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ABSTRACT

Restricted mean survival time (RMST) is often of great clinical interest in practice.

Several existing methods involve explicitly projecting out patient-specific survival

curves using parameters estimated through Cox regression. It is often be preferable

to directly model the restricted mean, for convenience and to yield more directly

interpretable covariate effects.

In the first chapter, we propose generalized estimating equation methods to model

RMST as a function of baseline covariates. The proposed methods avoid potentially

problematic distributional assumptions pertaining to restricted survival time. Unlike

existing methods, we allow censoring to depend on both baseline and time-dependent

factors. The methods are motivated by the end-stage liver disease (ESLD) setting

and, in particular, consider survival in the absence of the preferred therapy, liver

transplantation.

In the second chapter, we propose generalized estimating equation methods to

fit RMST models with multiplicative covariate effects. The proposed methods are

applicable to several frequently occurring set-ups not considered in Chapter 1, in-

cluding clustered data and data with a high-dimensional categorical covariate (e.g.,

center). Our proposed methods are motivated by modeling RMST among End-stage

Renal Disease (ESRD) patients, in the presence of a high-dimensional covariate (1

million patients from over 5,000 dialysis facility). Estimation proceeds through a

computationally efficient two-stage algorithm. In addition to evaluating large- and

finite-sample properties, we demonstrate the considerable computational advantages

ix



of the proposed techniques.

The third chapter is motivated by estimating the causal treatment in the presence

of unmeasured confounding. We propose two-stage Instrumental Variable techniques

for censored data. In particular, we develop closed-form, two-stage estimators for

the causal treatment effect using an additive RMST model. Large sample properties

are derived, with simulation studies conducted to assess finite sample properties. We

apply the proposed methods to estimate the causal effect of peritoneal dialysis (PD)

versus hemodialysis (HD) among End-Stage Renal Disease (ESRD) patients.

Keywords: Restricted mean survival time, Dependent censoring, Center effect,

Instrumental variable, End-Stage Liver Disease, End-Stage Renal Disease.
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CHAPTER I

Modeling Restricted Mean Survival Time under General
Censoring Mechanisms

1.1 Introduction

The Cox proportional hazards model (Cox, 1972, 1975) is the strong default for

analyzing time to event data with covariate adjustment. A key motivation for the

hazard ratio (HR) is its connection to the ordering of the survival functions, un-

der the assumption of proportional hazards. However, when there are departures

from proportional hazards, this connection is lost and it is then difficult to inter-

pret the HR. A HR estimated by ignoring the non-proportionality will be a poorly

specified mixture of the survival distribution and censoring distribution (Gillen and

Emerson, 2007), such that the resulting inference may then differ for studies with

identical survival time distributions but different censoring patterns. In the pres-

ence of non-proportionality, alternatives to the HR include the ‘average effect’ (Xu

and O’Quigley, 2000), or applying a ‘stopped Cox model’ (Van Houwelingen, 2007;

Van Houwelingen and Putter, 2015).

Covariate effects that are cumulative in nature are often of greater interest than

instantaneous effects, especially in the presence of non-proportionality (Schaubel and

Wei, 2011). In particular, the contrast in restricted mean survival time (RMST) is

a useful alternative. The RMST is defined as the average survival time up to a fixed

1



point L and can be written as the area under the survival curve on [0, L]. RMST is

an easily interpretable and clinically relevant measure for summarizing the mortal-

ity over a fixed follow-up time period of interest. Most existing methods estimate

RMST indirectly through hazard regression (Zucker, 1998; Chen and Tsiatis, 2001;

Zhang and Schaubel, 2011). These approaches start by estimating the regression pa-

rameters and baseline hazard from a Cox model, calculating the cumulative baseline

hazard, transforming it to obtain the survival function and, and finally integrating

the survival function to obtain the RMST. Such indirect RMST estimation is incon-

venient and computationally cumbersome, even for obtaining a point estimate, let

alone its corresponding asymptotic standard error. Hence, it may be preferable to

directly model RMST itself (Andersen et al., 2004; Tian et al., 2014).

The majority of existing methods for directly modeling RMST require assump-

tions regarding the censoring mechanism, which are often untenable. Censoring may

result from multiple sources in an observational study. The simplest type would be

covariate-independent censoring, which occurs independently of the death time and

all the covariates. When this is the only type of censoring present, one can conduct

regression analysis of RMST using imputed event times based on pseudo-observation

methods (Andersen et al., 2004), or one can construct estimating equations for RMST

based on Inverse Probability of Censoring Weighting (IPCW) (Robins and Rotnitzky,

1992; Robins, 1993; Robins and Finkelstein, 2000) as in Tian et al. (2014). However,

in observational studies, censoring will often depend on the covariate vector. Cen-

soring can depend on baseline covariates, but be conditionally independent of the

event time given such covariates; this is referred to as covariate-dependent censoring.

For example, it is common to have a staggered entry in an observational study with

a fixed calendar period, such that subjects who enter later would have a different

2



censoring distribution than those who enter earlier; e.g., registration date on the wait-

list for a liver transplant. Since mortality is often subject to calendar time trends,

covariate-dependent censoring would be expected to be a frequent occurrence in ob-

servational studies. Andersen and Perme (2009) and Binder et al. (2014) conducted

simulation studies to examine the bias and efficiency of the pseudo-observations ap-

proach for competing risks, in the presence of covariate dependent censoring. A

third type of censoring is dependent censoring, which is often correlated with the

event time through a mutual association with time varying covariates. Covariate-

dependent and dependent censoring have been overcome in many applications by

IPCW. Through pseudo-observations, Xiang and Murray (2012) modeled a standard

linear regression of restricted survival time on the logarithm scale and handled de-

pendent censoring through IPCW. Specifically, we connect the RMST and covariate

vector through a user-specified link function, while Xiang and Murray (2012) model

log restricted survival time through linear regression. In addition, being based on a

pseudo-observation approach, their work has no systematic procedure for evaluating

the asymptotic properties. To our knowledge, there is no existing method to directly

model RMST in the presence of dependent censoring, or even covariate-dependent

censoring.

The setting which motivated the proposed methods involves mortality in the ab-

sence of liver transplantation among End-Stage Liver Disease (ESLD) patients. Since

the number of patients in need of liver transplantation is much greater than the num-

ber of available deceased-donor livers, medically suitable ESLD patients are placed

on a wait-list. Priority for transplantation is then determined by medical urgency,

as quantified by the Model for End-Stage Liver Disease (MELD) score. This score

is calculated using the bounded versions of serum bilirubin, serum creatinine, inter-

3



national normalized ratio for prothrombin time (INR), and dialysis status (Kamath

et al., 2001; Wiesner et al., 2003). The MELD score has been shown to be strongly

predictive of pre-transplant survival among chronic ESLD patients (Kamath et al.,

2001). For a given ESLD patient, the MELD score is updated frequently, such that

MELD constitutes a time-varying covariate. Since wait-listed patients are sequenced

on the wait-list in decreasing order of current MELD score, MELD is strongly associ-

ated with transplant rate. As the organ assignment is correlated with pre-transplant

mortality through its mutual association with time varying MELD score, dependent

censoring occurs through the receipt of a liver transplant, which precludes the ob-

servation of pre-transplant death. We are interested in the effect on pre-transplant

mortality of prognostic factors observed at the time of wait-listing, as such informa-

tion would be useful to hepatologists and transplant surgeons for counseling patients.

We propose semi-parametric regression methods for directly modeling RMST

given baseline covariates in the presence of both covariate-dependent and depen-

dent censoring. The proposed methods can be used to evaluate the cumulative effect

of baseline covariates and to quantify treatment effects in terms of contrast in RMST.

Our proposed methods do not require any distributional assumption on the death

variates and, analogous to generalized linear models, allow for different link functions.

The contribution of our proposed work, compared to Tian et al. (2014), is that

the latter requires that censoring does not depend on the covariate vector. Although

random censoring may be a reasonable assumption in clinical trials, it will often

fail in observational studies. Our methods not only allow for covariate-dependent

censoring, but also allow for dependent censoring (e.g., dependence between the death

and censoring times not captured by the covariates used in the death model). In Tian

et al. (2014), the weight function is the inverse of the Kaplan-Meier estimator. In

4



the methods we propose, we distinguish between covariate dependent and dependent

censoring; in particular, a double inverse weight is required and estimated through

separate Cox models for the two types of censoring.

The remainder of this article is organized as follows. In Section (1.2), we formulate

the data structure, define the necessary assumptions and then describe the proposed

methods. Asymptotic properties are given in Section (1.3). In Section (1.4), we

conduct simulation studies to evaluate the accuracy of the proposed procedures in

finite samples. In Section (1.5), we apply our methods to the motivating ESLD data

to determine the effect on pre-transplant mortality of several clinically meaningful

variables. We conclude this paper with a brief discussion in Section (1.6). Deriva-

tion of the asymptotic properties and additional results for ESLD data analysis are

provided in the Appendix A.

1.2 Proposed Methods

We begin with the necessary notation. Let Di be the treatment-free survival time

for subject i from a cohort of sample size n. We consider two types of censoring.

One potential censoring time, denoted as Ci, is independent of Di conditional on the

baseline covariates; this type of censoring includes loss to follow-up or administrative

censoring on the day the database closes. The other potential censoring, denoted as

Ti, is not conditionally independent of Di given baseline covariates; one example

would be treatment time, which may dependently censor pre-treatment mortality.

The observation time for subject i is Zi = Di∧Ti∧Ci, where a∧b = min{a, b}; and the

indicators for at risk status, pre-transplant death, dependent and independent cen-

soring are denoted by Ri(t) = I(Zi ≥ t),∆D
i = I(Di ≤ Ti∧Ci), ∆T

i = I(Ti < Di∧Ci)

and ∆C
i = I(Ci < Di ∧ Ti) respectively. We denote the covariates predicting Di, Ti

5



and Ci by ZD
i (t),ZT

i (t) and ZC
i respectively. Although we have defined these nota-

tions to accommodate time varying covariates, some elements of each may be time

constant; e.g., gender or race. In some practical studies, the investigators might

want to use the same covariate set for censoring and death time; however, we will

distinguish these covariate sets for the purpose of generality. Stacking these covari-

ates together and removing any redundancy, we obtain Zi(t) and the corresponding

covariate history as Z̃i(t) = {Zi(u) : 0 ≤ u < t}. Our observed data are then given

by {Zi,∆D
i ,∆

T
i ,∆

C
i , Z̃(Zi) : i = 1, . . . , n}.

Let L be a pre-specified time point of interest, before the maximum follow-up time

τ = max{Zi : i = 1, . . . , n}. Denote the restricted observation time as Yi = Zi ∧ L

and its corresponding indicator ∆i = I(Di ∧ L ≤ Ti ∧ Ci). We are interested in the

average survival time up to L and will model this measure through baseline covariates

ZD
i (0):

µi(L) := E
{
Di ∧ L|ZD

i (0)
}
.

Analogous to a generalized linear model, we assume a direct relationship between

this RMST and baseline covariates as follows:

(1.1) g [µi(L)] ≡ g
[
E
{
Di ∧ L|ZD

i (0)
}]

= β′DZ
D
i (0),

where g is a strictly monotone link function with a continuous derivative within an

open neighborhood BD of βD. Examples of link functions include g(x) = x (iden-

tity link), g(x) = log(x) (log link) and g(x) = log(x/(L − x)) (logistic link). We

choose to model the impact of baseline covariates for many reasons. First, our in-

tention is to develop a model useful for application at the start of follow-up. For

example, modeling (1.1) such modeling may be used in counseling ESLD patients re-

garding their prognosis in the absence of liver transplantation, given the information
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observed at the time of wait-list registration. Second, RMST prediction based on

time-dependent covariates are difficult to interpret, at least for internal time varying

factors (Kalbfleisch and Prentice, 2011). The role of ZD
i (t) depends on the model

being considered. In Eq. (1.1), only baseline values are used and we average over the

time-varying process. However, time-dependent values are needed to accommodate

dependent censoring, as explained in the paragraphs below.

The choice of L requires careful thought. One would normally choose a time point

of clinical relevance or, at least, of particular interest to the investigators, respecting

the bound at the maximum follow-up time. If too small an L value is selected,

D∧L = L for most subjects, leading to a largely uninformative analysis. Conversely,

if too large an L value is selected, Ŝ(L) ≈ 0. Setting L too large or too small will

generally result in attenuated covariate effects. The choice of link function also

requires some consideration. The identity link is usually most interesting because

of its straightforward interpretation. However, it has the problem of unbounded

predicted values. From this perspective, the logistic link may be a better choice, at

least for the purposes of prediction. In addition, practitioners can conduct sensitivity

analyses and diagnosis procedures to test the performance of different link functions,

as we demonstrate in Section (1.5).

Note that we do not make any assumption about the error structure, in the interest

of flexibility and robustness. Although it might be difficult to envision an arbitrarily

truncated variate having a well-behaved distribution, it is reasonable to assume that

the corresponding mean has a convenient form. Framing the model in terms of

g[E(Di ∧L)] instead of E[g(Di ∧L)] is very important in our settings. For example,

if log{E(Di ∧ L)} = β′DZ
D
i (0), the parameters in βD can be interpreted as the

multiplicative effect on RMST per unit increase in the corresponding covariate. This
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is quite different from the model assumption E{log(Di∧L)} = β′DZ
D
i (0), where βD

equals the average change in logarithm of restricted survival time per unit increase

in ZD
i (0). The latter interpretation is much less intuitive, as back-transforming is

invalid in the light of Jensen’s Inequality.

We now derive the estimating equation for the parameter of interest, βD. In

absence of censoring, based on (1.1), βD can be estimated via the following estimating

equation:

(1.2)
1

n

n∑
i=1

ZD
i (0)

[
Di ∧ L− g−1

{
β′ZD

i (0)
}]

= 0.

Although connected to generalized linear models, (1.2) is more accurately interpreted

as a generalized estimating equation due to the absence of distributional assumptions

on Di ∧ L.

However, we will not observe Di for all patients due to the occurrence of censor-

ing. Instead we may observe either independent censoring time Ci or treatment time

Ti. For independent censoring, it is reasonable to assume Ci is independent of Di

conditional on the baseline covariates Zi(0) after we include a rich set of variables

in Zi(0). This assumption does not hold for Ti; however, we can assume that the

dependence of Ti and Di occurs through (and only through) the time varying pro-

cess Z̃i(t), such that conditional on Z̃i(t) we assume “no unmeasured confounders”,

formulated as,

lim
h→0

P{Zi ∈ [t, t+ h),∆T
i = 1|Zi ≥ t, Z̃i(t), Di}
h

= lim
h→0

P{Zi ∈ [t, t+ h),∆T
i = 1|Zi ≥ t, Z̃i(t)}
h

.

This essentially assumes that the hazard of being censored by Ti at t depends only

on the observed covariate history up to t and not additionally on future data. For
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example, based on the current liver allocation system, the receipt of a deceased-

donor transplant depends only on the patient’s current prognostic factors, and not

the future disease pathology.

Denote the hazard functions for Ci and Ti at time t as λCi (t) and λTi (t), respec-

tively; i.e.,

λCi (t) = lim
h→0

P{Zi ∈ [t, t+ h),∆C
i = 1|Zi ≥ t, Z̃i(t)}
h

,

λTi (t) = lim
h→0

P{Zi ∈ [t, t+ h),∆T
i = 1|Zi ≥ t, Z̃i(t)}
h

,

with corresponding cumulative hazards, ΛC
i (t) =

∫ t
0
λCi (u)du and ΛT

i (t) =
∫ t

0
λTi (u)du.

Although E(ZD
i (0)[Yi − g−1{β′DZD

i (0)}]) 6= 0 in the presence of censoring, we

can show that under our assumption the IPCW weighted expectation is still zero;

i.e., E(ZD
i (0)Wi(Yi)∆i[Yi − g−1{β′DZD

i (0)}]) = 0, where Wi(t) = W T
i (t)WC

i (t),

W T
i (t) = exp{ΛT

i (t)} and WC
i (t) = exp{ΛC

i (t)}. Therefore, the following equation is

unbiased for βD:

(1.3) Φ∗(β) =
1

n

n∑
i=1

ZD
i (0)Wi(Yi)∆i

[
Yi − g−1

{
β′DZ

D
i (0)

}]
= 0,

provided that the weight function Wi(t) = exp{ΛT
i (t)} exp{ΛC

i (t)} is known. How-

ever, ΛT
i (t) and ΛC

i (t) are rarely known in practice and therefore must be estimated

from the observed data. For this purpose, we assume Cox models for λTi (t) and

λCi (t). Cox regression is a natural choice for modeling censoring times since it is

a well established approach, especially in the context of IPCW. Besides its compu-

tational convenience, Cox regression can flexibly accommodate both time constant

and time varying covariates.We assume the following Cox models, for Ti through
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time-dependent covariates ZT
i (t), and for Ci based on covariates ZC

i :

λTi (t) = λT0 (t) exp
{
β′TZ

T
i (t)

}
.

λCi (t) = λC0 (t) exp
(
β′CZ

C
i

)
.

Using partial likelihood (Cox, 1975) and the Breslow estimator (Breslow, 1972), we

can estimate Λ̂T
0 (t) and β̂T from data {Zi,∆T

i ,Z
T
i (t) : t ∈ [0, Zi), i = 1, . . . , n},

and Λ̂C
0 (t) and β̂C from data {Zi,∆C

i ,Z
C
i : i = 1, . . . , n} respectively. Plugging

Λ̂T
i (t), β̂T , Λ̂

C
i (t), β̂C into (1.3), we obtain the following estimating equation,

(1.4) Φ(β) =
1

n

n∑
i=1

ZD
i (0)Ŵi(Yi)∆i

[
Yi − g−1

{
β′DZ

D
i (0)

}]
= 0,

where Ŵi(t) = Ŵ T
i (t)ŴC

i (t), Ŵ T
i (t) = exp{Λ̂T

i (t)} and ŴC
i (t) = exp{Λ̂C

i (t)}. The

solution to (1.4) provides for consistent estimation of βD, with its asymptotic prop-

erties discussed in Section (1.3). The use of a double inverse weight shares some

similarity with Schaubel and Wei (2011). However, unlike our methods, the first

weight in Schaubel and Wei (2011) is derived from Inverse Probability of Treatment

Weighting (IPTW) and serves to balance treatment-specific covariate distributions.

1.3 Asymptotic Properties

Before presenting the asymptotic properties of our proposed estimators, we specify

the following regularity conditions (1)-(7) for i = 1, . . . , n.

[(a)]

1. {Zi,∆T
i ,∆

C
i , Z̃i(Zi)} are independently and identically distributed.

2. P (Ri(t) = 1) > 0 for t ∈ (0, τ ].

3. |Zik(0)| +
∫ τ

0
d|Zik(t)| < MZ < ∞ for i = 1, . . . , n, where Zik(0), Zik(t) are the

kth components of Zi(0) and Zi(t), respectively.
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4. ΛT
i (τ) < ∞,ΛC

i (τ) < ∞ and ΛT
i (t),ΛC

i (t) are absolutely continuous for t ∈

(0, τ ].

5. There exist neighborhoods BT of βT and BC of βC such that for k = 0, 1, 2,

sup
t∈(0,τ ],β∈BT

∥∥∥∥∥ 1

n

n∑
i=1

exp
{
β′ZT

i (t)
}
Ri(t)Z

T
i (t)⊗k − r(k)

T (t;β)

∥∥∥∥∥ p−→ 0,

sup
t∈(0,τ ],β∈BC

∥∥∥∥∥ 1

n

n∑
i=1

exp
(
β′ZC

i

)
Ri(t)Z

C⊗k
i − r(k)

C (t;β)

∥∥∥∥∥ p−→ 0,

where v⊗0 = 1,v⊗1 = v,v⊗2 = v′v and

r
(k)
T (t;β) = E

[
exp

{
β′ZT

i (t)
}
Ri(t)Z

T
i (t)⊗k

]
,

r
(k)
C (t;β) = E

{
exp

(
β′ZC

i

)
Ri(t)Z

C⊗k
i

}
.

6. Define h(x) = ∂g−1(x)/∂x, where h exists and is continuous in an open neigh-

borhood BD of βD.

7. The matrices A(βD),ΩT (βT ),ΩC(βC) are each positive definite, where

A(β) = E
[
ZD
i (0)⊗2h

{
β′DZ

D
i (0)

}]
,

ΩT (β) = E

[∫ τ

0

{
r

(2)
T (t;β)

r
(0)
T (t;β)

− zT (t;β)⊗2

}
dNT

i (t)

]
,

ΩC(β) = E

[∫ τ

0

{
r

(2)
C (t;β)

r
(0)
C (t;β)

− zC(t;β)⊗2

}
dNC

i (t)

]
,

and

zT (t;β) =
r

(1)
T (t;β)

r
(0)
T (t;β)

,

zC(t;β) =
r

(1)
C (t;β)

r
(0)
C (t;β)

.

Condition (1) can be relaxed at the expense of additional technical development.

Condition (2) is needed for the purpose of identifiability. Conditions (3)-(6) ensure

the convergence of several stochastic integrals used in the proofs. The matrices
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A(βD), ΩT (βT ), ΩC(βC) in condition (7) are at least non-negative definite and will

be positive-definite under any non-redundant specification of the respective covariate

vectors. Our main asymptotic results are summarized in Theorems I.1 and I.2 below,

with the proofs presented in Appendix A.

