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ABSTRACT

Over the past decades, economists have increasingly taken note of the importance of social
networks in determining choices and behaviors in a wide variety of settings. More recently,
researchers have taken note of the role of network endogeneity—that is, people choosing their
peer groups—in informing our understanding of many relationships. This dissertation consists
of three chapters that investigate the role of social networks in economics, with a focus on
applications in developing-country settings. Chapter 1 derives a new methodology to predict
the effects of policies that assign people to groups, while taking account of the fact that
actors choose their peers and peers affect outcomes. Chapter 2 investigates the sensitivity
of estimate of the effect of peers to a particular and widely-used data collection process. In
joint work, Chapter 3 investigates the effects of a particular development program targeted
at adolescent girls, taking account of the fact that program assignment affects patterns
of interaction. Taken together, these chapters form the beginning of a long-term research
agenda that seeks to understand the causes and effects of social networks in development

€Cconomics.
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CHAPTER 1

Random Assignment with Non-Random Peers: A
Structural Approach to Counterfactual Treatment

Assessment

Abstract

Recent efforts by economists to leverage peer effects by creative peer assignment have come
up short due in part to endogenous peer selection. That is, even conditional on random
assignment, agents choose their peers, and failure to account for this selection may crucially
bias estimates of peer effects and, in turn, predictions of the effects of alternative policies. To
address this shortcoming, I build a two-part model in which (1) agents form a network; (2)
conditional on the realized network, outcomes are determined by a process that allows for
non-linear peer effects. To overcome difficulties in identification and estimation of network-
formation games, agents in my model make continuous linking decisions subject to a budget
constraint. I show that, under certain conditions, this model has a unique strictly positive
equilibrium, which can then be used for identification and estimation. In modeling peer
effects, I explicitly model network endogeneity as an omitted variable problem, and further
propose a method to recover these omitted variables in estimating the network-formation
game. | estimate the parameters of the two-part model using innovative data on networks
and outcomes from a randomized study in Rajasthan, India, then show that the model
performs well in matching predictions to realized out-of-sample outcomes. This paper makes
important contributions to the methodology of peer effects estimation as well as the theory
and econometrics of network formation, while providing an important link between structural

and experimental approaches to policy evaluation.



1.1 Introduction

A rich literature in economics and related fields shows that individual choices and out-
comes are not independent of the choices, outcomes, and characteristics of those they interact
with. Further, a growing number of papers exploiting random assignments credibly makes
the case that these peer effects can be given a causal interpretation (Epple and Romano,
2011; Sacerdote, 2011). For example, prominent studies have exploited random assignment
to dorms (Sacerdote, 2001; Stinebrickner and Stinebrickner, 2006), university class sections
(DeGiorgi, Pelllizzari and Radaelli, 2010), second-grade classrooms in rural Kenya (Duflo,
Dupas and Kremer, 2011), and squadrons at the Air Force Academy (Carrell, Fullerton and
West, 2009; Carrell, Hoekstra and West, 2011). These studies tend to find large and statisti-
cally significant peer effects on a variety of outcomes (Epple and Romano, 2011). This robust
evidence for the existence of peer effects suggests that creative peer assignment may be a
powerful policy tool to influence individual choices and outcomes. That is, if peer effects are
sufficiently strong, simply changing the composition of peer groups may substantially change
measurable outcomes.

However, efforts to leverage peer effects to improve outcomes have proven difficult due
to, among other reasons, a failure to account for endogenous sorting (see, e.g., Angrist, 2014;
Carrell, Sacerdote and West, 2013). That is, policy interventions designed to change peer
group composition may also affect patterns of interaction: even with random assignment,
agents still may choose with whom they interact. The importance of this channel is high-
lighted by a number of recent studies documenting experimental interventions that change
network structure (see Comola and Prina, 2014; Delavallade, Griffith and Thornton, 2016;
Vasilaky and Leonard, 2014). Accordingly, in such settings, efforts to predict the effects of
alternative assignments must carefully account for the effects of said assignments not only

through peers but also on the choice of peers.! Thus, several recent papers have suggested

LOf course, if the goal is simply to learn the effect of alternative policies on some outcome, researchers
may design studies to cover a wide range of possible alternative assignments while remaining agnostic about
network endogeneity, but such a strategy is often impractical due to institutional or funding limitations.



pairing models of peer effects with models of peer choice that can be taken to data (Blume
et al., 2015; Graham, 2014b).

Network formation models are notoriously difficult to estimate, however, due to related
issues of theory, identification, and computation.? The bulk of the theory on network forma-
tion posits links as binary decisions: they either exist or do not (but see Bloch and Dutta,
2009; Baumann, 2016). The discrete nature of these games necessitates specifying alterna-
tives to Nash equilibrium such as pairwise stability. These games tend to be characterized
by the existence of multiple equilibria, a feature that complicates identification, leading
to partial identification (see de Paula, Richards-Shubik and Tamer, 2016; Sheng, 2012) or
the need to specify complex equilibrium selection rules (see Badev, 2013; Christakis et al.,
2010; Mele, 2010). Finally, the discrete nature of the problem implies the need to calculate
high-dimensional inequalities (see, e.g. Sheng, 2012), leading to a curse of dimensionality in
estimation.

To surmount these difficulties, I model the network formation process as a static, si-
multaneous move game in which players make continuous linking decisions. Additionally,
linking decisions are made subject to a budget constraint, which necessarily builds in trade-
offs between forming links. Importantly, I show that the model has a unique strictly positive
Nash equilibrium, in which all agents link positively to all other agents. This crucial feature
facilitates identification and estimation of the network formation game without reference
to partial identification or complicated equilibrium-selection procedures. The strictly posi-
tive equilibrium is characterized by linear best-response functions which can then be used
for identification and estimation. Further, the tradeoffs implied by the budget constraint
motivate the relevance of a budget-set instrument to identify parameters of the network
formation game. With sufficient variation in exogenous characteristics, parameters of the

network formation model are point identified. Most importantly, individual-specific unob-

One notable exception is Booij, Leuven and Oosterbeek (2016).
2 Chandrasekhar (2015) and Graham (2014b) provide comprehensive overviews of the current literature
on the identification and estimation of network formation models.



served variables are identified as the size of each observed network grows.

Next, I model outcomes conditional on the realized network. I generalize a reduced-form
version of the linear-in-means model (see Manski, 1993) by including additively-separable
unobserved or “latent” effects (Goldsmith-Pinkham and Imbens, 2013; Hsieh and Lee, 2016;
Jackson, 2014) as well as non-linear peer effects (Carrell, Sacerdote and West, 2013). This
approach explicitly models network endogeneity as an omitted-variable problem, and failure
to account for the latent characteristics biases estimates of the peer effects model. Crucially,
the unobserved variables that cause bias due to network endogeneity are the same unob-
served individual-specific parameters that are identified in the network-formation process.
Conditional on their identification, I show that the parameters of the peer effects model are
identified even in the presence of network endogeneity.

Next, I take these identification results to data gathered as part of a randomized trial
of a girls’ empowerment program in rural Rajasthan, India. The study design consists of a
treatment that randomly assigns 13 girls (out of approximately 44) in each of 10 schools to
participate in an after-school program, while control schools do not receive any programming.
As part of this effort, we collected especially rich data on social networks, consisting of
a pairwise network census with detailed data on network connections along a number of
dimensions. From this rich data, I construct a continuous measure of connectedness.

I first estimate the network-formation model to recover the individual-specific unobserv-
ables. These estimates indicate that these unobservables are quite important in determining
network structure. I then plug these into the peer-effects model, which allows for consistent
estimation of the parameters of that model. For two program outcomes, I show that the
individual-specific unobservables significantly affect realized outcomes, and statistical tests
strongly reject simpler models that do not account for them. That is, network ezogeneity
is a nested special case of my model, and this case can be rejected with a high degree of
certainty.

As a further check, I employ the estimated parameters in simulating outcomes to compare



to realized out-of-sample means. This step shows that the model performs well in out-of-
sample prediction, a validation step proposed by Todd and Wolpin (2006). Finally, I simulate
predicted outcomes under three different assignment rules, revealing that the assignment rule
substantially affects one program outcome of interest but has little effect on the other.

This paper’s primary contribution lies in providing a method for estimating peer effects
models in the presence of endogenous network formation. Such estimates can then be used
to predict the effects of alternative policies while simultaneously accounting for the effect of
those policies on network structure. As a necessary step in developing this method, I make
two additional contributions. First, I advance the theoretical literature on network formation,
particularly in the context of agents making continuous linking decisions. Second, building
upon this novel theoretical model, I provide an important advance in the econometric litera-
ture on the identification of network-formation games. Finally, in the empirical application, I
contribute to the literature building bridges between structural and experimental approaches
to program evaluation, especially in development contexts (see, e.g., Attanasio, Meghir and
Santiago, 2011; Duflo, Hanna and Ryan, 2012; Todd and Wolpin, 2006), as well as adding to
work comparing randomized to non-randomized assignments, as demonstrated, for example,
in Shadish, Clark and Steiner (2008).

This paper proceeds as follows. Section 1.2 describes the program under study as well
as deriving a number of key reduced-form facts to motivate features of the structural model.
Section 1.3 provides the peer effects model that posits network endogeneity as an omitted-
variable problem. Section 1.4 then develops the network-formation model as a means of
controlling for these structural unobservables. Applying the identification results, Section
1.5 presents results of structural estimation of the network formation and peer effects mod-
els. Using these parameter estimates, Section 1.6 compares predicted outcomes to those of
a realized out-of-sample group of schools. Section 1.7 then simulates outcomes under alter-
native assignment regimes whereby students are assigned preferentially based upon either

predicted outcomes or estimated unobservables. Section 1.8 concludes.



1.2 Empirical Setting and Data Description

This section describes the empirical setting and the experimental design. Through this
exercise, we learn that the program has negative but insignificant effects on outcomes but
strongly significant and substantively meaningful effects on network structure. I describe
how I construct the continuous network measure, then show that the constructed continuous
measure of networks is consistent with binary measures that are typically used in peer-
effects models and the economic analysis of networks. Finally, I use the network data to
demonstrate stylized facts that motivate features of the network formation model developed

in Section 1.4.

1.2.1 Girls’ Empowerment Program

The NGO Educate Girls operates the Bal Sabha program in government schookls in rural
Rajasthan, India. As part of the program, 13 girls in grades 6 through 8 are chosen to form
a Bal Sabha (Girls’ Parliament). The program focuses on developing so-called “soft skills.”
These skills include leadership and self-confidence as well as attitudes and aspirations about
education, age at marriage, and gender roles. The larger goal of the program is for girls to
employ these skills as a means of overcoming barriers to their own education, such as early
marriage.

The intervention consists of a series of five “games” during which village volunteers work
through increasingly difficult scenarios. Through activities such as role playing, girls are
taught to develop their own voice in difficult situations such as, for example, their parents
desiring to have them marry young or end their schooling. The parliaments meet biweekly
over a span of approximately six months during the academic year. The total intervention
time is approximately 25-50 hours. Girls chosen to participate were encouraged to share
their learning and experiences with their classmates who were not participants, and effects
spilling over to non-participants is a key feature of the implementing organization’s theory

of change.



Under the NGO’s preferred assignment rule, the 13 participants girls in each school are
chosen through elections involving all students in grades 6-8, including boys. These elections
lead to non-random selection, a fact that is documented in Delavallade, Griffith and Thornton

(2016).

1.2.2 Study Design and Data Collection

As part of the rollout of the program to a new district during the 2013-14 academic year,
a study team designed and implemented a randomized trial. A sample of thirty schools was
chosen in two administrative blocks. None of these schools had ever had a Bal Sabha prior
to the start of the study.

Prior to treatment assignment, three data collection activities in each school were con-
ducted in each school. First, Bal Sabha elections were held in all schools, including those
that would later serve as controls. Second, girls in each school filled out an extensive ques-
tionnaire that gathered background demographic information as well as data on attitudes,
aspirations, and expectations along a number of dimensions. Third, prior to treatment as-
signment, a pairwise network census was also collected among all girls in each of the 30
schools, the form of which is described below.

After baseline data collection, schools were assigned to one of three treatment groups. In
Random Treatment schools, girls were randomly chosen to participate. In Elected Treatment
schools, the program was conducted with the girls chosen by election, as is customary for
the program as implemented by Educate Girls. Finally, Control schools did not receive the
program in any form.

The program was implemented over a period of approximately six months. During this
time, village volunteers trained by the NGO led the 13 participating girls through the games-
based curriculum. At the conclusion of program implementation, enumerators returned to
each school to conduct an endline survey that measured outcomes similar to those measured

at baseline. Further, in order to assess the effect of the program on networks, we conducted



an additional pairwise network census. Accordingly, this data allows us to measure the
program’s effects on both endline outcomes—as measured by aspirations and attitudes—

and endline networks.

1.2.3 Demographics and Outcomes at Baseline

Table 1.1 provides descriptive statistics for the full sample of 1319 girls at baseline.> Note
that approximately 28 percent of the girls were elected to participate, out of an average of
approximately 44 girls in each school. Enrollment is slightly skewed toward girls in Grade
6 (the omitted category). Finally, note substantial variation in caste, as 37% of the sample
are members of Scheduled Castes/Scheduled Tribes, while 44.5% are in Other Backwards
Castes. The omitted caste category, General or upper castes, comprises 18.5% of the sample.
From these means, we see that there are fewer girls in higher grades, suggestive of school
dropout, as well as large lower-caste populations.

This paper focuses on two outcomes: educational aspirations and attitudes about gender
roles. These outcome measures are constructed as the normalized first principal component
of all relevant survey questions.? Girls have higher educational aspirations if, for example,
they indicate they would like to complete university, as compared to stating they would like
to complete only eighth grade. Girls have higher Gender Roles attitudes if, for example,
they say it is okay for a wife to disagree with her husband in public.

Baseline outcomes are summarized in Table 1.1, Panel B. Since the mean of the outcome
variables is zero by construction in the data among all students (including boys), these means
indicate that girls have below average Educational Aspirations and above average Gender
Roles attitudes. This conforms to our priors that girls have lower Educational Aspirations

than boys but higher Gender Roles attitudes.’

3 The sample consists of all girls who have non-missing data on the covariates in Panel A. This consists
of more than 99% of eligible girls.

4 That is, among all students in the sample, the mean is set to zero with variance of one.

5 Baseline balance is presented in Appendix B. Table B.1 shows balance across treatment arms, while Table
B.2 shows within-school balance between girls (randomly) selected to participate in Random Treatment and
those not selected.



Table 1.1: Baseline Variable Descriptives

Mean S.D.
Panel A: Baseline Covariates
Elected 0.281 0.449
Grade 7 0.318 0.466
Grade 8 0.306 0.461
Scheduled Caste 0.252 0.435
Scheduled Tribe 0.118 0.323

Other Backward Caste 0.445 0.497

Panel B: Baseline Outcomes
Educational Aspirations -0.197 1.036
Gender Roles 0.115 0.984

Notes: Robust standard errors in paren-
theses, clustered by school. Sample is all
girls in all schools. N = 1319 in 30 schools.

Table 1.2 presents regression results of baseline outcomes on the covariates in Panel A
of Table 1.1. The results show that these outcomes vary substantially by baseline char-
acteristics. For example, elected girls have 0.168 standard deviations higher Educational
Aspirations on average, while lower caste girls (SC, ST, and OBC) have substantially lower
levels of both baseline outcomes. Accordingly, if the program is to be targeted at those most

“at need,” it may make sense to target lower caste girls for participation in the program

rather than the more popular girls who are chosen by election.

1.2.4 Baseline Network Descriptives, and a Continuous Measure of Connected-

ness

Here, 1 describe the network data. Through this, we see that the data consists of a
large number of binary network measures, from which I construct a continuous measure
of connectedness. Further, I show that patterns of links are qualitatively similar for the
continuous measure and for the binary measure that is often used in the literature. This in
turn suggests the reasonableness of the constructed continuous measure that is necessary for

the structural model developed in later sections.



Table 1.2: Baseline Outcome Heterogeneity

Educational  Gender

Aspirations Roles
(1) (2)
Elected 0.168** -0.042
(0.078) (0.073)
Grade 7 0.024 0.125*
(0.080) (0.070)
Grade 8 0.077 0.172%*
(0.099) (0.084)
Scheduled Caste -0.234* -0.337F**
(0.118) (0.120)
Scheduled Tribe -0.185 -0.544%%*

(0.118) (0.111)
Other Backwards Caste  -0.284*** -0.078
(0.087) (0.102)

Constant -0.068 0.219**
(0.092) (0.080)
R-squared 0.018 0.040

Notes: N = 1,319 in 30 schools in all specifications.
Robust standard errors in parentheses, clustered by
school. *** p<0.01, ** p<0.05, * p<0.1.

10



The network data come from a pairwise network census. This procedure consisted of
each girl in the sample answering a series of binary questions about every other girl in her
school in grades 6 through 8. I categorize these variables by whether they are choices, such
as being friends, or static variables, such as living in close proximity. These are described in
Table 1.3 in Panels A and B, respectively. I have highlighted the “She is a friend” measure
in gray, as that is the link definition commonly reported in the literature. Note that the
friendship networks are quite dense: on average, girls indicate that 45.8 percent of other
girls in their school are friends, as shown in the shaded row of Table 1.3. Other measures of
connectedness, on the other hand, suggest less dense networks. For example, only 23.8% of

girls say that they have spent time outside school with the other in the past week.

Table 1.3: Endline Network Variable Descriptives

In/Out Factor
Mean Correlation Loading

Panel A: Choice Network Variables

She is a friend 0.458 0.334 0.324
I speak with her regularly 0.373 0.291 0.343
In the past week, spent time outside school 0.238 0.244 0.310
I think she is clever 0.397 0.176 0.334
She has a lot of friends / is popular 0.384 0.257 0.347
She is very shy/quiet 0.399 0.139 0.270
I think she is very confident 0.275 0.214 0.367
I wish I could be like her 0.210 0.171 0.337
I can trust her to keep my secrets 0.245 0.244 0.359

Panel B: Static Network Variables

She is a relative 0.154 0.434
We are in the same caste 0.208 0.704
I can walk to her home in less than 10 minutes 0.248 0.282

Notes: Sample is all pairs of students. N = 78,238 in 30 schools. Missing data
imputed via iterative EM algorithm (see Appendix D). First principal component
explains 47.3% of variation.

While the bulk of the economics literature on networks treats links as binary, the addi-

tional measures of connectedness allow me to capture more variation in link intensity.® In

6If connectedness is indeed a latent continuous measure, an additional motivation for use of the first
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order to exploit this additional information—and as an input into the structural estimation
process described in later sections of this paper—I construct a “continuous” measure of con-
nectedness by collapsing the measures in Table 1.3, Panel A into a single index. While this
provides for more exploitable variation, these variables are highly correlated with each other.
To account for the covariance structure, I take the first principal component, scaled such
that the constructed continuous measure has minimum zero and unit variance. The final
column of Table 1.3 provides the factor loadings for each variable in Panel A, and the first
component accounts for 47.3% of the variation in the included variables.

In Table 1.4, I compare the continuous measure of connectedness to the binary one. For
the latter, I follow the bulk of the literature in using the student’s response to “She is a
friend” as a binary link measure. Panel A shows the probability that a student in the group
identified on the y-axis indicates an individual on the x-axis is a friend. For example, the
likelihood that a member of a Scheduled Caste names another Scheduled Caste member as
a friend is 57.7%, while the likelihood of her naming a member of General Castes is 42.2%.
Comparison of (shaded) elements along the diagonal with others in the same row suggests
individuals are much more likely to claim as friends others of their own population grouping.
The final column provides the p-value of a test of the equality between the probability of an
individual in that row indicating a same-type other individual is a friend with the probability
of her indicating an individual in a different category is a friend. Note that this test suggests
strong homophily among members of Scheduled Castes and General Castes, but provides
weaker evidence for Scheduled Tribes and Other Backwards Castes under the binary link
definition.

Panel B performs the same exercise as Panel A, except with means of the continuous
measure of connectedness. Therefore, in Panel B the means in the table represent the mean
connectedness value that an individual in the group on the y-axis assigns to an individual on

the x-axis. From this, we see similar patterns of homophily: Scheduled Castes and General

principal component is to reduce measurement error (see Black and Smith, 2006).
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Table 1.4: Homophily by Population Group

Panel A: Binary Network Definition

P-value of Test

SC ST OBC  General | for Homophily

SC 0.577 0.386 0.407 0.422 0.000
(0.021)  (0.029)  (0.026)  (0.035)

ST 0.407 0.484 0.412 0.348 0.131
(0.039)  (0.039)  (0.066)  (0.041)

OBC 0.388 0.374 0.440 0.446 0.068
(0.045)  (0.067)  (0.055)  (0.038)

General | 0.362 0.314 0.402 0.564 0.000
(0.034)  (0.040)  (0.037)  (0.025)

Panel B: Continuous Link Intensity Definition

P-value of Test

SC ST OBC General | for Homophily

SC 1.294 0.864 0.895 0.936 0.003
(0.087)  (0.078)  (0.102)  (0.093)

ST 0.978 1.363 1.023 0.844 0.004
(0.098)  (0.048)  (0.185)  (0.100)

OBC 0.883 0.848 1.000 0.987 0.117
(0.110)  (0.151)  (0.138)  (0.086)

General | 0.822 0.710 0.915 1.399 0.000
(0.083)  (0.078)  (0.095)  (0.111)

Notes: Observations at the link level: N = 78,238 in 30 schools. Values
indicate mean value of link for individual in group on the y-axis with
respect to individual in group on the x-axis. Robust standard errors in
parentheses, clustered by school. Final column presents p-value of test
that mean value of link is equal for same type and other types. For
example, for SC, it tests that the mean link value to other SCs is the
same as the average link value of ST, OBC, and General pooled together.
That is, it tests the equality of the mean on the diagonal to the pooled
mean of off-diagonal elements within the same row. SC = Scheduled
Caste, ST = Scheduled Tribe, OBC = Other Backwards Caste.
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castes continue to show substantial homophily, with weaker evidence for Other Backwards
Castes. Interestingly, the continuous measure also suggests that we can reject the null of no
homophily for Scheduled Tribes, in contrast to the case of the binary link measure. In all,
these results suggest that the continuous measure of connectedness reflects similar network
patterns to the binary “She is a friend” measure that has received the bulk of attention in

the literature on the economics of networks.

1.2.5 Stylized Facts about Networks

Table 1.5 presents additional facts about networks. The regression results are presented
for descriptive purposes, making no claims as to causation, in order to motivate features of
the network formation model in the following sections.

First, Panel A shows that the size of an individual’s network is increasing in the size of
her school, as defined by the number of girls in grades 6-8. For Column (1), with the binary
link definition, this is measured by the simply the number of friends she claims to have. A
school having one additional girl is associated with other students having, on average 0.576
more friends. In Column (2), with the continuous link definition, the dependent variable
is the sum of her scalar link measures with reference to all other girls in her school. The
coefficient on School Size indicates that an additional student is associated with 0.392 higher
sum of links.

Second, Panel B shows that average link value is decreasing in school size. This is
indicated by the negative and highly significant coefficient on the School Size variable. This
suggests that there may be tradeoffs in linking strategies, and that each individual’s many
linking decisions are not independent of each other. This casts doubt on models of link
formation employed, for example, in Goldsmith-Pinkham and Imbens (2013) and Comola and
Prina (2014), which effectively assume independence of links, implying that the coefficient
on School Size in Panel B would be zero.

Third, Panel C shows that linking decisions are complementary but not symmetric. That
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is, individual i’s decision to link to j (i’s out-link with respect to j) depends upon j’s
decision to link to 4 (¢’s in-link with respect to j), as shown by the highly significant positive
coefficients in Panel C.” While linking strategies are clearly complementary, neither of the
two measures (binary and continuous) is symmetric, as would be indicated by a coefficient

of unity.® That is, while in- and out-links are correlated, they are not symmetric.

1.2.6 Reduced-Form Treatment Effects

Before proceeding to structural modeling, here I present reduced-form treatment effects,
on both outcomes and networks. I restrict this exercise to Random Treatment and Control
schools so that we can interpret differences between those chosen for participation under
Random Treatment and those not chosen as causal. These results reveal that the program
has negative but insignificant effects on endline outcomes, especially for participants, and
that selection to participation has significant effects on networks. The structural model

developed in later sections accounts for these features of the data.

1.2.6.1 Effects on Outcomes

First, I estimate reduced-form treatment effects with specifications as in Equation (1.1).

The omitted category in these regressions is all students in Control schools.

Yis = Bo + B1RandomTreats X Participant;s

+ BaRandomTreaty, x NonParticipant;s + €; (1.1)

Table 1.6 shows reduced-form treatment effects. While noting possible lack of statistical
power to detect small differences, first observe that the point estimates of the program’s ef-

fects are negative in all specifications. Further, the point-estimated effects of approximately

" That is, i’s in-link with respect to j is the same as j’s out-link with respect to i, etc.
8 Even if links are indeed symmetric, measurement error in the network measure would tend to attenuate
the estimated coefficient away from one.
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Table 1.5: Network Size and Compementarity

Panel A: Relationship between School Size and Link Count

Network Definition Binary Continuous
(1) (2)
School Size 0.576%** 0.392%%*
(0.030) (0.029)
Constant 20.988*** 8.448***
(2.913) (1.510)
R-squared 0.481 0.642

Panel B: Relationship between School Size and Link Value

Network Definition Binary Continuous
(1) (2)
School Size -0.002%*** -0.004***
(0.000) (0.001)
Constant 0.684 %+ 1.289%**
(0.021) (0.082)
R-squared 0.024 0.035

Panel C: Relationship between In- and Out-Link Values

Network Definition Binary Continuous
0 )
In-Link Value 0.129%** 0.224#4%
(0.016) (0.039)
Constant 0.471%** 0.729%**
(0.033) (0.042)
R-squared 0.017 0.050

Notes: N = 1,19 in 30 schools in Panel A, N = 78,238 in 30
schools in Panels B and C. Robust standard errors in paren-
theses, clustered by school. *** p<0.01, ** p<0.05, * p<0.1.
Dependent variable for Panel A is sum (or count) of links un-
der appropriate definition. Dependent variable for Panels B
and C is value of out-link under appropriate definition. Unit
of observation is individual student in Panel A, dyad (pair of
students) in Panels B and C.
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-0.2 standard deviations are substantively meaningful, at least among participants. Addi-
tionally, the effect on both outcomes is more negative for participants than non-participants,

although both are insignificant in all specifications.

Table 1.6: Reduced-From Treatment Effects

Education Gender Roles
(1) (2) (3) (4)
Random Treat x Participant -0.181 -0.194 -0.228  -0.200

(0.185)  (0.150)  (0.194) (0.183)
Random Treat x Non-Participant -0.093 -0.117 -0.039  -0.023
(0.134)  (0.101)  (0.157) (0.146)

Baseline Outcome 0.335%** 0.126%*
(0.042) (0.056)

Constant -0.028 0.034 0.076 0.053
(0.097)  (0.073)  (0.067) (0.071)

R-squared 0.004 0.124 0.006 0.024

Notes: Regressions restricted to Random Treatment and Control. N = 920
students in 20 schools in all specifications. Robust standard errors in paren-
theses, clustered by school. *** p<0.01, ** p<0.05, * p<0.1. Omitted category
is all girls in Control.

Next, I investigate treatment effect heterogeneity. Heterogeneity may occur along many
dimensions, such as those defined by the variables in Table 1.1. In order to reduce dimension-
ality, I use the Control schools to predict endline outcomes conditional on baseline outcomes
and individual-level covariates. This takes the form of regression results presented in Table
1.7. In a sense, this uses the Control group as a counterfactual to predict what would have
occurred in treatment schools in the absence of treatment, conditional on variables observed
at baseline. From these results, we see that being in a Scheduled Caste or Scheduled Tribe
predicts approximately 0.5 standard deviations lower Educational Aspirations, as shown in
Column (1). Using the predicted outcomes from this regression, I then group students into
predicted outcome terciles. Low, Middle, and High predicted terciles are denoted by I:, M,

and H, respectively.?

9 While the table presents the coefficient estimates used to predict ﬂ, M, and H in both Treatment arms,
I use a leave-one-out procedure suggested in Abadie, Chingos and West (2014) to predict outcome terciles
for students in Control. Abadie, Chingos and West (2014) show through simulation that such a procedure
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Table 1.7: Defining Predicted Outcome Terciles

Educational  Gender

Aspirations Roles
(1) (2)

Elected 0.039 -0.009
(0.113) (0.058)

Grade 7 0.181 0.087
(0.203) (0.196)

Grade 8 0.106 0.166
(0.189)  (0.164)

Scheduled Caste -0.509** -0.165
(0.168) (0.161)

Scheduled Tribe -0.517* -0.804

(0.229) (0.484)
Other Backwards Caste -0.359 -0.272%**
(0.208)  (0.059)

Baseline Outcome 0.302%** 0.027
(0.059) (0.057)
Constant 0.288* 0.222
(0.145) (0.175)
Observations 393 395
R-squared 0.164 0.052

Robust standard errors in parentheses, clustered by
school. *** p<0.01, ** p<0.05, * p<0.1. Estimation
restricted to students in Control schools.
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Using these predicted outcome terciles, I estimate heterogeneous treatment effects with

regressions of the form in Equation (1.2).

3
Yis = Z I (Box. + BixRandomTreats x Participant;s
k=1

+ fopRandomTreats x NonParticipant;s) + €;s (1.2)

In this specification, I; is an indicator for being in each predicted tercile.!® Results for
this specification appear in Table 1.8. T also estimate versions of Equation 1.2 that include
baseline outcomes interacted with L, M, and H . Note that there are strongly negative
effects for Gender Roles among Participants in Random Treatment, but only for those in the
middle predicted tercile. This presents suggestive evidence of heterogeneous treatment effects
for Gender Roles in Random Treatment schools, with heterogeneity defined by predicted
outcome tercile. Further, while noting lack of power to detect small differences, there are no

significant effects on non-participants for any predicted outcome tercile.

1.2.6.2 Effects on Networks

While I find suggestive evidence for negative treatment effects on outcomes, there is much
stronger evidence for treatment effects on networks. Since we have random within-school
variation in Random Treatment schools, I present reduced-form treatment effect estimates
broken down by whether each node involved in the link is chosen for participation. To do

this, I estimate Equation (1.3).

Lijs = o + v1 Participant;s + v Participant ;s + s Participant;s X Participant s + u;js
(1.3)

solves the overfitting bias that results from endogenous stratification.
10That iS7 Il = L7 IQ == M, 13 =H.
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Table 1.8: Treatment Effect Heterogeneity by Predicted Outcome Tercile

Education Gender Roles
A L @ 3) (4)
L -0.417%* 0.061 -0.021 -0.018
(0.191) (0.178) (0.152) (0.149)
M -0.064  -0.057  0.124* 0.107
(0.098) (0.093) (0.069) (0.074)
H 0.346%F*  (0.251%%* 0.108 0.038
(0.054) (0.056) (0.099) (0.116)
Participant in Random Treat x L -0.323 -0.422 -0.048 -0.029
(0.277) (0.250) (0.215) (0.217)
Participant in Random Treat x M -0.090 -0.112  -0.610%** -0.582%**
(0.127) (0.124) (0.168) (0.158)
Participant in Random Treat x H 0.139 0.120 0.135 0.114
(0.201) (0.205) (0.327) (0.291)
Non-Participant in Random Treat x L -0.061 -0.110 0.038 0.049
(0.198) (0.177) (0.183) (0.183)
Non-Participant in Random Treat x M -0.035 -0.074 0.004 0.006
(0.126) (0.119) (0.214) (0.202)
Non-Participant in Random Treat x H -0.090 -0.098 -0.176 -0.188
(0.146) (0.144) (0.238) (0.209)
Baseline Outcome Interactions NO YES NO YES
R-squared 0.120 0.147 0.024 0.042
Test1 P-value 0.354 0.209 0.009 0.011
Test2 P-value 0.922 0.978 0.587 0.492

Notes: Regressions restricted to Random Treatment and Control. N = 920 in 20 schools
in all specifications. Omitted category is all girls in Control. Robust standard errors in
parentheses, clustered by school. *** p<0.01, ** p<0.05, * p<0.1. L, M, and H predicted
from baseline variables (see Table 1.7). Baseline Outcome Interactions include interactions
of Baseline Outcome with I:, 1\71, and H. Testl is a test of equality of the interactions of ﬁ,
M, and H with Participant in Random Treat. Test2 is a test of equality of the interactions
of ﬁ, M, and H with Non-Participant in Random Treat.
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These results are presented in Table 1.9, where Columns (2) and (4) additionally control for
baseline link values.

Results for the binary link definition show significant effects for the interaction term ;.
That is, if both students are chosen to participate, the probability of a link is much larger
than if only one is chosen. Similar patterns hold for the continuous definition in Columns (3)
and (4), where we see much larger average link value if both are chosen. For the continuous
link definition, we see evidence for substitution of links: if only one is chosen, the average
link value decreases.

These results contain powerful implications for evaluation of counterfactual assignment
policies. Participation in the program has a substantial effect on the identity of others with
whom individuals interact. If we hypothesize that program effects diffuse through networks,
then failing to account for the effect of the program on the structure of the network itself may
lead to erroneous predictions. Accordingly, estimates that interpret reduced-form effects as
the direct effects of the program will miss this important channel of change. Further, any
attempt to predict outcomes under counterfactual assignments needs to account for the effect

of the program on networks.

1.2.7 Reduced-Form Stylized Facts

The descriptive analysis as well as reduced-form treatment effects provide a number of
stylized facts that a model must rationalize. At baseline, we see that outcomes vary sub-
stantially with observed characteristics, especially caste groupings. We further see evidence

for the following six stylized facts about networks.

1. Networks are not independent of observed characteristics but rather exhibit substantial

homophily.

2. Links are not symmetric but are complementary. That is, the existence/intensity of
individual #’s link to individual j is positively correlated with the existence/intensity

of individual j’s link to .
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Table 1.9: Reduced-Form Treatment Effects on Networks

Network Definition Binary Continuous
n e 6@
Participant (Self) -0.031 -0.032 -0.059  -0.102**
(0.027)  (0.021)  (0.039)  (0.040)
Participant (Alter) 0.012 0.004 0.078 0.021
(0.015)  (0.013)  (0.044)  (0.034)
Participant (Both) 0.117*%*%  0.096**  0.308%*  0.220**
(0.037)  (0.031)  (0.110)  (0.085)
Baseline Measure (Self) 0.251%** 0.240%**
(0.014) (0.014)
Baseline Measure (Alter) 0.125%4% 0.096***
(0.010) (0.019)
Constant 0.536%**%  (0.309%**  1.231%** (.920***
(0.015)  (0.013)  (0.032)  (0.040)
R-squared 0.003 0.086 0.007 0.092
P-value of Test 0.041 0.082 0.048 0.163

Notes: Sample restricted to girls in Random Treatment schools. N =
19,430 in 20 schools in all specifications. Robust standard errors in paren-
theses, clustered by school. *** p<0.01, ** p<0.05, * p<0.1. Dependent
variable is existence/intensity of link between ¢ (self) and j (alter), as in-
dicated by ¢ at endline. Test is a test of significance of sum of coefficients
for Participant (self), Participant (Alter), and Participant (Both), against
a null that the sum is zero. Missing network data imputed via algorithm

described in Appendix D.
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3. Average number of links (for binary measure) and sum of link values (for continuous

measure) is growing in school size.

4. Average link value is decreasing in school size, suggesting that links are not indepen-
dent. Rather, this suggests that there are tradeoffs to an individual in making link

decisions.
5. The program negatively affects outcomes, but these effects are insignificant.
6. The program substantially affects network links, even conditional on baseline networks.

The structural model that follows provides features that account for all of these patterns.

1.3 Peer Effects Model

Here, I describe the model of peer effects. This provides the key identification result for
the peer effects model, which posits network endogeneity as an omitted-variable problem
(see, e.g., Goldsmith-Pinkham and Imbens, 2013; Hsiech and Lee, 2016), while also allowing
for non-linear peer effects (Carrell, Sacerdote and West, 2013). Conditional on observing the
confounding omitted variables, the parameters of the peer effects model are identified even

in the presence of network endogeneity.

1.3.1 The Problem of Endogenous Networks

The peer effects model begins with a reduced-form version of the standard linear-in-means

model (see, e.g., Manski, 1993):

Yis = o + a1 P + o Py + (1.4)
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where 7;, is some outcome, such as test scores or, in the data here, Educational Aspira-

tions. !

As discussed in Carrell, Sacerdote and West (2013), with some assumptions the
canonical model can be rewritten as Equation (1.4).'? P, is an indicator for individual ¢
in school s being chosen to participate in the program, and P, is individual i’s peer group
mean participation. The variable u;s is unobserved. Therefore, from Equation (1.4), we see
that expected outcome y;, is a linear function of a student’s participation status and the
participation status of her peers, along with an additional additive unobserved component.!?

Equation (1.4) requires a definition of the peer group mean variable P;,. This in turn
requires the choice of how to weight peers. Suppose that in each school s we observe a

matrix Gy of directed links between individuals ¢ and j, where element (i, j) corresponds to

individual ¢’s link to 7. Now,

wzgs s
P 1.5
gzk#% G" )

where w;;5(Gs) is a function from the link matrix to define the weight for the link between
individuals ¢ and j. For example, when links are binary, then w;;;(Gs) € {0,1} and thus
P, is merely the fraction of an individual’s peers who are also chosen to participate. If link
values are continuous, then P;; may weight “closer” or “stronger” links more. For purposes
here, with directional links g;;s and g;;s defining the links between individuals ¢ and j, I take
as given the weighting function w;;s(Gs) = gijs + gjis- See Appendix C for a fuller discussion
of the issue of weighting.

[ augment this model by decomposing the error term u;, in a manner similar to Goldsmith-

Pinkham and Imbens (2013) and Hsieh and Lee (2016), who effectively include the unob-

" Blume et al. (2015) provide micro-foundations for this model as well as a generalization of various
identification results derived since Manski (1993).

12 Note that the bulk of the literature focuses on estimating an endogenous peer effect, which is not the
focus of the model here.

13 This model effectively assumes that peer influence is characterized by the peer group mean. Some recent
studies, in contrst, have presented evidence of the importance of the variance in peer ability (Booij, Leuven
and Oosterbeek, 2016; Lyle, 2009).
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served variable a;,. In contrast to those papers, however, I follow the suggestion by Bramoullé
(2013) to include a peer effect in the unobserved variable, which amounts to including a;s as
an additional regressor in the structural peer effects model.*

Let u;s = aza;s + aua;s + vis. Accordingly, Equation (1.4) becomes Equation (1.6).

