-BPS

limit corresponds to σ0 →∞ for which the induced geometry becomes exactly AdS2.

7.3.3 Symmetries of the classical solution

We start by recalling that the background geometry is constructed out from coset spaces

AdS4 = SO(2, 3)/SO(1, 3) and CP3 = SU(4)/SU(3)× U(1).

Before gauge-fixing, the string embedding is characterized by 10 worldsheet scalars

xm(τ, σ) and a 10-dimensional Majorana spinor θ whose dynamics is determined by the

type IIA Green-Schwarz action (more details below). The symmetries of the theory are:
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• Local:

– Diffeomorphisms:

δξx
m = ξa∂ax

m , δξθ = ξa∂aθ , (7.3.16)

where ξa is an arbitrary worldsheet vector field.

– κ-symmetry:

δκx
m =

i

2
θΓmδκθ , δκθ = (1 + ΓF )κ , ΓF =

εab

2
√
−g

ΓabΓ11 , (7.3.17)

where κ is an arbitrary 10-dimensional Majorana spinor and worldsheet scalar.

• Global:

– Target space isometries:

δλx
m = Km , δλθ = Ka∂aθ −

1

4
(∇mKn −∇nKm) Γmnθ , (7.3.18)

where Km is any target space Killing vector and Ka = ∂ax
mKm.

– Target space supersymmetries:

δεx
m = − i

2
θΓmδεθ , δεθ = ε , Dmε = 0 , (7.3.19)

where ε is any target space Killing spinor.

Given a classical solution (with fermions set to zero, θ = 0), the preserved bosonic

symmetries correspond to the set of transformations satisfying

δxm = 0 ⇒ Km + εa∂ax
m = 0 . (7.3.20)

In other words, the target space isometries inherited by the solution are those that leave

the embedding invariant up to worldsheet diffeomorphisms. Contracting this condition with
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gmn∂ax
n we can solve

εa = −Ka , (7.3.21)

where Ka = ∂ax
mKm. This in turn implies that, in order to generate a symmetry, the

Killing vector must satisfy

Km = gab∂ax
m∂bx

nKn . (7.3.22)

The logic for the fermionic symmetries is the same. The ones preserved by the back-

ground are those satisfying

δθ = 0 ⇒ ε+ (1 + ΓF )κ = 0 . (7.3.23)

These are target space supersymmetries which can be compensated by a local κ-symmetry

transformation. Multiplying by (1− ΓF ), we find that

(1− ΓF ) ε = 0 . (7.3.24)

This is the usual condition for preserved supersymmetries. This condition is in fact sufficient

since then we can solve

κ = −1

2
ε . (7.3.25)

For the case at hand, we find that the AdS4 × CP3 Killing vectors

K1 = ∂ψ + ∂ϕ1 ,

K2 = ∂φ ,

K3 = − cosϕ2 ∂ϑ2 + cotϑ2 sinϕ2 ∂ϕ2 +
sinϕ2

sinϑ2
∂χ ,

K4 = sinϕ2 ∂ϑ2 + cotϑ2 cosϕ2 ∂ϕ2 +
cosϕ2

sinϑ2
∂χ ,

K5 = ∂ϕ2

K6 = ∂χ ,

(7.3.26)
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generate a symmetry of the solution. The first Killing vector must be accompanied by a

translation in the worldsheet coordinate τ such that ετcl = −λcl and εσcl = 0; it corresponds

to an isometry of the induced geometry. The rest have zero norm on the worldsheet so

εacl = 0. Altogether we have a U(1)︸︷︷︸
K1

×U(1)︸︷︷︸
K2

× SU(2)︸ ︷︷ ︸
K3,K4,K5

×U(1)︸︷︷︸
K6

symmetry.

The geometric interpretation of the symmetries is most easily seen in the embedding

coordinates of EAdS4 ⊂ R5 and the Hopf fibration S1 ↪→ S7 → CP3:

1 = X2
0 −X2

1 −X2
2 −X2

3 −X2
4 ,

ds2 = −dX2
0 + dX2

1 + dX2
2 + dX2

3 + dX2
4 ,

X0 = coshu cosh ρ ,

X1 = coshu sinh ρ cosψ ,

X2 = coshu sinh ρ sinψ ,

X3 = sinhu cosφ ,

X4 = sinhu sinφ ,

(7.3.27)

z1 = cos
α

2
cos

ϑ1

2
e
i
2(ϕ1+χ

2 ) , z3 = sin
α

2
cos

ϑ2

2
e
i
2(ϕ2−χ2 ) ,

z2 = cos
α

2
sin

ϑ1

2
e
i
2(−ϕ1+χ

2 ) , z4 = sin
α

2
sin

ϑ2

2
e
i
2(−ϕ2−χ2 ) .

(7.3.28)

(7.3.29)

The worldsheet has z3 = z4 = 0.

In the next section we will consider perturbations of the string embedding around the

classical solution and look at the transformation properties of the fluctuations under the

preserved symmetries. It will prove convenient to take linear combinations of K3, K4 and

K5 that have a simple action on the fluctuations. We find that such combinations are

K ′3 = cos(ϑcl2 )
(

sin(ϕcl2 )K3 + cos(ϕcl2 )K4

)
+ sin(ϑcl2 )K5 ,

K ′4 = cos(ϕcl2 )K3 − sin(ϕcl2 )K4 ,

K ′5 = sin(ϑcl2 )
(

sin(ϕcl2 )K3 + cos(ϕcl2 )K4

)
− cos(ϑcl2 )K5 ,

(7.3.30)

(7.3.31)

(7.3.32)

K ′3 = cos(ϑcl2 ) sin(ϕ2 − ϕcl2 )∂ϑ2 +
(

cotϑ2 cos(ϑcl2 ) cos(ϕ2 − ϕcl2 ) + sinϑcl2

)
∂ϕ2

+
cos(ϑcl2 ) cos(ϕ2 − ϕcl2 )

sinϑ2
∂χ ,

(7.3.33)
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where ϑcl2 and ϕcl2 are the (constant) values that the coordinates ϑ2 and ϕ2 take on the

classical solution. We shall drop the primes henceforth.

7.4 Quadratic Fluctuations

Having reviewed the classical solution dual to the 1
6 -BPS latitude Wilson loop and its

symmetries, in this section we derive the corresponding spectrum of quadratic fluctuations.

There has already been some previous work for the case of the 1
2 -BPS configuration in [153]

and [118] whose spectrum is a limit of our result. We will start by giving a general expression

for the quadratic fluctuations of the type IIA string in AdS4 × CP3 and then specialize to

the case of the 1
6 BPS string dual to the latitude Wilson loop. In what follows, target-

space indices are denoted by m,n, . . ., world-sheet indices are a, b, . . ., while the directions

orthogonal to the string are represented by i, j, . . .. All corresponding tangent space indices

are underlined.

7.4.1 Type IIA strings on AdS4 × CP3

In the bosonic sector, the string dynamics is dictated by the Nambu-Goto (NG) action

SNG =
1

2πα′

ˆ
d2σ
√
−g , (7.4.34)

where gab is the induced metric on the world sheet and g = det gab. Our first goal in this

section is to consider perturbations xm → xm + εym, ε � 1, around any given classical

embedding and find the quadratic action that governs them. To this purpose, let us choose

convenient vielbeins for the AdS4 × CP3 metric that are properly adapted to the study of

fluctuations. Using the local SO(9, 1) symmetry, we can always pick a frame Em = (Ea, Ei)

such that the pullback of Ea onto the world-sheet forms a vielbein for the induced metric,

while the pullback of Ei vanishes. Of course, these are nothing but the 1-forms dual to

the tanget and normal vectors fields, respectively. The Lorentz symmetry is consequently
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broken to SO(1, 1)× SO(8). Having made this choice we may define the fields

χm ≡ Emmym , (7.4.35)

and gauge fix the diffeomorphism invariance by freezing the tangent fluctuations, namely,

by requiring

χa = 0 . (7.4.36)

The physical degrees of freedom are then parameterized by the normal directions χi. In

this gauge the variation of the induced metric is

ε−1δgab = −2Hiabχ
i +∇aχi∇bχjδij +

(
H

c
ia Hjbc −Rminj∂axm∂bxn

)
χiχj , (7.4.37)

where H
i
ab is the extrinsic curvature of the embedding and

∇aχi = ∂aχ
i +Aijaχj (7.4.38)

is the world-sheet covariant derivative, which includes the SO(8) normal bundle connection

Aija. These objects, as well as the world-sheet spin connection wab, are related to the

pullback of the target-space spin connection Ωmn by

wab = P [Ωab] , H
i
ab = P [Ω

i
a]ae

a
b , Aij = P [Ωij ] , (7.4.39)

where e
a
a = P [Ea]a is the induced geometry vielbein. Using the well-known expansion of

the square root of a determinant, a short calculation shows that, to quadratic order, the

NG action becomes

S
(2)
NG =

1

4πα′

ˆ
dτdσ

√
−g
(
gab∇aχi∇bχjδij −

(
gabH

c
ia Hjbc + δabRaibj

)
χiχj

)
, (7.4.40)
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where we have used the equations of motion gabH
i
ab = 0 and written gabRminj∂ax

m∂bx
n =

δabRaibj . The continuation of this expression to Euclidean signature is straightforward.

Let us now discuss the fermionic degrees of freedom. In Lorentzian signature, the type

IIA string involves a single 10-dimensional Majorana spinor θ. At quadratic order, the

Green-Schwarz (GS) action that controls its dynamics on AdS4 × CP3 is given by

SGS =
i

4πα′

ˆ
d2σ
√
−g θ

(
gab − εab√

−g
Γ11

)
ΓaDbθ , (7.4.41)

where the symbol εab is a density with ετσ = 1, Γa = Γm∂ax
m is the pullback of the

10-dimensional Dirac matrices and Γ11 ≡ Γ0123456789. Also, Da = ∂ax
mDm is the pull-

back of the spacetime covariant derivative appearing in the supersymmetry variation of the

gravitino, which includes the contribution from the RR fluxes. Explicitly,

Da = ∂ax
m∇m +

1

8
eΦ
[
/F (2)Γ11 + /F (4)

]
Γa . (7.4.42)

The above action can be simplified considerably. Indeed, given our choice of vielbein

we have

Da = ∇a −
1

2
H
i a
a Γai +

1

8
eΦ
[
/F (2)Γ11 + /F (4)

]
Γa , (7.4.43)

where the world-sheet covariant derivative ∇a includes the normal bundle connection Aija,

that is,

∇a = ∂a +
1

4
w
ab
aΓab +

1

4
AijaΓij . (7.4.44)

Using the relation εabΓa =
√
−g Γ01Γb, it is easy to see that the terms proportional to the

extrinsic curvature drop out from the action because of the equations of motion H
i
abΓ

aΓb =

H
i
abg

ab = 0. Then,

SGS =
i

4πα′

ˆ
dτdσ

√
−g θ

(
1− Γ01Γ11

)
Γa
(
∇a +

1

8
eΦ
[
/F (2)Γ11 + /F (4)

]
Γa

)
θ . (7.4.45)

Now, in addition to diffeomorphism invariance and local Lorentz rotations, the full string
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action enjoys the local κ-symmetry

δκθ =
1

2

(
1 + Γ01Γ11

)
κ , δκx

m =
i

2
θΓmδκθ . (7.4.46)

It is then possible to gauge fix to

1

2

(
1− Γ01Γ11

)
θ = θ ⇔ 1

2
θ
(
1− Γ01Γ11

)
= θ , (7.4.47)

resulting in

SGS =
i

2πα′

ˆ
dτdσ

√
−g θ Γa

(
∇a +

1

8
eΦ
[
−/F (2)Γ01 + /F (4)

]
Γa

)
θ . (7.4.48)

Finally, we will need the Euclidean continuation of the action:

SGS =
1

2πα′

ˆ
dτdσ

√
g θ Γa

(
∇a +

1

8
eΦ
(
i /F (2)Γ01 + /F (4)

)
Γa

)
θ . (7.4.49)

The κ-symmetry fixing becomes iΓ01Γ11θ = θ where now Γ11 ≡ −iΓ0123456789. We will

take this expression as our starting point; all quantities involved are intrinsically Euclidean,

including the fluxes and Dirac matrices.

7.4.2 Bosonic Fluctuations

Putting everything together we find that the action that governs the bosonic fluctuations

is

S(2,3) =
L2

πα′

ˆ
dτdσ

√
g

(
gab
(
∂aχ

23
)∗
∂bχ

23 +
2 sinh2 ρ
√
g

∣∣χ23
∣∣2) , χ23 =

1√
2

(
χ2 + iχ3

)
,

S(4,5) =
L2

πα′

ˆ
dτdσ

√
g

(
gab
(
DAa χ

45
)∗
DAb χ

45 − 2m2

√
g

∣∣χ45
∣∣2) , χ45 =

1√
2

(
χ4 + iχ5

)
,

S(6,7) =
L2

πα′

ˆ
dτdσ

√
g

(
gab
(
DBa χ

67
)∗
DBb χ

67 − sin2 ϑ1

2
√
g

∣∣χ67
∣∣2) , χ67 =

1√
2

(
χ6 + iχ7

)
,

S(8,9) =
L2

πα′

ˆ
dτdσ

√
g

(
gab
(
DBa χ

89
)∗
DBb χ

89 − sin2 ϑ1

2
√
g

∣∣χ89
∣∣2) , χ89 =

1√
2

(
χ8 + iχ9

)
,

(7.4.50)
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where

m =
sinh ρ sinϑ1(ρ)

cosh ρ− cosϑ1(ρ)
, (7.4.51)

and the U(1) covariant derivatives read

DA = d+ iA , DB = d+ iB , (7.4.52)

with

A ≡ A45 =

(
1− cosh ρ cosϑ1(ρ) + 1

cosh ρ+ cosϑ1(ρ)

)
dτ,

B ≡ A67 = A89 =
1

2
(cosϑ1(ρ)− 1) dτ.

(7.4.53)

We have factored out the AdS radius L from the metric and the fluctuations. Notice that

the U(1)× U(1)× SU(2)× U(1) symmetry structure is evident, with χ67 and χ89 forming

a doublet.

7.4.3 Fermionic Fluctuations

For the case at hand, the fermionic action reads

SGS =
L2

πα′

ˆ
dτdσ

√
g θ (Γa∇a +M) θ , (7.4.54)

where

∇τ = ∂τ +
1

2
Γ01w +

1

2
Γ45A+

1

2

(
Γ67 + Γ89

)
B ,

∇σ = ∂σ ,

M =
iΓ01

4A

((
3Γ23 − Γ45

) (
sinh2 ρ− sin2 ϑ1(ρ) Γ0145

)
+
(
Γ67 + Γ89

)
A
)
.

(7.4.55)

(7.4.56)

(7.4.57)

Here A and B are the connections defined above in equation (7.4.53), A is the confor-

mal factor of the induced worldsheet metric defined in (7.3.14) and w the worldsheet spin

connection given by (E.18).

As for the bosons we have extracted the radius L from the metric and rescaled the
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fermionic fields by L1/2. The symmetry of the action under the U(1)×U(1)×SU(2)×U(1)

bosonic subgroup follows from the fact that all the objects involved commute with the

preserved generators (7.3.30).

7.4.4 One-loop Effective Action

The induced world-sheet geometry is that of the 2d Euclidean manifold M with the

metric1

ds2
M = M(ρ)

(
dρ2 + sinh2 ρ dτ2

)
,

M(ρ) = 1 +
sin2 θ(ρ)

sinh2 ρ
, sin θ(ρ) =

sinh ρ sin θ0

cosh ρ+ cos θ0

(7.4.58)

where 0 ≤ θ0 ≤ π
2 is the latitude angle. θ0 = 0 corresponds to the 1

2 - BPS solution.

The difference in 1-loop effective actions of 1
6 -BPS string withrespect to the 1

2 -BPS is

e−∆ Γ1-loop
eff (θ0) =

[(detO4+(θ0)
detO4+(0)

)2 (
detO4−(θ0)
detO4−(0)

)2 (
detO5+(θ0)
detO5+(0)

) (
detO5−(θ0)
detO5−(0)

) (
detO6+(θ0)
detO6+(0)

) (
detO6−(θ0)
detO6−(0)

)
(

detO1(θ0)
detO1(0)

)2 (
detO2+(θ0)
detO2+(0)

) (
detO2−(θ0)
detO2−(0)

) (
detO3+(θ0)
detO3+(0)

)2 (
detO3−(θ0)
detO3−(0)

)2

] 1
2

where the bosonic spectrum of operators is

O1(θ0) = M−1
(
− gµν ∇µ∇ν + 2

)
,

O2±(θ0) = M−1
(
− gµν Da

µ D
a
ν + V2

)
, Da

µ = ∇µ ± ιAµ,

O3±(θ0) = M−1
(
− gµν Db

µ D
b
ν + V3

)
, Db

µ = ∇µ ± ι Bµ.

(7.4.59)

Effective 2d fermionic operators Oi± (i = 4, 5, 6) are obtained by a judicious choice of the

10d Gamma matrices (see (G.2)). Calling α, β, γ the eigenvalues of Γ45,Γ67,Γ89 respectively,

the 10d operator appearing in (7.4.54) take a block diagonal form with entries

Oα,β,γ(θ0) = M−
1
2

(
− ι
(
/D +

1

4
/∂ lnM

)
− ι Γ01

(
m+ V

)
+ αW

)
, (7.4.60)

1To simplify the notation, in the following sections we renamed θ(ρ) ≡ ϑ1(ρ).
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The operators in (7.4.59) are defined as:

O4,α ≡ Oα,β,−β, O5,α ≡ Oα,α,α, O6,α ≡ Oα,−α,−α . (7.4.61)

Explicitly we have Aρ = Bρ = 0, Aτ = A(ρ), Bτ = B(ρ) with gµν and ∇µ evaluated for the

AdS2 metric,

Dµ = ∇µ + ι
α

2
Aµ + ι

β + γ

2
Bµ, (7.4.62)

and

A(ρ) = 1− 1 + cosh ρ cos θ(ρ)

cosh ρ+ cos θ(ρ)
, B(ρ) =

1

2

(
cos θ(ρ)− 1

)
, (7.4.63)

V2(ρ) = −∂ρA(ρ)

sinh ρ
, V3(ρ) = −∂ρB(ρ)

sinh ρ
, (7.4.64)

V (ρ) =
(1− 3 β γ)

4

1√
M(ρ)

− α(β + γ)

4

√
M(ρ)−m, (7.4.65)

W (ρ) =
1− 3 β γ

4

sin2 θ(ρ)√
M(ρ) sinh2 ρ

. (7.4.66)

Here m corresponds to the value of potential, V , at ρ =∞.

m =
(1− 3 β γ)

4
− α(β + γ)

4
(7.4.67)

For completeness we quote that

cos θ(ρ) =
1 + cosh ρ cos θ0

cosh ρ+ cos θ0
. (7.4.68)

It is important to mention that the O6,α operators give rise to asymptotically massless

fermions.
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7.5 One-loop Effective Action: Perturbative Heat Kernel

We now proceed to evaluate fluctuations determinant using the heat kernel techniques.

To evaluate the determinants we will exploit the fact that heat kernel techniques for AdS2

are well-developed [130, 131, 25]. More precisely, we will use perturbation theory valid in

the limit when the induced world-sheet geometry can be considered as a small deformation

of AdS2 govern by the deformation parameter θ0. This approach has been successfully

applied the holographic perturbative computation of a ratio of Wilson loops expectation

values [28]. Namely, we will expand around the parameter α = θ2
0, where the near AdS2

geometry corresponds to the latitude in S2 ⊂ S5 parametrized by angle θ0. For θ0 = 0,

the worldsheet metric reduces to AdS2. Under the conditions clarified below we will be

able to determine the first leading order correction to the string partition function by the

perturbative expansion of the heat kernels.

LetM be a d dimensional smooth compact Riemannian manifold with metric gij and O

be a second order elliptic operator of the Laplace type. Then, we can define the logarithm

of the determinant using ζ-function regularization as,

log DetM O = −ζ ′O(0), (7.5.69)

The ζ function is related to the integrated heat kernel by the Mellin transform,

ζO(s) =
1

Γ(s)

ˆ ∞
0

dt ts−1KO(t), KO(t) =

ˆ
ddx
√
g trKO(x, x; t),

where by construction, KO(x, x′; t) satisfies the heat conduction equation

(∂t +Ox)KO(x, x′; t) = 0, (7.5.70)
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with the initial condition

KO(x, x′; 0) =
1
√
g
δ(d)

(
x− x′

)
I. (7.5.71)

Let us now assume that the manifold M can be viewed as a deformation of another

manifold M̄. Namely, for α = 0 we have M̄ with metric ḡij ; we further assume that in this

limit the spectral problem can be solved exactly and seek to construct the solution for M.

We can expand KO and subsequently DetMO in perturbation theory in α:

gij = ḡij + α g̃ij +O(α2),

O = Ō + α Õ +O(α2),

KO(x, x′; t) = K̄O(x, x′; t) + α K̃O(x, x′; t) +O(α2),

(7.5.72)

such that K̄O(x, x′; t) satisfies (7.5.70) and (7.5.71) .

It can be shown [28], that K̃O(x, x′; t) can be solved from

(∂t + Ōx) K̃O(x, x′; t) + Õx K̄O(x, x′; t) = 0, (7.5.73)

with the initial condition

K̃O(x, x′; t) = − g̃

2 ḡ3/2
δ(d) (x− x′) I. (7.5.74)

The trace of heat kernel can be written as;

K̃O(t) = −t
ˆ
ddx
√
ḡ tr
[
Õx K̄O(x, x′; t)

]
x=x′

. (7.5.75)

In perturbation theory, the ζ-function and the determinant takes the form

log DetMO = −ζ̄ ′O(0) +−α ζ̃ ′O(0) +O(α2), (7.5.76)

ζ̃
′
O(s) =

1

Γ(s)

ˆ ∞
0

dt ts−1K̃O(t). (7.5.77)
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In our context, the string partition function corresponding to the Wilson loop in the

gauge theory is given by

Z = 〈W (λ, α)〉 ≡ e−Γ, Γ =
√
λ Γ(0)(α) + Γ(1)(α) +O(λ−1/2) (7.5.78)

where Γ(0)(α) is the classical piece and object of current interest is Γ(1)(α), which corre-

sponds to the one-loop corrections to the string action. In particular, we are interested in

evaluating Γ̃(1)(0).

7.5.1 Circular Wilson Loop

In the limit θ0 = 0, or σ0 =∞, the operators take the following form;

Bosons: Ō1 = −∆ρ,τ + 2, Ō2± = Ō3± = −∆ρ,τ

Fermions: Ōα,β,γ = −ι /∇ρ,τ + ι m σ3

(7.5.79)

where 4 m = α+ β + γ − 3 α β γ with α, β, γ = ±1 as follows from the spinor reduction

described in appendix G.

The integrated AdS2 heat kernel and ζ-function for the massive Laplace operator −∆+

m2 is known to be,

K̄−∆+m2(t) =
VAdS2

2 π

ˆ ∞
0

dv v tanh(πv) e−t (v2+m2+ 1
4

)

ζ̄−∆+m2(s) =
VAdS2

π

[
(m2 + 1

4)1−s

2 (s− 1)
− 2

ˆ ∞
0

dv
v

(e2πv + 1) (v2 +m2 + 1
4)s

]
.