Theorem I.1. Under regularity conditions (1)-(7), as n→∞,
√
nΦ(βD) converges

to a zero-mean Normal with variance B(βD) = E{Bi(βD)⊗2}, for any subject i =

1, . . . , n,

Bi(β) = εi(β) +KT (β)ΩT (βT )−1UT
i (βT ) +KC(β)ΩC (βC)−1UC

i (βC)

+

∫ τ

0

HT (u;β)r
(0)
T (u;βT )−1 dMT

i (u) +

∫ τ

0

HC(u;β)r
(0)
C (u;βC)−1 dMC

i (u),

where we define

εi(β) = ∆iWi(Yi)[Yi − g−1{β′ZD
i (0)}]ZD

i (0),

UT
i (t) =

∫ t

0

{ZT
i (u)− zT (u;βT )}dMT

i (u),

UC
i (t) =

∫ t

0

{ZC
i − zC(u;βC)}dMC

i (u),

KT (β) = E{εi(β)DT
i (Yi)

′},

KC(β) = E{εi(β)DC
i (Yi)

′},

HT (u;β) = E[εi(β) exp{β′TZT
i (u)}Ri(u)],

HC(u;β) = E{εi(β) exp(β′CZ
C
i )Ri(u)},

DT
i (t) =

∫ t

0

{ZT
i (u)− zT (u;βT )}dΛT

i (u),

DC
i (t) =

∫ t

0

{ZC
i (u)− zC(u;βC)}dΛC

i (u),

with ΩT (β),ΩC(β) defined in Condition (7).

Here we use the usual counting process notations, where NT
i (t) = I(Zi ≤ t,∆T

i =

1) and NC
i (t) = I(Zi ≤ t,∆C

i = 1) are observed counting processes for Ti and

12



Ci respectively, with dMT
i (t) = dNT

i (t) − Ri(t)dΛT
i (t) and dMC

i (t) = dNC
i (t) −

Ri(t)dΛC
i (t) being the corresponding zero mean processes. The proof utilizes various

results derived in Zhang and Schaubel (2011), primarily the asymptotic expression

of the empirical weight in terms of the true weight. The main purpose of Theorem

I.1 is to set up Theorem I.2.

Theorem I.2. Under regularity conditions (1)-(7), as n → ∞, β̂D converges in

probability to βD and
√
n(β̂D −βD) converges to a zero-mean Normal with variance

A(βD)−1B(βD)A(βD)−1 with A(β) defined in condition (g) and B(β) defined in

Theorem 1.

The proof of consistency of β̂D holds by the Inverse Function Theorem (Foutz,

1977) while the proof of asymptotic normality follows through the combination of

various Taylor series expansions and the Cramér-Wold Theorem.

We propose two versions of asymptotic standard error (ASE) estimators for our

proposed estimator β̂D. The first ASE is derived from (1.3) and, as such, treats the

IPCW weights as known:

ASE1 =

√
1

n
Diag

[
Â(βD)−1B̂∗(βD)Â(βD)−1

]
,

where B̂∗(β) = Ê{εi(β)⊗2}. The second ASE is based on (1.4) and derived in

Theorem I.2:

ASE2 =

√
1

n
Diag

[
Â(βD)−1B̂(βD)Â(βD)−1

]
,

where B̂(β) = Ê{Bi(β)⊗2}. These two ASEs can be obtained by plugging all

the undetermined terms with their respective estimators. More detail about the

calculation procedures is provided in Appendix A. These two versions of sandwich

ASEs share the same second derivative matrix, A(β), but differ with two different

middle matrices. The first version, ASE1, which results from the weight function
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being known as opposed to estimated, treats the weights as fixed and therefore its

middle matrix involves εi only. The second version, ASE2, contains several extra

terms in its middle matrix, in order to account for the variation due to estimating

the weights. Although ASE2 should be closer to the truth, it adds the complexity of

middle matrix and is usually more complicated to calculate in practice than ASE1. In

contrast, ASE1 can be easily computed with built-in commands from many statistical

software packages (e.g., SAS, R) and therefore serves as a useful approximation of

ASE2. We evaluate the performance of both ASE1 and ASE2 through the simulations

presented in the next section.

1.4 Simulation Study

We conducted simulations to evaluate the performance of the proposed methods in

finite samples. Two different percentages of right censoring were considered, moder-

ate and heavy censoring. For each simulated subject i = 1, . . . , n, two baseline covari-

ates Zi1, Zi2 were generated from Bernoulli(0.5) distributions. The death time, Di,

was generated from Di = g−1 (α0 + α1Zi1 + α2Zi2)+ε1i, where ε1i ∼ Uniform(−σ, σ),

α = [α0, α1, α2]′ and σ were chosen in accordance with the particular link func-

tion. More specifically, for linear link α = [5.5, 0.25, 0.25]′ was tested and for log

link α = [−0.63, .08, .08]′ was tested. This death generator was used to induce

the same mean structure for Di and Di ∧ L, as the mean structure of the former,

g{E(Di|Zi1, Zi2)} = α0 + α1Zi1 + α2Zi2, is similar to that of the latter,

(1.5) g {E (Di ∧ L|Zi1, Zi2)} = βD0 + βD1Zi1 + βD2Zi2 + βD3Zi1Zi2.

Because the above model (1.5) is saturated due to an extra interaction term Zi1Zi2,

the true values of βD = [βD0, βD1, βD2, βD3]′ can be determined computationally and

are calculated using Monte Carlo methods with size 10 million. We set L = 10 to
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yield a reasonable range of P (D > L). We evaluated the linear and log links, since

they would be the most popular choices in practice.

We generated the independent censoring time Ci from a Cox model with the

following hazard,

(1.6) λCi (t) = λC0 exp (βC1Zi1) ,

where λC0 ranged from 1/36 to 1/21 and βC1 ranged from − log(3) to log(2). We

generated a time-dependent covariate which was correlated with death time Di and

treatment time Ti while conditional on baseline covariates Zi1, Zi2. First, let Vi =

−V0 log{(εi1 + σ)/(2σ)} + εi2, where V0 is a constant ranging from 40 to 100 and

εi2 ∼ Uniform(0, 1). Then define a time-dependent variable Vi(t) = I(t ≤ Vi).

Thus Vi(t) is still correlated with Di through εi1 even after conditional on Zi1, Zi2.

Treatment time Ti was generated from a Cox model with the following hazard,

(1.7) λTi (t) = λT0 exp {βT1Zi2 + βT2Vi(t)} ,

where λT0 ranged from 1/35 to 1/18, βT1 ranged from − log(4) to log(3) and βT2

ranged from log(2) to log(3). Therefore Ti is correlated with Di conditional on

Zi1, Zi2, through a mutual unobserved variable εi1.

We present results for samples sizes n = 250 and n = 500, under moderate

and heavy censoring. For the linear link, P (D > 10) ≈ 11%, approximately 10%

Ci and 21% Ti are observed in the moderate censoring scenario, and 15% Ci and

36% Ti are observed in the heavy censoring scenario. For the log link, P (D >

10) ≈ 10%, approximately 8% Ci and 24% Ti are observed in the moderate censoring

scenario, and 15% Ci and 35% Ti are observed in the heavy censoring scenario. As

displayed in Tables 1.1 and 1.2, the estimates for βD are approximately unbiased,

with the magnitudes of any bias generally decreasing with increasing sample size.
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Table 1.1 Simulation results: g(x) = x

Scenario N βD True BIAS ESD ASE1 CP1(%) ASE2 CP2(%)

Moderate 250 β0 5.452 -0.008 0.505 0.519 94 0.515 94
Censoring β1 0.23 -0.037 0.714 0.72 95 0.735 96

β2 0.227 0.008 0.67 0.686 95 0.711 96
β3 -0.014 0.033 0.928 0.947 95 0.99 96

500 β0 5.452 0.002 0.346 0.368 96 0.364 96
β1 0.23 -0.016 0.503 0.508 95 0.519 95
β2 0.227 -0.018 0.469 0.487 96 0.505 96
β3 -0.014 0.012 0.674 0.671 95 0.701 97

Heavy 250 β0 5.452 -0.006 0.467 0.486 96 0.577 98
Censoring β1 0.23 -0.042 0.704 0.725 95 0.858 98

β2 0.227 -0.037 0.821 0.83 95 0.991 98
β3 -0.014 -0.021 1.271 1.249 94 1.493 96

500 β0 5.452 0.01 0.328 0.345 96 0.398 98
β1 0.23 -0.024 0.512 0.512 94 0.589 96
β2 0.227 -0.043 0.591 0.594 95 0.694 97
β3 -0.014 -0.017 0.924 0.887 93 1.039 97

The calculated ASE1s and ASE2s are very close to their corresponding empirical

standard deviations (ESD), and therefore their empirical coverage probabilities CP1

and CP2 are close to 95%. The implication from our simulation studies is that, in

moderate samples, the proposed methods result in unbiased estimation, and that the

easily computed ASE1 is a useful approximation to the more complicated ASE2. In

our real-data application presented in Section (1.5), n >> 1, 000, the sample size is

far more than 1,000, which would render finite-sample bias in ASE1 much less of an

issue than in our simulation studies.

Mis-specification of the censoring model is a common issue in IPCW methods, in

which case bias will generally exist in the mortality model estimation. To evaluate

how much bias is introduced by such mis-specification, we conducted additional

numerical studies. In particular, we considered 3 different types of mis-specification:

(i) Model for independent censoring, C, is mis-specified: add a covariate, Zi2, to

the censoring hazard λCi (t); i.e., Zi2 was added to the generator, but not the
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Table 1.2 Simulation results: g(x) = log(x)

Scenario N βD True BIAS ESD ASE1 CP1(%) ASE2 CP2(%)

Moderate 250 β0 -0.634 -0.008 0.104 0.104 95 0.102 94
Censoring β1 0.075 -0.007 0.143 0.139 95 0.142 96

β2 0.074 0.005 0.13 0.129 95 0.133 96
β3 -0.004 0.008 0.173 0.172 95 0.179 95

500 β0 -0.634 -0.004 0.068 0.073 97 0.072 96
β1 0.075 -0.001 0.095 0.097 96 0.099 96
β2 0.074 -0.001 0.088 0.091 96 0.094 97
β3 -0.004 0.001 0.12 0.121 96 0.126 97

Heavy 250 β0 -0.634 -0.013 0.124 0.125 94 0.125 95
Censoring β1 0.075 -0.01 0.183 0.171 94 0.177 94

β2 0.074 0.007 0.157 0.157 95 0.167 96
β3 -0.004 0.01 0.222 0.212 95 0.227 96

500 β0 -0.634 -0.008 0.083 0.089 96 0.088 96
β1 0.075 0.001 0.121 0.12 95 0.124 95
β2 0.074 0.001 0.109 0.111 95 0.118 97
β3 -0.004 0.001 0.151 0.15 95 0.159 96

model for Ci being fitted.

(ii) Model for dependent censoring, T , is mis-specified: add a covariate, Zi1, to

censoring hazard λTi (t), but not to the Ti model being fitted.

(iii) Models are mis-specified for both C and T simultaneously.

Figure 1.1 displays the bias for sample size N = 250 calculated with 1, 000 repli-

cations for the 4 scenarios in Table 1.1 and 1.2, after introducing mis-specification

(i)-(iii). In general, bias exists when the censoring model is not correctly specified,

and is more pronounced when both types of censoring are incorrectly modeled.

An interesting comparison is between our methods and those proposed by Tian

et al. (2014). Their methods were developed in the context of covariate-independent

censoring and, thus, proposed IPCW weights based on Kaplan-Meier estimators.

When the censoring mechanism is more complicated than independent censoring

(i.e., in presence of either covariate-dependent or dependent censoring), then our
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Figure 1.1 Bias of [βD0, βD1, βD2, βD3]′ when censoring models are mis-specified
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Figure 1.2 Bias comparison between our and Tian’s methods in presence of dependent censoring

methods should perform better than Tian’s methods. We illustrated this with addi-

tional simulations; we ran the simulation studies in Table 1.1 and 1.2 again, applied

Tian et al. (2014), and then plotted the resulting bias along with the bias from our

methods. As shown in Fig 1.2, Tian et al. (2014) has quite severe biases for N = 250

cases; similar results were obtained with N = 500. This is expected, since we are

testing Tian et al. (2014) outside the set-up for which the methods were developed.

In presence of only covariate-independent censoring, both our methods and those

of Tian et al. (2014) should apply. In evaluating our methods, we blindly added
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Table 1.3 Efficiency comparison between our and Tian’s methods in presence of only
covariate-independent censoring: g(x) = x

N βD True Bias1 Bias2 ESD1 ESD2 ERE

250 β0 5.148 0.023 < 0.001 0.344 0.351 0.963
β1 0.406 -0.017 -0.002 0.404 0.401 1.012
β2 0.403 -0.009 0.005 0.403 0.402 1.004

500 β0 5.148 0.012 0.001 0.244 0.25 0.953
β1 0.406 -0.007 < 0.001 0.286 0.286 1.003
β2 0.403 -0.009 -0.002 0.286 0.286 1.002

non-predictive covariates into the censoring model, in order to assess the degree of

efficiency loss. We generated death time with Di = g−1 (5.25 + 0.5Zi1 + 0.5Zi2)+ ε1i,

where Zi1, Zi2 ∼ Bernoulli(0.5) and ε1i ∼ Uniform(−5.25, 5.25). We chose L = 9

and introduced a simple censoring pattern (Exponential, rate 0.05). Approximately

79% D’s are observed, with P (D > L) ≈ 19%. In Table 1.3, Bias1 and ESD1 are

bias and empirical standard deviation (ESD) calculated by our methods with futile

covariates Zi1, Zi2 in the censoring model, and Bias2 and ESD2 are calculated using

Tian et al. (2014) with a correctly specified non-parametric censoring model. The last

column is Empirical Relative Efficiency (ERE) between Tian et al. (2014) and our

methods, computed as the ratio of mean square error. Examining various replicates,

the estimated regression coefficients for the C model tends to be very close to 0,

with large p values. In practice, users would feel inclined to drop them from the

model due to their negligible effect on C. Since these non-zero censoring coefficients

are actually 0, our methods have a little bit greater bias than Tian et al. (2014).

Regarding efficiency, our methods exhibited approximately the same efficiency as

Tian et al. (2014), despite including the two irrelevant covariates in the C model.
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1.5 Analysis of Liver Disease Data

We applied the proposed methods to directly estimate RMST among End-Stage

Liver Disease (ESLD) patients. Of interest was survival in the absence of liver trans-

plantation. We obtained data from the Scientific Registry of Transplant Recipients

(SRTR). The SRTR data system includes data on all donors, wait-listed candidates,

and transplant recipients in the U.S., as submitted by the members of the Organ Pro-

curement and Transplantation Network (OPTN), and has been described elsewhere.

The Health Resources and Services Administration (HRSA), U.S. Department of

Health and Human Services provides oversight to the activities of the OPTN and

SRTR contractors.

The study population consisted of all chronic ESLD patients initially wait-listed

for deceased-donor liver transplantation in U.S. at age ≥ 18 between January 1, 2005

and December 31, 2012. For each patient, the time origin (t = 0) is the date of wait-

listing, with each patient followed from that date until earliest of death, receipt of a

liver transplant, loss to follow-up, or the end of the observation period on 12/31/2012.

Independent censoring occurs through loss to follow-up, administrative censoring, or

receipt of a living-donor liver transplant. Note that living-donor transplantation is

usually carried out with a liver segment donated by a family member or a close friend,

such that the process is not systematically influenced by MELD score trajectory

conditional on baseline covariates. As described in Section (1.1), dependent censoring

occurs through the receipt of a deceased-donor transplant, which is correlated with

pre-transplant mortality through its mutual association with time varying MELD

score. A total of n =55,651 patients were included in our study population. Among

them, 13,640 (25%) died before receipt of a transplant, 23,335 (42%) received a liver
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transplant, and 18,676 (34%) were independently censored.

We constructed our independent censoring model and pre-transplant mortality

model using baseline covariates historically reported to be important prognostic fac-

tors, including age, gender, race, blood type, United Network for Organ Sharing

(UNOS) Region, calendar year of listing, underlying diagnosis, body mass index

(BMI), dialysis, sodium, hospitalization status and MELD score at listing (t = 0).

The liver transplant hazard model incorporated additional time-dependent covari-

ates, including MELD score, dialysis, sodium, ascites and encephalopathy. UNOS

has established 11 geographic Regions for administrative purposes. The availability

of deceased-donor organs and the distribution of mortality is quite different across

these 11 Regions. This therefore suggests the necessity of adjusting for UNOS Region

in both our censoring and mortality models:

λTij(t) = Ai(t)λ
T
0j(t) exp

{
β′TZ

T
i (t)

}
,(1.8)

λCij(t) = λC0j(t) exp
(
β′CZ

C
i

)
,(1.9)

where the subscript j = 1, 2, . . . , 11 stands for UNOS Region, while the indica-

tor Ai(t) records whether the patient is active and not removed from the wait-list

at time t. Patients generally start follow-up as active, such that Ai(0) = 1, but

may be made temporarily inactive due to illness (Ai(t) = 0), in which case the

patient retains his/her position on the wait-list but cannot receive deceased-donor

liver offers. A patient whose health condition declines to the point where liver

transplantation is considered futile may be permanently removed from the wait-

list (Ai(u) = 0 for any time point u after the time of removal). Therefore Ai(t)

serves as a time varying at-risk indicator for transplantation. Subintervals during

which a given patient is inactive make no contribution to the fitting of model T . We
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then compute cumulative hazard functions as Λ̂C
ij(t) = exp{−

∫ t
0

exp(β̂
′
CZ

C
i )dΛ̂C

0j(u)}

and Λ̂T
ij(t) = exp[−

∫ t
0
Ai(u) exp{β̂

′
TZ

T
i (u)}dΛ̂T

0j(u)] and obtain the IPCW weight as

Ŵij(t) = exp{Λ̂C
ij(t)} exp{Λ̂T

ij(t)}. Since more than 99% of the estimated IPCW

weights are below 10, we cap the weights by 10 in order to reduce variance.

We modeled restricted mean survival time at L = 1, L = 3, L = 5 years post wait-

list registration, which are reasonable time windows in the ESLD setting. Overall

crude survival probabilities are approximately 79%, 62% and 51% for the 3 time

windows respectively. We present the parameter estimates for the pre-transplant

mortality model using three link functions, including linear, log and logistic. As

shown in Table 1.4, the covariate effects demonstrate the same trends across the

different link functions. The average pre-transplant survival time out of the next

3 years is estimated as approximately 33, 35.8, and 33 months using the three link

functions respectively, for a ‘reference’ patient; i.e., a white male wait-listed at age

50, registered in Region 5 (the Region with the largest population) during year 2005,

diagnosed as none of the listed types, not hospitalized, not on dialysis, with blood

Type O, BMI between 20 and 25, sodium level at 130 mmol/l and MELD score 6 (the

minimum possible value). For another patient with the same profile but a different

MELD score (e.g., MELD=30), the average pre-transplant survival time out of the

next 3 years is estimated as approximately 11.6, 9.8, and 7.5 months respectively.

This discrepancy in predicted RMST underscores the importance of the MELD score.

The linear link does not always result in fitted RMST values within an admissible

range (0, L]. This could perhaps be remedied by transforming various covariates, or

by simply bounding estimated RMST. The remaining parameter estimates for the

1- and 5-year windows are provided in Appendix A.3.