Yist = Qg + a1 Pig + o Pig + aza;s + quiiss + vis (1.6)

With this formulation, network endogeneity biases peer effects estimates whenever P, is
correlated with either a;5 or a;s. That is, if one estimates Equation (1.4) without controlling
for a;,, estimates of ay will be biased due to correlation between P and ;s (which includes
(ais, Gis) ).

As an example for when cov(Pis, a;s) # 0, suppose that a;s is unobserved academic abil-
ity, and this unobserved ability is positively associated with outcome y;5. Endogeneity arises
when a;s also plays a part in the network formation process, such as if those with higher
ability also are more likely to link with participants. Therefore, those with higher a;, will
tend to have more of their links be with participants, bringing about positive correlation
between P;, and a;."® Note that this endogeneity may arise even when P is exogenous,
such as the case when participation is assigned randomly. That is, even with random assign-
ment, estimation that does not account for unobserved a;; may be biased in the presence of
endogenous network formation.

In addition to accounting for network endogeneity, I further allow for the possibility of
non-linear peer effects. Asin Carrell, Sacerdote and West (2013), these non-linear peer effects
account for the fact that peer means Py and a;; may affect different types of individuals
differently. This is accounted for by the variables I;.(2;s),k = 1,..., K, which define a set

of K indicators for being in different categories of the population. The partition could

wijs(Gs)

143;, is defined analogously to Pjs: Gis = Zj i S wina (G Yis+ Other peer-group mean variables are
k#i Wiks s

defined similarly.
151t is not sufficient that those with higher ability link more (or less) with all students. Endogeneity arises
because ability leads to differential valuation of network links based on ability.
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be defined by grade level, gender, baseline outcome, or any other function of exogenous

characteristics z;;. With this additional step, Equation (1.6) becomes Equation (1.7).

K

Yis = Z Lisi (aor + 1 Pis + o Pis + quaiis + Quidiis) + i (1.7)
k=1

Non-linear peer effects are captured by the coefficients as, and ay, varying with different
values of k.16

Finally, in order to increase power, I also estimate a version of Equation (1.7) that
includes baseline outcomes. This specification is defined by Equation (1.8), where outcomes

are now indexed by time ¢, with ¢t = 1 corresponding to endline and ¢ = 0 to baseline.

K

Yis1 = Z Lisk (cor, + a1 Pis + ok Prs1 + Qs + Quplisn + Qsiliso + Qoriso) + Vst (1.8)
k=1

1.3.2 Identification Results for the Peer Effects Model

With the outcome equation formulated as in Equation (1.7), identification is straightfor-
ward. Define the parameter vector o = (apq, ..., 1, -, QoK --o, Aqxc ). Let Ng be the number
of students in school s. For each s, define Py = (P, ..., Py.s)" and Ag = (a5, ...,an,s)"
Conditional on independence of observations across schools as well as exogeneity of partici-
pation (Py), the unobserved confounders (Ag), and the network (Gg), « is identified. This

result is formalized in Proposition 1.1.

Proposition 1.1. Suppose that

1. (P, Py, Gis, is) 1L (Pjy, Py, aje, ) V s # t.

18

2. a € O, C R® where ®, is compact.

3. (P, Pis,ais,flis) € X C R*, where X is compact.

16 This model allows for non-linear direct effects (captured by oy and asg) as well as non-linear peer effects
(captured by agr and agg).
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4. E[Uis|P87 GS7AS] =0 V.]

5. E[D;sD.,] is of rank 5K, where D;s = [I;51(1, P,

187

D =\ /
Pis;aisaais) a“'aIisK(LP‘

187

pisa Ais, ais)/] S

ROK.
Then the parameter vector a of Equation (1.7) is identified as s — oo.

Proof. This is a standard OLS result other than the fact that it relies upon consistent

estimates of a;,. O

This model generalizes both the standard linear-in-means model as well as well as the
more general model used by Carrell, Sacerdote and West (2013). The authors of that paper
essentially assumed that asg, = ay, = 0 for all £. The standard linear-in-means model
typically further assumes that K = 1 and thus I;5; = 1V 4, s, implying no non-linear effects.
Accordingly, the identification result in Equation (1.1) states weaker conditions than those
previously used in the literature on peer effects.

Finally, I note that identification and thus consistent estimation in the presence of net-
work endogeneity depends crucially on an initial estimate of unobserved a;s. This estimate
is obtained from estimation of the network-formation process, which is described in the next
section. Conditional on a;s and given the assumptions of Proposition 1.1, we can recover the

true parameters of the peer effects model.!”

1.3.3 Relation to Other Models

The peer effects model here combines two approaches that have received substantial
attention in the statistics and econometrics literature. First, I specify arbitrary latent char-
acteristics a that must be accounted for. Second, conditional on these latent characteristics,

the model posits a parametric control function approach. These twin approaches allow for

17 Average school size in the data is 44 girls, and thus we have 86 data points with which to estimate a;
for each i, corresponding to i’s 43 decisions to link to others and the 43 others’ decisions to link to 4. If,
despite this, the prior estimation returns noisy but unbiased estimates of a;s, this should induce attenuation
in estimates of a.
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identification of the parameters of the peer effects model in the presence of certain types of
network endogeneity.

First, I posit a as an unobserved, “latent” characteristic, making this model similar to the
“latent space” models described in Jackson (2014). Such models posit that unobserved “la-
tent” characteristics play a part in the process being modeled. As Jackson (2014) discusses,
a key feature of such models is that the latent characteristic may be any unobserved—and
possibly difficult-to-measure—characteristic, such as “ability” or “ambition.”!® Goldsmith-
Pinkham and Imbens (2013) models the latent characteristic as a single binary variable,
while Hsieh and Lee (2016) allow for continuous multi-dimensional unobservables.

Further, conditional on these latent characteristics a, identification of the model’s param-
eters is achieved via a parametric control function approach. Rearrangement of Equation

(1.7) shows this.

K K
Yis1 = Z Lisk (o + 1 Pis + oy Pist) + Z Tisk (O35 + Qurlist) + Vs
k=1 k=1
K
Vit = 3 _ Lisk (a0 + a1ePis + 021 Pit) + f(ais, Gis, 2is) + Visa (1.9)
k=1
K
Yist = Z Lisy, (OéOk + o Pis + Oézkpm) + Uist (1.10)
k=1

The control function is f(a;s, @5, Zis) in Equation (1.9). Endogeneity arises because P;s and
P,, may depend on a;; and @;;. This implies correlation between these regressors and w1,
leading to biased estimates of aj; and awy if estimating Equation (1.10). On the other hand,
estimating the control function f in Equation (1.9) allows for identification in the presence
of this endogeneity. That is, the parameters of the model are identified under strictly weaker
exogeneity assumptions than are typically assumed in the literature. For example, Carrell,
Sacerdote and West (2013) effectively assume exogeneity of w;s in Equation (1.10), while

the method here only requires the exogeneity of v;s in Equation (1.9).

18 “Latent space” models have also been heavily used in industrial organization, for example in Berry,
Levinsohn and Pakes (1995), in their pathbreaking methodology for demand estimation.
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Identification in the presence of endogeneity via control functions has found wide appli-
cation in applied econometrics, and the model here follows in this tradition. As pointed out
by Bramoullé (2013), the model in Goldsmith-Pinkham and Imbens (2013) is similar in spirit
to the canonical Heckman selection model (Heckman, 1979), which itself uses a parametric
control function approach to identification. Employment of control functions to account for
unobserved heterogeneity has also found widespread application in industrial organization,
particularly in the estimation of production functions (Ackerberg, Caves and Frazer, 2015;

Levinsohn and Petrin, 2003; Olley and Pakes, 1996).

1.4 A Structural Model of Network Formation

The prior section showed that, conditional on the observed network and unobserved
variables a;,, the parameters of the peer-effects model are identified. This section demon-
strates that these unobeserved variables a;, are identified through observation of the network-
formation process. Therefore, after they are recovered through the network-formation esti-
mation procedure, these variables can be plugged in to provide for consistent estimation of

the peer-effects parameters.

1.4.1 Simple Model

To fix ideas and intuition, I develop a simple version of the network-formation model.
This simple model sets aside the unobserved variables a;s that will be added into the model
later. Through this, we develop intuition behind equilibrium results, the instrumentation

strategy, and the conditions for identification.

1.4.1.1 Players, Strategy Space, and Utility

For a given school s, there are N, players in the network formation game. Ny is assumed
to be determined exogenously. In the context here, N, is the number of girls in a given

school s in grades 6-8.
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Each player ¢ in school s chooses whether to be linked to each of the other Ny — 1 players.
More formally, each player 7 in school s chooses a vector of actions g;s € Rfs_l. Importantly,
in a deviation from the bulk of the theoretical network-formation literature, link intensity is
continuous: g;;s € [0,00).! Further, individuals make these choices subject to a total effort
constraint as spelled out in Assumption 1.1. Each individual’s objective is to maximize

utility subject to this constraint.

Assumption 1.1. For each ¢ = 1,...Ng, Z#i CijsGijs < M;s, where c;;s 1s the cost to in-
dividual @ of forming a link with j and M;s is individual i’s endowment. Further, M;, €

M, M] CRiy and c;js € [c,¢] C Ry

The budget constraint serves two purposes in the model.?? First, it imposes a structured
way in which individuals trade off the costs and benefits of different linking strategies. If
individual ’s constraint is binding and she chooses to increase g;;5 (her link to j), then
she must decrease some g;xs (her link to another student k). Second, M;s may vary across
students and may depend on observed or unobserved characteristics. Accordingly, M, allows
for out-degree heterogeneity: individuals with higher M;, have a higher effort endowment
and thus will tend to have more out-links in equilibrium, conditional on other variables in
the model. Finally, note that the lower bound on cost implicitly imposes the restriction that

network size is bounded above for each individual: even as the size of a person’s school grows

[

infinitely, the sum of links can only grow so much: > i Gijs < Mis  Compact support of
M;, implies further that network size is bounded above across individuals.

Utility for individual ¢ in school s is a function of the realized network Gg as well as ex-
ogenous characteristics of all students in school s, X, where Xg = (X{,,... X} ,)". Following
prior models (Badev, 2013; Mele, 2010, e.g.,), I assume that the utility of links is additive.

Similar to these models, I assume that individuals derive different utilities depending upon

19 Exceptions are found in Baumann (2016), Bloch and Dutta (2009), and Rogers (2006). Jackson (2008)
briefly mentions models of this type in a section titled “Weighted Network Formation.”

20 Budget constraints are rare in models of network formation, but have found application in both contin-
uous (Baumann, 2016; Bloch and Dutta, 2009) and discrete (Boucher, 2015) models of network formation.
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how “mutual” their links are. The utility to individual 7 of a network Gg is given in Equation

(1.11).

15 G57 X Z Uijs

J#i

= g5 ghie! i) (1.11)
JFi

The utility to individual ¢ from his link to j depends upon both his linking strategy gi;s
and on j’s linking strategy via g;;s. The Cobb-Douglas function imposes complementarity in
linking strategies. Further, the functional form implies that all links are marginally valuable,
except when g;;s = 0. Hence, in the absence of a budget constraint, all individuals would

choose to be maximally linked to all others.
Assumption 1.2. The following restrictions hold:
1. X;s and f() are bounded in R* and R, respectively.

22.0<p<(l—a)<1

Assumption 1.2 imposes additional structure on the utility function, and these assump-
tions have important implications for equilibrium. The bulk of the literature on network
formation with continuous link values assumes that the utility function is conver in own
strategy, which would be implied here if « > 1 (see, e.g., Bloch and Dutta, 2009). As
pointed out by Boucher (2015), this leads to equlibria in which actors form few strong links,
and the equilibrium set is qualitatively similar to the case when strategy sets are discrete.
Further, the assumption that § < (1 — a) contrasts with Baumann (2016), who assumes
f = (1 — ), and this different assumption leads to different sets of equilibrium strategy
profiles.

Before discussing equilibrium, I note that the model is limited in two important ways.

First, utility from given links depends only on the link between those two individuals as well
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as their characteristics. Importantly, the utility to ¢ of linking to 57 does not depend upon
j’s links, other than his link to ¢. Thus, this model does not allow for utility from linking
to popular individuals. Conversely, it does not allow for congestion externalities, whereby a
link to a given individual is less valuable when that individual has more links. Through the
budget constraint, however, the model does allow for tradeoffs between links.

Second, and in contrast to the structure discussed in Bramoullé (2013) and Blume et al.
(2015), individuals do not consider final outcomes y;s in making their linking decisions.
This assumption is made more plausible in educational contexts by the findings in Carrell,
Sacerdote and West (2013), who show that Air Force members tend to choose peers by
homophily. In such a context, at least for parts of the population, a homophilic linking

strategy would tend to lead to lower academic outcomes.

1.4.1.2 Equilibrium

Here, 1 provide results showing equilibrium existence and uniqueness. In contrast to
models with discrete action spaces, the continuity of the model allows for the use of Nash
equilibrium rather than pairwise stability. Further, while acknowledging the existence of
many corner equilibria, I show that there exists a single equilibrium in which all individuals
are linked.

As spelled out above, each individual chooses a vector of links ¢;s to maximize his utility
subject to others’ linking decisions. Proposition 1.2 provides the paper’s primary existence
result. Existence is guaranteed by the concavity of the game, a result that dates back at
least to Rosen (1965). However, the Nash Equilibrium is not unique: it is possible to have an
equilibrium with any combination of g;;s = gjis = 0. For example, there exists an equilibrium
in which each person is connected only to one other person, on whom he exhausts his entire
endowment of effort. Further, a completely empty network, in which g;;s = g;is = 0 for all
1,7 # 1 is an equilibrium.

Accordingly, to refine the set of equilibria, I define a strictly positive equilibrium as a Nash
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equilibrium in which each person’s strategy profile exhibits strictly positive links. That is,
for a strategy profile to be a strictly positive equilibrium, it must be a Nash equilibrium and
Gijs > 0 for every i, j # 1.

Proposition 1.2. There exists a Nash equilibrium for the network-formation game. Further,

there exists a strictly positive equilibrium.

Proof. See Appendix A. n

A necessary condition for a strictly positive equilibrium is that the following first-order

conditions hold:

0Ujs oy o
Gijs
OU;s ‘
o M;s — E CijsGijs = 0 Vi (1.13)
* i

Importantly, there is only one interior equilibrium, as stated in Proposition 1.3. Intuitively,
uniqueness derives from the concavity of the network-formation game. The result states that
there is a unique solution to the First-Order Conditions in Equations (1.12) and (1.13) that

characterize the strictly positive equilibrium.
Proposition 1.3. The strictly positive equilibrium of the game is unique.

Proof. See Appendix A. m

This uniqueness result is quite important for estimation and simulation. First, identi-
fication and estimation proceed by assuming we observe the network in this unique state.
Second, conditional on the parameters of the model, we can simulate counterfactuals by

finding any solution to these conditions, with the knowledge that no others exist.

1.4.1.3 Relation to Potential Games

As further justification for focusing attention on the strictly positive equilibrium, here I

relate the game as developed to the theory of potential games. Several prior papers dealing
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with identification and estimation of network formation games have leveraged results from
the potential games literature (Badev, 2013; Mele, 2010). I show that a special case of the
game developed here is a potential game. I further demonstrate that, in this special case, the
potential function allows for refinement of the set of equilibrium strategy profiles to include
only the strictly positive equilibrium.

In general, the network formation game is not a potential game. To see this fact, note

that
0%U; 1 8-1
18 — o— 2 f(Xis,st) ].].4
agijsagjis Ozﬁgws ot © ( )
(‘)QUj 1 _B-1
s _ a-1_§ f(Xj6,Xis) 1.15
P — o € ’
agjzsag”s ﬁg]zs gz]s ( )

In a simpler setting, Theorem 4.5 in Monderer and Shapley (1996) states that a sufficient
and necessary condition for a continuous game to be a potential game is that the partial
derivatives in Equations (1.14) and (1.15) are equal, which in general does not hold here.!
However, there exists a special case in which this symmetry condition does hold. In this
special case, the network formation game is a potential game with the potential function

defined in Proposition 1.4.
Proposition 1.4. If § = a and f(Xis, Xjs) = f(Xjs, Xis), then the network formation game

s an exact potential game with potential function defined as

N,
1 - e’ . .
PG X) = 3 30 S g e

i=1 j#i

Proof. See Appendix A. n

In this special case of the game, equilibrium results follow directly from known results of

21T note that they proved this fact when strategy sets are intervals of the real line. In my setting, strategy
sets are compact subsets of RN=~1. Accordingly, I do not rely on their theorem to prove Proposition 1.4.
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potential games. Importantly, Monderer and Shapley (1996) note that the potential function
can be used for equilibrium refinement, in a way that is useful for the task at hand. They

show that the set of potential maximizers is a subset of the set of Nash equilibria.

Proposition 1.5. If § = «a and f(Xis, Xjs) = f(Xjs, Xis), then the unique strictly positive

equilibrium is the unique maximizer of the potential function P(Gg, Xs).
Proof. See Appendix A. O

Corollary 1.1. The unique strictly positive equilibrium is efficient in that it mazimizes total

utility.

Proof. From the definition of the potential function, P(Gs, Xy) Z Uis(Gs, Xs). There-
fore, the set of values that maximizes the potential function also maxumzes the sum of

utilities, and the result follows from Proposition 1.5. m

Proposition 1.5 provides an important result for the game at hand. While the set of Nash
equilibria is quite large, the set of strategy profiles that maximize the potential function is a
singleton, containing only the strictly positive equilibrium strategy profile. Further, Corol-
lary 1.1 demonstrates that, in this special case, the strictly positive equilibrium maximizes
the sum of individuals’ utility. Note that this is a quite strong efficiency result, whereby
the strictly positive equilibrium maximizes total utility among all sets of feasible strategies,
which is a much larger set than the set of Nash equilibria. These results for potential games
provide additional support for the focus on the strictly positive equilibrium in the empirical

analysis that follows.

1.4.2 Identification Results for the Simple Model

The prior subsection showed that there exists a unique strictly positive Nash equilibrium.
Identification proceeds by assuming that we observe S networks in this equilibrium state.

In this subsection, I provide conditions under which parameters of the network formation
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game are identified. In particular, Assumption 3 states what is observed. I note that this

assumption allows for observations to be arbitrarily dependent within schools.

Assumption 1.3. For each s =1,....5,i=1,..., N,, we observe a vector of characteristics
and links (X!, g.,) € X x G, where X C R™ and G C RY~1 are compact, m = dim(X,,),

and Nj is the number of agents in school s. Further, (Xj,, g;,) 1L (Xj;,gj;) Vs #t.

1.4.2.1 Identification Arguments for Networks

Before proceeding to identification results, I take a slight detour to discuss identification in
the context of networks. Dependence among observed network links complicates asymptotics.
In the model developed here, dependence has two sources. First, since utility depends upon
the mutual-ness of links, individual ¢’s link choice to j depends on j’s choice to i. So, gijs
depends on gj;s, where j # 7. Second, the budget constraint imposes dependence among all
of an individual’s links. That is, ¢;;s depends on g;xs, where j, k # 7. Accordingly, we require
identification arguments that account for these cross-sectional dependencies.

To account for these dependencies, identification results in network-formation models
have taken two different strategies, both of which I employ here. Leung (2015) refers to
these two strategies as “many market” and “large market” asymptotics. First, many market
asymptotics depend upon observation of a number of different networks. That is, in our
context, identification is achieved as S, the number of schools, approaches infinity. Such
arguments can be employed to identify parameters that are common across networks.

In contrast, identification of parameters that are only observed within a single market
requires observation of arbitrarily large networks. As discussed in Graham (2014a), for a
network with N, agents, the econometrician observes N, — 1 linking decisions per agent.
Importantly in our context, we need to identify individual-specific parameters a;s that are
only observed within a single school. Identification of these parameters leverages such large
market asymptotics, where parameters are identified as the size of the network s—which

contains individual 7—grows. Such asymptotics are non-standard, since the dimension of
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the parameter vector is also increasing.

1.4.2.2 Instrumentation Strategy and Identification

The network formation model as spelled out above has two sources of endogeneity, for
which I employ two distinct strategies. First, I difference out endogenous variables that de-
pend only on i. Second, to control for endogeneity of individual j’s network choice, I employ
a budget set instrument, whereby exogenous variation is obtained via variation in the utility
of potential links. I then show that, conditional on appropriate exogeneity assumptions and
rank conditions, crucial parameters of the network-formation model are identified.

Before proceeding to results, I rearrange the first-order conditions and redefine some

variables. First, Equation (1.12) becomes Equation (1.16) and then Equation (1.17).2?

log a B f(Xis, Xjs)  log s logcyjs
o8 gijs = 1 Ty 108 s (1—04] = —a 1-a (1.16)
Gijs = &+ BGjis + [(Xiss Xjs) = Nis — Eijs (1.17)

Importantly, the parameters a and [ are subsumed into a composite parameter %, identi-

fied hereafter as 3. Additionally, assume the following functional form:

[(Xis, Xjs) = mXis + 01.X5s X5 + 73X (1.18)

In the data as described above, all X, are binary variables. Accordingly, homophily corre-
sponds to the coefficient d; being positive (and possibly 7, and 73 being negative). Substi-

tution and rearrangement of terms yields the following:

Gijs = BGjis + (& + 11 Xis — Nis) + 01X X5 + 13X s — Cijs (1.19)
2To get from Equation (1.16) to Equation (1.17), define and substitute g;js = loggijs, & = 110%,

£ _ f(Xis,Xjs) Y log Ais ~ _ logeyys
J(Xis, Xjs) = =200, Njs = 2522, and Gijs = 20,
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The econometric issue is to identify and estimate the parameters of Equation (1.19).

Identification is complicated due to two sources of endogeneity in Equation (1.19). First,
Ais, which identifies the (log) shadow value of additional effort endowment, necessarily de-
pends upon ¢;;s, the cost of linking. Second, whenever 3 > 0, gjis depends upon g;;s, which
depends on ¢;js. I solve these issues by using two different strategies.

The first strategy leverages the “panel” nature of the data by applying a standard
differencing-out method. However, instead of the standard two dimensions of individuals
1 and time t, here we have two dimensions “out” ¢ and “in” j. For all variables in Equa-
tion (1.19), perform a “within 4" transformation. That is, define gj;, = ﬁ D i Giks and

Giis = Gijs — Jijs- Other variables are defined similarly, leading to Equation (1.20).

This transformation eliminates all terms that vary only with 4, including the necessarily
endogenous term S\is.

Second, I employ novel instruments for the necessarily endogenous g;iz.s terms. The in-
strument relies upon tradeoffs between different linking strategies, which in turn relies upon
the non-dyadic structure of the network formation model. Intuitively, due to the budget
constraint, individual j’s linking decision to i depends upon his alternative options for links.
That is, it depends upon the utility he derives from linking to other individuals k, where
k # i, which in turn depends upon k’s characteristics. Crucially, the instrument works
through the budget constraint and thus the shadow value of effort.

Simple algebra shows how these instruments are relevant. First, take the mirror image

of Equation (1.19), replacing ¢ with j and j with 4, leading to Equation (1.21).

Jjis = Bgijs + (@ + 1Xjs — Njs) + 01X Xis + 713 Xis — Cis (1.21)
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Next, perform the “within ¢” transformation, leading to Equation (1.22).
i = Bilye + 1Ky~ Ny 4 0K — 122

The terms on the right-hand side of Equation (1.22) suggest instrument candidates. How-
ever, gi;, is the dependent variable in Equation (1.20) and thus necessarily depends on ¢s.
Further, X;s and XisX;S are on the right-hand side of that same equation and thus not
excludable. Accordingly, instruments must come through the term /\;s

Relevant instruments are revealed by decomposing the term A;s This shows that

. 1 - 1 - 1 -
A= Ny — Nbs = Ais — Ais + —— i 1.2
js = 7 Ns—1;’“ J Ns—lzk:k+Ns—1 (1.23)

The middle term is constant for all = and j within the school s. However,

. 1 . L
Ajs = N 9 Z <_gjk + Gk + Xis + Xjs Xps01 — ij) (1.24)
s ki, k4]
B 1 _
Ao = (— Gin 4 Xeert + XiaXpady — ) 1.25
NS_QJQ;# Gik + girS + Xpsm1 + ksO01 — Ckj ( )

Equations (1.24) and (1.25) motivate the use of the following instruments:

1

L 55 2ohpihts ks
1

2. N3 Dokoti ety KisKhs
1

3. N3 Doktipty NisXks

These instruments are the mean characteristics of individuals other than ¢ and j within
school s, as well as those characteristics interacted with i’s and j’s characteristics.

To provide intuition for these instruments, I employ a brief example. Suppose there are
three individuals in a given school: ¢, j, and k. Students come in two types: Wolverines and

Spartans, and variable X is an indicator for being a Wolverine. Wolverine students exhibit
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strong homophily (6; > 0). Suppose i and j are both type Wolverines. Variation in k’s type
clearly affects ¢ and j’s link decisions to each other: if k is also a Wolverine, then both ¢ and
7 will link more to k£ than if k is a Spartan. Due to the budget constraint, linking more to
k necessitates that they link less to each other. Accordingly, variation in characteristics of
other students serves as a relevant instrument in determining ¢’s and j’s linking strategies
toward each other.

Now that relevance has been established, Assumption 1.4 provides the primary exclud-
ability assumption. This assumes mean independence of unobserved costs from all covariates,
both those of the two individuals involved with the specific link and others. Independence
of unobserved costs from all covariates is necessary for the instruments discussed above to

be valid.
Assumption 1.4. E[log ¢;js| Xys] =0V k.
Assumption 1.5. (5,0),74) € ©, a compact subset of R*™', where m = dim(X,,).

Proposition 1.6. Define z;;; = [XiSX’:S,X;S, ﬁ Dkt i X ksy XisXisy Xjs Xis]| and

J

bijs = [0 Xis X'

jS,X;S]. Given Assumptions 1.8, 1.4, and 1.5, (5,5'1,7:’],) is identified if

E[z!.bijs] is of rank 2m + 1.

YE]
Proof. See Appendix A. n

The simple model’s main identification result is stated in Proposition 1.6. I note that, due
to the “within ¢” transformation, parameters for terms that vary only with ¢ are not identified.
Importantly, \;s, @, and ~; are not identified, but this amounts to non-identification of the
scale of each individual’s utility. In contrast, parameters that identify the utility tradeoffs
that ¢ makes in her linking decisions are identified. The parameters B, 61, and ~3 identify
these relative tradeoffs.

There are at least two situations in which identification fails the hypotheses of Proposition
1.6. First, if §; and 73 are both zero, then the constructed instruments are irrelevant,

since then the X characteristics are irrelevant to the link-formation process. Second, the
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instruments may be collinear with the exogenous regressors. Importantly, if X is an indicator
for treatment that is assigned by school in a randomized trial the instruments will be collinear;
that is, for a given school s, X;; = X, = Xis V 4,7,k In both situations, the rank
condition stated in Proposition 1.6 fails. Identification, therefore, requires that exogenous
characteristics vary within schools and that these exogenous characteristics are relevant for

network formation.

1.4.3 Adding in Scalar Unobservables

Recall that the purpose of the network formation model is to recover the unobserved
variables a;s for each ¢ in school s, in order to control for network endogeneity in the peer
effects model. Having derived results for the simple model, I now add these into the model.
These must be estimated in order to control for the endogeneity of P,; and P, in the peer-

effects outcome equation from the prior section.

1.4.3.1 Equilibrium and Functional Form

Scalar unobservables a;; and a5 are included in the model as part of the function f.%3
Functionally, they enter utility exactly the same way as X, and Xj;. That is, these scalar
unobservables change the relative utilities of the various linking strategies. [ make the

following assumption on the functional form of f:

f(Xisy, Xjs, @is, ajs) = 11 Xis + Y205 + 01XisXjs + 02 X555 + 030:5X 5

+ 04aisajs + 13X s + Va0 (1.26)

In all specifications, the vector of observed variables X, contains a participation indicator

P;,. In order for omitted a;s to bias estimates of the peer effects model, it must change the

23 As such, the utility function shares some features with that employed by Graham (2014a). However, in
contrast to that model, I allow a;; and a;, to interact with each other and also with observable characteristics
Xis and st.
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relative utilities derived from links conditional on X (and thus P). Note the centrality of
the interactions between a and X here. For example, if d3 is positive, then individuals with
higher a;s derive more utility from linking with participant individuals (for whom P;, = 1)

than those without such characteristic (for whom P;; = 0). This leads them to have higher

P, in the outcome equation, which is clearly correlated positively with a;s.

With the additional assumption that a;s is bounded, the equilibrium results for the simple
case extend to the case with scalar unobservables. That is, the results in Propositions 1.2
through 1.5 hold. Equilibria exist, the strictly positive equilibrium is unique, and the results

for potential games follow as well.

1.4.3.2 Identification Results with Scalar Unobservables

The simple model effectively assumes a;s = 0 for every individual. This rules out the pri-
mary source of endogenous network formation that leads to bias in the peer effects estimates.

Adding these back into the model, Equation (1.20) becomes Equation (1.27).

Ghis = Bl + 01 X0 X1y + 02 Xistlhy + 03055 X, + Ogaistlhy + 13 X0, + yaaisal, — ¢y (1.27)
Again, the mirror image of Equation (1.27) provides instruments for endogenous g;iis.

Qﬁis = Bgfjs + (51stng + 52Xj8dgs + 53ajsX¢js + 54@3'5@{3 + 73X;s + ’Y4ajsags - C’;zs (1.28)

Assumption 1.6 provides exogeneity assumptions for the full model.
Assumption 1.6. The following exogeneity conditions hold:

1. Ellog ¢;js| Xks, ars| =0V k

2. Ela;s|Xys] =0V k

3. E[ais|ajs] =0 \V/j 7é 7
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The first part of the assumption is similar to Assumption 1.4 and implies that unobserved
costs are (mean) independent of individual-level observed and unobserved variables. The
second part serves to separate the composite term (73Xs + 74a;s),%* while the third part of

Assumption 1.6 rules out correlation among these unobserved variables.

Assumption 1.7. (5,4, ), 04, 04,74, 74) € ©, a compact set in R™3 where m = dim(X).

Further, a;s € 2V j, s, where § is a compact set in R.

Identification results are analogous to those of the simpler model. Proposition 1.7 states the

first result.

Proposition 1.7. Define z;;; = [Xile:wX;s? ﬁ Zk#j [ Xoss Xis Xps, Xjs Xps|] and

J

bijs = [Ghig) Xis X

Js?

X;S] Given Assumptions 1.3, 1.6, and 1.7, the parameters 3, Y1, and &

are identified if E[z};.bijs] is of rank 1 > 2m + 1, where m = dim(X;s).
Proof. See Appendix A. n

Additional assumptions are necessary to identify the remaining network-formation pa-
rameters, as stated in Assumption 1.8. Proposition 1.8 provides conditions under which the
parameters are identified, but only to scale. These parameters are only identified to scale
due to the fact that we can re-scale them by correspondingly re-scaling the latent variable

a. For a given normalization, such as 02 = 1, these parameters are identified absolutely.
Assumption 1.8. The following conditional variance restrictions hold:

1. Ela},|Xus] = 02 V k

2 Elalag] = 02V j # 1

Proposition 1.8. Given Assumptions 1.6 and 1.8, the parameters s, 02, 03, and 64 are

wdentified to scale if the following rank conditions hold:

24 This assumption imposes independence between observed and unobserved variables, an assumption also
made by Hsieh and Lee (2016).
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1. rank(E[z,.b;;s]) = 2m + 1, where b;;5 = [g;iis,Xiin

YL js?

X

2. rank(E[2],,b%.]) = m + 1, where b2, = [1, X}

A EMEAE ijs

3. rank(E[z]. . Xis]) =m

158 M8

4. rank(E[z}.]) =1

ijs

Proof. See Appendix A. n

Recall that the peer effects model relies upon controlling for latent variables a;,, and thus
we need to recover these variables in order to identify its parameters. While results to this
point have relied upon “many market” asymptotics, identification of a;s relies upon “large

market” asymptotics. For an individual in a school of size N, we observe Ny — 1 links.

Proposition 1.9. For a given s, 4+ 0o IE[X,S] #0 = ajs is identified to scale for all j as
i#j

N — o0.
Proof. See Appendix A. n

Proposition 1.9 provides the main identification result for scalar unobservables a;;. The
condition that ~4 + 52iIEj[XZ-S] # 0 is a relevance condition requiring that unobserved a;s
actually play a part in the network-formation process. If X, includes all variables involved
in determining network links, then this condition will fail, but this seems quite unlikely. Note
that, as in Proposition 1.8, each a;, is only identified to scale, a scale that can be fixed with
a convenient normalization.

These three propositions provide the primary identification results for the model with
scalar unobservables. Observation of many networks provides identification of parameters
common to all networks, as given in Propositions 1.7 and 1.8. Observation of a large number
of linkages within each network provides identification of the vector of individual-specific
parameters a;s for each 7 in each s, as given in Proposition 1.9. Note again that, similar to

the simple case in the prior subsection, parameters that involve variables that vary only with
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7 are not identified. As in the simpler case, this non-identification result essentially amounts
to the inability to make welfare claims about different network configurations, which are

thus beyond the scope of this paper.

1.5 Structural Estimation Results

Armed with the identification results from the previous two sections, I now proceed
to structural estimation. For the purposes of estimation, I restrict attention to Random
Treatment and Control schools, setting aside Elected Treatment for use in the validation
exercise in Section 1.6.

Structural estimation consists of two steps. First, I estimate the parameters of the net-
work formation game. Next, conditional on these parameters—particularly the estimated
structural unobservables a;,—1I estimate the parameters of the outcome equation which ac-
counts for peer effects. These estimates indicate that unobserved a;; plays a large role in the
determination of both network structure and outcomes conditional on network structure.
Further, I provide evidence that, at least in this case, failure to account for a;s leads to

crucially biased estimates of peer effects parameters.

1.5.1 Network Formation Estimation

This section estimates the network formation model using the identification results in the
prior section. First, I discuss how I handle missing network data and zeros in the network
data. Then, I estimate the parameters of the network formation model. As expected, I see
that the process exhibits substantial homophily, and I further show that the latent variables

a;s play an important part in network formation.

1.5.1.1 Missing Network Data

As described in Section 1.2 above, network data was collected via school visits after the

conclusion of the Bal Sabha program. Accordingly, we have missing network data for two
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reasons. First, some students were not present in school on the date of the survey. Second,
students may not have properly answered the survey questions. Of the estimation sample
in the two treatment arms used for structural estimation (Control and Random Treatment),
link values for approximately 40% of possible link pairs is missing.

Missing network data has the potential to confound estimation for a number of reasons.
If data is missing non-randomly, listwise deletion leads to biased estimates of even network-
level descriptive statistics (see, e.g., Chandrasekhar and Lewis, 2011). In the specific model
outlined here, missing network data means that we do not observe an individual’s entire
vector of network choices. If certain types of students, defined by observed or unobserved
characteristics, are more likely to be absent on the day of the network survey, then we need
a way of accounting for these students.

Accordingly, a method of reconstructing the missing network data is needed. Chan-
drasekhar and Jackson (2014), using a model arising from the random graphs literature,
provide a method that reconstructs networks based upon the probability of observing given
dyadic and triadic relationships in the data. Williams (2016) recently extended this method
to allow for missingness to vary by observed characteristics. He shows that the method does
a reasonable job in reconstructing missing data in AddHealth with 75% missing data, as in
his application.?” He then applies the method to simulate missing network data at the Air
Force Academy. A key limitation of this method, however, is that it does not model tradeoffs
between linking strategies.

Fortunately, in my context, the network formation model can be pressed into service
to fill in missing data. In his application at the Air Force Academy, Williams (2016) does
not model network formation; rather, he models only outcomes conditional on the observed
network. In contrast, I have posited a specific model of network formation that can be used
to reconstruct missing data.

Accordingly, I employ an iterative EM algorithm that uses the network model itself to

25 While the network reconstruction technique I employ is different, I note that my network data has a
much higher response rate (60% vs. 25%) than the data employed by Williams (2016).
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simulate missing data. Details are in Appendix D, but the basic structure is described as
follows. First, fill in the missing data arbitrarily. Second, estimate the network formation
model with this dataset. Third, using these estimated parameters and implied distributions
of unobserved data, simulate values for missing network data. Repeat the second and third
steps for sufficient iterations to converge to the distribution of both the simulated networks
and the estimated parameters. This generates a Markov Chain of simulated networks and
estimated parameters.?® After a sufficient burn-in period, I take draws from this chain as

the simulated parameters and full networks.?’

1.5.1.2 Zeros in the Data

Recall that identification of the parameters of the network-formation game depends on
observing the strictly positive equilibrium. This implies that no pairs of students choose a
zero link to each other. In the actual data, however, there are a number of students who
answer all of the link questions negatively, leading to the constructed continuous link measure
being zero. In the raw link data, of 58,530 dyads used for estimation, approximately 28.5%
are zeros.

I attribute these zeros to measurement error. That is, the actually-observed continuous
network measure is a noisy version of the true measure.?® It is constructed from nine binary
questions. Presumably, especially given potential networks that average 44 students, if we
asked substantially more link questions, the answers to some questions would be positive.
Accordingly, in order to account for this, whenever zeros appear in the constructed con-
tinuous link measure, I replace this value with an imputed value that is drawn randomly

and uniformly between 0 and the minimum link measure observed in the actual (non-zero)

26 While the raw data consists of discrete network measures, the network formation model operates at
the level of continuous link values. Accordingly, the imputation algorithm—which employs the network
formation model—directly imputes the continuous measure.

27 In practice, after a burn-in period of 100 iterations, I take 20 draws with a gap of 10 between each draw.

28 I note that measurement error is theoretically a issue for all network data, not just those that are observed
as zero in the data. A more formal model might account for error in constructing the continuous network
measure, for example, analogously to Cunha, Heckman and Shennach (2010) in their study of educational
skills formation. Future projects with the continuous network link models will explore this issue further.
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data.?®

1.5.1.3 Network Formation Parameters

Having discussed the data issues, I now move on the estimation. Essentially, this consists
of finding values of the structural parameter (5,7, ) and the scalar unobservables a such
that the sample analogues of the assumed moment conditions hold empirically.?® T estimate
this via GMM, with moments motivated by the identification results.?! As discussed in the
prior subsection, in order to correct for missing data, the GMM routine is the minimization
step of the iterative EM algorithm.

Estimated parameters of the network formation game are given in Table 1.10. In Panel
A, we see that estimated 3 is positive and highly significant, indicating that effort levels
of the two actors forming a link are strongly complementary, consistent with the reduced-
form facts. Importantly, this is true even when controlling for a large set of observed and
unobserved characteristics. Further B, estimated at 0.207, is substantially less than one,3?
as required for the network-formation process to have a unique strictly positive equilibrium.