(7.5.80)

The regularized determinants for θ0 = 0 bosonic operators becomes

ζ̄
′
O1

(0) = −25

12
+

3

2
log 2π − 2 logA, (7.5.81)

ζ̄
′
O2±(0) = ζ̄

′
O3±(0) = − 1

12
+

1

2
log 2π − 2 logA, (7.5.82)

where A is the Glaisher constant. The spectrum of the bosonic fluctuations correspond to
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2 massive scalars (m2 = 2) and 6 massless scalars, thus,

Γ̄
(1)
B (0) = −2

2
ζ̄
′
O1

(0)− 6

2
ζ̄
′
O2±,3±(0)

=
7

3
− 3 log 2π + 8 logA

(7.5.83)

The standard expression for the AdS2 heat kernel corresponding to the square of the

massive Dirac operator − /∇+m Γ3 is,

K̄− /∇2
+m2(t) =

VAdS2

π

ˆ ∞
0

dv v coth(πv) e−t (v2+m2) (7.5.84)

and the ζ-function is given by

ζ̄− /∇2
+m2(s) =

VAdS2

π

[
(m2)1−s

2 (s− 1)
+ 2

ˆ ∞
0

dv
v

(e2πv − 1) (v2 +m2)s

]
. (7.5.85)

In the present case, the fermionic excitations involve 2 modes with m2 = 0 and 6 modes

with m2 = 1. Then,

ζ̄ ′m2=0(0) =
1

3
− 4 logA (7.5.86)

ζ̄ ′m2=1(0) = −5

3
− 4 logA + 2 log 2π (7.5.87)

The final contribution from fermions results,

Γ̄
(1)
F (0) = −2

2
ζ̄ ′m2=0(0)− 6

2
ζ̄ ′m2=1(0)

= 2

(
7

3
+ 8 logA− 3 log 2π

)
.

(7.5.88)

Thus, the one-loop correction in the circular Wilson loop case becomes

Γ̄(1)(0) = Γ̄
(1)
B (0)− 1

2
Γ̄

(1)
F (0) = 0 (7.5.89)

This result certainly requires further scrutiny2. Here we simply note that, as it stands, it

2We acknowledge various discussions in the summer of 2015 with Jewel Ghosh regarding the
heat kernel approach to the one-loop effective action of the half BPS configuration.
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does not agree with the field theory prediction of (7.2.3) in the string theory limit given by

〈W
1
2
� 〉 =

eπ
√

2λ

8πλ
+O(λ−1/2) (7.5.90)

It also does not agree with a Gelfand-Yaglom based computation which further involved

numerical evaluation [118]. We leave a proper treatment of the expectation value of the

half BPS Wilson loop to a separate work. Here we are mostly concerned with the ratio of

expectation values.

7.5.2 Difference of one-loop effective actions

The perturbative expansion of the relevant operators here,

Oi(θ0) = Ōi + Õi θ2
0 +O(θ4

0), i = 1, 2±, 3± (7.5.91)

Oα,β,γ(θ0) = Ōα,β,γ + Õα,β,γ θ2
0 +O(θ4

0), (7.5.92)

O2
α,β,γ(θ0) = Ō2

α,β,γ + θ2
0 {Ōα,β,γ , Õα,β,γ}+O(θ4

0). (7.5.93)

where {..} denotes the anticommutator of two differential operators.

In the expansion scheme of (7.5.72), the corresponding perturbative operator is

Õ1 =
1

(1 + cosh ρ)2

(
∆ρ,τ − 2

)
,

Õ2± =
1

(1 + cosh ρ)2

[
∆ρ,τ −

1

2

(
1± ι ∂τ

)]
Õ3± =

1

(1 + cosh ρ)2

[
∆ρ,τ −

sinh2 ρ

(1 + cosh ρ)2
(2± ι ∂τ )

]
,

(7.5.94)

for the bosonic second order operators. While, for the first order fermionic operator, we

have,

Õα,β,γ(θ0) =
1

2 (1 + cosh ρ)2

[
ι /∇+

sinh ρ

1 + cosh ρ

(
ιΓ0
)

+ Γ1

(
α (1− cosh ρ)2

2
− β + γ

4
sinh2 ρ

)
− (−1 + 3 β γ)

2

(
ιΓ01

)
+
α(1− 3βγ)

2

]
.

(7.5.95)
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Bosons: Substituting the Õ1 in (7.5.75), we get,

K̃O1(t) = −t
ˆ 2π

0
dτ

ˆ Λ

0
dρ

sinh ρ

(1 + cosh ρ)2

[(
∆ρ,τ − 2

)
K̄−∆+2 (ρ, τ, ρ′, τ ′; t)

]
ρ=ρ′,τ=τ ′

(7.5.96)

We know that K̄ satisfies, the following equation,

(∂t −∆ρ,τ + 2) K̄O1 (ρ, τ, ρ′, τ ′; t) = 0 (7.5.97)

Thus, plugging it back in (7.5.96), we obtain

K̃O1(t) = −t
ˆ 2π

0
dτ

ˆ Λ

0
dρ

sinh ρ

(1 + cosh ρ)2
∂t K̄O1 (ρ, τ, ρ, τ ; t) (7.5.98)

Now we can take the limit Λ→∞ and using the integral representation of heat kernel K̄

K̃O1(t) =
t

2

ˆ ∞
0

dv v tanh(π v)

(
v2 +

9

4

)
e−t
(
v2+9/4

)
(7.5.99)

Using tanh(π v) = 1− 2/(e2πv + 1) and we can write the corresponding ζ-function as,

ζ̃O1(s) =

ˆ ∞
0

dv
s v

2 (v2 + 9/4)s
−
ˆ ∞

0
dv

s v

(e2πv + 1) (v2 + 9/4)s
(7.5.100)

The first integral converges only for Re s > 1, we can first integrate over v and then

analytically continue to all values of s

ζ̃O1(s) =
s

4 (s− 1)

(
9

4

)1−s
− s
ˆ ∞

0
dv

v

(e2πv + 1) (v2 + 9/4)s
. (7.5.101)

The final result is

ζ̃
′
O1

(0) = − 7

12
. (7.5.102)

In the case of O2±, we add the contribution from O2+ and O2− to get rid of the ∂τ term,
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this substantially simplifies the calculation. Then,

K̃O2+(t) + K̃O2−(t) = t

ˆ ∞
0

dv

[(
v2 +

5

4

)
v tanh(πv) e−t

(
v2+ 1

4

)]
, (7.5.103)

ζ̃O2+(s) + ζ̃O2−(s) = s

ˆ ∞
0

dv v

(
v2 + 5

4

)(
v2 + 1

4

)1+s − 2 s

ˆ ∞
0

dv
v

e2πv + 1

(
v2 + 5

4

)(
v2 + 1

4

)1+s .

So,

ζ̃
′
O2+

(0) + ζ̃
′
O2−(0) = −1

6
+ γ. (7.5.104)

Similarly, for the operator O3±, we get

K̃O3+(t) + K̃O3−(t) = t

ˆ ∞
0

dv

[(
v2 +

3

4

)
v tanh(πv) e−t

(
v2+ 1

4

)]
. (7.5.105)

Then,

ζ̃O3+(s) + ζ̃O3−(s) =

ˆ ∞
0

dv sv

(
v2 + 3

4

)(
v2 + 1

4

)1+s − 2 s

ˆ ∞
0

dv
v

e2πv + 1

(
v2 + 3

4

)(
v2 + 1

4

)1+s ,

which gives

ζ̃
′
O3+

(0) + ζ̃
′
O3−(0) = −1

6
+
γ

2
, (7.5.106)

where γ is the Euler-Mascheroni constant.

The total contribution for bosonic operators is simply given by

Γ̃
(1)
B = −2

2
ζ̃
′
O1

(0)− 1

2
ζ̃
′
O2+

(0)− 1

2
ζ̃
′
O2−(0)− 2

2
ζ̃
′
O3+

(0)− 2

2
ζ̃
′
O3−(0)

=
5

6
− γ.

(7.5.107)
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Fermions: an important computational ingredient in case of fermions is

{Ōα,β,γ , Õα,β,γ} = {Ō, Õ} =
1

(1 + cosh ρ)2
/∇2
ρ,τ −

m (1− 3βγ)

2(1 + cosh ρ)2

+
ιX(ρ)

sinh2 ρ(1 + cosh ρ)2
∂τ ,

(7.5.108)

where

X(ρ) =
α (1− cosh ρ)2

2
− β + γ

4
sinh2 ρ. (7.5.109)

One can derive formal expressions which can be evaluated for the cases of interest, we skip

some intermediate steps that involve Mellin transform from the heat kernel to the zeta

function. In particular, we obtain

δζF (s) =
1

Γ(s)

ˆ ∞
0

dtts−1δK(t) =

ˆ ∞
0

dv
sv
(
v2 + 2m2 +mα(β+γ)

2

)
(v2 +m2)s+1

cothπv

=

ˆ ∞
0

dv
sv(v2 + 2m2)

(v2 +m2)s+1
+ 2

ˆ ∞
0

dv
sv(v2 + 2m2 +mα(β+γ)

2 )

(v2 +m2)s+1(e2πv − 1)

=
m1−2s

(
m(−1 + 2s) + α(β+γ)

2 (s− 1)
)

2(s− 1)
+ 2

ˆ ∞
0

dv
sv(v2 + 2m2)

(v2 +m2)s+1(e2πv − 1)
,

(7.5.110)

thus giving

δζ ′F (0) = −1

2
m(m+

(
m+

α(β + γ)

2
) lnm2

)
+ 2

ˆ ∞
0

dv
v
(
v2 + 2m2 +mα(β+γ)

2

)
(v2 +m2)(e2πv − 1)

= −1

2
m(m+

(
m+

α(β + γ)

2
) lnm2

)
+ 2

ˆ ∞
0

dv
v

(e2πv − 1)

+ 2m

(
m+

α(β + γ)

2

)ˆ ∞
0

dv
v

(v2 +m2)(e2πv − 1)

= −1

2
m(m+

(
m+

α(β + γ)

2
) lnm2

)
+

1

12
+m

(
m+

α(β + γ)

2

)
(

1

2
lnm2 − 1

2|m|
− ψ(|m|)

)
,

(7.5.111)
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where ψ(x) = d
dxΓ(x) is the digamma function.

In particular, for O6,α operators, which have m = 0, we obtain

δζ ′F (0) = − 5

12
. (7.5.112)

While operators O4,α having m = 1 lead to

δζ ′F (0) = −11

12
+ γ . (7.5.113)

Finally O5,α operators have m = −1 and give

δζ ′F (0) = − 5

12
. (7.5.114)

Adding the fermionic contributions leads to

δζtot
F (s) =

1

2

[
2×

(
− 5

12

)
+ 4×

(
−11

12
+ γ

)
+ 2×

(
− 5

12

)]
= −8

3
+ 2γ. (7.5.115)

Since the total bosonic contribution (7.5.107) follows from

δζtot
B (s) = −5

3
+ 2γ, (7.5.116)

the total one-loop perturbative contribution results

δζtot
B (0)− δζtot

F (0) =

(
− 5

3
+ 2γ

)
−
(
− 8

3
+ 2γ

)
= 1. (7.5.117)

Finally,

∆Γ1-loop
effective(θ0) =

1

2
θ2

0, (7.5.118)

which agrees, at the given order, with the field theory prediction (cf. (7.2.6)).
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7.6 One-loop Effective Action: Zeta Function Regularization

In this section we follow work in Chapter V and VI where we developed a regularization

in the case of radial determinants that coincides with ζ-function regularization in various

cases. There are various reasons to tackle the problem using these methods. First, one

would obviously like to go beyond the small θ0 limit and obtain and expression that is

valid in the whole range of θ0. Second, by construction, our regularization is diffeomorphic

invariant and works directly on the disk; other approaches [26, 27, 29] rely on mapping the

problem from the disk to the cylinder. Although these latter methods have proven to be

quite effective it is conceptually satisfying to deal with the problem directly on the disk.

The main outcome of Chapter V is a prescription for computing ζ-function regularized

determinants of radial operators in asymptotically AdS2 spacetimes. The result for bosons

is

ln
detO

detOfree
= ln

detO0

detOfree
0

+
∞∑
l=1

(
ln

detOl
detOfree

l

+ ln
detO−l
detOfree

−l
+

2

l
ζ̂O(0)

)
− 2

(
γ + ln

µ

2

)
ζ̂O(0) +

ˆ ∞
0

dρ sinh ρ ln(sinh ρ) V − q2

ˆ ∞
0

dρ
A2

sinh ρ
,

(7.6.119)

ζ̂O(0) = −1

2

ˆ ∞
0

dρ sinh ρ V, (7.6.120)

whereas for fermions, it reads

ln
detO

detOfree
=
∞∑
l= 1

2

(
ln

detOl
detOfree

l

+ ln
detO−l
detOfree

−l
+

2

l + 1
2

ζ̂O(0)

)
− 2

(
γ + ln

µ

2

)
ζ̂O(0)

+

ˆ ∞
0

dρ sinh ρ ln(sinh ρ)
(
(m+ V )2 −W 2 −m2

)
− q2

ˆ ∞
0

dρ
A2

sinh ρ
−
ˆ ∞

0
dρ sinh ρ W 2,

(7.6.121)

ζ̂O(0) = −1

2

ˆ ∞
0

dρ sinh ρ
(
(m+ V )2 −W 2 −m2

)
. (7.6.122)
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7.6.1 Bosons

We now proceed to apply the prescription above to the different bosonic operators.

7.6.1.1 O1(θ0)

The action for these fluctuations is

O1(θ0) = M−1
(
− gµν ∇µ∇ν + 2

)
(7.6.123)

We see that the rescaled operator does not depend on θ0, meaning that these fluctuations

contribute only with an anomaly as showed in Chapter VI,

ln

(
detO1(θ0)

detO1(0)

)
= θ0 sin θ0 +

1

2
sin2 θ0

2
+

(
7

3
+ 2 cos θ0

)
ln cos

θ0

2

=
7

12
θ2

0 +O
(
θ4

0

) (7.6.124)

7.6.1.2 O2±(θ0)

For these charged fluctuations, we have,

ln

(
detOAdS2(θ0)

detOAdS2(0)

)
= ln

ψ0(θ0)

ψ0(0)
+

∞∑
l=1

(
ln
ψl(θ0)

ψl(0)
+ ln

ψ−l(θ0)

ψ−l(0)
− D

l

)
+ F +Dγ ,

(7.6.125)

where

D ≡
ˆ ∞

0
dρ sinh ρ VAdS2(ρ)

F ≡
ˆ ∞

0
dρ

(
sinh ρ VAdS2(ρ) ln

(
sinh ρ

2

)
− A(ρ)2

sinh ρ

)
,

(7.6.126)

(7.6.127)

Explicitly, the relevant operator in AdS2 is

OAdS2 = − 1

sinh ρ
∂ρ (sinh ρ ∂ρ) +

(l −A(ρ))2

sinh2 ρ
+ VAdS2 , (7.6.128)
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where the gauge field and the potential read

A(ρ) = − (cosh ρ− 1)2 (1− cos θ0)

cosh2 ρ+ 2 cosh ρ cos θ0 + 1
, VAdS2(ρ) =

∂ρA(ρ)

sinh ρ
. (7.6.129)

Notice that we can write this as

A(ρ) = sinh ρ ∂ρW (ρ) , W (ρ) =
1

2
ln

(
(cosh ρ+ 1)2

cosh2 ρ+ 2 cosh ρ cos θ0 + 1

)
. (7.6.130)

This fact allows us to write the solution to the equation of motion as

fl(ρ) = tanh−l
(ρ

2

)
eW (ρ)

(
A+B

ˆ
dρ

tanh2l
(ρ

2

)
e−2W (ρ)

sinh ρ

)
. (7.6.131)

For the case at hand, the regular solution at ρ = 0 is

fl(ρ) =



2−(l+ 1
2)
√

1 + cos θ0 tanh−l
(ρ

2

) cosh ρ+ 1√
cosh2 ρ+ 2 cosh ρ cos θ0 + 1

l < 0

2l+
1
2 tanhl

(ρ
2

)
(l + 2)

√
1 + cos θ0

√
cosh2 ρ+ 2 cosh ρ cos θ0 + 1

cosh ρ+ 1

(
l +

(cosh ρ+ 1)2 (1 + cos θ0)

cosh2 ρ+ 2 cosh ρ cos θ0 + 1

)
l > 0

.

We then find

ψl(θ0) =



(
1 + cos θ0

2

) 1
2

l ≤ 0

(
1 + cos θ0

2

)− 1
2
(
l + 1 + cos θ0

l + 2

)
l ≥ 0

. (7.6.132)
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Next, we compute the integrals

D ≡
ˆ ∞

0
dρ sinh ρ VAdS2(ρ)

= −2 sin2 θ0

2

F ≡
ˆ ∞

0
dρ

(
sinh ρ VAdS2(ρ) ln

(
sinh ρ

2

)
− A(ρ)2

sinh ρ

)
,

= −θ0

2
sin θ0 + (2 + cos θ0) ln cos

θ0

2
+ sin2 θ0

2
.

(7.6.133)

The anomaly contribution is given by

I ≡ 1

4π

ˆ
d2σ
√
g lnM

[
m2 + VAdS2 −

1

6
R+

1

12
∇2 lnM

]
=

1

2
sin2 θ0

2
+

1

3
ln cos

θ0

2
+

1

2

ˆ
dρ sinh ρ lnM VAdS2

= −1

2
sin2 θ0

2
+

1

3
ln cos

θ0

2
+

1

2
θ0 sin θ0 + 2 cos2 θ0

2
ln cos

θ0

2
.

(7.6.134)

Putting everything together we get

ln

(
detO2±(θ0)

detO2±(0)

)
= ln

ψ0(θ0)

ψ0(0)
+

∞∑
l=1

(
ln
ψl(θ0)

ψl(0)
+ ln

ψ−l(θ0)

ψ−l(0)
− D

l

)
+ F +Dγ + I

= ln cos
θ0

2
− ln Γ

(
2 cos2 θ0

2

)
− 2 ln cos

θ0

2
+ 2γ sin2 θ0

2

− θ0

2
sin θ0 + (2 + cos θ0) ln cos

θ0

2
+ sin2 θ0

2
− 2γ sin2 θ0

2

− 1

2
sin2 θ0

2
+

1

3
ln cos

θ0

2
+

1

2
θ0 sin θ0 + 2 cos2 θ0

2
ln cos

θ0

2

= − ln Γ (cos θ0)− ln cos θ0 +

(
7

3
+ 2 cos θ0

)
ln cos

θ0

2
+

1

2
sin2 θ0

2
.

(7.6.135)

As before, the small θ0 expansion coincides with the results of [28] and (7.5.104)

ln

(
detO2±(θ0)

detO2±(0)

)
=

1

2

(
1

6
− γ
)
θ2

0 +O
(
θ4

0

)
. (7.6.136)
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7.6.1.3 O3±(θ0)

The relevant operator in AdS2 is now

OAdS2 = − 1

sinh ρ
∂ρ (sinh ρ ∂ρ) +

(l − B(ρ))2

sinh2 ρ
+ VAdS2 , (7.6.137)

where the gauge field and the potential read

B(ρ) =
1

2

(cosh ρ− 1) (1− cos θ0)

cosh ρ+ cos θ0
, VAdS2(ρ) = −∂ρB(ρ)

sinh ρ
. (7.6.138)

Notice that we can write this as

B(ρ) = sinh ρ ∂ρW (ρ) , W (ρ) =
1

2
ln

(
(cosh ρ− 1) (cosh ρ+ cos θ0)

sinh2 ρ

)
. (7.6.139)

This fact allows us to write the solution to the equation of motion as

fl(ρ) = tanhl
(ρ

2

)
e−W (ρ)

(
A+B

ˆ
dρ

tanh−2l
(ρ

2

)
e2W (ρ)

sinh ρ

)
. (7.6.140)

For the case at hand, the regular solution at ρ = 0 is

fl(ρ) =



2l cos
θ0

2
tanhl−

1
2

(ρ
2

)√ sinh ρ

cosh ρ+ cos θ0
l > 0

tanh−l+
1
2

(ρ
2

)
2l+1 (l − 1) cos θ02

√
cosh ρ+ cos θ0

sinh ρ

(
2l − (cosh ρ− 1) (1 + cos θ0)

cosh ρ+ cos θ0

)
l < 0

.

(7.6.141)
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We then find

ψl(θ0) =



(
1 + cos θ0

2

) 1
2

l ≤ 0

(
1 + cos θ0

2

)− 1
2

(
l − 1+cos θ0

2

l − 1

)
l ≤ 0

. (7.6.142)

Next, we compute the integrals

D ≡
ˆ ∞

0
dρ sinh ρ VAdS2(ρ) = − sin2 θ0

2
,

F ≡
ˆ ∞

0
dρ

(
sinh ρ VAdS2(ρ) ln

(
sinh ρ

2

)
− A(ρ)2

sinh ρ

)
= 2 cos2 θ0

2
ln cos

θ0

2
+

1

2
sin2 θ0

2
,

I ≡ 1

2
sin2 θ0

2
+

1

3
ln cos

θ0

2
+

1

2

ˆ
dρ sinh ρ lnM VAdS2 =

3

2
sin2 θ0

2
+

1

3
ln cos

θ0

2

− 1

4
θ0 sin θ0 + sin2 θ0

2
ln cos

θ0

2
.

(7.6.143)

Putting everything together we get

ln

(
detO3±(θ0)

detO3±(0)

)
= ln

ψ0(θ0)

ψ0(0)
+

∞∑
l=1

(
ln
ψl(θ0)

ψl(0)
+ ln

ψ−l(θ0)

ψ−l(0)
− D

l

)
+ F +Dγ + I

= ln cos
θ0

2
− ln Γ

(
cos2 θ0

2

)
− 2 ln cos

θ0

2
+ γ sin2 θ0

2

+ 2 cos2 θ0

2
ln cos

θ0

2
+

1

2
sin2 θ0

2
− γ sin2 θ0

2

+
3

2
sin2 θ0

2
+

1

3
ln cos

θ0

2
− 1

4
θ0 sin θ0 + sin2 θ0

2
ln cos

θ0

2

= − ln Γ

(
cos2 θ0

2

)
+

1

2

(
5

3
+ cos θ0

)
ln cos

θ0

2
− 1

4
θ0 sin θ0 + 2 sin2 θ0

2
.

(7.6.144)

The small θ0 expansion is

ln

(
detO3±(θ0)

detO3±(0)

)
=

1

2

(
1

6
− γ

2

)
θ2

0 +O
(
θ4

0

)
, (7.6.145)

which coincides with the perturbative heat kernel approach (7.5.106).
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Summary: The total bosonic contribution is,

1

2

[
2 ln

(
detO1(θ0)

detO1(0)

)
+ 2 ln

(
detO2±(θ0)

detO2±(0)

)
+ 4 ln

(
detO3±(θ0)

detO3±(0)

)]
=

=
θ0

2
sin θ0 + 5 sin2 θ0

2
+

(
19

3
+ 5 cos θ0

)
ln cos

θ0

2
− 2 ln Γ

(
cos2 θ0

2

)
− ln

(
Γ(cos θ0)

)
− ln

(
cos θ0

)
=

(
5

6
− γ
)
θ2

0 +O(θ4
0)

(7.6.146)

which matches the perturbative heat kernel calculation (7.5.107).

