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Highlights 

 Reliability metrics to assess power system capacity value is applied to combined heat and power 

plants. 

 Steam constraints that limit power generation can significantly reduce a combined heat and 

power plant’s power system capacity value. 

 Regional daily electric peaks may not align with combined heat and power plant steam demand, 

eroding the capacity value of the plant. 

 An increase in steam demand during times of peak power demand on the grid can increase the 

power system capacity value of CHP plants. 

Abstract 

Combined heat and power (CHP) plants have received a resurgence of attention from power system 

planners and policy makers in an effort to fully realize the potential of the technology. CHP plants that 

are thermal-primary, however, do not always maximize the benefits provided to the power system. In 

this study, we examine how power system planning metrics can be applied to CHP plants to better 

understand the impact of steam-driven constraints.  This application of these methods will allow CHP 

plant owners and grid operators to be better informed of the capacity value that these plants provide to 

the power system and identify opportunities to increase CHP contribution to resource adequacy. Using 

the University of Michigan’s Central Power Plant as a case study, we found the effective load carrying 

capability (ELCC) of the plant to be 56% of its rated capacity, with the steam constraints limiting that 

value.  We also showed that if steam demand could be increased during peak power system demand, 

then the capacity value of the plant would increase linearly.  Currently, local steam demand is greatest 

during winter months while regional daily electric peaks are greatest during summer months. Alleviation 

of this misalignment would be necessary to increase the ELCC of the plant.  

 

Acknowledgements 

I would like to thank my co-author, Assistant Professor Jeremiah Johnson, for his guidance and patience 

throughout this research, my faculty advisors for their support at various points in the opus process, Jim 

Adams and Melissa Seedorf from the Central Campus Power Plant for sharing plant operational data and 

their knowledge of the plant’s operations, and the Center for Sustainable Systems at the University of 

Michigan for intellectual and infrastructural support. 

 

  



4 
 

Table of Contents 
Introduction .................................................................................................................................................. 5 

Methods ........................................................................................................................................................ 6 

Reliability Metrics ..................................................................................................................................... 7 

Case Study ................................................................................................................................................. 8 

Results ........................................................................................................................................................... 8 

Local Resource Zone 7 Loss of Load Expectation Baseline ....................................................................... 8 

Steam Constraint ...................................................................................................................................... 9 

Effective Load Carrying Capability of Central Campus Power Plant ....................................................... 11 

Steam Constraint Scenarios .................................................................................................................... 11 

Role of Temperature ............................................................................................................................... 12 

Steam use for cooling and emissions ...................................................................................................... 13 

Discussion.................................................................................................................................................... 14 

Conclusions ................................................................................................................................................. 14 

 

  



5 
 

Introduction 
Cogeneration plants, which produce both useful thermal and electric energy, provide benefits to the 

power system that are not consistently measured or valued. Typically found in industrial, hospital, and 

university campuses, cogeneration plants can supply electric energy more efficiently than the surrounding 

regional electric grid [1,2]. If valued appropriately, these plants can provide firm generating capacity to 

meet peak electric loads, reducing the need for larger utility scale electric generating units. This study 

employs power system reliability methods to determine the system capacity value of thermal-primary 

cogeneration plants. 

Probabilistic methods have been used by electric grid system planners for over a half century to plan for 

and build a generation portfolio that reliably deliver electric power to consumers [3]. As Calabrese details 

in [3], historical information of generators is analyzed to determine a forced outage rate of electric 

generator types. Assuming individual generator outages are independent, the generators’ forced outage 

rates can be combined with an expected electric load profile to probabilistically predict the fraction of 

time during which a loss of load driven by insufficient generating capacity can be expected to occur in a 

future period. This probability calculation is a key determinant for the generation reserve capacity. 

Loss of load probability (LOLP), loss of load expectation (LOLE), and effective load carrying capability (ELCC) 

are common reliability indices that can be used to determine the capacity value of an individual generator 

to the system [4]. The LOLP is the probability that load exceeds available generating capacity at a given 

point in time, and the LOLE is the cumulative time of such events. The ELCC is a measure of the capacity 

that a generator provides that reduces loss of load events in the power system. Garver describes a 

graphical approach that can be used to determine the ELCC of a generator given a constant system load 

[4]. Using this approach, the author calculated the ELCC of a 600 MW generator, demonstrating that 

further additions of 600 MW units to this system, effectively increasing the capacity of the system, result 

in larger effective capabilities for each successive unit. The study shows that the reliability target has only 

a minor effect on the load carrying capability. 