Additionally, the point estimate of 75 shows that scalar unobservables a are important in
link decisions. The parameter v, identifies the additional utility derived to individual ¢ from
linking with j when j’s unobserved a;, increases by one standard deviation. Note that the
effect of a one standard deviation change, 0.693, is of the same order of magnitude of the
effect of homophily for many characteristics: for example, two students in Grade 7 derive

0.881 units more utility than if either is not in Grade 7.

29 Estimates are not sensitive to simulation error. That is, the estimated network formation parameters
are quite similar across many different draws of the algorithm. Further, estimates do not substantially differ
between this imputation method and simply adding a small number, such as 0.001, to each observed link
value.

30 Recall that identification results showed that a;, and any parameters that interact with a;, are only
identified to scale. I have set this scale by setting the variance of estimated a;s to one.

31 An alternative and somewhat less computationally burdensome procedure estimates the structural pa-
rameters § = (B,v, ) and the scalar unobservables vector a;s iteratively. However, this procedure has the
limitation that it does not allow for closed-form standard errors. Therefore, while point estimation is sped up,
the need to bootstrap the procedure leads this procedure to be substantially slower overall due to increased
burden of variance estimation.

32 A one-sided test strongly rejects the null that B > 1.
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Table 1.10: Structural Network Formation Parameter Estimates

Panel A: Parameters Not involving Covariates

gl
0.052
(0.043)
0.881%**
(0.069)
0.984%*
(0.079)
0.939%+*
(0.075)
1.020%%*
(0.115)
0.220%%%
(0.037)
0.077
(0.077)
-0.108
(0.124)
-0.345%*
(0.169)
-0.282%*
(0.116)
-0.500%+*
(0.169)
-0.287**
(0.147)
0.211%*
(0.107)

B 0.207%%*
(0.059)
Yo 0.693%*#*
(0.023)
04 0.116%**
(0.012)
Panel B: Parameters involving Covariates
X Variable ol
Elected 0.438%**
(0.026)
Grade 7 -0.103***
(0.022)
Grade 8 -0.134%**
(0.023)
SC -0.765%+*
(0.037)
ST -0.765%***
(0.038)
OBC -0.323%**
(0.033)
Participant -0.098
(0.118)
Participant x Elected  -0.131**
(0.058)
Participant x Grade 7 -0.068
(0.068)
Participant x Grade 8 0.076
(0.073)
Participant x SC 0.466%**
(0.120)
Participant x ST 0.408***
(0.116)
Participant x OBC 0.055
(0.111)

]
-0.036
(0.023)
0.022
(0.019)
-0.009
(0.019)

-0.245%**
(0.026)
-0.276%**
(0.034)
-0.072%5*
(0.020)
-0.426%**
(0.129)
0.061
(0.058)
-0.010
(0.069)
0.031
(0.062)
0.232*
(0.133)
0.272%*
(0.139)
0.196
(0.124)

83
0.182%**
(0.022)
0.001
(0.019)
0.0547%*
(0.019)
-0.059*
(0.033)
-0.038
(0.044)
0.010
(0.022)
0.348%¥
(0.123)
-0.075
(0.058)
-0.116*
(0.066)
-0.072
(0.059)
-0.173
(0.130)
-0.306%*
(0.131)
~0.341%%*
(0.118)

Notes: N = 58,530 in 20 schools. Robust standard errors in parenthe-
ses, clustered by school. *** p<0.01, ** p<0.05, * p<0.1. Parameters
estimated via GMM. Missing data imputed and estimates adjusted via
algorithm described in Appendix D. SC = Scheduled Caste, ST = Sched-
uled Tribe, OBC = Other Backwards Caste. Omitted Categories are Not
Elected, Grade 6, and General.
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Panel B presents parameter estimates that show how observed and unobserved variables
interact in determining the utility of network links. The v, parameter identifies the difference
in utility to individual ¢ from linking with 7 when j has the indicated characteristic versus
J not having it. For example, if j is elected, then ¢ derives 0.438 units more utility than if j
is not elected. I note that the negative point estimates on members of lower castes suggest
less utility from linking with them but that these effects are mitigated somewhat when they
are chosen to participate, as indicated by positive and significant coefficients for interactions
of SC and ST with the participation indicator.

The second column indicates substantial homophily along a number of dimensions, as
shown by the d; estimates. Those in Grades 7 and 8 derive more utility from linking with
their classmates, and members of Scheduled Castes, Scheduled Tribes, and Other Backwards
Castes similarly get more utility from linking to others in the same population grouping.
Interestingly, among those in Grades 7 and 8 as well as Scheduled Tribes and Scheduled
Castes, being chosen to participate seems to mitigate homophilic tendencies, as indicated by
the negative and significant point estimates of interactions between Participant and these
characteristics.

The final two columns show estimates of the effects of interactions between observed char-
acteristics and unobserved a. Many of these estimated coefficients are highly significant and
large in magnitude. This suggests that these interactions are quite important in individuals’
decisions about network formation. Accordingly, failure to account for these interactions has

the potential to crucially bias estimates of the parameters of the peer effects model.

1.5.2 Peer Effects Estimates

This section presents estimates of the peer effects model, as specified by Equation (1.7).
Similar to the network formation case, I first describe how I treat missing outcome data.
Then I present the estimated parameters, which show that structural unobservables a are

important in determining outcomes and that failure to account for them leads to biased
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estimates of parameters of the peer effects model.

1.5.2.1 Missing Outcome Data

Similar to the network link variables, I encounter missing data for two reasons. First,
some girls were not present on the day that the endline questionnaires were administered.
Second, even if they were present, some students did not answer the relevant questions.

To account for this possibly non-random missing data, I employ an iterative EM algo-
rithm. Estimation is done by OLS, which then imputes outcomes according to the estimated
distribution of unobserved variables. Importantly, the parameters of the peer effects model
are estimated conditional on a realized network and unobserved parameters a;,. Accord-
ingly, to account for variance in imputing the network data, I take draws from the imputed
distribution of networks and unobserved a;s, as these were calculated as part of the network
formation estimation process. Conditional on each draw of the network and a;,,>* I iterate

the algorithm 500 times to minimize sensitivity to starting values.

1.5.2.2 Peer Effects Parameter Estimates

Tables 1.11 and 1.12 present estimated parameters of the peer effects model. These
estimates are calculated via OLS conditional on the realized network and estimated a,.
From these, I construct Participant and @. From this we see that latent variable a;s plays a
large role in determining outcomes.

First, Table 1.11 gives results for Educational Aspirations. Column (1) estimates the
simple model that does not account for baseline outcomes or a. Column (2) adds a and peer
effects on a (a). Columns (3) and (4) are analogous to Columns (1) and (2) but further
include baseline outcomes and peer effects for baseline outcomes, both interacterd with f),
M , and H.

Since they are more general models, I focus discussion on Columns (3) and (4). In

331 take 20 such draws from the Markov Chain of the network data, from which I construct 20 imputations
of the outcome data.
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Column (4), we see positive and significant coefficients for the interaction between a and all
three tercile indicators. Since a is normalized to have standard deviation of one, this means
that, among those in the lowest predicted outcome tercile, one standard deviation higher
unobserved a leads to 0.059 standard deviations higher predicted Educational Aspirations.
We see similar positive effects for those in the other predicted terciles (0.070 and 0.095 for
M and H , respectively). Recall that, from the network formation estimates, we saw that
individuals derive more utility from linking to those with higher a. Accordingly, this suggests
that those who are more desirable as friends also have higher unobserved factors that affect
their Educational Aspirations. While noting less power,>* I note that there no significant
coefficients on the interactions between a and predicted tercile indicators.

In addition to showing that the omitted a variables seem are important in determining
outcomes in Column (4), I also test cross-equation restrictions between Equations (3) and (4).
These test the equality of each set of interactions with I:, M , and H: for example, the first
tests whether the three coefficients on Participant x L, Participant x M, and Participant x H

are equal between Columns (3) and (4). I perform similar tests for Participant, Baseline

Outcome, and Basline Outcome. P-values of each of these tests are presented at the bottom
of Table 1.11, between Columns (3) and (4).35 Each of these tests strongly rejects the null
of equality, suggesting that the estimates in Column (3), which ignore network endogeneity,
are biased.

Results for Gender Roles attitudes are presented in Table 1.12, which is structured simi-
larly to Table 1.11. Again, I focus discussion on Columns (3) and (4). In Column (4), we see
that the effect of unobserved a is significant for those in all three predicted terciles. However,
the effect on those in the lowest tercile is negative: among students with the lowest predicted
outcomes, one standard deviation higher a implies 0.071 standard deviations lower Gender

Roles attitudes, all else equal. This is in contrast to the positive and significant effect of

34 Standard errors are much higher for the @ variables than the a variables. For example, compare the
standard errors on the coefficients in Column (4) on @ x L (0.033) versus a x L (0.208). This is likely due to
the fact that a is constructed from many estimates of a, all of which are noisily estimated.

35 Similar tests are conducted on the relevant coefficients in Columns (1) and (2).
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Table 1.11: Structural Peer Effects Estimates (Education)

] (1) (2) (3) (4)
Participant x L -0.284%F*  _0.307**F*  -0.356%**F  -(0.242%**
(0.031) (0.044) (0.030) (0.042)
Participant x M 0.012 -0.084%** -0.007 0.016
(0.028) (0.032) (0.028) (0.031)
Participant x H 0.208%**  (0.162***  0.160***  (.252%**
(0.035) (0.042) (0.034) (0.038)
Participant x L 0.524%FF 0. 418%F*  _(0.371FFF  _(.915FF*
(0.052) (0.065) (0.052) (0.063)
Participant x M -0.060 0.160**  0.207***  (0.158**
(0.053) (0.067) (0.053) (0.062)
Participant x H -0.267FF*  _0.380*** 0.019 -0.095
(0.088) (0.108) (0.081) (0.094)
axL 0.005 0.059%*
(0.037) (0.033)
ax M 0.089%* 0.070%*
(0.032) (0.031)
axH 0.168%** 0.095%**
(0.037) (0.034)
axL -0.048 0.123
(0.327) (0.208)
ax M -0.147 -0.129
(0.121) (0.113)
axH -0.027 0.022
(0.155) (0.150)
Baseline Outcome Interactions NO NO YES YES
Baseline Outcome Interactions NO NO YES YES
P-value of cross-equation tests for interactions with:
Participant 0.000 0.000
Participant 0.000 0.000
Baseline Outcome 0.000
Baseline Outcome 0.000

Notes: Coeflicients for ﬂ, M, and H suppressed. Robust standard errors in
parentheses, clustered by school. *** p<0.01, ** p<0.05, * p<0.1. N =
920 in 20 schools in all specifications. Missing data imputed and estimates
adjusted via algorithm described in Appendix D. Standard error calculations
account for variance in estimating generated regressors a and a. Baseline
Outcome Interactions include interactions of Baseline Outcome with L, M, and
H. Baseline Outcome Interactions include interactions of Baseline Outcome
with L, M, and H. P-values at bottom of table represent tests of equality of
interactions with the given variable and ﬁ, 1\71, H across pairs of columns: e.g.,
the first p-value tests the equality of the three interactions with Participant
across columns (1) and (2). All p-values calculated from x?(3)
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unobserved a for those in the middle and highest predicted terciles. There are no signifi-
cant effects of @, while again noting lack of power. Finally, I note that tests of equality of
coefficients between Columns (3) and (4) strongly reject a null of equality, suggesting that

estimates that fail to account for unobserved a are biased.

1.6 Out-of-Sample Validation

While a structural model allows for out-of-sample prediction, our confidence in the model
can be bolstered by comparison of the model’s predictions to realized out-of-sample outcomes.
Fortunately here, I have an out-of-sample treatment group that can be used for this validation
step, as suggested by Todd and Wolpin (2006). In Elected Treatment schools, which were not
used in structural estimation in the prior section, participation in the program was assigned
by election rather than randomly, as was done in Random Treatment schools. Therefore,
having used Random Treatment and Control to estimate the model, I now use the estimated
parameters to predict outcomes conditional on all participants being chosen by election.
Comparing these predictions to the actual realized outcomes in Elected Treatment schools

provides a check on the model’s predictive power.

1.6.1 Simulation Method

Counterfactual simulation relies upon simulation of unobserved variables. The network-
formation model includes three such unobservables: c¢;;s, M;s, and a;s. The cost variables c;;,
are by construction independent of all observables and a;s. Accordingly, they are drawn from
an independent log-normal distribution with mean zero and variance 62, where 62 is the em-
pirical variance of these residuals from the estimation routine. Scalar variable a;, is similarly
drawn from an independent normal distribution with mean zero and variance 1 (recall that

this mean and variance are imposed as moment conditions). Finally, M, is drawn from a
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Table 1.12: Structural Peer Effects Estimates (Gender Roles)

] (1) (2) (3) (4)
Participant x L 0.065%**  (0.082***  (.108***  (0.240***
(0.024) (0.028) (0.024) (0.027)
Participant x M -0.433%*F*  _0.509***  -0.490***  -0.466%**
(0.029) (0.034) (0.029) (0.033)
Participant x H 0.308%** Q. 173***  (.322%*F*  (.332%**
(0.035) (0.047) (0.034) (0.041)
Participant x L -0.404%*F*  _0.333***  _0.152%** 0.070
(0.044) (0.058) (0.046) (0.056)
Participant x M -0.632%F*  _0.372%*F*F  _0.856%**F  -(0.428%**
(0.051) (0.071) (0.049) (0.064)
Participant x H -0.721F%%  -0.613%*F*  -0.504***  -0.651%**
(0.061) (0.092) (0.058) (0.078)
axL -0.076%* -0.071%*
(0.030) (0.030)
ax M 0.038 0.069**
(0.028) (0.028)
axH 0.130%** 0.082%*
(0.037) (0.035)
axL -0.000 0.045
(0.166) (0.166)
ax M 0.077 -0.009
(0.126) (0.123)
axH 0.187 0.054
(0.205) (0.195)
Baseline Outcome Interactions NO NO YES YES
Baseline Outcome Interactions NO NO YES YES
P-value of cross-equation tests for interactions with:
Participant 0.000 0.000
Participant 0.000 0.000
Baseline Outcome 0.000
Baseline Outcome 0.018

Notes: Coeflicients for ﬂ, M, and H suppressed. Robust standard errors in
parentheses, clustered by school. *** p<0.01, ** p<0.05, * p<0.1. N =
920 in 20 schools in all specifications. Missing data imputed and estimates
adjusted via algorithm described in Appendix D. Standard error calculations
account for variance in estimating generated regressors a and a. Baseline
Outcome Interactions include interactions of Baseline Outcome with L, M, and
H. Baseline Outcome Interactions include interactions of Baseline Outcome
with L, M, and H. P-values at bottom of table represent tests of equality of
interactions with the given variable and ﬁ, 1\71, H across pairs of columns: e.g.,
the first p-value tests the equality of the three interactions with Participant
across columns (1) and (2). All p-values calculated from x?(3)
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log-normal distribution allowing for some dependence on observed characteristics.?® I take
the distribution of observed characteristics in Elected Treatment as given in all simulations
in order to avoid any possible composition issues.

After the network-formation process is simulated, I move on to simulating outcomes.
The parameters in Tables 1.11 and 1.12 are used to predict outcomes conditional on the
simulated network and simulated a;;. Again, to avoid any composition bias, all simulations
are done on 10 schools with the exact distribution of observed covariates as found in Elected
Treatment schools.

In order to facilitate comparisons, I simulate outcomes under two different specifica-
tions. First, I generate simulations using “naive” estimates that ignore network endogeneity
through a. The parameters of this model are drawn from Column (3) of Tables 1.11 and
1.12. Then, I generate simulations using the full model, corresponding to Column (4) of

those same tables.

1.6.2 Comparison to Elected Treatment

Simulation results are presented in Table 1.13.3” Simulations for Educational Aspira-
tions are presented in Panel A, which shows that both simulation specifications are overly
optimistic about mean Educational Aspirations. This could be due to a number of issues,
including a possible discouragement effect of choice by election for those not selected. That
is, it may be the case that the program carried out with elected participants serves to re-
inforce marginalization for girls not elected to the program. Still, while neither model can
be rejected due to lack of power, the overall mean for the model that uses a is closer to the
actual realized mean.

While the model’s predicted Educational Aspirations may be biased upwards, it does a

36 In practice, simulating M;, is a three-step process as follows: (1) for each i and s, recover M;, from
the estimation routine, where M;, = > it CijsGijs, (2) regress log M;, on the same observed variables that
appear in Table 1.10, (3) with these parameter estimates and implied variance of residuals 6%,, simulate
log M, drawing the residuals from the a normal distribution with variance 63,.

3T This exercise is analogous to that undertaken in Tables 12-15 in Todd and Wolpin (2006).
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good job of getting at treatment effect heterogeneity. Consistent with the realized outcomes,
we see that elected girls do better than those who were not elected, as do members of Gen-
eral castes. Members of lower castes are predicted to have substantially lower Educational
Outcomes at endline, which matches the patterns from Elected Treatment.

The model does a better job of predicting the overall mean for Gender Roles attitudes,
as shown in Panel B. Further, in contrast to the naive estimates (without a), the full model
predicts substantially lower Gender Roles attitudes for non-elected girls than for their elected
counterparts, a pattern that matches heterogeneity based on elected status in the realized
data. Unfortunately, the model falls short in matching the pattern of heterogeneity across
caste groupings.

In sum, the model does a credible job of matching many features of the out-of-sample
realized outcomes. However, while I credibly match means within the entire sample for both
outcomes, the model only predicts the patterns of heterogeneity for Educational Aspirations.
This is qualitatively similar to the out-of-sample fit results in Todd and Wolpin (2006), who
find that their model predicts average school attendance reasonably well for some subgroups

but not others.?®

1.7 Counterfactual Policy Evaluation

This section presents the results of simulated outcomes under counterfactual assignment
rules. First, I present the results of simulations that assign individuals based on observed
characteristics. Next, I present the effects of a policy that assigns based on unobserved (but

estimated) a;s.

38 A formal test for model fit as well as development of the theory of statistical power for such a test is
beyond the scope of this paper but will be investigated in future work.
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Table 1.13: Comparison of Realized to Predicted in Elected Treatment Schools

Panel A: Educational Aspirations
All Elected Not Elected SC ST OBC General

Observed in Elected Treatment

Mean -0.279  -0.053 -0.398 -0.364 -0.489 -0.392 0.085
Standard Error of Mean 0.151 0.180 0.163 0.233  0.179 0.189 0.234
N 330 114 216 64 32 153 81

Stmulated with Same Covariate Distribution as Elected Treatment
“Naive” Model (Without Scalar Unobservables a)

Mean of Simulated Means -0.165 -0.155 -0.171 -0.305 -0.295 -0.253 0.162
Full Model (With Scalar Unobservables a)
Mean of Simulated Means -0.198 -0.141 -0.228 -0.311 -0.310 -0.282 0.093

Panel B: Gender Roles Attitudes
All Elected Not Elected SC ST OBC General

Observed in Elected Treatment

Mean -0.022  -0.085 0.012 0.066 0.085 -0.339  0.462
Standard Error of Mean 0.147  0.210 0.149 0.240 0.239 0.121 0.100
N 332 116 216 65 33 153 81

Simulated with Same Covariate Distribution as Elected Treatment
“Naive” Model (Without Scalar Unobservables a)

Mean of Simulated Means 0.020 0.008 0.026 -0.051 -0.086 0.009 0.140
Full Model (With Scalar Unobservables a)
Mean of Simulated Means -0.034 -0.091 -0.004 -0.134 -0.098 0.016 -0.024

Notes: Standard errors clustered by school. Simulation results in Panel A correspond to Columns
(3) (without scalar unobservables) and (4) (with scalar unobservables) of Table 1.11. Simulation
results in Panel B correspond to Columns (3) (without scalar unobservables) and (4) (with scalar
unobservables) of Table 1.12. Simulations based upon 10,000 repetitions, with residuals drawn from
random normal. SC = Scheduled Caste, ST = Scheduled Tribe, OBC = Other Backwards Caste.
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1.7.1 Assignment by Observed Variables

From the descriptive regression results in Table 1.2, we see that those in lower castes
have substantially lower baseline outcomes, and those who were elected to participate have
higher outcomes. Table 1.7, which was used to predict endline outcomes in the absence of
treatment, shows similar patterns. Optimizing outcomes via creative assignment essentially
amounts to choosing a set of individuals who will benefit the most from treatment, while
accounting for the indirect effects of the program through network change and peer effects.
Accordingly, an obvious place to start in thinking about alternative policies is to treat those
who are in the most need.

Accordingly, I have designed three assignment rules.?® Policy 1 assigns girls with the
lowest predicted outcomes, as calculated by the estimates in Table 1.7. Policy 2 takes the
opposite approach and selects those with the highest predicted outcomes. Finally, as a
baseline for comparison, Policy 3 assigns girls to participate randomly, which is the same
assignment rule actually implemented as part of the randomized evaluation in the Random
Treatment schools.?® 1 simulate outcomes in a similar manner to the algorithm described
in the prior section, fixing the covariate distribution as that observed in Random Treament
schools.

Table 1.14 demonstrates the results of these simulations. Note that the simulations
were performed separately for the two outcomes, as the assignment rule does not in general
assign the same girls under both outcomes. From this, we see that the assignemnt policy
does not appear to have much effect on Educational Aspirations, but there are important
distributional effects of the policies for Gender Roles.

First, looking at Educational Aspirations, the mean outcome is very similar across all

39 Note that these assignment rules are all conditional on observed variables and not unobserved a. As a
policy tool, assignment based on a—which is only recovered by estimation after the program outcomes are
realized—seems implausible.

40 Rather than simply use the realized outcomes in the data in the 10 Random Treatment schools, I
simulate 1000 realizations under the same assignment rule. This allows for comparison to the predicted
outcomes under random assignment rather than comparison to the single set of realized outcomes observed
in the data.
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three policies. Further, the means are also stable across the different subgroups. This
indicates that the assignment rule has very little effect on mean Educational Aspirations.
In contrast, the assignment rule does appear to affect Gender Roles attitudes, as shown
in Panel B. First, assigning those with the lowest predicted outcomes (Policy 1) leads to the
highest mean outcome, and it also leads to much higher outcomes for members of Sched-
uled Tribes and Other Backwards Castes. Additionally, members of General castes perform
substantially worse under the rule that preferentially assigns those with lowest predicted

outcomes, especially as compared to Policy 2.

1.7.2 Assignment by Unobserved Structural Parameters

While less policy relevant, we can alternatively assign individuals by unobserved—but
estimated—a;,. In the case of a program that runs over a single period, this exercise may be
more academic. That is, in contrast to observed variables X;,, we do not observe a;, until
after the program has run in a given school. However, in a setting where the program is run
over multiple periods, we may estimate the model, including a;, in the first period then use
the estimated a;5 in evaluating potential assignment rules in later periods.

After we estimate a;5, we can see whether a policy that targets assignment by a;, would
change outcomes. Similar to the prior section, I have designed two assignment rules. Policy
1 assigns those with the lowest estimated a;;, while Policy 2 assigns those wtih the highest
estimated a;s. Simulations of Policy 3, assigning girls randomly, is included for comparison.

From this exercise, we see that assigning treatment to those with the lowest a;s improves
both simulated average outcomes as compared to random assignment. Targeting to those
wtih the highest estimated a;s, in contrast, brings about lower mean outcomes than random

assignment.
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Table 1.14: Counterfactual Policy Simulations (Assignment by Observed Variables)

Panel A: Educational Aspirations
All  Elected Not Elected  SC ST OBC General

Policy 1: Assign Girls with Lowest Predicted Qutcome
Mean of Simulated Means -0.153  -0.157 -0.151 -0.337 -0.287 -0.090  0.285
S.D. of Simulated Means ~ 0.056  0.092 0.065 0.102 0.133 0.075  0.146

Policy 2: Assign Girls with Highest Predicted Outcome
Mean of Simulated Means -0.152  -0.164 -0.147 -0.330 -0.273 -0.082  0.217
S.D. of Simulated Means  0.050  0.087 0.058 0.092 0.114 0.071  0.145

Policy 3: Assign Girls Randomly
Mean of Simulated Means -0.147 -0.154 -0.144 -0.329 -0.275 -0.083 0.274
S.D. of Simulated Means 0.053 0.091 0.061 0.098 0.125 0.073 0.145

Panel B: Gender Roles Attitudes
All Elected Not Elected SC ST OBC General

Policy 1: Assign Girls with Lowest Predicted Outcome
Mean of Simulated Means -0.021 -0.083 0.005 -0.123 0.034 0.033  -0.093
S.D. of Simulated Means  0.046  0.085 0.055 0.089 0.110 0.068  0.145

Policy 2: Assign Girls with Highest Predicted Outcome
Mean of Simulated Means -0.033  -0.083 -0.012 -0.083 -0.068 -0.021  0.112
S.D. of Simulated Means  0.046  0.085 0.054 0.088 0.111 0.068  0.144

Policy 3: Assign Girls Randomly
Mean of Simulated Means -0.056 -0.116 -0.031 -0.136 -0.041 -0.021 -0.028
S.D. of Simulated Means  0.048  0.086 0.056 0.091 0.111 0.069  0.145

Simulation results in Panel A correspond to Column (4) of Table 1.11. Simulation results in Panel
B correspond to Column (4) of Table 1.12. Simulations based upon 1000 repetitions, with resid-
uals drawn from random normal. SC = Scheduled Caste, ST = Scheduled Tribe, OBC = Other
Backwards Caste.
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Table 1.15: Counterfactual Policy Simulations (Assignment by Estimated Unobservable)

Panel A: Educational Aspirations

All  Elected Not Elected  SC ST OBC  General
Policy 1: Assign Girls with Lowest Estimated Unobservable
Mean of Simulated Means -0.113 -0.134 -0.105 -0.280 -0.238 -0.053  0.278
S.D. of Simulated Means  0.051  0.087 0.059 0.092 0.117 0.071  0.145
Policy 2: Assign Girls with Highest Estimated Unobservable
Mean of Simulated Means -0.186 -0.194 -0.183 -0.363 -0.316 -0.129  0.250
S.D. of Simulated Means  0.055  0.093 0.063 0.099 0.128 0.074  0.147
Policy 3: Assign Girls Randomly
Mean of Simulated Means -0.147 -0.161 -0.140 -0.318 -0.272 -0.088  0.263
S.D. of Simulated Means 0.052  0.088 0.060 0.096 0.121 0.072 0.142
Panel B: Gender Roles Attitudes

All  Elected Not Elected  SC ST OBC  General
Policy 1: Assign Girls with Lowest Estimated Unobservable
Mean of Simulated Means -0.035 -0.090 -0.012 -0.124 -0.014 0.007  -0.025
S.D. of Simulated Means  0.047  0.084 0.054 0.089 0.113 0.068  0.141
Policy 2: Assign Girls with Highest Estimated Unobservable
Mean of Simulated Means -0.077 -0.124 -0.058 -0.129 -0.075 -0.047 -0.079
S.D. of Simulated Means ~ 0.047  0.085 0.055 0.089 0.110 0.067  0.146
Policy 3: Assign Girls Randomly
Mean of Simulated Means -0.052 -0.107 -0.030 -0.128 -0.042 -0.016 -0.033
S.D. of Simulated Means  0.047  0.085 0.055 0.090 0.115 0.068  0.143

Simulation results in Panel A correspond to Column (4) of Table 1.11. Simulation results in Panel
B correspond to Column (4) of Table 1.12. Simulations based upon 1000 repetitions, with resid-
uals drawn from random normal. SC = Scheduled Caste, ST = Scheduled Tribe, OBC = Other

Backwards Caste.
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1.7.3 Optimal Treatment Assignment

Assessment of the effects of counterfactual assignment policies in this context is an exer-
cise in statistical treatment assignment (see Manski, 2004; Smith and Staghgj, 2009). That
is, we search for statistical rules that maximize some function of outcomes, conditional on
observable characteristics of individuals.*! As pointed out by Bhattacharya (2009), the
maximand under optimal assignment weakly dominates the maximand under any feasible
assignment, including those used in the counterfactual simulations in the prior section. Ac-
cordingly, we need some way of assessing the effects of alternative assignments across the
entire class of feasible alternative assignments. Dehejia (2005) formulates the problem in a
Bayesian framework, drawing inferences from comparing features of the posterior predictive
distributions. Similarly, Bhattacharya (2009) investigates the assignment of freshmen to
dorms as a linear programming problem, providing results for maximizing the mean or any
quantile of the outcome of interest.

The hypothetical optimal assignment problem here is complicated, however, by at least
three factors. First, the presence of a budget constraint—only 13 girls per school can be
assigned to program participation—complicates analysis. That is, even in settings in which
agents’ outcomes are independent, the need to estimate the threshold assignment rule—
possibly including which covariates to include in this estimation—adds an important dimen-
sion of uncertainty that must be accounted for (Bhattacharya and Dupas, 2012).

Second, treatment externalities in the form of peer effects increase the complexity of the
assignment problem. That is, identification and inference in the models from the economet-
rics literature typically rely upon independence across observations (see, e.g., Bhattacharya
and Dupas, 2012; Manski, 2004). When, on the other hand, agents’ outcomes are not inde-
pendent, it may be impossible to derive a closed-form solution to the optimization problem.

Accordingly, solving for the optimal assignment may necessitate the use of high-dimensional

41 A slight twist on this formulation is provided in the prior section, where I predicted outcomes conditional
on both observed variables and structural unobservables a;s that are recovered as part of the estimation
procedure.
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numerical programming procedures, an approach taken by Carrell, Sacerdote and West
(2013).

Finally, and most pertinent to the central theme of this paper, the need to account for
network endogeneity increases the complexity of the problem. In simulating the effects of
alternative assignment using the model here, we need to simulate the network formation
process to equilibrium at each potential assignment. Carrell, Sacerdote and West (2013)
faced an already-high computational burden in solving for optimal assignment without taking
account of this additional complication. Accordingly, using the model here to solve for
optimal allocations entails an extreme computational burden and thus lies beyond the scope
of the current project. Formulating methods to reduce this burden is a topic for future

research.

1.8 Conclusion

The very existence of peer effects implies that individuals’ outcomes and choices may
be affected by the presence or absence of others. This suggests that, in settings where
policymakers have control over assignments, simply changing the assignment rule may change
outcomes, and such interventions should be relatively costless to implement. However, prior
efforts to design and implement such assignment rules have fallen short due to endogenous
peer selection. To account for this, we need a model of peer selection, but modeling and
estimating such models presents many difficulties.

My approach explicitly models outcomes as the result of a two-step process. In the first
step, agents choose peers within a continuous action space subject to a budget constraint.
I show that this greatly simplifies equilibrium characterization and identification: under
certain conditions, there is a unique strictly positive Nash equilibrium, and the first-order
conditions implied by this can be employed for identification and estimation. The structure
of the game motivates the use of a budget-set instrument to identify the model’s parameters,

and I provide conditions under which identification holds. Crucially, the model provides for
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identification of individual-specific unobserved variables that affect both network structure
and outcomes.

In the second step, outcomes are determined conditional on the realized network. Here,
network endogeneity is modeled explicitly as an omitted variable issue. Conditional on these
unobserved variables—which are identified in the network formation model—the peer effects
model is identified, even under certain types of network endogeneity.

With these methodological results in hand, I then estimate the model using innovative
new data from a randomized trial in rural Rajasthan, India. I find that the unobserved
variables play a large role in determining both network structure and outcomes conditional
on the network. Further, statistical tests strongly reject a simpler model that ignores network
endogeneity:.

With the estimated parameters in hand, I move to out-of-sample validation and counter-
factual simulation. First, by comparing predicted outcomes to realized out-of-sample means,
I show that the model performs well in out-of-sample prediction. Next, I simulate the ef-
fects of alternative policies that assign participation preferentially. I separately assess the
effects of policies that assign preferentially based upon observed variables and estimated
unobservables.

With this paper, I provide a method to account for network endogeneity when estimating
peer effects, giving an explicit model of how network endogeneity biases results that neglect
to account for endogenous network structure. This further leads to a method to predict the
effects of alternative assignments while accounting for network endogeneity. As necessary
steps in developing this methodology, I make further contributions to the theory of network
formation as well as providing new econometric results for the identification of network
formation games.

Finally, this paper suggests a method that brings together structural and experimen-
tal methods of program evaluation. Importantly, the methodology developed here is not

context-specific; rather, it has broad applicability in settings where assignment rules may
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influence outcomes both directly and through changing network structure. In order to ap-
ply the methods used here, researchers need to collect data on the outcome of interest and
demographics, as well as sufficiently rich network data from which to construct a continuous
network measure. With such data in hand, the researcher can then generate predictions
of the effects of out-of-sample assignment rules that are robust to certain types of network

endogeneity.
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CHAPTER 2

How Many Friends Do You Have? An Empirical
Investigation into Censoring-Induced Bias in Social

Network Data

Abstract

In analyzing peer effects in a linear-in-means framework, identifying who interacts with whom
is crucial. This suggests the need to collect detailed network data. However, taking a cue
from AddHealth, many data-collection efforts only permit resondents to list up to a max-
imum number of links, leading to censoring and mismeasurement of peer groups. Within
a linear-in-means framework, I document the extent of bias due to censoring analytically
and by simulation. I then demonstrate that censoring-induced bias is present in empirical
applications using data from AddHealth and an experiment in rural Nepal. After document-
ing the bias, I provide strategies to recover consistent estimates and discuss limitations of
these strategies. This paper provides important contributions to the literature on design of

network surveys as well as estimation of peer effects in the presence of data limitations.
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2.1 Introduction

In economics and related fields, a multitude of papers have studied the effect of one’s
peers on one’s own outcomes, especially in educational contexts. Before doing so, however,
we must define the relevant peer group. For example, in school settings, many authors have
defined the relevant peer group as those students who share a grade, classroom, or living
space (See Sacerdote (2011) for a review of this literature).

More recently, economists have recognized that all others with whom an individual may
potentially interact may not be the relevant peer group for purposes of peer effects. Rather,
it is likely that an individual’s actual social connections influence behavior and outcomes to
a different degree than those with whom they share a classroom or school but rarely interact
with. This has led to defining an individual’s peer group as a subset of possible available
peers.

Accordingly, in order to define peer groups more accurately, many studies now collect
detailed network data. Such data often asks individuals to identify their friends, under
the assumption that friends are the relevant influencers. A common feature of this data,
however, is the presence of censoring. Censoring occurs when individuals may list only a
certain number of network links. If for example, a survey only allows individuals to list up
to five friends, and and individual has eight friends, then the final three friends are censored.
This leads to mismeasurement of the relevant peer group.

The practice of gathering censored peer data dates back at least to AddHealth (Harris,
2009). In the Wave 1 survey, individuals are prompted to list their male and female friends,
but only up to five of each. The censored friendship data from AddHealth has been used to
study peer interactions in a wide number of applications, often with little sensitivity to the
issue of censoring.

Moreover, the censoring issue is not limited to AddHealth. Rather, with a limited number
of exceptions, many studies, especially in developing countries, allow individuals to list only

a certain number of network links. Further, in many such studies, a large proportion of
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respondents list the maximum allowed number of links, suggesting that censoring may be a
quantitatively significant issue. While many authors are aware of the potential of censoring-
induced bias in peer effects estimates, there has been little effort made to quantify the
potential bias or to devise strategies for dealing with this bias in censored data. This paper
fills that gap in the literature.

In doing so, I make two primary contributions. First, I document the potential for
censoring-induced bias in peer effects estimates. I do this analytically, by simulation, and
finally by estimation using real datasets. I first derive analytic expressions for the bias of
two commonly-used estimators of peer effects. Then I simulate data and estimates varying
the number of friends observed, showing that when only few friends are observed, parameter
estimates are meaningfully biased. As expected, as more friends are observed, censoring-
induced bias disappears, and the estimates converge to the true paraemter values. Third,
using data from two sources, I estimate parameters of peer effects models under different
censoring rules, demonstrating that estimates are sensitive to the number of links observed.

Second, after demonstrating the bias in estimates due to censoring, I move on to the
paper’s second contribution: providing strategies to recover unbiased estimates. I provide
two such strategies. The first employs an uncensored subset of networks to estimate an
analytic bias correction. I show that this works well in simulations when a 10% uncensored
subsample is collected. Second, I adapt an estimator from Chandrasekhar and Lewis (2011)
to the setting at hand, which estimates the parameters of the model from those individuals
for whom we observe all links. By simulation, I show that this strategy works well under
restrictive assumptions.

Two papers in particular are relevant to the issues at hand. First, Chandrasekhar and
Lewis (2011) deals with a related but different problem: networks sampled at the individual
(dyad) level. This is a related but conceptually different problem than the one investigated
here, where data is missing at the edge level and is not missing randomly. Their primary

bias correction method relies upon graphical reconstruction, which I discuss briefly in Section
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2.8. Second, Sojourner (2013) investigates the bias induced by missing peer covariate data
in estimates of peer effects in the Tennessee STAR project. While likely relevant in many
of the same contexts, the analysis deals with a classroom setting where data on individual
interactions is unavailable.

This paper proceeds as follows. Section 2.2 discusses the extent of bias in network surveys,
documenting that large proportions of respondents list the maximum number of links in many
surveys. Section 2.3 presents the estimators under study and provides analytic expressions
for censoring-induced bias. Section 2.4 then simulates data to show that these estimators are
indeed biased when less than the full network is observed. Next, Section 2.5 draws upon two
datasets to provide evidence that the simulated patterns of bias show up in real datasets.
Section 2.6 then provides two strategies to correct for censoring-induced bias. Section 2.7
then shows that these strategies are likely to fail in the presence of substantial heterogeneity
in parameters. Section 2.8 discusses the potential for graphical reconstruction, while Section

2.9 concludes.

2.2 Censoring in Network Surveys

2.2.1 Survey Questions that Induce Censoring

A widespread practice in collecting network data is to ask individual respondents to name
their network links. This practice dates at least to AddHealth, which elicited network data

with the following prompt:

List your closest male friends. List your best male friend first, then your next
best friend, and so on. Girls may include boys who are friends and boyfriends

(Harris, 2009).

Each student in the sample is given this prompt as well as a prompt to list female friends.

Crucially, students were allowed to list only up to five male and five female friends.
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Prompts of this type are widespread, especially in surveys collected as part of field
projects in developing countries. For instance, in their large-scale social data collection
project in India, Banerjee et al. (2012) allow respondents to list up to either five or eight
links along a number of dimensions. In a study on adoption of sanitary products by teenage
girls in Nepal, Oster and Thornton (2012) allow respondents to list up to three close friends.
In studying the interaction between social networks and insurance take-up, Cai, Janvry and
Sadoulet (2015) allow respondents to list up to five close friends. Kandpal and Baylis (2013),
in studying peer networks among women in Uttarakhand, India, similarly allow respondents

to name up to five friends.