7.6.2 Fermions

The effective 2d fermions operators (7.4.60) involve gauge couplings to the normal bundle

(see (7.4.62)). Three different operators operators (7.4.61) appear in the computation of

the 1-loop effective action.

7.6.2.1 O4±(θ0)

This case corresponds to vanishing coupling to the Bµ gauge field. Then, the following

quantities simplifies to:

Dµ = ∇µ + ι
α

2
Aµ, V (ρ) =

1√
M(ρ)

− 1, W (ρ) =
sin2 θ(ρ)√
M(ρ) sinh2 ρ

. (7.6.147)

Take Γ0 = σ1, Γ1 = σ2, and consider operators of the form,

Oα(θ0) = −ι /D + V1 (7.6.148)

where

V1 = −∂ρM
4M

ισ1 +
1√
M

(
σ3 + α

sin2 θ(ρ)

sinh2 ρ

)
. (7.6.149)
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Using circular symmetry, we expand into Fourier components. Explicitly,

ιOl =

 ι√
M

(
1 + α sin2 θ(ρ)

sinh2 ρ

)
∂ρ + coth ρ

2 +
∂ρM
4M −

l
sinh ρ −

αA
2 sinh ρ

∂ρ + coth ρ
2 +

∂ρM
4M + l

sinh ρ + αA
2 sinh ρ

ι√
M

(
− 1 + α sin2 θ(ρ)

sinh2 ρ

)


The relevant integrals in (7.6.121)-(7.6.122) give

ζ̂O(0) = −1

2

ˆ ∞
0

dρ sinh ρ
(
(m+ V )2 −m2 −W 2

)
= sin2 θ0

2
(7.6.150)

ˆ ∞
0

dρ sinh ρ ln

(
sinh ρ

2

)(
(m+ V )2 −m2 −W 2

)
= 2 cos θ0 ln cos

θ0

2
(7.6.151)

ˆ ∞
0

dρ sinh ρ W 2 = −1

2
θ0 sin θ0 + 2 sin2 θ0

2
(7.6.152)

ˆ ∞
0

dρ
A2

sinh ρ
= − sin2 θ0

2
− 2 log cos

θ0

2
(7.6.153)

ˆ ∞
0

dρ
B2

sinh ρ
= −1

2
sin2 θ0

2
− log cos

θ0

2
(7.6.154)

The Weyl anomaly contribution results,

1

4π

ˆ
d2σ
√
g lnM

[
(m+ V )2 −W 2 +

1

12
R− 1

24
∇2 lnM

]
=

1

4π

ˆ
d2σ
√
g lnM

[
2−M +

1

12
R− 1

24
∇2 lnM

]
=

7

4
sin2 θ0

2
+

11

6
ln cos

θ0

2

(7.6.155)

For α = 1 we obtain

ln

(
detO4+(θ0)

detO4+(0)

)
=
θ0

2
sin θ0 +

(
7

3
+ 2 cos θ0

)
ln cos

θ0

2
− ln Γ(cos θ0)− ln cos θ0(7.6.156)
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7.6.2.2 O5±(θ0)

In this case,

Dµ = ∇µ + ια

(
Aµ
2

+ Bµ
)
, V (ρ) = − 1

2
√
M
− 1

2

√
M + 1, W (ρ) = −1

2

sin2 θ(ρ)√
M sinh2 ρ

.

Using circular symmetry, we can expand the operator into Fourier components. Let

ψl(ρ) =

ul(ρ)

vl(ρ)

 (7.6.157)

with l ∈ Z + 1
2 . The radial problem becomes, Olψl = 0, where

Ol = −ισ1

(
∂ρ +

1

2
coth ρ+

1

4
∂ρ lnM

)
− 1

sinh ρ
σ2

(
l +

α

2
A+ αB

)
+ σ3(−1 + V ) + αW.

Explicitly,

ιOαl =

 ι
2
√
M

(
− 1−M − α sin2 θ(ρ)

sinh2 ρ

)
∂ρ + coth ρ

2 +
∂ρM
4M −

l
sinh ρ −

α (A+2 B)
2 sinh ρ

∂ρ + coth ρ
2 +

∂ρM
4M + l

sinh ρ + α (A+2 B)
2 sinh ρ

ι
2
√
M

(
1 +M − α sin2 θ(ρ)

sinh2 ρ

)
.


For α = 1, the operator reduces to

ιOl =

 −ι
√
M ∂ρ + coth ρ

2 +
∂ρM
4M −

l
sinh ρ −

(A+2 B)
2 sinh ρ

∂ρ + coth ρ
2 +

∂ρM
4M + l

sinh ρ + (A+2 B)
2 sinh ρ

ι√
M


and the system of equations become,

(
∂ρ +

coth ρ

2
+
∂ρM

4M
− l

sinh ρ
− (A+ 2 B)

2 sinh ρ

)
vl(ρ)− ι

√
M ul(ρ) = 0, (7.6.158)(

∂ρ +
coth ρ

2
+
∂ρM

4M
+

l

sinh ρ
+

(A+ 2 B)

2 sinh ρ

)
ul(ρ) + ι

1√
M

vl(ρ) = 0. (7.6.159)

Introducing

D± ≡ ∂ρ +
coth ρ

2
+
∂ρM

4M
±
(

l

sinh ρ
+

(A+ 2 B)

2 sinh ρ

)
, (7.6.160)
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we start solving the second order equation for vl(ρ). It takes the form,

√
M D+

(
1√
M

D−vl

)
− vl = 0, (7.6.161)

which we rewrite as,

− 1

sinh ρ
∂ρ
(

sinh ρ ∂ρ vl(ρ)
)

+
(l + X )2

sinh2 ρ
vl(ρ)− ∂ρX

sinh ρ
vl(ρ) = 0, (7.6.162)

with

X = sinh ρ

(
− coth ρ

2
− ∂ρM

4M

)
+
A+ 2B

2
. (7.6.163)

The solution is

vl(ρ) =

(
tanh

ρ

2

)−l+ 1
2

e−W(ρ)

(
C1 + C2

ˆ
dρ

(
tanh

ρ

2

)2l−1 e2W(ρ)

sinh ρ

)
, ∂ρW(ρ) =

X (ρ) + 1
2

sinh ρ
.

As before, we fix constants C1 and C2 by demanding regularity at the origin (ρ = 0). For

l ≥ 1/2, we find

v+
l (ρ) = C2

(2l + cosh ρ)

(4l2 − 1) sinh ρ
2

(
tanh

ρ

2

)l+ 1
2

(7.6.164)

which gives

u+
l (ρ) = −C2

2ι sinh ρ
2 (cos θ0 + cosh ρ)

(4l2 − 1)
√

1 + cosh2 ρ+ 2 cos θ0 cosh ρ

(
tanh

ρ

2

)l− 1
2

. (7.6.165)

For l ≤ −1/2,

v−l (ρ) = C1 cosh
ρ

2

(
tanh

ρ

2

)−l+ 1
2

(7.6.166)
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and

u−l (ρ) = C1
ι (2l − cosh ρ) (cos θ0 + cosh ρ)

2 cosh ρ
2

√
1 + cosh2 ρ+ 2 cos θ0 cosh ρ

(
tanh

ρ

2

)−l− 1
2

(7.6.167)

The relevant formulas in this case, corresponding to m = −1, are

(
(m+ V )2 −m2 −W 2

)
= 0 (7.6.168)

ζ̂O(0) = −1

2

ˆ ∞
0

dρ sinh ρ
(
(m+ V )2 −m2 −W 2

)
= 0 (7.6.169)

and

ˆ ∞
0

dρ sinh ρ ln

(
sinh ρ

2

) (
(m+ V )2 −m2 −W 2

)
= 0 (7.6.170)

together with

ˆ ∞
0

dρ sinh ρ W 2 = −1

8
θ0 sin θ0 +

1

2
sin2 θ0

2
(7.6.171)

The Weyl anomaly contribution in this case results,

1

4π

ˆ
d2σ
√
g lnM

[
(m+ V )2 −W 2 +

1

12
R− 1

24
∇2 lnM

]
=

1

4π

ˆ
d2σ
√
g lnM

[
1 +

1

12
R− 1

24
∇2 lnM

]
=
θ0

2
sin θ0 + 2 cos2 θ

2
log cos

θ0

2
− 1

4
sin2 θ0

2
− 1

6
log cos

θ0

2

(7.6.172)

7.6.2.3 O6±(θ0)

In this case,

Dµ = ∇µ + ια

(
Aµ
2
− Bµ

)
, V (ρ) = − 1

2
√
M

+
1

2

√
M, W (ρ) = −1

2

sin2 θ(ρ)√
M sinh2 ρ

.
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Consider an operator of form,

Oα(θ0) = −ι /D + V, (7.6.173)

where

V = −∂ρM
4M

ισ1 +
1

2
√
M

((
− 1 +M

)
σ3 − α

sin2 θ(ρ)

sinh2 ρ

)
. (7.6.174)

Using circular symmetry, we can expand this into Fourier components. Explicitly,

ιOαl =

 ι
2
√
M

(
− 1 +M − α sin2 θ(ρ)

sinh2 ρ

)
∂ρ + coth ρ

2 +
∂ρM
4M −

l
sinh ρ −

α (A−2 B)
2 sinh ρ

∂ρ + coth ρ
2 +

∂ρM
4M + l

sinh ρ + α (A−2 B)
2 sinh ρ

ι
2
√
M

(
1−M − α sin2 θ(ρ)

sinh2 ρ

)


For α = 1, the system of equations decouples,

ιOl =

 0 ∂ρ + coth ρ
2 +

∂ρM
4M −

l
sinh ρ −

(A−2 B)
2 sinh ρ

∂ρ + coth ρ
2 +

∂ρM
4M + l

sinh ρ + (A−2 B)
2 sinh ρ

ι (1−M)√
M

 .

Taking

ψl(ρ) =

ul(ρ)

vl(ρ)

 , (7.6.175)

the equation then becomes:

(
∂ρ +

coth ρ

2
+
∂ρM

4M
− l

sinh ρ
− (A− 2 B)

2 sinh ρ

)
vl(ρ) = 0, (7.6.176)(

∂ρ +
coth ρ

2
+
∂ρM

4M
+

l

sinh ρ
+

(A− 2 B)

2 sinh ρ

)
ul(ρ) + ι

1−M√
M

vl(ρ) = 0. (7.6.177)

Solving for vl(ρ) gives,

vl(ρ) = C1

(
sinh

ρ

2

)l− 1
2
(

cosh
ρ

2

)−l− 5
2 (

cos θ0 + cosh ρ
)
, (7.6.178)
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where C1 is a constant. Using this solution, we can now solve equation for ul(ρ),

u
′
l(ρ) +

(
coth ρ

2
+
∂ρM

4M
+

l

sinh ρ
+

(A− 2 B)

2 sinh ρ

)
ul(ρ) + ι

1−M√
M

vl(ρ) = 0. (7.6.179)

The integrating factor for this equation is,

I(ρ) = Exp

[ˆ
dρ

(
coth ρ

2
+
∂ρM

4M
+

l

sinh ρ
+

(A− 2 B)

2 sinh ρ

)]
=

(
− ι sinh

ρ

2

)l+ 1
2
(

cosh
ρ

2

)−l− 3
2 √

3 + 4 cos θ0 cosh ρ+ cosh(2ρ).

(7.6.180)

Then, full solution takes the form,

ul(ρ) =
1

I(ρ)

[ˆ
dρ I(ρ)

(
− ι 1−M√

M
vl(ρ)

)
+ C2

]

=

[
C1

2
3
2

+l ι (2 + 2l + cosh ρ)
(

sinh ρ
2

) 1
2

+2l
sin2 θ0

(3 + 8l + 4l2)
(

cosh ρ
2

) 3
2
(

sinh ρ
)l√

3 + 4 cos θ0 cosh ρ+ cosh(2ρ)

+ C2

(
cosh ρ

2

) 3
2

+l (− ι sinh ρ
2

)− 1
2
−l

√
3 + 4 cos θ0 cosh ρ+ cosh 2ρ

]
.

(7.6.181)

Demanding the solution to be regular at the origin fixes C2 = 0 for l ≥ 1/2 and C1 = 0 for

l ≤ −1/2. For l ≤ −1/2,

u−l (ρ) = C2

(
cosh ρ

2

) 3
2

+l (− ι sinh ρ
2

)− 1
2
−l

√
3 + 4 cos θ0 cosh ρ+ cosh 2ρ

, (7.6.182)

and for l ≥ 1/2,

u+
l (ρ) = C1

2
3
2

+l ι (2 + 2l + cosh ρ)
(

sinh ρ
2

) 1
2

+2l
sin2 θ0

(3 + 8l + 4l2)
(

cosh ρ
2

) 3
2
(

sinh ρ
)l√

3 + 4 cos θ0 cosh ρ+ cosh(2ρ)
,(7.6.183)

v+
l (ρ) = C1

(
sinh

ρ

2

)l− 1
2
(

cosh
ρ

2

)−l− 5
2 (

cos θ0 + cosh ρ
)
. (7.6.184)
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The relevant formulas in the present case m = 0 case are,

(
(m+ V )2 −m2 −W 2

)
= 0 ⇒ ζ̂O(0) = −1

2

ˆ ∞
0

dρ sinh ρ
(
(m+ V )2 −m2 −W 2

)
= 0(7.6.185)

⇒
ˆ ∞

0
dρ sinh ρ ln

(
sinh ρ

2

) (
(m+ V )2 −m2 −W 2

)
= 0 (7.6.186)

together with

ˆ ∞
0

dρ sinh ρ W 2 = −1

8
θ0 sin θ0 +

1

2
sin2 θ0

2
(7.6.187)

The Weyl anomaly contribution in this case follows from,

1

4π

ˆ
d2σ
√
g lnM

[
(m+ V )2 −W 2 +

1

12
R− 1

24
∇2 lnM

]
=

1

4π

ˆ
d2σ
√
g lnM

[
1

12
R− 1

24
∇2 lnM

]
= −1

4
sin2 θ0

2
− 1

6
log cos

θ0

2

(7.6.188)

The total contribution from the O5± and O6± cases is

ln

(
detO

detOfree

)
= −2

(
1

2

)2 ˆ ∞
0

dρ
(A+ 2B)2

sinh ρ
− 2

(
− 1

2

)2 ˆ ∞
0

dρ
(A+ 2B)2

sinh ρ

− 2

(
1

2

)2 ˆ ∞
0

dρ
(A− 2B)2

sinh ρ
− 2

(
− 1

2

)2 ˆ ∞
0

dρ
(A− 2B)2

sinh ρ
− 4

ˆ ∞
0

dρ sinh ρ W 2

= −
ˆ ∞

0
dρ
A2

sinh ρ
− 4

ˆ ∞
0

dρ
B2

sinh ρ
− 4

ˆ ∞
0

dρ sinh ρ W 2

Thus,

ln

(
detO

detOfree

)
=

1

2
θ0 sin θ0 + sin2 θ0

2
+ 6 log

(
cos

θ0

2

)
(7.6.189)
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7.6.3 One-loop effective action

The total zeta-function at the origin is

ζ̂tot(0) = 2 ζ̂O1(0) + ζ̂O2+(0) + ζ̂O2−(0) + 2 ζ̂O3+(0) + 2 ζ̂O3−(0)− 2ζ̂O+(0)− 2ζ̂O−(0)

where O± are fermionic contributions arising from the O4±(θ0) operators. Adding up the

pieces we find

4
(
(1 + V )2 −W 2 − 1

)
− 2 V2 − 4 V3 = ∇2 lnM (7.6.190)

which vanishes when integrated,

ˆ ∞
0

dρ sinh ρ∇2 lnM = sinh ρ ∂ρ lnM |∞0 = 0, ζ̂tot(0) = 0. (7.6.191)

The contributions from gauge field are seen to vanish,

1× (1)2A2 + 1× (−1)2A2 + 2× (1)2B2 + 2× (−1)2B2 − 2× (
1

2
)2A2 − 2× (−1

2
)2A2

− 1× (
1

2
)2 × (A+ 2B)2 − 1× (−1

2
)2(A+ 2B)2 − 1× (

1

2
)2(A− 2B)2 − 1× (−1

2
)2(A− 2B)2

= 0

The contribution from W 2 term in the fermionic potentital is non-trivial

W 2 : − 4×
ˆ ∞

0
dρ sinh ρ

(
sin2 θ(ρ)√
M sinh2 ρ

)2

− 4×
ˆ ∞

0
dρ sinh ρ

(
− sin2 θ(ρ)

2
√
M sinh2 ρ

)2

=
5

2
θ0 sin θ0 − 10 sin2 θ0

2

The Weyl anomaly has different contributions, they are:

• Potential and mass terms

4
(
(1 + V )2 −W 2

)
+ 2× 1− 2× 2− 2× V2 − 4× V3 = −R+∇2 lnM
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• Curvature and conformal terms

(
8×

(
1

12

)
− 8×

(
− 1

6

)
R+∇2 lnM

(
8×

(
− 1

24

)
− 8×

(
1

12

))
= 2R−∇2 lnM.

The contribution from the conformal factor cancels and the total contribution from Weyl

anomaly results siimply from the curvature term,

anomaly :
1

4π

ˆ
d2σ
√
gR lnM = −

(
θ0 sin θ0 + 4 cos2 θ0

2
ln cos

θ0

2

)

The contribution from ln (sinh ρ) integrals involve the same combination of potentials

as ζ̂tot(0), which when added to the Weyl anomaly gives,

anomaly + ln sinh ρ :

ˆ ∞
0

dρ sinh ρ

(
1

2
R lnM + ln

(
sinh ρ

2

)
∇2 lnM

)
= −2 ln cos

θ0

2
.

The final result for the 1-loop effective action results

∆Γ1-loop
effective(θ0) =

5

4
θ0 sin θ0 − 5 sin2 θ0

2
+ 2 ln cos

θ0

2
+ 2 ln Γ

(
cos2 θ0

2

)
− ln

(
Γ(cos θ0)

)
− ln

(
cos θ0

)
=

1

4
θ2

0 +O(θ4
0)

(7.6.192)

This result does not agree with the field theory expectation. Although our regularization

is diffeomorphic invariant there might be ambiguities that need to be understood better. At

the moment we can track the discrepancy between the two methods to an ambiguity in the

treatment of the m = 0 fermionic modes, we will return to this question elsewhere. It seems

that a more expeditious way to get at the exact answer might follow the approach of [29, 154]

who mapped the spectral problems from the disk to the cylinder with the incorporation of

an explicit diffeomorphic invariant cutoff; we hope to report on such explorations in an

upcoming publication.
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7.7 Conclusion

In this chapter we have discussed in detail the construction of the quadratic fluctuations

for the string configuration dual to the general latitude Wilson loop in ABJM theory. We

have paid particular attention to the various symmetries of the configurations and shown

how they serve as a guiding avatar in the structure of fluctuations. At the semiclassical

level the computation of the one-loop effective action is equivalent to the computation of

determinants. We employed two methods for computing such determinants. The perturba-

tive heat kernel method has lead to agreement with the expected field theory answer in the

limit of small latitude angle. The ζ-function regularization method is non-perturbative but

does not seem to lead to the expected field theory answer as it stands. We have previously

developed the ζ-function approach in Chapter V and applied it to the N = 4 context in

Chapter VI, motivated by the goal of constructing a regularization that is explicitly diffeo-

morphic invariant. The key new ingredient in this work that introduces extra ambiguities

with respect to our earlier efforts is the fact that some of the modes correspond to massless

fermions. The situation is not completely satisfactory but sheds light on deficiencies and

advantages of the various methods used to tackle questions of precision holography with

Wilson loops. For example, some of the puzzles we face were confronted in the realm of

N = 4 SYM and paved the way leading to perfect matching with the field theory answer in

[29]. There the computations of the determinants was mapped from the disk to the cylinder.

We hope to revisit our computations using a similar approach.

One interesting property of the duality pair we discuss is that it admits two very natural

limits. Here we focused on the ‘t Hooft limit where λ = N/k is kept fixed as N is taken

very large. It would be interesting to explore the M-theory limit, where k is kept fixed,

beyond the leading order as well; some preliminary results were reported in [153]. Exploring

quantum corrections in this context might ultimately shed light on various intricate quantum

properties of M2 branes.

It would also be interesting to explore similar issues for Wilson loops in higher dimen-

sional representations. Classical results were presented in [140, 141]; at the quantum level
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some preliminary results have been presented in Chapter VIII for the gravity configura-

tions and a sub-leading analysis of the matrix model was presented in [155]. The prospects

for precision holography in this case are improved due to the fact that the corresponding

quadratic fluctuations live in the odd-dimensional world-volumes of the corresponding D2

and D6 branes, studied in Chapter VIII. Heat kernel techniques are considerably simplified

in odd-dimensional spaces since the contributions arise exclusively from zero or boundary

modes.

Recently, in the case of N = 4 SYM, the expectation value of the 1
2 -BPS Wilson loop

has been computed on the gravity side by taking the ratio of two of the limits of the

latitude string [154]. We hope that a similar analysis in the case of ABJM Wilson loops

will shed light on various aspects of precision holography in IIA, our work provides most of

the required ingredients.
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CHAPTER VIII

Holographic ABJM Wilson Loops in Higher Rank

Representations

8.1 Introduction

In the context of AdS/CFT correspondence, there has been a concerted effort toward

matching the holographic one-loop corrections with subleading terms in the field theory

side [156, 21, 22, 23, 24]. One of the main motivation is to continue to construct ever more

stringgent tests that will clarify the nature and aspects of the corrections. There is also

an ongoing program of extending one-loop corrections to holographic configurations dual

to Wilson loops in higher rank representations of the SU(N) gauge group in N = 4 SYM

[107, 108, 25, 157].

In this chapter we take a step towards the understanding, beyond the leading order,

of holographic configurations that are expected to correspond to supersymmetric Wilson

loops in higher rank representations [140] in the ABJM theory. Namely, we construct the

spectra of quantum fluctuations of a D6 and a D2 brane discussed in [140]. We present

a complete analysis including the bosonic and fermionic excitations, thus completing some

preliminary attempts undertaken in the literature. We find that the systems present some

peculiar couplings not seen before in similar situations.

The rest of the chapter is organized as follows. In section 8.2 we review the supergravity

background and reproduce the leading, classical value of the corresponding D-brane actions.
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In section 8.3 we study the fluctuations of the D6 brane in both its bosonic and fermionic

sectors and summarize the spectrum of dual operators. The analysis of the D2 fluctuations

and the calculation of the corresponding spectrum of dual operators is carried out in sec-

tion 8.4. In section 8.5, we relate our findings to the structure of supersymmetric multiplets

known from the literature, and we conclude in section 8.6. We treat a number of more

technical and additional aspects in a series of appendices. In particular, in appendix H we

review the metric representations of CPn needed in the main text. In appendix I we recall

some details of the representation of OSp(4|2). The harmonic analysis on the coset space

T̃ 1,1, which we need for the D6 fluctuations, is presented in appendix J.