Historically applied to fuel based electric generators, reliability indices have been more recently used to 

determine the capacity value of renewable generators and energy storage [5–8]. Madaeni et al. use a 

capacity factor-based method to approximate the capacity value of concentrating solar power plants with 

thermal energy storage using the 10 highest-load hours of the year in the southwestern United States [5]. 

They conclude that capacity payments can significantly increase available capacity as energy prices are 

not a perfect indicator of scarcity of supply. The marginal value of energy storage quickly tapers off after 

two to three hours of storage because the authors find that energy prices and LOLPs are not perfectly 

correlated. High energy-price hours with low LOLP exist in the period of study. During these hours the 

plant will sell energy, with the energy revenues outweighing capacity-related penalties if the plant cannot 

generate during a subsequent high-LOLP hour. This market based operational strategy and resulting 

capacity penalty is also noted in a study of energy storage [7]. The authors execute a similar capacity-

factor based approximation study for photovoltaic solar plants in [6], and as in [5] conclude that 

consideration of a subset of high LOLP periods to be the closest approximation methodology to reliability-

based methods.  

Reliability modeling and simulation can be also be applied to distributed generation (DG). Chowdhury et 

al. present a reliability model to determine the DG equivalence to a distribution facility in an attempt to 

improve the distribution system reliability while meeting increasing customer load requirements [9]. 
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While the study uses General Reliability’s DISREL program to model the test case, the authors note that a 

Monte Carlo approach could also be used to determine the capacity value of the distributed generation—

both fuel and renewable based.  

Photovoltaic (PV) solar and battery energy storage plants can be designed to fit within the distribution 

network (e.g. on residential rooftops) or to be transmission tied (e.g. utility scale). Despite their unique 

operational constraints, the previously mentioned reliability metrics and simulation methodologies can 

be applied to these electric generators. U.S. grid operators utilize some mix of simulation and historical 

data with these reliability metrics to assign a capacity value to solar and wind on an annual basis [10–12]. 

In a forward looking study, Laws et al. used ELCC in a systems dynamics model to analyze the effects of 

residential PV adoption on utility rate structures and electric grid defection, noting the decline of the ELCC 

of PV systems with increased penetration of PV systems [13]. 

Simulation of generator availability in serving customer load can help determine future capacity 

requirements and the capacity value of individual generators. Billinton and Huang combine generation 

and load data for a system to create a risk model that is sequentially simulated, concluding that system 

reliability is directly related to the generating unit reliability parameter (e.g. equivalent forced outage rate 

demand or derated adjusted forced outage rate in the study) [14]. Similarly, Monte Carlo simulations can 

help system planners assess existing and future reserve margin needs, and these types of simulations have 

become more common place as computing power has increased [15,16]. In examining simulation results 

in [16], Billinton and Sankarakrishnan note, however, that if load duration curve data are available, they 

can be used together with generator availability to obtain reasonably accurate reliability indices for the 

system. 

The aim of this paper is to assess the capacity value of a particular type of distributed generation—

combined heat and power (CHP), also referred to as cogeneration, plants. CHP plants generate thermal 

energy and electricity for the heating, cooling, and electric power needs of nearby loads. The plants can 

be designed and operated to partially or fully meet thermal and electric power needs. Both steam boilers 

and steam turbines are prevalent in thermal and electric generation plant designs, and thus thermally 

driven CHP plants are a common design choice. Load patterns (daily, seasonal, and annual) and 

connectivity and use of surrounding utility services are some of the key design and operational 

considerations [17]. While Cho et al.’s review of one-hundred seventy articles on CHP research is a good 

indicator of the interest on the topic, analysis of the capacity value of cogeneration plants has been limited 

to date [18]. This paper examines a thermal load matching CHP plant at a university, using it as a case 

study to demonstrate a non-sequential Monte Carlo simulation method to determine the capacity value 

of a CHP plant to the power system.  