Figure 1.3 plots fitted RMST values (L = 3 years) by MELD score (ranging from
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Table 1.4 Estimated covariate effects on RMST in the absence of liver transplantation (L = 36
months)

Linear Log Logistic

ZDi (0) β̂D ASE1 p β̂D ASE1 p β̂D ASE1 p

Intercept 32.95 0.5 < 0.01 3.57 0.02 0.8 2.42 0.08 < 0.01
Year-2005 -1.02 0.05 < 0.01 -0.04 < 0.01 < 0.01 -0.16 0.01 < 0.01

Age-50 (Years) -0.2 0.01 < 0.01 -0.01 < 0.01 < 0.01 -0.04 < 0.01 < 0.01
Sodium-130 (mmol/l) 0.47 0.02 < 0.01 0.02 < 0.01 < 0.01 0.08 < 0.01 < 0.01

MELD Score-6 -0.89 0.02 < 0.01 -0.05 < 0.01 < 0.01 -0.16 < 0.01 < 0.01

UNOS Region Reference Group: 5

1 -1.52 0.49 < 0.01 -0.06 0.02 < 0.01 -0.27 0.07 < 0.01
2 -1.35 0.38 < 0.01 -0.06 0.01 < 0.01 -0.22 0.06 < 0.01
3 -3.26 0.43 < 0.01 -0.11 0.02 < 0.01 -0.49 0.07 < 0.01
4 0.23 0.34 0.5 0.02 0.01 0.09 0.04 0.06 0.46
6 -0.97 0.54 0.07 < 0.01 0.02 0.95 -0.12 0.09 0.21
7 -0.59 0.42 0.16 -0.02 0.02 0.32 -0.1 0.07 0.14
8 -0.9 0.42 0.03 < 0.01 0.02 0.94 -0.13 0.07 0.06
9 -1.41 0.36 < 0.01 -0.07 0.01 < 0.01 -0.21 0.06 < 0.01
10 -2.24 0.48 < 0.01 -0.09 0.02 < 0.01 -0.39 0.07 < 0.01
11 -2.75 0.44 < 0.01 -0.1 0.02 < 0.01 -0.44 0.07 < 0.01

Gender Reference Group: Male
Female 0.49 0.22 0.02 < 0.01 0.01 0.95 0.06 0.03 0.1

Race Reference Group: White
lack 0.34 0.41 0.41 0.02 0.02 0.23 0.06 0.06 0.31

Hispanic 0.23 0.27 0.4 0.01 0.01 0.21 0.04 0.05 0.33
Asian 1.76 0.55 < 0.01 0.05 0.02 0.01 0.33 0.11 < 0.01
Others -0.57 0.89 0.52 -0.01 0.04 0.74 -0.11 0.15 0.48

Blood Type Reference Group: O

A -0.08 0.21 0.72 -0.01 0.01 0.26 -0.02 0.03 0.63
B -0.02 0.36 0.95 -0.01 0.01 0.59 < 0.01 0.06 0.97

AB -0.59 0.78 0.44 -0.05 0.03 0.08 -0.19 0.11 0.1

Diagnosis Reference Group: No or Yes

Hepatitis C -1.33 0.33 < 0.01 -0.04 0.01 < 0.01 -0.26 0.05 < 0.01
Noncholestatic 0.76 0.33 0.02 0.06 0.01 < 0.01 0.12 0.05 0.02

Cholestatic -1.26 0.45 0.01 -0.05 0.02 < 0.01 -0.28 0.07 < 0.01
Acute Hepatic Necrosis 2.27 0.81 0.01 0.06 0.03 0.04 0.56 0.18 < 0.01

Metastatic Disease -2.95 0.66 < 0.01 -0.11 0.03 < 0.01 -0.53 0.11 < 0.01
Malignant Neoplasm -7.24 0.37 < 0.01 -0.43 0.02 < 0.01 -1.23 0.06 < 0.01

BMI Reference Group: (20, 25]
(0, 20] -2.05 0.47 < 0.01 -0.07 0.02 < 0.01 -0.28 0.07 < 0.01
(25, 30] 0.02 0.27 0.95 0.01 0.01 0.25 -0.01 0.04 0.8
> 30 -0.09 0.27 0.74 < 0.01 0.01 0.98 -0.02 0.04 0.57

Hospitalized Reference Group: Not Hospitalized

-1.83 0.65 < 0.01 -0.54 0.08 < 0.01 -0.82 0.14 < 0.01
not ICU -2.41 0.42 < 0.01 -0.33 0.04 < 0.01 -0.49 0.08 < 0.01

Dialysis Reference Group: No or Yes

Yes 1.69 0.54 < 0.01 0.13 0.04 < 0.01 0.49 0.09 < 0.01

An offset of L = 36 months is applied for log link.
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Figure 1.3 Fitted RMST (L = 36 months) by MELD score for a reference patient: white, male,
age=50, Region=5, year=2005, not hospitalized, not on dialysis, blood Type=O, BMI ∈ (20, 25],

sodium=130

6 to 40; i.e., for all possible MELD scores), for the above-described reference patient.

For all the three link functions, RMST decreases strongly with increasing MELD

score, as anticipated. The fitted values based on all the three links result in fitted

values which tail off at higher MELD scores. Among the three link functions, the

linear link may be most appealing in terms of its straightforward interpretation. For

example, for per unit increase in a patient’s MELD score, the average survival time

(capped at 3 years) will decrease approximately 0.9 months; for a 5-year increase

in age at wait-listing, 3-year RMST decreases by approximately 1 month. Analo-

gous trends are also observed in the models using the other two link functions. We

will further compare the model adequacy using different link functions in terms of

discrimination ability and prediction accuracy.

To evaluate each model’s discrimination ability, we compute the Index of Concor-

dance (IOC), also known as the C statistic (Harrell et al., 1996; Heagerty and Zheng,

2005; Uno et al., 2011), denoted by:

IOC =

∑n
i=1

∑n
j=1 ∆iŴi(Yi)Ŵj(Yi)I

[
Yi < Yj, g

−1{β̂
′
DZ

D
i (0)} < g−1{β̂

′
DZ

D
j (0)}

]
∑n

i=1

∑n
j=1 ∆iŴi(Yi)Ŵj(Yi)I (Yi < Yj)

.

24



This statistic converges to a censoring distribution free quantity, P (β′DZ
D
i (0) <

β′DZ
D
j (0)|Di ∧ L < Dj ∧ L), measuring the agreement of predictions with observed

failure order. Quantities frequently used to evaluate model prediction accuracy in-

clude the mean absolute deviation (MAD) and mean squared deviation (MSD) (Davi-

son and Hinkley, 1997; Tian et al., 2007), formulated as,

MAD =
1

n

n∑
i=1

∆iŴi(Yi)
∣∣∣[Yi − g−1{β̂

′
DZ

D
i (0)}

∣∣∣,
MSD =

1

n

n∑
i=1

∆iŴi(Yi)
[
Yi − g−1{β̂

′
DZ

D
i (0)}

]2

,

which converge to E|Di ∧ L − g−1{β′DZD
i (0)}| and E[Di ∧ L − g−1{β′DZD

i (0)}]2

respectively, quantifying the “distance” between predicted and observed outcomes.

Proof sketches of the convergence of IOC, MAD and MSD are provided in Appendix

A.2.

In Table 1.5, we calculate these three statistics for the 9 models (3 link functions,

with 3 values of L) through 2-fold cross validation. Specifically, we split our data

by randomly selecting half the patients (n =27,825) into a “training” set (to which

the models are fitted), and using the remaining half (n =27,826) as the “validation”

set (to which the discrimination and predictive accuracy measures are applied). For

L = 1, IOC=0.82 for all three link functions. For L = 3 and L = 5, IOC is largest for

the log link, although not by a wide margin. As L increases, the IOCs decrease, for

all link functions; this makes sense intuitively since covariate measurements at times

more distant in the past should correspond to reduced discrimination. In terms of

both MAD and MSD, the logistic link has the best prediction accuracy by a fair

margin.
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Table 1.5 Index of Concordance (IOC), Mean Absolute Deviation (MAD) and Mean Squared
Deviation (MSD): Comparison of link functions by L (years)

Measure L Linear Log Logistic

IOC 1 0.82 0.82 0.82
3 0.77 0.78 0.77
5 0.72 0.75 0.74

MAD 1 1.52 1.67 1.36
3 5.08 5.05 4.58
5 7.19 6.56 6.06

MSD 1 6.66 6.97 6.42
3 70.10 69.51 66.02
5 153.25 145.78 139.75

1.6 Discussion

We have proposed methods to model restricted mean survival time as a function

of baseline covariates, using techniques that are valid under a wide variety of cen-

soring mechanisms. RMST is often of inherent interest to investigators, especially

in settings where cumulative covariate effects are appealing. RMST is also an at-

tractive alternative when the proportional hazards assumption does not hold. We

have constructed double IPCW weights to simultaneously account for independent

and dependent censoring. This general setup is frequently necessary in applications,

and failing to account for either type of censoring may result in biased estimation of

the mortality model. In studies with only one type of censoring, one would need to

calculate the corresponding IPCW weight and set the other to 1. In the interests of

flexibility and robustness, our proposed approach does not assume a model for the

death time D∧L but for its mean E(D∧L). This, however, sacrifices some efficiency

in settings wherein a (correctly specified) parametric model is assumed.

Stemming from our current work are several interesting directions worth explor-

ing in the future. One is to consider ‘residual’ RMST (Grand and Putter, 2016),
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i.e. conditional RMST given the patients still being alive at a later time point af-

ter being wait-listed. This could be achieved by applying our methods to landmark

analysis, which incorporates time-varying covariates into the mortality model. The

results from this landmark analysis should be of interest to those who are already

wait-listed for a period of time and want to know, for instance, the effect of MELD

on residual survival time. It would also be interesting to contrast RMST to the

analogous number, expectancy of life lost before time L, which is the area under the

curve of cumulative incidence functions rather than marginal survival functions. An-

dersen (2013) has discussed decomposition of number of life years lost using pseudo-

observations in the context of competing risk. Assuming the absence of time-varying

covariates (as needed in Andersen, 2013) and the use of a simple linear link, we ex-

pect the estimated covariate effects from modeling number of life years lost would

remain the same magnitude but change the sign, and the intercept would change to

L subtracted by the intercept in RMST model. Furthermore, one recent paper by

Zhao et al. (2015) proposed to infer RMST curves as a function of L. Following this

direction, extension of our methods to RMST curves is a very interesting idea worth

further consideration.

We have applied our proposed method to ESLD data to study pre-transplant

mortality. Such data requires consideration not only of independent censoring, but

also of dependent censoring, where the receipt of a transplant precludes observation

of wait-list mortality. This is the first paper to directly estimate RMST in the ESLD

setting. The R code to implement our methods is available upon request to the first

author.
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CHAPTER II

Computationally Efficient Modeling of Restricted Mean
Survival Time Based on Clustered Data

2.1 Introduction

Restricted mean survival time (RMST) is often of great clinical interest in prac-

tice and is gaining increased attention among biostatisticians. There are now several

existing methods to model RMST, with the methods distinguished by their estima-

tion approaches and assumptions on the censoring mechanism (Karrison, 1987; Chen

and Tsiatis, 2001; Andersen et al., 2004; Andersen and Perme, 2009; Zhang and

Schaubel, 2011; Tian et al., 2014; Wang and Schaubel, 2017). Compared to proceed-

ing indirectly by transforming other pivotal functions into RMST, direct modeling

of RMST is more appealing in terms of parameter interpretation and computational

convenience. We propose generalized estimating equation (GEE) methods to model

RMST as a function of baseline covariates. In the interest of robustness and flexi-

bility, we avoid making any distributional assumptions on the underlying restricted

survival time. To represent covariate effects in the mortality model, we make a regres-

sion assumption on RMST with baseline covariates, usually through a link function

analogous to a Generalized Linear Model (GLM).

Although parametrization of the RMST is generally convenient, computational

difficulties may arise if the dimension of the covariate vector is quite large. Standard

28



software packages (e.g., R and SAS) typically handle datasets with tens of thousands

of subjects better than they handle several hundred covariates. Examples include

clustered data, or data with a high-dimensional covariate. In this report, the terms

“cluster”, “facility”, and “center” could be used interchangeably. In the interest of

concreteness, we use the term “center” hereafter, in part due to its connection with

the data which motivated our work in this chapter. A conventional way to adjust for

fixed facility effects in a regression model is to code potentially very large number

of center indicators; this can introduce a high covariate dimension, in turn greatly

increasing the computational burden.

The case we consider in this paper involves data characterized by a large number

of centers and collected in an environment where fixed cluster effects are desired

(Kalbfleisch and Wolfe, 2013). The dataset which motivates our proposed methods

consists of End-Stage Renal Disease (ESRD) patients receiving hemodialysis in the

United States. The study population has over 1 million patients from over 5, 000

dialysis facilities. We are interested in evaluating the effect on survival of some

variables historically reported to be important prognostic factors, including age,

race, gender, underlying diagnosis, and comorbidity information. However, facility is

reported as a strong predictor of ESRD patient survival, and it is strongly suspected

that the distributions of these prognostic factors are unequal across the thousands of

facilities. Hence, the potential for bias exists if our model does not adjust for facility.

The purpose of this chapter is not to contrast fixed versus random effects as

methods for adjusting for center. Strong cases can be made in either direction,

such that the choice of one over the other depends largely on the data structure

at hand, along with the analytic objectives. In our cases, covariate effects are of

interest, but so are the facility effects. In this particular framework, one reason to
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prefer fixed versus random facility effects is that a key assumption of the random

effect model (i.e., the independence of facility effect and patient characteristics) is

unlikely to hold. Fixed cluster effects are more appropriate to avoid such confounding

issues when we suspect the individual covariates are correlated with facility effects.

Moreover, in addition to estimating covariate effects, an objective of our analysis of

the ESRD data is to identify “unusual” or “interesting” centers with significantly

below or above average performance. Such results are of great interest to various

stakeholders (e.g., regulatory bodies, oversight committees, insurers).

the overseers and payers, fixed effect methods have been demonstrated to yield

less biased estimates of the extreme responses with smaller mean squared error when

the true facility effect is far from that of the average facility (Kalbfleisch and Wolfe,

2013; He et al., 2013). We continue discussion in contrasting fixed and random center

effects in Section (2.5).

In the context of ESRD data, conventional methods would involve simultaneous

estimation of the covariate effects and about 6, 000 facilities indicators. As will be

demonstrated, the proposed techniques separate the estimation of center specific

baseline RMST from the estimation of covariate effects. As will be detailed, we can

exploit standard software for implementation, but the proposed yield much faster run

times relative to those typically employed in the generalized linear model setting. In

particular, we dissect the model structure and connect it to the estimation procedure

of the stratified proportional hazards model (Cox, 1972, 1975; Boudreau and Lawless,

2006).

The novelty of the methods proposed in this report is primarily from two perspec-

tives. First, to the best of our knowledge, no previous work has proposed methods

for estimating center effects through a direct model of RMST. Second, no previous
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report has addressed computational issues likely to arise in large data sets; we focus

on center effects (as a frequently occurring instance of high dimensional categorical

covariates) and propose techniques which greatly reduce computing time and that

should be quite appealing to practitioners (e.g., can leverage standard software).

The remainder of this report is organized as follows. In Section (2.2), we formulate

the data structure, describe the proposed methods, and then propose the estimation

procedures. Large sample properties are derived in Section (2.3), with numerical

studies conducted in Section (2.4) to assess the accuracy of the proposed procedures

in finite samples. We illustrate our methods in Section (2.5) through application to

the motivating ESRD data. Discussion and possible future directions are presented

in Section (2.6).

2.2 Proposed Methods

2.2.1 Notation and assumptions

Let i denote the i’th patient (i = 1, . . . , n) and gi denote this patient’s center,

where gi = 1, . . . , J and J is usually a relatively large number (e.g., J = 1, 000).

To simplify the notation, we create a vector variable Gi = (Gi1, . . . , GiJ), where

Gij = I(gi = j), based on gi, and this vector is all 0 except gith element equal

to 1. Baseline covariates of interest are denoted by Zi, a vector of length p. Let

Di denote the mortality time, which is subject to right censoring time Ci. Due to

the occurrence of censoring, we observe the minimum of death and censoring time,

Xi = Di ∧ Ci, and hence, we define the death indicator ∆D
i = I(Di ≤ Ci). Suppose

L is the pre-specified time point of interest; then define restricted observation time

Yi = Di ∧ L and its corresponding indicator ∆Y
i = I(Di ∧ L ≤ Ci). Our observed

data are then O = {Oi; i = 1, . . . , n}, where Oi = {Zi,Gi, Xi, Yi,∆
Y
i ,∆

D
i }.

We are particularly interested in the average survival time up to L, i.e., RMST

31



at L. Since our intention is to develop a useful tool to evaluate survival based on

the information available at the time origin, we model the RMST as a function of

baseline (i.e., time 0) covariates. Analogous to a GLM with log link, we assume the

following mortality model for the RMST, µij = E (Di ∧ L|Zi, gi = j)

µij = µ0j exp (β′0Zi) ,(2.1)

where β0 = (β01, . . . , β0p)
′ is the covariate effect of interest, and µ0 = (µ01, . . . , µ0J)′

is the center-specific baseline RMST. Model (2.1) has the same structure as a GLM

with the log link. However, note that the variance structure is unspecified. The

model is equivalent to model with centers represented by J indicator variables; i.e.,

exp{β′0Zi +G′i log(µ0)}. For the data structure of our interest in this report, J is

usually a large number, such that fitting the model requires careful consideration

to avoid computational difficulties. In order to avoid estimating the J center ef-

fects simultaneously, we propose a two-stage procedure which allows us to separately

estimate β0 and µ0.

2.2.2 Censoring models

In the absence of censoring, E[GijZi{Di∧L−µ0j exp(β′0Zi)}] = 0. This can serve

as the basis for constructing estimating equations, but requires modification in the

presence of censoring. To accommodate censoring, we employ a variant of Inverse

Probability Censoring Weight (IPCW) (Robins and Rotnitzky, 1992; Robins and

Finkelstein, 2000). In our context, IPCW re-weights the observed death (or at risk

patients) such that the weighted uncensored data represent the (Di∧L) distribution

that for the target population. We allow the censoring distribution to depend on

the baseline covariates and to differ across centers. Note that covariate dependent

censoring is quite common, such as the staggered entry in an observational study
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with a fixed calendar period. In this case, subjects who enter later in the observation

window would have a different censoring distribution than those who enter earlier.

Denote the hazard function for censoring time C by λCij(t) for patient i from center

j, with

λCij(t) = lim
h→0

P
(
Xi ∈ [t, t+ h) ,∆D

i = 0|Xi ≥ t,Zi, gi = j
)

h
,

and denote the corresponding cumulative hazard by ΛC
ij(t) =

∫ t
0
λCij(u)du. The IPCW

weight is given by can WC
ij (t) = exp{ΛC

ij(t)}. Using the weight value at time Yi,

denoted by Wi =
∑J

j=1GijW
C
ij (Yi), it can be shown that the following weighted

expectation has mean zero:

(2.2) E
[
Gij∆

Y
i WiZi {Yi − µ0j exp (β′0Zi)}

]
= 0.

In practice, ΛC
ij(t) is rarely known and needs to be estimated from the observed

data. For this purpose, we assume the following Cox model for censoring:

(2.3) λCij(t) = λC0j(t) exp (θ′0Zi) .

The use of Cox regression is well-established in the context of IPCW, and the above

censoring assumption can accommodate both covariate-independent and covariate-

dependent censoring. After estimating θ̂ and Λ̂C
0j(t) through the partial likelihood

(Cox, 1975) and Breslow (Breslow, 1972) estimators, respectively, we can estimate the

IPCW weights at time t as ŴC
ij (t) = exp{exp(θ̂

′
Zi)Λ̂

C
0j(t)}. With θ̂ and Λ̂C

0j(t) from

censoring model (2.3), we can estimate Wi as Ŵi = exp{exp(θ̂
′
Zi)Λ̂

C
0j(Yi)}. We then

substitute the estimated weights Ŵ = (Ŵ1, . . . , Ŵn)′ in place of their corresponding

true values W = (W1, . . . ,Wn)′.
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2.2.3 Estimating equations

Based on the zero-mean property (2.2), we construct the following estimating

equations:

J∑
j=1

n∑
i=1

GijWi∆
Y
i (Yi − µij)Zi = 0

n∑
i=1

GijWi∆
Y
i (Yi − µij) = 0, j = 1, . . . , J.

Substituting Ŵ for W , we can estimate β0 and µ0 from following p + J working

estimating equations:

J∑
j=1

n∑
i=1

GijŴi∆
Y
i {Yi − µ0j exp (β′0Zi)}Zi = 0,(2.4)

n∑
i=1

GijŴi∆
Y
i {Yi − µ0j exp (β′0Zi)} = 0, j = 1, . . . , J.(2.5)

Solving (2.4) and (2.5) simultaneously implies simultaneous estimation of p+ J pa-

rameters, which is subject to numerical instability when J is quite large. Instead,

we propose estimating β0 first through iteration, and then estimating µ0 through J

separate closed-form expressions. Along these lines, we define:

S
(k)
j (β,W ) =

∑n
i=1GijWi∆

Y
i exp (β′Zi)Z

⊗k
i∑n

i=1 Gij

,(2.6)

Sj (β,W ) =
S

(1)
j (β,W )

S
(0)
j (β,W )

,(2.7)

for j = 1, . . . , J, k = 0, 1, 2. For a vector a, a⊗0 = 1, a⊗1 = a, and a⊗2 = a′a. Using

the defined S
(k)
j ’s and Sj’s, we can rewrite the estimating equations (2.4)-(2.5) as

follows:

J∑
j=1

n∑
i=1

Gij

{
Zi − Sj

(
β, Ŵ

)}
Ŵi∆

Y
i Yi = 0,(2.8)

µ0j =

∑n
i=1GijŴi∆

Y
i Yi∑n

i=1 GijŴi∆Y
i exp (β′Zi)

, j = 1, . . . , J.(2.9)

34



The algebra underlying the equivalence of (2.4)-(2.5) and (2.8)-(2.9) is provided in

Appendix. Note that (2.8) is free of the center-specific parameters µ0 and that (2.9)

is a closed-form calculation of µ0, allowing us to separately estimate β0 and µ0.

2.2.4 Fitting proposed model using Cox regression software

We now demonstrate how (2.8)-(2.9) can be easily estimated using standard Cox

regression software. Consider the following stratified Cox model,

λ†ij(t) = λ†0j(t) exp (γ ′Zi) ,

for the death hazard of a patient i ∈ {1, . . . , n} from cluster j ∈ {1, . . . , J} with

baseline covariate Zi. We set N †i (t) and R†i (t) as the counting process for death and

at-risk indicator, respectively. As implemented by, for example, R and SAS, γ and λ†0j

can be estimated from the estimating equations given below with weights W †
i (t) = 1.

A variant of the regular estimating equation is well developed by weighting with

W †
i (t) as IPCW weights (Zhang and Schaubel, 2011).

Our goal is to coerce the software (e.g., coxph in R, phreg in SAS) to fit model

(2.1) by solving the estimating equations (2.8)-(2.9). To do so using such software,

we build connections between (2.8)-(2.9) and the IPCW version of the Cox score

equations:

J∑
j=1

n∑
i=1

∫ τ

0

GijŴ
†
i (u)

{
Zi − S

†
j

(
u;γ,W †

)}
dN†i (u) = 0,(2.10) ∫ t

0

∑n
i=1GijW

†
i (u)dN †i (u)∑n

i=1GijW
†
i (u) exp (γ ′Zi)R

†
i (u)

= Λ†0j(t), j = 1, . . . , J,(2.11)

where for k = 0, 1, 2,

S
(k)†
j

(
t;γ,W †) =

∑n
i=1 GijW

†
i (t) exp (γ ′Zi)R

†
i (t)Z

⊗k
i∑n

i=1GijW
†
i (t) exp (γ ′Zi)R

†
i (t)

,(2.12)

S
†
j

(
t;γ,W †) =

S
(1)†
j

(
t;γ,W †)

S
(0)†
j

(
t;γ,W †) .(2.13)
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First, remove the integral signs from (2.10)-(2.11), such that only the increment at

time u is considered. Next, replace Ŵ †
i (u) with Ŵi∆

Y
i Yi, then set R†i (u) = 1 and

dN †i (u) = 1. By this point, it’s clear that u is arbitrary. To conform with the

software, we can set u equal to any positive number; here, we set u = 1. Then

(2.10)-(2.11) are equivalent to our (2.8)-(2.9) after adding an offset − log(Yi) to the

linear predictor.