2.2.2 Exceptions to this Practice

While censoring is quite common in network data, it is far from universal. Two separate
approaches seek to collect uncensored network data.

First, some have addressed the issue of censoring by collecting ordered connection data
but with no upper bound on the number of links. For example, in a study of the effect of
network links on learning HIV status in Malawi, Ngatia (2015) allows respondents to list as
many social contacts as they desire, with some listing as many as 13 friends and 12 relatives.
Similarly, Comola and Prina (2014), in their study of informal financial transactions, allow
respondents to list relationships without limit.

Second, another line of surveys have dispensed with the practice of asking people to
list their contacts. That is, these surveys have prompted individuals to provide their rela-
tionship to individuals identified by the survey instrument. In a study on adoption of new
crop technology in Ghana, Conley and Udry (2012) ask respondents their relationships to
randomly-chosen other individuals in their given village. Delavallade, Griffith and Thornton
(2016) take a related approach but achieve full coverage rather than random sampling: each

adolescent girl in their survey reveals her relationship to each other one in the school..
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2.2.3 A Rough Measure of the Extent of Censoring

Clearly, censoring leads to mismeasurement of relevant networks under study. The ex-
tent to which this mismeasurement affects estimates of parameters of interest undoubtedly
depends on the amount of data points that are censored. We can get a rough handle on the
amount of potential censoring by looking at the number of individuals who list the maximum
number of possible links. From reports in papers of the extent of censoring as well as looking
at the datasets used in the empirical analysis here, it is apparent that there is substantial
censoring in network datasets.

If a respondent lists the maximum number of links allowed, then there are two possibilities
for his number of links. On the one hand, his number of links may be equal to the number
allowed on the survey, in which case censoring does not lead to measurement error in his
network. Alternatively, he may have more links than he is permitted to list, in which case the
censoring rule leaves his peer group mismeasured. Accordingly, the number of respondents
who list the maximum allowable number of links provides an upper bound on the extent of
censoring in a given dataset.

Since it represents an upper bound, we can get a rough idea of the extent of censoring
by looking at the number of respondents who list the maximum allowable number of links.
At one of of the spectrum, Banerjee et al. (2012) show that less than 0.1% of their survey
respondents name the maximum number of links (either 5 or 8) along any of the many
dimensions they survey. In this setting, censoring is unlikely to cause much of an issue,
although partial sampling is still an issue in that dataset (Chandrasekhar and Lewis, 2011).
Alternatively, a large proportion of respondents naming the maximum number of links is a
prominent feature of many network studies. In their study on the interaction between social
networks and insurance take-up, Cai, Janvry and Sadoulet (2015) report that the majority
of their respondents list five links, with an average number of 4.9.

Further, a large fraction of survey respondents in the two datasets I use in the empirical

analysis below name the maximum number of possible links. Table 2.1 presents the per-
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centage of respondents of each gender who name at least the number of nominees of the
indicated genders. For example, 66.1% of female respondents name five female friends, while
only 37.4% of female respondents name at least five male friends. From the final row, we see
that a large percentage of respondents in AddHealth name the maximum number of friends

allowed by the survey instrument.

Table 2.1: Friendship Nominations in AddHealth

Nominator Female Male

Nominee Female Male Female Male
1 0.862 0.635 0.770 0.778
2 0.842 0.578 0.736  0.750
3 0.799 0.506 0.660 0.694
4 0.735 0.433 0.571 0.623
5 0.661 0.374 0.499 0.561

Table presents probability that Nominator
of specified gender names at least that num-
ber of Nominees (friends) of the specified
gender.

The data collected by Oster and Thornton (2012) follows a similar pattern. In that
dataset, 68% of sampled girls report the maximum allowed three friends. Accordingly, in
these two datasets, there is substantial potential for the data collection method, which al-
lowed for censoring of peer groups, to bias estimates of parameters of interest. The remainder
of this paper investigates the implications of this possible censoring for estimates of peer ef-

fects parameters.

2.3 Characterizing Bias

This section derives expressions for inconsistency induced by censoring. First, I introduce

the estimators under study. Then, I derive analytic expressions for censoring-induced bias.
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2.3.1 Data-Generating Process

The data-generating process takes place in two steps. First, networks are formed. Second,
conditional on the realized network, outcomes are determined in a way that allows for peer

effects.

2.3.1.1 Network Formation

The first step in determining outcomes is network formation. I make minimal assumptions
on the process that generates networks. Links either exist or do not exist.The existence of
a link between individuals ¢ and j in school s is a binary variable, so l;;; € {0,1}.! For
simplicity, I further assume that links are symmetric, so that [;;5 = ljiS.Q

For each school s, there exists a matrix of links Lg. In a school with K individuals, L is
M x M. Elements along the diagonal are all zeros (l;;; = 0). The entire adjacency matrix
L is block diagonal where each block corresponds to a school s. From L is constructed a
row-normalized adjacency matrix G. That is, elements in each row of G are weighted such
that Z]Ai1 Gijs = L.

While links are symmetric and binary, they may be rank ordered. To get a handle on
this, suppose, for instance, that there is a latent value v;;5 that each individual 7 assigns to
his link to each other individual j. Assume further that this is symmetric, so v;js = vjis. A
link exists whenever v;;; > 0. Define i’s ranking of his link to j as follows: R;;s = 1{v;js >
0} Zk# H{wviks > vijs}. So, Rijs = 1 for i’s closest friend, R;;; = 2 for his next closest, etc.
R;js = 0if i and j are not linked.

For each school s and k € {1,..., M}, where M is the maximum school size, I construct

a censored adjacency matrix Lgi™®. Each element of LG is generated according to the

! There is a limited number of papers, mostly theoretical, that allow for continuous links (see, e.g., Bloch
and Dutta, 2009; Baumann, 2016; Griffith, 2017).

2To keep the discussion simple, I focus on symmetric networks here. The qualitative case is qualitatively
similar.
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following rule:

o = H{Rijs > 0}1{min{ Ry, Rjis} < k} 1)

ijs,k
That is, [77; = 1 if edther lists the other among her first & links. In this way, it is possible
for an individual to have more than k observed links when the data is generated with a

cens
ijs,k

censoring rule of k. [ = 0 in one of two situations: either ¢ and j are not friends or they
are friends and their link is censored.

By combining all S of the matrices L™ into a single block diagonal matrix, we construct
Lie"s for each £ < M. With any censoring rule &, we only observe the censored L{®"® rather
than the true Ly whenever k < M. From this we construct a row-normalized censored

adjacency matrix Hy.

2.3.1.2 Owutcomes Conditional on the Network

Outcomes are determined according to the linear-in-means process specified by Manski

(1993). That is, outcomes are determined according to Equation 2.2.3

Yis = 50 + 61@2’5 + B2Iis + /83'fi8 + €is (22)

In this equation, y;, is some outcome for individual 7 in school s and x;s is some characteristic
for the same individual. Peer effects enter through ¢;s, the mean of individual ¢’s links’
outcome, and T;s, the mean of those same peers’ exogenous characteristics. Rewritten in

matrix form, this becomes

y = Bot + 51Gy + fox + B3Gx + € (2.3)

3 Here, I assume that the coefficients are constants. I discuss issues that arise when coefficients are
non-constant in Section 2.7 below.
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where y is the vector of all outcomes y;,, ¥y is a matrix of covariates x;5, and G is the

row-normalized adjacency matrix defined in the previous subsection.
Assumption 2.1. E[e;|x, G] =0

Assumption 2.1 provides the primary exogeneity assumption that is maintained through-
out this paper. This assumes independence of unobservables ¢;; from observables for ¢ and
all others. Further, and crucially, it assumes network endogeneity. That is, unobservables
that play a part in forming networks G are not correlated with unobservables in the outcome
equation €. I acknowledge that network exogeneity is a crucial limitation. However, in the
rest of this paper, I demonstrate that, even with this very strong assumption on the data
generating process, estimates of parameters of the model in Equations (2.2) and (2.3) are

still biased due to censoring.

2.3.2 Estimators and Uncensored Results

Here, I describe the two estimators that are used throughout this paper. These two
estimators are motivated by criticisms of the linear-in-means model in Equation 2.2 that
date back to Manski (1993), particularly the problem of reflection. I demonstrate that these

estimators are consistent when there is no censoring of the data.

2.3.2.1 Reduced-Form OLS (Estimator 1)

Given reflection and the consequent failure to separately identify 31, §2, and (3 in Equa-
tion 2.2, many researchers have simply estimated a reduced-form version by OLS. Assume

t

for simplicity that y;s, s, and Z!2%¢ have been demeaned (and thus 5y = 0). Manipulation

of Equation 2.3 yields

y = —5G)" (Box + B3Gx +¢) (2.4)
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Define the reduced-form OLS estimator & as a regression of outcome y;, on regressors x;,

and Z;s. That is, in matrix form,
v = ([x, Gx]'[x, Gx]) " [x, Gx]'y (2.5)
Proposition 2.1. Given Assumption 2.1,

E[x'GF1x]

plim “ = & + (B3 + B152) Z By (E[[x, Gx]'[x, GXH)_l
k=1

iy Bs + B152 E[X/G/GHIX]

Similar to others (see, e.g., Carrell, Sacerdote and West, 2013), I define the reduced form
parameter o = plim &, where plim & is given in Proposition 2.1. In general, this reduced-
form parameter o depends on two features of the data-generating process. First, it depends
on the structural parameters 5 = (31, B2, 83). Second, a depends on the relationships among
eX0genous T, peer group mean Z;,, and higher-order means z¥,. These relationships do not
admit a simple closed form, as they are complicated expressions of the network-formation
process, and how x; plays a role in determining links. For example, if there is homophily
in link formation conditional on z;,, the mean of individual’s peers’ characteristics z;; will
be correlated with his own characteristics x;5. Therefore, E[z;Z;s] > 0 (in matrix notation,
E[x'Gx] > 0). In the simulations that follow, I approximate a numerically, given § and the
parameters that lead to network formation.

The definition of a provides a generalization of the standard sufficiency result for the
existence of peer effects. From the structural model, peer effects exist if either §; # 0 or
B3 # 0. From Proposition 2.1, we see that a sufficient condition for this is that ay # 0.
Note that this is a one-way implication, and there are combinations of parameters such that
as = 0 yet peer effects still are present.

Two special cases bear mentioning at this point. First, when there is no endogneous peer
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effect (51 = 0), the reduced-form model is the true model, and (v, as) = (52, B3). In this

case, it is easy to see that plim(ay, &) = (52, f3).

a B
Corollary 2.1. G = G? = plim = 2
Ay 534—55152
=5

Second, Corollary 2.1 gives a result that relates the expression from Proposition 2.1 to
known results that map the parameters of the full model to the reduced form.(See, e.g.,
Carrell, Sacerdote and West, 2013). A well-known case of when G = G? is a classroom
setting in which all members (including oneself) of the classroom are assumed to have equal

weights.

2.3.2.2 Instrumental Variables Using Second-Order Peers (Estimator 2)

While reflection has been noted and dealt with since Manski (1993), the non-identification
result is a knife-edge case (see, e.g., Blume et al., 2015). When G # G2, second-order peers
(friends of friends) may be used to surmount the reflection problem (Bramoullé, Djebbari
and Fortin, 2009; DeGiorgi, Pelllizzari and Radaelli, 2010). Others have shown that varia-
tion in peer group size can also overcome reflection (Lee, 2007; Boucher et al., 2014). The
former strategy amounts to, essentially, using the mean of friends’ mean exogenous charac-
teristics as an instrument for necessarily endogenous #;,. In matrix terms, we employ G2x
as an instrument for Gy. The availability of this instrument (and higher-order instruments)
necessarily depends on G? # G.

Define the following matrices:
1. X =[Gy, x, Gx|

2. Z = [x,Gx, Gx|
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Proposition 2.2. Given Assumption 2.1, if the matrix X'ZZ'X is invertible, then

B By
plim(|3,|) = (X'2Z'X)"'X'ZZ'y = | 3,
Bs B3

The assumption that the matrix is invertible is not innocuous. Situations in which it
fails, as pointed out by, e.g., Bramoull¢, Djebbari and Fortin (2009), include when G? = G,
or when certain combinations of parameters are zero. In the former case, the excluded
instrument G2x is collinear with included regressor Gx.* In the latter, G?x is uncorrelated

with Gy.

2.3.3 Censoring-Induced Bias

Having provided expressions for the probability limits for two common estimators in the
absence of censoring, here I show how censoring can lead to deviations from these theoretical
results. Recall from Subsection 2.3.1 above that censoring arises when k£ < M, where M
is the maximum number of students in a school. When this is the case, censoring leads
to observation of the censored row-normalized adjacency matrix Hy rather than the true

row-normalized adjacency matrix G. Clearly, data is uncensored whenever Hy, = G.

2.3.3.1 Estimator 1

Here, 1 provide an analytic expression for the bias in Estimator 1 that is induced by

censoring. For a given censoring rule k, define

acmsk = ([x, Hyex)'[x, Hiex]) 7 x, Hix]'y (2.6)

4Indeed, this is exactly the case addressed by Manski (1993).
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That is, @*"** is the analogue of & when the mean is calculated with censoring at a maximum
of k links. Equation 2.7 gives the probability limit of this estimator when the number of

schools/networks approaches infinity.

E[x'x] E[x'Hyx] Elx'x]  E[x'Hgx]
plim(&cens’k) = «
ExHyx] E[xHyHyx] Ex'Gx] E[x'H,'Gx]
=B, (2.7)

Clearly, this estimator does not converge to o whenever B, is not the identity matrix.
From the expression in Equation 2.7, we see that the bias depends on the relationship between
the variance of the censored measures and the covariance between the censored (Hyx) and
uncensored (Gx) measures.

Two key features bear noting here. First, if we define measurement error as the difference
Hyx — Gx, this formula is merely a special case of the general formula for measurement error
that relates inconsistency of OLS in the presence of measurement errors (See Bound, Brown
and Mathiowetz, 2001). Second, as k grows, Hy — G and thus B, — I. Therefore, as
expected, limy_, 5, plim(ac"s*) = a. So, as we allow individuals to name more links, we get

less censoring, until eventually there is no censoring-induced bias in the limit.

2.3.3.2 Estimator 2

Here I show that measurement error due to censoring generates bias in Estimator 2.

Define the following matrices.
1. Xgers = [Hyy, x, Hix]

2. 7o = [x, Hyx, Hy ’x]
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Next, define the estimator
Bcens,k — (Xﬁenslzlc(enszﬁenslxiens)—IXf{ens/Zﬁenst{ens/y (28)

That is, Bcens’k is the analogue to Buncens that is estimated using censored versions of all
network variables (constructed from Hy instead of G). Equation 2.9 gives the convergence

result for Feensk,

-1

E[(Hi’x) Hyy] E[(Hi’x)'x  E[(Hi’x) Hyx]
plim(3°"h) = | E[xHyy] E[x'x] E[x'Hx]
E[(Hix)Hyy] E[(Hiwx)'x] E[(Hix) Hix]
E[(Hix)'Gy] E[(Hix)x E[(Hyx)Gx]
E[x'Gy] E[x'x] ExGx] |8
E[(Hx)Gy] E[(Hwx)x] E[(Hyx)Gx

= Byf (2.9)

As in the case of &"°" the bias depends on the relationship between censored and
uncensored versions of variables. However, unlike %", this includes endogenous variables
as well as exogenous ones (including assumed exogenous networks). Further, it is easy to
see that in the limiting case where G = Hy (no censoring), By is the identity matrix, and
Bc‘ms’k = B is a consistent estimator of .

While IV estimators have been heavily used to fix measurement error, in this case the
standard result does not hold. This is due to the fact that censoring induces measurement
error in both both Gy (the endogenous regressor) and G*x (the excluded instrument). In-
stead of observing these “true” variables, we observe censored versions of them in the form
of Hyy and Hy*x. As pointed out by Chandrasekhar and Lewis (2011), the measurement

error in these two variables is correlated.
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Further, censoring leads to failure of the exclusion restriction required for consistency of
3. This is due to the highly parametric assumption that motivates this estimator derived
by Bramoullé, Djebbari and Fortin (2009) and DeGiorgi, Pelllizzari and Radaelli (2010).
The exclusion restriction requires that second-order friends (“friends of friends”) influence
outcomes only through first-order friends and not directly. However, censoring of friendship
networks leads to some first-order friends being incorrectly identified as second-order friends.
This implies that, even if data is generated according to the highly restrictive linear-in-means
model, the exclusion restriction required for consistency is not met when friendship networks

are censored.

2.4 Simulations of Bias

To demonstrate inconsistency due to censoring, here I perform a series of Monte Carlo
experiments. These experiments consist of two steps. First, data is generated according to a
two-step process. Second, I estimate &°"** and BCE”‘*’“ on the data for all values of £ < M.

From these simulations, we see that whenever k is small, estimates of 4°"** and Bees*

are
very far from the uncensored estimates, demonstrating that these estimates are sensitive to

the number of links observed.

24.1 DGP

Here I describe the data generation process that I use for simulations. Final outcomes are
generated according to a two-step process. First, a network is formed according to a simple
dyadic network-formation process. Second, conditional on the realized network, outcomes

are determined according to Equation (2.2).

2.4.1.1 A Simple Model of Exogenous Networks

As the purpose of this paper is not to test different models of network formation, in run-

ning simulations, I keep the network formation process simple. To allow for some homophily,
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I specify network formation as follows. A link between individuals ¢ and j, denoted ;5 exists

according to the following rule:

lijs = {0 + | Xis — Xjs|m + uigs > 0} = 1{U;;5s > 0} (2.10)

The distance function |X;; — Xj,| allows link probability to depend on how close individuals

1 and 7 are in characteristics space.

Assumption 2.2. The following assumptions are made on the link-formation process
1. v <0 (homophily)
2. Uijs = Ujis (links are symmetric)

3. 1# k orj#1 = wjs AL ugs (unobservables are independent across links)

For simplicity, I impose the restrictions in Assumption 2.2. Under these assumptions,
a special case of this model, corresponding to the case when v; = 0, is the Erdos-Renyi
random graphs model, in which each link /;;; is a draw from a Bernoulli(p) distribution where
p = Pr(u;js > —70). The more general model that allows p to vary based on observables is
a special case of the stochastic block models that have received substantial attention in the
literature.

From this data-generating process, each individual ¢ can rank order her links by utility.
So, she lists her first friend &k such that Uj,s = max;.; Uy, and others in order until Uy, < 0.
For a given number k < M, we construct a censored adjacency matrix Le"**  In turn, for
each k, I then construct a row-normalized Hy.

In all simulations, the following assumptions are made
1. Xis <~ N(0,1)

iid.

2. uijs = sz‘s ~ N(O, 1)
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3. 200 networks of M = 25 are observed (N = 5000)
I allow the following to vary:

1.y €{0,—-1,-2}

2. v such that Pr(/;;s = 1) € {0.20,0.35,0.50}

Different v; varies the importance of | X;s — X/, in the link formation process and thus varies
the strength of homophily. Different ~o varies the network density. Accordingly, for each
repetition and each k < M, I simulate nine sets of estimates 4°"** and 4°"*, corresponding

to each combination of values for v; and 7.

2.4.1.2 Owutcomes Conditional on the Network

Conditional on the true network G = Hyy, outcomes are determined according to Equa-
tion 2.2. The matrices G and x are determined in simulating the network-formation process.

In all simulations, the following is set
iid.

1. e = N(0,1)

2. 6/ = (60aﬁ17/82)/83)/ = ( 07 067 ]-7 0.5 )

In practice, due to reflection, I construct outcomes y by Equation (2.11), which is a rear-

ranged version of Equation (2.3).

y =~ 5G)" (Box + B3Gx +¢) (2.11)

2.4.2 Simulated Estimates

Here, I present estimates of the extent of censoring-induced bias for both estimators.
From this, we see that, in general, censoring leads to biased estimates for both estimators,

with predictable exceptions. These results lend support to the analytic results derived in the
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prior section, further suggesting that censoring may lead to crucially biased estimates of the
parameters of peer effects models.

First, I look at bias in &; and &s. As an initial matter, recall that the measurement
error is in measuring Gx, leading to biased estimates of ay. The regressor for which «; is a
coefficient, x is not measured with error. However, to the extent that x is correlated with
Gx, we also see bias in estimates of &;.

Figure 2.1 conforms to expectations. Subfigure (a) presents the mean of 1000 simulations
of 200 schools of 25 students each (N = 5000). In Figure 2.1, the unconditonal probability
of a link in any given school is 0.35. Note first that, when ~; = 0, indicating no homophily,
there is no bias due to censoring. This conforms to known results, since in this case the
regressor x;s is uncorrelated with the measured-with-error regressor z;;. When v, < 0, we
see that, for low quantities of K (the maximum amount of friends permitted), we see high
amounts of bias, and these estimates are on average biased upward.

Subfigure (b) of Figure 2.1 shows that, at low K, there is substantial bias in mean
estimated &s. This bias is toward zero, as is the case with traditional attenuation bias.
Note that, similar to the formula from Bound, Brown and Mathiowetz (2001), the bias in
a9 and @; are in opposite directions whenever 7, < 0. That is, when the measured-with-
error variable and the correlated variable are positive correlated, their biases are in opposite
directions. This same pattern shows up in the actual empirical estimates in the sections that
follow.

Moving to Estimator 2 (@A ), censoring similarly causes bias in simulations. These results
are shown in Figure 2.2. Note that, for small values of K, all three estimates are biased
except in the case of Bg when v; = 0.

In sum, these results show that estimates of @ and 8 may be biased whenever there is
substantial censoring in the observed friendship data. The mean of all simulated estimates
converges to the true value of the parameter as we allow respondents to name more and

more links, as shown in Figures 2.1 and 2.2.
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Additionally, the amount of bias depends upon the amount of links that are censored.
For a given K, the quantity of links censored is inceasing in network density. Accordingly, in
AppendixE, Tables E.1 through E.5, I present additional results allowing the unconditional
probability of a link existing to be, alternatively, 0.20, 0.35, or 0.50. From this, we see that,
for a given censoring rule K, there is more bias in the estimates when the network is denser

(and thus more links are censored).

2.5 Bias in Real Datasets

2.5.1 AddHealth
2.5.1.1 Empirical Strategy

The National Longitudinal Study of Adolescent to Adult Health (AddHealth) is a long-
term panel study collected by researchers at the University of North Carolina. Throughout
the course of the study, they collect detailed data on demographics and a number of academic
and behavioral outcomes. Importantly, during the course of Wave 1 of the study, they also
collect detailed social network data. Crucially, as discussed in Section 2.2 above, they only
allow individuals to name up to five male and five female friends. As shown in Table 2.1,
there is substantial scope for censoring in the data, as a large percentage of individuals name
the maximum number of male and/or female friends.

Given the censoring induced by the survey design, in AddHealth we never actually observe
the “true” network. Thus, I cannot estimate & or B with the full network data. Rather,
I can estimate each wtih censoring at any number up to the maximum amount of friends
allowed to be listed. That is, I estimate & or B for K € {1,2,3,4,5}. These results compare

to the simulations in Figures 2.1 and 2.2, except that we only observe estimates for K < 5.
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2.5.1.2 Data Description

The AddHealth data has been employed to study the associations between peers and a
wide variety of academic and behavioral outcomes. For the purpose of this empirical exercise,
I look at five academic and three behavioral outcomes as follows. These are summarized
in Table 2.2, Panel A. For each outcome, I estimate & and B for K = 1,....,5. Panel B
summarizes the right-hand side variables that I use. Since there are nine such variables, for

each outcome and every censoring rule K, &; and &5 are 9-dimensional vectors.

Table 2.2: AddHealthVariables

Min Max

Panel A: Outcomes

Grade Point Average in All Subjects
Grade Point Average in English
Grade Point Average in Math
Grade Point Average in History
Grade Point Average in Science
Indicator for Has Drank Alcohol
Indicator for Got Drunk

Indicator for Smoked

O OO OO o oo
= = s s s s

Panel B: Independent Variables
Age

Grade

Hispanic

Black

Asian

Other Race

Born in the USA

Lives with Mother

Lives with Father

—_

(an)
—
N ©

S OO OO OO,
e e e e

2.5.1.3 Estimates

Estimates of & for the first outcome, GPA in All Subjects, are presented in Table 2.3.
Each column corresponds to a different censoring rule: Column 1 uses only those indicated
as first friends, Column 2 uses the first two, etc. Note that, as with the simulations in

Section 2.4, the estimates on the peer mean variables (Age, etc.) trend away from zero.
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These estimates correspond to &s.Correspondingly, the estimates on the raw variables (Age,
etc.) trend toward zero as we move from 1 to 5 observed friends.

To conserve space, I present the coefficients in graphical form. Figure 2.3 plots the
estimated coefficients for all outcomes in Table 2.2, plotted against censoring of 1 to 5
friends. This provides strong evidence that the pattern for GPA in All Subjects, shown in
Table 2.3, holds for many covariates and outcomes. On the left are plotted coefficients for
raw variables (Age, Grade, etc.), while the right column plots coefficients for corresponding
peer mean variables (Age, Grade, etc.). While not universal, there is a strong trend away
from zero for the latter, while the former tend to trend toward zero. These results are in
strong agreement with the simulation results presented above.

Next, I present estimates of B for the first outcome, GPA in All Subjects, in Table 2.4.
First, I note that estimated Bl is trending strongly upward as we observe more links. Figure
2.4 provides evidence that this trend holds for most of the eight outcomes.

Trends can be seen in the paths of coefficients Bg and 53 in Appendix E Figure E.1. While
less clear than the trend for d;, the coefficients on the demographic variables (Age, Grade,
etc.) in the left side of Figure E.1 tend to be toward zero. Similarly, to the extent trends
are apparent, the trends on the mean demographic variables on the right side of Figure E.1
tend to be away from zero as K increases.

In sum, this empirical exercise from AddHealth conforms to the predictions of the simu-
lations above. While we do not observe the “true” values of the parameters, at low levels of
K, there is substantial censoring of friendship netwroks. Due to this, we can see significant

trends in the path of & and /3’ as K increases from 1 to 5.

2.5.2 Nepal Menstrual Cups Data

A worry with Addhealth is that the indepenent variables in the above regressions are likely
not exogenous. Accordingly, caution should be used in interpreting any of the coefficients

above as causal. In partial answer to that, I here present results from an experimental
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Table 2.3: AddHealth Regression Results for Estimator 1 (GPA in All Subjects)

(1) (2) (3) (4) (5)
Age 019177 0.179%FF  0.171F%% -0.165°°F -0.160%**
(0.013)  (0.013)  (0.012)  (0.012)  (0.012)
Grade 0.178%%%  0.166%%*  0.156%%%  0.156%%*  0.152%%*
(0.016)  (0.017)  (0.018)  (0.018)  (0.019)
Hispanic S0.182FF% 0. 154%FK 0 137FFF _0,132%%% 0 127
(0.024)  (0.020)  (0.017)  (0.017)  (0.016)
Black “0.166%%%  -0.125%FF  _0.105%%%  -0.095%%*  -0.084%**
(0.023)  (0.023)  (0.023)  (0.024)  (0.024)
Asian 0.174%%%  0.162%FF  (.147FFF  0.147%FF  (.142%%
(0.028)  (0.026)  (0.024)  (0.023)  (0.023)
Other Race ~0.063%%%  -0.055%FF  _0.053%FF  _0.052%%*  _0,048%**

(0.015)  (0.015)  (0.015)  (0.014)  (0.014)
Born in the USA  -0.078%%  -0.093%** _0.096*** -0.098%** -0.097***
(0.032)  (0.028)  (0.026)  (0.025)  (0.025)

Age S0.117H*FF _0.176%F 10.225%FF  _0.253%**  _(.269%**
(0.013) (0.020) (0.024) (0.027) (0.029)
Grade 0.097*%%  (.155%**  (.203%kk  (.223%FF  (.238%**
(0.015) (0.022) (0.025) (0.028) (0.029)
Hispanic -0.138%**  _0.167FFF  -0.190%**  -0.196*** -(0.199%**
(0.031) (0.039) (0.047) (0.051) (0.055)
Black S0.117%%%  _0.147%%  _0.159%FF  _0.159%**  _(0.167H*
(0.032) (0.040) (0.044) (0.046) (0.047)
Asian 0.093%*F*  (0.102%*  0.118%* 0.113* 0.117*
(0.029) (0.043) (0.055) (0.061) (0.065)
Other Race -0.070%**  -0.104%FF  _0.125%FF  _0.132%**  _(.153%H*
(0.023) (0.032) (0.037) (0.041) (0.045)
Born in the USA 0.012 0.027 0.007 -0.004 -0.020
(0.034) (0.047) (0.055) (0.059) (0.062)
Constant 4.566%FF 4. 742%F%  4.028%kk 4 gk 5 ()22%*x
(0.184) (0.222) (0.244) (0.253) (0.262)
Observations 32,315 32,315 32,315 32,315 32,315
R-squared 0.122 0.129 0.134 0.137 0.139

Notes: Standard errors in parentheses, clustered by school (138 schools).
¥ p<0.01, ** p<0.05, * p<0.1. Coefficients for Lives with Mother, Lives
with Father, Lives with Mother, and Lives wtih Father not shown. Sample
restricted to observations with non-missing data for all specifications.
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Table 2.4: AddHealth Regression Results for Estimator 2 (GPA in All Subjects)

(1) (2) (3) (4) (5)
GPA in All Subjects  0.681FF%  (0.845%FF (. 896%*F  (.924%FF  (.928%F*
(0.075)  (0.065)  (0.061)  (0.054)  (0.052)

Age S0.138%F%  _0.119%**  _Q.117%%k  _0.115%kk  _0.113%%*
(0.012) (0.012) (0.012) (0.011) (0.011)
Grade 0.119%%%  0.099%%F  (0.092%**  (0.090%**  (.087***
(0.016) (0.017) (0.017) (0.017) (0.018)
Hispanic S0.112%F%  _0.089%**  _(.082%**k  _0.078*F*k  _0.078%FF*
(0.018) (0.017) (0.017) (0.017) (0.017)
Black S0.118%F%  _0.091%**  -0.083***  _0.076%**  -0.064**
(0.027) (0.028) (0.027) (0.027) (0.027)
Asian 0.108%*%  0.105%%F  0.104%F*  0.111%**  (.109%**
(0.021) (0.021) (0.023) (0.023) (0.023)
Other Race -0.043%%  -0.041**  -0.038**  -0.036**  -0.034**
(0.017) (0.016) (0.016) (0.015) (0.015)
Born in the USA -0.078%F%F  _0.081%**  -0.084***  _0.083*F*F  _0.086%**
(0.025) (0.024) (0.023) (0.023) (0.023)
Age 0.019 0.049** 0.046* 0.045* 0.034
(0.023) (0.025) (0.025) (0.026) (0.026)
Grade -0.012 -0.035 -0.028 -0.026 -0.014
(0.022) (0.023) (0.025) (0.026) (0.026)
Hispanic 0.011 0.022 0.024 0.034 0.037
(0.027) (0.029) (0.028) (0.028) (0.031)
Black 0.020 0.048 0.056 0.066* 0.060%*
(0.034) (0.037) (0.036) (0.036) (0.035)
Asian -0.027 -0.078%F  -0.101%*  -0.109%**  _0.102%**
(0.030) (0.036) (0.040) (0.038) (0.037)
Other Race -0.017 0.003 0.002 0.002 0.001
(0.024) (0.027) (0.031) (0.033) (0.033)
Born in the USA 0.045%* 0.041 0.028 0.034 0.038
(0.022) (0.028) (0.030) (0.033) (0.034)
Constant 1.555%*%*  0.806**  0.652** 0.532* 0.537**
(0.346) (0.315) (0.301) (0.272) (0.263)
Observations 27,740 27,740 27,740 27,740 27,740
R-squared 0.178 0.216 0.257 0.279 0.295

Notes: Standard errors in parentheses, clustered by school (138 schools). ***
p<0.01, ** p<0.05, * p<0.1. Coefficients for Lives with Mother, Lives with Fa-
ther, Lives with Mother, and Lives wtih Father not shown. Sample restricted to
observations with non-missing data for all specifications. Excluded instruments
for endogenous GPA in All Subjects are means of second-order links (Bramoullé,
Djebbari and Fortin, 2009; DeGiorgi, Pelllizzari and Radaelli, 2010).
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Figure 2.4: Add Health Estimated Coefficients on Mean Dependent Variable (Estimator

2)
@
= ___;_4___,_4_________-_\.
o - -
m
=
2o
E o
=
c
3 I g
80::_
e |
=
c ™ A
o e
= /
(=]
D w
@
w T T T T T
1 2 3 4 5

Max Number of Friends

——— GPA in All Subjects ——— GPA in English

——— GPA in Math ——— GPA in History
——— GPAn Science ———— [rank Alcohol
Got Drunk Smoked

intervention where the right-hand variables were assigned randomly.

2.5.2.1 Project Description

Many barriers exist to girls’ schooling in the developing world. One often cited by pol-
icymakers is menstruation and the need for sanitary products. Accordingly, in an effort to
test wehther relieving this barrier would help girls attend school, Oster and Thornton (2011)
conducted a randomized trial of an intervention in rural Nepal.

The intervention consisted of randomly assigning girls to treatment and control groups.
Girls in the treatment group received free sanitary products (a menstrual cup) as well as
instruction on use. Importantly for purposes here, the study team collected detailed data on
social connections among girls in the study schools. They asked each girl to name her friends,
up to a maximum of three. From this they were able to study how this new technology was

adopted through the social network (Oster and Thornton, 2012).
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2.5.2.2 Empirical Strategy

Due to data limitations, I do not estimate B here. Rather, I focus on &. As discussed
earlier, a large fraction of the girls in the survey named the maximum number of links allowed
(three). Accordingly, as in AddHealth, we do not directly observe the entire social network
and can only calculate censored versions of & and look for trends.

I focus on two outcomes that are central to the analysis in Oster and Thornton (2012).
The first is whether a girl tried to use the menstrual cup. The second is whether she
successfully used the product. See the prior paper for a fuller description of these variables
and their construction.

Further, since only girls in the treatment group had access to a menstrual cup, only
girls in the treatment group could try to use and successfully use the product. Therefore, I

estimate Equation (2.12) within the treatment group:

Vist = g + aTreat;s + €4 (2.12)

where y; is an outcome (Tried or Used) for girl ¢ in school s at time ¢. Treat,s is the fraction
of a girl’s friends who are also assigned to the treatment group. Note that, since treatment
is randomly assigned within a school, we can be confident that Treat;s is independent in
expectation of unobserved €. I estimate &s in Equation (2.12) calculating Treat;s censored

at 1, 2, or 3.

2.5.2.3 Results

Here, I present estimates of the parameters of Equation (2.12) for different censoring
rules. From this, we see that estimates of s, trend strongly away from zero as we move from
1 to 3 observed friends. This provides further support to the analytic and simulated results.

Oster and Thornton (2012) collected monthly outcome data for all individuals at 13

points in time. Accordingly, I present estimates of censored s in two different ways. First, I
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pool all months together in Table 2.5. Odd-numbered columns are specifications using only
Treat;s and school fixed effects as right-hand variables, while even-numbered columns also
add demographic variables and baseline friend counts. In Panel A, we see that the estimates
for outcome “Tried to Use” strongly increase when we move from one to two observed friends,
then do not increase between two and three. In Panel B, the estimates for “Used” increase

when moving from one to two and from two to three.

Table 2.5: Nepal Peer Effects Estimates (Months Pooled)

(1) (2) (3) (4) (5) (6)

Max Number of Friends 1 1 2 2 3 3

Panel A: Tried to Use

Treated 0.059%* 0.047  0.152*%**F  0.178***  (0.138**  (.153***
(0.035)  (0.037)  (0.047) (0.050) (0.055) (0.058)

Baseline Controls NO YES NO YES NO YES

R-squared 0.148 0.168 0.155 0.174 0.152 0.171

Panel B: Used

Treated 0.129%%*  0.062*  0.274***  (0.244**%* (.335%** (.299%**
(0.036)  (0.035)  (0.049) (0.047) (0.056) (0.054)

Baseline Controls NO YES NO YES NO YES

R-squared 0.256 0.349 0.271 0.364 0.274 0.367

Notes: N = 924 in all specifications. Standard errors in parentheses. All specifications
include school fixed effects. *** p<0.01, ** p<0.05, * p<0.1. Sample restricted to
observations with non-missing data. School fixed effects included in all specifications.
Baseline controls include demographic variables and number of friends reported.

Next, in Figure 2.5, I present estimates of & from Equation (2.12) run separately for
each month in the sample. Similar to the pooled results, in Subfigure (a) we see a sharp
increase in the coefficients when moving from 1 to 2 observee friends, and a smaller increase
moving from 2 to 3. In Subfigure (b) there is a sharp upward trend when increasing observed
friends both from 1 to 2 and from 2 to 3. These results provide further evidence of the extent

to which censoring in network data may bias peer effects estimates.
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Figure 2.5: Nepal Peer Effects Estimates (Disaggregated by Month)
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2.6 Bias Correction Strategies

The prior sections showed that censoring may lead to bias. I show bias both analytically
and by simulation in Sections 2.3 and 2.4, respectively. Then Section 2.5 presented results
from two datasets suggesting that this bias is present in real datasets. Given these results,
this section presents two strategies to deal with censoring-induced bias. Under some assump-
tions, both estimators lead to consistent estimates of the true parameters of the model. I
present simulations of these bias-corrected estimators to show that they perform reasonably

well when the data-generating process is known.

2.6.1 Uncensored Subsample

If the researcher has the ability to manipulate the data generating process, the best
solution is to simply collect uncensored data. However, this may not always be practical due
to cost. Accordingly, a middle ground may be to collect an uncensored subsample. Collecting
this uncensored subsample allows for consistent estimation of the parameters of the model,

either a or f3.

Recall from Proposition 2.7, we know that plim 4°"*** = B,a. Accordingly, a*"** is a
consistent estimator of B,a. Further, recall that
—1
B, — E[x'x] E[x'Hyx] Elx'x]  E[x'Hyx] (2.13)
E[x'Hyx| E[x'Hy'Hyx] Ex'Gx] E[x'Hy'Gx]

Accordingly, from the uncensored subsample, we can construct an empirical analogue of B,
as a plug-in estimator B,,. We can then construct dpc = E; Lacensk With some regularity
conditions, by the Slutzky Theorem, plim agc = a.