 

Methods 
Using system load and generator data, we simulated plant availability and leveraged reliability metrics to 

calculate the capacity credit of an electric generating plant. The intent of the analysis was to examine the 

impact of steam generation at a thermal-primary cogeneration plant on power system capacity value. As 

a case study, we modeled the ELCC of the University of Michigan’s Combined Heat and Power Central 

Campus Power Plant (CCPP) in the Midcontinent Independent System Operator (MISO) Local Resource 

Zone (LRZ) 7. The University’s CCPP has a nameplate capacity of 48.5 MW and 1040 klb/hr and the LRZ 7 
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consists of most of Michigan’s Lower Peninsula. Generator characteristics and hourly load data from 2014 

were gathered for LRZ 7, and CCPP electricity and steam generation were gathered for this same time 

period.  

 

Reliability Metrics 
LOLE measures how often a system’s available capacity will fall short of system demand. Electric system 

planners (e.g., Independent System Operators) execute an LOLE analysis by combining load profiles and 

generator outages, both scheduled and forced, to determine the expected number of days in a year when 

a shortage may occur.  The industry standard reliability metric in the United States has been a LOLE of one 

day, every ten years (or 0.1 days/year) [19]. The system’s ability to meet this metric is based on 

probabilistic calculations.  

As described in Milligan et al. (2016), the LOLE is defined in Equation 1: 

𝐿𝑂𝐿𝐸 = ∑ 𝑃[𝐶𝑖 < 𝐿𝑖]
𝑛
𝑖=1    (Eq.1) 

where 𝑃 is the probability, 𝐶𝑖 is the available capacity on day i, and 𝐿𝑖 is the peak load on day i [20]. 

The available capacity on day i, 𝐶𝑖, is defined in Eq. 2:  

𝐶𝑖 = ∑ 𝐶𝑥𝛼𝑥𝑖
𝑛
𝑥=1    

𝛼𝑥𝑖 = {
0 𝑤ℎ𝑒𝑛 𝑢𝑖 ≤ 𝐸𝐹𝑂𝑅𝑑𝑥
1 𝑤ℎ𝑒𝑛 𝑢𝑖 > 𝐸𝐹𝑂𝑅𝑑𝑥

    (Eq. 2) 

where 𝐶𝑥 is the summer capacity of a single unit, x, 𝐸𝐹𝑂𝑅𝑑𝑥 is the equivalent forced outage rate 

demand assigned to that unit, 𝛼𝑥 is a binary variable that indicates the operational state of unit x at time 

i, and 𝑢𝑖 is a random variable between 0 and 1. EFORd is defined as a measure of the probability that a 

generating unit will not be available due to forced outages or forced deratings when there is a demand 

on the unit to generate. 

The LOLE analysis forms a basis for determining how much a generator contributes to a system planning 

reserve margin. One measure of an individual generator’s capacity contribution is ELCC. For our study, we 

calculate the ELCC by determining the LOLE of the system to establish a baseline value, reducing the load 

by the amount that the generator supplies during that time period (𝑒𝑖 in Eq. 3 below), and then iteratively 

adding load until the LOLE matches the baseline value [7].  

The calculation of the capacity value of this resource is described in Eq. 3. The incremental load value, 

relative to its rated capacity, is the ELCC of the generator, as shown in Eq. 4. 

∑ 𝑃[(𝐶𝑖 + 𝑒𝑖) < 𝐿𝑖]
𝑛
𝑖=1 = ∑ 𝑃[(𝐶𝑖 + 𝐵) < 𝐿𝑖]

𝑛
𝑖=1    (Eq. 3) 

𝐸𝐿𝐶𝐶 = 
𝐵

𝐶𝐴
 × 100%   (Eq. 4) 

where 𝐵 is the capacity (MW) of a benchmark unit that is iteratively calculated to achieve the solution in 

Eq. 3.  The ELCC is presented as the ratio of the capacity from this benchmark unit to the nameplate 

electric capacity of the cogeneration plant, 𝐶𝐴. 
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For thermal-primary cogeneration plants, the maximum available generating capacity of the 

cogeneration unit corresponding with peak load on any given day is a function of the electric power 

generated per unit of steam generated and the steam generated to satisfy local demand. 

 

Case Study 
The three key sets of data for this analysis include: generator information for MISO LRZ 7, an hourly load 

profile for LRZ 7, and historical operating data for the University of Michigan’s CCPP. Geographically, MISO 

LRZ 7 is the majority of Michigan’s Lower Peninsula (MI LP). In all cases, 2014 reported data was used.  