8.2 Background configurations

8.2.1 SUGRA background

We start by reviewing the AdS4 × CP 3 solution of type-IIA SUGRA, which is the dual

of the ABJM theory [18]. This solution was described more than three decades ago by

Nilsson and Pope [158] and we rely heavily on their presentation.

Our conventions will be as follows. We work with a Minkowski metric with (−+ . . .+)

signature. The AdS4 and CP 3 coordinates are denoted by the sets of indices 0, 1, 2, 3 and

4, . . . , 9, respectively. The corresponding flat indices are underlined. Moreover, we set

α′ = 1.

For our analysis, we shall use the string frame expressions for the background geometry

given in [140], but we find it more convenient to work with dimensionless fields. Given the

scope of the work we start by considering the bosonic Dp-brane action, which, in Minkowski

signature, is given by

SBDp = −Tp
ˆ
dp+1ξ ε−Φ

√
−det(gab + Fab) + Tp

ˆ
εF ∧

∑
q

Cq . (8.2.1)

with Fab = Bab+2πFab, and Tp = (2π)−p is the Dp-brane tension. The metric gab, the 2-form

Bab and the RR fields Cq are intended as the pull-backs of the respective 10d background
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fields.

The AdS4 × CP 3 solution is given by [140]

ds2
10 =

1

β

(
ds2

AdS4
+ dΣ2

3

)
, ε2Φ0 =

4

βk2
, F4 =

3k

2β
εAdS4 , F2 =

k

2
J3 . (8.2.2)

Here, dΣ3 and J3 are the line element and the Kähler form of unit-2 CP 3, respectively, see

appendix H for the definitions. AdS4 is of unit radius. The relations to the dual field theory

parameters and to the parameters used in [140] are

β =
4k

R3
=
(
π
√

2λ
)−1

, λ =
N

k
. (8.2.3)

This suggests the following rescalings,

dŝ2
10 = βds2

10 , Φ̂ = Φ− Φ0 , F̂ = βF , Ĉp = εΦ0β
p
2Cp . (8.2.4)

Thus, the action (8.2.1) becomes

SBDp = −T̂p
ˆ
dp+1ξ ε−Φ̂

√
−det(ĝab + F̂ab) + T̂p

ˆ
εF̂ ∧

∑
q

Ĉq , (8.2.5)

where the Dp-brane tension T̂p is now

T̂p = Tpε−Φ0β
− p+1

2 . (8.2.6)

In particular,

T̂2 =
N

4π
√

2λ
=

1

4
βN , T̂6 =

N
√

2λ

(4π)3
=

N

(4π)3πβ
. (8.2.7)

The same rescaling procedure can be applied on the fermion action. Henceforth, we shall

omit the hats for simplicity.

Applying (8.2.4) to (8.2.2), we find the dimensionless expressions

ds2
10 = ds2

AdS4
+ dΣ2

3 , Φ = 0 , F4 = 3εAdS4 , F2 = J3 . (8.2.8)
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The dual field strengths are given by1

F6 = ∗F4 = −3εCP 3 , F8 = ∗F2 = −1

2
εAdS4 ∧ F2 ∧ F2 , (8.2.10)

where εCP 3 denotes the volume form of the unit-2 CP 3.

To conclude this review, we recall from [140] the explicit expressions for the metric

which we will use in this chapter2

ds2
AdS4

= cosh2 u ds2
AdS2

+ du2 + sinh2 u dφ2 ,

dΣ3 = dα2 + cos2 α

2
(dϑ2

1 + sin2 ϑ1 dϕ
2
1) + sin2 α

2
(dϑ2

2 + sin2 ϑ2 dϕ
2
2) (8.2.11)

+ sin2 α

2
cos2 α

2
(dχ+ cosϑ1 dϕ1 − cosϑ2 dϕ2)2 ,

and the C-forms

C1 =
1

2
(cosα− 1)dχ+ cos2 α

2
cosϑ1dϕ1 + sin2 α

2
cosϑ2dϕ2 ,

C3 =
(
cosh3 u− 1

)
εAdS2 ∧ dφ ,

C5 =
1

8
(sin2 α cosα+ 2 cosα− 2) sinϑ1 sinϑ2 dϑ1 ∧ dϕ1 ∧ dϑ2 ∧ dϕ2 ∧ dχ ,

C7 = −1

6

(
cosh3 u− 1

)
εAdS2 ∧ dφ ∧ F2 ∧ F2 . (8.2.12)

Our conventions for the volume forms are

ε(10) = εAdS4 ∧ ε4CP 3 ,

εAdS4 = cosh2 u sinhu εAdS2 ∧ du ∧ dφ , (8.2.13)

εCP 3 =
1

8
sin3 α sinϑ1 sinϑ2 dα ∧ dϑ1 ∧ dϕ1 ∧ dϑ2 ∧ dϕ2 ∧ dχ .

1In our conventions, the Kähler form is

J3 = −
(
e4 ∧ e9 + e5 ∧ e6 + e7 ∧ e8

)
. (8.2.9)

2For CP 3, this is the m = n = 1 foliation (H.10). The CP 3 coordinates take values α, ϑ1,2 ∈
(0, π), ϕ1,2 ∈ (0, 2π), χ ∈ (0, 4π).
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It is known that there are two inequivalent AdS4 × CP 3 solutions of IIA SUGRA,

one N = 6 supersymmetric, the other one without supersymmetries [158]. We are, of

course, interested in the N = 6 solution. The difference between the two solutions lies in a

relative sign of F2 and F4, and one is well advised, in view of diverse conventions, to check

the supersymmetry of the above configuration. For doing so, we use the supersymmetry

transformations given in [159], because we will rely on that paper for the construction of

the fermion action. The supersymmetry transformation of the gravitino and dilatino are

δεψm = Dmε , δελ = ∆ε , (8.2.14)

where (dropping terms that vanish in our case)

Dm = ∇m −
1

8

(
1

2
FnpΓ

npΓ(10) +
1

4!
FnpqrΓ

npqr

)
Γm , (8.2.15)

∆ =
1

8

(
3

2
FnpΓ

npΓ(10) −
1

4!
FnpqrΓ

npqr

)
. (8.2.16)

The 10d chirality matrix is defined by Γ(10) = Γ0···9. To check whether (8.2.8) is supersym-

metric, one first considers the dilatino variation in (8.2.14). Defining

Q =
1

2
FmnΓmnΓ456789 = Γ5678 + Γ4569 + Γ4789 , (8.2.17)

and using (8.2.8), (8.2.16) can be written as

∆ =
3

8
Γ0123(Q− 1) . (8.2.18)

Moreover, it follows from (8.2.17) that Q satisfies

(Q+ 3)(Q− 1) = 0 , (8.2.19)

and has the eigenvalues (−3,−3, 1, 1, 1, 1, 1, 1). The degeneracies follow from trQ = 0.
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There are, therefore, six CP 3 spinors that solve

Qε = ε . (8.2.20)

Comparing with [158] we find that this is indeed the N = 6 solution. We also recall from

[158] that the AdS4 components of (8.2.15) yield four AdS4 Killing spinors, and that by

virtue of (8.2.20) the integrability condition for the CP 3 components of (8.2.15) is satisfied.

8.2.2 D6 and D2-branes

The D6-brane purportedly dual to the 1/6 BPS totally antisymmetric Wilson loop wraps

AdS2 ⊂ AdS4 at the point u = 0 and T̃ 1,1 ⊂ CP 3 at constant α. The latter is a squashed

T 1,1 space [160]. The internal gauge field F has electric flux only in the AdS2 factor,

F = EεAdS2 , where E is conjugate to the fundamental string charge p. Because the latter is

fixed, the potential that yields the Wilson loop expectation value is the Legendre transform

of the D6-brane action [140]. It is straightforward to obtain3

SWL = SBD6−
1

β
pE =

N

4β

[
sin3 α

√
1− E2 − E

(
sin2 α cosα+ 2 cosα− 2

)]
− 1

β
pE . (8.2.21)

The equation of motion for α fixes

E = − cosα , (8.2.22)

and that for E yields

p = β
δSBD6

δE
=
N

2
(1− cosα) . (8.2.23)

The fact that p ranges from 0 to N is a signature of the antisymmetric representation. This

evidence for the anti-symmetric representation is a typical phenomenon in many brane

configurations originally understood in the case of the giant gravitons [161, 162]. Finally,

3The renormalized volume of the unit AdS2 is VAdS2
= −2π [108].
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the expectation value of the Wilson loop is found as

SWL =
p(N − p)
βN

. (8.2.24)

Note the symmetry under p↔ N −p. It was shown in [140] that this D6-brane is 1/6-BPS.

The D2-brane dual to the 1/6 BPS symmetric Wilson loop wraps AdS2 ⊂ AdS4 at the

point u = 0 and the circle S1 ⊂ CP 3 along χ. Again, F = EεAdS2 . With this configuration,

the Wilson loop potential is

SWL = SBD2 −
1

β
pE = βNπ2

[
sinα

√
1− E2 − E (cosα− 1)

]
− 1

β
pE . (8.2.25)

The field equation for α yields again (8.2.22), while the equation for E yields

p = β
δSBD2

δE
= β2Nπ2 =

1

2
k , (8.2.26)

corresponding to k/2 fundamental strings. Finally, the Wilson loop expectation is

SWL =
k

2

√
2λπ . (8.2.27)

It was shown in [140] that a single D2-brane is 1/3-BPS. Smearing on CP 1 reduces super-

symmetry to 1/6-BPS. There are outstanding questions as to in which precise higher rank

representation each of the classical solutions discussed here and their generalizations reside.

Let us simply note that other possible classical configurations do not seem to fit nicely

with their AdS5×S5 counter-part. For example, the symmetric representation in that case

corresponds to a D3 brane discussed in [163] whose spectrum of quantum excitations was

presented in [107]. This D3 branes wraps AdS2×S2 ⊂ AdS5 and the value of its electric flux

can be arbitrarily large. We have verified that the analogous D2 configuration wrapping

the AdS2 × S1 ⊂ AdS4 does not seem to have the expected properties.

The beautiful construction of the 1/2 BPS Wilson loop on the field theory side [145] and

some of its generalizations discussed in [146] are still largely unexplored on the holographic
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side; the gap is particularly glaring in the case of higher rank representations. Let us advance

a few observations we have briefly explored in this regard. On grounds of the supergroup

symmetries, one expects that the 1/2 BPS D6 configuration should wrap CP2 ⊂ CP3 as to

have U(3) symmetry realized in its worldvolume. Correspondingly, there are potential D2

configurations that wrap a circle transverse to CP2 ⊂ CP3 and therefore, contain the action

of U(3) in the flucutations transverse to the worldvolume. A very preliminary exploration

of these possibilities also yields puzzling results and we will report on these configurations

separately.

8.3 D6-brane fluctuations

In this section, we consider the bosonic and fermionic fluctuations of the 1/6-BPS D6-

branes. The notation in this section will be as follows. The 10d curved coordinates are de-

noted by Latin indices from the middle of the alphabet, m,n = 0, . . . , 9. Latin indices from

the beginning of the alphabet denote generic D6-brane coordinates, a, b = 0, 1, 5, 6, 7, 8, 9.

When the worldvolume is split into AdS2 ×M5, α, β = 0, 1 are used for the AdS2 part,

while Greek indices from the middle of the alphabet, µ, ν = 5, . . . , 9, are reserved for the

factorM5 ⊂ CP 3. Latin indices i, j = 2, 3, 4 denote the normal directions. Flat indices are

underlined.

8.3.1 Bosonic fluctuations

For the bosonic fluctuations, we start with the action (8.2.5). We follow the procedure

described in detail in [108], which relies on the geometry of embedded manifolds and renders

all expressions manifestly covariant. We refer the reader to Sec. 3 and Appendix B of

that paper for the relevant formulae. Following this strategy, the fluctuations of the D6-

brane worldvolume are parameterized by three scalars χi corresponding to the three normal

directions. They consist of a doublet (i = 2, 3) characterizing the normals of AdS2 ⊂ AdS4

and a singlet (i = 4) for the normal within CP 3. The worldvolume displacement is described
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by a geodesic map,

xm → (expx y)m , ym = Nm
i χ

i . (8.3.28)

In addition, there are the fluctuations of the 2-form gauge field,

Fab → Fab + fab , f = da . (8.3.29)

Defining Mab = gab + Fab, we have to second order [cf. (3.10) of [108]]

δMab = −2Hiabχ
i + fab +∇aχi∇bχj δij +

(
Hia

cHjbc −Rmpnqxma xnbN
p
i N

q
j

)
χiχj . (8.3.30)

Here, H
i
ab is the extrinsic curvature (second fundamental form) of the embedding. The

expansion up to second order of the Born-Infeld (BI) term may be obtained from the

general formula

√
−detM →

√
−detM

[
1 +

1

2
trX +

1

8
(trX)2 − 1

4
trX2

]
, (8.3.31)

where X = M−1δM . This yields

√
−detMab →

√
−det gab sinα

{
1 + 3 cotαχ4 − cosα

sin2 α

(
1

2
εαβfαβ

)
(8.3.32)

+
1

2 sin2 α
∇αχi∇αχi +

1

2
∇µχi∇µχi

+
1

sin2 α

[
(χ2)2 + (χ3)2

]
+

(
3

sin2 α
− 9

2

)
(χ4)2

+
1

4 sin4 α
fαβf

αβ +
1

4
fµνf

µν +
1

2 sin2 α
fαµfαµ −

3 cos2 α

sin3 α
χ4

(
1

2
εαβfαβ

)}
.

Here we have used

Hiαβ = 0 , H4
µ
µ = −3 cotα , H4

µνH4µν = 3 cot2 α+ 1 , (8.3.33)

and the fact that CP 3 is Einstein, R4CP 3

mn = 2·3+2
4 g4CP 3

mn = 2g4CP 3

mn .

The Wess-Zumino (WZ) terms are obtained taking into account the expansion of the
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form fields and the tangent vectors for the pull-back, cf. (3.3) and (3.4) of [108]. The C7

WZ term gives

P [C7]→ d7ξ
√
−det gab

1

2
eµ9
(
χ2∇µχ3 − χ3∇µχ2

)
, (8.3.34)

where the indices 2 and 3 denote the normals in the u– and φ–directions, respectively. This

contribution is somewhat unexpected, because both C7 and its first u–derivative vanish for

u = 0. However, one must carefully consider the small–u behaviour, because the normal

component Nφ
3 goes like 1/u. This leads to the finite result (8.3.34), which is absent in

previous discussions of similar classical configurations.

The C5 WZ term leads to

F ∧ P [C5]→ d7ξ
√
−det gab

{
− cosαC(α) + 3 cosαχ4 − C(α)

(
1

2
εαβfαβ

)
(8.3.35)

+ 3χ4

(
1

2
εαβfαβ

)
+

9 cos2 α

2 sinα
(χ4)2

}
,

where

C(α) = sin−3 α
(
sin2 α cosα+ 2 cosα− 2

)
. (8.3.36)

The C3 WZ term vanishes, and the C1 WZ term gives a contribution, which is found

easily after an integration by parts

1

6
F3 ∧ P [C1] =

1

2
F ∧ f ∧ f ∧ P [C1]→ −1

2
cosα εAdS2 ∧ a ∧ f ∧ P [F2] , (8.3.37)

where f = da. This form has the advantage of being independent of any exact terms in C1.

Using (8.2.9), one finds

1

6
F3 ∧ P [C1]→ d7ξ

√
−det gab

1

2
cosα Eµνρaµ∂νaρ , (8.3.38)

where Eµνρ is the totally antisymmetric tensor known as the Betti 3-form [164, 165],

1

6
Eµνρ dξµ ∧ dξν ∧ dξρ = e4 ∧

(
e5 ∧ e6 + e7 ∧ e8

)
. (8.3.39)
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Finally, we sum the contributions (8.3.32), (8.3.34), (8.3.35) and (8.3.38), drop total

derivatives and express the resulting quadratic action in terms of the open string metric,

which rescales the AdS2 part to the radius sinα,

ds̃2 = sin2 α gαβdξ
αdξβ + gµνdξ

µdξν . (8.3.40)

This yields

SB,2D6 = − T6

sinα

ˆ
d7ξ

√
−det g̃ab

{
1

2
∇̃aχi∇̃aχi +

1

sin2 α

[
(χ2)2 + (χ3)2

]
− 3

2 sin2 α
(χ4)2

(8.3.41)

+
1

sinα
eν9χ

3∇νχ2 +
1

4
f̃abf̃ab −

3

sinα
χ4

(
1

2
ε̃αβfαβ

)
− 1

2
cotα Eµνρaµ∂νaρ

}
,

which is our final result for the bosonic action of the 1/6 BPS D6-brane. Note that our

result completes a preliminary discussion of the quadratic excitations presented in [160].

8.3.2 Fermionic fluctuations

For the fermionic fluctuations, our starting point is Eq. (17) of [159],

SFD6 =
T6

2

ˆ
d7ξε−Φ

√
−detMab θ̄ (1− ΓD6)

[
(M̃−1)abΓbDa −∆

]
θ , (8.3.42)

where θ is a 32-component, 10d Majorana spinor, θ̄ = iθ†Γ0, M̃ab = gab + Γ(10)Fab, Da =

∂aX
mDm, Dm and ∆ were defined in (8.2.15) and (8.2.16), respectively, and ΓD6 is

ΓD6 =

√
−det gab√

−det(gab + Fab)
(
−Γ0156789

)∑
q

(−Γ(10))
q

q!2q
Γb1...b2qFb1b2 . . .Fb2q−1b2q

=
1

sinα

(
−Γ0156789

) (
1 + cosαΓ01Γ(10)

)
. (8.3.43)

The pullback of the covariant derivative on spinors is given by [108]

∂aX
m∇m = ∇a −

1

2
HiabΓ

bΓi +
1

4
AijaΓ

ij . (8.3.44)
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The combinations we need are

∂αX
m∇m = ∇α , Γµ∂µX

m∇m = Γµ∇µ +
3

2
cotαΓ4 . (8.3.45)

Direct evaluation of the operator in squared brackets in (8.3.42) yields

(M̃−1)abΓbDa −∆ =
1

sin2 α

(
1− cosαΓ01Γ(10)

)
Γα∇α + Γµ∇µ +

3

2
cotαΓ4 (8.3.46)

+
1

4 sin2 α

(
1− cosαΓ01Γ(10)

) [
−
(
Γ49 + Γ56 + Γ78

)
Γ(10) + 3Γ0123

]
+

1

4

(
Γ56 + Γ78

)
Γ(10) −

3

2
Γ0123 .

To proceed, we fix the κ-symmetry by imposing θ to be chiral. What matters here is

that only terms in (8.3.42) with an odd number of Γ-matrices survive the chiral projection.

In fact, the chirality is irrelevant. Hence, we find

θ̄ (1− ΓD6)
[
(M̃−1)abΓbDa −∆

]
θ =

θ̄εRΓ01Γ(10)

[
Γ̃a∇̃a −

1

4
cotα

(
Γ569 + Γ789

)
+

1

4 sinα
Γ239

(
1− 3Γ5678

)]
εRΓ01Γ(10)θ ,

(8.3.47)

where the spinor rotation parameter R is determined by sinh 2R = − cotα. In what follows,

we simply work with the rotated spinor, εRΓ01Γ(10)θ → θ. The Dirac operator in (8.3.47)

is the one corresponding to the open string metric (8.3.40).

To proceed, it is necessary to decompose the 32×32 Γ-matrices into a 7d representation.

We shall use

Γa = γa ⊗ I2 ⊗ σ1 , (a = 0, 1, 5, 6, 7, 8, 9)

Γi = I8 ⊗ τi−1 ⊗ σ2 , (i = 2, 3, 4) , (8.3.48)

where γa, τi and σi denote 7d Minkowski Gamma matrices and two copies of Pauli matrices,
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respectively. The representation (8.3.48) is chiral with,

Γ(10) = −γ0156789 ⊗ I2 ⊗ σ3 = ±I8 ⊗ I2 ⊗ σ3 , (8.3.49)

where the sign depends on the representation of the 7d gamma matrices. Hence, a 10d

chiral spinor (16 components) decomposes into a doublet of 7d spinors, and the matrices τi

act on the doublet.

The Majorana condition on θ translates into a symplectic Majorana condition on the

7d spinor doublet. To see this, decompose the the Majorana intertwiner [166] into

B+(9,1) = B+(6,1) ⊗B−(3,0) ⊗ I2 . (8.3.50)

Finally, after applying the decomposition (8.3.48) to (8.3.47) and substituting the result

into (8.3.42), we obtain the fermionic action

SFD6 =
T6

2 sinα

ˆ
d7ξ
√
−det g̃ab θ̄±

[
γ̃a∇̃a−

1

4
cotα

(
γ569 + γ789

)
± i

4 sinα
γ9
(
1− 3γ5678

) ]
θ± .

(8.3.51)

There is an implicit sum over the spinor doublet index (±), and the sign of the last term

in the brackets agrees with the doublet index.

We conclude this section by writing Eq. (8.3.51) in a 2 + 5 form, which is useful for the

calculation of the spectrum. We shall use the decomposition

γα = γα ⊗ I4 , γµ = γ01 ⊗ γµ , (8.3.52)

where the matrices γα and γµ on the right hand sides are intended as 2d and 5d gamma

matrices, respectively. Hence, we can rewrite (8.3.51) as

SFD6 =
T6

2 sinα

ˆ
d7ξ
√
−det g̃ab θ̄±

(
γ̃α∇̃α ⊗ I4 + γ01 ⊗D±

)
θ± , (8.3.53)
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where the differential operators D± acting on the T̃ 1,1 part are

D± = γ̃µ∇̃µ −
1

4
cotα

(
γ569 + γ789

)
± i

4 sinα
γ9
(
1− 3γ5678

)
. (8.3.54)

8.3.3 Field equations

For completeness, we list here the field equations deriving from the actions (8.3.41) and

(8.3.53). The doublet of scalars χi, i = 2, 3, satisfy

(
−∇̃a∇̃a +

2

sin2 α

)
χ2 − 1

sinα
eµ9∇̃µχ

3 = 0 , (8.3.55)(
−∇̃a∇̃a +

2

sin2 α

)
χ3 +

1

sinα
eµ9∇̃µχ

2 = 0 . (8.3.56)

Introducing χ± = χ2 ± iχ3, (8.3.55) and (8.3.56) become

(
−∇̃a∇̃a +

2

sin2 α
± i

sinα
eµ9∇̃µ

)
χ± = 0 . (8.3.57)

It is worth noting that this is a generalization of what would traditionally be a couple of

massive fields describing the embedding of AdS2 ⊂ AdS4. Namely, in the absence of the

last term above, one has two scalar fields with m2 = 2 just as in the case [153]. Similarly

for the embedding of supersymmetric branes in AdS5 × S5, one gets three m2 = 2 modes

from AdS2 ⊂ AdS5 for the D3 and D5 respectively [107, 108]. It is easy to track this term

to the C7 contribution from the WZ part of the action (see Eq. 8.3.34); we will see that

there is a corresponding C3 contribution to the D2 fluctuations, thus leading to a sort of

universality.