Similar logic applies for constructing a bias-corrected estimator ,@ BC = Bgl Bcens’k, where

plim fpe = 5.
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2.6.2 Estimate on Uncensored Nodes

As an alternative bias-correction strategy, I slightly modify an estimator developed in
Chandrasekhar and Lewis (2011). The idea here is to restrict estimation to nodes (individ-
uals) that have no missing data. The authors of that paper were dealing with a slightly
different context than the one at issue here. Their data were randomly sampled at the node
level, so that the researchers observed all links for a randomly-sampled subset of the popula-
tion. Measurement error in the network arose due to the fact that only 46% of the population
was sampled. In that context, restricting estimation to the 46% who were sampled ensured
that there was no measurement error on any regressors.

In the case of censoring, missingness is not random. Rather, we can only be sure in-
dividuals have no missing network links if they name fewer than the maximum allowable
links on the survey. For this subset of the population, Hyx = Gx. Accordingly, there is no
measurement error when we estimate & restricted to these individuals.

Further, as pointed out by Chandrasekhar and Lewis (2011), if we estimate 3 restricted to
those with no missing links, there will be measurement error on thier second-order links G%x.
However, this measurement error is uncorrelated with measurement error of their first-order
links, which is uniformly zero. Crucially, for this subset of individuals, the measurement
error of excluded instrument Hy*x is uncorrelated with (nonexistent) measurement error of
the exogenous regressor Hyy = Gy. In sum, restricting estimation to those individuals for

whom we know their entire network should produce consistent estimates of B )

2.6.3 Simulations of Bias-Corrected Estimators

Table 2.6 presents median estimated coefficients for three estimators.”

1. Uncorr, the uncorrected estimator. These correspond to the estimates presented in

Tables E.3 to E.5 and Figure 2.1.

5 These estimates are quite noisy, especially at lower numbers of K, so means may be skewed by outliers.
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2. US, the Uncensored Subsample method.
3. CL, the method derived in Chandrasekhar and Lewis (2011).

In all simulations, the unconditional probability of a link existing is 0.35, while I allow v; to
vary. From Panel A, we see that, as discussed above, whenever v; = 0, there is no bias in
censored estimates of &;. Both bias-corrected estimators for &; perform much better than
the uncorrected one whenever v; < 0.

Panel B shows similar results for do, except that the uncorrected estimator is biased
even when 79 = 0. Note that the bias-corrected estimators “US” and “CL” remain mostly
constant for the entire range of K, while the uncorrected estimator trends strongly as K
increases. That is, the medians of the bias-corrected estimators are not sensitive to the
number of links observed, unlike the uncorrected estimator.

Estimates of B in Table 2.7 show similar patterns. In general, the uncorrected estimator
is biased for small K, while both “US” and “CL” perform reasonably well at small K. Again
note the exception that when v, = 0, uncorrected Bg remains a consistent estimator of [,
even in the presence of censoring.

From this section, we have learned that both the Uncensored Subsample and the CL
estimator are consistent even in the presence of censoring. However, these simulations rely
crucially upon a homogeneity assumption. When there is homogeneity on the marginal
effects 3, then the estimators may not return consistent estimates of the target parameters,

which is the subject of the next section.

2.7 Heterogeneity and Random Coefficients

As shown above, the assumption of homogeneous marginal effects, along with exogeneity
conditions, is sufficient for consistency of the bias-corrected estimators. However, the as-
sumption of homogeneous marginal effects is a very strong one. In this section, I discuss the

effects of relaxing this assumption, demonstrating that none of the estimators are consistent
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Table 2.6: Comparison of Bias-Corrected &

1 =0 M =-1 M=-2 |
Estimator | Uncorr  US CL | Uncorr US CL | Uncorr US CL

Panel A: &y

2 1.116  1.117 1.425 | 1.425 0.947 0.982 | 1.399 0.949 0.974
3 1.116  1.117 1.102 | 1.279 0.941 0.974 | 1.249 0.936 0.959
4 1.116  1.117 1.092 | 1.164 0.936 0.967 | 1.140 0.919 0.947
5 1.116  1.117 1.095 | 1.074 0.929 0.959 | 1.052 0.908 0.938
6 1.115 1.116 1.101 | 1.003 0.923 0.952 | 0.982 0.897 0.926
7 1.115 1.116 1.103 | 0.957 0.918 0.943 | 0.931 0.888 0.919
8 1.116 1.116 1.105 | 0.930 0.913 0.935 | 0.901 0.884 0.907
9 1.116 1.116 1.108 | 0.916 0.911 0.928 | 0.884 0.881 0.897
10 1.116 1.116 1.111 | 0.910 0.909 0.921 | 0.880 0.879 0.891
11 1.116 1.116 1.113 | 0.909 0.908 0.917 | 0.878 0.878 0.885
12 1.116 1.116 1.115 | 0.908 0.908 0.913 | 0.877 0.878 0.881
13 1.116 1.116 1.115 | 0.908 0.908 0.911 | 0.877 0.877 0.879
14 1.116 1.116 1.115 | 0.908 0.908 0.909 | 0.877 0.877 0.878
15+ 1.116 1.116 1.116 | 0.908 0.908 0.908 | 0.877 0.877 0.878
Panel B: &o

2 0.520 1.639 1.420 | 0.811 1.987 1.920 | 1.342 2.237 2.316
3 0.762 1.625 1.280 | 1.099 1.999 1.900 | 1.584 2.261 2.286
4 0.994 1.619 1.310 | 1.357 2.007 1909 | 1.785 2.278 2.273
) 1.201  1.625 1.360 | 1.584 2.014 1.912 | 1.957 2.297 2.271
6 1375 1.623 1.412 | 1.770 2.029 1.922 | 2101 2312 2.273
7 1499 1.626 1.467 | 1.904 2.043 1.945 | 2211 2321 2.282
8 1.573  1.626 1.506 | 1.986 2.049 1.967 | 2.280 2.330 2.292

9 1.611 1.628 1.542 2.029 2.063 1.986 | 2.318 2.337 2.303
10 1.626 1.630 1.572 | 2.047 2.055 2.007 | 2.334 2.340 2.312
11 1.629 1.631 1.597 | 2.053 2.056 2.023 | 2.340 2.341 2.321
12 1.631 1.631 1.613 | 2.055 2.056 2.037 | 2.342 2.342 2.331
13 1.631 1.631 1.622 2.056 2.056 2.045 2.342  2.342 2.336
14 1.631 1.631 1.628 2.056 2.056 2.051 2.342  2.342 2.339
15+ 1.631 1.631 1.630 | 2.056 2.056 2.054 | 2.342 2.342 2.342

Table presents median simulated estimates. Pr(link) = 0.35 in all simulations.

Standard deviations of simulated estimates in brackets. 1000 simulations performed
with 200 schools of 25 students each (N = 5000). Uncensored subsample consists of
10% of the total sample (20 schools of 25 students each).
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Table 2.7: Comparison of Bias-Corrected B

71 =0 1 =-1 mMn=-2 \

Estimator | Uncorr  US CL | Uncorr US CL | Uncorr US CL
Panel A: 1

2 [ 0.726  0.605 0.950 | 0.693 0.625 0.597 | 0.979 0.598 0.583
3 0.746  0.602 0.600 | 0.701 0.605 0.607 | 0.789 0.595 0.595
4 0.734 0.602 0.589 | 0.708 0.596 0.602 | 0.725 0.602 0.597
5 0.704 0.600 0.597 | 0.701 0.595 0.599 | 0.708 0.597 0.599
6 0.671 0.600 0.594 | 0.682 0.598 0.598 | 0.691 0.598 0.598
7 0.641 0.599 0.598 | 0.656 0.597 0.600 | 0.669 0.597 0.598
8 0.619 0.598 0.597 | 0.632 0.596 0.597 | 0.645 0.596 0.599
9 0.607 0.599 0.599 | 0.614 0.599 0.601 | 0.622 0.598 0.598
10 0.602 0.599 0.598 | 0.606 0.598 0.600 | 0.609 0.598 0.599
11 0.599 0.598 0.599 | 0.601 0.599 0.600 | 0.602 0.598 0.599
12 0.599 0.599 0.600 | 0.599 0.598 0.601 | 0.599 0.598 0.597
13+ 0.599 0.599 0.598 | 0.599 0.599 0.598 | 0.599 0.598 0.598
Panel B: 32

2 [ 0971 0996 1.256 | 1.361 0.990 0.997 | 1.360 0.992 1.000
3 0.967 0.997 1.002 | 1.253 0.992 1.002 | 1.262 0.997 1.000
4 0.969 0.998 0.998 | 1.174 0.992 1.001 | 1.185 0.993 1.000
5 0.976 0.998 0.997 | 1.113 0.997 1.000 | 1.124 0.996 1.000
6 0.983 0.999 0.998 | 1.067 0.998 1.001 | 1.074 0.998 1.000
7 0.990 1.000 0.998 | 1.035 0.999 1.000 | 1.040 0.997 0.999
8 0.995 0.999 0.998 | 1.016 1.000 1.000 | 1.018 0.997 1.000
9 0.998 0.999 0.999 | 1.007 1.000 0.999 | 1.005 0.997 0.999
10 0.998 0.999 0.999 | 1.003 1.001 1.000 | 1.000 0.998 0.999
11 0.999 0.999 0.999 | 1.001 1.001 1.000 | 0.999 0.998 0.998
12 0.999 0.999 0.999 | 1.001 1.001 1.001 | 0.999 0.998 0.998
13+ 0.999 0.999 0.999 | 1.001 1.001 1.001 | 0.999 0.999 0.998
Panel C: Bg

2 [ -0.409 0.495 0.820 | -0.608 0.485 0.512 | -1.240 0.532 0.539
3 -0.288 0.498 0.451 | -0.414 0.508 0.482 | -0.554 0.543 0.514
4 -0.130  0.495 0.480 | -0.241 0.526 0.494 | -0.240 0.522 0.508
5 0.044 0.502 0.501 | -0.062 0.522 0.503 | -0.077 0.526 0.502
6 0.211 0.504 0.503 | 0.112 0.511 0.497 | 0.073 0.517 0.508
7 0.344 0.502 0.497 | 0.261 0.514 0.496 | 0.208 0.512 0.514
8 0.430 0.503 0.497 | 0.374 0.509 0.505 | 0.330 0.516 0.506
9 0.474 0.501 0.499 | 0.449 0.507 0.502 | 0.415 0.510 0.504
10 0.493 0.501 0.499 | 0.483 0.506 0.500 | 0.474 0.514 0.501
11 0.499 0.500 0.502 | 0.500 0.505 0.502 | 0.496 0.510 0.505
12 0.500 0.501 0.502 | 0.504 0.507 0.502 | 0.504 0.509 0.511
13+ 0.500 0.501 0.502 | 0.505 0.505 0.504 | 0.508 0.508 0.508

Table presents median simulated estimates.

Pr(link) = 0.35 in all simulations.

Standard deviations of simulated estimates in brackets. 1000 simulations performed
with 200 schools of 25 students each (N = 5000). Uncensored subsample consists of
10% of the total sample (20 schools of 25 students each).
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even in the absence of censoring.

2.7.1 Set-up and Defining the Target Parameter

Suppose that we allow heterogeneity on . That is, for each student ¢ in school s, there
exists a marginal effect ;; that may be non-constant. Accordingly, a generalization of

Equation (2.2) is Equation (2.14).

Yis = Bo + YisPis + TisPois + TisPsis + €is (2.14)

Since ;s is now drawn from some distribution, we must define the parameter of interest. For
the sake of simplicity, I assume that ;; € B, a compact subset of R3. Accordingly, the first
moment exists. While other features of this distribution may be of interest, for purposes
here I assume that the parameter of interest is E[3;,] = 3, defined in Wooldridge (2010) as
the average partial effect (see also Heckman and Vytlacil, 1998; Wooldridge, 2003). This is
a generalization of the notion of average treatment effect that takes prominence in much of

the treatment effects literature.
Assumption 2.3. Ele;|8;s] =0V j

In this entire section, I assume exogeneity of the unobserved (;,. This assumption is
formalized in Assumption 2.3. Essentially, this requires €5 is (mean) independent of hetero-
geneity in the effect of regressors on y;,. This mean independence assumption is standard in
the literature on correlated random effects (Wooldridge, 1997; Heckman and Vytlacil, 1998;
Wooldridge, 2003). Given Assumption 2.3, primary interest lies in consistently estimating j3

and &, which is defined below.

2.7.2 To What Do the Estimators Converge in the Presence of Heterogeneity

First, I make an assumption on the data-generating process. Unobserved heterogeneity

in the marginal effect ;s needs to be mean independent of observable x and the network
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G. This is an admittedly strong assumption that rules out dependence between unobserved
Bis and x;,. the literature on correlated random effects discusses identification when this

assumption fails (See Wooldridge, 1997; Heckman and Vytlacil, 1998; Wooldridge, 2003).
Assumption 2.4. E[3;|x, G] (Uncorrelated Random Effects)

Given Assumptions 2.3 and 2.4,

plima = | ’ + (Z E[(Bsis + Blisﬁzz’s)ﬁﬁ‘s] (E[[x, Gx]'[x, Gx]])_1
B3 4+ E[B1isB5is] k=1
E[x'GF1x]
(2.15)
E[x'G'GF1x]

Importantly, 5;s being independent of the network-formation process is a crucial prerequisite.

I note that plim & is a very complicated expression that again depends on the relationship

between observed characteristics x, the network G, and unobserved heterogeneity [;,.
Further, and crucially, B is not a consistent estimator of 5. This is due to a variation on

the reflection problem. To see this, define the following matrices:

W = {Gy X Gx]
7= |:G2X X Gx}

From this, w;,, 2is € R? are row vectors that denote the corresponding elements of matrices

W and Z. Accordingly, with Assumptions 2.3 and 2.4,

plim B“"CG”S = B[z} wis) B[z} wisBis] (2.16)

From this, it is clear that E[f;s|w;s] = B is sufficient for consistency. However, whenever ;; is
non-constant, this condition will not hold. Assuming ;s > 0, then higher ;; implies higher

Yis. Since ¢ affects his peers, this implies higher g;;. Accordingly, even without censoring,
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when f;s allows for heterogeneity, the estimator B is not in general a consistent estimator of
.

This result is closely related to the standard reflection problem identified by Manski
(1993). He identified the correlation between g;s and unobserved ¢;s as leading to necessary
endogeneity in the system. Correlation between 3;, and [3;, leads to inconsistency in a similar
manner.

This is not an if and only if condition, however. Rather, this result only states that a
particular and widely-known condition for consistency does not hold for this particular IV
estimator. It is possible that other reasonable conditions may be found, but the simulations
provided hereafter suggest that the estimator is inconsistent for a wide variety of parameter

values.

2.7.3 When Data Is Censored

The prior discussed the limits of the estimators & and BA when there is no censoring.
From that, we saw that & converges to a complicated expression while B in general does not
converge to B .

Define an individual’s friend count as F;, < M. Similar to the uncensored result in
Equation 2.15, when data is censored at K < M,

: ~ K ,cens 62 S k
plim & = | + (Z E[(Bsis + BrisBais) Bris| Fis < K]
53 + E[ﬁlisﬁ3is|F‘is S K] k=1

) . E[x'GFx|F;, < K]
(E[[x, Gx]'[x, Gx]|Fis < K]) (2.17)
Ex'G'G*1x|F;, < K])

Accordingly, if we are interested in plim & (uncensored), a sufficient condition for plim &*-cens

plim & is that the conditional expectations are equal to the unconditional ones. Importantly,
this requires independence of unobserved heterogeneity ;s from the number of friends Fj,.

This will clearly fail if, for example, those with higher unobserved ability (captured by Sis)
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also tend to more more friends (captured by Fi;).

Analogous to the uncensored result in Equation 2.16, with data censored at K < M,

plim ﬂcenSK Elzl wis|Fis < K|~ 1E[z WisPBis|Fis < K] (2.18)

Clearly, plim B“"S’K depends on the censoring rule K whenever §;; and Fj, are correlated,

such as when unobserved ability is correlated with number of friends.

2.7.4 Simulations with Heterogeneity

For purposes of simplicity, I assume a simple data-generating process. Links are formed
according to the same rule as in Section 2.4. However, I introduce heterogeneity in ;s that
depends on degree in the following manner: ;s takes on two values, with switching at the

median of the degree distribution. The set-up is described in Table 2.8.

Table 2.8: Values of (;, for Simulations with Heterogeneity

Parameter | Below Median Above Median  Exp
Bris 0.6 0.2 0.4

DBais 1 0.5 0.75
Bsis 0.5 0.25 0.375

Table 2.9 presents medians of simulations of &. For each level of K and 7, I present the
raw uncorrected medians as well as the medians of the “US” and “CL” estimators. From
Panel A, we see that, as before, when v; = 0, censoring leads to no bias in &, while CL is in
biased. This is due to the fact that, for small levels of K, the CL estimator only uses those
who are uncensored and thus have the (;, for the lower half of the degree distribution.

Table 2.10 presents analogous results for B . From this we see that, as discussed above,
even without censoring K = 15+, none of the estimators is consistent for
E[Bis] = (0.4,0.75,0.375)’, except in the single case of By when v = 0 (and thus x and Gx

are independent).
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Table 2.9: Comparison of Bias-Corrected & (with Heterogeneity)

=0 M=-1 M=-2 \

Estimator | Uncorr  US CL | Uncorr US CL | Uncorr US CL
Panel A: &y

2 0.791 0.792 2.116 | 1.314 1.058 0.968 | 1.355 1.065 0.952
3 0.791 0.792 1.084 | 1.235 1.059 0.954 | 1.276 1.080 0.920
4 0.791 0.792 1.055 | 1.170 1.052 0.944 | 1.209 1.076 0.896
5 0.791 0.791 1.064 | 1.113 1.039 0.942 | 1.141 1.056 0.878
6 0.791 0.791 1.062 | 1.063 1.021 0.943 | 1.075 1.025 0.865
7 0.791 0.791 1.063 | 1.020 1.002 0.951 | 1.012 0.987 0.862
8 0.791 0.791 1.064 | 0.988 0.980 0.959 | 0.959 0.950 0.861
9 0.791 0.791 1.064 | 0.968 0.964 0.962 | 0.922 0.920 0.867
10 0.791 0.791 0.935 | 0.958 0.958 0.955 | 0.907 0.906 0.872
11 0.791 0.791 0.863 | 0.955 0.955 0.953 | 0.901 0.901 0.879
12 0.791 0.791 0.824 | 0.954 0.954 0.952 | 0.899 0.899 0.886
13 0.791 0.791 0.806 | 0.954 0.954 0.952 | 0.898 0.898 0.891
14 0.791 0.791 0.796 | 0.954 0.954 0.952 | 0.898 0.898 0.894
15+ 0.791 0.791 0.792 | 0.954 0.954 0.953 | 0.898 0.898 0.896
Panel B: g

2 0.265 0.856 1.831 | 0.461 1.085 1.872 | 0.879 1.450 2.282
3 0.390 0.859 1.002 | 0.618 1.080 1.831 | 1.012 1.426 2.247
4 0.510 0.857 1.009 | 0.764 1.097 1.806 1.135 1.426 2.225
5 0.617 0.852 1.027 | 0.902 1.122 1.781 | 1.262 1.460 2.206
6 0.707 0.849 1.033 | 1.025 1.159 1.753 | 1.385 1.508 2.184
7 0.773 0.848 1.047 | 1.129 1.199 1.717 | 1.497 1.565 2.155
8 0.812 0.845 1.063 1.207 1.236 1.683 1.592 1.619 2.124
9 0.833 0.844 1.075 | 1.257 1.269 1.635 | 1.653 1.664 2.053
10 0.840 0.843 0.968 | 1.280 1.284 1.500 | 1.681 1.685 1.923
11 0.842 0.843 0.906 1.288 1.290 1.409 1.692 1.693 1.831
12 0.843 0.843 0.871 | 1.290 1.290 1.353 | 1.696 1.697 1.769
13 0.843 0.843 0.855 1.291 1.291 1.323 1.697 1.697 1.734
14 0.843 0.843 0.848 | 1.291 1.291 1.304 | 1.698 1.698 1.714
15+ 0.843 0.843 0.845 | 1.291 1.291 1.297 | 1.698 1.698 1.703

Table presents median simulated estimates.

Pr(link) = 0.35 in all simulations.

Standard deviations of simulated estimates in brackets. 1000 simulations performed
with 200 schools of 25 students each (N = 5000).
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Table 2.10: Comparison of Bias-Corrected § (with Heterogeneity)

71 =0 1 =-1 mMn=-2 \

Estimator | Uncorr  US CL | Uncorr US CL | Uncorr US CL
Panel A: 1

2 [ 0.547 0.216 1.391 | 0.564 0.281 0.644 | 1.110 0.556 0.592
3 0.591 0.286 0.633 | 0.551 0.339 0.596 | 0.724 0.427 0.606
4 0.569 0.308 0.594 | 0.542 0.336 0.592 | 0.618 0.432 0.600
5 0.516 0.321 0.609 | 0.517 0.338 0.596 | 0.623 0.483 0.601
6 0.452 0.321 0.581 | 0.466 0.320 0.602 | 0.635 0.536 0.599
7 0.395 0.321 0.601 | 0.410 0.307 0.601 | 0.629 0.563 0.601
8 0.358 0.323 0.601 | 0.344 0.291 0.603 | 0.611 0.571 0.599
9 0.343 0.329 0.601 | 0.298 0.274 0.597 | 0.589 0.568 0.603
10 0.335 0.331 0483 | 0.274 0.269 0.517 | 0.578 0.570 0.610
11 0.333 0.330 0.407 | 0.263 0.261 0.448 | 0.572 0.568 0.608
12 0.333 0.332 0.370 | 0.259 0.259 0.382 | 0.570 0.569 0.596
13+ 0.333 0.333 0.347 | 0.259 0.258 0.323 | 0.569 0.569 0.587
Panel B: 32

2 [ 0.735  0.775 1.973 | 1.274 1.059 1.004 | 1.321 1.097 0.998
3 0.732 0.771 0975 | 1.210 1.063 1.004 | 1.275 1.107 0.998
4 0.735 0.766 0.999 | 1.157 1.057 1.002 | 1.227 1.109 0.997
5 0.740 0.764 1.004 | 1.109 1.045 1.003 | 1.179 1.102 0.999
6 0.746  0.762 1.001 | 1.065 1.027 1.002 | 1.133 1.087 0.999
7 0.752  0.762 1 1.027 1.008 1.003 | 1.085 1.059 0.997
8 0.757 0.761 1.001 | 0.997 0.988 1.003 | 1.042 1.031 0.997
9 0.759  0.761 1 0.975 0.972 0.999 | 1.010 1.004 0.996
10 0.760 0.760 0.888 | 0.966 0.965 0.980 | 0.994 0.992 0.994
11 0.760 0.760 0.823 | 0.963 0.962 0.970 | 0.988 0.987 0.991
12 0.760 0.760 0.790 | 0.962 0.961 0.965 | 0.986 0.985 0.989
13+ 0.760 0.760 0.773 | 0.961 0.961 0.963 | 0.985 0.985 0.988
Panel C: Bg

2 [ -0.171  0.744 1.680 | -0.431 0.609 0.385 | -1.470 0.253 0.515
3 -0.110 0.636 0.475 | -0.276 0.520 0.508 | -0.540 0.488 0.489
4 0.003 0.583 0.485 | -0.128 0.525 0.516 | -0.218 0.450 0.505
5 0.137 0.561 0.498 | 0.027 0.546 0.507 | -0.131 0.354 0.501
6 0.277 0.545 0.514 | 0.226 0.601 0.499 | -0.071 0.257 0.507
7 0.388 0.536 0.504 | 0.426 0.663 0.489 | 0.031 0.234 0.504
8 0.462 0.531 0.502 | 0.604 0.723 0.485 | 0.142 0.255 0.502
9 0.498 0.526 0.501 | 0.738 0.792 0.494 | 0.250 0.307 0.468
10 0.512 0.520 0.504 | 0.801 0.820 0.532 | 0.297 0.322 0.363
11 0.518 0.520 0.510 | 0.826 0.832 0.605 | 0.322 0.330 0.316
12 0.519 0.520 0.507 | 0.832 0.832 0.678 | 0.330 0.333 0.308
13+ 0.520 0.520 0.515 | 0.836 0.836 0.746 | 0.334 0.336 0.308

Table presents median simulated estimates.

Pr(link) = 0.35 in all simulations.

Standard deviations of simulated estimates in brackets. 1000 simulations performed
with 200 schools of 25 students each (N = 5000). E[S81;s] = 0.4, E[B2s] = 0.75,
E[B3is] = 0.25 in all simulations.
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2.8 A Note on Graphical Reconstruction

An additional method is more complicated and relies upon graphical reconstruction. This
is the primary method developed in Chandrasekhar and Lewis (2011). The idea is to use
the uncensored observations to estimate a model that can then be used to impute values
on the censored ones. As the authors of that paper note, this requires placing substantial
structure on the problem. Any method of graphical reconstruction requires first specifying
a model for how the network is formed.Recent papers have extended this approach using
statistical random graph models for graphical reconstruction (Chandrasekhar and Jackson,
2014; Williams, 2016).

The method developed by Chandrasekhar and Lewis (2011) is closely related to methods
for multiple imputation (See Rubin, 1976; Cameron and Trivedi, 2005). The validity of these
methods requires strong assumptions that are likely to fail in the case of censored data. Most
importantly, the assumption that data is missing conditionally at random (MCAR) does not
hold in this setting. Consider the simple model of network formation used to generate the

simulations in Section 2.4. Links are listed in order of utility Ujjs, such that

lLijs = {10 + | Xis — Xjs|m1 + wijs > 0} = 1{U;;5 > 0}

The MCAR assumption requires u;;s be distributed the same for observed and unobserved
(censored) links. This is clearly not going to be true. Rather, even conditional on | X;s — X,
u;;s will tend to be higher for observed links than unobserved ones. Even if we correctly
specify the functional form of the data-generating process, the fact that data are not missing
conditionally at random implies that we will get biased estimates of the parameters 7, leading

to erroneous graphical reconstruction.
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2.9 Conclusion

As economists have moved beyond a classroom model of peer effects, the collecting of
accurate network data has become more and more important. However, many efforts to
collect such data censor the number of links that may be listed. This paper investigates the
implications of censoring for estimates of peer effects and to provides strategies to overcome
these limitations. In doing so, I make two primary contributions to the literature.

First, I document the potential for bias in estimates of linear-in-means models that are
estimated with censored network data. I do this first analytically then by simulation. Then
I estimate these same parameters while varying the number of links observed in two different
datasets. These results all suggest that censoring may crucially bias estimates.

Second, I suggest two strategies for recovering consistent estimates of the target parame-
ters. First, censored estimates can be corrected analytically by estimating a bias-correction
term in an uncensored subsample. Next, I adapt an estimator derived in Chandrasekhar
and Lewis (2011) that estimates the model restricted to uncensored nodes. I show that both
perform well in simulations, even when only a small number of links are observed. Finally,
I discuss when the bias correction strategies may fail, notably in the case of heterogeneous
effects. 1 also provide a brief discussion for why graphical reconstruction, as derived in
Chandrasekhar and Lewis (2011) is unlikely to lead to consistent estimates in this context.

Through the analysis of this paper, I aim to highlight the real potential for bias due to
censored network data to researchers collecting data. Attention to these issues may lead
to better data-collection methods and to more careful consideration of the sensitivity of

estimates to such methods.
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CHAPTER 3

Network Partitioning and Social Exclusion under

Different Selection Regimes

Joint work with

Clara Delavallade, International Food Policy Research Institute

Rebecca Thornton, University of Illinois at Urbana-Champaign

Abstract

While most social programs are based on some form of exclusion of sub-populations, we
know little about how being excluded, and the selection process, affect social inclusion. This
paper compares peer effects of an after-school program, under three different (randomly
assigned) network-formation regimes: endogenously formed, popularity vote, and randomly
assigned. We find substantial evidence of homophily within endogenously-formed and elected
networks. When participation was randomly assigned, we find segregation of friendships due
to the program. We do not find this among elected networks, mainly because they were
already highly partitioned. Lastly, we find that social exclusion — not being elected in a

school with popular voting — reduced education aspirations and self-confidence.
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3.1 Introduction

The literature on social networks within Economics has primarily focused on either quan-
tifying the causal effects of peers on outcomes (Altermatt and Pomerantz, 2003; Bearman
and Moody, 2004; Christakis and Fowler, 2007; Burgess and Umana-Aponte, 2011) or un-
derstanding how networks are formed (Burgess, Sanderson and Aponte, 2011). However,
little attention has been paid to the interaction of these two processes. In this paper, we
examine how the network formation process itself affects how peers impact others. To this
end, we compare peer effects under three different (randomly assigned) network-formation
regimes: endogenously formed, popularity vote, and randomly assigned. We use two rounds
of network data from 30 schools in rural India to identify changes in pairwise links between
students over the course of one academic year. We also utilize two levels of randomiza-
tion to separately identify the causal effect of peers, of network formation regime, and their
interactions.

The paper uses data collected from students in grades 6-8 in 30 schools in rural Rajasthan,
centered around a girls’ after-school program implemented by a local charity organization.
Prior to the study, baseline surveys and network data were collected. The thirty schools were
randomly assigned to three treatment arms in which girls were either voted into the program
by popular election, randomly assigned to the program, or did not receive the program at
all. To identify counterfactual elected girls, we conducted popular elections in each of the
30 schools prior to program randomization. At the end of the school year, we conducted
another round of questionnaires and network surveys.

We first examine networks at baseline under the three formation regimes: endogenously
formed networks, popularity vote, and randomly assigned networks. Consistent with a large
literature on sorting (Kandel, 1978; Hamm, 2000; French et al., 2003; Burgess, Sanderson
and Aponte, 2011), we find substantial evidence of homophily within endogenously formed
networks. Two girls are more likely to be friends with each other if they share characteristics

in common, such as being in the same grade or the same age. Elections led to even similar and
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tighter networks. Those elected are significantly older and in a higher grade than those who
were not elected. Further, election results show substantial evidence of endogenous sorting,
as two elected girls are 24.9 percentage points more likely to be friends at baseline than
two non-elected girls and 15.0 percentage points more likely to be friends than if only one
is elected. In contrast, we find that random assignment was successful in creating balanced
groups of selected and non-selected girls.

We then examine network formation and changes, under each selection regime, after the
after-school program has run for approximately four months. We find that endogenously
formed friends at baseline are substantially more likely to still be friends at the endline. In
schools with participants chosen by election, there is no added effect of being elected on the
likelihood of friendship at endline. However, we find some evidence of segregation between
girls who were randomly selected for the program and girls who were not selected. Two girls
who were not selected are 16.7 percentage points more likely to be friends at endline. Two
girls who were selected for the program are 20.8 percentage points more likely to be friends
at endline. In contrast, girls of whom only one of the pair were selected to participate in
the parliament program are 6.8 percentage points less likely to be friends at endline than if
neither had been selected.

Lastly, we turn to measuring the causal effects of the after-school program under each
selection regime, on education and career aspirations, self-confidence, and gender roles atti-
tudes. We find that being in a school with popular voting reduced education aspirations and
self-confidence overall, and that these effects are mainly driven by students who were not
elected. Non-elected girls in schools with the program that had popular voting, have a self-
confidence index 0.37 standard deviations lower than those in the control group, suggesting
a possible discouragement effect from not being elected. We do not find this effect on girls
who were randomly selected. In addition, we find that exclusion affected even those who
were ineligible for the program. Boys in both treatment arms have a lower self-confidence at

endline than those in the control group.
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This paper makes a significant contribution to a nascent literature that accounts for
network dynamics in measuring peer effects. Over the past two decades, a growing literature
in economics and related fields has investigated the importance of one’s peers to a large
variety of economic and social outcomes (See, e.g., Miguel and Kremer, 2004; Oster and
Thornton, 2012). A severe limitation of this literature is that it almost uniformly assumes
that networks are static, or at least exogenous. This assumption may be innocuous in settings
where networks are indeed random (DeGiorgi, Pelllizzari and Radaelli, 2010; Sacerdote,
2001), or when interventions are unlikely to affect network structure (Ngatia, 2015). However,
a large literature in sociology and related fields demonstrates that links are far from random.
Importantly, social networks tend to demonstrate homophily, whereby individuals are more
likely to be friends with individuals similar to them by race, age, gender, etc. (see, e.g.
Currarini, Jackson and Pin, 2009). Failure to account for endogeneity of networks may lead
to biased estimates of peer effects.

In addition, there has been very little research accounting for changing network structure.
In a recent paper, Comola and Prina (2014) investigate the effect of randomized access to
savings accounts, accounting for changes in network structure due to their intervention.
As in our setting, they collect data on network structure pre- and post-intervention, so
as to assess the effect of their intervention on the network itself. Similarly, Vasilaky and
Leonard (2014) investigate an intervention directly targeting social ties among female cotton
growers, demonstrating that altering social networks may be a powerful channel by which to
increase agricultural productivity. To our knowledge, these are the only studies that leverages
randomized treatment to measure impacts on the network itself. Failure to investigate
interventions’ effects on networks may lead researchers to neglect an important channel
whereby outcomes are determined.

Lastly, while most social programs are based on some form of exclusion of sub-populations,
we know little about how the selection process affects outcomes. This paper is the first to

provide rigorous evidence that the selection process matters for network formation and out-
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comes of a girls’ empowerment program.

The paper proceeds as follows: In the next subsection, we present the program back-
ground. The experimental design and data are described in Section 3.2. Network results
are shown and discussed in Section 3.3, program effects on self-confidence and aspirations in

Section 3.4. We conclude in Section 3.5.

3.1.1 Background: Programs for Empowering Girls

Socio-emotional factors play a key role in explaining gender disparities in educational
achievement and labor market success. Discriminatory social norms develop low levels of
self-efficacy, confidence, and well-being among girls (Dercon and Singh, 2013). Limited belief
in one’s own ability and self-efficacy translates into low aspirations and educational goals
(Bandura et al., 2001) among girls, restricting their acquisition of the cognitive and non-
cognitive skills necessary to enter and succeed in the labor market (Heckman and Rubinstein,
2001).

To address many of these issues, there has been increased attention on providing girls op-
portunities to increase aspirations, improve self-esteem and agency, and provide a supportive
and safe atmosphere to produce better long-term outcomes. Many of these programs have
proven successful, such as girl-friendly schools (Kazianga, Levy and Linden, 2013), female
role models (Nguyen, 2008),(Beaman et al., 2009; Beaman, Duflo and adn Petia Topalova,
2012) (Nguyen, 2008; Beaman et al., 2009 and 2012), or negotiation training. What is less
well known is how these type of programs affect social networks. Moreover, little is known
about how the composition of the group, or the selection mechanism for participation, affects
participating and non-participating individuals and peers.

In this paper we study an after-school girls’ parliament program in rural India, that
was designed and implemented by a nongovernmental organization, Educate Girls. The
program targets adolescent school girls in grades 6-8 and meet several Saturdays a month

to build confidence, leadership and self-esteem. Girls who participate in the parliament
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undergo a life skills training based on the WHO recommendations: problem solving; critical
thinking; decision making; communication; self-awareness; creative thinking; interpersonal
relationships; coping with stress; coping with emotions; and empathy. The program content
is delivered through a series of five “games,” whereby participant girls work through scenarios
dealing with complex issues such as early marriage and standing up to parental authorities.
Over the course of the school year, the five games are played in a well-defined sequence under
the supervision and mentoring of community workers trained and monitored by Educate
Girls. While the games are designed to last about one to two hours, the parliament meeting
sessions usually last around 4 to 5 hours. Overall, parliament members spend an average
time of 25 hours together, allowing friendships to form and develop and for the program to
affect participants.

The parliament program involves a democratic popular vote, wherein 13 girls in grades
six to eight are elected by their peers (including boys). The 13 positions include a president,
as well as secretaries and assistant secretaries of education, sports, management, culture,
health, and motivation. Each position has two nominees. Girls are either nominated or
volunteer to be considered for a position in the parliament. In most cases, the election is
determined by a public show of hands.

Girls participating in the parliament are encouraged to share their skills and knowledge
with other girls in the school by organizing biweekly life skills-oriented games. According to
Educate Girls, girls selected for the parliament through popular elections are more likely to
be vocal and better socially connected, allowing for a wider diffusion of the newly acquired

life skills.
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3.2 Research Design

3.2.1 Baseline Data Collection and Measures

During the 2013-14 academic year, the girls’ parliament program rolled out to new dis-
tricts in rural Rajasthan. We selected thirty schools from two of the new administrative
blocks to participate in the study. The study involved students who were in grades six,
seven, and eight, in each of the study schools. In total, there were 2655 students in these
grades enrolled at the beginning of the 2013-14 school year.

At the beginning of the school year and prior to program implementation, we conducted
baseline surveys asking students about their background, aspirations, self-confidence, and
attitudes toward gender roles. Only students who attended school on the day of the survey,
70.2 percent, have these baseline data.

In addition, on a different school day enumerators conducted a detailed network survey
to collect extensive data on connections among students. In each school, boys and girls
provided information on their social ties to the girls (not boys) in grades 6, 7, and 8. Time
constraints prohibited collection of each student’s social tie to boys. To collect the network
data, each female student would stand up one at a time, and every non-standing student
would answer questions about their link with the standing girl. In total, 71.6 percent of
enrolled girls and 68.6 percent of enrolled boys completed the baseline network survey.

We use the baseline survey and network data to test for balance across randomization
arms, and to control for baseline measures of empowerment and network ties . To measure
empowerment, we use the survey data to construct four indices for the following outcomes:
educational aspirations, career aspirations, self-confidence, and gender roles . We first col-
lapse any questions with categorical outcomes into a series of binary indicators, indicating
higher aspirations, self-confidence, or views about gender. We sign these such that a positive
change in the index indicates a positive change, such as desiring to get married at a later

date, more self-confidence, or stating that it is okay for a wife to disagree with her husband in
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public. We then take the first principal component of the variables within a given category.
Finally, we normalize each index such that the mean of each is zero with standard deviation
of one.

The network data allows us to create links between students at each school. Because
we only asked individuals to report their ties to the girls in the class, we focus our network
analysis among girls. Our primary definition of a network link involves having answered
“Yes” to the question “Is she is a friend?” We identify the following types of friendship links

for individual 1 in the data:

1. OR friends: either i or j identifies the other as as a friend (LOf)

L")

2. AND friend: i identifies j as a friend and j identifies i as a friend (

We use the notation L;j; as an indicator for being linked at baseline (¢ = 0) or endline (t=1),
under the various link definition (L$f, LANP). Note also that AND friends are also, by

definition, OR friends. In addition, for each girl, we summarize her total number of AND,

and OR, friends.

3.2.1.1 Baseline Data

Table 3.1 presents the baseline characteristics of boys and girls in the sample . On
average, girls are 12.3 years old, with the majority classified as scheduled tribe, caste, or
other backward caste (25.5 percent scheduled caste, 12.3 percent scheduled tribe, 44.5 percent
other backward caste). Among girls, 84 perent were enrolled the previous school year. Most
families, 86.8 percent, own a television. A large proportion, 83.1 percent, of the girls’ fathers
ever attended school, with fewer, 56.2 percent, having mothers who ever attended school.
On average, girls have a total of 7.8 AND friends (friends who both name each other), and
15.8 OR friends.