We used the U.S. Energy Information Administration’s (EIA) 860 database for generator-level data on 

capacity, fuel type, and technology for all generators located within LRZ 7 [21]. MISO’s Historical 

Forecasted and Actual Load report was used to determine hourly load [22]. Because this report aggregates 

LRZ 2 and LRZ 7, we disaggregated LRZ 7 load using state-level retail sales from EIA-861, adjusting for 

nuclear, hydro, and wind generation, in addition to generation within the state that is out of LRZ 7 [23].  

Michigan’s CCPP records power and steam generation in 30 minute intervals. To match the hourly 

generation and load profiles, the two 30 minute CCPP intervals were averaged to create an hourly value. 

To establish a generator profile for LRZ 7, a non-sequential Monte Carlo simulation was executed. Inputs 

to the simulation included the summer capacity of each generator in LRZ 7 and its EFORd, which was 

assigned by MISO published values for installed capacity, fuel, and technology [22]. Unplanned outages 

were randomly assigned and assumed to be independent of the outages occurring at other generators 

[24].  For a given trial, each generator was assumed to be either available up to its summer rated capacity, 

𝐶𝑥 in Eq. 2., or completely unavailable, which would occur at a frequency equal to the EFORd for the unit. 

Twenty-thousand trials were executed and the average of these trials was then used as the system’s 

unforced capacity value (UCAP), which is assumed to equal 𝐶𝑖.  Fewer than twenty-thousand trials resulted 

in an inconsistent generator profile and a greater number of trials offered little benefit for the larger data 

set. 

LRZ 7 load and generator data were used with Eq. 1 to calculate the baseline LOLE for our defined system. 

We then used Eq. 3 and 4 to calculate the capacity value and ELCC of the Michigan Central Power Plant in 

LRZ 7. 

 

Results  

Local Resource Zone 7 Loss of Load Expectation Baseline 
Using the described LOLE methods, the baseline LOLE of the system was calculated to be 0.0771%. Fig. 1a 

shows what the probability of load and generation is for a given value of power (MW). The highlighted 

area in Fig. 1a shows the range of load and generation where cumulative probability of a loss of load is at 

its highest. It is also the interval that contributes proportionally more to the LOLE. Fig. 1b shows this 

interval in greater detail. 
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Fig. 1. Generation and load probability at a given power for (a) Local Resource Zone 7 (b) subset of Local Resource Zone 7 

 

Steam Constraint 
Steam powered generators constitute the majority of the CCPP’s electric nameplate capacity. These 

generators source steam from onsite boilers, and the generator exhaust steam is sent to the campus to 

meet thermal energy load. The electric steam generators can also be bypassed to just send steam to 

campus. If, however, there is not sufficient steam load, the 38.5 MW electric steam generators will 

operate below capacity. The CCPP also has two 5 MW natural gas turbines with heat recovery steam 

generators. The CCPP can buy electricity from the utility serving the region (DTE Energy) to meet campus 

demand, but it does not sell excess electricity to the grid because the revenue does not exceed the costs 

under its current utility tariff. 

The daily hourly peak load for LRZ 7 was determined for each day in 2014. The CCPP power and steam 

generation for each of those hours was then determined. The daily peak load and coincident CCPP power 

generation is shown in Fig. 2.  
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Fig. 2. Local Resource Zone 7 load and Central Campus Power Plant coincident generation peaks (daily in 2014) 

For the highest power system peak load days of the year, we see that the CCPP does not generate power 

at its full capability. This is driven by an insufficient demand for steam. Due to this steam constraint, the 

CCPP is producing less power at a time when power produced is most valuable to the LRZ 7 system. 

Fig. 3 shows the hourly power and steam generation at the CCPP in 2014. We see a positive linear trend 

between the CCPP power output and steam demand, with a general range of power that can be 

produced for each unit of steam demand. Examining this range, we can determine the maximum power 

produced for a given amount of steam as determined by physical constraints and economic constraints 

on operation.   
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Fig. 3. Central Campus Power Plant power and steam generated in 2014 (hourly) 

 

 

Effective Load Carrying Capability of Central Campus Power Plant  
The baseline LOLE for LRZ 7 (0.0771%) and Eq. 3 and 4 were used to calculate the ELCC of the CCPP in 

2014. We reduced the daily peak power system load by the amount that the CCPP generated during that 

peak time, and then iteratively added load until the LOLE matched the baseline value. This showed the 

relationship between steam demand and maximum generation as a constraint that may reduce the plant’s 

power system capacity benefits. The resulting capacity credit for the CCPP was 26 MW, which is 56% of 

its nameplate capacity.  