Combining the above information implies that our proposed model can be fitted

using software for a standard Cox regression with the data set augmented such that:

(a) observation time set to 1 for each subject; (b) Ŵi∆
Y
i Yi used for a weight; (c)

− log(Yi) used for an offset; (d) center serving as strata.

2.2.5 An efficient algorithm for our proposed methods

Based on the connection between our proposed estimating equations and the Cox

analogous in Section (2.2.4), we propose the following computationally efficient esti-

mation procedure:

(i) Estimate the censoring hazard Λ̂C
ij(t) from model (2.3) by unweighted partial

likelihood and Breslow estimator; construct IPCW weights by Ŵi = exp{Λ̂C
ij(Yi)}

for i = 1, . . . , n.

(ii) Create a dataset wherein each patient is observed to die at time 1 and has the

baseline covariate Zi.

(iii) Fit a stratified Cox model to the dataset create in Step (ii), with center serving

as strata, covariate Zi, weight Ŵi∆
Y
i Yi, and set the offset to − log(Yi). Note

that ties should be handled by Breslow option, which is default in SAS, but not

R.

Step (iii) can be implemented by several statistical software packages (e.g., R, SAS).

36



The algorithm is quite fast, even in very large dataset, owing to the stratification.

The resulting coefficient and baseline hazard serve as our proposed estimators β̂ and

µ̂.

2.2.6 Center effects

Note that {µ01, . . . µ0J} represent the center-specific baseline RMST and, anal-

ogous to a center-specific intercept, do not represent center-specific contrasts. For

settings where contrasts between centers are of interest, we propose rescaling µ0j

to ηj = µ0j/w
′µ0, where w = (w1, . . . , wJ)′ is a pre-specified weight vector with

w′1 = 1. An example of w would be w = (1, . . . , 1)′/J , i.e., equal weight across all

J centers. The rescaled η = (η1, . . . , ηJ) represents covariate-adjusted contrasts be-

tween each center and a weighted average center. Note that the weighted average of

the contrasts equals 1 (i.e., w′η̂ = 1), which is a desirable property for interpretation

purposes.

2.3 Asymptotic Properties

Before presenting the asymptotic properties of our proposed estimators, we specify

the following regularity conditions for i = 1, . . . , n and j = 1, 1, . . . , J .

(a) {O1, . . .On are independently and identically distributed.

(b) P{Ri(t) = 1} > 0 for t ∈ (0, τ ], where Ri(t) = I(Xi ≥ t) is the at risk process.

(c) |Zik| < MZ <∞, where Zik is the kth component of Zi.

(d) ΛC
0j(τ) <∞ and ΛC

0j(t) is absolutely continuous for t ∈ (0, τ ].

(e) There exist neighborhoods C of θ such that for k = 0, 1, 2, j = 1, . . . , J ,

sup
t∈(0,τ ],θ∈C

∥∥∥R(k)
j (t;θ)− r(k)

j (t;θ)
∥∥∥ p−→ 0,
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where

R
(k)
j (t;θ) =

∑n
i=1Gij exp (θ′Zi)Z

⊗k
i Ri(t)∑n

i=1 Gij

,(2.14)

r
(k)
j (t;θ) = E

{
Gij exp (θ′Zi)Z

⊗k
i Ri(t)

}
.(2.15)

(f) There exist neighborhoods B of β0 such that for k = 0, 1, 2, j = 1, . . . , J ,

sup
t∈(0,τ ],β∈B

∥∥∥S(k)
j (β,W )− s(k)

j (β)
∥∥∥ p−→ 0,

where

s
(k)
j (β) = E

{
Gij∆

Y
i Wi exp (β′Zi)Z

⊗k
i

}
= E

{
Gij exp (β′Zi)Z

⊗k
i

}
,

(g) The matrices A(β0),Θ(θ) are each positive definite, where

A(β) =
J∑
j=1

E

{
Gij∆

Y
i WiYi

(
s

(2)
j (β)

s
(0)
j (β)

− sj(β)⊗2

)}
,

Θ(θ) =
J∑
j=1

E

{
Gij

∫ τ

0

(
r

(2)
j (t;θ)

r
(0)
j (t;θ)

− rj(t;θ)⊗2

)
r

(0)
j (t;θ)λC0j(t)dt

}
.

and sj(β) = z
(0)
j (β)

−1
z

(1)
j (β), rj(t;θ) = r

(0)
j (t;θ)

−1
r

(1)
j (t;θ).

These conditions can be relaxed at the expense of additional technical development.

Our main asymptotic results are summarized in the following three theorems, with

the proofs presented in the Appendix.

Theorem II.1. Under regularity conditions (a)-(g), as n → ∞, β̂ converges in

probability to β0 and
√
n(β̂ − β0) converges to a zero-mean Normal with variance

A(β0)−1B(β0)A(β0)−1 with A(β0) defined in condition (g) and B(β0) defined as

follows:

B (β,W ) = E

[
J∑
j=1

Gij {bi (β,W )}⊗2

]
,
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where

bi (β,W ) =
{
Zi − Sj (β,W )

}
Wi∆

Y
i (Yi − µij) +K (β,θ,W ) Θ(θ)−1U i(θ)

+

∫ L

0

Hj (u;β,θ,W )

r
(0)
j (u;θ)

dMC
i (u),

K(β,θ,W ) =
J∑
j=1

E {Gijεi(β,W )Di(θ)′} ,

U i(θ) = Gij

∫ τ

0

{Zi − rj(u;θ)}MC
i (u),

Hj(t;β,θ,W ) = E {εi(β,W ) exp(θ′Zi)Ri(t)} .

and MC
i (t) = NC

i (t) −
∫ t

0
Ri(u) exp(θ′Zi)dλ

C
0i(u) is the censoring martingale, with

NC
i (t) = I(Xi ≤ t,∆D

i = 0) being the censoring counting process.

The consistency of β̂ holds by the Inverse Function Theorem (Foutz, 1977), while

the proof of asymptotic normality follows through the combination of various Taylor

series expansions and the Cramér-Wold Theorem. This sandwich variance with B

as the middle matrix treats IPCW weights as estimated from the data, which well

reflects the reality. However, the calculation of this variance could be complicated.

A useful short cut involves replacing the middle matrix B with B∗:

B∗ (β,W ) = E

[
J∑
j=1

Gij {b∗i (β,W )}⊗2

]
,

where b∗i (β,W ) = Zi −
∑J

j=1 Sj(β,W )Wi∆
Y
i (Yi − µij) is the first and primary

component of the original bi(β,W ). This short cut treats the IPCW weights as

fixed rather than estimated. Although it does not fully reflect the actual estimating

procedure, this short cut is much easier to calculate and should serve as a useful

substitute for the more complicated variance estimator implied by Theorem II.1,

particularly since the primary source of variation is still captured.

Theorem II.2. Under regularity conditions (a)-(g), as n → ∞, µ̂0 converges in

probability to µ0 and
√
n(µ̂0 − µ0) converges to a zero-mean Normal with variance
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V µ, where

V µ = E





n

n1s
(0)
1 (β)

GijWi∆
Y
i (Yi − µij)

...
n

nJs
(0)
J

(β)
GijWi∆

Y
i (Yi − µij)

−
J∑
j=1

Gij

 µ01 . . . 0
...

. . .
...

0 . . . µ0J


 s1(β)′

...
sJ(β)′

 bi (β,W )


⊗2 .

Theorem II.3. Under regularity conditions (a)-(g), as n → ∞, η̂ converges in

probability to η0 and
√
n(η̂ − η0) converges to a zero-mean Normal with variance

V η, where

V η = (µ′0w)
−4

(µ′0wIJ − µ0w
′)V µ (µ′0wIJ −wµ′0) .

The proofs of Theorems II.2 and II.3 proceed by applying the Delta Method to

the results of Theorem II.1.

2.4 Simulation Study

We generated the number of patients across J = 50 centers from a multinomial

distribution with equal weights 1/J and the total sample size n. Three total sample

sizes are tested: n = 2, 500, n = 5, 000, n = 10, 000 and n = 20, 000.

Death times are generated from an Exponential with mean 1/µ†0j exp(−β†1Z1i −

β†2Z2i), where Z1i and Z2i each follow independent Normal(0, 1) distributions. We set

β†1 = 0.5, β†2 = 1 and let µ†01, . . . , µ
†
0J range from 0.158 to 0.550 with an equal incre-

ment. The true parameter values are determined computationally by Monte Carlo

Methods with sample size 10 million. The censoring time also follows an Exponen-

tial distribution with hazard λC0j exp(θ1Z1i + θ2Z3i), where two censoring patterns

are tested, resulting in ≈15% and ≈30% censoring. The first censoring pattern uses

θ = (0.4, 0.1)′ and with λC01, . . . , λC0J ranging from 0.0108 to 0.05 with an equal in-

crement. The second censoring pattern uses θ = (0.5,−0.5)′ and lets λC01, . . . , λC0J

range from 0.712 to 0.810 with an equal increment. The performance of the proposed

methods is evaluated at 5 different truncation points: L = 0.18, 0.57, 1.8, 5.4, 13.4,
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which represent approximately the 10th, 25th, 50th, 75th, and 90th percentiles, re-

spectively, of the potentially censored death time distribution.

To illustrate the difference in the run time between our proposed methods and a

standard weighted GLM approach (which would simultaneously estimate the covari-

ate and center parameters), we choose L = 1.8 under the first censoring set-up afore-

described. Run times are presented for J = 25, 50, 100, 200, 400, 600, 800, 1000

and on average 50, 60, 70, 80, 90, 100 patients per center, respectively. Each run

time is calculated using the average across 10 replicates. The conventional methods,

which create dummy variables for each center and solve estimating equations (2.4)-

(2.5) simultaneously, are implemented in R using the package geepack (Wang and

Schaubel, 2017). Relative to the proposed methods, the conventional method runs

much slower and result in approximately a 10− to 3000−fold increase in run time

required to estimate the model. This is depicted in Figure (2.1), when number of

centers ranges from J = 50 to J = 500. The savings in computation time offered by

our proposed algorithm increases rapidly with increasing J and also growing average

number of patients per center.

Another disadvantage of using conventional methods to fit model (2.1) is that

such an approach requires large storage to create the center indicators for a large

data set. For example, the data set which motivated our methods (with > 5, 000

centers and >1 million patients), requires R to allocate ≈ 50GB to create all the

center indicators using the common data types, and about 10GB if special packages

are used (e.g., sparseMatrix ). In contrast, fitting model (2.1) through our proposed

methods does not require the creation of center indicators, which greatly reduces the

storage requirements.

For purposes of simplicity, we present the simulation results for L = 1.8 and
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Figure 2.1 Computational time for our proposed and conventional methods with different J ’s
and number of patients per center
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L = 5.4, and relegate those corresponding to the remaining L values to the Appendix.

As shown in Table (2.1), the magnitude of the bias decreases generally as sample

size increases. Average Standard Error (ASE) is calculated using the afore-mentioned

short cut (which treats the estimated Ŵ as known), and is on average very close to

empirical standard deviation (ESD). The coverage probability (CP) corresponding

to ASE is quite close to 95%, except in a few scenarios under heavy censoring. We

omit the simulation results corresponding to the standard error estimator derived

from Theorem II.1, since the results are very similar to those presented for the short

cut formula.

Figure (2.2) shows the true and estimated values, and (??) shows ESD and ASD,

for η̂ under light and heavy censoring for L = 1.8 and L = 5.4. As sample size

increases, the distribution of the estimates shifts towards the true values and the

variation decreases. The CPs are always around 95%.
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Table 2.1 Simulation results: L = 1.8 and L = 5.4 under light and heavy censoring

L Censoring Var (True) n Bias ESD ASE CP(%)

1.8

Light

β1(−0.132)
2500 0.002 0.01 0.009 94
5000 0.001 0.007 0.007 93
10000 0.001 0.005 0.005 95

β2(−0.164)
2500 0.002 0.01 0.01 93
5000 0.001 0.007 0.007 95
10000 0 0.005 0.005 94

Heavy

β1(−0.132)
2500 0.004 0.01 0.01 93
5000 0.002 0.008 0.007 93
10000 0.001 0.005 0.005 96

β2(−0.164)
2500 0.002 0.01 0.01 94
5000 0.001 0.007 0.007 95
10000 0.001 0.005 0.005 96

5.4

Light

β1(−0.132)
2500 0.004 0.014 0.014 95
5000 0.002 0.01 0.01 94
10000 0.001 0.007 0.007 95

β2(−0.164)
2500 0.004 0.015 0.014 92
5000 0.003 0.01 0.01 95
10000 0.001 0.007 0.007 94

Heavy

β1(−0.132)
2500 0.016 0.018 0.018 86
5000 0.01 0.013 0.013 90
10000 0.005 0.009 0.01 92

β2(−0.164)
2500 0.006 0.017 0.016 93
5000 0.003 0.012 0.012 94
10000 0.002 0.008 0.008 95

Figure 2.2 True and estimated values and standard deviation of η̂ for L = 1.8 and L = 5.4
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2.5 Application Data Analysis

We analyze survival for end-stage renal disease (ESRD) patients, using data ob-

tained from the United States Renal Data System (USRDS). We include all patients

initiating renal replacement therapy (RRT) on hemodialysis in the United States

between January 1, 2004 and December 31, 2014. We excluded patients with a

prior kidney transplant and patients aged <18 at the time of RRT-initiation. For

each patient, follow-up starts at the date of RRT initiation and continues until the

earliest of the following four events: death, transplantation, loss to follow-up, or

12/31/2014. The event of primary interest is death. We have n = 1, 061, 403 pa-

tients from J = 5, 301 ESRD facilities. Approximately 64% of patients are observed

to die. We choose L = 5 years as the truncation point. Out of n = 1, 061, 403

patients, 55% were observed to die before L, 27% were censored before L, and 18%

were truncated at L.

Prognostic factors historically reported as being important and, hence, included in

our analysis include: calendar year of RRT initiation (centered at 2004), age at RRT

initiation (centered at 50 years and scaled by 5), gender, race (Caucasian, Asian,

Black, and Other), ethnicity (Hispanic or not), primary renal diagnosis (glomeru-

lonephritis (GN), diabetes, hypertension, and others), and 8 binary indicators of

comorbidity conditions: cancer, diabetes, athlerosclerotic heart disease (ASHD),

congestive heart failure (CHF), chronic obstructive pulmonary disease (COPD),

cerebrovascular accident (CVA), peripheral vascular disease (PVD), elicit drug use,

smoking status (current/former, non), and alcohol consumption. The RMST model

of mortality includes the afore-mentioned covariates as predictors and J = 5, 301

ESRD Network facilities as centers. The Cox model for censoring includes the same

44



set of covariates and is stratified by center. Estimated coefficients for the RMST

model are displayed in Table (2.2).

The center effect is evaluated by both center-specific RMST µj and rescaled ηj.

Figure (2.3) shows the histogram of the J = 5, 301 center-specific µ̂j’s, the majority

of which lie between 3.5 and 5. Figure (2.3) displays the point and interval esti-

mates (95% confidence level) of rescaled ηj’s. A total of 656 (12%) of facilities are

significantly below average 5-year RMST, while 582 (11%) are significantly above

average. There were 4,063 (77%) facilities that were not significantly different from

the average 5-year RMST.

It took R approximately 11.33 minutes to calculate the IPCW weights; 2.65 min-

utes to estimate our proposed methods; then another 4.65 hours to calculate the

standard error for µ̂. However, it requires R to allocate about 50GB memory to

create the data needed for conventional methods, which is impossible for most of

the local computers. Thus, in this particular example, storage considerations alone

preclude a meaningful comparison between the proposed and conventional GLM pro-

cedures with respect to run times.

2.6 Discussion

We have developed a computationally attractive way to model RMST in the pres-

ence of a large number of centers. Computational advantages include great reductions

in storage requirements and run times relative to conventional methods. We have

demonstrated that our proposed methods have good finite-sample performance. The

methods accommodate the estimation of fixed center effects through a normalized

center effect measure.

We applied our methods to ESRD analysis and out of J = 5, 301 ESRD facilities
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Table 2.2 Estimated covariate effects on RMST (L = 5 years)

Z β̂ SE p

(Age-50)/5 (Years) -0.057 0 < 0.001
Initiation year-2004 -0.041 0 < 0.001

Gender Reference: Male
female -0.003 0.002 0.060

Ethnicity Reference: Not Hispanic
Hispanic 0.139 0.003 < 0.001

Race Reference: Caucasian
Asian 0.147 0.004 < 0.001
Black 0.11 0.002 < 0.001
Other -0.041 0.008 < 0.001

PRD Reference: GN
Diabetes -0.025 0.003 < 0.001

Hypertention -0.016 0.003 < 0.001
Other -0.117 0.004 < 0.001

CO Reference: No
ASHD 0.009 0.002 < 0.001
Cancer -0.196 0.004 < 0.001
CHF -0.15 0.002 < 0.001

COPD -0.141 0.003 < 0.001
CVA -0.08 0.003 < 0.001

Diabetes -0.022 0.003 < 0.001
Drug use -0.096 0.007 < 0.001

PVD -0.102 0.003 < 0.001
Tabacoo use -0.011 0.003 < 0.001
Alcohol use -0.132 0.007 < 0.001
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Figure 2.3 Histogram of estimated J = 5, 301 center-specific RMST µj ’s
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detected about 12% facilities significantly below and 11% significantly above average

in terms of 5-year RMST. This proportion might be inflated and a more robust

method empirical null is proposed by Efron (2004) and Kalbfleisch and Wolfe (2013).

They propose to correct the normalized test statistics by the empirical distribution

and avoid over flags of the significantly different centers. An application example is

shown in (He et al., 2013). We expect fewer centers will be flagged as significantly

different from average with empirical null methods employed.

The parameter choice of the weights depends on the research objective of the

analysis. Our data analysis uses equal weight across all the center so that the resulted

weighted average is not dominated by the large centers. This way it is easier to detect

the centers with unusual performance. Some other reasonable choices include center-

size proportional weights, resulting into the national average; this choice carries more

interpretability but is driven by large centers.
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CHAPTER III

Instrumental Variable Methods based on Restricted Mean
Survival Time Models

3.1 Introduction

An important limitation of observational studies is that lack of randomization

and the potential for unmeasured confounding generally results in a disconnect be-

tween association and causation. In non-experimental studies, where important con-

founding variables may be unobserved, the traditionally used covariate balancing

approaches (e.g., matching, inverse probability weighting, stratification) do not suf-

fice, since such approaches only control for measured confounders.

Instrumental variable (IV) methods are a popular approach for consistent esti-

mation in the presence of unmeasured confounders. Unmeasured confounding that

affects both treatment and response induces correlation between treatment and the

error term in a regression model. Explanatory variables which suffer from such cor-

relation issues are referred to as endogenous, which may include the treatment of

interest in an observational study. Explanatory variables which do not suffer from

such confounding issues are termed exogenous variables; i.e., the adjustment covari-

ates. Fitting a regression model with only treatment and adjustment covariates and,

hence, not accounting for unobserved confounders will often result in biased esti-

mation. However, if an instrument is available, it may still be possible to obtain a
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consistent estimator of the treatment effect. An instrument is a variable that does

not directly impact the response, but is correlated with treatment and condition-

ally uncorrelated with error term, given the adjustment covariates. To control for

unmeasured confounding, IV methods seek to find an instrument, then exploit a ran-

domized experiment embedded in the observational study through which to estimate

the causal treatment effect.

IV methods have a long history in economic applications, typically in the con-

text of uncensored responses. The presence of censoring complicates the extension

of IV methods to survival data and, correspondingly, very few methods have been

developed in this vein. Existing IV methods for censored data can generally be clas-

sified as nonparametric, semiparametric or (fully) parametric. Non-parametric IV

methods are usually used in the context of a binary instrument and treatment, and

target the Local Average Treatment Effect (LATE), also known as Complier Average

Causal Effect (CACE), which is the average causal treatment effect among the sub-

population of compliers (Baker, 1998; Baiocchi et al., 2014). For example, Nie et al.