The scalar χ4 couples to the AdS2-components aα of the vector field. Their field equa-

tions are given by

(
∇̃a∇̃a +

3

sin2 α

)
χ4 +

3

sinα
f = 0 , (8.3.58)

∇̃a(∇̃aaα − ∇̃αaa) +
3

sinα
ε̃αβ∂βχ

4 = 0 , (8.3.59)
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where f stands for f = 1
2 ε̃
αβfαβ. We adopt the Lorentz gauge, ∇̃aaa = 0. The remaining

gauge freedom can be used to further impose ∇̃αaα = ∇̃µaµ = 0 on-shell. Acting with

∇̃γ ε̃γα on (8.3.59), one obtains

∇̃a∇̃af +
3

sinα
∇̃α∇̃αχ4 = 0 . (8.3.60)

Hence, we can write (8.3.58) and (8.3.60) in the matrix form

∇̃α∇̃α + ∇̃µ∇̃µ + 3
sin2 α

3
sinα

3
sinα∇̃α∇̃

α ∇̃α∇̃α + ∇̃µ∇̃µ


χ4

f

 = 0 . (8.3.61)

The vector components aµ satisfy, in Lorentz gauge,

−
(
∇̃α∇̃α + ∇̃ν∇̃ν

)
aµ +Rµνa

ν − cotα Eµνρ∂νaρ = 0 . (8.3.62)

The field equations for the spinors are simply

(
γ̃α∇̃α ⊗ I4 + γ01 ⊗D±

)
θ± = 0, (8.3.63)

where D± is defined by (8.3.54).

8.3.4 Spectrum of D6-brane fluctuations

In this section, we calculate the spectrum of fluctuations of the D6-brane and obtain the

conformal dimensions of the dual operators. The bosonic fluctuations were considered in

[160], but the result is partially incorrect because of missing terms in the quadratic action.

To obtain the spectrum, the equations of motion listed in subsection 8.3.3 must be solved.

This requires to construct the (generalized) harmonics on the T̃ 1,1 factor of the D6 world

volume, which we defer to appendix J due to its rather technical nature.

We start with the doublet of scalars, χi, (i = 2, 3). The field equation for the combina-

tions χ± = χ2 ± iχ3 is given by (8.3.57). Substituting (J.31) and (J.29), it becomes a field
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equation on AdS2, (
∇̃α∇̃α −m2

±

)
χ± = 0 , (8.3.64)

where

m2
± =

Cj,l + 1± r
sin2 α

. (8.3.65)

Because the radius of AdS2 in the open string metric is sinα, the standard relation between

m2 and the conformal dimension of the dual operator yields

∆(±) =
1

2
+

√
5

4
+ Cj,l ± r . (8.3.66)

We recall the definition (J.29) of Cj,l,

Cj,l = sin2 α

2
(2j + 1)2 + cos2 α

2
(2l + 1)2 . (8.3.67)

As explained in appendix J.0.3, j, l are either both integer or half-integer, and |r| ≤ l̄,

where

l̄ = 2 min(j, l) . (8.3.68)

The field equations of the scalar χ4 and the AdS2-components of the vector field are

given by (8.3.61). Substituting the eigenvalues of the scalar Laplacian on T̃ 1,1 (J.27), one

obtains −∇̃α∇̃α +
Cj,l−4

sin2 α
− 3

sinα

− 3
sinα∇̃α∇̃

α −∇̃α∇̃α +
Cj,l−1

sin2 α


χ4

f

 = 0 . (8.3.69)

The characteristic polynomial of this matrix is equivalent to the product of two massive

Klein-Gordon equations on AdS2, with two mass values. To these correspond the following

conformal dimensions of the two dual operators,

∆(4) ∈
{√

Cj,l + 2;
√
Cj,l − 1

}
. (8.3.70)

The eigenvalues are (l̄ + 1)-fold degenerate, because they are independent of r. From the

second value one must exclude the case j = l = 0 (Cj,l = 1), because the corresponding
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bulk mode is not dynamical [160, 108]. (It is the gauge mode that allows to impose ∇̃αaα =

∇̃µaµ = 0, which is more restrictive than the Lorentz gauge ∇̃aaa = 0.)

Consider the T̃ 1,1 components of the vector field. Their field equations are given by

(8.3.62), which becomes a massive Klein-Gordon equation on AdS2 of the form (8.3.64) (the

T̃ 1,1 vector is an AdS2 scalar) once the results of the harmonic analysis on T̃ 1,1 have been

used. The mass-square is simply given by the eigenvalues of the modified vector Laplacian,

which are listed in appendix J.0.4. The conformal dimension of the dual operator then

follows from the standard formula. We list the results in Tables 8.1 and 8.2 for the generic

case j 6= l and the special case j = l, respectively.

The conformal dimensions of the operators dual to the spinor fields are found from the

spinor field equation (8.3.63). After using the results of the harmonic analysis, one may

consider (
γ̃α∇̃α + λγ01

)
ϑ⊗ θλ , (8.3.71)

where λ = ich represents the eigenvalue of D± corresponding to the eigenvector θλ, which

is a T̃ 1,1 spinor, while ϑ is a spinor on AdS2. Denoting by ϑµ (µ ≥ 0) a solution of the AdS2

Dirac equation (
γ̃α∇̃α − µ

)
ϑµ = 0 , (8.3.72)

and using γ01ϑµ = ϑ−µ, one finds that (8.3.71) is solved by ϑ = ϑµ + iϑ−µ, with µ = ch.

It follows from the standard formula that the conformal dimension of the dual fermionic

operators are simply ∆f = 1
2 + h. The values of h that can be found in the tables in

Appendix J.0.4. Again, we list the results in Tables 8.1 and 8.2 for the generic case j 6= l

and the special case j = l, respectively.

8.4 D2-brane fluctuations

In this section we consider the bosonic and fermionic fluctuations of the classical 1/3-

BPS D2-brane discussed in Sec. 8.2. The procedure that leads to the quadratic action is

the same as the one used in Sec. 8.3 for the D6-brane. The notation remains essentially the
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Table 8.1: Conformal dimensions and supermultiplet structure in the generic case
j 6= l. 

2(l̄ + 1) fermion supermultiplets (n = −l̄,−l̄ + 2, . . . , l̄)
boson/fermion# f b ∗ 2 f

∆n ∆n0 =
√
Cj,l + 5

4
+ n ∆n0 + 1

2
∆n0 + 1

2(l̄ + 1) boson supermultiplets
boson/fermion# b f ∗ 2 b

∆ ∆1 =
√
Cj,l + 1 ∆1 + 1

2
∆1 + 1

∆ ∆2 =
√
Cj,l − 1 ∆2 + 1

2
∆2 + 1


Table 8.2: Conformal dimensions and supermultiplet structure in the special case
j = l.

4j fermion supermultiplets (n = −2j,−2j + 2, . . . , 2j − 2)
boson/fermion# f b ∗ 2 f

∆n ∆n0 =
√

(2j + 1)2 + 5
4

+ n ∆n0 + 1
2

∆n0 + 1

2 fermion supermultiplets
boson/fermion# f b —

∆ 2j + 3
2

2j + 2

boson supermultiplets
boson/fermion# b ∗ (2j + 1) f ∗ (4j + 2) b ∗ (2j + 1)

∆ 2j + 2 2j + 5
2

2j + 3
boson/fermion# b ∗ (2j + 1) f ∗ (4j) b ∗ (2j − 1)

∆ 2j 2j + 1
2

2j + 1


same, with the following logical differences due to dimensionality. Generic D2-brane indices

are denoted by a, b = 0, 1, 9. When the worldvolume is split into AdS2 × S1, α, β = 0, 1 are

used for the AdS2 part, while µ = 9 refers to the S1 part. Latin indices i, j = 2, 3, 4, 5, 6, 7, 8

denote the normal directions.

8.4.1 Bosonic fluctuations

The starting point is, again, the action (8.2.5). For the D2-brane, there are three terms,

the BI term and two CS terms (C3 and F ∧C1). Expanding the BI term to quadratic order,
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one obtains

√
−detMab →

√
−det gab sinα

{
1 + cotαχ4 − cosα

sin2 α

(
1

2
εαβfαβ

)
(8.4.73)

+
1

2 sin2 α
∇αχi∇αχi +

1

2
∇µχi∇µχi

+
1

sin2 α

[
(χ2)2 + (χ3)2

]
− 1

2
(χ4)2 − 1

8

[
(χ5)2 + (χ6)2 + (χ7)2 + (χ8)2

]
+

1

4 sin4 α
fαβf

αβ +
1

2 sin2 α
fαµfαµ −

cos2 α

sin3 α
χ4

(
1

2
εαβfαβ

)}
.

Note that the covariant derivative contains the normal bundle connection,

∇aχi = ∂aχ
i +Aa

i
jχ

j , (8.4.74)

which, in contrast to the D6-brane case, has non-zero components

Aµ56 =
1

2
sin2 α

2
, Aµ78 = −1

2
cos2 α

2
. (8.4.75)

The only non-zero component of the second fundamental form is

H4
µ
µ = − cotα . (8.4.76)

The WZ term with C3 is similar to the C7 term in the D6-brane case, and leads to the

following contribution

P [C3]→ d3ξ
√
−det gab

3

2
eµ9
(
χ2∇µχ3 − χ3∇µχ2

)
. (8.4.77)

The C1 WZ term is similar to the C5 term in the D6-brane case, but contains some
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additional terms,

F ∧ P [C1]→ d3ξ
√
−det gab

{
cotα(1− cosα) + cosαχ4 +

1− cosα

sinα

(
1

2
εαβfαβ

)
(8.4.78)

+ χ4

(
1

2
εαβfαβ

)
+

cos2 α

2 sinα
(χ4)2

+
1

2
cosα eµ9

(
χ5∇µχ6 − χ6∇µχ5 + χ7∇µχ8 − χ8∇µχ7

)}
.

Finally, we sum the three contributions (8.4.73), (8.4.77) and (8.4.78), drop total deriva-

tives and express the resulting quadratic action in terms of the open string metric, which

again rescales the AdS2 part to have radius sinα,

ds̃2 = sin2 α gαβdξ
αdξβ + gµνdξ

µdξν . (8.4.79)

The final action is:

SB,2D2 = − T2

sinα

ˆ
d3ξ

√
−det g̃ab

{
1

2
∇̃aχi∇̃aχi +

1

sin2 α

[
(χ2)2 + (χ3)2

]
+

3

sinα
eµ9χ

3∇µχ2

(8.4.80)

− 1

8

[
(χ5)2 + (χ6)2 + (χ7)2 + (χ8)2

]
+ cotα eµ9

(
χ6∇µχ5 + χ8∇µχ7

)
− 1

2 sin2 α
(χ4)2 +

1

4
f̃abf̃ab −

1

sinα
χ4

(
1

2
ε̃αβfαβ

)}
.

Note that, as in the D6 case, there are a number of terms describing a modification of the

naive embedding of AdS2 ⊂ AdS4. The fluctuations χ2 and χ3 contain an extra mixing term

that arises from the C3 contribution to the WZ action, see Eq. 8.4.77. In addition, there

are mixing terms for the pairs of scalars (χ5, χ6) and (χ7, χ8), and these pairs of scalars are

affected by the non-zero connections in the normal bundle.
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8.4.2 Fermionic fluctuations

The construction of the fermionic action for the D2-brane is similar to the D6-brane

case. We start with Eq. (17) of [159],

S
(F )
D2 =

T2

2

ˆ
d3ξε−Φ

√
−detMab θ̄ (1− ΓD2)

[
(M̃−1)abΓbDa −∆

]
θ, (8.4.81)

where Γa is the pullback of the gamma matrices Γm, the fermionic field θ is a 10d Majorana

spinor, and ΓD2 is given by

ΓD2 =
1

sinα

(
−Γ019

) (
1 + cosαΓ(10)Γ

01
)
. (8.4.82)

The pullback of the covariant derivative is again given by (8.3.44). Explicitly, using (8.4.76)

and (8.4.75), we have

∂αX
m∇m = ∇α , Γµ∂µX

m∇m = Γµ∇µ +
1

2
cotαΓ4 +

1

4
ΓµAijµΓij , (8.4.83)

where

AijµΓij = sin2 α

2
Γ56 − cos2 α

2
Γ78 . (8.4.84)

The κ-symmetry is fixed by taking θ to be chiral, which implies that only terms with an

odd number of Γ-matrices survive in the action. The result for the fermionic action after a

straightforward calculation, expressed in terms of the open string metric (8.4.79), is

S
(F )
D2 =

T2

2 sinα

ˆ
d3ξ
√
−det g̃ab θ̄εRΓ01Γ(10)

{
Γ̃a∇̃a (8.4.85)

+
1

4 sinα

[
Γ569 − Γ789 + Γ239

(
3− Γ5678

)] }
εRΓ01Γ(10)θ ,

where the spinor rotation parameter R is given by sinh 2R = − cotα. In what follows, we

shall simply work with the rotated spinor, εRΓ01Γ(10)θ → θ.

Given the symmetries of our problem, it is convenient to decompose the 10d Lorentz
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group as

SO(9, 1) ⊂ SO(2, 1)× SO(2)× SO(5), (8.4.86)

corresponding to the (0,1,9), (2,3) and (4,5,6,7,8) directions, respectively. A representation

of the 10d gamma matrices compatible with the above decomposition is

Γa = γa ⊗ I⊗ I⊗ σ1 , (a = 0, 1, 9) ,

Γi = I⊗ τ i−1 ⊗ I⊗ σ2 , (i = 2, 3) ,

Γj = I⊗ τ3 ⊗ λj ⊗ σ2 , (j = 4, 5, 6, 7, 8) , (8.4.87)

where σi and τ i are two sets of Pauli matrices, and λi are 5d Euclidean γ-matrices. The

representation (8.4.87) is chiral,

Γ(10) = ±I⊗ I⊗ I⊗ σ3 , (8.4.88)

where the sign depends on the representations of the SO(2, 1) and SO(5) Clifford algebras.

To be specific, let us choose the γa such that γ9 = γ01, i.e., γ019 = 1.

Hence, under the decomposition (8.4.87), the 16-component chiral θ becomes an octet

of 2-component 3d spinors. It is useful to decompose this octet into eigenspinors of the

three mutually commuting matrices τ3, λ56 and λ78,

λ56θabc = ipθpqr , λ78θabc = iqθpqr , τ3θpqr = rθpqr , (p, q, r = ±1) . (8.4.89)

The action (8.4.85) now becomes

S
(F )
D2 =

T2

2 sinα

ˆ
d3ξ
√
−det g̃ab θ̄pqr

{
γ̃a∇̃a +

i

4 sinα
γ01[p− q + r(3− pq)]

}
θpqr ,

(8.4.90)

where the sum over the octet is implicit.
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8.4.3 Spectrum of D2-brane fluctuations

The doublet of scalars χi, i = 2, 3, satisfies

(
−∇̃a∇̃a +

2

sin2 α

)
χ2 − 3

sinα
eµ9∇̃µχ

3 = 0 , (8.4.91)(
−∇̃a∇̃a +

2

sin2 α

)
χ3 +

3

sinα
eµ9∇̃µχ

2 = 0 . (8.4.92)

The system is diagonalized by introducing χ± = χ2 ± iχ3, for which (8.4.91) and (8.4.92)

become (
−∇̃a∇̃a +

2

sin2 α
± 3i

sinα
eµ9∇̃µ

)
χ± = 0 . (8.4.93)

Decomposing into the modes on the S1 factor of the D2-brane worldvolume, which are

characterized by an integer n, (8.4.93) gives rise to

(
2− n2 ∓ 3n+ 2

sin2 α

)
χ±n = 0 , (8.4.94)

where 2 = g̃αβ∇α∇β. The conformal dimensions of the dual operators are obtained from

the standard formula,

∆±n =
1

2
+

∣∣∣∣n∓ 3

2

∣∣∣∣ . (8.4.95)

These are positive integers.

As for the D6-brane the scalar χ4 couples to the AdS2-components aα of the vector

field. Their field equations are

(
∇̃a∇̃a +

1

sin2 α

)
χ4 +

1

sinα
f = 0 , (8.4.96)

∇̃a(∇̃aaα − ∇̃αaa) +
1

sinα
ε̃αβ∂βχ

4 = 0 , (8.4.97)

where f stands again for f = 1
2 ε̃
αβfαβ. Proceeding as in the D6-brane case gives rise to

2 + ∇̃µ∇̃µ + 1
sin2 α

1
sinα

1
sinα2 2 + ∇̃µ∇̃µ


χ4

f

 = 0 . (8.4.98)

194



Expanding into modes on S1, (8.4.98) yields

2 + 1−n2

sin2 α
1

sinα

1
sinα2 2− n2

sin2 α


χ4

n

fn

 = 0 . (8.4.99)

To obtain the conformal dimensions of the dual operators, one formally solves the charac-

teristic equation of (8.4.99) for 2 and translates the two AdS2 mass eigenvalues into the

dual conformal dimensions. The result is

∆±n =
1

2
+

∣∣∣∣|n| ± 1

2

∣∣∣∣ . (8.4.100)

Consider the doublet of scalars (χ5, χ6). Their field equations are given by

(
∇̃a∇̃a +

1

4

)
χ5 + cotα eµ9∇̃µχ

6 = 0 , (8.4.101)(
∇̃a∇̃a +

1

4

)
χ6 − cotα eµ9∇̃µχ

5 = 0 . (8.4.102)

Remember that the covariant derivative ∇µ contains the normal connection (8.4.75). In-

troducing χ± = χ5 ± iχ6, we diagonalize the covariant derivative

∇µχ± =

[
∂µ ±

i

4
(cosα− 1)

]
χ± (8.4.103)

and the field equations, which become

[
2 + g̃µµ∂2

µ ∓
i

sinα
eµ9∂µ

]
χ± = 0 . (8.4.104)

After the decomposition into S1 modes and using the standard dimension formula, one

obtains the dual operator conformal dimensions

∆±n =
1

2
+

∣∣∣∣n∓ 1

2

∣∣∣∣ . (8.4.105)

The analysis for the doublet (χ7, χ8) proceeds in an identical fashion and yields the same
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result.

Table 8.3: Bosonic Spectrum
Doublet ∆±n
(χ2

n, χ
3
n) 1

2
+ |n∓ 3

2
|

(χ4
n, fn) 1

2
+ ||n| ± 1

2
|

(χ5
n, χ

6
n) 1

2
+ |n∓ 1

2
|

(χ7
n, χ

8
n) 1

2
+ |n∓ 1

2
|



To obtain the fermionic spectrum, consider the field equations for the octet of 3d spinors

arising from the action (8.4.90), in which we split the Dirac operator into the AdS2 × S1

parts, [
γ̃α∇̃α +

1

sinα
γ01

(
2∂χ +

i

2
Dpqr

)]
θpqr , (8.4.106)

where

Dpqr =
1

2
[p− q + r(3− pq)] (8.4.107)

takes the odd integer values Dpqr ∈ (−3,−1,−1,−1, 1, 1, 1, 3). The S1 dependence is solved

by the a simple exponential,

θ ∼ εi
(
n+

1

2

)
χ

2
, (8.4.108)

where n is an integer. (Remember χ ∈ (0, 4π).) Hence, (8.4.106) reduces to the form

(
γ̃α∇̃α +

iλnpqr
sinα

γ01

)
θnpqr , (8.4.109)

which is familiar from the D6-brane case. The resulting dual conformal dimensions

∆npqr =
1

2
+ |λnpqr| (8.4.110)

are positive half-integers (1/2, 3/2, · · · ), which nicely complement the bosonic spectrum to

fill supersymmetric multiplets. (It may be useful to shift the value of n depending on the

value of Dpqr.)
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Table 8.4: Fermionic Spectrum
θnpqr λnpqr ∆n

θn+++, θn−++, θn−−+ n+ 1 1
2

+ |n+ 1|
θn−−−, θn+−−, θn++− n 1

2
+ |n|

θn−+− n− 1 1
2

+ |n− 1|
θn+−+ n+ 2 1

2
+ |n+ 2|


8.5 Comments on supersymmetry and the spectrum

The ABJM theory is a three-dimensional Chern-Simons theory with U(N)×U(N) gauge

group. It contains four complex scalar fields CI , (I = 1, 2, 3, 4) in the bifundamental rep-

resentation (N, N̄), the corresponding complex conjugates in the (N̄,N) representation, as

well as the fermionic superpartners. The gauge fields are governed by a Chern-Simons action

with opposite integer levels for the two gauge groups, k and −k (see [18] for details). The

bosonic symmetry subgroups of this theory are the conformal group in three dimensions

SO(3, 2) and the R-symmetry group SU(4)R ∼ SO(6)R; these combine into the supergroup

OSp(6|4). In the ’t Hooft limit (large N with fixed N/k ratio) the ABJM theory is conjec-

tured to be dual to type IIA string theory on AdS4 × CP3. The bosonic subgroups act as

isometries of AdS4 and of CP3.

Let us now discuss the supersymmetric operator whose dual gravity configurations we

have studied in this chapter. To build these type of Wilson loops one considers only one of

the gauge fields of the whole U(N)×U(N) gauge group, we call it Aµ. We are mostly guided

by the construction of similar operators in N = 4 SYM but in the absence of adjoint fields

one considers the appropriate combination of bi-fundamentals, CI . Namely [140, 141, 142],

W =
1

N
TrR P

ˆ (
iAµẋ

µ +
2π

k
|ẋ|M I

JCIC̄
J

)
ds. (8.5.111)

It was shown in [140, 141, 142] that the above operator preserves a 1/6 of the 24 su-

percharges when the loop is a straight line or a circle, and the matrix takes the form

M I
J = diag (1, 1,−1,−1). It is worth mentioning that 1/2 BPS Wilson loops have also been

constructed and have a very different pattern of symmetry breaking [145]. The Wilson loops
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(8.5.111) are invariant under an SL(2,R)×U(1) ⊂ SO(3, 2). The SL(2,R) part of this sub-

group is generated by translation along the line P0, dilatation D and a special conformal

transformation K0; the U(1) symmetry is generated by rotations around the line, J12. Of

the R-symmetry, the Wilson loop preserves an SU(2)×SU(2) ⊂ SU(4), as follows from the

explicit form of the matrix M I
J , which admits C1 ↔ C2 and C3 ↔ C4. The classification of

AdS superalgebras that are of interest to us was presented in [167]. One supergroup in that

list that contains the bosonic symmetries discussed here is OSp(4|2). In the original classi-

fication list of [167], this is series (i) using the algebra isomorphism so(4) ∼ su(2)× su(2).

In appendix I we recall details of the representations of OSp(4|2); in the main text we use

a slightly modified notation more akin to our considerations.

Let us first consider the spectrum of the D2 brane which is given in tables 8.3 and

8.4. We see that the degeneracies agree precisely with those of the multiplet of OSp(4|2)

presented in table 8.5. Here supersymmetry plays a crucial role. Notice that the D2 brane

preserves 1/3 of the 24 bulk supersymmetries. At the level of the multiplet representation

we denote the supercharges by Q,Q†; four can be interpreted as creation operators.