 

Steam Constraint Scenarios 
To realize the full efficiency of combined heat and power, a thermal-primary cogeneration plant requires 

a steam load to turn the turbines that produce electricity. To model the potential power generation of the 

CCPP, data for steam and power generation in 2014 was used to derive Eq. 5 for the maximum potential 

generation subject to steam demand constraints of operation:  

𝑒𝑖 =  15 𝑀𝑊 +  𝛽   (Eq. 5) 

𝛽 = 

{
 

 
0 𝑎𝑡 𝑠𝑚𝑖𝑛

𝛾1(𝑠 − 𝑠𝑚𝑖𝑛) 𝑓𝑜𝑟 𝑠𝑚𝑖𝑛 𝑡𝑜 𝑠1
𝛾1(𝑠1 − 𝑠𝑚𝑖𝑛) + 𝛾2(𝑠 − 𝑠1) 𝑓𝑜𝑟 𝑠1 𝑡𝑜 𝑠2

𝛾1(𝑠1 − 𝑠𝑚𝑖𝑛) + 𝛾2(𝑠2 − 𝑠1) + 𝛾3(𝑠 − 𝑠2)𝑓𝑜𝑟 𝑠2 𝑡𝑜 𝑠3

   (Eq. 5) 
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where 𝑒𝑖 and 𝛽 is measured in MW, steam is 𝑠 measured in kilopounds per hour, and 𝛾 is the slope of the 

maximum potential generation subject to steam demand constraints of operation of the CCPP. This 

equation is also shown visually in Fig. 3, representing a linear fit of the steam-to-electricity generated.  

With this equation, scenarios were modeled to determine the ELCC of the CCPP at 60%-180% of its actual 

steam operation (the nameplate capacity was used for the upper constraint). For each of these scenarios 

the previously mentioned LOLE and ELCC approach was used. 

Fig. 4 shows the results of this scenario analysis. The capacity credit was constant for 160-170% of its 

actual operations. This indicates that the additional available capacity for this range would not actually 

reduce the LOLE of LRZ 7. The capacity credit declined a small amount (2%) between 90 and 110% of plant 

steam operation. For the rest of the range considered, we see a positive, nearly linear relationship 

between the steam output and the capacity credit value.  

 

 

Fig. 4. Central Campus Power Plant capacity credit and steam operation 

 

Role of Temperature 
By examining the regional hourly electric peak load with the coincident CCPP steam demand and the 

ambient temperature, we can illustrate a relationship between the three. As shown in Fig. 5, we see that, 

not surprisingly, regional hourly electric peak loads are the greatest during high temperature hours. 

Following similar logic, CCPP steam demand is the greatest when ambient air temperature hours are the 

lowest in a given year. Regional electric load peaks and CCPP steam demand peaks are thus misaligned 

and occur at the two ends of the regional temperate range.  

For example, during the 2014 regional electric load peak the CCPP ambient temperature was 29°C. The 

coincident CCPP steam demand was 64% of its annual daily demand peak, which occurred when the 

temperature was -18°C. Fazekas et al. find a similar relationship between CHP output and ambient 

temperature in their CHP study [25]. 
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Fig. 5. Local Resource Zone 7 daily peak and Central Campus Power Plant steam demand 

 

 

Steam use for cooling and emissions reductions 
Regional electric load peaks and CCPP steam demand could be better aligned if the steam were used for 

cooling of local buildings. Understanding that this would increase the capacity value of the CCPP, we also 

wanted to analyze the difference in emissions of the regional power system for such a change.  To do so, 

we used Eq. 5 to model an increase in steam demand and the associated power generation from that 

steam. For months in which we would expect a cooling load, June through September in Michigan, we 

assumed the additional steam generated would cool buildings through the use of an absorption chiller, 

replacing electric air conditioning in buildings. Existing infrastructure could be leveraged for this change 

in cooling. 