(2011) makes use of the mixture structure implied by the latent compliance, with

estimation through empirical likelihood. Such nonparametric methods are generally

robust, due to not making any distributional assumptions. However, such methods

are of somewhat limited applicability, in the sense that they require the treatment

variable to be binary and do not permit covariate adjustment. Parametric IV models

which do permit covariate adjustment have been developed for censored outcomes

(Tang and Lee, 1998; Chen et al., 2012). The treatment effect in a fully paramet-

ric model can be estimated by Maximum Likelihood or Expectation-Maximization

methods. Kjaersgaard and Parner (2015) handled censoring with pseudo-observation

methods, then modeled restricted mean survival time through a linear model. Para-
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metric methods suffer the potential for substantial bias when the assumed model is

incorrectly specified. Semiparametric approaches are generally more flexible, such as

accelerated failure time models (Robins and Tsiatis, 1991; Loeys and Goetghebeur,

2003) and, more recently, additive hazards models (Li et al., 2015; Chan, 2016; Zheng

et al., 2017). Martinussen et al. (2017)

Our proposed methods are semi-parametric, in the interests of both robustness

and covariate adjustment. We propose to model the cumulative measure, Restricted

Mean Survival Time (RMST) (Andersen and Perme, 2009; Tian et al., 2014). RMST

is the average survival time up to a pre-specified time point, say L, and can be

expressed as the area under the survival curve over the [0, L] time interval; i.e.,∫ L
0
S(t)dt. RMST is a cumulative summary of survival from time 0 to L. Cumulative

treatment effects are often of greater interest than instantaneous effects, especially

in the presence of a treatment effect which changes direction over time (Schaubel

and Wei, 2011). Mean survival time is generally not identifiable in the presence of

censoring, except under a fully parametric model. Our proposed methods directly

model RMST, which is much more computationally convenient and intuitively inter-

pretable than indirect approaches (i.e., starting by estimating the hazard or survival

function and then integrating the survival function to obtain the RMST). The as-

sumed RMST model only makes assumptions regarding the mean structure and, in

the interests of robustness, leaves the variance unspecified . In addition, we allow

censoring to depend on the observed covariates, a property shared with few existing

IV methods.

IV models are usually estimated by two-stage least squares when the response

model is linear. For non-linear link functions, there are two variations, two-stage

predicator substitution (2SPS) and two-stage residual inclusion (2SRI). The 2SPS
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and 2SRI procedures use different decompositions of the treatment variable and error

term to remove their mutual dependence. For censored data, the 2SPS and 2SRI

procedures rely on different censoring assumptions (Chan, 2016).

Our motivating example involves the comparison between hemodialysis (HD) and

peritoneal dialysis (PD) with respect to 5-year RMST among End-Stage Renal Dis-

ease (ESRD) patients. Although kidney transplantation is the preferred treatment

for ESRD, most ESRD patients are placed on dialysis either while awaiting trans-

plantation or as their only therapy (Fenton et al., 1997). HD uses a man-made

membrane to filter waste and remove excess fluid from the blood. PD, a newer, less

costly but much less employed method, uses the lining of the abdominal cavity and

a solution to remove waste and excess fluid from the body. It has long been debated

which dialytic method provides better survival. Some studies show that PD is as-

sociated with an initial survival advantage, but no significant difference afterwards

(Fenton et al., 1997; Jaar et al., 2005; Heaf et al., 2002; Kumar et al., 2014). Oth-

ers show that the mortality rate in PD patients is significantly higher than that in

HD patients, especially in older patients (Kim et al., 2014; Weinhandl et al., 2010).

Overall, results from the existing literature are conflicting, with a major concern

being the potentially strong selection bias; e.g., PD patients tend to be younger

and healthier. The majority of the above-cited studies only controlled for measured

confounders, which leads naturally to the question we address. Which (if either)

dialytic method emerges as superior in terms of patient survival if one accounts for

unmeasured confounders? We apply IV methods in order to address this question.

Referring to the terminology familiar to the IV setting, the endogenous treatment

in our ESRD data is a binary 0/1 indicator for taking PD rather than HD. We are

interested in the survival difference at 5 years following dialysis initiation. A general
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strategy to find an instrument for comparing treatments A and B is to look for nat-

urally occurring variation in medical practice patterns (e.g., at the physician level).

The instrument could then be defined as degree of PD usage; this IV represents a

preference-based instrument (Baiocchi et al., 2014). In our motivating example, a

possible preference-based instrument would be facility-level mean PD usage (e.g.,

fraction of patients initiating dialysis on PD). This IV may well have a strong influ-

ence on the individual treatment preference, without impacting directly on individual

patient survival.

In the sections that follow, we first formulate the notations and data structure,

describe the proposed methods and estimating procedure, and then derive the asymp-

totic properties in Section (3.2). We conduct simulation studies to evaluate the accu-

racy of the proposed procedures in finite samples in Section (3.3), and then apply our

methods to ESRD data in Section (3.4). We close out the chapter with a discussion

in Section (3.5).

3.2 Proposed Methods

3.2.1 Notations and Assumptions

We denote the treatment variable by A, observed adjustment covariates by Z (a

vector of length p), and unobserved variables by U . We consider only one treatment

variable for simplicity; generalization to more than one dimension is straightforward.

Let time to event be represented by D (i.e., time of death) and let the pre-specified

truncation time be L ≤ τ , where τ is the maximum censoring time. The death time

D is subject to independent right censoring time, C. Let X = D ∧ C denote the

observed follow-up time, where a ∧ b = min(a, b), and we let ∆D = I(D ≤ C) be

the observed-death indicator. Let Y = X ∧L denote the observed restricted survival

time, and let ∆Y = I(D ∧ L ≤ C) be its corresponding event indicator.
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We assume that the underlying RMST follows the following model,

(3.1) E(D ∧ L|Z, A, U) = β′ZZ + βAA+ βUU,

where U is unobserved and correlated with A, and the underlying error is independent

of any other variable. The parameter vector (βZ , βA) is of primary interest. Fitting

any regression model based on (3.1) with Z and A, but without U , generally leads

to biased estimation of (βZ , βA), except when either [U ⊥ (Z, A)] or [U ⊥ D|Z, A]

holds. Note that we do not assume that either condition holds.

To use the IV approach with treatment A, we need to find an observable variate

I, not represented in Eq. (3.1), that satisfies the following two conditions:

Valid: I is uncorrelated with U : Cov(I, U) = 0.

Informative: I is correlated with A:

(3.2) A = α′ZZ + αII + αUU + ε,

where αI 6= 0, E(ε) = 0 and ε ⊥ (Z, I).

When I satisfies both the validity and informativeness properties, it is referred to

as an instrumental variable (or instrument), for A. We do not put any restriction

on the distribution of I or A. They can be both continuous, or both discrete, or

having continuous and discrete characteristics at the same time, as long as the second

moments of all variables are finite (Wooldridge, 2010).

IV methods estimate the regression parameters from a reduced form of the re-

sponse variate by plugging (3.2) to (3.1) and rearranging as follows:

E (D ∧ L|Z, I) = E
[
(βZ + βAαZ)′Z + βAαII + (βU + βAαU)U + βAε|Z, I

]
= (βZ + βAαZ)′Z + βAαII + E [(βU + βAαU)U + βAε|Z, I]

= (βZ + βAαZ)′Z + βAαII,
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where E (U |Z, I) = 0 holds by the definition of observed adjustment and instrumen-

tal variable, and E (ε|Z, I) = 0 follows from the informative property of instrument

variable. If the parameters in model (3.2) are known, then we define Ã = α′ZZ+αII

and can obtain (βZ , βA) from the following model:

(3.3) E
(
D ∧ L|Z, Ã

)
= β′ZZ + βAÃ.

3.2.2 Estimation Procedure in the Absence of Censoring

Let i be a subject randomly drawn from the whole population of sample size n.

The observed data are denoted by O = {Zi, Ai, Ii, Yi,∆Di : i = 1, . . . , n}.

In the absence of censoring, we can obtain (βZ , βA) by a two stage procedure. In

the first stage, we would fit the linear model (3.2) through Ordinary Least Squares

(OLS) by regressing A on Z, I to obtain α̂Z , α̂I . We then calculate the predicted

value of Ã as Â = α̂′ZZ + α̂II. At the second stage, we substitute the observed

treatment variable A with its fitted value from the first stage, Â. We then estimate

(βZ , βA) by regressing D ∧ L on Z, Â via the following estimating equation,

(3.4)
n∑
i=1

Di ∧ L−
[
β′Z βA

]Zi

Âi



Zi

Âi

 = 0.

3.2.3 Estimation Procedure in the Presence of Censoring

The potential for censoring does not allow us to estimate the parameters in model

(3.4) directly because we will not always observe the death time D. Denote the

hazard function for right censoring time C by λC(t), where

(3.5) λC(t) = lim
h→0

P{X ∈ [t, t+ h),∆D = 0|X ≥ t}
h

,

with corresponding cumulative hazards ΛC(t) =
∫ t

0
λC(u)du. We propose to han-

dle censoring by Inverse Probability of Censoring Weighting (IPCW) (Robins and
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Rotnitzky, 1992; Robins, 1993; Robins and Finkelstein, 2000). The weight WC(t) =

exp{ΛC(t)} reweights the observed death times by ghosting for the prognostically

similar but censored observations. With the help of this weight at time Y , denoted

by W = WC(Y ), it can be shown that the following weighted expectation holds,

(3.6) E
{

∆YW (D ∧ L) |Z, Ã
}

= β′ZZ + βAÃ.

Since ΛC(t) is rarely known in practice, we usually need to estimate it from

the observed data. For this purpose, we assume a Cox model for censoring. Cox

regression is a well-established approach, especially in the context of IPCW. Since

our model (3.3) holds conditional on Z and I, we allow censoring to depend on these

variates though the model,

(3.7) λC(t) = λC0(t) exp {γ ′ZZ + γII} .

Using partial likelihood (Cox, 1975) and the Breslow estimator (Breslow, 1972), we

can estimate ΛC0(t) and (γ, γI). Plugging Λ̂C0(t) and γ̂Z , γ̂I into Ŵ = exp{
∫ Y

0
dΛ̂C(u)},

we obtain the following estimating equation:

(3.8)
n∑
i=1

∆iŴi

Yi − [β′Z βA

]Zi

Âi



Zi

Âi

 = 0.

3.2.4 Variance Estimation

A naive variance estimator can be obtained by ignoring the variability associated

with Â. Since this short-cut would generally result in variance estimation that is at

least somewhat inaccurate, we instead derive the asymptotic properties and propose

a more accurate sandwich variance estimator. To begin, we stack the estimating
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equations from the two stages together and solve the parameters θ = (β′,α′)
′
.

φ1 (θ;O) =
1

n

n∑
i=1

εY i

Zi

Âi

 = 0,

φ2 (θ;O) =
1

n

n∑
i=1

εAi

Zi

Ii

 = 0,

where εY i = ∆iŴi

{
Yi −

(
β′ZZi + βAÂi

)}
and εAi = Ai −

(
α′ZZi + αI Îi

)
. Let

the true parameter value be θ, and the solution be our estimator θ̂. The Taylor

expansion of φ = (φ′1,φ
′
2)
′

at θ around θ̂ is:

φ (θ) = 0 +
∂φ
(
θ̂
)

∂θ

(
θ − θ̂

)
+ o

(
‖θ − θ̂‖

)
⇒
√
n
(
θ̂ − θ

)
=

−∂φ
(
θ̂
)

∂θ

−1

√
nφ (θ) + o

(
‖θ − θ̂‖

)
.

For purposes of simplicity, we treat the IPCW weights as fixed in this chapter,

exploiting the findings from Chapter 1 that very little accuracy is lost. The derivation

of the large-sample distribution follows:

−∂φ (θ)

∂θ

p→MA =

MA
11 MA

12

0 MA
22

 ,
where

MA
11 = E

∆iWi

Zi

Âi


⊗2
 ,

MA
12 = E

∆iWi

βA
Zi

Âi


Zi

Ii


′

− εY i

 0 0

Z ′i Ii



 ,

MA
22 = E


Zi

Ii


⊗2
 ,
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and

√
nφ (θ) =

 1√
n

∑n
i m

B
1

1√
n

∑n
i=1m

B
2

 D→ Normal


0

0

 ,MB

 ,mB
1 = εY i

Zi

Âi

 ,mB
2 = εAi

Zi

Ii

 ,
where

MB = E


mB

1

mB
2


⊗2
 = E




ε2Y i

Zi

Âi


⊗2

εY iεAi

Zi

Âi


Zi

Ii


′

εY iεAi

Zi

Ii


Zi

Âi


′

ε2Ai

Zi

Ii


⊗2




.

Summarizing the above results, we have

√
n
(
θ̂ − θ

)
D→ Normal


0

0

 , (MA
)−1

MB
(
MA

)′−1

 ,

where the variance matrix
(
MA

)−1
MB

(
MA

)−1
can be written asE


V 11 V 12

V ′12 V 22


 ,

V 11 =
{(
MA

11

)−1
mB

1 −
(
MA

11

)−1 (
MA

12

) (
MA

22

)−1
mB

2

}⊗2

V 12 =
(
MA

11

)−1 (
mB

1

) (
mB

2

)′ (
MA

22

)−1 −
(
MA

11

)−1 (
MA

12

) (
MA

22

)−1 (
mB

2

)⊗2 (
MA

22

)−1

V 22 =
(
MA

22

)−1 (
mB

2

)⊗2 (
MA

22

)−1
.

The asymptotic variance of β̂ is then V 11 = E
{(
MA

11

)−1
mB

1 −
(
MA

11

)−1 (
MA

12

) (
MA

22

)−1
mB

2

}⊗2

and, therefore, the finite-sample variance of β̂ can be estimated as

(3.9)
1

n

n∑
i=1

εY i
(
M̂

A

11

)−1

Zi

Âi

− εAi (MA
11

)−1 (
MA

12

) (
MA

22

)−1

Zi

Ii



⊗2

.
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3.3 Simulation Study

We generated each of Z, I and U though a standard Normal distribution, then

generated the treatment variable A by:

A = 0.5 + Z + 0.5I + U + ζ,

where ζ ∼ N(0, 1). We then simulated the death time D from an Exponential

distribution with mean,

E(D|A,Z, U) = 5− 0.8A+ 0.8Z + 0.8U.

We generated the censoring time C from a Cox model with the following hazard,

λC(t) = λC0 exp (γZZ + γII) .

Three scenarios, each with different censoring patterns, are evaluated:

Case I: No censoring.

Case II: D ⊥ C: λC0 = exp(−3), γZ = γI = 0, resulting in ≈ 19% censoring.

Case III: D ⊥ C|Z, I: λC0 = exp(−2), γZ = γI = −0.5, where ≈39% censoring

occurs.

The true RMST model is given by

E (D ∧ L|Z,A, U) = β0 + βZZ + βAA+ βUU,

where the true limiting values of the regression coefficient are calculated using Monte

Carlo Methods with sample size 10 million. We will look at RMST at 2 different time

points: L = 3 and L = 6, representing approximately the median and third quartile

respectively. The corresponding true values of βA are −0.12 and −0.311 respectively.

59



Table 3.1 Simulation results: L = 3, βA = −0.12

Scenario n
Bias

ASE CP(%)
BM NE Proposed

I
500 -0.001 0.052 -0.001 0.093 94.3
1000 -0.002 0.052 -0.003 0.065 95.2

II
500 0 0.053 -0.002 0.096 95.4
1000 -0.001 0.053 0 0.068 95

III
500 -0.003 0.051 0.002 0.113 95.2
1000 0.001 0.053 0.008 0.079 95.3

We compare the proposed IV estimators with two other estimators. The first is

the benchmark estimator (BM), which is based on estimating equations similar to

(3.8) but incorporates the unobserved U ,

n∑
i=1

Ŵi

Yi −
[
βBM
Z , βBM

A , βBM
U

]

Zi

Ai

Ui






Zi

Ai

Ui

 = 0.

This estimator serves as the gold standard and applies only if we observe U . The

second comparator is the naive estimator (NE) using similar techniques but without

adjusting for the unmeasured confounder,

n∑
i=1

Ŵi

Yi − [βNE
Z , βNE

A

]Zi
Ai



Zi
Ai

 = 0.(3.10)

This estimator does not correct for unmeasured confounding with IV at all and thus

the estimated treatment effect is expected to be biased.

The estimated treatment effect βA from three methods are displayed in Tables

(3.1) and (3.2), based on n = 1000 replicates. The benchmark estimators had very

small bias, as expected. The naive estimators have much larger bias, which does not

go away with increasing sample size. The bias of our proposed methods is small and

generally shrinks as the sample size increases. Average Standard Error (ASE) is the
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Table 3.2 Simulation results: L = 6, βA = −0.311

Scenario n
Bias

ASE CP(%)
BM NE Proposed

I
500 -0.003 0.136 -0.006 0.194 94.5
1000 -0.003 0.137 -0.007 0.136 93.8

II
500 -0.003 0.136 -0.007 0.211 95.4
1000 -0.002 0.138 -0.001 0.149 95.7

III
500 0.01 0.14 0.064 0.306 93.9
1000 0.008 0.143 0.055 0.225 94.3

average of n = 1000 proposed standard error estimates. The ASEs are quite close

to the empirical standard deviation, thus making coverage probability (CP) for our

proposed estimators quite close to the target value, 95%.

3.4 Application Data Analysis

We apply our proposed methods to evaluate the effect of hemodialysis (HD) versus

peritoneal dialysis (PD), using data obtained from the United States Renal Data

System (USRDS). The existing literature is conflicting with respect to the survival

advantage of these two dialytic modalities, suggesting the presence of unmeasured

treatment-outcome confounding. From this perspective, IV analysis may provide

useful insight.

The study population consists of adults initiating dialysis between January 1,

2009 and December 31, 2014. For our analysis, each patient is classified by dialysis

type at the time of dialysis initiation. We restrict the analysis to patients from the

929 dialysis facilities with at least 10 PD and 50 total patients during the study

period. The instrumental variable we employed was facility-level PD usage, defined

as the fraction of patients initiating dialysis on PD. We determined this proportion

for each facility during a historical period, 2006-2008, in order to avoid inducing
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Table 3.3 Analysis of USRDS data: Description of the study population by first modality

Covariate HD PD Std Diff

Proportion of death 53 36 -36.3
Age (Years)) 63.6 58.1 -36.5

Primary Renal Diagnosis
Diabetes 46 43 -5.9

Hypertention 28 26 -4.6
Glomerulonephritis 8 15 22.3

Other 17 15 -5.5

Comorbidities
Alcohol use 2 1 -11.6

ASHD 21 13 -21.3
Cancer 8 5 -11.9
CHF 33 16 -39.5

COPD 10 4 -22.4
CVA 10 6 -13.7

Diabetes 11 7 -12.1
Drug use 1 0 -10.7

PVD 14 9 -17.4
Tabacoo use 7 6 -2.9

patient-level confounding between the instrument and unmeasured variables. The

calculated mean PD usage varies from 1.8% to 54.6% with a mean of 14.2%. Note

that the Pearson correlation between facility-level PD usage in 2006–2008 and 2009-

2014 is 0.57, while the coefficient for facility level PD usage in model 3.2 is 0.77 with

p < 0.001, suggesting the potential for a good instrument candidate.

Table (3.3) confirms that patients treated with PD are generally healthier than

those treated with HD. They are on average 5 years younger and suffer fewer comor-

bidities. There are likely some other unmeasured variables that affect the treatment

choice of PD over HD, and it is likely that a covariate important enough to impact

on treatment selection would also have an effect on survival.

In addition to the treatment indicator, other prognostic factors historically re-

ported as being important and included in our analysis are: year of ESRD incidence

(centered at year 2009), age at dialysis initiation (centered at 50 years, then scaled
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by 5), gender, race (Caucasian, Asian, Black, and others), ethnicity (Hispanic or

not), primary renal diagnosis (glomerulonephritis (GN) diabetes, hypertension, and

others), and 10 binary comorbidity indicators of causes, including cancer, diabetes,

athlero-sclerotic heart disease (ASHD), congestive heart failure (CHF), chronic ob-

structive pulmonary disease (COPD), cerebrovascular accident (CVA), peripheral

vascular disease (PVD), elicit drug use, tobacco use, and alcohol consumption. The

censoring model is a Cox model stratified by incidence year and with all the afore-

mentioned covariates except PD treatment indicator. The calculated IPCW weights

are capped at 100 to stabilize the estimating procedure. The naive estimator is

obtained from estimating equation (3.10) with all the afore-listed prognostic factors.

For our proposed estimator, at the first stage we regressed the PD treatment indi-

cator on all the prognostic factors and the facility level PD usage. This yields a fitted

treatment indicator, which is then included in the second stage with the adjustment

covariates. As shown in Table (3.4), PD is significantly protective compared to HD.

Parameter estimates for are in the same direction for the proposed and naive meth-

ods. Results based on the proposed methods results in an increase in 5-year mean

lifetimes of 0.31 years (p = 0.001).