Table 8.5: Supermultiplet for the D2 brane fluctuations

Representation ∆ (2p1 + 1, 2p2 + 1) Degeneracies

|Φ〉 h (1, 1) 1
Q†|Φ〉 h+ 1

2
(2, 2) 1 3

Q†Q†|Φ〉 h+ 1 (1, 3) + (3, 1) 3 3
Q†Q†Q†|Φ〉 h+ 3

2
(2, 2) 3 1

Q†Q†Q†Q†|Φ〉 h+ 2 (1, 1) 1



There are a total of 16 states in the multiplet: 8 bosons + 8 fermions. The degeneracies

follow directly from states being singlets or triplets of the respective su(2) as indicated in

the last column of the table. We found it necessary to shift some of the AdS2 quantum

numbers to fit in one multiplet, but the spacing was respected. Thus, the spectrum of

excitations of the D2 brane falls neatly into long representations of OSp(4|2).

Let us now consider the spectrum of the D6 brane. This configuration is 1/6 BPS,

meaning that there are only four supercharges, two of which can be considered as creation

operators in the representation, more precisely, they raise the AdS2 quantum number. Given
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that these supercharges are a doublet of Sp(2) we obtain generic multiplets of operators

with dimensions (h, h+ 1
2 , h+ 1). This is nicely respected by the values of h that are listed

in tables 8.1 and 8.2, with the exception of two short fermion multiplets. We emphasize

that, generically, the dimensions of bosonic operators are not integers. This is a non-trivial

result of our calculation. Because all the states in a given row in tables 8.1 and 8.2 have

the same values of the SO(4) quantum numbers (j, l), we see that the supercharges are

singlets under SO(4) in contrast to the situation for the D2, where the supercharges were

vectors under SO(4). In any case, the fact that the spectra for the D6 fluctuations can be

organized into supermultiplets is a nice check of our calculation.

8.6 Conclusion

We have computed the spectra of quantum fluctuations of particular embeddings of D6

and D2 branes with electric flux in their worldvolumes in the background of AdS4 × CP 3,

which is dual to ABJM theory. These brane configurations are expected to be dual to

supersymmetric Wilson loops in higher dimensional representations of the gauge group of

ABJM theory.

The results represent by themselves interesting progress within a well-defined class of

holographic problems. In particular, regardless of the field theory motivation, the general

question of semiclassical quantization of certain brane configurations in string theory back-

grounds is of great interest. In this respect we have found a peculiar mixing term that are

induced by the top, with respect to the worldvolume dimension, RR potential Cp form in

the WZ part of the D-brane action.

The construction of supersymmetric field theories in curved spacetimes plays a central

role in localization. In this respect, our results provide explicit constructions of super-

symmetric field theories living in curved spaces containing an AdS2 factor. Arguably, the

simplest example in this class is provided by the spectrum of excitations of a supersymmet-

ric D3 brane in AdS5 × S5 which was obtained in [107] and later identified as an N = 4

Abelian vector multiplet living in AdS2×S2 in [25]. The study of supersymmetric field the-
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ories on non-compact spaces is an important problem from the field theoretic point of view

and presents a, hopefully surmountable, challenge to the program of supersymmetric local-

ization. To first approximation, the supersymmetric field theory describing the quadratic

fluctuations constructed here is more similar to the one for D5 brane fluctuations obtained

in [108], which lead to a field theory on AdS2 × S4 with non-canonical couplings between

the scalars and the Abelian gauge field. In this work, in comparison with [108], we have

found an interesting new mixing term of the embedding that has not been seen before in

any of the embeddings in AdS5 × S5 analyzed in [107, 108]. It is worth highlighting that

the mixing is intrinsic to brane embeddings; clearly the string, as discussed in [153] cannot

contain this type of mixing term.

One set of questions that clearly deserves further investigation is the precise classifica-

tion of all supersymmetric brane configurations with flux on their worldvolume embedded in

AdS4×CP3. In particular, there should be other classical solutions corresponding precisely

to the 1/2 BPS configurations where the nature of CP2 is manifest as a realization of the un-

broken SU(3) R-symmetry group. One particular candidate which we studied preliminarily

(but chose not to report on it here) is a D2 brane that wraps AdS2 × S1 ⊂ AdS4. Another

configuration is a D6 whose worldvolume contains CP2 ⊂ CP3. We expect to report on such

matters systematically in a future publication.

A logical continuation of our work would be the computation of the one-loop effective

actions of the D2 and D6 configurations we considered in this chapter. In the context

of the AdS/CFT correspondence such calculation yields the one-loop correction to the

vacuum expectation value of Wilson loops in the strong ’t Hooft coupling limit of ABJM.

Indeed, such an effective action computation was undertaken for the fundamental string

in [118] based on the spectrum obtained in [153]. Since the results for the fundamental

representation, as they currently stand, do not seem to agree with the field theory side,

we defer a systematic analysis of the one-loop effective action to a separate publication.

It is worth noting that there has been some success in matching the holographic one-loop

corrections to field theory results for certain Wilson loops in ABJM [136]. On the field theory

side, to the best of our knowledge, some of the vacuum expectation values of Wilson loops
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in higher rank representations have not been systematically studied, although some results

for representations with a small number of boxes were reported in [168]. The configurations

we consider here are dual to Wilson loops in representations whose Young tableaux have

a number of boxes of the same order as the rank of the gauge group N . To the best of

our knowledge the expectation values of such Wilson loops have not been systematically

computed on the field theory side. Having the corresponding exact field theory results will

ultimately provide grounds for a precision holographic comparison between ABJM theory

and strings and branes in AdS4 × CP 3.
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APPENDIX A

Parameterizations of the 4D N = 2 U(1)4 gauged

supergravity

In this appendix we summarize some of the common choices for the symplectic sec-

tions of the U(1)4 N = 2 gauged supergravity, and we provide the explicit relations for

the physical scalars between different parameterizations. As we pointed out in section

4.2.1, the Kähler potential and the holomorphic superpotential transform non-trivially un-

der reparameterizations of the symplectic sections and, therefore, their expressions in two

different parameterizations of the symplectic sections should not be identified. Moreover,

as is evident from section 4.3, not all choices of holomorphic sections are compatible with a

particular choice of boundary conditions on the scalars. As a result, only certain choices for

the symplectic sections are compatible with supersymmetric boundary conditions and/or

holography.

A.0.1 Cvetič et al. gauge

The choice of symplectic sections that leads to the original parameterization of the STU

model in [45] is summarized in section 8 of [63], and for the special case of real XΛ also in

appendix A.1 of [10]. The relevant parameterization is

X1

X0
≡ τ2τ3,

X2

X0
≡ τ1τ3,

X3

X0
≡ τ1τ2, (A.1)
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together with the gauge fixing condition

X0X1X2X3 = 1, (A.2)

or equivalently

X0 =
1

√
τ1τ2τ3

. (A.3)

With this choice of symplectic sections, the prepotential, the Kähler potential, the Kähler

metric, the holomorphic superpotential and the scalar potential defined in section 4.2.1 take

respectively the form

F = − 2i,

K = − log
((τ1 + τ̄1)(τ2 + τ̄2)(τ3 + τ̄3)

|τ1τ2τ3|

)
,

Kαβ̄ =
dαβ̄

(τα + τ̄β̄)2
,

W = ξ

(
1 + τ1τ2 + τ1τ3 + τ2τ3√

τ1τ2τ3

)
,

V = − 2

L2

(
1 + |τ1|2

τ1 + τ̄1
+

1 + |τ2|2

τ2 + τ̄2
+

1 + |τ3|2

τ3 + τ̄3

)
. (A.4)

Setting further

τα = e−ϕα + iγα, (A.5)

it is straightforward to show that the N = 2 action (4.2.8) reduces to the STU model

action given in [45]. Notice that this parameterization is particularly convenient in the case

of real τα because the Kähler potential becomes a constant. This in turn implies that the

holomorphic superpotential coincides with the real superpotential (4.2.18), given in eq. (3.1)

or [169] (see also eq. (2.15) in [76]).

A very important property of the parameterization of the STU model in terms of the

scalars ϕα and γα is that it is compatible with the holographic dictionary, since these scalars

have the correct Fefferman-Graham expansions for fields dual to dimension one or dimension
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two operators. Namely,

ϕα(r, x) = ϕ−α (x)e−r/L + ϕ+
α (x)e−2r/L + · · · ,

γα(r, x) = γ−α (x)e−r/L + γ+
α (x)e−2r/L + · · · , (A.6)

in the Fefferman-Graham coordinates defined by the metric (B.1) and the gauge-fixing

conditions (B.12). This parameterization is also compatible with supersymmetry, which

requires that Neumann boundary conditions be imposed on the dilatons ϕα and Dirichlet

on the axions γα (or vice versa) [91].

A.0.2 Cacciatori-Klemm gauge

A related parameterization of the symplectic sections is used in section 3.2 of [62], where

the ratios

X1

X0
≡ τ2τ3,

X2

X0
≡ τ1τ3,

X3

X0
≡ τ1τ2, (A.7)

are parameterized exactly as in (A.1), but the gauge condition (A.2) is replaced with

X0 = 1. (A.8)

This choice leads to

F = − 2iτ1τ2τ3,

K = − log
(

(τ1 + τ̄1)(τ2 + τ̄2)(τ3 + τ̄3)
)
,

Kαβ̄ =
dαβ̄

(τα + τ̄β̄)2
,

W = ξ(1 + τ2τ3 + τ1τ3 + τ1τ2),

V = − 2

L2

(
1 + |τ1|2

τ1 + τ̄1
+

1 + |τ2|2

τ2 + τ̄2
+

1 + |τ3|2

τ3 + τ̄3

)
. (A.9)

Notice that the Kähler metric and the scalar potential are identical to those in (A.4), and so

using the identification (A.5) one again obtains the STU model Lagrangian in the form given
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in [45]. However, the Kähler potential and the holomorphic superpotential are not the same,

which is expected since neither of these quantities is invariant under reparameterizations

of the symplectic sections. Despite the different gauge fixing condition for the symplectic

sections, the Cacciatori-Klemm parameterization leads to the same physical scalars as those

in Cvetič et al., and so it is also compatible with both the holographic dictionary and

supersymmetry.

A.0.3 Pufu-Freedman gauge

Another choice for the symplectic sections that is compatible with both holography and

supersymmetry is the one implicitly used in [91, 92]. In that parameterization the sections

are given by

X0 = (1 + z1)(1 + z2)(1 + z3),

X1 = (1 + z1)(1− z2)(1− z3),

X2 = (1− z1)(1 + z2)(1− z3),

X3 = (1− z1)(1− z2)(1 + z3), (A.10)

from which we obtain

F = − 2i(1− (z1)2)(1− (z2)2)(1− (z3)2),

K = − log
(

8(1− |z1|2)(1− |z2|2)(1− |z3|2)
)
,

Kαβ̄ =
dαβ̄

(1− |zα|2)2
,

W = 4ξ(1 + z1z2z3),

V =
2

L2

(
3− 2

3∑
α=1

1

1− |zα|2
)
. (A.11)
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The physical scalars zα in this parameterization are related to the variables τα in the Cvetič

et al. and Cacciatori-Klemm gauges as

z1 =
1− τ1

1 + τ1
, z2 =

1− τ2

1 + τ2
, z3 =

1− τ3

1 + τ3
. (A.12)

These scalars also admit the correct Fefferman-Graham expansions for fields dual to dimen-

sion one or two operators, namely

zα(r, x) = zα−(x)e−r/L + zα+(x)e−2r/L + · · · . (A.13)

The relations (A.12) then imply that the modes zα−(x) and zα+(x) can be expressed in terms

of the modes of the Fefferman-Graham expansions (A.6) as

zα−(x) =
1

2
(ϕ−α (x)− iγ−α (x)),

zα+(x) =
1

2

[(
ϕ+
α (x)− 1

2
(γ−α (x))2

)
− i
(
γ+
α (x) + ϕ−α (x)γ−α (x)

)]
,

(A.14)

where no summation over the index α is implied. Hence, the boundary conditions for ϕα

and γα map respectively to the real and imaginary parts of zα.

A.0.4 Hristov-Vandoren gauge

As a final example of a choice of symplectic sections for the STU model we should

discuss the parameterization used in [63, 10], namely

X0 =
1

1 + z̃1 + z̃2 + z̃3
,

X1 =
z̃1

1 + z̃1 + z̃2 + z̃3
,

X2 =
z̃2

1 + z̃1 + z̃2 + z̃3
,

X3 =
z̃3

1 + z̃1 + z̃2 + z̃3
, (A.15)
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together with the gauge fixing condition (see discussion around eq. (4.16) in [63] and

eq. (C.4) in [10])

X0 +X1 +X2 +X3 = 1, (A.16)

as well as the reality condition

ImXΛ = 0. (A.17)

In order to compute the various N = 2 supergravity quantities one needs to start with

general complex z̃α and impose the reality condition only at the end. This procedure gives

F =
−2i
√
z̃1z̃2z̃3

(1 + z̃1 + z̃2 + z̃3)2
,

K = − log

(
8
√
z̃1z̃2z̃3

(1 + z̃1 + z̃2 + z̃3)2

)
, z̃1, z̃2, z̃3 ∈ R,

Kαβ̄ =
1

16


3/(z̃1)2 −1/z̃1z̃2 −1/z̃1z̃3

−1/z̃1z̃2 3/(z̃2)2 −1/z̃2z̃3

−1/z̃1z̃3 −1/z̃3z̃2 3/(z̃3)2

 , z̃1, z̃2, z̃3 ∈ R,

W = ξ,

V = − 1

L2

(
z̃1 + z̃2 + z̃3 + z̃1z̃2 + z̃1z̃3 + z̃2z̃2

√
z̃1z̃2z̃3

)
, z̃1, z̃2, z̃3 ∈ R, (A.18)

where we have given the Kähler potential, the Kähler metric and the scalar potential only

for real z̃α since the expressions with complex scalars are far too lengthy. The expressions

for the prepotential and the holomorphic superpotential hold for complex scalars.

The scalars z̃α are related to the variables τα in the Cvetič et al. and Cacciatori-Klemm

parameterizations as

z̃1 = τ2τ3, z̃2 = τ1τ3, z̃3 = τ1τ2. (A.19)

Taking τα to be real and inserting these expressions in the scalar potential in (A.18) one

easily sees that it coincides with the scalar potential in (A.4) or (A.9). It follows that

the parameterization used in [63, 10] agrees with all other parameterizations of the STU

model discussed above, but only provided the scalars are real. It is in fact a very convenient
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parameterization for obtaining the purely magnetic solutions discussed in [63, 10], but it is

not suitable for supersymmetric dyonic solutions that are necessarily supported by complex

scalars.
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APPENDIX B

Radial Hamiltonian Formalism

In order to formulate the supergravity theory described by the action (4.2.8) in radial

Hamiltonian language we parameterize the bulk metric in terms of the lapse function N ,

the shift function Ni and the induced metric γij on the radial slices, namely

ds2 = (N2 +NiN
i)dr2 + 2Nidrdx

i + γijdx
idxj . (B.1)

Similarly, the Abelian gauge fields are decomposed in radial and transverse components as

AΛ = αΛdr +AΛ
i dx

i. (B.2)

Using the decomposition (B.1) of the metric the bulk Ricci scalar becomes

R[g] = R[γ] +K2 −KijK
ij +∇µ (−2Knµ + 2nν∇νnµ) , (B.3)

where

Kij =
1

2N
(γ̇ij −DiNj −DjNi) , (B.4)

is the extrinsic curvature and nµ = (1/N,−N i/N) is the unit outward normal vector of the

radial slices. As in the main text, a dot ˙ denotes a derivative with respect to the radial

coordinate r, and Di is the covariant derivative with respect to the induced metric γij .
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Using these expressions, together with the identities

√
−g = N

√
−γ, gµν =

 1
N2 −N i

N2

−N i

N2 γij + N iNj

N2

 , (B.5)

the action (4.2.8) can be written in the form S =
´
drL, where the radial Lagrangian L is

L =
1

2κ2

ˆ
d3xN

√
−γ
{
R[γ] +K2 −KijK

ij − 1

N2
Gαβ̄

(
żα −N i∂iz

α
)(

˙̄zβ̄ −N i∂iz̄
β̄
)

− 4

N2
IΛΣγ

ij(ȦΛ
i − ∂iαΛ −NkFΛ

ki)(Ȧ
Σ
j − ∂jαΣ −N lFΣ

lj )− 4

N
RΛΣε

ijk(ȦΛ
i − ∂iαΛ)FΣ

jk

− Gαβ̄γij∂izα∂j z̄β̄ − 2IΛΣF
Λ
ijF

Σij − V
}
. (B.6)

The canonical momenta following from this Lagrangian take the form

πij =
dL

d γ̇ij
=

1

2κ2

√
−γ
(
Kγij −Kij

)
, (B.7a)

πα =
dL

d żα
= − 1

2κ2

√
−γ
N
Gαβ̄

(
˙̄zβ̄ −N i∂iz̄

β̄
)
, (B.7b)

πβ̄ =
dL

d ˙̄zβ̄
= − 1

2κ2

√
−γ
N
Gαβ̄

(
żα −N i∂iz

α
)
, (B.7c)

πiΛ =
dL

d ȦΛ
i

= − 4

κ2

√
−γ
N
IΛΣ

(
γij(ȦΣ

j − ∂jαΣ)−NjF
Σji
)
− 2

κ2

√
−γRΛΣε

ijkFΣ
jk. (B.7d)

Notice that the canonical momenta conjugate to the variables N , Ni and αΛ vanish iden-

tically and, hence, these fields are non-dynamical. Given the canonical momenta (B.7), a

short calculation determines the Hamiltonian, namely

H =

ˆ
d3x
(
πij γ̇ij + παż

α + πβ̄ ˙̄zβ̄ + πiΛȦ
Λ
i

)
− L =

ˆ
d3x

(
NH+NiHi + αΛFΛ

)
, (B.8)
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where

H =− κ2

√
−γ

(
2

(
γikγjl −

1

2
γijγkl

)
πijπkl

+
1

8
IΛΣ

(
πΛi +

2

κ2

√
−γ RΛKεi

klFKkl

)(
πiΣ +

2

κ2

√
−γ RΣM ε

ipqFMpq

)
+ 2Gαβ̄παπβ̄

)
+

√
−γ

2κ2

(
−R[γ] + 2IΛΣF

Λ
ijF

Σij + Gαβ̄∂izα∂iz̄β̄ + V
)
, (B.9a)

Hi =− 2Djπ
ij + FΛij

(
πΛj +

2

κ2

√
−γ RΛΣεj

klFΣ
kl

)
+ πα∂

izα + πβ̄∂
iz̄β̄, (B.9b)

FΛ =−Diπ
i
Λ. (B.9c)

Since the canonical momenta conjugate to the fields N , Ni and αΛ vanish identically, Hamil-

ton’s equations for these fields impose the first class constraints

H = Hi = FΛ = 0, (B.10)

which reflect the diffeomorphism and gauge invariance of the bulk theory. It follows that

the Hamiltonian (B.8) vanishes identically on-shell.

Finally, HJ theory allows us to express the canonical momenta as gradients of the so

called Hamilton’s principal function S[γ,AΛ, zα, z̄β̄], i.e.

πij =
dS
d γij

, πiΛ =
dS

dAΛ
i

, πα =
dS
d zα

, πβ̄ =
dS
d z̄β̄

. (B.11)

Inserting these expressions for the momenta in the constraints (B.9) leads to a set of func-

tional partial differential equations, the HJ equations, for the functional S[γ,AΛ, zα, z̄β̄].

Given a solution of the HJ equations, equating the expressions (B.11) and (B.7) for the

canonical momenta leads to a set of first order flow equations for the fields γij(r, x), AΛ
i (r, x),

zα(r, x), z̄β̄(r, x). In the radial (or Fefferman-Graham) gauge

N = 1, Ni = 0, αΛ = 0, (B.12)
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these first order equations take the form

γ̇ij =− 4κ2

√
−γ

(
γikγjl −

1

2
γijγkl

)
dS
d γkl

, (B.13a)

żα =− 2κ2

√
−γ
Gαβ̄ dS

d z̄β̄
, (B.13b)

˙̄zβ̄ =− 2κ2

√
−γ
Gαβ̄ dS

d zα
, (B.13c)

ȦΛ
i =− κ2

4
√
−γ
IΛΣγij

dS
dAΣ

j

− 1

2
IΛΣRΣM εi

jkFMjk . (B.13d)

As we discuss in section 4.2.3, these general flow equations lead to first order BPS-like

equations for any solution of the form (4.2.20), including non supersymmetric solutions.
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APPENDIX C

Weyl Anomaly

In two dimensions, for an operator of the form

OM = M−1O , O = −gµνDµDν +X , (C.1)

the dependence of detOM on M is determined by [21, 47, 170]

δM (ln detOM ) = −a2 (δ lnM |OM ) , (C.2)

where a2 is the Seeley coefficient

a2(F |OM ) =
1

4π
Tr

[ˆ
M
d2σ
√
g F b2(OM ) +

ˆ
∂M

ds
√
γ

(
F c2(OM )∓ 1

2
∂nF

)]
,

b2(OM ) = −X +
1

6
R− 1

6
∇2 lnM , c2(OM ) =

1

3

(
K − 1

2
∂n lnM

)
,

(C.3)

(C.4)

and the trace is taken over all degrees of freedom. For AdS2 the unit normal vector and

the extrinsic curvature are given by n = ∂ρ and K = gµν∇µnν = coth ρ. Integrating this

relation yields

ln

(
detOM
detO

)
=

1

4π

ˆ
d2σ
√
g lnM Tr

(
X − 1

6
R+

1

12
∇2 lnM

)
. (C.5)
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Here we have discarded boundary terms, which is justified as long as the conformal factor

is everywhere smooth with M → 1 sufficiently fast as ρ→∞. This is all that is needed for

the scalar case. The treatment of fermionic fluctuations is similar, except that the anomaly

argument only works for second order operators. So, given instead

OM = M−
1
2O , O = −i /D + Y . (C.6)

we must relate the determinants of O2
M and O2. Directly squaring leads to

O2
M = M−1O′ , O′ = −gµνD′µD′ν +X ′ , (C.7)

where

D′µ = Dµ +
i

2
θµ , θµ = ΓµY + Y Γµ +

i/∂M

2M
Γµ . (C.8)

and

X ′ = −1

4

(
ΓµY ΓµY + Y ΓµY Γµ + ΓµY 2Γµ − 2Y 2 + ΓµY

i/∂M

2M
Γµ − i/∂M

M
Y +

i/∂M

2M
ΓµY Γµ

)
+
i

2

(
−ΓµDµY +DµY Γµ +

i

2
∇2 lnM

)
+

1

4
R− iq /F .

(C.9)

The corresponding Seeley coefficient reads

Tr b2(O2
M ) = Tr

(
−X ′ + 1

6
R− 1

6
∇2 lnM

)
= Tr

(
1

2
ΓµY ΓµY −

1

12
R+

1

12
∇2 lnM

)
.