The change in emissions were calculated in two parts. First, we calculated the additional emissions 

resulting from increased generation at the CCPP. Second, we used the Environmental Protection 

Agency’s Avert model to calculate the reduction in regional power system emissions, which were a 

result of decreased electric load at central campus buildings. As an example, a 50% increase in steam 

load at the CCPP would result in an additional 34,389 tons of CO2, 367 pounds of NOx, and 344 pounds of 

SO2. This same increase at the CCPP would result in a reduction of 69,900 tons of CO2, 131,600 pounds 

of NOx, and 326,400 pounds of SO2 in the regional power system. Combining these results we would 

expect a regional net reduction of 35,511 tons CO2, 131,233 pounds of NOx, and 326,056 pounds of SO2 

for a 50% increase in steam load at the CCPP. 
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Discussion 
The misalignment of regional electric demand and local steam demand in our case study resulted in the 

CCPP operating below its rated capacity during the times of greatest power system need. If the CCPP’s 

steam demand was higher during periods of regional electric load peaks, it could produce additional 

electricity that would satisfy local electric demands and reduce the LOLP of the regional electric system. 

Currently, cogeneration units are not always incentivized to provide maximum power system benefits. 

A greater understanding of the campus building energy needs is required to determine how much the 

CCPP steam demand could be increased. Opportunities for replacing electric heating and cooling with 

steam in campus buildings would be guiding factors in determining how much the CCPP capacity factor 

could be increased. For example, using absorption chillers that source steam from the CCPP for cooling 

instead of electricity sourced from the regional grid for air-conditioning units could increase CCPP 

utilization during peak loads in summer months and therefore provide additional power system capacity 

benefits. This approach would require coordinated planning for building HVAC and CCPP operations.  

Utility tariff structures also influence the capacity factor of CHP plants. CHP plant owners are often 

required to pay a demand charge to the regional utility for continued service in the event of an unplanned 

plant outage. These demand charges can be large enough to affect CHP plant operations. Perea et al. 

describe the use of an optimization algorithm to dispatch a CHP unit with thermal storage and a boiler for 

building energy cost savings, taking into consideration the electric tariff for the building [26]. Gimelli and 

Muccillo execute a similar optimization analysis for cogeneration use in hospitals [27]. Related, Ghadimi 

et. al. simulate the benefits of integrated system sizing and operational strategies for CHP plants, applying 

the methodology to a pharmaceutical manufacturing plant [28]. Our methods could be used to redesign 

utility tariff structures for CHP plants. The utility demand charge assessed to the plant could be tied to the 

regional capacity value of the CHP plant. Continued service charges would then be better aligned with 

actual CHP plant operations and the electric generation capacity needed to meet service territory 

reliability.  

Depending on the regional electric grid mix, increased CHP utilization could also result in reduced 

emissions resulting from electricity generation. Kikuchi et al. examine the use of and effectiveness of 

distributed CHP in reducing greenhouse gas (GHG) emissions [29]. Similarly, Howard and Modi ascertain 

the effects of building type, building size, climate and current GHG emissions from grid electricity on the 

GHG emission reductions possible from natural gas fueled CHP systems [30]. When GHG emissions from 

grid electricity are low, there must be a concurrent thermal demand in sufficient magnitude to achieve 

GHG emissions reductions. Future research could include further analysis of the potential to reduce 

regional emissions attributable to electric generating units from increased utilization of existing thermal-

primary cogeneration plants. 

 

Conclusions 
Using a case study, we showed how a Monte Carlo simulation and industry standard reliability metrics 

can be used to assess the power system capacity value of a CHP plant. If the CHP plant is thermally 

driven, as the CCPP is, then steam constraints can reduce the power system capacity benefits of the 

plant as measured by ELCC. We showed, however, that if this steam constraint could be relaxed, then 
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the ELCC can be increased. To do so would likely require integrated planning of building heating and 

cooling loads to fully utilize the available steam capacity. Any prohibitive utility tariff structures would 

also have to be changed to remove any economic constraints.  

Areas of further analysis could include the potential to reduce regional emissions attributable to electric 

generating units from increased utilization of existing thermal-primary cogeneration plants. While CHP 

plants still utilize carbon based fuels to generate electricity and heat, the high fuel efficiency of CHP 

plants can reduce the total amount of fuel required compared to sourcing the same amount of energy 

from the regional electric grid. Emissions from electric generating units do vary by region, so we would 

expect the emissions reductions to vary accordingly.   
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