3.5 Discussion

We have developed methods for employing instrumental variables to control for

unmeasured confounding when modeling survival in terms of RMST. We consider

only the linear link in this chapter. Future work should include extensions to addi-

tional choices for the link function (e.g., log, logistic). For non-linear link functions,

different techniques can be used to estimate the mortality coefficients (Wooldridge,

2010). Another interesting potential extension involves the generalization of the
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Table 3.4 Estimated covariate effects on RMST (L = 5 years)

Covariates Näıve estimator Proposed estimator SE p

Intercept 4.103 4.09 0.039 < 0.001
PD 0.279 0.308 0.09 0.001

(Age-50)/5 (Years) -0.125 -0.124 0.003 < 0.001
Initiation year-2009 -0.385 -0.386 0.003 < 0.001

Gender Reference Group: Male
female -0.013 -0.015 0.012 0.211

Ethnicity Reference Group: Not Hispanic
Hispanic 0.257 0.26 0.019 < 0.001

Race Reference Group: Caucasian
Asian 0.373 0.373 0.028 < 0.001
Black 0.185 0.187 0.016 < 0.001
Other 0.058 0.058 0.061 0.338

Primary Renal Diagnosis Reference Group: Glomerulonephritis
Diabetes -0.162 -0.154 0.028 < 0.001

Hypertention -0.136 -0.131 0.028 < 0.001
Other -0.343 -0.341 0.032 < 0.001

Comorbidity Reference Group: No or Yes
ASHD -0.06 -0.06 0.014 < 0.001
Cancer -0.35 -0.349 0.021 < 0.001
CHF -0.357 -0.352 0.014 < 0.001

COPD -0.267 -0.264 0.018 < 0.001
CVA -0.153 -0.15 0.019 < 0.001

Diabetes -0.095 -0.091 0.02 < 0.001
Drug use -0.272 -0.265 0.061 < 0.001

PVD -0.208 -0.207 0.016 < 0.001
Tabacoo use -0.08 -0.077 0.023 0.001
Alcohol use -0.43 -0.428 0.051 < 0.001
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censoring model. This chapter allows the censoring time to depend on adjustment

covariates and instrumental variable. Our estimating procedure is called Two Stage

Predictor Substitution (2SPS), because in the second stage the treatment variable

is substituted by the predicted value from the first stage. Another related estimat-

ing procedure, Two Stage Residual Inclusion (2SRI), is identical to 2SPS for linear

models, but permits a more relaxed censoring assumption. If the censoring depends

on treatment variable, 2SRI is likely a good alternative to 2SPS.
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APPENDIX A

Appendix for Chapter I

A.1 Asymptotic Properties of The Proposed Estimator

A.1.1 Notations

To begin with, we review the essential notations needed for further discussion:

i: subject index, i ∈ {1, . . . , n}

Di: treatment-free death time

Ti: dependent censoring time; e.g. treatment

Ci: independent censoring time; e.g. administrative censoring

τ : end of follow up time

L: per-specified time point of interest, L ≤ τ

Zi = Di ∧ Ti ∧ Ci: observation time

Yi = Zi ∧ L: restricted observation time by L

∆i = I(Di ∧ L ≤ Ti ∧ Ci): indicator for restricted survival time Di ∧ L

∆D
i = I(Di ≤ Ti ∧ Ci): death indicator

∆T
i = I(Ti < Di ∧ Ci): dependent censoring indicator

∆C
i = I(Ci < Di ∧ Ti): independent censoring indicator

ZD
i (t): time-dependent covariates that predict death Di

ZT
i (t): time-dependent covariates that predict dependent censoring Ti
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ZC
i : baseline covariates that predict independent censoring Ci

Zi(t): a covariate set that stacks ZD
i (t),ZT

i (t), ZC
i together and removes redun-

dancy

Z̃i(t) = {Zi(u) : 0 ≤ u ≤ t}: observation history of all the covariates up to time

t

λTi (t): hazard rate for dependent censoring Ti

λCi (t): hazard rate for independent censoring Ci

ΛT
i (t) =

∫ t
0
λTi (u)du: cumulative hazard rate for dependent censoring Ti

ΛC
i (t) =

∫ t
0
λCi (u)du: cumulative hazard rate for independent censoring Ci

ND
i (t) = I(Zi ≤ t,∆D

i = 1): counting process for death

NT
i (t) = I(Zi ≤ t,∆T

i = 1): counting process for dependent censoring

NC
i (t) = I(Zi ≤ t,∆C

i = 1): counting process for independent censoring

Ri(t) = I(Zi ≥ t): at risk process

dMT
i (t) = dNT

i (t)−Ri(t)dΛT
i (t): zero mean process for dependent censoring

dMC
i (t) = dNC

i (t)−Ri(t)dΛC
i (t): zero mean process for independent censoring

A.1.2 Model Assumptions

We have made these assumptions in our paper:

(a) Assume restricted mean lifetime conditional on baseline covariates µi(L) :=

E{Di ∧ L|ZD
i (0)} follows the model structure as below,

g [µi (L)] ≡ g
[
E
{
Di ∧ L|ZD

i (0)
}]

= β′DZ
D
i (0) ,

where g(∗) is a given smooth and strictly monotone link function and βD is of

our primary interest.

(b) Assume Cox proportional hazards model for dependent and independent censor-
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ing time Ti and Ci:

λTi (t) = λT0 (t) exp
{
β′TZ

T
i (t)

}
,

λCi (t) = λC0 (t) exp
(
β′CZ

C
i

)
.

(c) Assume no unmeasured confounders for dependent censoring Ti: for any t > 0,

lim
h→0

P
{
Zi ∈ [t, t+ h) ,∆T

i = 1|Zi ≥ t, Z̃i (t) , Di
}

h
= lim
h→0

P
{
Zi ∈ [t, t+ h) ,∆T

i = 1|Zi ≥ t, Z̃i (t)
}

h
.

(d) Assume independent censoring time is independent of either death time or dependent censoring
time given baseline covariates; i.e.,

Ci⊥Ti|Zi (0) , Ci⊥Di|Zi (0) .

A.1.3 Regularity Conditions

We specify the necessary regularity conditions (i)-(vii) as below.

(i) {Zi,∆D
i ,∆

T
i ,∆

C
i , Z̃i(Zi)}, i = 1, . . . , n are independently and identically dis-

tributed.

(ii) P (Ri(t) = 1) > 0 for t ∈ (0, τ ], i = 1, . . . , n.

(iii) |Zik(0)| +
∫ τ

0
d|Zik(t)| < MZ < ∞ for i = 1, . . . , n, where Zik(t) are the kth

components of Zi(t).

(iv) ΛT
i (τ) < ∞,ΛC

i (τ) < ∞ and ΛT
i (t),ΛC

i (t) are absolutely continuous for t ∈

(0, τ ].

(v) There exist neighborhoods BT of βT and BC of βC such that for k = 0, 1, 2,

sup
t∈(0,τ ],β∈BT

∥∥∥∥∥ 1

n

n∑
i=1

exp
{
β′ZT

i (t)
}
Ri (t)Z

T
i (t)⊗k − r(k)

T (t;β)

∥∥∥∥∥ p−→ 0,

sup
t∈(0,τ ],β∈BC

∥∥∥∥∥ 1

n

n∑
i=1

exp
(
β′ZC

i

)
Ri (t)Z

C⊗k
i − r(k)

C (t;β)

∥∥∥∥∥ p−→ 0,

where v⊗0 = 1,v⊗1 = v,v⊗2 = v′v and

r
(k)
T (t;β) = E

[
exp

{
β′ZT

i (t)
}
Ri (t)Z

T
i (t)⊗k

]
,(A.1)

r
(k)
C (t;β) = E

{
exp

(
β′ZC

i

)
Ri (t)Z

C⊗k
i

}
.(A.2)
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(vi) Define h(x) = ∂g−1(x)/∂x, where h exists and is continuous in an open neigh-

borhood BD of βD.

(vii) The matrices A(βD),ΩT (βT ),ΩC(βC) are each positive definite, where

A (β) = E
[
ZD
i (0)⊗2 h

{
β′DZ

D
i (0)

}]
,(A.3)

ΩT (β) = E

[∫ τ

0

{
r

(2)
T (t;β)

r
(0)
T (t;β)

− zT (t;β)⊗2

}
dNT

i (t)

]
,(A.4)

ΩC (β) = E

[∫ τ

0

{
r

(2)
C (t;β)

r
(0)
C (t;β)

− zC (t;β)⊗2

}
dNC

i (t)

]
,(A.5)

and

zT (t;β) =
r

(1)
T (t;β)

r
(0)
T (t;β)

,(A.6)

zC (t;β) =
r

(1)
C (t;β)

r
(0)
C (t;β)

.(A.7)

A.1.4 Outline of Derivation

Two estimating equation mentioned in our paper are

(A.8)

Φ∗ (β) :=
1

n

n∑
i=1

Φ∗i (β) :=
1

n

n∑
i=1

∆iWi (Yi)
[
Yi − g−1

{
β′ZD

i (0)
}]
ZD
i (0) = 0,

where Wi(t) = W T
i (t)WC

i (t), W T
i (t) = exp{ΛT

i (t)} and WC
i (t) = exp{ΛC

i (t)}, and

(A.9) Φ(β) :=
1

n

n∑
i=1

Φi (β) :=
1

n

n∑
i=1

∆iŴi (Yi)
[
Yi − g−1

{
β′ZD

i (0)
}]
ZD
i (0) = 0,

where Ŵi(t) = Ŵ T
i (t)ŴC

i (t), Ŵ T
i (t) = exp{Λ̂T

i (t)} and ŴC
i (t) = exp{Λ̂C

i (t)}.

We will first show (A.8) is unbiased, and then (A.9) satisfies that
√
nΦ(βD)

70



converges to a zero-mean Normal with variance B(βD) = E{Bi(βD)⊗2}, where

B (βD) = E{Bi (βD)⊗2},

(A.10)

Bi (β) = εi (β) +KT (β)ΩT (βT )−1UT
i (βT ) +

∫ L

0

HT (u;β)r
(0)
T (u;βT )−1dMT

i (u)

+KC(β)ΩC(βC)−1UC
i (βC) +

∫ L

0

HC(u;β)r
(0)
C (u;βC)−1dMC

i (u) ,(A.11)

εi (β) = ∆iWi (Yi) [Yi − g−1{β′ZD
i (0)}]ZD

i (0) ,(A.12)

UT
i (βT ) =

∫ t

0

{ZT
i (u)− zT (u;βT )}dMT

i (u) ,(A.13)

UC
i (βC) =

∫ t

0

{ZC
i − zC(u;βC)}dMC

i (u) ,(A.14)

KT (β) = E{εj (β)DT
i (Yi)

′},(A.15)

KC (β) = E{εj (β)DC
i (Yi)

′},(A.16)

HT (t;β) = E[εj (β) exp{β′TZT
i (t)}Ri (t)],(A.17)

HC (t;β) = E{εj (β) exp(β′CZ
C
i )Ri (t)},(A.18)

DT
i (t) =

∫ t

0

{ZT
i (u)− zT (u;βT )}dΛT

i (u) ,(A.19)

DC
i (t) =

∫ t

0

{ZC
i − zC (u;βC)}dΛC

i (u) ,(A.20)

for any subject i = 1, . . . , n, and ΩT (β),ΩC(β) are already defined in (A.4) and

(A.5).

Let β̂D denote the solution to (A.9). We will show that

(a) (Consistency) as n→∞, β̂D converges in probability to βD.

(b) (Asymptotic Properties) as n→∞,
√
n(β̂D−βD) converges to a zero-mean

Normal with variance A(βD)−1B(βD)A(βD)−1 with A(β) and B(β) defined in

(A.3) and (A.10).
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A.1.5 Unbiased Estimating Equation

Theorem A.1. Under regularity conditions (i)-(vii), the estimating equation (A.8)

is unbiased at the true value of βD; i.e. E{Φ∗(βD)} = 0.

Proof. As defined in our paper, the ith error term in (A.8) are independently and

identically distributed. It would be enough to show that E{εi(βD)} = 0. This holds

because the conditional expectation on ZD
i (0) is unbiased:

E
{
εi (βD) |ZD

i (0)
}

= ZD
i (0)E

{
Wi (Yi) ∆iYi|ZD

i (0)
}
−ZD

i (0) g−1
{
β′DZ

D
i (0)

}
E
{
Wi (Yi) ∆i|ZD

i (0)
}

= ZD
i (0)E

[
E {Wi (Yi) ∆iYi|Di} |ZD

i (0)
]
−

ZD
i (0) g−1

{
β′DZ

D
i (0)

}
E
[
E {Wi (Yi) ∆i|Di} |ZD

i (0)
]

= ZD
i (0)E

[
E

{
I (Ti ≥ Di ∧ L,Ci ≥ Di ∧ L)

P (Ti ≥ Di ∧ L,Ci ≥ Di ∧ L)
(Di ∧ L) |Di

}
|ZD

i (0)

]
−ZD

i (0) g−1
{
β′DZ

D
i (0)

}
E

[
E

{
I (Ti ≥ Di ∧ L,Ci ≥ Di ∧ L)

P (Ti ≥ Di ∧ L,Ci ≥ Di ∧ L)
|Di

}
|ZD

i (0)

]
= ZD

i (0)E
{
Di ∧ L|ZD

i (0)
}
−ZD

i (0) g−1
{
β′DZ

D
i (0)

}
= 0.

Then averaging over the baseline covariates, E{εi(βD)} and therefore E{Φ∗i (βD)}

will be 0.

Theorem A.2. Under regularity conditions (i)-(vii), as n → ∞,
√
nΦ(βD) con-

verges to a zero-mean Normal with variance B(βD) defined in (A.10).

Proof. As shown in Zhang and Schaubel (2011), the weight involved with dependent

censoring time Ti can be written as

√
n
{
Ŵ T
i (t)−W T

i (t)
}

=
1√
n
W T
i (t)

{
DT

i (t)′ΩT (βT )−1
n∑
j=1

UT
j (βT ) +

n∑
j=1

JTij (t)

}
+op (1) ,
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with defined DT
i (t),UT

i (βT ),ΩT (β), r
(k)
T (t), zT (t;β) in (A.19), (A.13), (A.4) , (A.1),

(A.6) and

JTij (t) =

∫ t

0

exp
{
β′TZ

T
i (u)

}
Ri (u) r

(0)
T (u;βT )−1 dMT

j (u) .

And we can derive the similar formula for independent censoring time Ci,

√
n
{
Ŵ

C
i (t) −W

C
i (t)

}
=

1
√

n
W

C
i (t)

DC
i (t)

′
ΩC

(
βC

)−1
n∑

j=1

U
C
j
(
βC

)
+

n∑
j=1

J
C
ij (t)

 + op (1) ,

with definedDC
i (t),UC

i (βC),ΩC(β), r
(k)
C (t), zC(t;β) in (A.20), (A.14), (A.5) , (A.2),

(A.7)and
J
C
ij (t) =

∫ t

0
exp

(
β
′
CZ

C
i

)
Ri (u) r

(0)
C

(
u;βC

)−1
dM

C
j (u) .

Rewrite the target vector as

√
nΦ (β) =

1√
n

n∑
i=1

∆i (Yi) [Yi − g−1{β′ZD
i (0)}]ZD

i (0) Ŵ T
i (Yi) Ŵ

C
i (Yi)

=
1√
n

n∑
i=1

∆i (Yi) [Yi − g−1{β′ZD
i (0)}]ZD

i (0)
[
W T
i (Yi)W

C
i (Yi)(A.21)

+WC
i (Yi)

{
Ŵ T
i (Yi)−W T

i (Yi)
}

(A.22)

+W T
i (Yi)

{
ŴC
i (Yi)−WC

i (Yi)
}

(A.23)

+
{
ŴC
i (Yi)−WC

i (Yi)
}{

Ŵ T
i (Yi)−W T

i (Yi)
}]

(A.24)

• The first part (A.21) is just

(A.21) =
1√
n

n∑
i=1

εi (β)

where εi(β) was defined in (A.12).

• The second part (A.22) involves the difference between estimated and true
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IPCW weights for T :

(A.22) =
1√
n

n∑
i=1

εi (β)
{
Ŵ T
i (Yi)−W T

i (Yi)
}

=
1

n1.5

n∑
i=1

εi (β)

{
DT

i (Yi)
′ΩT (βT )−1

n∑
j=1

UT
j (βT ) +

n∑
j=1

JTij (Yi)

}
+ op (1)

=
1

n1.5

n∑
i=1

n∑
j=1

εi (β)DT
i (Yi)

′ΩT (βT )−1UT
j (βT )

(A.25)

+
1

n1.5

n∑
i=1

n∑
j=1

εi (β) JTij (Yi) + op (1)

(A.26)

Eq. (A.25) is simplified as

(A.25) =
1

n1.5

n∑
i=1

n∑
j=1

εi (β)DT
i (Yi)

′ΩT (βT )−1UT
j (βT )

=
1√
n

n∑
j=1

{
1

n

n∑
i=1

εi (β)DT
i (Yi)

′

}
ΩT (βT )−1UT

j (βT )

where KT (β) = E{εi(β)DT
i (Yi)

′} was defined in (A.15), then

(A.25) =
1√
n
KT (β)ΩT (βT )−1

n∑
j=1

UT
j (βT )

Since JTij (Yi) can be written as

JTij (Yi) =

∫ Yi

0

exp
{
β′TZ

T
i (u)

}
Ri (u) r

(0)
T (u;βT )−1 dMT

j (u)

=

∫ L

0

exp
{
β′TZ

T
i (u)

}
I (Zi ≥ u) I (Zi ∧ L ≥ u) r

(0)
T (u;βT )−1 dMT

j (u)

=

∫ L

0

exp
{
β′TZ

T
i (u)

}
I (Zi ≥ u) r

(0)
T (u;βT )−1 dMT

j (u)

≡
∫ L

0

exp
{
β′TZ

T
i (u)

}
Ri (u) r

(0)
T (u;βT )−1 dMT

j (u) ,
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Eq. (A.26) is simplified as

(A.26) =
1

n1.5

n∑
i=1

n∑
j=1

εi (β)

[∫ L

0

exp
{
β′TZ

T
i (u)

}
Ri (u) r

(0)
T (u;βT )−1 dMT

j (u)

]

=
1√
n

∫ L

0

[
1

n

n∑
i=1

εi (β) exp
{
β′TZ

T
i (u)

}
Ri (u)

]
r

(0)
T (u;βT )−1

{
d

n∑
j=1

MT
j (u)

}
.

where HT (u;β) = E[εi(β) exp{β′TZT
i (u)}Ri(u)] was defined in (A.17), then

(A.26) =
1√
n

n∑
i=1

∫ L

0

HT (u;β) r
(0)
T (u;βT )−1 dMT

i (u) .

To sum up, (A.22) can be rewritten as:

(A.22) =
1√
n

n∑
i=1

[
KT (β)ΩT (βT )−1UT

i (βT ) +

∫ L

0

HT (u;β)r
(0)
T (u;βT )−1dMT

i (u)

]
+ op (1) .

• Similarly, (A.23) can be rewritten as:

(A.23) =
1√
n

n∑
i=1

[
KC(β)ΩC(βC)−1UC

i (βC) +

∫ L

0

HC(u;β)r
(0)
C (u;βC)−1dMC

i (u)

]
+ op (1) .

where KC(β) = E{εi(β)DC
i (Yi)

′} and HC(u;β) = E{εi(β) exp(β′CZ
C
i )Ri(u)}

were defined in (A.18).
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• Eq. (A.24) can be rewritten as:

(A.24)

=
1√
n

n∑
i=1

∆i (Yi) [Yi − g−1{β′ZD
i (0)}]ZD

i (0)

∗
{
ŴC
i (Yi)−WC

i (Yi)
}{

Ŵ T
i (Yi)−W T

i (Yi)
}

=
1

n2.5

n∑
i=1

∆i (Yi) [Yi − g−1{β′ZD
i (0)}]ZD

i (0)

∗W T
i (Yi)

{
DT

i (Yi)
′ΩT (βT )−1

n∑
j=1

UT
j (βT ) +

n∑
j=1

JTij (Yi) + op
(√

n
)}

∗WC
i (Yi)

{
DC

i (Yi)
′ΩC (βC)−1

n∑
k=1

UC
k (βC) +

n∑
k=1

JCik (Yi) + op
(√

n
)}

=
1

n2.5

n∑
i=1

εi (β)

{
DT

i (Yi)
′ΩT (βT )−1

n∑
j=1

UT
j (βT ) +

n∑
j=1

JTij (Yi) + op
(√

n
)}

∗

{
DC

i (Yi)
′ΩC (βC)−1

n∑
k=1

UC
k (βC) +

n∑
k=1

JCik (Yi) + op
(√

n
)}

=
1

n2.5

n∑
i=1

εi (β)

{
DT

i (Yi)
′ΩT (βT )−1

n∑
j=1

UT
j (βT ) +

n∑
j=1

JTij (Yi)

}

∗

{
DC

i (Yi)
′ΩC (βC)−1

n∑
k=1

UC
k (βC) +

n∑
k=1

JCik (Yi)

}
+ op (1)

=
1

n2.5

n∑
i=1

n∑
j=1

n∑
k=1

εi (β)DT
i (Yi)

′ΩT (βT )−1UT
j (βT )DC

i (Yi)
′ΩC (βC)−1UC

k (βC)

(A.27)

+
1

n2.5

n∑
i=1

n∑
j=1

n∑
k=1

εi (β) JTij (Yi)D
C
i (Yi)

′ΩC (βC)−1UC
k (βC)

(A.28)

+
1

n2.5

n∑
i=1

n∑
j=1

n∑
k=1

εi (β)DT
i (Yi)

′ΩT (βT )−1UT
j (βT ) JCik (βC)

(A.29)

+
1

n2.5

n∑
i=1

n∑
j=1

n∑
k=1

εi (β) JTij (Yi) J
C
ik (Yi) + op (1)

(A.30)
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Eq. (A.27)-(A.30) can be shown to be negligible.

To sum up, we can rewrite
√
nΦ(β) as

nΦ (β) =
1√
n

n∑
i=1

Bi (β) + op (1) ,

where as defined in (A.11), Since we have defined B(β) = E{Bi(β)⊗2} in (A.10),

then we have proven that

√
nΦ (βD)

D−→ Normal (0,B (βD)) ,

following that the mean of each term in the summation above is 0 at βD.

A.1.6 Consistency

Theorem A.3. Under regularity conditions (i)-(vii), as n→∞, β̂D
p−→ βD.

Proof. We use the Inverse Function Theorem (Foutz, 1977) by verifying the following

conditions:

• ∂Φ(β)/∂β′ exists and is continuous in an open neighborhood BD of βD.

• −n−1∂Φ(β)/∂β′|β=βD is positive definite with probability 1 as n→∞.

• −n−1∂Φ(β)/∂β′ converges in probability to a fixed function uniformly in an

open neighborhood BD of βD.