In comparison to girls, boys are older, in a higher grade, and much more likely to be

from a scheduled caste, tribe, or other backward caste. Further, boys’ parents at baseline
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Table 3.1: Baseline Sample

P-Value of
Girls Boys Difference ~ Test of
(N=1414) (N=1196) Equality
(1) (2) (3) (4)

Standard 6.931 7.019 -0.088 0.086
(0.001) (0.001) (0.049)

Age 12.325 12.558 -0.232 0.021
(0.004) (0.008) (0.095)

Scheduled Caste 0.255 0.327 -0.072 0.030
(0.001) (0.002) (0.032)

Scheduled Tribe 0.123 0.262 -0.139 0.000
(0.001) (0.002) (0.029)

Other Backward Caste 0.445 0.284 0.161 0.000
(0.002) (0.001) (0.036)

Enrolled Previous Year 0.840 0.846 -0.006 0.833
(0.001) (0.001) (0.029)

Owns TV 0.868 0.779 0.089 0.013
(0.001) (0.001) (0.034)

Father Attended School 0.831 0.694 0.137 0.000
(0.001) (0.002) (0.035)

Mother Attended School 0.562 0.394 0.168 0.000
(0.001) (0.002) (0.040)

Education Index -0.180 0.221 -0.401 0.001
(0.010) (0.007) (0.106)

Career Index -0.129 0.151 -0.281 0.012
(0.006) (0.008) (0.104)

Self-Confidence Index -0.009 0.008 -0.017 0.856
(0.008) (0.002) (0.094)

Gender Roles Index 0.112 -0.135 0.248 0.020

(0.011)  (0.008)  (0.101)
Number of Friends (OR) 15.761

(2.353)
Number of Friends (AND) 7.815

(0.640)

Robust standard errors in parentheses, clustered by school. *** p<0.01, **

p<0.05, * p<0.1.
Individuals 7 and j are OR friends if (at least) one names the other as a friend.
They are AND friends if they both name each other as friends.
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have significantly lower rates of schooling as well as lower wealth correlates such as owning a
television. These results are consistent with a pattern of girls of lower socioeconomic status
having ended schooling earlier than boys of similarly low status. That is, the data suggest
that lower socioeconomic status girls drop out of school earlier as compared to boys, leading
to higher wealth and parents’ education on average for those who remain.

Table 3.1 further presents baseline education, career, self-confidence, and gender roles
indices for boys and girls. Boys have significantly higher education and career aspirations
and expectations (0.401 standard deviations with p=0.001 and 0.281 standard deviations
with p=0.012, respectively). That these differences exist even despite the possible culling of
lower socioeconomic status girls further demonstrates substantial societal barriers to women’s
achievement in this setting.

We see no differences between boys and girls in self-confidence (p=0.856). We find,
however, that girls have a significantly more positive view towards gender roles at baseline
than boys (0.248 standard deviations p=0.020) and this difference in attitude towards gender
roles increases by standard, suggesting those with lower attitudes may be dropping out

earlier.

3.2.1.2 Parliament Elections and Random Assignment

Prior to program implementation, but after the baseline survey, Educate Girls staff con-
ducted democratic elections in each of the 30 study schools. The process followed the stan-
dard procedure for students to choose 13 girls to participate in the Bal Sabha. In most
cases the election consisted of a show of hands (90 percent) and on average, the winner cap-
tured 75 percent of the vote (s.d. 0.157). Prior to the election, students were informed that
there would be a lottery and that some schools would receive the parliament program with
participants determined by the election, some schools would receive the program with partic-
ipants determined randomly, and some schools would not receive the program. Enumerators

recorded who was elected for each position and the result of the vote.
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3.2.2 Randomization and Baseline Balance

After the conclusion of baseline data collection and elections, the 30 schools were ran-
domly assigned to three intervention arms. Ten schools were assigned to T1 in which partic-
ipants were determined by the outcome of the election. Ten schools were assigned to T2 in
which participants were randomly selected . The final ten schools served as controls and did
not receive the parliament program. The parliament program was then implemented over a

period of approximately four months.

3.2.2.1 School-level randomization

To test for baseline balance, for each baseline demographic, empowerment, and network

characteristic BaseV ar;s for girl i in school s, we estimate the following regression:

BaseVar;s = By + b1 T1s + 82T24 + ;s (3.1)

where 11 and T2, indicate being assigned to T'1 or T2 schools. We estimate these regression
separately for girls and boys and cluster standard errors by school . Table 3.2 presents the
estimated regression coefficients Sy, (1, and [y, and the p-values indicating the statistical
significance of the joint test of 5, and 5. Note that the null that means are the same across
the three treatment groups is not rejected for girls for any baseline characteristic, as indicated
by the p-values presented in Columns (4). Samples are also generally balanced among our
baseline measures of empowerment and networks. Table 3.3 presents similar results for
boys. However, with the small number of clusters, balance may be an issue: T2 girls have
significangly lower baseline career aspirations. Relatedly, as shown in Table 3.2, T2 girls
have significantly lower peer group mean career aspirations and T1 girls have marginally
significantly lower baseline self confidence. Still, we control for baseline observations in

robustness specifications.
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Table 3.2: Baseline Balance — School-Level Randomization (Girls)

Reg Coef Reg Coef P-Value of

Control on T1 on T2 Joint Test
(1) 2) (3) (4)

Standard 6.934 0.069 -0.073 0.193
(0.016) (0.047) (0.070)

Age 12.458 -0.217 -0.212 0.281
(0.112) (0.152) (0.146)

Scheduled Caste 0.293 -0.097 -0.030 0.550
(0.076) (0.095) (0.100)

Scheduled Tribe 0.070 0.068 0.103 0.218
(0.026) (0.045) (0.086)

Other Backward Caste 0.430 0.016 0.032 0.957
(0.083) (0.099) (0.108)

Enrolled Previous Year 0.829 0.034 0.002 0.860
(0.050) (0.069) (0.078)

Owns TV 0.904 -0.080 -0.035 0.335
(0.022) (0.056) (0.046)

Father Attended School 0.848 0.005 -0.059 0.461
(0.040) (0.058) (0.056)

Mother Attended School 0.561 0.065 -0.065 0.310
(0.055) (0.076) (0.085)

Education Index -0.212 -0.017 0.118 0.785
(0.173)  (0.262)  (0.213)

Career Index -0.033 0.060 -0.362 0.034
(0.119)  (0.132)  (0.184)

Self-Confidence Index 0.075 -0.317 0.053 0.107
(0.148) (0.206) (0.173)

Gender Roles Index 0.194 -0.077 -0.178 0.770
(0.116) (0.221) (0.254)

Number of Friends (OR) 16.581 -1.989 -0.721 0.863
(2.478) (3.676) (3.628)

Number of Friends (AND) 6.793 0.933 2.385 0.479
(0.769) (1.440) (2.072)

Proportion of Friends Elected (OR) 0.275 0.097 0.045 0.648
(0.071) (0.104) (0.081)

Proportion of Friends Elected (AND)  0.284 0.095 0.030 0.639

(0.066)  (0.101)  (0.077)

Robust standard errors in parentheses, clustered by school. *** p<0.01, ** p<0.05,
*

p<0.1.
Individuals ¢ and j are OR friends if (at least) one names the other as a friend.
They are AND friends if they both name each other as friends.
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Table 3.3: Baseline Balance — School-Level Randomization (Boys)

Reg Coef Reg Coef P-Value of

Control on T1 on T2 Joint Test
(1) (2) (3) (4)

Standard 6.997 -0.030 0.114 0.114
(0.053) (0.059) (0.081)

Age 12.713 -0.339 -0.081 0.170
(0.160) (0.197) (0.205)

Scheduled Caste 0.399 -0.136 -0.068 0.406
(0.066) (0.100) (0.115)

Scheduled Tribe 0.201 0.062 0.125 0.524
(0.050) (0.070) (0.133)

Other Backward Caste 0.282 0.007 -0.002 0.991
(0.050) (0.070) (0.081)

Enrolled Previous Year 0.843 -0.002 0.016 0.931
(0.041) (0.058) (0.055)

Owns TV 0.788 -0.002 -0.031 0.964
(0.048) (0.062) (0.115)

Father Attended School 0.648 0.077 0.068 0.748
(0.096) (0.101) (0.107)

Mother Attended School  0.337 0.136 0.028 0.183
(0.070) (0.080) (0.107)

Education Index 0.315 -0.106 -0.195 0.681
(0.134) (0.185) (0.228)

Career Index 0.353 -0.305 -0.311 0.311
(0.186) (0.210) (0.204)

Self-Confidence Index 0.051 -0.093 -0.023 0.655
(0.076) (0.105) (0.106)

Gender Roles Index 0.061 -0.203 -0.440 0.235

(0.167)  (0.188)  (0.251)

Robust standard errors in parentheses, clustered by school. *** p<0.01,
** p<0.05, * p<0.1.

Individuals i and j are OR friends if (at least) one names the other as a
friend. They are AND friends if they both name each other as friends.
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3.2.2.2 Individual-level randomization in T2 schools

To validate the individual randomization of girls into the parliament program in T2
schools, we test for baseline balance across selected and non-selected girls in T2 schools. For
each baseline demographic, empowerment, and network characteristic, BaseV ar;,, for girl ¢

in school s, we estimate the following linear regression, restricted to girls in T2 schools:

BaseVar;, = By + P1Selected;s + u;s (3.2)

where Selected; indicates being randomly selected for parliament participation. We cluster
standard errors by school. Table 3.4 presents the average of each baseline outcome among
those not selected, the estimated regression coefficient i, and the p-values indicating the
statistical significance of 8;. Note that there are only ten T2 schools and thus we lack power
to detect small differences. However, we fail to reject equality of means between girls selected

and girls not selected within T2 schools, for most baseline measures.

3.2.3 Endline Surveys and Attrition

Approximately six months after the baseline surveys, the study team returned to each
school to collect endline data, consisting of an endline questionnaire and network survey.
74.9 percent of enrolled students completed the endline questionnaire, while 75.0 completed
the endline network survey. Among those who completed the baseline survey, 81.7 percent
completed the endline questionnaire and 82.5 percent completed the endline network survey.
Across all of the surveys, we observe a total of 2,773 students, of whom 26,55 (95.7%) are
found in administrative enrollment records.

We formally test for differential attrition by random assignment with Equations (3.1) and
(3.2) in Table 3.5, using indicators of survey completion as dependent variables. Comple-
tion of a survey (Baseline Network, Endline Qur or Endline Network) was not significantly

associated with random assignment of intervention arms by school.
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Table 3.4: Baseline Balance — Individual Randomization to Program among T2 Girls

Not Reg Coef  P-Value of
Selected on Selected Joint Test

(1) (2) (3)

Standard 6.976 -0.032 0.861
(0.037) (0.175)

Age 12.460 -0.277 0.163
(0.083) (0.182)

Scheduled Caste 0.295 -0.009 0.803
(0.074) (0.036)

Scheduled Tribe 0.249 -0.050 0.110
(0.103) (0.028)

Other Backward Caste 0.371 0.065 0.232
(0.069) (0.051)

Enrolled Previous Year 0.850 -0.043 0.532
(0.041) (0.066)

Owns TV 0.810 0.067 0.265
(0.076) (0.056)

Father Attended School 0.775 -0.100 0.046
(0.039) (0.043)

Mother Attended School 0.420 0.110 0.220
(0.067) (0.084)

Education Index 0.024 -0.148 0.190
(0.127) (0.105)

Career Index -0.161 -0.290 0.126
(0.089) (0.172)

Self-Confidence Index 0.084 0.014 0.920
(0.070) (0.139)

Gender Roles Index -0.171 0.127 0.265
(0.197) (0.107)

Number of Friends (OR) 15.938 -0.266 0.859
(2.896)  (1.448)

Number of Friends (AND) 8.911 0.913 0.446
(2.105) (1.145)

Proportion of Friends Elected (OR) 0.298 0.072 0.101
(0.037) (0.040)

Proportion of Friends Elected (AND)  0.281 0.107 0.014

(0.037)  (0.035)

Robust standard errors in parentheses, clustered by school. *** p<0.01, **
p<0.05, * p<0.1.

Individuals ¢ and j are OR friends if (at least) one names the other as a friend.
They are AND friends if they both name each other as friends.
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There is, however, a significant relationship between survey completion and being se-
lected for participation among T2 girls. Those who were selected were between 9.2 and 15.8
percentage points more likely to have completed survey data (Table 3.5, Panel B).

We further test for differential attrition across a number of baseline characteristics.
Among girls and boys who were present for the baseline survey , we estimate the follow-

ing regression to assess differential attrition by baseline characteristic:

Complete;s = vo + T 1s + 125 + v3BaseVar
+ v4T1, x BaseVar;, +v5T2s x BaseVar;s + u;s (3.3)

Complete;s = By + p1Selected;s + faBaseVar;s + PsSelected;s x BaseVar;s + u;s  (3.4)

The dependent variable is an indicator for individual i in school s having a completed
baseline network survey, endline survey or endline network survey — each conducted after the
baseline survey. We present p-values of the joint test for significance of 4 and 75 in equation
(3.3) (Appendix FTable F.1, Panel A), and analogously test for the significance of S5 in
equation (3.4) (Appendix F Table F.1, Panel B), which would indicate differential attrition.
We present estimates of Equation (3.3) for girls and boys, while restricting estimation of
Equation (3.4) to girls in T2 schools. While a small number of p-values are below the
conventional significance levels, we see no clear patterns suggesting differential attrition on

any baseline characteristics or outcomes.

3.3 Results

3.3.1 Endogenous Networks

We next turn to presenting the baseline characteristics of networks under the three selec-
tion regimes: endogenously formed, elected, and randomly assigned. We first examine the

characteristics of already-existing endogenously-formed networks, prior to elections and the

128



Table 3.5: Survey Attrition

Panel A: School-Level Randomization (Girls)
Reg Coef ~ Reg Coef P-Value of

Control on T1 on T2 Joint Test
(1) (2) (3) (4)

Baseline Survey 0.688 0.099 0.072 0.240
(0.042) (0.059) (0.057)

Baseline Network Survey  0.710 -0.015 0.033 0.573
(0.033) (0.044) (0.048)

Endline Survey 0.714 0.071 0.031 0.276
(0.030) (0.043) (0.048)

Endline Network Survey 0.712 0.063 0.033 0.391

(0.031) (0.046) (0.042)
Panel B: School-Level Randomization (Boys)

Reg Coef  Reg Coef P-Value of

Control on T1 on T2 Joint Test
(1) (2) (3) (4)

Baseline Survey 0.784 -0.011 -0.140 0.041
(0.050) (0.062) (0.064)

Baseline Network Survey  0.661 0.075 -0.012 0.182
(0.059) (0.066) (0.069)

Endline Survey 0.753 0.049 -0.054 0.172
(0.033) (0.045) (0.056)

Endline Network Survey 0.779 0.016 -0.077 0.397
(0.023) (0.039) (0.064)

Panel C: Randomization Among T2 Girls
Not Reg Coef  P-Value of
Selected on Selected Joint Test

(1) (2) (3)

Baseline Survey 0.735 0.092 0.045
(0.042) (0.040)

Baseline Network Survey  0.704 0.139 0.023
(0.043) (0.051)

Endline Survey 0.701 0.158 0.002
(0.042) (0.038)

Endline Network Survey 0.701 0.158 0.015

(0.040)  (0.053)

Robust standard errors in parentheses, clustered by school. *** p<0.01, **
p<0.05, * p<0.1.

Individuals ¢ and j are OR friends if (at least) one names the other as a friend.
They are AND friends if they both name each other as friends.
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introduction of the parliament program. Because these data were collected before selection

regimes were randomly assigned, we present the data for all schools: Control, T1, and T2.

linktype
LijsO )

We restructure the data to pair each girl with all girls in her school, and estimate
the existence of a network link between individuals i and j in school s at baseline (¢ = 0)
under the each network definition (linktype € {OR, AND}):

nglgtype = ag + ay|BaseVar;; — BaseVar;s| + €50 (3.5)
BaseVar;s and BaseV arjs are baseline characteristics of individuals ¢ and j. In this context,
a1 < 0 indicates homophily in friendship networks. We continue to cluster standard errors
by school.

Table 3.6 presents our main homophily results. Girls in the same standard are 15.4 per-
centage points more likely to be AND friends than girls one standard apart. Girl i is 10.2
percentage points more likely to indicate that j is an OR friend if they are in the same stan-
dard than if they are one standard apart , and similarly, 20.4 percentage points more likely
than if they are two standards apart (that is, in standard 6 and 8). We also see substantial
homophily on age and prior enrollment status , but less evidence of homophily on caste and
family characteristics as shown. We see statistically significant evidence for homophily in
self confidence and gender roles between girls. The coefficient on AND in self confidence
indicates that two girls with the same degree of self confidence are 2.3 percentage points
more likely to be AND friends than two girls with self confidence measures one standard
deviation apart, and 4.6 percentage points more likely than two girls who are two standard
deviations apart on this measure. Similarly, the coefficient on AND in gender roles suggests
that two girls with the same gender roles index are 4.9 percentage points more likely to be
friends than a pair with self confidence measures that differ by one standard deviation.

Finally, we see some evidence of degree homophily . In the networks literature, degree

refers to the number of links that a given node/individual has (See, e.g., Jackson 2008). Girls
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Table 3.6: Baseline Endogenously-Formed OR and AND Networks

Network Definition OR AND | Observations
L@ 3)

Standard -0.102  -0.154 27418
(0.012) (0.018)

Age -0.019  -0.031 27298
(0.007) (0.010)

Scheduled Caste 0.001 0.000 27210
(0.020) (0.030)

Scheduled Tribe -0.067  -0.057 27210
(0.061) (0.042)

Other Backward Caste -0.010 -0.014 27210
(0.015) (0.019)

Enrolled Previous Year -0.092  -0.117 24636
(0.033) (0.040)

Family Owns TV -0.040 -0.048 14428
(0.032) (0.060)

Father Attended School -0.005 -0.010 13774
(0.024) (0.038)

Mother Attended School -0.019  -0.033 13820
(0.024) (0.027)

Education Index -0.005  -0.027 13178
(0.012)  (0.017)

Career Index 0.004 -0.013 18070
(0.014) (0.018)

Self-Confidence Index -0.009 -0.023 18868
(0.008) (0.012)

Gender Roles Index -0.031  -0.049 18424
(0.016) (0.017)

Number of Friends (OR) -0.004  -0.008 27418
(0.001) (0.002)

Number of Friends (AND)  0.002  -0.008 27418
(0.001) (0.003)

Robust standard errors in parentheses, clustered by school. ***

p<0.01, ** p<0.05, * p<0.1.

Dependent variable is existence of friendship at baseline under
appropriate network definition.

Reported values are regression coefficient on distance between
students’ values for each variable.
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are more likely to be friends with other girls who have a similar number of AND friends as
they do. This suggests that popular girls tend to be friends with other popular girls, while

less popular girls are more likely to be friends with less popular girls.

3.3.2 Popular vote

Next we examine how the elections lead to selection into participation in the Bal Sabha
program. Again, because elections were held in all schools before the selection regime was
randomly assigned, we present results from Control, T1, and T2 schools. Table 3.7 compares
girls who were elected to those who were not across all schools. The results show that elected
girls are systematically different than non-elected ones and provide evidence of selection into
participation in the Bal Sabha program in the NGO’s preferred delivery model. Those elected
are significantly older and in a higher grade than those who were not elected. However, those
elected are no more likely to be wealthier, as proxied by TV ownership and electricity, or to
have educated parents. Further, elected girls were no more or less likely to be of Scheduled
Caste or Scheduled Tribe.

Among baseline empowerment measures, elected girls are more likely to have higher
educational aspirations than girls who are not elected, but not significantly different on any
of the other indices. Elected girls may be more “popular” in that they have more AND
friends (1.21, p=0.087) but fewer OR friends (-0.70, p=0.586) , on average than unelected
girls.. Finally, we note that elected girls tend to have a much higher proportion OR friends
(0.151, p=0.001) and their AND friends (0.197, p=0.000) and also elected to participate,
compared to their non-elected classmates. This suggests that election resulted in clustered
cliques of girls being selected.

We also can assess the extent to which girls who are elected are connected within friend-

ship networks at baseline. We estimate the following linear regression:

Lg'zgtype =0 + N EGS +BEGYY + eys (3.6)
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Table 3.7: Baseline Characteristics of Girls Elected and Not Elected

Elected Not Elected Difference P-Value of

(N=374) (N=1040) Joint Test
1) ) 3) (1)

Standard 7.112 6.866 0.246 0.000
(0.058) (0.029) (0.059)

Age 12.497 12.263 0.234 0.030
(0.101) (0.062) (0.102)

Scheduled Caste 0.273 0.248 0.025 0.569
(0.058) (0.036) (0.043)

Scheduled Tribe 0.094 0.134 -0.040 0.127
(0.038) (0.032) (0.025)

Other Backward Caste 0.422 0.453 -0.030 0.546
(0.056) (0.042) (0.050)

Enrolled Previous Year 0.853 0.835 0.018 0.664
(0.039) (0.035) (0.040)

Owns TV 0.869 0.867 0.002 0.945
(0.029) (0.027) (0.030)

Father Attended School 0.828 0.833 -0.005 0.845
(0.032) (0.024) (0.026)

Mother Attended School 0.538 0.575 -0.037 0.400
(0.050) (0.032) (0.043)

Education Index -0.033 -0.261 0.227 0.019
(0.122) (0.102) (0.091)

Career Index -0.072 -0.160 0.088 0.259
(0.083) (0.087) (0.077)

Self-Confidence Index 0.006 -0.017 0.023 0.814
(0.082) (0.109) (0.097)

Gender Roles Index 0.109 0.114 -0.005 0.952
(0.120) (0.106) (0.083)

Number of Friends (OR) 15.251 15.951 -0.700 0.586
(1.404) (1.693) (1.271)

Number of Friends (AND) 8.698 7.486 1.212 0.087
(1.011) (0.797) (0.685)

Proportion of Friends Elected (OR)  0.424 0.273 0.151 0.001
(0.041) (0.037) (0.039)

Proportion of Friends Elected (OR)  0.460 0.262 0.197 0.000

(0.039) (0.034) (0.038)

Robust standard errors in parentheses, clustered by school. *** p<0.01, ** p<0.05, * p<0.1.
Individuals ¢ and j are OR friends if (at least) one names the other as a friend. They are
AND friends if they both name each other as friends.
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Table 3.8 presents estimates of Equation (3.6), showing the relationship between the elections
and friendships. Since elections were held in all 30 schools unconditional on treatment status,
we investigate the election results for all girls in the sample. First, two unelected girls have
a 74.6 percent likelihood of being OR friends, and a 33.6 percent likelihood of being AND
friends. In Column 1, the estimated coefficients, v; and 7, suggests that a pair of girls in
which one is elected and one not elected is 8.0 percentage points more likely to be friends
than a pair of with two non-elected girls. In contrast, two elected girls are 15.3 percentage
points (0.080 4+ 0.073) more likely to be friends than two non-elected girls. Column 2 of
Table 3.8 shows that if one individual is elected, girls are 9.9 percentage points more likely
to be AND friends.

Table 3.8: Baseline Network Links and Election Results

Network Definition OR AND
1) @)
Elected (OR) 0.080 0.099*
(0.049) (0.052)
Elected (AND) 0.073**F*  0.150%**
(0.022) (0.041)
Constant 0.746*%**  (0.336***
(0.062) (0.063)
Observations 27,418 27,418
R-squared 0.015 0.023
Mean Dep Var in Control  0.701 0.286
P-Value of Test 1 0.028 0.003

Robust standard errors in parentheses, clustered
by school. *** p<0.01, ** p<0.05, * p<0.1.
Dependent variable is existence of friendship at
baseline under appropriate network definition.
Individuals ¢ and j are OR friends if (at least) one
names the other as a friend. They are AND friends
if they both name each other as friends.

Test 1 is a test of significance of (Elected (OR) +
Elected (AND)).
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3.3.3 Randomly assigned

As discussed above and presented in Table 3.4, the random assignment of girls to par-
ticipate in the parliament program resulted in groups that were generally balanced across

baseline characteristics.

3.3.4 Program Effects on Networks under different Selection Regimes

We first present intention to treat estimates of the effect of being assigned to a program
school. We then disaggregate potential program effects among those elected or not, and

those randomly selected, or not.

3.3.4.1 Intent to treat estimates

To measure the intent to treat effect of the program on network links, we estimate linear
probability models with the following equation.

LI — S 4 6, T, + 05T2, + €ija1 (3.7)

is1

Ll'ink‘type

ial indicates the existence of a link between individuals ¢ and j in school s

Here,
at endline (time 1). The parameters ¢; and J, identify the difference in probability of a
link between girls assigned to T1 and C, and T2 and C, respectively. These estimates

are unconditional on election or random selection to participate in the program. In some

L% and LN to absorb residual variation.

specifications we control for baseline networks,
Further, to control for possible baseline imbalance in school size, we include school size
controls. We continue to cluster standard errors by school.

Table 3.9 presents results estimates of Equation (3.7). Columns (1) and (4) suggest that
girls in T2 are significantly more likely to be friends in T2 schools, but these effects become

insignificant when adding the full set of controls. Statistical power is definitly a concern

for these estimates, although in all of the specifications predicting AND network links, we
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can reject the hypothesis that the effects in T1 are the same as the effects in T2 (Columns

(4)-(6)).

Table 3.9: ITT Program Effects on Endline Network Formation

Network Definition OR AND
(1) (2) (3) (4) (5) (6)
T1 0.121 0.063 0.013 0.061 -0.015 -0.067
(0.092) (0.060) (0.058) (0.078) (0.044) (0.060)
T2 0.189*%F  (0.131** 0.078 0.180** 0.094 0.053
(0.076) (0.056) (0.050) (0.076) (0.059) (0.065)
Friends at Baseline (OR) 0.158%** (0. 154%** 0.160%** 0. 157***
(0.015) (0.014) (0.020) (0.020)
Friends at Baseline (AND) 0.121°%6F  0.120%** 0.184%#%  (0.184%**
(0.031) (0.029) (0.033) (0.032)
Constant 0.631%** 0.370***  1.105%  0.325%*F*  (0.084** 0.923
(0.071) (0.067) (0.586) (0.065) (0.039) (0.703)
Baseline Network Controls NO YES YES NO YES YES
School Controls NO NO YES NO NO YES
Observations 15,578 15,578 15,578 15,578 15,578 15,578
R-squared 0.033 0.137 0.144 0.024 0.161 0.165
Mean Dep Var in Control 0.631 0.631 0.631 0.325 0.325 0.325
P-Value for Test 1 0.296 0.209 0.239 0.056 0.052 0.049

Robust standard errors in parentheses, clustered by school. *** p<0.01, ** p<0.05, * p<0.1.
Dependent variable is existence of friendship at Endline under appropriate network definition.
Baseline Network Controls include answers to all baseline network survey questions.

School Size Controls include linear, quadratic, and cubic in number of students enrolled in the
school at the beginning of the school year.

Individuals ¢ and j are OR friends if (at least) one names the other as a friend. They are AND
friends if they both name each other as friends.

Test 1 is a test of (T1 - T2 = 0).

3.3.4.2 Heterogeneous Treatment Effects

While we expect the program to affect networks, the fact that it does not affect the
average likelilhood of forming a friendship link among all girls in T1 and T2 is not surprising.
Rather than leading girls to be more likely to be friends with all other girls, if the program
causes substitution of friendships, the intention to treat estimates will obscure this effect.

Accordingly, we expect the program’s effects on social networks to depend upon whether

136



individuals are selected (either by election or randomly) to participate in the program or
not. Therefore, we estimate the following to disaggregate the program effects:
LI = 6o + 0, EQ R + 0, E{NP + 6371, + 6,T1, x EQR +6:T1, x GNP
+ 0611, + 6:T2, x Selected9R + 65T2, x SelectedANP + €ijsl (3.8)

iJs ijs

Here S electedgf indicates that individual i in a T2 school was randomly selected to par-

AN D
dijs

ticipate and Selecte is an indicator that both girls were selected. In some specifications
we include baseline network controls and school size controls. We cluster standard errors by
school.

The following coefficients are of primary interest: among girls in control schools, the
coeflicients d; and d, indicate the additional likelihood of a network link if either both or
one girl of each pair is elected. The results in Table 3.10 are consistent with the baseline
network findings in Table 3.8 indicating that elected girls are more likely to have friendship
links.

The parameter 03 identifies the effect of being in a T1 school — where girls who were
elected participated in the program — on the probability that two non-elected girls will be
linked at endline. The parameters d3 + 4 estimate the effect of being in a T1 school on
having a friendship link when only one of the girls is elected. Lastly, d3 + d4 + J5 estimates
the effect of being in a T1 school the program on link probability if both are elected. Recall
that in T1, all of the girls who are elected participate in the parliament program. We see
little evidence that being in a T1 school of changing networks. The estimated coefficients
03 are small and statistically insignificant. Similarly, 3 4+ 0, and d3 4+ d4 + J5 are small and
statistically insignificant; p-values are presented at the bottom of Table 3.10.

In T2 schools, however, we find some evidence consistent with segregation between girls

who were selected for the program and girls who were not. Parameters dg through dg have

similar interpretations for girls selected and not selected in T2 schools. The parameter
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0g identifies the effect of being in a T2 school — where girls were randomly selected to
participated in the program — on the probability that two non-elected girls will be linked
at endline. The parameters dg + d9 and dg + 019 estimate the effect of being in a T2 school
on having a friendship link when only one of the girls is elected. Lastly, dg + d9 + d19 + d11
estimates the effect of being in a T2 school the program on link probability if both are
selected.

We first focus on Column 1. Here, a pair of girls not selected for the program is 19.0per-
centage points more likely to be OR friends at endline in T2 than girls in Control schools.
This effect remains positive and significant as additional controls are added in Columns 2-
4. The results have the same sign for AND friendships in Columns 5-8 but estimates lose
significance as additional controls are added.

Among girls of whom only one of the pair were selected to participate in the parliament
program, being in a T2 school reduces the likelihood of being OR friends at endline by 6.5
percentage points (Column 1), as compared to the case when neither is selected. This effect
is robust to additional controls in Columns 2-4. Further, we note that the point estimates
for AND friendships in Columns 5-8 are quite similar but statistically insignificant.

Lastly, if two girls are both randomly selected to participate in the program, they are
significantly more likely to be friends at endline. This positive and significant result holds
when adding addtional controls and with different link type definitions. These results suggest
that randomly selecting girls for the parliament program leads to segregation between those
selected and those not. That is, girls who are randomly selected for the program are more
likely to be friends with other participants. Similarly, girls who are not selected are more
likely to be friends with other girls who are not selected.

We do not see this pattern of segregation among girls in T1. We attribute this to the fact
that at the baseline, elected girls are already more likely to be friends with e ach other, as
shown in Table 3.8. Because of this, there was much less space for new link formation among

participants in T1 schools. Similarly, non-elected girls were more likely to be friends with
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each other in T1, leading to less room for new link formation among these girls in T'1 schools.
That is, the endogenously-formed networks that existed at baseline were largely unaffected
by the treatment in T1, in which girls participated or were excluded from participation by

a pattern consistent with these preexisting networks.

3.3.4.3 Link Formation vs. Retention

The results in Table 3.10 provide substantial support for the hypothesis that selection
and non-selection in T2 schools serves to partition friendship groups. To further investigate
this, we take a further look at the effects in T2 schools broken down by baseline friendship
status. To simplify the analysis, we restrict attention to symmetric link definitions AND
and OR. First, we define three baseline sitautions for individuals ¢ and j at baseline: (1) not
OR friends, (2) OR friends but not AND friends, and (3) AND friends. We then estimate
Equation (3.9) separately for pairs in each situation.

Llmktyre — 504 5,72, + 6,T2, x Selected9F + 55T2, x Selected NP + ¢4, (3.9)

is1 E Y

In this specification, ¢; identifies change in probability of a link existing at endline if netiher
i nor j is selected to participate. Similarly, d; + &5 identifies the effect if only one participates,
while §; 4+ 02 + d3 indicates the effect of both are participants.

Results are presented in Table 3.11. Panel A is restricted to those who were not OR
friends at baseline and thus shows the effect on the formation of new links. In Columns (1)
and (2), we see that all pairs are more likely to be friends in T2 schools than in C. Further,
pairs in which exactly one is selected and pairs in which both are both significantly more
likely to be friends at endline. In Columns (3) and (4), however, we see that only pairs in
which neither or only one participate are significantly more likely to be OR friends. Taken
together, the results in Panel A suggest that, among those who were not friends at baseline,

the program led to more OR friendships among pairs of non-participants and more AND
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Table 3.10: Disaggregated I'TT Program Effects on Endline Network Formation

Network Definition OR AND
(1) (2) (3) (4) (5) (6)
Elected (OR) 0.100**  0.066** 0.053*  0.121%** 0.082%** 0.074***
(0.038) (0.027) (0.027) (0.036) (0.024) (0.024)
Elected (AND) 0.128%*%*  0.075** 0.064*  0.179%** 0.114*** 0.107***
(0.032) (0.032) (0.034) (0.034) (0.030) (0.030)
T1 0.099 0.045 0.007 0.036 -0.033 -0.069
(0.096) (0.066) (0.069) (0.065) (0.035) (0.057)
T1 x Elected (OR) -0.003 0.014 0.021 -0.010 0.008 0.015
(0.055) (0.049) (0.049) (0.042) (0.034) (0.031)
T1 x Elected (AND) -0.036 -0.022 -0.018 -0.034 -0.023 -0.019
(0.062) (0.051) (0.048) (0.080) (0.061) (0.057)
T2 0.190**  0.150** 0.109%* 0.167* 0.103 0.082
(0.071) (0.058) (0.055) (0.082) (0.070) (0.077)
T2 x Selected (OR) -0.065**  -0.067*** -0.063***  -0.068 -0.068 -0.068
(0.025) (0.021) (0.021) (0.046) (0.042) (0.042)
T2 x Selected (AND) 0.043* 0.013 0.019 0.109**  0.069**  0.072**
(0.024) (0.021) (0.020) (0.050) (0.033) (0.034)
Friends at Baseline (OR) 0.155%#%  (.152%** 0.157#4% (. 155%**
(0.014) (0.013) (0.019) (0.019)
Friends at Baseline (AND) 0.120%4%  0.119%** 0.183%#%  (.183%***
(0.029) (0.028) (0.031) (0.031)
Constant 0.590***  (.357*** 0.875 0.275%**  0.070* 0.570
(0.068) (0.064) (0.597) (0.056) (0.036) (0.712)
Baseline Network Controls NO YES YES NO YES YES
School Controls NO NO YES NO NO YES
Observations 15,578 15,578 15,578 15,578 15,578 15,578
R-squared 0.057 0.147 0.151 0.058 0.176 0.177
Mean Dep Var in Control 0.631 0.631 0.631 0.325 0.325 0.325
P-Value for Test 1 0.165 0.268 0.635 0.665 0.569 0.389
P-Value for Test 2 0.368 0.495 0.878 0.923 0.537 0.421
P-Value for Test 3 0.045 0.101 0.335 0.101 0.508 0.828
P-Value for Test 4 0.007 0.061 0.207 0.001 0.021 0.097

Robust standard errors in parentheses, clustered by school. *** p<0.01, ** p<0.05, * p<0.1.
Dependent variable is existence of friendship at Endline under appropriate network definition.
Baseline Network Controls include answers to all baseline network survey questions.

School Size Controls include linear, quadratic, and cubic in number of students enrolled in the school
at the beginning of the school year.

Individuals ¢ and j are OR friends if (at least) one names the other as a friend. They are AND
friends if they both name each other as friends.

Test 1 is a test of the (T1 + T1 x Elected (OR)). Test 2 is a test of the (T1 + T1 x Elected (OR)
+ T1 x Elected (AND)). Test 3 is a test of (T2 + T2 x Selected (OR)). Test 4 is a test of (T2 +
T2 x Selected (OR) + T2 x Selected (AND)).
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Table 3.11: Disaggregated I'TT Program Effects on Endline Network Formation

Panel A: Not Friends at Baseline

Network Definition OR AND
(1) (2) (3) (4) (5) (6)
T2 0.255%** (0.233*%*F*  0.127* 0.076 0.069 -0.002
(0.076) (0.067) (0.064)  (0.051)  (0.045) (0.043)
T2 x Selected (OR) -0.056 -0.094*  -0.095* 0.056 0.035 0.033
(0.047) (0.052) (0.048)  (0.041)  (0.034) (0.032)
T2 x Selected (AND) -0.074 -0.082 -0.068 0.126 0.113 0.114
(0.102) (0.110) (0.110)  (0.114)  (0.089) (0.086)
R-squared 0.034 0.091 0.106 0.025 0.101 0.115
Mean Dep Var in Control 0.631 0.631 0.631 0.325 0.325 0.325
P-value for Test 1 0.008 0.086 0.680 0.026 0.080 0.588
P-value for Test 2 0.345 0.669 0.781 0.022 0.014 0.083
Panel B: OR Friends but not AND Friends at Baseline
T2 0.184**  0.200**  0.121* 0.137 0.153* 0.093
(0.080) (0.078) (0.066)  (0.085)  (0.085) (0.090)
T2 x Selected (OR) -0.062  -0.081** -0.076** -0.071 -0.081 -0.077
(0.036) (0.034) (0.035)  (0.066)  (0.058) (0.061)
T2 x Selected (AND) 0.048 0.005 0.010  0.179** 0.138*** (.139***
(0.067) (0.052) (0.056)  (0.072)  (0.048) (0.045)
R-squared 0.028 0.083 0.096 0.019 0.063 0.074
Mean Dep Var in Control  0.631 0.631 0.631 0.325 0.325 0.325
P-value for Test 1 0.119 0.080 0.409 0.428 0.318 0.816
P-value for Test 2 0.120 0.184 0.542 0.029 0.009 0.044
Panel C: AND Friends at Baseline
T2 0.047 0.044 0.050 0.063 0.046 0.067
(0.055) (0.048) (0.051)  (0.085)  (0.083) (0.089)
T2 x Selected (OR) -0.023 -0.021 -0.025 -0.040 -0.054 -0.061
(0.028) (0.028) (0.027)  (0.042)  (0.044) (0.041)
T2 x Selected (AND) 0.073**  0.078*** 0.082**  0.082 0.075* 0.081°%*
(0.034) (0.027) (0.029)  (0.050)  (0.039) (0.041)
R-squared 0.007 0.045 0.049 0.005 0.079 0.085
Mean Dep Var in Control  0.631 0.631 0.631 0.325 0.325 0.325
P-value for Test 1 0.602 0.591 0.609 0.736 0.909 0.936
P-value for Test 2 0.013 0.011 0.017 0.083 0.184 0.167

Sample restricted to girls in Control and T2 schools. N = 2,544 in Panel A, 4,598 in Panel B,
4,442 in Panel C.