(C.10)

Integrating the anomaly equation yields

ln

(
detO2

M

detO2

)
=

1

4π

ˆ
d2σ
√
g lnM Tr

(
−1

2
ΓµY ΓµY +

1

12
R− 1

24
∇2 lnM

)
. (C.11)
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APPENDIX D

Conventions and Notation

Ten-dimensional target-space indices are denoted by m,n, . . ., two-dimensional world-

sheet indices are a, b, . . ., while the directions orthogonal to the string are represented by

i, j, . . .. All corresponding tangent space indices are underlined.

In Euclidean signature the Dirac matrices satisfy

Γ†m = Γm , Γ2
m = 1 , (D.1)

and the chirality matrix is

Γ11 ≡ −iΓ0123456789 , Γ†11 = Γ11 , Γ2
11 = 1 . (D.2)

The charge conjugation intertwiners C± are such that

C±ΓmC
−1
± = ±ΓTm , C±Γ11C

−1
± = −ΓT11 , CT± = ±C± . (D.3)

Majorana spinors are defined as

ψTC± = ψ† ⇔ ψ∗ = ±C±ψ . (D.4)
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In Lorentzian signature we have

Γ†m = Γ0ΓmΓ0 , Γ2
0 = −1 , Γ2

m6=0 = 1 . (D.5)

and the chirality matrix reads

Γ11 ≡ Γ0123456789 , Γ†11 = Γ11 , Γ2
11 = 1 . (D.6)
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APPENDIX E

Geometric Data on AdS4 × CP3

In this appendix we collect all the geometric formulae necessary to compute the spectrum

of excitations of the 1/6-BPS string.

We start by writing the target space fields. The Euclidean AdS4 (EAdS4) metric is

written as an H2 × S1 foliation,

ds2
EAdS4

= cosh2 u
(
sinh2 ρ dψ2 + dρ2

)
+ sinh2 u dφ2 + du2 , (E.1)

with u ≥ 0, ρ ≥ 0, ψ ∼ ψ + 2π and φ ∼ φ+ 2π. The metric on CP3 is taken to be

ds2
CP3 =

1

4

[
dα2 + cos2 α

2

(
dϑ2

1 + sin2 ϑ1 dϕ
2
1

)
+ sin2 α

2

(
dϑ2

2 + sin2 ϑ2 dϕ
2
2

)
+ cos2 α

2
sin2 α

2
(dχ− (1− cosϑ1) dϕ1 + (1− cosϑ2) dϕ2)2

]
, (E.2)

where 0 ≤ α ≤ π, 0 ≤ ϑ1 ≤ π, 0 ≤ ϑ1 ≤ π, ϕ1 ∼ ϕ1 + 2π, ϕ2 ∼ ϕ2 + 2π and χ ∼ χ + 4π.

The full EAdS4 × CP3 metric with radius L is then

ds2 = L2
(
ds2
EAdS4

+ 4 ds2
CP3

)
. (E.3)
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The other background fields read

eΦ =
2L

k
, F(4) = −3ikL2

2
vol (AdS4) , F(2) =

k

4
J , (E.4)

where

vol (AdS4) = cosh2 u sinhu sinh ρ dψ ∧ dρ ∧ du ∧ dφ ,

J = −2 cos
α

2
sin

α

2
dα ∧ (dχ− (1− cosϑ1) dϕ1 + (1− cosϑ2) dϕ2)

− 2 cos2 α

2
sinϑ1 dϑ1 ∧ dϕ1 − 2 sin2 α

2
sinϑ2 dϑ1 ∧ dϕ2 .

(E.5)

(E.6)

The factor of i in F(4) is due to the Euclidean continuation. The 2-form is proportional to

the Kahler form in CP3.

Target space indices are labeled by m,n, ......, worldvolume indices are a, b, ...., directions

orthogonal to the string are denoted by i, j, ..... The corresponding target space indices are

underlined.

The choice of adapted EAdS4 × CP3 vielbein Em =
(
Ea, Ei

)
is

E0 = LA−
1
2

(
cosh2 u sinh2 ρ ψ̇ dψ + cos2 α

2
sin2 ϑ1 ϕ̇1 dϕ1

)
,

E1 = LB−
1
2

(
cosh2 u ρ′ dρ+ cos2 α

2
ϑ′1 dϑ1

)
,

E2 = Ldu ,

E3 = L sinhu dφ , E4

E5

 =

 cos ∆ sin ∆

− sin ∆ cos ∆


 LB−

1
2 coshu cos α2 (ρ′ dϑ1 − ϑ′1 dρ)

LA−
1
2 coshu sinh ρ cos α2 sinϑ1

(
ψ̇ dϕ1 − ϕ̇1 dψ

)
 ,

E6 = L sin
α

2
dϑ2 ,

E7 = L sin
α

2
sinϑ2 dϕ2 ,

E8 = Ldα ,

E9 = L cos
α

2
sin

α

2
(dχ− (1− cosϑ1) dϕ1 + (1− cosϑ2) dϕ2)

(E.7)
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where

A(u, ρ, α, ϑ1) = cosh2 u sinh2 ρ ψ̇2 + cos2 α

2
sin2 ϑ1 ϕ̇1

2 ,

B(u, ρ, α, ϑ1) = cosh2 u ρ′2 + cos2 α

2
ϑ′21 . (E.8)

Here ψ̇ = dψ
dτ and ϕ̇1 = dϕ1

dτ are constant numbers while ρ′ = dρ
dσ and ϑ′1 = dϑ1

dσ are understood

as functions of ρ and ϑ1, respectively. Also, ∆ is an arbitrary function of ψ and ϕ1 describing

and SO(2) rotation of the canonical frames and it is to be chosen at our convenience. The

standard EAdS4 × CP3 vielbein is recovered for ρ′ = 1, ϑ′1 = 0, ψ̇ = 1 and ϕ̇1 = 0, and

∆ = 0. For the 1/6-BPS solution, ρ′ = − sinh ρ, ϑ′1 = − sinϑ1 and ψ̇ = ϕ̇1 = 1. The

standard and the adapted vielbein are related by the local Lorentz transformation

S = e∆J45eaJ05ebJ14 ,

where

cos a =
coshu sinh ρ ψ̇√

A
, sin a =

cos α2 sinϑ1 ϕ̇1√
A

,

cos b =
coshu ρ′√

B
, sin b =

cos α2 ϑ
′
1√

B
.

(E.9)

(E.10)

Notice that for ρ′ = −ψ̇ sinh ρ and ϑ′1 = −ϕ̇1 sinϑ1 we have

b = a+ π . (E.11)

For reasons to be explained below, we shall set ∆ such that ∆ = τ on the worldsheet.

The adapted vielbein has the desired property that upon taking the pullback onto the

worldsheet

P [Ea] = ea , a = 0, 1 ,

P [Ei] = 0 , i = 2, . . . , 9 ,

(E.12)

(E.13)

where

e0 =
√
Adτ , e1 =

√
Adσ , (E.14)
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is a vielbein for the induced geometry

ds2
ind = A

(
dτ2 + dσ2

)
. (E.15)

The conformal factor reads

A(σ) = sinh2 ρ+ sin2 ϑ1 =
1

sinh2 σ
+

1

cosh2 (σ + σ0)
. (E.16)

The worldsheet spin connection, the extrinsic curvature and the normal bundle gauge

fields are given by, respectively,

wab = P [Ωab] , H
i
ab = P [Ω

i
a]ae

a
b , Aij = P [Ωij ] , (E.17)

where Ωmn is the target space spin connection. For the 1
6 -BPS string we find

w01 =
A′

2A
dτ ≡ w dτ ,

A45 =
cosh ρ cosϑ1 + 1

cosh ρ+ cosϑ1
dτ − P [d∆] =

(
tanh(2σ + σ0)− ∆̇

)
dτ ,

A67 =
1

2
(1− cosϑ1) dτ =

1

2
(1− tanh(σ + σ0)) dτ ,

A89 =
1

2
(1− cosϑ1) dτ =

1

2
(1− tanh(σ + σ0)) dτ ,

(E.18)

(E.19)

(E.20)

(E.21)

and

H
4 b
a =

m√
A

 − cos ∆ sin ∆

sin ∆ cos ∆

 , H
5 b
a =

m√
A

 sin ∆ cos ∆

cos ∆ − sin ∆

 , (E.22)

where

m =
sinh ρ sinϑ1

cosh ρ− cosϑ1
=

1

cosh (2σ + σ0)
. (E.23)

For the purpose of computing the spectrum of fluctuations we will chose ∆ such that

P [d∆] = dτ (e.g. ∆ = ψ) . (E.24)
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The reason for this choice is that the gauge fields

A ≡ A45 = (tanh(2σ + σ0)− 1) dτ ,

B ≡ A67 = A89 =
1

2
(1− tanh(σ + σ0)) dτ ,

(E.25)

(E.26)

are then regular at the center of the disk σ →∞, where the 1-form dτ is not well defined.

Indeed1 A ∼ e−4σ and B ∼ e−2σ as σ → ∞ . They also vanish in the 1/2-BPS limit

σ0 →∞. Notice that

w −A = 1− cosh ρ− cosϑ1 , ∂σA = 2m2 , ∂σB = −1

2
sin2 ϑ1 . (E.27)

These relations prove to be useful when casting the equations of motion in a simple form.

Finally, the contractions involving the Riemann tensor that we need are

δabRaibj =



−2 sinh2 ρ

A
i = j = 2, 3

sin2 ϑ1

2A
i = j = 6, 7, 8, 9

0 otherwise

. (E.28)

It is useful to invert the vielbein in order to write the RR fields that enter in the spinor

action and Killing equation. We will set ∆ = 0 in this computation and then argue that

some of the results do not depend on ∆. For generality we leave ρ′, ϑ′1, ψ̇ and ϕ̇1 arbitrary.

1Near the center of the disk the metric becomes ds2 = dr2 + r2dτ2, with r = 2e−σ
√

1 + e−2σ0 .
Regularity of the gauge fields requires that dτ be multiplied by rn, n ≥ 2, as r → 0.
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We have,

coshu sinh ρ dψ =
1

L
√
A

(
coshu sinh ρ ψ̇ E0 − cos

α

2
sinϑ1 ϕ̇1E

5
)
,

cos
α

2
sinϑ1 dϕ1 =

1

L
√
A

(
cos

α

2
sinϑ1 ϕ̇1E

0 + coshu sinh ρ ψ̇ E5
)
,

coshu dρ =
1

L
√
B

(
coshu ρ′E1 − cos

α

2
ϑ′1E

4
)
,

cos
α

2
dϑ1 =

1

L
√
B

(
cos

α

2
ϑ′1E

1 + coshu ρ′E4
)
.

(E.29)

(E.30)

(E.31)

(E.32)

These relations imply that

F(4) = − 3ik

2L2
√
AB

(
coshu sinh ρ ψ̇ E0 − cos

α

2
sinϑ1 ϕ̇1E

5
)
∧
(

coshu ρ′E1 − cos
α

2
ϑ′1E

4
)

∧ E2 ∧ E3 ,

F(2) = − k

2L2
√
AB

(
−
(

cos
α

2
sinϑ1 ϕ̇1E

0 + coshu sinh ρ ψ̇ E5
)
∧
(

cos
α

2
ϑ′1E

1 + coshu ρ′E4
)

+
√
AB

(
E6 ∧ E7 + E8 ∧ E9

))
,

(E.33)

which allows us to compute the following quantities needed for the fermionic fluctuations:

/F (4) = − 3ik

2L2
√
AB

(
coshu sinh ρ ψ̇ Γ0 − cos

α

2
sinϑ1 ϕ̇1 Γ5

)(
coshu ρ′ Γ1 − cos

α

2
ϑ′1 Γ4

)
Γ23

/F (2) = − k

2L2
√
AB

(
−
(

cos
α

2
sinϑ1 ϕ̇1 Γ0 + coshu sinh ρ ψ̇ Γ5

)(
cos

α

2
ϑ′1 Γ1 + coshu ρ′ Γ4

)
+
√
AB

(
Γ67 + Γ89

))
,

(E.34)

and

1

8
eΦΓa /F (4)Γa =

3i

4L
√
AB

(
cosh2 u sinh ρ ρ′ ψ̇ Γ01 + cos2 α

2
sinϑ1 ϑ

′
1 ϕ̇1Γ45

)
Γ23 ,

1

8
eΦΓa /F (2)Γ11Γa =

1

4L
√
AB

(
cos2 α

2
sinϑ1ϑ

′
1 ϕ̇1 Γ01 + cosh2 u sinh ρ ρ′ ψ̇ Γ45

+
√
AB

(
Γ67 + Γ89

))
Γ11 .

(E.35)
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On the 1
6 -BPS solution the fermionic mass term becomes

1

8
eΦΓa

(
/F (2)Γ11 + /F (4)

)
Γa =

1

4LA

(
sinh2 ρ

(
−3iΓ0123 +

(
−Γ45 + Γ67 + Γ89

)
Γ11

)
+ sin2 ϑ1

(
−3iΓ2345 +

(
−Γ01 + Γ67 + Γ89

)
Γ11

))
Notice that only quantities that are invariant under rotations in the 4− 5, 6− 7 and 8− 9

planes appear in the last two expressions. Therefore, these are also valid for arbitrary choices

of ∆. In particular, they hold in the rotated frame where the connections are regular.

224



APPENDIX F

Regular gauge fields and spinors

The discussion about the regularity of the gauge fields is important because it is coupled

to the periodicity of the fields. On general grounds, we expect regular bosonic/fermionic

fields to be periodic/anti-periodic. Since a gauge transformation can change the periodicity

of the fields, we must make sure that we are working in a regular gauge when we Fourier

expand.

Let us see how the analysis of regularity works out in the present case. The wordsheet

metric is

ds2 = A(σ)
(
dτ2 + dσ2

)
, A(σ) = sinh2 ρ(σ) + sin2 ϑ1(σ) , (F.1)

where the functions ρ(σ) and ϑ1(σ) are defined by

sinh ρ =
1

sinhσ
, sinϑ1 =

1

cosh (σ + σ0)
. (F.2)

The topology is that of a disk with 0 < σ and τ ∼ τ + 2π. The center of the disk is σ →∞

where the geometry is flat. To see this, expand near σ =∞ to get

ds2 ≈ 4e−2σ
(
1 + e−2σ0

) (
dτ2 + dσ2

)
. (F.3)
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Now let

r = 2e−σ
√

1 + e−2σ0 . (F.4)

Then,

ds2 ≈ dr2 + r2dτ2 . (F.5)

This is flat space indeed.

Switching to Cartesian coordinates we have

x = r cos τ , y = r sin τ . (F.6)

The 1-forms transform accordingly:

dr =
xdx+ ydy√
x2 + y2

, dτ =
−ydx+ xdy

x2 + y2
, (F.7)

The important fact to remember is that the coordinates (x, y), as well as the 1-forms dx

and dy are everywhere well defined. Notice then that neither dr nor dτ are well defined as

r → 0, but the combination dr2 + r2dτ2 is. Also, the 1-form rdr is well defined as r → 0

with rdr → 0. In contrast,

rdτ =
−ydx+ xdy√

x2 + y2
, (F.8)

is ill-defined as r → 0 since the value of the limit depends on the direction in which we

approach the origin. This means that only 1-forms involving the combinations

rndτ , n ≥ 2 , (F.9)

are well defind at r = 0, where they vanish.

Going back to the worldsheet, the above discussion means that the 1-form dτ must

appear as

e−nσdτ , n ≥ 2 , (F.10)
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in the gauge fields. In our case we find that

A = tanh(2σ + σ0)dτ ≈
(
1− 2e−4σ−2σ0

)
dτ ,

B = −1

2
tanh(σ + σ0)dτ ≈

(
−1

2
+ e−2σ−2σ0

)
dτ ,

(F.11)

(F.12)

where we have expanded at large σ. We see that these gauge fields are not regular at the

center of the disk. However, after a gauge transformation we have

A = (tanh(2σ + σ0)− 1) dτ ≈ −2e−4σ−2σ0dτ ,

B = −1

2
(tanh(σ + σ0)− 1) dτ ≈ e−2σ−2σ0dτ .

(F.13)

(F.14)

These gauge fields are then regular.
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APPENDIX G

Dimensional reduction of spinors

Given the symmetries of our problem, the natural way to decompose the ten-dimensional

rotations group is

SO(10) ⊃ SO(2)︸ ︷︷ ︸
γ

×SO(2)︸ ︷︷ ︸
ρ

×SO(2)︸ ︷︷ ︸
τ

×SO(2)︸ ︷︷ ︸
λ

×SO(2)︸ ︷︷ ︸
κ

, (G.1)

corresponding to the (0, 1), (2, 3), (4, 5), (6, 7) and (8, 9) tangent directions, respectively.

Under this decomposition, a possible representation of the 10-dimensional gamma matrices

is

Γa = γa ⊗ 1⊗ 1⊗ 1⊗ 1 , a = 0, 1 ,

Γi =
(
−iγ01

)
⊗ ρi ⊗ 1⊗ 1⊗ 1 , i = 2, 3 ,

Γi =
(
−iγ01

)
⊗
(
−iρ23

)
⊗ τi ⊗ 1⊗ 1 , i = 4, 5 ,

Γi =
(
−iγ01

)
⊗
(
−iρ23

)
⊗
(
−iτ45

)
⊗ λi ⊗ 1 , i = 6, 7 ,

Γi =
(
−iγ01

)
⊗
(
−iρ23

)
⊗
(
−iτ45

)
⊗
(
−iλ67

)
⊗ κi , i = 8, 9 , (G.2)

where we named the Dirac matrices associated to each factor as displayed above. This basis

is tailored for the choice (σ1, σ2, σ3 are Pauli matrices)

γ0 = ρ2 = τ4 = λ6 = κ8 = σ1 , γ1 = ρ3 = τ5 = λ7 = κ9 = σ2 . (G.3)
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The chirality operator is then

Γ11 ≡ −iΓ0123456789

= σ3 ⊗ σ3 ⊗ σ3 ⊗ σ3 ⊗ σ3 , (G.4)

and the charge conjugation intertwiners C± become

C+ = Γ02468

= σ1 ⊗ (−iσ2)⊗ σ1 ⊗ (−iσ2)⊗ σ1

,
C− = Γ13579

= σ2 ⊗ (iσ1)⊗ σ2 ⊗ (iσ1)⊗ σ2

. (G.5)

A 10-dimensional spinor can be decomposed in terms of 2-dimensional ones as

ψ =
∑
si=±

ψs2s4s6s8 ⊗ ηs2 ⊗ ηs4 ⊗ ηs6 ⊗ ηs8 , (G.6)

where

η+ =

 1

0

 , η− =

 0

1

 . (G.7)

This provides and explicit projection onto Γ23, Γ45, Γ67 and Γ89 eigenspaces, with corre-

sponding eigenvalues −iαβγ, iα, iβ and iγ which we use in the main body of the text1.

The Majorana conjugate is

ψ
M

= ψTC+

=
∑
si=±

s2s6 ψ
M
s2s4s6s8 ⊗ η

T
−s2 ⊗ η

T
−s4 ⊗ η

T
−s6 ⊗ η

T
−s8 ,

(G.8)

(G.9)

with

ψ
M
s2s4s6s8 ≡ ψ

T
s2s4s6s8σ1 . (G.10)

1The κ-symmetry fixing in Euclidean language is iΓ01Γ11θ = θ, where Γ11 = −iΓ0123456789. This
translates to Γ23θ = −iαβγθ.
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Thus, Majorana spinors satisfy

ψ† = ψ
M ⇐⇒ s2s6 ψ

M
s2s4s6s8 = ψ†−s2−s4−s6−s8 . (G.11)
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APPENDIX H

Representations of CP n

Our starting point is a recursion formula for unit CPn spaces [171]. In that paper, unit

CPn is defined as the CPn space that arises from the Hopf fibration of a unit S2n+1. Hence,

unit CP 1 is a 2-sphere of radius 1
2 . Let dΣ̂n and Ĵm = 1

2dÂm be the line element and the

Kähler form of unit CPn, respectively. Then, for any m and n, the following formulas hold

[171],

dΣ̂2
m+n+1 = dξ2 + c2dΣ̂2

m + s2dΣ̂2
n + c2s2(dψ + Âm − Ân)2 , (H.1)

Âm+n+1 = c2Âm + s2Ân +
1

2
(c2 − s2)dψ , (H.2)

where c = cos ξ, s = sin ξ, ξ ∈ (0, π/2), ψ ∈ (0, 2π).

In the present paper, we deal with CPn spaces with line elements dΣn = 2dΣ̂n. Let

us call these unit-2 CPn spaces, because they arise from the Hopf fibration of an S2n+1 of

radius 2. Therefore, unit-2 CP 1 is just a unit S2. Let dΣn = 2dΣ̂n, An = 2Ân and introduce

two new angles by α = 2ξ ∈ (0, π), χ = 2ψ ∈ (0, 4π). In terms of these, (H.1) and (H.2)

become

dΣ2
m+n+1 = dα2 + c2dΣ2

m + s2dΣ2
n + c2s2(dχ+Am −An)2 , (H.3)

Am+n+1 = c2Am + s2An +
1

2
(c2 − s2)dχ , (H.4)
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where

c = cos
α

2
, s = sin

α

2
. (H.5)

The Kähler form of unit-2 CPn is Jn = 4Ĵn = 2dÂn = dAn, i.e., there is no factor of 2 now.