• Asymptotic unbiasedness of the estimating function:−Φ(βD)/n
p−→ 0.

We know that

∂Φ (β)

∂β′
= −

n∑
i=1

∆iŴ
T
i (Yi) Ŵ

C
i (Yi)h

{
β′ZD

i (0)
}
ZD
i (0)⊗2 .

where h(x) = ∂g−1(x)/∂x. We will show that this derivative vector satisfies all the

necessary conditions above.
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• The first condition here holds because of the regularity condition (iv), which

states that h exists and is continuous in an open neighborhood BD of βD.

• As to the second condition here, we know

− 1

n

∂Φ (β)

∂β′
|β=βD

= E
[
∆iW

T
i (Yi)W

C
i (Yi)h

{
β′DZ

D
i (0)

}
ZD
i (0)⊗2

]
+ op (1)

= E

[
E

{
I (Ti ∧ Ci ≥ Di ∧ L)

P (Ti ≥ Di ∧ L)P (Ci ≥ Di ∧ L)
|Di,Z

D
i (0)

}
h
{
β′ZD

i (0)
}
ZD
i (0)⊗2

]
+ op (1)

= E

[
E

{
I (Ti ≥ Di ∧ L) I (Ci ≥ Di ∧ L)

P (Ti ≥ Di ∧ L)P (Ci ≥ Di ∧ L)
|Di,Z

D
i (0)

}
h
{
β′ZD

i (0)
}
ZD
i (0)⊗2

]
+ op (1)

= E
[
h
{
β′ZD

i (0)
}
ZD
i (0)⊗2]+ op (1)

≡ A (β) .

where A(β) is defined as (A.3). Since we have assumed A(βD) is positive

definite, the second condition holds here too.

• The third condition holds by the law of large numbers.

• Finally, since we have proven that

√
nΦ(βD)

D−→ Normal (0,B(βD)) .

The last condition holds by Chebyshev’s inequality.

Having verified all the four conditions, we can argue that β̂D
p−→ βD follows from

Inverse Function Theorem.

A.1.7 Asymptotic Distribution

Theorem A.4. Under regularity conditions (i)-(vii), as n→∞,

√
n
(
β̂D − βD

)
D−→ Normal

(
0,A(βD)−1B(βD)A(βD)−1

)
.
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Proof. Taylor expansion of Φ
(
β̂D

)
around βD is:

0 = Φ
(
β̂D

)
= Φ (βD) +

∂Φ (β)

∂β
|β=β̃

(
β̂D − βD

)
,

where β̃ lies between β̂D and βD. So

√
n
(
β̂D − βD

)
= −

{
∂Φ (β)

∂β
|β=β̃

}−1√
nΦ (βD)

=

[
− 1

n

n∑
i=1

∆iŴi (Yi)Z
D
i (0)⊗2 h

{
β̃
′
ZD
i (0)

}]−1
√
nΦ (βD)

= A (βD)−1√nΦ (βD) + op (1) .

Following Theorem A.2, it holds that

√
n
(
β̂D − βD

)
D−→ Normal

(
0,A (βD)−1B (βD)A (βD)−1) .

A.2 Model Selection Criteria

We suggest using Concordance Statistics (IOC), Mean Absolute Deviation (MAD)

and Mean Squared Deviation (MSD) to select the proper link function. To simplify

the notation, we denote DL
i = Di∧L and its predicted value as D̂L

i = g−1{β′DZD
i (0)}.

Due to the occurrence of censoring, we observe Zi = DL
i ∧ Ti ∧ Ci for subject i.

Our version of IOC is adapted from Frank Harrell’s formula of concordance (Har-

rell, 1996; Heagerty, 2005, Uno et al., 2011):

IOC =

∑n
i=1

∑n
j=1 ∆iŴi (Yi) Ŵj (Yi) I

(
Yi < Yj, D̂L

i < D̂L
j

)
∑n

i=1

∑n
j=1 ∆iŴi (Yi) Ŵj (Yi) I (Yi < Yj)

.

It converges to a censoring distribution free quantity P (D̂L
i < D̂L

j |DL
i < DL

j ) because
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(i) as to the numerator,

1

n2
∆iŴi (Yi) Ŵj (Yi) I

(
Yi < Yj, D̂L

i < D̂L
j

)
p−→ E

{
I
(
DL
i ≤ Ti ∧ Ci

)
Wi (Yi)Wj (Yi) I (Yi < Yj) I

(
D̂L
i < D̂L

j

)}
= E

{
I
(
DL
i ≤ Ti ∧ Ci

)
Wi

(
DL
i

)
Wj

(
DL
i

)
I
(
Tj ∧ Cj > DL

i

)
I
(
DL
j > DL

i

)
∗ I
(
D̂L
i < D̂L

j

)}
= E

[
E

{
I (Ti ∧ Ci ≥ Di ∧ L) I (Tj ∧ Cj > Di ∧ L)

P (Ti ∧ Ci > Di ∧ L)P (Tj ∧ Cj > Di ∧ L)

∗ I
(
DL
i < DL

j , D̂
L
i < D̂L

j

)
|ZD

i (0), Di

}]
p−→ P

(
DL
i < DL

j , D̂
L
i < D̂L

j

)
.

(ii) Similarly, the denominator follows that

1

n2
∆iŴi(Yi)Ŵj(Yi)I(Yi < Yj)

p−→ P (DL
i < DL

j ).

(iii) So

IOC
p−→ P (D̂L

i < D̂L
j |DL

i < DL
j ).

We can also use the similar trick to prove that

MAD :=
1

n

n∑
i=1

∆iŴi (Yi)
∣∣∣Yi − g−1

{
β̂
′
DZ

D
i (0)

}∣∣∣ p−→ E
∣∣∣DL

i − D̂L
i

∣∣∣ ,
MSD :=

1

n

n∑
i=1

∆iŴi (Yi)
[
Yi − g−1

{
β̂
′
DZ

D
i (0)

}]2 p−→ E
[
DL
i − D̂L

i

]2

.

A.3 More Results in Application Data Analysis

Below are the plots of RMST within 1 year and 5 years post wait-list for chronic

ESLD patients with different MELD scores.

Below are the estimated effects of prognostic factors on pre-transplant survival

time within 1 year and 5 year post wait-list for chronic ESLD patients.
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Figure A.1 Fitted RMST (L = 12 months) by MELD score for a reference patient: white, male,
age=50, Region=5, year=2005, not hospitalized, not on dialysis, blood Type=O, BMI ∈ (20, 25],

sodium=130
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Figure A.2 Fitted RMST (L = 60 months) by MELD score for a reference patient: white, male,
age=50, Region=5, year=2005, not hospitalized, not on dialysis, blood Type=O, BMI ∈ (20, 25],

sodium=130
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Table A.1 Estimated covariate effects on RMST in the absence of liver transplantation (L = 12
months)

Linear Log Logistic

ZDi (0) β̂D ASE1 p β̂D ASE1 p β̂D ASE1 p

Intercept 12.02 0.14 < 0.01 2.49 0.01 0.44 3.22 0.1 < 0.01
Year-2005 0.1 0.01 < 0.01 0.01 < 0.01 < 0.01 0.06 0.01 < 0.01

Age-50 (Years) -0.05 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 -0.04 < 0.01 < 0.01
Sodium-130 (mmol/l) 0.13 0.01 < 0.01 0.01 < 0.01 < 0.01 0.08 < 0.01 < 0.01

MELD Score-6 -0.32 < 0.01 < 0.01 -0.04 < 0.01 < 0.01 -0.18 < 0.01 < 0.01

UNOS Region Reference Group: 5

1 -0.32 0.12 0.01 -0.02 0.01 0.02 -0.31 0.09 < 0.01
2 -0.52 0.09 < 0.01 -0.04 0.01 < 0.01 -0.41 0.06 < 0.01
3 -0.63 0.12 < 0.01 -0.03 0.01 < 0.01 -0.54 0.08 < 0.01
4 -0.08 0.08 0.29 < 0.01 0.01 0.75 -0.09 0.07 0.18
6 -0.01 0.14 0.93 0.03 0.01 0.02 -0.2 0.1 0.05
7 0.06 0.11 0.59 0.02 0.01 0.04 0.03 0.08 0.69
8 -0.15 0.1 0.15 0.01 0.01 0.49 -0.17 0.08 0.04
9 -0.45 0.09 < 0.01 -0.04 0.01 < 0.01 -0.27 0.08 < 0.01
10 -0.51 0.12 < 0.01 -0.04 0.01 < 0.01 -0.47 0.09 < 0.01
11 -0.79 0.11 < 0.01 -0.06 0.01 < 0.01 -0.59 0.08 < 0.01

Gender Reference Group: Male
Female 0.01 0.05 0.88 -0.01 < 0.01 0.03 0.03 0.04 0.47

Race Reference Group: White
Black 0.19 0.11 0.07 0.02 0.01 0.02 0.05 0.07 0.5

Hispanic -0.02 0.07 0.76 < 0.01 0.01 0.44 -0.05 0.05 0.34
Asian 0.2 0.12 0.1 0.02 0.01 0.11 0.21 0.11 0.05
Others -0.29 0.23 0.22 -0.02 0.02 0.28 -0.1 0.18 0.57

Blood Type Reference Group: O

A -0.05 0.05 0.3 < 0.01 < 0.01 0.44 < 0.01 0.04 0.96
B -0.05 0.09 0.57 -0.01 0.01 0.46 0.01 0.06 0.89

AB -0.28 0.21 0.19 -0.03 0.01 0.04 -0.23 0.15 0.13

Diagnosis Reference Group: No or Yes

Hepatitis C -0.09 0.09 0.32 < 0.01 0.01 0.83 -0.16 0.06 0.01
Noncholestatic 0.29 0.09 < 0.01 0.04 0.01 < 0.01 0.13 0.06 0.04

Cholestatic -0.05 0.12 0.68 -0.01 0.01 0.43 -0.11 0.09 0.25
Acute Hepatic Necrosis 0.9 0.22 < 0.01 0.05 0.02 0.01 0.86 0.17 < 0.01

Metastatic Disease -0.45 0.19 0.02 -0.04 0.02 0.06 -0.27 0.13 0.04
Malignant Neoplasm -1.64 0.1 < 0.01 -0.19 0.01 < 0.01 -1.02 0.07 < 0.01

BMI Reference Group: (20, 25]
(0, 20] -0.46 0.12 < 0.01 -0.04 0.01 < 0.01 -0.24 0.08 < 0.01
(25, 30] 0.08 0.07 0.21 0.01 0.01 0.02 0.03 0.05 0.48
> 30 0.08 0.07 0.23 0.01 0.01 0.06 0.04 0.05 0.47

Hospitalized Reference Group: Not Hospitalized

ICU -1.63 0.18 < 0.01 -0.57 0.05 < 0.01 -0.98 0.1 < 0.01
not ICU -1.43 0.13 < 0.01 -0.3 0.02 < 0.01 -0.56 0.06 < 0.01

Dialysis Reference Group: No or Yes

Yes 0.81 0.15 < 0.01 0.11 0.02 < 0.01 0.56 0.08 < 0.01

An offset of L = 12 months is applied for log link.
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Table A.2 Estimated covariate effects on RMST in the absence of liver transplantation (L = 60
months)

Linear Log Logistic

ZDi (0) β̂D ASE1 p β̂D ASE1 p β̂D ASE1 p

Intercept 46.91 0.88 < 0.01 4.03 0.03 0.06 1.84 0.09 < 0.01
Year-2005 -3.2 0.07 < 0.01 -0.13 < 0.01 < 0.01 -0.32 0.01 < 0.01

Age-50 (Years) -0.3 0.02 < 0.01 -0.01 < 0.01 < 0.01 -0.03 < 0.01 < 0.01
Sodium-130 (mmol/l) 0.66 0.04 < 0.01 0.03 < 0.01 < 0.01 0.07 < 0.01 < 0.01

MELD Score-6 -1.19 0.02 < 0.01 -0.06 < 0.01 < 0.01 -0.14 < 0.01 < 0.01

UNOS Region Reference Group: 5

1 -2.37 0.78 < 0.01 -0.07 0.03 0.02 -0.15 0.08 0.07
2 -1.86 0.64 < 0.01 -0.06 0.02 0.01 -0.14 0.06 0.03
3 -4.36 0.76 < 0.01 -0.13 0.03 < 0.01 -0.34 0.08 < 0.01
4 0 0.63 1 0.02 0.02 0.3 0.04 0.06 0.57
6 0.66 0.94 0.48 0.03 0.03 0.28 0.1 0.1 0.34
7 -0.55 0.68 0.41 -0.02 0.03 0.34 -0.01 0.07 0.86
8 -1.59 0.83 0.05 -0.01 0.03 0.82 -0.07 0.08 0.4
9 -1.05 0.65 0.1 -0.06 0.02 < 0.01 -0.1 0.07 0.15
10 -3.94 0.83 < 0.01 -0.14 0.03 < 0.01 -0.37 0.08 < 0.01
11 -3.46 0.77 < 0.01 -0.13 0.03 < 0.01 -0.31 0.08 < 0.01

Gender Reference Group: Male
Female 0.54 0.36 0.14 < 0.01 0.01 0.81 0.03 0.04 0.38

Race Reference Group: White
Black -0.99 0.61 0.1 -0.04 0.03 0.16 -0.06 0.07 0.37

Hispanic 0.5 0.49 0.3 0.01 0.02 0.52 0.04 0.05 0.39
Asian 1.63 0.87 0.06 0.02 0.03 0.55 0.14 0.1 0.17
Others -0.86 1.56 0.58 -0.01 0.06 0.89 -0.02 0.16 0.89

Blood Type Reference Group: O

A 0.06 0.36 0.86 0.01 0.01 0.61 0.03 0.04 0.47
B -0.51 0.59 0.38 -0.01 0.02 0.44 -0.04 0.06 0.54

AB 0.55 1.07 0.61 0.01 0.04 0.8 0.03 0.13 0.81

Diagnosis Reference Group: No or Yes

Hepatitis C -1.54 0.54 < 0.01 -0.05 0.02 0.01 -0.21 0.06 < 0.01
Noncholestatic 2.34 0.55 < 0.01 0.1 0.02 < 0.01 0.23 0.06 < 0.01

Cholestatic -0.98 0.77 0.2 -0.04 0.03 0.08 -0.15 0.08 0.07
Acute Hepatic Necrosis 2.4 1.5 0.11 0.01 0.04 0.84 0.1 0.15 0.51

Metastatic Disease -2.58 1.41 0.07 -0.07 0.06 0.25 -0.26 0.17 0.12
Malignant Neoplasm -8.59 0.69 < 0.01 -0.44 0.04 < 0.01 -0.99 0.08 < 0.01

BMI Reference Group: (20, 25]
(0, 20] -2.64 0.86 < 0.01 -0.09 0.03 < 0.01 -0.22 0.09 0.02
(25, 30] -0.15 0.46 0.75 < 0.01 0.02 0.8 -0.03 0.05 0.59
> 30 -0.12 0.47 0.8 < 0.01 0.02 0.88 -0.05 0.05 0.33

Hospitalized Reference Group: Not Hospitalized

ICU -1.87 0.75 0.01 -0.63 0.11 < 0.01 -0.83 0.16 < 0.01
not ICU -1.76 0.59 < 0.01 -0.27 0.05 < 0.01 -0.36 0.09 < 0.01

Dialysis Reference Group: No or Yes

Yes 2.01 0.77 0.01 0.13 0.05 0.01 0.47 0.11 < 0.01

An offset of L = 60 months is applied for log link.
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APPENDIX B

Appendix for Chapter II

B.1 Notations and Assumptions from Manuscript

• The true underlying mortality model for RMST at L is, for i = 1, . . . , n, j =

1, . . . , J ,

µij = E (Di ∧ L|Zi, gi = j) = µ0j exp (β′Zi) .

• The censoring model follows proportional hazards assumption:

λCij(t) = λC0j(t) exp (θ′Zi) .

• The working estimating equations are:

φ1

(
β,µ0, Ŵ

)
=

J∑
j=1

n∑
i=1

GijŴi∆
Y
i {Yi − µ0j exp (β′Zi)}Zi = 0,(B.1)

φ2

(
β,µ0, Ŵ

)
=


∑n

i=1Gi1Ŵi∆
Y
i {Yi − µ0j exp (β′Zi)}

...∑n
i=1GiJŴi∆

Y
i {Yi − µ0j exp (β′Zi)}

 = 0.(B.2)

• With defined notations,

S
(k)
j (β,W ) =

n∑
i=1

GijWi∆
Y
i exp (β′Zi)Z

⊗k
i ,(B.3)

Sj (β,W ) =
S

(1)
j (β,W )

S
(0)
j (β,W )

,(B.4)
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(2.4)-(2.5) are equivalent to

ψ1

(
β, Ŵ

)
=

J∑
j=1

n∑
i=1

Gij

{
Zi − Sj

(
β, Ŵ

)}
Ŵi∆

Y
i Yi = 0,(B.5)

ψ2

(
β,µ0, Ŵ

)
=


∑n
i=1Gi1Ŵi∆

Y
i Yi∑n

i=1Gi1Ŵi∆Y
i exp(β′Zi)

− µ01

...∑n
i=1GiJŴi∆

Y
i Yi∑n

i=1GiJŴi∆Y
i exp(β′Zi)

− µ0J

 = 0.(B.6)

• Regularity conditions:

(a) Oi’s are independently and identically distributed.

(b) P (Ri(t) = 1) > 0 for t ∈ (0, τ ].

(c) |Zik| < MZ <∞, where Zik is the kth component of Zi.

(d) ΛC
0j(τ) <∞ and ΛC

0j(t) is absolutely continuous for t ∈ (0, τ ].

(e) There exist neighborhoods C of θ such that for k = 0, 1, 2, j = 1, . . . , J ,

sup
t∈(0,τ ],θ∈C

∥∥∥R(k)
j (t;θ)− r(k)

j (t;θ)
∥∥∥ p−→ 0,

where

R
(k)
j (t;θ) =

∑n
i=1 Gij exp (θ′Zi)Z

⊗k
i Ri(t)∑n

i=1Gij

,(B.7)

r
(k)
j (t;θ) = E

{
Gij exp (θ′Zi)Z

⊗k
i Ri(t)

}
.(B.8)

(f) There exist neighborhoods B of β such that for k = 0, 1, 2, j = 1, . . . , J ,

sup
t∈(0,τ ],β∈B

∥∥∥S(k)
j (β,W )− s(k)

j (β)
∥∥∥ p−→ 0,

where

s
(k)
j (β) = E

{
Gij∆

Y
i Wi exp (β′Zi)Z

⊗k
i

}
= E

{
Gij exp (β′Zi)Z

⊗k
i

}
,
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(g) The matrices A(β),Θ(θ) are each positive definite, where

A(β) =
J∑
j=1

E

{
Gij∆

Y
i WiYi

(
s

(2)
j (β)

s
(0)
j (β)

− sj(β)⊗2

)}
,(B.9)

Θ(θ) =
J∑
j=1

E

{
Gij

∫ τ

0

(
r

(2)
j (t;θ)

r
(0)
j (t;θ)

− rj(t;θ)⊗2

)
r

(0)
j (t;θ)λC0j(t)dt

}
.(B.10)

and

sj(β) = s
(0)
j (β)−1s

(1)
j (β),

rj(t;θ) = r
(0)
j (t;θ)

−1
r

(1)
j (t;θ).

B.2 Unbiased Estimating Equation

B.2.1 Equivalence of φ and ψ

Since

φ2

(
β,µ0, Ŵ

)
= 0⇒ µ0j =

∑n
i=1GijŴi∆

Y
i Yi∑n

i=1GijŴi∆Y
i exp (β′Zi)

, j = 1, . . . , J,

which is the same as ψ2(β,µ0, Ŵ ). Plug this into φ1(β,µ0, Ŵ ):

φ1

(
β,µ0, Ŵ

)
=

J∑
j=1

n∑
i=1

GijŴi∆
Y
i YiZi −

J∑
j=1

n∑
i=1

GijŴi∆
Y
i exp (β′Zi)Zi

∑n
k=1GkjŴk∆Y kYk∑n

k=1GkjŴk∆Y k exp (β′Zk)

=
J∑
j=1

n∑
i=1

GijŴi∆
Y
i YiSi −

J∑
j=1

n∑
k=1

GkjŴk∆Y kYk
S

(1)
j

(
β, Ŵ

)
S

(0)
j

(
β, Ŵ

)
=

J∑
j=1

n∑
i=1

GijŴi∆
Y
i Yi

{
Si − Sj

(
β, Ŵ

)}
= ψ1

(
β, Ŵ

)
B.2.2 Unbiased Estimating Equation

The unbiasedness of the estimating equations φ1(β,µ0, Ŵ ) and φ2(β,µ0, Ŵ )

follow from the consistency of IPCW weights Ŵi to Wi, which is proven in the next
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section, and each item in φ1

(
β, Ŵ

)
is mean zero:

E
[
GijWi∆

Y
i {Yi − µ0j exp (β′Zi)}Zi

]
= E

(
E

[
Gij

I (Di ∧ L ≤ Ci)

P (Ci > Yi)
{Yi − µ0j exp (β′Zi)}Zi|Zi

])
= E

{
E

(
E

[
Gij

I (Di ∧ L ≤ Ci)

P (Ci > Yi)
{Yi − µ0j exp (β′Zi)}Zi|Zi, Di

]
|Zi

)}
= E

{
E

(
E

[
Gij

I (Di ∧ L ≤ Ci)

P (Ci > Di ∧ L)
{Di ∧ L− µ0j exp (β′Zi)}Zi|Zi, Di

]
|Zi

)}
= E (E [Gij {Di ∧ L− µ0j exp (β′Zi)}Zi|Zi])

= E [Gij {E (Di ∧ L|Zi)− µ0j exp (β′Zi)}Zi]

= 0.