Robust standard errors in parentheses, clustered by school. *** p<0.01, ** p<0.05, * p<0.1.
Dependent variable is existence of friendship at Endline under appropriate network definition.
Individuals ¢ and j are OR friends if (at least) one names the other as a friend. They are AND
friends if they both name each other as friends.

Test 1 is a test of (T2 + T2 x Selected (OR)). Test 2 is a test of (T2 + T2 x Selected (OR) +
T2 X Selected (AND)).
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friendships among pairs of participants. This suggests that partitioning did not result from
selective formation of new friendships.

Panels B and C present results for those who were friends at baseline, and suggests that
the network partitioning results are driven by these groups. In all specifications, coefficients
01 and 03 are positive while 05 is negative. Panel B suggests that the primary effect of the
program for OR friends was to reinforce these friendships for pairs of non-participants while
also changing many of these to AND friendships for both pairs of non-participants and pairs
of participants. In Panel C, we see that the program significantly affected the probability of

being both AND and OR friends at endline among pairs who were AND friends at baseline.

3.4 Program Effects on Aspirations and Attitudes

3.4.1 Intent to Treat Estimates

After documenting the effect of the program on network measures, we measure the effect
of the program on attitudes and aspirations. These outcomes are constructed as mean zero,

variance one indices as described above. We then estimate the following:

Yist = Bo + L1115 + Bo2T25 + Bayiso + €ist (3.10)

The parameter (3 identifies the average effect of the program on all students in T'1 schools,
while 5 identifies the average effect of the program on all students in T2. Baseline outcomes
Yiso are included for precision. We cluster all standard errors by school.

Table 3.12 presents Intention to Treat estimates for aspirations, expectations, and at-
titudes as measured by our four endline indices. These results are pooled for all students,
including boys, participant girls, and non-participant girls. Surpringly, and counter to our
priors, we see negative point estimates on all outcomes in T1, and on three of four outcomes
in T2. The strongest effects appear to be on the self confidence measure, as all specifications

show significantly negative effects of between 0.3 and 0.4 standard deviations in both T1 and
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T2 schools. We also see significant negative effects on educational aspirations in T1 schools

in Column (2) when controlling for baseline outcomes.

Table 3.12: ITT Program Effects on Endline Attitudes

Education Index Career Index Self-Confidence Index Gender Roles Index
(1) (2) (3) (4) (5) (6) (7) (8)

T1 -0.221  -0.182*  -0.113 -0.111 -0.351*%*  -0.343** -0.071 -0.062
(0.142)  (0.096) (0.089) (0.089) (0.147) (0.149) (0.146) (0.146)
T2 -0.091 -0.056 0.007 0.015  -0.325%*  -0.327** -0.113 -0.091
(0.153)  (0.096)  (0.115) (0.117) (0.157) (0.156) (0.169) (0.164)
Baseline Response 0.530*** 0.020 0.032* 0.083*
(0.037) (0.033) (0.018) (0.042)
Constant 0.141 0.102 0.041 0.038  0.258** 0.255%* 0.080 0.069
(0.091)  (0.072)  (0.046) (0.047) (0.106) (0.106) (0.077) (0.080)
Observations 1,297 1,297 1,552 1,552 1,585 1,585 1,568 1,568
R-squared 0.009 0.290 0.003 0.003 0.026 0.027 0.002 0.009
P-value of Test 1 0.438 0.173 0.363 0.345 0.871 0.915 0.834 0.880

Robust standard errors in parentheses, clustered by school. *** p<0.01, ** p<0.05, * p<0.1.
Dependent variable is first principal component of responses to relevant questions on the endline ques-

tionnaire.
Test 1 is a test of (T1 - T2 = 0).

3.4.2 Heterogeneous Treatment Effects

Finally, we estimate heterogeneous treatment effects to allow for disaggregation of effects
on three groups that may be affected differently by the program: participant girls, non-
participant girls, and boys. The baseline individual-level analysis showed that girls and boys
in these schools are different along a number of dimensions. Aditionally, as the program was
targeted specifically at girls, there is reason to believe that its effect may be different on girls
and boys.

Further, both the individual-level and link-level analyses presented above provide strong
evidence that elected and non-elected girls are different among multiple dimensions. Addi-
tionally, only 13 girls in each school actually participate in the program, and thus the effects

on participants and non-participants may be quite different. To look at heterogeneity, we
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present estimates of specifications in Equation (3.11).

Yist = Bo + BTl + BTl X Girlis + 83115 X Girlys x Fig + BaT2,

+ 8512, X Girlys + Be12, X Girlys X Pig + BrEis + Bsyiso + €is1 (3.11)

In Equation (3.11), the parameters 5, and S, identify the effect of the program on boys
in T1 and T2 schools, respectively. 51 + [ and (4 + f5 identify the effect on non-participant
girls in these schools, while 8 4+ (o + 3 and B4 + (5 + B identify the effect on participant
girls.

Results are presented in Table 3.13. Interestingly, we see relatively little evidence of
impacts on participant girls. Career aspirations and expectations appear to be negatively
impacted in T1 schools, but this result is only marginally significant. However, it is sub-
santively large at approximately 0.3 standard devisions. Additionally, self confidence among
randomly-selected participants in T2 appears to be negatively impacted in T2 schools.

Non-participant girls have significantly lower educational aspirations at endline in T1
schools, as shown by the p-value of the test on the coefficient for T'1, + T1, x Girl;;. We
further see evidence of negative effects on non-participant girls’ self confidence in T1, but
note that there is substantially less evidence for negative effects on self confidence for non-
participant girls in T2. We interpret this as an effect of the selection mechanism in T1: girls
who were not chosen by election lose self confidence, and this effect is re-emphasized every
time the Bal Sabha meets without their participation.

Finally, and most starkly, the estimates in Table 3.13 suggest that the largest impacts
of the program may be on boys’ self confidence. Average boys’ self confidence is approx-
imately 0.40 standard deviations lower in T1 schools and 0.476 standard deviations lower
in T2 schools. Boys, who were not the target of the program, ended up with statistically
significant and quantitatively meaningfully lower self confidence in schools that received the

girls-targeted program.
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Table 3.13: Disaggregated I'TT Program Effects on Endline Attitudes

Self-Confidence Gender Roles
Education Index Career Index Index Index
(1) (2) (3) (4) (5) (6) (7) (8)
T1 -0.148 -0.065 -0.057 -0.055  -0.402** -0.398**  -0.031 -0.016
(0.149) (0.099) (0.142)  (0.143)  (0.159) (0.159)  (0.168)  (0.171)
T1 x Girl -0.247 -0.270 -0.067 -0.070 0.030 0.038 0.007 0.003
(0.267) (0.164) (0.174)  (0.174)  (0.180) (0.178)  (0.132)  (0.139)
T1 x Elected 0.195 0.100 -0.173 -0.174 0.147 0.142 -0.216 -0.235
(0.182) (0.135) (0.206)  (0.205)  (0.249) (0.247)  (0.178)  (0.178)
T2 -0.156 0.004 0.110 0.113  -0.476** -0.476** -0.136 -0.099
(0.210)  (0.119)  (0.184) (0.183) (0.218)  (0.217)  (0.221)  (0.220)
T2 x Girl 0.191 -0.058 -0.197 -0.196 0.313 0.311 0.103 0.075
(0.285) (0.161) (0.170)  (0.171)  (0.208) (0.208) (0.231)  (0.227)
T2 x Selected -0.190 -0.142 0.101 0.102 -0.154*  -0.153*  -0.199*% -0.191**
(0.157) (0.106) (0.137)  (0.137)  (0.082) (0.082)  (0.098)  (0.085)
Girl -0.309 0.020 -0.160 -0.157 -0.140 -0.142 0.031 0.021
(0.198)  (0.126)  (0.120) (0.118)  (0.111)  (0.111) (0.114)  (0.117)
Elected 0.198 0.123 0.259%*  (.258** 0.171 0.172 0.081 0.083
(0.131) (0.087) (0.100)  (0.100)  (0.102) (0.102)  (0.097)  (0.093)
Baseline Response 0.521%** 0.008 0.030 0.083*
(0.038) (0.034) (0.019) (0.043)
Constant 0.273%** 0.067 0.078 0.075 0.301%%  (0.299** 0.047 0.041
(0.093) (0.067) (0.094) (0.094)  (0.131) (0.130)  (0.123)  (0.126)
Observations 1,297 1,297 1,552 1,552 1,585 1,585 1,568 1,568
R-squared 0.040 0.297 0.017 0.017 0.036 0.037 0.006 0.013
Mean Dep Var in C 0.141 0.141 0.041 0.041 0.258 0.258 0.080 0.080
P-value for Test 1 0.138 0.032 0.302 0.302 0.064 0.074 0.878 0.933
P-value for Test 2 0.454 0.156 0.057 0.055 0.381 0.399 0.299 0.275
P-value for Test 3 0.878 0.678 0.402 0.425 0.305 0.298 0.854 0.890
P-value for Test 4 0.556 0.249 0.932 0.916 0.046 0.043 0.287 0.304

Robust standard errors in parentheses, clustered by school. *** p<0.01, ** p<0.05, * p<0.1.

Dependent variable is first principal component of responses to relevant questions on the endline question-
naire.

Test 1 is a test of (T1 + T1 x Girl). Test 2 is a test of (T1 + T1 x Girl + T1 x Elected). Test 3 is a
test of (T2 4+ T2 x Girl). Test 4 is a test of (T2 + T2 x Girl + T2 x Selected).
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3.5 Conclusion

This paper examines network formation and outcomes due to an after-school program in
rural India, using extensive panel network data, combined with novel randomized assignment
to selection regime and program participation. Several important empirical findings emerge
from this analysis.

We find substantial evidence of friendship network sorting as well as of network seg-
regation between those who are selected and those who are not due to program exclusion.
Network segregation occurs through two different channels depending on the selection regime.
Selective exclusion partitions networks during the selection process itself — based on elec-
tions or on characteristic-based eligibility (e.g. gender). Two elected girls are 24.9 percentage
points more likely to be friends at baseline than two non-elected girls and 15.0 percentage
points more likely to be friends than if only one is elected. When exclusion is random,
network segregation is due to program participation (or non-participation). Pairs of partic-
ipants being more likely to be friends at endline than pairs of non-participants, and pairs in
which one is a participant and the other not being less likely to be friends than either group.

In addition, we find negative spillovers when girls are selected by popular vote, translating
into lower levels of self confidence among girls who were not elected. Non-elected girls in
schools running the program have a self confidence index 0.37 standard deviations lower than
those in the control group, suggesting a discouragement effect from not being elected. We
do not find these negative spillovers when exclusion/participation is determined randomly.
Negative spillovers affect boys’ self confidence in both selection regimes.

Our findings have important implications for the estimation of peer effects and the design
of appropriate rules for assigning individuals to social programs in a wide range of areas. The
evidence in this paper calls for caution in expanding this type of education program based
on the endogenous exclusion of a significant portion of the school population. “Ensuring

bRANAS

inclusive and equitable quality education,” “promoting sustained, inclusive and sustainable

economic growth,” and “promoting peaceful and inclusive societies” are 3 of the 17 Sustain-
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able Development Goals (Nations, 2015). Social inclusion encompasses a sense of belonging,
of integration to the reference group (Shortall, 2008) (Shortall, 2008). Self confidence and
social capital are significant contributors to social inclusion (Bailey, 2005; Fiorina, 1999).
And, while social programs are designed to empower and bring opportunities, this paper
shows that selective social programs may in some cases, undermine the self confidence and

social capital of the excluded segments of the population.
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APPENDIX A

Proofs of Propositions (Chapter 1)

A.1 Proposition 1.2

Proof. Existence of equilibrium follows directly from Rosen (1965). Given each other player’s
strategies, each player’s uility function is concave in his own strategy g;s. Therefore, existence
of equilibrium follows from Theorem 1 of Rosen (1965).

I show existence of a strictly positive equilibrium in three steps. First, I show existence
of equilibrium in a version of the game in which players’ strategy sets are bounded below by
g > 0. Second, I show that, for sufficiently small g, the lower bound is non-binding. Finally,
I demonstrate that the equilibrium of the bounded game is an equilibrium when players are
allowed to link zero with other players (that is, when g = 0).

Step 1: Existence with Strictly Positive Strategy Sets

Define a network-formation game in which individuals maximize utility as defined by
Equation (1.11). Different than the game defined in the text, however, they must form
strictly positive links with each individual. That is, for each i, j # i, g;js > g, where g > 0
(strictly). Set g sufficiently small that each player’s strategy set is non-void: g € (0, %ﬂg)

As defined by Rosen (1965) and Ui (2008), for each i, Uis(gis, g—is) is concave for every
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g_is. Accordingly, the game is a smooth concave game on a compact strategy set. Thus, by
Lemma 1 in Ui (2008) and the notes afterward, a Nash Equilibrium of this game exists.
Step 2: Lower Bound is Non-Binding for Sufficiently Small g

The result in Step 1 applies for any g > 0 such that strategy sets are non-void. Sup-

1
M ( fraz T % M o=l rar\? maxzC 1-a=8 ) .
pose g € (0, F(F2=)7) N (0 ((W) (%) fvm—) ), where frun < ef(XinXie) <
fmazVi,j # i.} Define )\;; as the Lagrange Multiplier for the budget constraint, and [Lij as
the Lagrange Multiplier for the lower-bound constraint g;;s —g > 0 for i, j # i. Therefore,

the following Kuhn-Tucker conditions hold for individual ¢ and all j, k # i:

ag?jglgfisef(xis’){js) — NisCijs + fijs = 0 (A.1)
g Gss€” ) — NisCins + pins = 0 (A.2)

Suppose the constraint binds for some pair ¢, j # ¢ and thus g;;s = g. Since utility is

increasing in g;xs whenever g > 0, the budget constraint must bind in equilibrium. So,

Yok i CiksGiks = M;,. Therefore, since g < (N;Ml)g, the lower-bound constraint must not bind

for some k # j,i. Thus, gy > g and i, = 0. Combine Equations (A.1) and (A.2) through

Ais as follows:

f(Xis: Xjs) L F(Xis, Xks)
— (& /J/'L S —1 ﬂ e
ag® 1 B —+ IS — ag® — A.3
gz]s g]zs Cijs Cijs gzks gkzs Ciks ( )
f(Xi37st) f(Xis:st)
-1 8 € -1.8 €
g?js gjis < gflécs kis (A4)
Cijs Ciks

W.l.o.g., choose k such that g;.s > gus V [ # i. Due to the budget constraint holding with

a—1 =\ 5
M),. Since o — 1 < 0, 93;1 < < M ) . Additionally, glfis < (%)

equalitya Giks > (N—1)c (N—1)c

L frnin and finae are well-defined and finite due to compactness of the range of the function f and continuity
of the exponential function.
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and &5tk < ] maz - Substituting on the right-hand side of Equation (A.4) yields

Ciks
. . o— EVa B
gaflgﬁ ef(XZS’XJS) < M 1 % fmaw (A 5)
]S J18 C: (N o 1)5 .

e Cc c

On the left-hand side of Equation (A.5), gijs = g and g;is > g. Since 8 > 0, gf‘jglgfis >
¢+~ Further, €2

>/ =i Making these substitutions into Equation (A.5) gives

a+B— fmin M ot E ﬁfmaz
ot (win) (3) 5 9

Therefore, since a + [ —1 < 0,

o () () ) )

.. . .. . M a—1 H'Bf . 1—;—5
This implies a contradiction since we assumed g € (0, (m) (—) Lmaz® ).

c fming

Accordingly, for sufficiently small g, the constraint g;;s > g does not hold for any pair i, j # i.
Therefore, with this restriction, there exists an equilibrium in which g;;s > g V 4,5 # i

(strictly).

Step 3: Equilibrium of the bounded game is still an equilibrium when players are allowed to
choose links of 0.

Step 2 above shows that, for arbitrarily small g, an equilibrium exists in which the lower-
bound condition is non-binding for every pair 7, j # i. Therefore, for all 7, any deviation in
which ggjs > 0V 1,j # i cannot lead to higher utility to ¢ than this equilibrium allocation. I
now show that this fact remains true if we allow players to choose g;;, = 0.

Assume players play the strategies played in the equilibrium described in Step 2. For

every i,j # ¢, define this strategy as g;;s. At this point, p;;s = 0V 4,5 # 4, and Equation
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(A.1) becomes

aggs lgjﬁzs [(XinrXs0) = )‘iscijs (A8)
From this, we see that
1
glsa zs Zgws j[j;s Ut XIMXJS - a Z )\iscijsgijs (Ag)
JF J#i
M.
il A.10
2 (A10)

Suppose that this is not an equilibrium of the game in which g = 0. Therefore, for
some i, there exists an alternative strategy g;; in which gj;, = 0 for some j # i where
Ui(giss 9—is) > Ui(giss G—is)-

The utility from links where g;;; > 0 is bounded above by the utility derived from
solving the First Order Conditions in Equation (A.8), restricted to positive links. Define
9i;s as the hypothetical set of links in which these FOCs hold whenever g;;; > 0. Note that
9i5s > == gi;js > 0, and \]| as the Lagrange Multiplier corresponding to this constrained

utility-maximizing strategy. So,
a(gé}s)“ 193615 [(Xis,Xjs) _ )\chijs Vij#i | ggjs >0 (A.ll)

Therefore,

g/.l. N/ ﬁ
s _ (_) (A12)
Gijs Ais

From this, we see that st is constant across all j for whom g’ > 0. Clearly, gii; > gijs
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whenever g’

> 0. Further, 0 < a < 1= A/, < \;5s. From this, we see that

Uijs(Giss 9—is) = Z(ggjs)agﬁsef()(”’xm (A.13)
J#i
= 1{g};, > 0Hgl;) " gpe? K75 (A.14)
J#i
1
J#i
Mis
)\ZS (A.16)
«
Mis
< )\is a = Ui(.gisag—is) (A17)

This shows that any deviation in which g;;5 = 0 for some j makes agent ¢ strictly worse off.
Therefore, the strictly positive equilibrium is also an equilibrium of the game when g = 0.

]

A.2 Proposition 1.3

Proof. Suppose there are two equilibria (g, A) and (¢', \'), where g = (g12s, G135, ---s gNN—15)
and A = (s, ..., Ans). Equations (1.12) and (1.13), the First Order necessary conditions for

strictly positive equilibrium, imply

(o — 1)(log gijs — log gij,) + B(log gjis — log gj;,) — (log Ais —log Nj,) =0V i,j #i (A.18)

> cijs(gizs — gly) =0V i (A.19)
i
Define 3 = % and \j; = %. After substitution and rearrangement, Equation (A.18)
becomes
(log gijs — log gz/'js) = 5(108; gjis — log 991'5) - (:\is - 5\;5) Vi, j#1 (A.20)
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By symmetry,
(log gjis — log gj;s) = B(log ijs — 108 giss) — (:\js — 5‘;3) Vi, j#i (A.21)

Substitute Equation (A.21) into Equation (A.20) and rearrange, yielding

(1og gss — log ) = ———= (Bhys = X)) + (Ris = M) Wi j A1 (A.22)

1
1— 32
Since the log function is continuously differntiable for all positive values, the Mean Value

Theorem = 3 g}, € [gijs, gijs], where log gi;s — log gj;, = ﬁ(gzjs — gijs) and g5, > 0. Make

this substitution and multiply by —(1 — (2) 9;sCijs’
—(1 = B%)ciss(Gijs — Gijs) = Cijsbise (B(S\js = Xo) + (s — 5\;5)) Vi, j#i (A.23)

Next, sum across j # ¢, substitute and rearrange:

_<1 - 52) Z Cij8<gij3 - gz]s Z Cl]sgz] <6~ 5\ A ) (>\zs - 5\;5>> Vi <A24>
J# J#i
0= (Z Cijsgl.73> + 6 Z Cljsgz]s Js 5\;3) Vi
J#i j#

(A.25)

This defines a linear system of N equations and N unknowns, as defined by Ab = 0 in
Equation (A.26):

- . . 7| A=A
(Zj;él Cljsgikjs) Be12sG1as Beinsing 5 5
~ ~ 2s T N\2s
Bears g 22 C2js0a5s) - Beansgans
21 (Zﬁsz is93js) 2N —0 (A.26)
Benisgiis : (Zj;ﬁl Cstgj\/js) ~ ~
B B _)\NS - A?Vs_
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Clearly, A being invertible will guarantee \;; — N, =0Vi.
Suppose A is not invertible. Therefore, 0 is an eigenvalue of A with an associated
eigenvector v. Let v, be the largest element of v and, w.lLo.g., v,, > 0. So, v, > v; >

—Uy, Vj # m. Now,

Um(z ijsg:njs) + B Z chmjsg:njs Z UW(Z cmjsg;knjs> - va Z ijsg:njs (A27)

J#m J#Fm Jj#Fm JEm
> (3 emgGigs) (1= 5) > 0 (4.28)
J#Fm

This contradicts that 0 is an eigenvalue. Therefore, A is invertible, and \;, = tilde\, Vi.
Finally, from Equation (A.22), we see that i, — N, =0V 4,5 #i = (log g;;s —log Gijs) =

0V i, j#i. Therefore, (g,\) = (¢, \') and the equilibrium is unique.

A.3 Proposition 1.4

Proof. Let grs = (gr1s, ---» Guns) be agent i’s strategy vector, and g_;s be the strategy vectors

of the other Ny, — 1 players. The definition of a potential game requires that, for every

ka Sks; 8—ks»
P<gk57 g ks Xs) - P(gi(s, 8—ks, Xs) = Uis(nga g ks Xs) - Uis(gi(sv 8—ks, Xs)

Simple substitution and the assumption f (f(X;s, Xs) = f(Xgs, Xis) shows this to be the

case. Define ujs(8ks, & ks) = (GijsGjis) e/ KioXis) and w;;4(g, & 1s) similarly. Note that
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uijs(gksyg—ks) = uijs(g{(sv g_ks) whenever i, j # k. So,

N,
1 S
P(gksa g—ks; Xs) - P(gi(s: ks Xs) = 5 Z Z (uijs<gks7 gfks) - uijs (g{qsa gfks))
i=1 j#i

1
- 5 Z (Ukjs(ng7 g—ks) - ukjs(gi{sa g—ks))
Jj#k

1
+ 5 Z (Uiks(8ks) 8—ks) — Wiks (Blsr B-ks))
ik

= (ujks(8kss 8—ks) — Ujks(hsr B—ks))

i#k
= D (ghjagne) €U =D ()l h
i#k i#k

- Uis(gk57 g ks Xs) - Uis(gi(sa ks XS)

A.4 Proposition 1.5

Proof. First, it is clear that the potential function P(Gg, Xs) is a continuous function in Gg
on a compact set. Therefore, there exists some G} that maximizes the potential function.

Monderer and Shapley (1996) showed that the set of strategy profiles that maximize P
is a subset of the set of equilibrium profiles. Since the game as a potential game is a special
case of the broader game, Proposition 1.2 provides existence results, and Proposition 1.3
provides that the strictly positive equilibrium is unique. Therefore, by showing that any
other equilibrium is not a potential function maximizer, by necessity the strictly positive
one must be.

I prove this by demonstrating that any equilibrium strategy profile that is not the strictly
positive equilibrium cannot maximize P.

Take any equilibrium network Gg other than the strictly positive one. Therefore, g;;s =
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Mis] [0, Mie

Cjss

gjis = 0 for some 7, j # i. For all d € [0, |, define a deviation profile as follows:

Cijs

M, — dc
/ s 178 vk
Giks Mis GJiks 7& (2W)
M., —dc
/ js jis
ks = ngVk?ﬁZa]
J Mjs J

Ghte = Gris ¥ k #1,7,VI

That is, gixs and gjis adjust proportionally. Note that g;zs = 0 = ¢, = 0. Such a deviation
is feasible (within the constraint set) for all d as restricted above.

Now, define a function F'(d) as follows:

F(d) = P(G{,X;) — P(Gs, Xy)
M;s — dcijs
M;

M js — dcjis
M.

J

— dQCVef(Xis,st) + ((

)a - ]')UiS(GSa Xs) + (( )a - 1)UjS(GS7 Xs)

(A.29)

For notational convenience, let U;; = U;s(Gs, Xs) and U = Uj5(Gs, Xs). The function F'(d)

is continuous within its domain and differentiable for all d > 0. Further,

OéCz‘stis M;s — dcijs acjisUjs Mjs - dcjis

F/(d) — z&dQOéflef(Xis,XjS) _ M ( M )ail — M ( M )ail <A30)
1 18 J J
_ M. M.
> 9ad2e e/ KisXse) _ Y (g (s yi—a s yi-a A.31
= ‘ M (Mis - dcijs) " (Mjs - dcjis) ( )

Next, I show that there exists d such that F’(d) is strictly positive. There are two distinct
cases: (1) Uy = Ujs =0, and (2) U;s + Ujs > 0.
Case 1: Uy =Ujs =0

In this case, Equation (A.31) becomes

F'(d) = 2ad? el XisiXis) (A.32)
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which is strictly positive for all d > 0. Therefore, by the Mean Value Theorem, there exists
some d* € (0,d) such that F(d) — F(0) = F'(d*)(d — 0). So, F(d) > 0.
Case 2: Ujs +Ujs > 0

_1
When Uy, +Uj, > 0, further restrict d s.t. d € (0, 262)n (0, 2) (0, (%) Y 2
E ES Me s s

This set is non-void since the supremum of each interval is a strictly positive number. Within

this restricted set,

' c(Uis + UjS) F(Xis, X ;) ac _j_,
F (d) > 20 (W e Js) — MQ (UiS + Ujs)

— W@ — 217 > 0 (A.33)

1

Therefore, for any d € (0, 21\04—]) N (0, 21\04—]) N (0, (%) "), by the Mean Value The-
orem, there exists some d* € (0,d) such that F(d)7— F(0) = F'(d*)(d — 0). So, F(d) > 0.
Bringing it all together, for any equilibrium Gg where g;;s = gji;s = 0 for some 7, j # 1,
there exists some feasible deviation G in which F(d) > 0 and thus P(G%, Xs) > P(Gs, Xy).
Therefore, each such Gg is not a maximizer of the potential function. Accordingly, the

unique strictly positive strategy profile, for which g;;s > 0V 4, j # ¢, maximizes the potential

function.

A.5 Proposition 1.6

Proof. This result is a typical panel IV result, allowing for arbitrary correlation of variables
within clusters. Let S be the number of schools (potential networks) observed and N be the

number of actors per school. Starting with Equation (1.20) and the instrument set z;;s, we

2In this case where the game is a potential game, 8 = a. The assumption 1.2 therefore implies that
1—2a > 0.
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see that

X

Y Y Y A} ! 7
Zijs9ijs = Zz‘jsgjisﬁ + ZijsXZS © X $01 + Zzng isV3 — z]sczjs

=2, bijs0 — (A.34)

e st zgs

where 0 = (5, 8, v4)". Next, sum across all schools and pairs of students:

S
1
_ 1 Zzzbz]szzjszzjsgws ZZZ SN(N — Z]SZ@]SZWSbUSH
slzlj;él =1 =1 jAi
N
TL — 1 ZZZbZ]SzUSZUs 7,]5 (A35)
s=1 i=1 j#i

Since CUS is a linear combination of terms that are assumed to be independent across

s, c'ﬁjs is also independent across s. Further, all terms are bounded and thus have finite
variance. Let w;js be an element of one of the matrices in Equation (A.35). For any such
variable, Clwjs, wgi] = 0 whenever s # t. Further, since each w;j, is identically distributed

within a school, V[w;;s| = V{wys|Vi, j, k, . Further,

V[wys) =V SN Y Zzzwws

s=1 i=1 j#i
1 N
= N(N -1 y
SZNZ(N — 1)? (S ( )V wizs] + S( ; < Zl ; [Wijs, Wis )
1 1
< - — . '
=g (N(N —) + 1) Vwjs| (A.36)

where the final line applies the Cauchy Schwarz Inequality (Clw;js, wiis] < V{wjjs]). There-
fore, limg_, V[w;;s] = 0 and by Chebyshev’s Inequality,

S—o00

I here note that all terms in Equation (A.35) are sample averages. Therefore, we can
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apply Equation (A.37) to each element. Thus, SN(N T ZS 1Zz 12]# z]Szwszwsgws »

E[b};,2ijs%i;s0i;4), etc. Now, replacing the terms in Equation (A.35) with probability limits,
E[b;jszwszl]sgl]s] - ]E[b;]szljszéjsbijs]e - E[b;jszwszmscws] <A38>

Assumption 1.4 implies that the final term in Equation (A.38) is zero, while the rank condi-

tion of Proposition 1.6 implies invertibility of E[b}; zi;s2i;,bijs]. Therefore,

0 = (E[b]; 252

ijs

bijs]) 'E[bL 282

iJs

(A.39)

ijs 1]591]5]

and thus the parameters (3, 81, and ~3 are identified.

A.6 Proposition 1.7

Proof. This proof is very similar to Proposition 1.6 but relies upon the additional exogeneity
conditions in Assumption 1.6. Starting with Equation (1.27) and the instrument set z;;5, we

see

VY S BT R / Yl i I
Zl]SgZ]S — ZZJngZS/B + Z’ijSXZSX 51 —|'_ ZZ]SXZSGI 62 + Z,L]Saw jS(Sg + szsazsa]554

+ Zz]sts’y?) + Zz{jsaisd;s/yll - Zzyscz]s (A4O)
Rearrangement of terms shows that

Y A /
ZiisGijs = ZijsDigs0 + Zijstsa 0o + z”SaZsX 03 4 245435004 4 2450350 s — ZZ]SCUS (A.41)
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where 6 = (3,8,,7s)". Next, sum across all schools and all pairs of students. So,

S

N N
1
m Z Z Z leSZUSZZJSgUS - SN — 1 Z Z Z stzz]szz]sszse
s=1 i=1 j#i o1 o1 7
+ b;jszijszzjstsa 52 _'_ bl]SZzJSszsaZSX5853

/
+ bzgszljszzjsalsa 64 + bz]szljszmsa’lsa’]s’yﬁl

— ¥ (A.42)

'Ljszljszz]scljs)

is a linear combination of terms that are assumed to be independent across

Since ¢,
Further, all terms are bounded and thus have finite

S, Cjjs 18 also independent across s.

variance. Let w;js be an element of one of the matrices in Equation (A.42). For any such
variable, Clw;js, wyy] = 0 whenever s # ¢. Further,

V[wijs] = SN — 1 Z Z Zwms

517,1]751

1 7 (szvuv — DV[wizs] + SO DO D )Clwije, was )

~ RN2N
SEN(N i=1 j#i k=1 I#£j

where the final line applies the Cauchy-Schwarz Inequality (Clw;js, wiis] < V]w;js]). There-

(A.43)

fore, limg_,o, V[10;js] = 0 and by Chebyshev’s Inequality,

S—o0

I here note that all terms in Equation (A.42) are sample averages. Therefore, we can
zZ]Sszsgms _>p

apply Equation (A.44) to each element. Thus, SN(N 1 ZS Dy 1 2 i Vijs

E[b};,2is215:4;5), etc. Now, replacing the terms in Equation (A.42) with probability limits,
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E[bijszwszzgsgzgs] - E[b;]szljszzgsszs]e + E[b;jSZZJSZ’LJSXiSéL ]52 + E[bz]szljszzjsaZSX;s]é?)

+ ]E[bijszwsz

a;sQ ]54+E[bmszwsz at )vs — E[Y]

ijs jS

ZijszhiCh] (AL45)

iJs ijs VENAE

The first part of Assumption 1.6 implies that the final term in Equation (A.45) is zero.
Note that z;;, and b;;s are simply functions of x,. Therefore, application of L.ILE. im-

plies that E[b};,zijs 21, Xis@},] = B[b;,2ijs 215, XisBa},|bijs, 2ijs]] = 0. By similar argument,

E[bgjszwszwsan; | = 0 and E[b};,2ijs2};,a5,] = 0. Further, the third part of Assumption 1.6

implies

;s ;A

E[b;.2ijs

e

E ]8] - E[bijszmszms ]s]

= E[V 2152}

iJs ]E[(l als‘xks]]

ijs

= E[b},2ijs2

e zgsE[a;’sE[ais|xks; als”xks]]

=0 (A.46)

where we condition on all k and I # i. Substituting these results into Equation (A.45) shows

that

Kb, 2ijsz

ijs

=E[b} . zijs2

s

zjsgz]s] z]sbljs]e <A47>

The rank condition guarantees the existence of (E[b];,zi;s2};,bijs]) ™" and thus

0 = (E[b,, zwszmsszs]) 'Elb,; Zijs?

ijs e

(A.48)

zysgz]s]

So, 8 = (f3, delta),, ~4) is identified. O
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A.7 Proposition 1.8

The first rank condition, together with Assumption 1.6 and Proposition 1.7, imply that
f is identified. I prove the rest of the proposition in three steps: (1) Scale identification of

dy and 7, (2) Scale identification of 03, and (3) Scale identification of d;.

Step 1: Scale identification of 05 and o

Proof. To begin, multiply Equation (1.27) by 2j;,a;s and sum across SN (N —1) observations.

So,

S N s N
1 1 i
SN(N —1) Z Z - Z”Sajsgws N SN(N —1) Z Z (Zws&ﬁgﬂsﬁ + Z%JsaJSXZSXJ'S(Sl

@
Il
—
-
Il
—
<
LS
&
@
Il
—
-
Il
-
<
LS
.

i
+ zwsa]SXwa 09 + zmsajsan 03 + zwsajsaisaj854

' g XY S S
+ 2155055 X V3 + 2i55055QisAiVa zwsajscws) (A.49)

Since ¢, is a linear combination of terms that are assumed to be independent across
s, c'ﬁjs is also independent across s. Further, all terms are bounded and thus have finite

variance. Let w;;s be an element of one of the matrices in Equation (A.49). For any such

variable, Clw;js, wii] = 0 whenever s # ¢. Further,

V[U_)US] - SN _ 1 Z Z Z w”s

s=1 i=1 j#i
1 N
= N(N — D)V[w;;
S2N2(N _ 1)2 (S ( )V[MZJS] + S ; ]2; 2; %J: wmsa Wkis )
1 1
< - — . ‘
-9 (N(N _ 1) + 1) V[wws] (A 50)

where the final line applies the Cauchy-Schwarz Inequality (Clw;js, wiis| < V]wjs]). There-
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fore, limg_, V[w;;s] = 0 and by Chebyshev’s Inequality,

S—o0
I here note that all terms in Equation (A.42) are sample averages. Therefore, we can apply
Equation (A.51)to each element. Thus, SN Zs SV D ik Zjs@isliys —p Bl215055004),

etc. Now, replacing the terms in Equation (A.42) with probability limits,

]E[zz]sajsgz]s] = E[Zz]sajsg]zs]ﬁ + E[Zz]sa]SXZSX ]51 + E[ZZ]SCL]SXZSG ]52 + E[szsajsaiSX;s]a?)
+ E[Zwsajsazs ]54 + E[Z’LJSGJSX’L?S]/YS + E[Zz{jsajsaisa;s’y‘l] - E[Zz]sajscz]s]
(A.52)
Assumption 1.6 implies that E[z];,a;.¢;,] = 0.

Assumption 1.6 and L.I.LE. imply that E[zwsa]SXisX;S] =E[z USXst sElajs|zijs, Xis, X’ Jl =

0. Similarly, E[zlfjsajs)'(g] E[z WSXJ E[a;4|2ijs, X7.] = 0. Independence of aj, and az, when
k # j implies ]E[zzjsajsaisXJ’: | =E[z Z]SXz E[ajsai5|zij5,X; | = 0, and similarly E[z];,a;s0:50},] =
0. Next,
E[zijsajinsd;s] = ZzJSaJSXzs Z]E Z@jsaks
k#i
N -2
= mIE[,ZUS(L]SX,S] - Z E[2};,ars0js Xis]
ki, k#j
N -2
= mE[zljsajsts]
N-2
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where o, is the variance of the scalar unobservable a. Similarly,

[Zijsagsags] = E[z, JS Z]E 25 lhs]
k#i
N —2
= N 1ERha = D Eldhuenai]
k#i,k#j
N —2
= N — 1E[Zz/'jsaj2's]
N —2
= v Elisloa (A.54)

Combining these results and substituting into Equation (A.52), now

E[Z;jsaisgijs] = E[Z;jsaisgjis]ﬁ + N — 1UG(E[Zz{jinS]62 + E[Zz{js]’YQ)
= Elpandili + N 20l | (A55)
= Zijsazsgjis N— 1Ua Z”s ijs .
Y2

Next, assume there exists 6, = (5, 2,72) and 0, = (5,8}, 74). Further, let o2 and (0”,)? both
be finite.

From Equation (A.55), it must be true that

N N —2 02 ()
0= E[zz{jsaisgjis](ﬁ - B/) + m QE[Zwsbzl]s] - (0:1)2 [Zzgsbzljs] , (A56)
Y2 Y2
From above, B is identified, and thus (B — B’ ) = 0. Therefore,
) 0!
0= [ZZ]SbZQJS] 02 i - (0—0)2 ’ (A57)
Y2 Vs

The second rank condition implies that there exists some (m + 1) x [ matrix A; such
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that A [z, .b?.] is of rank 2m. Therefore, (A1 K[z b}..])~! exists and

IYEMAE Y EMAE]

0= |02 — (04)? (A.58)

Accordingly, §, and 7, are identified up to the scale factor 2.

Step 2: Scale identification of 63 Multiply Equation (1.27) by 2. a;s. So,

(YL

Z;jsaisggjs = z;jsa’isg;isﬁ + Zz{jsaiSXiSX;sél + Z;jsaiSXiSd’;s(SQ + Z;jsaz?szZ:s(S?) + Zz{jsaz?saésdl
+ zz{jsaiSXi]s’y?) + Zz{jsaisa;"s’y‘l - Zz{jsaisc‘gjs (A59)
Next, take the mean over all SN(N — 1) observations. So,
1 N 1 S N
/ I / ) / &)
m Z Z Z RijsisGijs = m Z Z Z(zijsaisgjisﬁ + Zijsaiinszsél
s=1 i=1 j#i s=1 i=1 j#i
+ 215,055 X5 00 + 255,00, X 03 + 21;,03,05,04
+ Z;jsaiSXi]s’Y:i + zgjsai$a§374 - Zz{jsaiSést) (AGO)
. S N y g
By the same argument as in Step 1, m Dom Dim1 D Fijsisliys —rp Bl2is0isdis]s ete.