Explicitly, from (H.4),

Jm+n+1 = c2Jm + s2Jn − csdα ∧ (dχ+Am −An) . (H.6)

With the help of the above formulas we can recursively construct various coordinate

systems of unit-2 CPn. One starts with the unit-2 CP 1, which is a unit 2-sphere,

dΣ2
1 = dΩ2 = dϑ2 + sin2 ϑdϕ2 , A1 = cosϑdϕ , J1 = − sinϑdϑ ∧ dϕ . (H.7)

CP 2 is obtained for m = 1, n = 0,1

dΣ2
2 = dα2 + cos2 α

2
dΩ2 + cos2 α

2
sin2 α

2
(dχ+ cosϑdϕ)2 , (H.8)

A2 = cos2 α

2
cosϑdϕ+

1

2
cosαdχ . (H.9)

For CP 3, one has two choices. One is m = n = 1, which yields the representation used in

[140].

dΣ2
3 = dα2 + cos2 α

2
dΩ2

1 + sin2 α

2
dΩ2

2 + cos2 α

2
sin2 α

2
(dχ+ cosϑ1dϕ1 − cosϑ2dϕ2)2 ,

(H.10)

A3 = cos2 α

2
cosϑ1dϕ1 + sin2 α

2
cosϑ2dϕ2 +

1

2
cosαdχ . (H.11)

The other choice is m = 2, n = 0, which gives

dΣ2
3 = dα2 + cos2 α

2
dΣ2

2 + cos2 α

2
sin2 α

2
(dχ+A2)2 , (H.12)

A3 = cos2 α

2
A2 +

1

2
cosαdχ . (H.13)

1The alternative m = 0, n = 1 is equivalent by a change of coordinate α→ π − α.
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As a corollary of the recursion formula with n = 0 one easily derives the volume of the

unit-2 CPn,

Vn =
(4π)n

n!
. (H.14)
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APPENDIX I

Representations of OSp(4|2)

The supergroup OSp(4|2) with bosonic subgroup Sp(2) and SO(4) is the relevant super-

group for the classification of 1/3 BPS states in ABJM theory, i.e., of states that preserve

8 supercharges. The representation theory of this supergroup has been discussed in vari-

ous articles. Some key general remarks on the construction of unitary super OSp(2N |2)

representations were given, for example, in [167]. A dedicated publication to the represen-

tations of OSp(4|2) appeared, for example, in [172]. The key quantum nubers arise from

the following embedding and isomorphism:

OSp(4|2,R) ⊃ Sp(2,R)× SO(4) ∼= Sp(2,R)× SO(3)× SO(3) . (I.1)

We can relate the SO(4) labels (p1, p2) to SO(3)× SO(3) labels (j, l),

j =
1

2
(p1 + p2), l =

1

2
(p1 − p2) . (I.2)

The irreducible representations of OSp(4|2) are as follows, with the conditions for the
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existence of each multiplet given below the corresponding labels (we quote from [172]):

(h, j, l)

⊕ (h+
1

2
, j +

1

2
, l +

1

2
)

2h−j−l 6=0

⊕ (h+
1

2
, j +

1

2
, l − 1

2
)

l 6=0

⊕ (h+
1

2
, j − 1

2
, l +

1

2
)

j 6=0

⊕ (h+
1

2
, j − 1

2
, l − 1

2
)

j 6=0,l 6=0

⊕ (h+ 1, j + 1, l)
2h−j−l 6=0

⊕ (h+ 1, j, l)
j 6=0,2h−j−l 6=0

⊕ (h+ 1, j − 1, l)
j 6=0, 1

2

⊕ (h+ 1, j, l + 1)
2h−j−l 6=0

⊕ (h+ 1, j, l)
l 6=0,2h+j−l 6=0

⊕ (h+ 1, j, l − 1)
l 6=0, 1

2

⊕ (h+
3

2
, j +

1

2
, l +

1

2
)

2h−j−l 6=0

⊕ (h+
3

2
, j +

1

2
, l − 1

2
)

l 6=0,2h+j−l 6=0

⊕ (h+
3

2
, j − 1

2
, l +

1

2
)

j 6=0,2h−j−l 6=0

⊕ (h+
3

2
, j − 1

2
, l − 1

2
)

j 6=0,l 6=0

⊕ (h+ 2, j, l)
2h−j−l 6=0

This is the long multiplet in which we accommodated the spectrum of excitations of the

D2 brane.
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APPENDIX J

Harmonic Analysis on T̃ 1,1

The field equations listed at the end of the previos section involve certain differential

operators on the T̃ 1,1 part of the D6-brane world volume. To deal with these operators, it

is appropriate to view T̃ 1,1 as a coset manifold [173, 165, 160], T̃ 1,1 = SU(2)×SU(2)
U(1) , and to

apply the powerful technique of harmonic expansion [174]. In this way, their spectrum is

obtained in a purely algebraic fashion. The spectrum of Laplace-Beltrami operators on T̃ 1,1

was found in [173, 165, 160], but the operators arising in our field equations are slightly

different. To be self contained, we include a brief review of the geometry of coset manifolds.

For a pedagogical introduction to the subject we refer to van Nieuwenhuizen’s lectures

[175]. Our signature and curvature conventions agree with those of [175]. In this section,

our notation regarding indices is independent of the other sections.

J.0.1 Geometry of coset manifolds

Consider a Lie group G with a subgroup H and their respective Lie algebras G and H.

Decompose G into G = H+K, such that, for the generators Ta ∈ K and Ti ∈ H and assuming

H to be compact or semi-simple, the structure equations of G take the form

[Ti, Tj ] = Cij
kTk ,

[Ti, Ta] = Cia
bTb ,

[Ta, Tb] = Cab
cTc + Cab

iTi .

(J.1)
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Starting from any coset representative L(x), define the Lie-algebra valued one-form

V (x) = L−1(x)dL(x) = r(a)V a(x)Ta + Ωi(x)Ti . (J.2)

Here, V a are the (rescaled) vielbeins, r(a) denote scale factors, which are independent for

each irreducible block of Cia
b, and Ωi are the H-connections. The Maurer-Cartan equation

for V yields

dV a +
1

2

r(b)r(c)

r(a)
Cbc

aV b ∧ V c + Cib
aΩi ∧ V b = 0 , (J.3)

dΩi +
1

2
r(a)r(b)Cab

iV a ∧ V b +
1

2
Cjk

iΩj ∧ Ωk = 0 . (J.4)

Indices will be lowered and raised using a flat coset metric ηab and its inverse ηab, respec-

tively. Later, we shall choose ηab to be positive definite Euclidean, but for the time being

it is sufficient to state that ηab is pseudo-Euclidean with arbitrary signature.

The geometry of the coset manifold is characterized, as usual, by a torsionless connection

defined by

dV a + Bab ∧ V b = 0 , Bab = −Bba . (J.5)

The Riemann curvature 2-form is

Rab = dBab + Bac ∧ Bcb . (J.6)

Comparison of (J.3) and (J.5) yields

Bab =
1

2
Ccb

aV c + Cib
aΩi , (J.7)

where

Ccb
a =

r(b)r(c)

r(a)
Ccb

a +
r(a)r(c)

r(b)
Cacb +

r(a)r(b)

r(c)
Cabc . (J.8)
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The SO(d) covariant derivative is defined by

D = d+
1

2
BabD(Tab) , (J.9)

where D is a representation of SO(d) satisfying

[D(Tab),D(Tcd)] = ηbcD(Tad) + ηadD(Tbc)− ηacD(Tbd)− ηbdD(Tac) . (J.10)

A coset harmonic is given, in an arbitrary representation of G, by the inverse of a coset

representative,

Y (x) = L−1(x) . (J.11)

By definition, it satisfies

dY = −V Y = −
[
r(a)V aTa + Ωi(x)Ti

]
Y , (J.12)

where the algebra elements act on Y by right action. Y also forms a representation of

SO(d), if the action of Ti is given by

[
Ti +

1

2
Ci

abD(Tab)

]
Y = 0 . (J.13)

As a consequence, the covariant derivative (J.9) of an harmonic reduces to

DY = V aDaY = −V a

[
r(a)Ta +

1

4
Ca

bcD(Tbc)

]
Y . (J.14)

J.0.2 Geometry of T̃ 1,1

Let us now apply these general results to T̃ 1,1 = SU(2)×SU(2)
U(1) . Take T1, T2, T3 and

T1̂, T2̂, T3̂ to be the generators of the first and second SU(2), respectively, let i = 1, 2,

î = 1̂, 2̂, and define

T5 = T3 − T3̂ , TH = T3 + T3̂ , (J.15)
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where TH generates the U(1). In this basis, the structure equations of G = SU(2)× SU(2)

read

[Ti, Tj ] =
1

2
εij(TH + T5) ,

[
Tî, Tĵ

]
=

1

2
ε̂iĵ(TH − T5) ,

[TH , Ti] = [T5, Ti] = εi
jTj ,

[
TH , Tî

]
= −

[
T5, Tî

]
= ε̂i

ĵTĵ .

(J.16)

Defining the scale parameters of the irreducible blocks by

r(i) = a , r(̂i) = b , r(5) = c , (J.17)

the spin connections (J.7) are found as

B5i =
a2

4c
V jεj

i , Bij = −εij
[
ω +

(
c− a2

4c

)
V 5

]
,

B5̂i = − b
2

4c
V ĵεĵ

î , B îĵ = −εîĵ
[
ω −

(
c− b2

4c

)
V 5

]
.

(J.18)

The Ricci tensor Rab = Rcacb turns out to be block-diagonal,

Rij = δij

(
a2 − a4

8c2

)
, Rî ĵ = δî

ĵ

(
b2 − b4

8c2

)
, R5

5 =
a4 + b4

8c2
. (J.19)

In is convenient to work in a complex basis, with

x± =
1

2
(x1 ± ix2) , x±̂ =

1

2
(x1̂ ± ix2̂) , (J.20)

such that the positive definite Euclidean metric ηab is given by

η+− = η+̂−̂ = 2 , η55 = 1 , (J.21)

and the components of the ε tensors are

ε±
± = ε±̂

±̂ = ±i . (J.22)
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In this basis, the covariant derivatives (J.14) are given by

D± = −aT± ±
ia2

4c
D(T5±) , (J.23)

D±̂ = −bT±̂ ∓
ib2

4c
D(T5±̂) ,

D5 = −cT5 +
i

2

(
c− a2

4c

)
D(T+−)− i

2

(
c− b2

4c

)
D(T+̂−̂) .

A suitable representation (by right action) of the SU(2)× SU(2) generators is1

T±Y
j,l,r
q = −i

(
j ± q + r

2

)
Y j,l,r∓1
q∓1 , (J.24)

T±̂Y
j,l,r
q = −i

(
l ± q − r

2

)
Y j,l,r±1
q∓1 ,

T5Y
j,l,r
q = irY j,l,r

q ,

THY
j,l,r
q = iqY j,l,r

q .

J.0.3 Spectrum of operators on T̃ 1,1

We are interested in the spectrum of the differential operators on T̃ 1,1, which appear in

the field equations listed in subsection 8.3.3. The scale parameters a, b and c are related to

the angle α by

a2 =
1

cos2 α
2

, b2 =
1

sin2 α
2

, c2 =
1

sin2 α
. (J.25)

This leaves a sign ambiguity, which will be resolved shortly. Notice that (J.25) implies

a2 + b2 = 4c2 , (J.26)

which will simplify many expressions in the sequel.

Scalar fields Scalar fields transform trivially under SO(d), which implies q = 0 by

(J.13). Vectors (with covariant indices) transform under D(Tab)c
d = ηacδ

d
b − ηbcδda. Notice

that DaY is a vector. We can now calculate the Laplacian 20 = DaD
a of a scalar harmonic,

1Notice that the role of T± and T±̂ as SU(2) raising and lowering operators is the opposite
compared to what is indicated by their indices. This is a consequence of right action.
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which results in

−20Y
j,l,r

0 = H0Y
j,l,r

0 , (J.27)

where

H0 = a2j(j + 1) + b2l(l + 1)− r2

4

(
a2 + b2 − 4c2

)
. (J.28)

This is independent of r by virtue of (J.26). Using (J.25), let us rewrite it as

H0 = c2(Cj,l − 1) , Cj,l = sin2 α

2
(2j + 1)2 + cos2 α

2
(2l + 1)2 , (J.29)

Because of the relations q = m3 + m3̂ = 0 and r = m3 − m3̂, where m3 and m3̂ are

SU(2) quantum numbers, it must hold that j and l are either both integer or half-integer.

Accordingly, r is an even or odd integer with |r| ≤ l̄ = 2 min(j, l).

The field equation (8.3.57) contains, however, the operator

−2′0Y = (−20 ± icD5)Y , (J.30)

where the sign depends on whether χ+ or χ− is considered (and on the still ambiguous sign

of c). It is straightforward to obtain

−2′0Y
j,l,r

0 =
(
H0 ± c2r

)
Y j,l,r

0 . (J.31)

Vector fields Consider vector fields with covariant indices. The Laplace-Beltrami oper-

ator is given by

−21Ya =
(
−δbaDcD

c +Rba

)
Yb , (J.32)

From (J.13) and (J.24) we deduce that the components of Ya must carry the follwing

quantum numbers,

Y =


Y j,l,r∓1
∓1

Y j,l,r±1
∓1

Y j,l,r
0

 . (J.33)
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After evaluating the covariant derivatives and using (J.19), one obtains the matrix form

−21Ya =


H0 ± a2

2 r 0 ±a3

4c (2j ± r)

0 H0 ∓ b2

2 r ∓ b3

4c(2l ∓ r)

±a3

8c (2j + 2∓ r) ∓ b3

8c(2l + 2± r) H0 + a4+b4

4c2

Y . (J.34)

We remark that this result corrects some opf the results of Benincasa and Ramallo [160].

In fact, in contrast to what was found in [160], H0 always is an eigenvalue of this matrix,

belonging to the longitudinal vector DaY
j,l,r

0 .

For the field equation (8.3.62) we need the operator

−2′1Ya = −21Ya − cotα EacbDcYb . (J.35)

Direct evaluation yields

EacbDcYb = −


±rc 0 ±a

2 (2j ± r)

0 ±rc ± b
2(2l ∓ r)

±a
4 (2j + 2∓ r) ± b

4(2l + 2± r) a2−b2
2c

Y (J.36)

The factor cotα is determined (J.25) up to a sign, which is related to the (unfixed) frame

orientation. One realizes that the terms in (J.34) and (J.36) combine very nicely (cancelling

the asymmetries in a and b), if the sign is fixed such that2

c =
1

sinα
⇒ cotα =

b2 − a2

4c
. (J.37)

Therefore, simplifying also by (J.26), we obtain

−2′1Ya =


H0 ± rc2 0 ±ac

2 (2j ± r)

0 H0 ∓ rc2 ∓ bc
2 (2l ∓ r)

±ac
4 (2j + 2∓ r) ∓ bc

4 (2l + 2± r) H0 + 2c2

Y . (J.38)

2In [165], the sign was fixed imposing supersymmetry on T̃ 1,1. In our case T̃ 1,1 is not Einstein,
so there are no Killing spinors.
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It is straightforward to calculate the eigenvalues of this matrix, but we have to be slightly

more detailed in the analysis of the spectrum. The fact that each non-zero component

of the vector (J.33) must be a valid representation of SU(2) × SU(2) poses a number of

restrictions. As for scalar fields, j and l must both be integers or half-integers, with r

even or odd, respectively. The restrictions on the range of r that arise from the non-

zero vector components are summarized in Tab. J.1. The overall range of r for a given

eigenvector is obtained as the intersection of all the restrictions, taking care of vanishing

vector components. Our results for the eigenvectors, eigenvalues, and ranges of r are listed

in Appendix J.0.4.

Table J.1: Restrictions on r for non-zero components of the vector (J.33).

component SU(2)× SU(2) rep. restrictions on r

+ Y j,l,r−1
−1 −2j + 2 ≤ r ≤ 2j + 2 −2l ≤ r ≤ 2l

− Y j,l,r+1
1 −2j − 2 ≤ r ≤ 2j − 2 −2l ≤ r ≤ 2l

+̂ Y j,l,r+1
−1 −2j ≤ r ≤ 2j −2l − 2 ≤ r ≤ 2l − 2

−̂ Y j,l,r−1
1 −2j ≤ r ≤ 2j −2l + 2 ≤ r ≤ 2l + 2

5 Y j,l,r
0 −2j ≤ r ≤ 2j −2l ≤ r ≤ 2l



Spinor fields In our conventions, the SO(d) generators acting on spinors are D(Tab) =

Σab = 1
4 [γa, γb], where the Dirac matrices satisfy γaγb + γbγa = 2ηab. We choose them as

γi = σi × I , γî = σ3 × σi , γ5 = σ3 × σ3 . (J.39)

Notice that they satisfy γ121̂2̂5 = −1. Furthermore, in the complex basis (J.20), we have

σ+ = σ1 − iσ2 =

0 0

2 0

 , σ− = σ1 + iσ2 =

0 2

0 0

 . (J.40)

This implies that the SO(d) generators needed in the covariant derivatives (J.23) are

Σ5± = ∓1

2
σ± × σ3 , Σ5±̂ = ∓1

2
I× σ± ,

Σ+− = −σ3 × I , Σ+̂−̂ = −I× σ3 .

(J.41)
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The branching of this representation into representations of U(1) is given by

− 1

2
CH

abΣab = i



−1

0

0

1


. (J.42)

We can now construct the Dirac operator, /D = γaDa. Direct evaluation yields

/D = −a
2

(σ−T+ + σ+T−)× I− b

2
σ3 × (σ−̂T+̂ + σ+̂T−̂)− cT5σ3 × σ3

− i

2

(
c+

a2

4c

)
I× σ3 +

i

2

(
c+

b2

4c

)
σ3 × I

=



−cT5 −bT+̂ −aT+ 0

−bT−̂ cT5 0 −aT+

−aT− 0 cT5 bT+̂

0 −aT− bT−̂ −cT5



+
i

8c



−(a2 − b2)

8c2 + a2 + b2

−(8c2 + a2 + b2)

a2 − b2


. (J.43)

The field equation (8.3.63) contains the operators (8.3.54). They become, in the notation

of this section,

D± = /D +
i

4
cotα (Σ+− + Σ+̂−̂)± i

4 sinα
(γ5 + 3) . (J.44)

Using (J.37), the additional terms have the following matrix form,

i

8c
(a2 − b2)



1

0

0

−1


± ic

2



2

1

1

2


. (J.45)
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As for the vector case, we realize that the sign of c implied by (J.37) is such that (J.45)

cancels the asymmetries between a and b in the Dirac operator (J.43).

By inspection of (J.43), (J.42) and (J.24), we can establish that the spinor components

must carry the following quantum numbers,

Y =



Y j,l,r
−1

Y j,l,r−1
0

Y j,l,r+1
0

Y j,l,r
1


. (J.46)

This makes it possible to replace the coset generators in (J.43) by numerical values. Using

also (J.26) we obtain

D±Y =
i

2



c(−2r ± 2) b(2l + 1− r) a(2j + 1 + r) 0

b(2l + 1 + r) c(2r + 1± 1) 0 a(2j + 1 + r)

a(2j + 1− r) 0 c(2r − 1± 1) −b(2l + 1− r)

0 a(2j + 1− r) −b(2l + 1 + r) c(−2r ± 2)


Y . (J.47)

We proceed as for the vectors, evaluating first the restrictions the SU(2)× SU(2) rep-

resentations of the single spinor components impose. Here, j and l are both integer or

half-integer, with r odd or even respectively (vice versa with respect to the scalar and

vector cases). The restrictions arising from the non-zero components are listed in Table J.2.

Table J.2: Restrictions on r for non-zero components of the spinor (J.46).
SU(2)× SU(2) rep. restrictions on r

Y j,l,r
−1 −2j + 1 ≤ r ≤ 2j + 1 −2l − 1 ≤ r ≤ 2l − 1

Y j,l,r−1
0 −2j + 1 ≤ r ≤ 2j + 1 −2l + 1 ≤ r ≤ 2l + 1

Y j,l,r+1
0 −2j − 1 ≤ r ≤ 2j − 1 −2l − 1 ≤ r ≤ 2l − 1

Y j,l,r
1 −2j − 1 ≤ r ≤ 2j − 1 −2l + 1 ≤ r ≤ 2l + 1


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J.0.4 Tables of harmonics and eigenvalues

The following tables list the solutions of the harmonic analysis on T̃ 1,1 for the vector

and spinor fields. One must distinguish the generic case j 6= l, from the special case j = l,

for which Cj,l simplifies to Cj,l = (2j + 1)2. Some of the generic solutions simplify in the

special case j = l, because common factors can be pulled out of the vectors and spinors.

As a consequence, the associated range of r may be smaller than in the generic case.

As discussed in the main text, j and l are both non-negative integer or half-integer, with

r even or odd (odd or even), respectively, for vectors (spinors). We define l̄ = 2 min(j, l).

Table J.3: Eigenvectors and eigenvalues of the modified vector Laplacian, −2′1, de-
fined in (J.35) and given in (J.38) in matrix form. Generic case j 6= l.

−2′1 eigenvector eigenvalue range of r

j 6= l


a(2j + r)
a(2j − r)
b(2l − r)
b(2l + r)
−2cr

 H0 |r| ≤ l̄


a(2j + r)(r + h)
a(2j − r)(r − h)
b(2l − r)(r − h)
b(2l + r)(r + h)

2c(h2 − r2)

 H0 + hc2

h = 1±
√
Cj,l

|r| ≤ l̄


b(2l + 2− r)

0
0

−a(2j + 2− r)
0

 H0 + rc2 |r − 2| ≤ l̄


0

b(2l + 2 + r)
−a(2j + 2 + r)

0
0

 H0 − rc2 |r + 2| ≤ l̄


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Table J.4: Eigenvectors and eigenvalues of the modified vector Laplacian, −2′1. Spe-
cial case j = l. Only the h = 2j + 2 solution exists for j = 0, while the h = −2j
solution does not exist for j = 1

2
.

−2′1 eigenvector eigenvalue range of r

j = l


a(2j + r)
a(2j − r)
b(2j − r)
b(2j + r)
−2cr

 4j(j + 1)c2 |r| ≤ 2j > 0


a(2j + r)(r + h)
a(2j − r)(r − h)
b(2j − r)(r − h)
b(2j + r)(r + h)

2c(h2 − r2)

 [4j(j + 1) + h]c2

h = 2j + 2
|r| ≤ 2j


a
−a
−b
b
−2c

 [4j(j + 1) + h]c2

h = −2j
|r| ≤ 2j − 2


b
0
0
−a
0

 [(2j + 1)2 + (r − 1)]c2 |r − 1| ≤ 2j − 1


0
b
−a
0
0

 [(2j + 1)2 − (r + 1)]c2 |r + 1| ≤ 2j − 1


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Table J.5: Eigenvectors and eigenvalues of the spinor operators D±, defined in (J.44)
and given in (J.47) in matrix form. The eigenvalue is related to h by λ = ich. Generic
case j 6= l. 

eigenvector h range of r

D+


b(2l + 1− r)
2c(h+ r − 1)

0
a(2j + 1− r)

 1±
√
Cj,l |r − 1| ≤ l̄


a(2j + r + 1)

0
2c(h+ r − 1)
−b(2l + r + 1)

 1
2
±
√

1
4

+ Cj,l − r |r + 1| ≤ l̄

D−


a(2j + r + 1)

0
2c(h+ r + 1)
−b(2l + r + 1)

 −1±
√
Cj,l |r + 1| ≤ l̄


b(2l + 1− r)
2c(h+ r + 1)

0
a(2j + 1− r)

 −1
2
±
√

1
4

+ Cj,l + r |r − 1| ≤ l̄



Table J.6: Eigenvectors and eigenvalues of the spinor operator D+. The eigenvalue is
related to h by λ = ich. Special case j = l. Notice that the range of r depends on
the sign in the eigenvalue.

eigenvector h range of r

D+


b(2j + 1− r)
2c(h+ r − 1)

0
a(2j + 1− r)

 1± (2j + 1)
|r − 1| ≤ 2j (+)
|r| ≤ 2j − 1 (−)

a(2j + r + 1)
0

2c(h+ r − 1)
−b(2j + r + 1)

 1
2
±
√

1
4

+ (2j + 1)2 − r |r| ≤ 2j − 1 (+)
|r + 1| ≤ 2j (−)

D−


a(2j + r + 1)

0
2c(h+ r + 1)
−b(2j + r + 1)

 −1± (2j + 1)
|r| ≤ 2j − 1 (+)
|r + 1| ≤ 2j (−)

b(2j + 1− r)
2c(h+ r + 1)

0
a(2j + 1− r)

 −1
2
±
√

1
4

+ (2j + 1)2 + r
|r − 1| ≤ 2j (+)
|r| ≤ 2j − 1 (−)


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