Since φ1,φ2 are equivalent to ψ1,ψ2, the unbiasedness of the latter holds too.

B.3 Consistency of IPCW Weights Ŵi

B.3.1 Asymptotic Distribution of θ̂

From definition (??) and (2.6), we define

Rj(t;θ) =
R

(1)
j (t;θ)

R
(0)
j (t;θ)

.

and the score residual:

U i(θ) = Gij

∫ τ

0

{Zi − rj(u;θ)} dMC
i (u).

Then the asymptotic properties of θ̂ indicates that:

√
n
(
θ̂ − θ

)
= Θ(θ)−1 1√

n

J∑
j=1

n∑
i=1

GijU i(θ).

B.3.2 Asymptotic Distribution of Λ̂C
0j(t)

The difference between Λ̂C
0j(t) and ΛC

0j(t) can be separated as

√
nj
{

ΛC
0j(t)− ΛC

0j(t)
}

=
√
nj

{
Λ̂C

0j(t; θ̂)− Λ̂C
0j(t;θ)

}
(B.11)

+
√
nj

{
Λ̂C

0j(t;θ)− ΛC
0j(t;θ)

}
.(B.12)
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Since

Λ̂C
0j(t;θ) =

∫ t

0

∑n
i=1GijdN

C
i (u)∑n

i=1 GijRi(u) exp (θ′Zi)
=

n∑
i=1

Gij

∫ t

0

1

njR
(0)
j (u;θ)

dNC
i (u),

⇒ (B.11) =
√
nj

n∑
i=1

Gij

∫ t

0

{
1

R
(0)
j (u; θ̂)

− 1

R
(0)
j (u;θ)

}
dNC

i (u).

Through a Taylor expansion,

(B.11) =

√
nj
n
hj(t;θ)′

√
n
(
θ̂ − θ

)
+ op(1),

= −
√
nj
n

{∫ t

0

rj(u;θ)′dΛC
0j(u;θ)

}
Θ(θ)−1

n∑
i=1

J∑
l=1

GilU i(θ) + op(1),

where

hj(t;θ) = − 1

nj

n∑
i=1

Gij

∫ t

0

Rj(u;θ)

R
(0)
j (u;θ)

dNC
i (u)

= − 1

nj

n∑
i=1

Gij

∫ t

0

Rj(u;θ)dΛ̂C
0j(u;θ)

p→ −
∫ t

0

rj(u;θ)dΛC
0j(u;θ).

holds from Slutsky’s Theorem. In addition, since (B.12) = 1√
nj

∑n
i=1 Gij

∫ t
0
r

(0)
j (u;θ)

−1
dMC

i (u)+

op(1),

√
nj

{
Λ̂C

0j(t)− ΛC
0j(t)

}
= −

√
nj

n

n∑
i=1

J∑
l=1

Gil

∫ t

0

rj(u;θ)′Θ(θ)−1U i(θ)dΛC
0j(u;θ)

+
1
√
nj

n∑
i=1

Gij

∫ t

0

1

r
(0)
j (u;θ)

dMC
i (u) + op(1).

B.3.3 Asymptotic Distribution of Λ̂C
ij(t)

√
nj

{
Λ̂C
ij(t)− ΛC

ij(t)
}

(B.13)

=
√
nj

{∫ t

0

exp
(
θ̂
′
Zi

)
Ri(u)dΛ̂C

0j(u)−
∫ t

0

exp (θ′Zi)Ri(u)dΛ̂C
0j(u)

}
(B.14)

+
√
nj

{∫ t

0

exp (θ′Zi)Ri(u)dΛ̂C
0j(u)−

∫ t

0

exp (θ′Zi)Ri(u)dΛC
0j(u)

}
.(B.15)
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Since (B.14) =
√

nj
n

∫ t
0

√
n
{

exp
(
θ̂
′
Zi

)
− exp (θ′Zi)

}
Ri(u)dΛ̂C

0j(u) + op(1), by a

Taylor expansion, we obtain

(B.14) =

√
nj
n

exp (θ′Zi)Z
′
i

∫ t

0

Ri(u)dΛ̂C
0j(u)

√
n
(
θ̂ − θ

)
+ op(1)

=

√
nj

n
Z ′i

∫ t

0

dΛ̂C
ij(u)Θ(θ)−1

n∑
k=1

J∑
l=1

GklU k(θ) + op(1)

=

√
nj

n

n∑
k=1

J∑
l=1

Gkl

∫ t

0

Z ′idΛ̂C
ij(u)Θ(θ)−1U k(θ) + op(1).

Plug the result of the above asymptotic Distribution of λ̂C0j(t) into (B.15) and obtain:

(B.15) =
√
nj

∫ t

0

exp
(
θ̂
′
Zi

)
Ri(u)d

{
Λ̂C

0j(u)− ΛC
0j(u)

}
+ op(1)

= −
√
nj

n

n∑
k=1

J∑
l=1

Gkl

∫ t

0

rj(u;θ)′Θ(θ)−1U k(θ) exp (θ′Zi)Ri(u)dΛC
0j(u;θ)

+
1
√
nj

n∑
k=1

Gkj

∫ t

0

exp (θ′Zi)Ri(u)

r
(0)
j (u;θ)

dMC
k (u) + op(1)

= −
√
nj

n

n∑
k=1

J∑
l=1

Gkl

∫ t

0

rj(u;θ)′Θ(θ)−1U k(θ)dΛC
ij(u;θ)

+
1
√
nj

n∑
k=1

Gkj

∫ t

0

exp (θ′Zi)Ri(u)

r
(0)
j (u;θ)

dMC
k (u) + op(1).

Combining the above re-expressions for (B.14) and (B.15) leads to

√
nj

{
Λ̂C
ij(t)− ΛC

ij(t)
}

=

√
nj

n

n∑
k=1

J∑
l=1

Gkl

∫ t

0

{Zi − rj(u;θ)}′Θ(θ)−1U k(θ)dΛC
ij(u;θ)

+
1
√
nj

n∑
k=1

Gkj

∫ t

0

exp (θ′Zi)Ri(u)

r
(0)
j (u;θ)

dMC
k (u) + op(1)

Furthermore, at time point Yi, we have

√
nj

{
Λ̂C
ij(Yi)− ΛC

ij(Yi)
}

=

√
nj

n

n∑
k=1

J∑
l=1

GklDi(θ)′Θ(θ)−1U k(θ)+
1
√
nj

n∑
k=1

GkjJik(θ)+op(1),
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where

Di(θ) =
J∑
j=1

Gij

∫ L

0

{Zi − rj(u;θ)}Ri(u)dΛC
ij(u),

Jik(θ) =
J∑
j=1

GijGkj

∫ L

0

r
(0)
j (u;θ)−1 exp (θ′Zi)Ri(u)dMC

k (u).

B.3.4 Asymptotic Distribution of Ŵi

By definition, Ŵi−Wi = exp
{

Λ̂C
ij(Yi)

}
−exp

{
ΛC
ij(Yi)

}
= exp

{
ΛC
ij(Yi)

}{
Λ̂C
ij(Yi)− ΛC

ij(Yi)
}
.

From the previous result of Λ̂C
ij(Yi)− ΛC

ij(Yi) into this, we get

√
nj

(
Ŵi −Wi

)
=
√
nj exp

{
ΛC
ij(Yi)

}{
Λ̂C
ij(Yi)− ΛC

ij(Yi)
}

=
√
njWi

{
1

n

n∑
k=1

J∑
l=1

GklDi(θ)′Θ(θ)−1U k(θ) +
1

nj

n∑
k=1

GkjJik(θ)

}

+op

(
1
√
nj

)
.

B.4 Consistency of β̂

Using Inverse Function Theorem Foutz (1977), we need to verify these conditions

to conclude the consistency of β̂.

(a) ∂φ1(β, Ŵ )/∂β′ exists and is continuous in an open neighborhood of β.

(b) −n−1∂φ1(β, Ŵ )/∂β′ is positive definite at β with probability 1 as n→∞.

(c) −n−1∂φ1(β, Ŵ )/∂β′ converges in probability to a fixed function uniformly in

an open neighborhood of β.

(d) Asymptotic unbiasedness of the estimating function: −n−1φ1(β, Ŵ )
p→ 0.
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The only quantity in φ1(β, Ŵ ) involved with β is Zi − Sj(β, Ŵ ), and

∂
{
Zi − Sj

(
β, Ŵ

)}
∂β′

=
∂

∂β′

∑n
k=1Gkj∆Y kŴkZk exp (β′Zk)∑n
k=1 Gkj∆Y kŴk exp (β′Zk)

=
S

(2)
j

(
β, Ŵ

)
S

(0)
j

(
β, Ŵ

)
− S(1)

j

(
β, Ŵ

)⊗2

S
(0)
j

(
β, Ŵ

)2

=
s

(2)
j (β)s

(0)
j (β)− s(1)

j (β)⊗2

s
(0)
j (β)2

+ op(1).

So the derivative of ψ1 is

− 1

n

ψ1

(
β, Ŵ

)
∂β′

= − 1

n

J∑
j=1

n∑
i=1

Gij∆
Y
i ŴiYi

∂
{
Zi − Sj

(
β, Ŵ

)}
∂β′

=
1

n

J∑
j=1

n∑
i=1

Gij∆
Y
i ŴiYi

s
(2)
j (β)s

(0)
j (β)− s(1)

j (β)⊗2

s
(0)
j (β)2

+ o(1)

= A(β) + o(1).

So condition (b) holds. And condition (d) holds by law of large numbers. The

remaining conditions would hold under some certain regularity conditions. So it

follows that

β̂
p→ β.
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B.5 Asymptotic Distribution of β̂

B.5.1 Write ψ(β, Ŵ ) as a sum of i.i.d. terms

We want to replace Yi in ψ1 with Yi − µij, and it works because

J∑
j=1

n∑
i=1

Gij

{
Zi − Sj

(
β, Ŵ

)}
Ŵi∆

Y
i µij

=
J∑
j=1

n∑
i=1

Gij

Zi −
S

(1)
j

(
β, Ŵ

)
S

(0)
j

(
β, Ŵ

)
 Ŵi∆

Y
i µ0j exp (β′Zi)

=
J∑
j=1

nj
S

(1)
j

(
β, Ŵ

)
S

(0)
j

(
β, Ŵ

)
− S(1)

j

(
β, Ŵ

)
S

(0)
j

(
β, Ŵ

)
S

(0)
j

(
β, Ŵ

)
= 0

⇒ ψ1

(
β,µ0, Ŵ

)
=

J∑
j=1

n∑
i=1

Gij

{
Zi − Sj

(
β, Ŵ

)}
Ŵi∆

Y
i Yi

=
J∑
j=1

n∑
i=1

Gij

{
Zi − Sj

(
β, Ŵ

)}
Ŵi∆

Y
i (Yi − µij)

The main estimating equation ψ1(β, Ŵ ) can be further separated as the sum of the

following three components,

ψ1

(
β, Ŵ

)
=

1√
n

n∑
i=1

J∑
j=1

Gij

{
Zi − Sj (β,W )

}
Wi∆

Y
i (Yi − µij)(B.16)

+
1√
n

n∑
i=1

J∑
j=1

Gij

{
Zi − Sj (β,W )

}(
Ŵi −Wi

)
∆Y
i (Yi − µij)(B.17)

+
1√
n

n∑
i=1

J∑
j=1

Gij

{
Sj (β,W )− Sj

(
β, Ŵ

)}
Ŵi∆

Y
i (Yi − µij) .(B.18)

(B.18) can be shown to converge in probability to 0 through the Functional Delta

Method. Through techniques from empirical processes (Lin et al., 2000), it can be

shown that (B.16) is asymptotically equivalent to

(B.16) =
1√
n

n∑
i=1

J∑
j=1

Gij {Zi − sj (β,W )}Wi∆
Y
i (Yi − µij) .
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Let εi(β,W ) = Gij{Zi−Sj(β,W )}Wi∆
Y
i (Yi−µij), then (B.17) can be written as,

(B.17) =
1√
n

n∑
i=1

J∑
j=1

εi(β,W )
Ŵi −Wi

Wi

=
1
√
n

3

n∑
i=1

J∑
j=1

n∑
k=1

J∑
l=1

GijGklεi(β,W )Di(θ)′Θ(θ)−1U k(θ)(B.19)

+
1√
n

n∑
i=1

J∑
j=1

n∑
k=1

1

nj
GijGkjεi(β,W )Jik(θ) + op(1).(B.20)

The first component can be simplified as (B.19) = 1√
n
K(β,θ,W )Θ(θ)−1

∑n
i=1

∑J
j=1GijU i(θ)+

op(1), with the following additional notations:

K(β,θ,W ) =
J∑
j=1

Kj(β,θ,W ) =
J∑
j=1

E {Gijεi(β,W )Di(θ)′}

Let Hj(t;β,θ,W ) = E{εi(β,W ) exp(θ′Zi)Ri(t)}, then (B.20) is equivalent to

(B.20) =
1√
n

n∑
k=1

J∑
j=1

Gkj

∫ L

0

∑n
i=1Gijεi(β,W ) exp (θ′Zi)Ri(u)

njr
(0)
j (u;θ)

dMC
k (u) + op(1)

=
1√
n

n∑
k=1

J∑
j=1

Gkj

∫ L

0

Hj(u;β,θ,W )

r
(0)
j (u;θ)

dMC
k (u) + op(1).

Combining (B.19)and (B.20) together, we can write (B.17) as

1√
n

(B.17) =
1√
n

n∑
i=1

J∑
j=1

Gij

{
K(β,θ,W )Θ(θ)−1U i(θ) +

∫ L

0

Hj(u;β,θ,W )

r
(0)
j (u;θ)

dMC
i (u)

}
+op(1).

To sum up, our estimating equation 1√
n
ψ1(β, Ŵ ) can be written as a sum of n i.i.d.

terms at a difference of op(1): 1√
n
ψ1(β, Ŵ ) = 1√

n

∑n
i=1

∑J
j=1Gijbi(β, Ŵ ), where

bi (β,W ) = {Zi − sj (β,W )}Wi∆
Y
i (Yi − µij)

+ K (β,θ,W ) Θ(θ)−1U i(θ)

+

∫ L

0

Hj (u;β,θ,W )

r
(0)
j (u;θ)

dMC
i (u).
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B.5.2 Asymptotic Distribution of ψ1

1√
n
ψ1(β, Ŵ )

D→ Normal (0,B(β,W )) ,

where

B (β,W ) = E

[
J∑
j=1

Gij {bi (β,W )}⊗2

]
.

B.5.3 Asymptotic Distribution of β̂

Taylor expansion of ψ1(β, Ŵ ) around β is

0 = ψ1(β̂, Ŵ ) ≈ ψ1(β, Ŵ ) +
∂ψ1(β, Ŵ )

∂β′

(
β̂ − β

)
⇒
√
n
(
β̂ − β

)
=

[
1

n

∂ψ1(β, Ŵ )

∂β′

]−1
1√
n
ψ1(β, Ŵ ) = A(β)−1 1√

n
ψ1(β, Ŵ ) + o

(
1√
n

)
.

By Delta methods,

√
n
(
β̂ − β

)
D→ Normal

(
0,A(β)−1B(β,W )A(β)−1

)
.

B.6 Asymptotic Distribution of µ̂0 and η̂

B.6.1 From θ̂ to µ̂0

Define functions

dj(β) =

∑n
i=1 GijŴi∆

Y
i Yi∑n

i=1GijŴi∆Y
i exp(β′Zi)

,

dj(β) = lim
n→0

dj(β) =
E
{
GijŴi∆

Y
i Yi

}
E
{
GijŴi∆Y

i exp(β′Zi)
} =

µ0jE {exp(β′Zi)}
E {exp(β′Zi)}

,

and d(β) = (d1(β), . . . , dJ(β)), d(β) = (d1(β), . . . , dJ(β)). Then µ̂0 = d(β̂) and

µ0 = d(β). The difference between the estimated and true value of µ0j can be written
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as:

√
n (µ̂0 − µ0) =

√
n
{
d(β̂)− d(β)

}
+
√
n
{
d(β)− d(β)

}
=

∂d(β)

∂β

√
n
(
β̂ − β

)
+
√
n
{
d(β)− d(β)

}
+ op(1),

where ∂d(β)
∂β

is a J ∗ p matrix and its jth row is

(
∂d(β)

∂β

)
j∗

= −

{∑n
i=1GijŴi∆

Y
i Yi

}{∑n
i=1GijŴi∆

Y
i exp(β′Zi)Z

′
i

}
{∑n

i=1GijŴi∆Y
i exp(β′Zi)

}2

= − [µ0jE {Gij exp(β′Zi)}] [E {Gij exp(β′Zi)Z
′
i}]

[E {Gij exp(β′Zi)}]
2 + op(1)

= −µ0jsj(β)′ + op(1).

So we can write ∂d(β)
∂β

as −µMs(β), where

µM =


µ01 . . . 0

...
. . .

...

0 . . . µ0J

 ,

s(β) =


s1(β)′

...

sJ(β)′

 .

And the jth element the second part is

√
n
{
d(β)− d(β)

}
j

=

√
n

nj

∑n
i=1GijŴi∆

Y
i {Yi − µ0j exp(β′Zi)}

1
nj

∑n
i=1 GijŴi∆Y

i exp(β′Zi)

=

√
n

nj

n∑
i=1

GijŴi∆
Y
i

s
(0)
j (β)

(Yi − µij)

p→ 1√
n

n

njs
(0)
j (β)

n∑
i=1

GijWi∆
Y
i (Yi − µij) .
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So

√
n (µ̂0 − µ0) =

1√
n

n∑
i=1




n

n1s
(0)
1 (β)

Gi1Wi∆
Y
i (Yi − µij)

...

n

nJs
(0)
J (β)

GiJWi∆
Y
i (Yi − µij)

−
J∑
j=1

GijµMs(β)bi (β,W )


+ op(1).

Let

vµi (β,W ) =


n

n1s
(0)
1 (β)

Gi1Wi∆
Y
i (Yi − µij)

...

n

nJs
(0)
J (β)

GiJWi∆
Y
i (Yi − µij)

−
J∑
j=1

GijµMs(β)bi (β,W ) ,

then

√
n (µ̂0 − µ0)

D→ Normal
(
0, E

{
vµi (β,W )⊗2}) .

B.6.2 From µ̂0 to η̂

Rescale µ̂0 to η̂ = µ/(µ′w) with a pre-specified weight vector w. Define a new

function ζ(µ0) = µ0

µ′0w
. Then η = ζ(µ0) and η̂ = ζ(µ̂0). Since

∂ζ(µ0)

∂µ0

=
µ′0wIJ − µ0w

′

(µ′0w)2 ,

By Delta Methods,

√
n (η̂ − η) =

√
n {ζ(µ̂0)− ζ(µ0)}

D→ Normal

(
0,
µ′0wIJ − µ0w

′

(µ′0w)2 E
{
vµi (β,W )⊗2} µ′0wIJ −wµ′0

(µ′0w)2

)
.

.

B.7 Simulation Result

B.7.1 Bias and Standard Error for β̂ when L = 0.18, 0.57 and 13.4

B.7.2 Point and interval estimation for η L = 0.18, 0.57 and 13.4

96



Table B.1 Simulation results: L = 0.18, 0.57 and 13.4 under light and heavy censoring

L Censoring Var (True) n Bias ESD ASE CP(%)

0.18

Light

β1(−0.025)
2500 0 0.004 0.004 94
5000 0 0.003 0.003 94
10000 0 0.002 0.002 94

β2(−0.05)
2500 0 0.005 0.005 95
5000 0 0.003 0.003 95
10000 0 0.002 0.002 95

Heavy

β1(−0.025)
2500 0 0.004 0.004 94
5000 0 0.003 0.003 94
10000 0 0.002 0.002 95

β2(−0.05)
2500 0 0.005 0.005 93
5000 0 0.003 0.003 94
10000 0 0.002 0.002 95

0.57

Light

β1(−0.062)
2500 0.001 0.006 0.006 95
5000 0 0.005 0.004 92
10000 0 0.003 0.003 96

β2(−0.125)
2500 0 0.007 0.007 94
5000 0 0.005 0.005 95
10000 0 0.003 0.003 95

Heavy

β1(−0.062)
2500 0.001 0.006 0.006 95
5000 0.001 0.005 0.005 95
10000 0.001 0.003 0.003 95

β2(−0.125)
2500 0 0.007 0.007 94
5000 0 0.005 0.005 95
10000 0 0.003 0.003 95

13.4

Light

β1(−0.316)
2500 0.009 0.02 0.02 92
5000 0.005 0.015 0.014 92
10000 0.003 0.01 0.01 94

β2(−0.633)
2500 0.006 0.021 0.019 91
5000 0.005 0.014 0.014 94
10000 0.003 0.01 0.01 93

Heavy

β1(−0.316)
2500 0.045 0.03 0.026 58
5000 0.032 0.022 0.02 63
10000 0.021 0.017 0.016 72

β2(−0.633)
2500 -0.006 0.028 0.025 91
5000 -0.006 0.021 0.019 91
10000 -0.004 0.016 0.014 92
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Figure B.1 Point and interval estimation of η under light and heavy censoring for L = 0.18
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Figure B.2 Point and interval estimation of η under light and heavy censoring for L = 0.57
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Figure B.3 Point and interval estimation of η under light and heavy censoring for L = 13.4
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