So, replace the matrices in Equation (A.60) with their probability limits.

(Y] 17818

E[Zz{jsaisggjs] = E[Zz{jsaisg.;is]g + E’[Zz{jsaiSXiSX;s](sl + E[Z/ aiSXiSd;s]62 + E[Z/ CL2 X;S]ég

+ K[ 02,05, )64 + B2 ,ai X1 + Elz],ai0k v — Blzl,aiscl]  (A61)

YA e K] I E iJs L 1JS

Assumption 1.6 implies E[z};,a;,¢};,] = 0. Further,
E[zijsaiinsX;S] = ]E[zgjinsX;SJE[ais\zijs,XZ-S,XJZ:S]] = 0 and similarly E[zijsaisX;:s] = 0. In-

dependence of a;s and a;, from each other and from X implies

E[zijsaiinsdés] = ]E[Z/ X,LSE[CL;SE[CLHICLZ Xis; Zijs] |Xi37 Zijs“ = 0, and by similar lOgiC E[Z/

ijs 789 staisa’js =
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0. Further,

Zz]sa?sa;s] = 2]5 zsajs Z E Zz]sazsaks
k#i
E[szsast a’JS|a’ZS Z E’ szsast aks|ais]]
k1
=0 (A.62)

From Assumption 1.8, it follows that E[z]. a? X ] = El2]

LisOis X ¢ Jo2, where o2 is the variance

zgs

of a. Now, substittuion of these resutls into Equation (A.61) yields
i i 17 i1 2
E[Zz{jsaisgijs] = E[Zz{jsaisgjis]ﬁ + E[Zz{jszs]o-ad? (AGS)

Now, assume there exists some parameter vector 0y = (/3’ ,v3) and 6, = (3, v3). These vectors

are associated with finite 02 and (o,)?. So,
0 = Elzj,ais0ji) (6 = 5') + Elz;, X} (0205 — (03)'63) (A.64)
Identification of 8 implies 3 = 3. So,

0 = E[2};,X},)(0705 — (07)'55) (A.65)

z]s

The third rank condition further implies that there exists some mal matrix A, such that

ALE[Z] Xz o) is of full rank m. Therefore, (A2E|z] Xl )71 exists. So,

z]s 2]5

0=0203 — (02) 6% (A.66)

2

Accordingly, the parameter vector s is identified up to the scale factor o.

Step 3: Scale identification of 64
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/
iJs

Finally, multiply Equation (1.27) by 2. a;sa;s. So,

/ S A Y - BT AN v i V.o I YL At 12 i
25 Qis@jsGijs = zijsawa]sgjisﬁ + Zijsazsajstszs(Sl + zijsawajszajsch + zijsawajszs&z,

(A.67)

)

/ 2 - / &'l / - g / .
+ Zz‘jsaz'sajsaj554 + Zijsaisajins% Tt 25 QisAjs Va4 — Z;5sQisAjsCijg

Next, take the mean over all SN(N — 1) observations. So,

1 Y y 1 N L
—SN(N —1) Z Z Z Zz{jsaisajsg;js = m Z Z (Z;jsaisajsgjisﬁ
s=1 i=1 j#i s=1 i=1 j#i

/ <
+ zijsaisajinszs&

!/

! - 2 vi / 2 - g
+ zijsaisajinsajjg + zijsaisajszség + zijsaisajsaj854

!/

/ P v ] / P . Pt
+ ZijsazsaJst‘s 3t 255 QisAjsys Y4 zijsalsajscijs)

(A.68)

. s N i i
By the same argument as in Step 1, m DBNED P Z#i Z1isQisdiis —p E[zgjsaisgijs], etc.
So, replace the matrices in Equation (A.68) with their probability limits, yielding

B2}, 0is0s0555] = Bl21550is05505:5) 8 + Bl2150i0056 X3 X5, 101 + E[27,015055 Xi405,] 02

+ ]E[Z/ &iSQ?sX;s](S?) + ]E[Zz{jsazzsajsa;s]&L + E[zz{jsaisajSXijs]’y?)

ijs
+ B[ 01505505 ) va — B2 ,05s055655 ] (A.69)

! i

Assumption 1.6 implies E|z];,a:5a;5¢;;,] = E[2;,0i5055E[¢] 2ijs, ais, ajs]] = 0. Application of

[YE]

Assumption 1.6 and L.LE. together imply E[z] aisajinsX;S], E[z aisajinsdés},

(YL} ijs
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E[z alsa XZ] E[z a,sa]SX] and E[z]. a;sa;5a"

Lis s Lis | are also zero. Further,

JSs

E[Zz]sa?sajsdés] - szsazsajs ZE Zzys zsajsaks]
k#i
N —2
= HE[z:]sazsaJs] - Z E[szsazsajsaks
-y
N -2
= 1 Bl i)
N —2
= m( Elz;,] (A.70)
Substitution into Equation (A.68) yields
E[Z/ a»a>'i]—JE[’ P }5_{_”_2( 2)2E[/]5 (A?l)
ijsQisQjsGijs] = L2455 AisjsGjis n—1 O, Zijs]04 .

Assume there exist parameter vectors 05 = (5, d4) and 0 = (3',8}), with associated o2 and
(0/)%. Equation (A.71) thus implies that

~ n—2

0 = Elz}j,ai5a;505:) (8 — 5') + (02)"El21;.] (01 — 0)) (A.72)

n—1

Identification of 8 implies (5’ — B’) = 0. Further, the fourth rank condition implies that

there exists some 1 x [ matrix Ag such that AsE[2]. ] is of rank 1. Therefore, 0 = (02)%54 —

z]s

((07)?)%d, and 4y is identified to up to the scale factor o2.

A.8 Proposition 1.9

The prior propositions have provided conditions under which /3, §, and ~ are identified.
So, I proceed under the assumption that these parameters are identified. I now proceed
to show that, conditional on these parameters being identified, a;s is identified for all j as

S — OQ.
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First, for any i, j, k,

(Gijs — Giks) — B@jis — Gkis) = 01X;s(Xjjs — Xis) + 02 Xis(Ajs — Aps) + 034i5(Xjs — Xis)
+ 04 Ais(Ajs — Aps) + 13(Xjs — Xis) + va(Ajs — Aks) — (Cijs — Cjis)
(A.73)

Since every element on the right-hand side of Equation (A.73) is bounded, (gijs — Giks) —

B(Gjis — Gris) s also bounded. Therefore, it has finite variance. Note further that it does not
depend on N. Note that ﬁ Zk;éz‘ (@z’js = Giks) — B(gjis — gkis)) = ijs - Bg;'is'
Summing over ¢ # j and with slight rearrangement of Equation (1.27), for any j, we thus

see

1 i 3 1 i i i
(N=1) > (9@3 - 59@) “voD > (01X X, + 02Xt + 0304, X,
i#] i#]

+ 0aisf, + 93X, + Yl — Ej) (A.74)
Finite variance and independence implies that
ﬁ S <g§j8 _ Bg;w> — igj[(g@?js — Bg;w>] + 0,(1) for any j. Similarly,
o hp Y XX, = X B [Xis] = ZIEJ,[X%] + 0p(1)
¢ ) Ling Nistljs = s B [Xi] +0,(1)
° (N—171) Z#j aisX;:s = op(1)
° (1\7—171) Z#j az‘sa;‘s = 0p(1)
o (N_lil) Z#j X]’s =X;s — i]gj[Xis] + 0p(1)
° (N—l—l) Z#j d;-s = ajs + 0,(1)

° (Nl—l) D iz Cijs = 0p(1)
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Therefore, in the limit, Equation (A.74) becomes

E (910 — Bilis )1 = 61X E [Xu] = EIXZ]) + 62y, E [X.]

1#£] i#£] J

+75(Xjs — ZIE][XM]) + Yaajs + 0p(1) (A.75)
Rearrangement yields

s 5 E (X)) = E (g, — Bdk )] — 01(X E [Xs] — E[X?
4+ 82 E [Xu]) = E[(3h, — B, )] — 00X, E [Xid] = E[X2)

— %Xy = E[Xi]) +0,(1) (A.76)
Now, suppose there exist a, # aj,. From Equation (A.76), we see that (a), — a;,)(y +

52,17[2,[)(1‘3]) = 0,(1). Therefore, (4 + 52.]5[Xi3]) # 0 = (aj, — aj5) = 0p(1) and thus ay; is
17£] 17]

point identified.

170



APPENDIX B

Supplementary Tables and Figures (Chapter 1)

Table B.1: Baseline Balance Across Schools

Elected Random P-value of
Treatment Treatment Control Balance Test
Panel A: Baseline Covariates

Elected 0.321 0.291 0.240 0.603
(0.056) (0.037)  (0.061)

Grade 7 0.331 0.311 0.315 0.817
(0.016) (0.041)  (0.029)

Grade 8 0.346 0.272 0.303 0.237
(0.030) (0.034)  (0.016)

SC 0.195 0.267 0.285 0.572
(0.057) (0.068)  (0.084)

ST 0.118 0.175 0.073 0.353
(0.033) (0.082)  (0.028)

OBC 0.459 0.459 0.423 0.939

(0.063) (0.069) (0.092)
Panel B: Baseline Qutcomes

Education Aspirations -0.217 -0.146 -0.201 0.892
(0.144) (0.105) (0.096)
Gender Roles 0.135 0.042 0.186 0.759

(0.171) (0.183)  (0.086)

Notes: Robust standard errors in parentheses, clustered by school. Sample is
1319 students in 30 schools.
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Table B.2: Baseline Balance Within Random Treatment Schools

Non- P-value of
Participant Participant Balance Test

Panel A: Baseline Covariates

Elected 0.362 0.260 0.135
(0.055) (0.037)

Grade 7 0.244 0.340 0.060
(0.055) (0.040)

Grade 8 0.339 0.242 0.204
(0.071) (0.032)

SC 0.283 0.260 0.779
(0.084) (0.074)

ST 0.205 0.161 0.335
(0.102) (0.074)

OBC 0.433 0.470 0.620
(0.091) (0.068)

Panel B: Baseline Qutcomes

Educational Aspirations -0.083 -0.174 0.489
(0.142) (0.111)

Gender Roles 0.006 0.058 0.706
(0.169) (0.202)

Notes: Robust standard errors in parentheses, clustered by school.
Sample is 412 students in 10 Random Treatment schools.
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APPENDIX C

Weighting in the Construction of Peer Means (Chapter

1)

In the standard setting with binary directed link data, peer weighting is a near-trivial
matter and thus construction of peer means is fairly straightforward. In a binary setting,

there are four obvious link definitions between individuals ¢ and j:
1. An “OUT” link exists if individual 7 indicates that j is a friend.
2. An “IN” link exists if individual j indicates that i is a friend.
3. An “OR” link exists if either an “OUT” link or an “IN” link exists.
4. An “AND 7 link exists if both an “OUT” link and an “IN” link exist.

Note that the first two are necessarily directed, while the third and fourth are symmetric. For
purposes of the reduced-form analysis in this paper, and to be consistent with the continuous
results, I employ the “OUT” definition for binary network links.

Peer weighting is much more complicated when link intensities are continuous, as posited
in the structural model developed in this paper. The following general assumptions on all

weights will be maintained throughout. While in principle these weights could be estimated,
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in order to preserve computational power, I assume that the function is known. Letting
gijs be the intensity of i’s link toward j, and gj;s be the intensity of j’s link toward ¢, the

following three definitions seem natural
1. “OUT” link weight is g,;s
2. An “IN” link weight is gj;s
3. An “SUM” link weight is g;;s + gjis

Once these weight are constructed, they are normalized so that the sum of the weights for a
given individual 7 is one. For purposes of this paper, I employ the “SUM” weight definition
for continuous link intensities. Future work will investigate the sensitivity of results to a

choice of different weighting functions.
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APPENDIX D

Graphical Reconstruction Algorithm (Chapter 1)

D.1 Network Data

Data imputation requires a model. As briefly discussed in the main body of text, given
that I have a model of network formation, I use this model to impute missing network data.

Imputation proceeds via an iterative EM algorithm. The algorithm proceeds as follows:

1. For the continuous network measure g;;, impute missing data arbitrarily.

2. Using the imputed data, estimate the parameters of the network formation model.

Recover moments of distributions of unobserved a;s, M;s and c;js

3. Using the implied distributions of the unobserved variables a;s, M;s and c¢;;, impute
missing data. This step requires iteration of the network-formation process until an

equilibrium consistent with the First-Order Conditions is reached.

4. Iterate Steps 2 and 3 sufficiently to reach convergence to a stable distribution of pa-

rameters and networks.
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5. Take draws from this stable distribution. Construct point and variance estimates that
properly adjust for imputation error. This adjustment is discussed in Cameron and

Trivedi (2005) Section 27.7.

D.2 Outcome Data

Equation (1.7) provides the model’s equation whereby outcomes are determined condi-
tional on networks, observed variables, and unobserved a;;. Data imputation here proceeds

from the imputed full networks as follows:

1. Take m draws from the converged distribution of networks and estimated parameters

Qs
2. For each draw

2.1 Arbitrarily impute missing outcome data.

2.2 Using imputed outcomes as well as the draw of networks and a;,, estimate the

parameters of Equation (1.7).

2.3 Using implied distribution of residuals from Step 2.2, impute outcome data where
missing

2.4 Tterate Steps 2.2 and 2.3 sufficient to reach convergence to stationary distribution.

Take one draw from this distribution.

3. Given the final parameter values in Step 2.4, construct point and variance estimates

that properly adjust for imputation error as well as error in estimating a;s.
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APPENDIX E

Supplementary Tables (Chapter 2)

177



Table E.1: Summary of Simulated &,
=0 7 =-1 m=-2
Pr(link) 0.20 0.35 0.50 0.20 0.35 0.50 0.20 0.35 0.50
1 1.186 1.115 1.094 1.561 1.620 1.531 1.434 1.657 1.714
0.021] [0.020] [0.019] | [0.031] [0.033] [0.028] | [0.036] [0.047] [0.050]
9 1.186 1.115 1.094 1.287 1.424 1.406 1.189 1.401 1.531
0.020] [0.019] [0.019] | [0.026] [0.033] [0.031] | [0.030] [0.043] [0.050]
3 1.186 1.116 1.094 1.143 1.280 1.307 1.079 1.253 1.417
0.018] [0.018] [0.019] | [0.025] [0.032] [0.032] | [0.029] [0.039] [0.049]
4 1.186 1.116 1.095 1.070 1.165 1.221 1.023 1.141 1.324
0.018] [0.018] [0.018] | [0.025] [0.032] [0.033] | [0.029] [0.039] [0.048]
5 1.186 1.116 1.095 1.038 1.073 1.142 0.997 1.052 1.235
0.017] [0.018] [0.018] | [0.025] [0.033] [0.034] | [0.030] [0.038] [0.048]
6 1.186 1.116 1.094 1.027 1.003 1.069 0.986 0.982 1.147
0.017] [0.017] [0.018] | [0.026] [0.033] [0.035] | [0.030] [0.039] [0.049]
7 1.186 1.116 1.094 1.024 0.956 1.001 0.983 0.930 1.054
0.017] [0.017] [0.017] | [0.026] [0.035] [0.037] | [0.030] [0.040] [0.050]
3 1.186 1.116 1.094 1.023 0.929 0.942 0.982 0.899 0.963
0.017] [0.017] [0.017] | [0.026] [0.035] [0.038] | [0.030] [0.040] [0.052]
9 1.186 1.116 1.094 1.023 0.916 0.893 0.982 0.884 0.880
0.017] [0.017] [0.017] | [0.026] [0.035] [0.039] | [0.030] [0.041] [0.054]
10 1.186 1.116 1.094 1.023 0.910 0.857 0.982 0.878 0.814
0.017] [0.017] [0.017] | [0.026] [0.036] [0.039] | [0.030] [0.041] [0.056]
1 1.186 1.116 1.094 1.023 0.908 0.834 0.982 0.876 0.771
0.017] [0.017] [0.017] | [0.026] [0.036] [0.040] | [0.030] [0.041] [0.058
12 1.186 1.116 1.094 1.023 0.908 0.822 0.982 0.876 0.750
0.017] [0.017] [0.016] | [0.026] [0.036] [0.040] | [0.030] [0.041] [0.058]
13 1.186 1.116 1.094 1.023 0.908 0.817 0.982 0.875 0.743
0.017] [0.017] [0.016] | [0.026] [0.036] [0.040] | [0.030] [0.041] [0.059]
14 1.186 1.116 1.094 1.023 0.908 0.815 0.982 0.875 0.743
0.017] [0.017] [0.016] | [0.026] [0.036] [0.040] | [0.030] [0.041] [0.058]
15 1.186 1.116 1.094 1.023 0.908 0.814 0.982 0.876 0.744
0.017] [0.017] [0.016] | [0.026] [0.036] [0.040] | [0.030] [0.041] [0.058]
16 1.186 1.116 1.094 1.023 0.908 0.814 0.982 0.876 0.745
0.017] [0.017] [0.016] | [0.026] [0.036] [0.040] | [0.030] [0.041] [0.058]
17 1.186 1.116 1.094 1.023 0.908 0.814 0.982 0.876 0.745
0.017] [0.017] [0.016] | [0.026] [0.036] [0.040] | [0.030] [0.041] [0.058]
18 1.186 1.116 1.094 1.023 0.908 0.814 0.982 0.876 0.745
0.017] [0.017] [0.016] | [0.026] [0.036] [0.040] | [0.030] [0.041] [0.058]
19 1.186 1.116 1.094 1.023 0.908 0.814 0.982 0.876 0.745
0.017] [0.017] [0.016] | [0.026] [0.036] [0.040] | [0.030] [0.041] [0.058]
920+ 1.186 1.116 1.094 1.023 0.908 0.814 0.982 0.876 0.745
0.017] [0.017] [0.016] | [0.026] [0.036] [0.040] | [0.030] [0.041] [0.058

Notes: Table presents mean simulated estimates. Standard deviations of simulated esti-
mates in brackets. 1000 simulations performed with 200 schools of 25 students each (N =

5000).
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Table E.2: Summary of Simulated d&o
7 =0 M =-1 v = -2
Pr(link) 0.20 0.35 0.50 0.20 0.35 0.50 0.20 0.35 0.50
1 0.477 0.265 0.205 | 0954 0470 0.266 1.604 0.974  0.527
0.026] [0.025] [0.024] | [0.043] [0.036] [0.033] | [0.048] [0.054] [0.052]
9 0.899 0.522  0.405 1476  0.811 0.476 2.004 1.341 0.774
0.037] [0.037] [0.037] | [0.052] [0.048] [0.044] | [0.051] [0.059] [0.060]
3 1.197  0.765  0.596 1.796 1.099  0.670 2.214 1.584  0.952
0.041] [0.048] [0.048] | [0.055] [0.056] [0.052] | [0.053] [0.062] [0.066]
4 1.360  0.995  0.782 1.978 1.358  0.859 2.333 1.784 1.112
0.043] [0.058] [0.059] | [0.057] [0.062] [0.060] | [0.054] [0.065] [0.069)
5 1.427 1.203 0.963 2.064 1.585 1.053 2.394 1.956 1.274
0.045] [0.064] [0.068] | [0.058] [0.068] [0.067] | [0.054] [0.067] [0.074]
6 1.448 1.376 1.140 2.097 1.771 1.251 2.419 2.100 1.445
0.045] [0.068] [0.076] | [0.059] [0.071] [0.075] | [0.055] [0.069] [0.079]
7 1.453 1.500 1.309 2.107 1.904 1.449 2.428 2.209 1.629
0.045] [0.071] [0.083] | [0.059] [0.075] [0.082] | [0.055] [0.071] [0.085]
3 1.454 1.575 1.466 2.110 1.987 1.639 2.431 2.279 1.816
0.045] [0.072] [0.088] | [0.059] [0.077] [0.088] | [0.055] [0.071] [0.089)
9 1.455 1.611 1.604 2.110 2.030 1.808 2.431 2.317 1.993
0.045] [0.074] [0.092] | [0.059] [0.078] [0.095] | [0.055] [0.072] [0.094]
10 1.455 1.625 1.711 2.110 2.050 1.942 2.431 2.334 2.141
0.045] [0.074] [0.094] | [0.059] [0.079] [0.098] | [0.055] [0.073] [0.098)
11 1.455 1.629 1.783 2.110  2.057  2.036 2.431 2.340  2.245
0.045] [0.074] [0.096] | [0.059] [0.079] [0.101] | [0.055] [0.073] [0.100]
19 1.455 1.630 1.823 2.110  2.059  2.094 2.431 2.342  2.305
0.045] [0.074] [0.097] | [0.059] [0.079] [0.103] | [0.055] [0.073] [0.102]
13 1.455 1.631 1.842 2.110  2.059  2.123 2.431 2.343  2.332
0.045] [0.074] [0.097] | [0.059] [0.079] [0.104] | [0.055] [0.073] [0.103]
14 1.455 1.631 1.848 2.110 2.059 2.136 2.431 2.343 2.341
0.045] [0.074] [0.097] | [0.059] [0.079] [0.104] | [0.055] [0.073] [0.102]
15 1.455 1.631 1.850 2.110 2.059 2.140 2.431 2.343 2.343
0.045] [0.074] [0.097] | [0.059] [0.079] [0.105] | [0.055] [0.073] [0.102]
16 1.455 1.631 1.851 2.110 2.059 2.142 2.431 2.343 2.343
0.045] [0.074] [0.097] | [0.059] [0.079] [0.105] | [0.055] [0.073] [0.102]
17 1.455 1.631 1.851 2.110 2.059 2.142 2.431 2.343 2.343
0.045] [0.074] [0.097] | [0.059] [0.079] [0.104] | [0.055] [0.073] [0.102]
18 1.455 1.631 1.851 2.110 2.059 2.142 2.431 2.343 2.343
0.045] [0.074] [0.097] | [0.059] [0.079] [0.105] | [0.055] [0.073] [0.102]
19 1.455 1.631 1.851 2.110 2.059 2.142 2.431 2.343 2.343
0.045] [0.074] [0.097] | [0.059] [0.079] [0.105] | [0.055] [0.073] [0.102]
920+ 1.455 1.631 1.851 2.110 2.059 2.142 2.431 2.343 2.343
0.045] [0.074] [0.097] | [0.059] [0.079] [0.105] | [0.055] [0.073] [0.102]

Notes: Table presents mean simulated estimates. Standard deviations of simulated esti-
mates in brackets. 1000 simulations performed with 200 schools of 25 students each (N =

5000).
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Table E.3:

Summary of Simulated By

=0 m=-1 m=-2
Pr(link) 0.20 0.35 0.50 0.20 0.35 0.50 0.20 0.35 0.50
1 0.449 0.598 0.728 0.870 0.787 0.717 1.384 1.822 1.938
0.071] [0.112] [0.132] | [0.097] [0.173] [0.274] | [0.157] [0.335] [0.675]
9 0.591 0.726 0.822 0.684 0.696 0.747 0.824 0.986 1.004
0.045] [0.060] [0.066] | [0.053] [0.088] [0.110] | [0.070] [0.127] [0.196]
3 0.619 0.747 0.839 0.654 0.702 0.772 0.700 0.785 0.807
0.035] [0.044] [0.046] | [0.043] [0.061] [0.077] | [0.050] [0.078] [0.115]
4 0.613 0.734 0.834 0.633 0.709 0.786 0.655 0.725 0.741
0.031] [0.037] [0.038] | [0.037] [0.049] [0.056] | [0.044] [0.058] [0.081]
5 0.605 0.704 0.817 0.615 0.700 0.788 0.628 0.705 0.728
0.029] [0.034] [0.033] | [0.036] [0.042] [0.046] | [0.042] [0.047] [0.064]
6 0.601 0.669 0.790 0.604 0.681 0.782 0.612 0.689 0.733
0.029] [0.033] [0.031] | [0.036] [0.038] [0.040] | [0.041] [0.043] [0.051]
7 0.600 0.639 0.758 0.600 0.655 0.767 0.604 0.668 0.741
0.029] [0.033] [0.030] | [0.036] [0.037] [0.036] | [0.041] [0.041] [0.044]
3 0.599 0.617 0.721 0.598 0.631 0.742 0.602 0.643 0.741
0.029] [0.034] [0.031] | [0.036] [0.037] [0.034] | [0.041] [0.041] [0.039]
9 0.599 0.605 0.683 0.598 0.614 0.711 0.601 0.622 0.728
0.020] [0.034] [0.032] | [0.036] [0.038] [0.034] | [0.041] [0.040] [0.038]
10 0.599 0.600 0.650 0.598 0.605 0.678 0.601 0.609 0.701
0.029] [0.034] [0.034] | [0.036] [0.038] [0.035] | [0.041] [0.041] [0.038]
1 0.599 0.598 0.625 0.598 0.601 0.648 0.601 0.602 0.668
0.029] [0.034] [0.035] | [0.036] [0.039] [0.037] | [0.041] [0.041] [0.040]
19 0.599 0.597 0.609 0.598 0.599 0.625 0.601 0.599 0.638
0.029] [0.034] [0.036] | [0.036] [0.039] [0.038] | [0.041] [0.041] [0.041]
13 0.599 0.597 0.602 0.598 0.599 0.610 0.601 0.599 0.617
0.029] [0.034] [0.036] | [0.036] [0.039] [0.039] | [0.041] [0.041] [0.042]
14 0.599 0.597 0.599 0.598 0.599 0.603 0.601 0.598 0.605
0.029] [0.034] [0.036] | [0.036] [0.039] [0.039] | [0.041] [0.041] [0.043]
15 0.599 0.597 0.598 0.598 0.599 0.599 0.601 0.598 0.600
0.029] [0.034] [0.036] | [0.036] [0.039] [0.039] | [0.041] [0.041] [0.044]
16 0.599 0.597 0.598 0.598 0.599 0.598 0.601 0.598 0.598
0.029] [0.034] [0.036] | [0.036] [0.039] [0.039] | [0.041] [0.041] [0.044]
17 0.599 0.597 0.598 0.598 0.599 0.598 0.601 0.598 0.597
0.029] [0.034] [0.036] | [0.036] [0.039] [0.039] | [0.041] [0.041] [0.044]
18 0.599 0.597 0.598 0.598 0.599 0.598 0.601 0.598 0.597
0.029] [0.034] [0.036] | [0.036] [0.039] [0.039] | [0.041] [0.041] [0.044]
19 0.599 0.597 0.598 0.598 0.599 0.598 0.601 0.598 0.597
0.029] [0.034] [0.036] | [0.036] [0.039] [0.039] | [0.041] [0.041] [0.044]
920+ 0.599 0.597 0.598 0.598 0.599 0.598 0.601 0.598 0.597
0.029] [0.034] [0.036] | [0.036] [0.039] [0.039] | [0.041] [0.041] [0.044]

Notes: Table presents mean simulated estimates. “True” f; = 0.6. Standard deviations
of simulated estimates in brackets. 1000 simulations performed with 200 schools of 25

students each (N = 5000).
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Table E.4:

Summary of Simulated B

=0 m=-1 m=-2
Pr(link) 0.20 0.35 0.50 0.20 0.35 0.50 0.20 0.35 0.50
1 1.038 0.996 0.979 1.338 1.496 1.468 1.219 1.443 1.589
0.029] [0.026] [0.024] | [0.035] [0.042] [0.036] | [0.033] [0.053] [0.067]
9 0.992 0.970 0.964 1.176 1.360 1.381 1.132 1.361 1.531
0.021] [0.019] [0.018] | [0.026] [0.034] [0.034] | [0.030] [0.045] [0.056]
3 0.987 0.966 0.961 1.076 1.254 1.318 1.062 1.264 1.457
0.019] [0.017] [0.017] | [0.024] [0.032] [0.035] | [0.028] [0.040] [0.052]
4 0.992 0.969 0.961 1.028 1.174 1.267 1.025 1.186 1.395
0.017] [0.016] [0.016] | [0.023] [0.032] [0.033] | [0.028] [0.038] [0.050]
5 0.997 0.975 0.964 1.009 1.112 1.222 1.008 1.124 1.339
0.017] [0.016] [0.015] | [0.023] [0.031] [0.033] | [0.028] [0.037] [0.048]
6 0.999 0.983 0.968 1.003 1.066 1.180 1.002 1.076 1.285
0.017] [0.016] [0.015] | [0.023] [0.030] [0.033] | [0.028] [0.037] [0.048]
7 1.000 0.990 0.973 1.002 1.034 1.141 1.000 1.041 1.230
0.017] [0.016] [0.015] | [0.023] [0.030] [0.032] | [0.028] [0.037] [0.047]
3 1.000 0.995 0.980 1.001 1.016 1.104 1.000 1.019 1.175
0.017] [0.016] [0.015] | [0.023] [0.030] [0.031] | [0.028] [0.036] [0.047]
9 1.000 0.997 0.986 1.001 1.006 1.071 1.000 1.007 1.122
0.017] [0.016] [0.015] | [0.023] [0.030] [0.031] | [0.028] [0.036] [0.046]
10 1.000 0.999 0.991 1.001 1.002 1.044 1.000 1.002 1.075
0.017] [0.016] [0.015] | [0.023] [0.030] [0.030] | [0.028] [0.036] [0.046]
1 1.000 0.999 0.996 1.001 1.000 1.024 1.000 1.000 1.038
0.017] [0.016] [0.015] | [0.023] [0.030] [0.030] | [0.028] [0.036] [0.046]
19 1.000 0.999 0.998 1.001 1.000 1.011 1.000 0.999 1.015
0.017] [0.016] [0.015] | [0.023] [0.030] [0.030] | [0.028] [0.036] [0.046]
13 1.000 0.999 1.000 1.001 1.000 1.005 1.000 0.999 1.004
0.017] [0.016] [0.015] | [0.023] [0.030] [0.030] | [0.028] [0.036] [0.046]
14 1.000 0.999 1.000 1.001 1.000 1.002 1.000 0.999 1.000
0.017] [0.016] [0.015] | [0.023] [0.030] [0.030] | [0.028] [0.036] [0.045]
15 1.000 0.999 1.000 1.001 1.000 1.001 1.000 0.999 0.999
0.017] [0.016] [0.015] | [0.023] [0.030] [0.030] | [0.028] [0.036] [0.045]
16 1.000 0.999 1.000 1.001 1.000 1.001 1.000 0.999 0.999
0.017] [0.016] [0.015] | [0.023] [0.030] [0.030] | [0.028] [0.036] [0.045]
17 1.000 0.999 1.000 1.001 1.000 1.001 1.000 0.999 0.999
0.017] [0.016] [0.015] | [0.023] [0.030] [0.030] | [0.028] [0.036] [0.045]
18 1.000 0.999 1.000 1.001 1.000 1.001 1.000 0.999 0.999
0.017] [0.016] [0.015] | [0.023] [0.030] [0.030] | [0.028] [0.036] [0.045]
19 1.000 0.999 1.000 1.001 1.000 1.001 1.000 0.999 0.999
0.017] [0.016] [0.015] | [0.023] [0.030] [0.030] | [0.028] [0.036] [0.045]
920+ 1.000 0.999 1.000 1.001 1.000 1.001 1.000 0.999 0.999
0.017] [0.016] [0.015] | [0.023] [0.030] [0.030] | [0.028] [0.036] [0.045]

Table presents mean simulated estimates. Notes: “True” B = 1. Standard deviations
of simulated estimates in brackets. 1000 simulations performed with 200 schools of 25

students each (N = 5000).
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Table E.5: Summary of Simulated ,5’3

=0 n=-1 M =-2
Pr(link) 0.20 0.35 0.50 0.20 0.35 0.50 0.20 0.35 0.50
1 -0.077 -0.421 -0.614 | -1.004 -1.053 -0.960 | -2.405 -3.631 -3.706
0.093] [0.136] [0.158] | [0.236] [0.350] [0.483] | [0.482] [0.885] [1.520]
9 0.082 -0.410 -0.631 | -0.181 -0.613 -0.872 | -0.493 -1.260 -1.505
0.070] [0.091] [0.096] | [0.137] [0.193] [0.214] | [0.224] [0.355] [0.462]
3 0.275 -0.290 -0.569 | 0.132 -0.412 -0.794 | 0.034 -0.554 -0.941
0.061] [0.079] [0.082] | [0.115] [0.146] [0.167] | [0.162] [0.227] [0.283)]
4 0.409 -0.132 -0.481 | 0.320 -0.241 -0.706 | 0.259 -0.247 -0.681
0.057] [0.074] [0.078] | [0.102] [0.128] [0.132] | [0.145] [0.175] [0.210]
5 0.473 0.044 -0.374 | 0428 -0.062 -0.596 | 0.387 -0.069 -0.543
0.056] [0.073] [0.076] | [0.100] [0.117] [0.120] | [0.140] [0.149] [0.177]
6 0.494 0.211  -0.247 | 0.478 0.109 -0.468 | 0.455 0.077  -0.448
0.055] [0.075] [0.078] | [0.100] [0.111] [0.113] | [0.136] [0.139] [0.152]
7 0.500 0.344  -0.107 | 0.497 0.262 -0.322 | 0.485 0.213  -0.352
0.056] [0.074] [0.078] | [0.100] [0.108] [0.109] | [0.137] [0.136] [0.141]
3 0.501 0.431 0.041 0.502 0.376  -0.155 | 0.495 0.333  -0.235
0.056] [0.075] [0.083] | [0.100] [0.109] [0.107] | [0.137] [0.134] [0.135]
9 0.501 0.476 0.188 0.503 0.446 0.017 0.498 0.420 -0.089
0.056] [0.075] [0.087] | [0.100] [0.110] [0.109] | [0.136] [0.133] [0.134]
10 0.501 0.494 0.317 0.503 0.482 0.178 0.499 0.470 0.079
0.056] [0.075] [0.091] | [0.100] [0.112] [0.111] | [0.136] [0.134] [0.135]
1 0.501 0.500 0.409 0.503 0.497  0.311 0.499 0.493 0.240
0.056] [0.075] [0.093] | [0.100] [0.112] [0.116] | [0.136] [0.135] [0.140]
19 0.501 0.502 0.465 0.503 0.501 0.404 0.499 0.502 0.364
0.056] [0.076] [0.095] | [0.100] [0.112] [0.118] | [0.136] [0.135] [0.143)]
13 0.501 0.502 0.491 0.503 0.503 0.459 0.499 0.505 0.442
0.056] [0.076] [0.095] | [0.100] [0.112] [0.118] | [0.136] [0.135] [0.145]
14 0.501  0.502  0.501 0.503  0.503 0487 | 0499 0.505 0.483
0.056] [0.076] [0.096] | [0.100] [0.112] [0.119] | [0.136] [0.135] [0.147]
15 0.501  0.502 0.504 | 0.503 0.503  0.498 0.499  0.505  0.499
0.056] [0.076] [0.096] | [0.100] [0.112] [0.119] | [0.136] [0.135] [0.148]
16 0.501  0.502  0.505 0.503  0.503  0.502 0.499  0.505  0.505
0.056] [0.076] [0.096] | [0.100] [0.112] [0.119] | [0.136] [0.135] [0.148]
17 0.501 0.502 0.505 0.503 0.503 0.503 0.499 0.505 0.507
0.056] [0.076] [0.096] | [0.100] [0.112] [0.119] | [0.136] [0.135] [0.148]
18 0.501 0.502 0.505 0.503 0.503 0.503 0.499 0.505 0.507
0.056] [0.076] [0.096] | [0.100] [0.112] [0.119] | [0.136] [0.135] [0.148)]
19 0.501 0.502 0.505 0.503 0.503 0.503 0.499 0.505 0.507
0.056] [0.076] [0.096] | [0.100] [0.112] [0.119] | [0.136] [0.135] [0.148]
920+ 0.501 0.502 0.505 0.503 0.503 0.503 0.499 0.505 0.507
0.056] [0.076] [0.096] | [0.100] [0.112] [0.119] | [0.136] [0.135] [0.148]

Notes: Table presents mean simulated estimates. “True” B3 = 0.5. Standard deviations
of simulated estimates in brackets. 1000 simulations performed with 200 schools of 25
students each (N = 5000).
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Figure E.1: Add Health Estimated Coefficients (Estimator 2)
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(d) Coefficients for Black and Black
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APPENDIX F

Supplementary Tables (Chapter 3)
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Table F.1: Differential Attrition

Panel A: Differential Attrition by Treatment Arm
Baseline Endline Endline | Baseline Endline Endline

Present for Network Qnr  Network | Network Qnr  Network
(1) (2) (3) (4) (5) (6)
Standard 0.581 0.270 0.586 0.471 0.267 0.730
Age 0.097 0.148 0.077 0.412 0.931 0.681
Scheduled Caste 0.031 0.678 0.320 0.373 0.048 0.474
Scheduled Tribe 0.523 0.372 0.840 0.583 0.061 0.061

Other Backward Caste 0.002 0.541 0.834 0.563 0.019 0.012
Enrolled Previous Year 0.023 0.059 0.048 0.983 0.314 0.365
Owns TV 0.222 0.595 0.074 0.700 0.062 0.471
Father Attended School 0.813 0.523 0.424 0.574 0.733 0.885
Mother Attended School 0.612 0.174 0.472 0.001 0.232 0.628

Education Index 0.049 0.270 0.012 0.075 0.231 0.177
Career Index 0.200 0.095 0.468 0.596 0.190 0.097
Self-Confidence Index 0.031 0.429 0.450 0.378 0.013 0.057
Gender Roles Index 0.142 0.354 0.882 0.017 0.593 0.033

Panel B: Differential Attrition Across Participation Status within T2
Baseline Endline Endline

Present for Network Qnr Network
D )
Standard 0.511 0.219 0.793
Age 0.156 0.066 0.346
Scheduled Caste 0.664 0.629 0.932
Scheduled Tribe 0.826 0.456 0.327

Other Backward Caste 0.226 0.920 0.929
Enrolled Previous Year 0.585 0.468 0.159
Owns TV 0.062 0.910 0.155
Father Attended School 0.294 0.542 0.374
Mother Attended School 0.141 0.035 0.880

Education Index 0.405 0.510 0.090
Career Index 0.579 0.054 0.348
Self-Confidence Index 0.232 0.209 0.547
Gemder Roles Index 0.801 0.695 0.901

Robust standard errors in parentheses, clustered by school. *** p<0.01, ** p<0.05, * p<0.1.
Sample for Panel A is all students who were present for Baseline Qur (N = 1,053 girls, 894
boys).

Sample for Panel B is all girls present for Baseline Qnr in T2 schools (N = 338).

Panel A presents P-values of a test that the coefficient on the two treatment dummies inter-
acted with baseline characteristics are jointly significant.

Panel A presents P-values of a test that the coefficient on “Selected in T2” interacted with
baseline characteristics is significant.
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