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ABSTRACT 
 

The motivation for this thesis concerns worker productivity as estimated from production 

functions. Identifying worker contributions allows for not just an understanding of economic 

theory but highlights ways in which business management and strategy can be more efficient. 

The setting for these analyses is professional soccer, where teams are analogous to businesses 

and workers are multi-million dollar assets in the form of players. Most of a soccer team’s 

income is tied to its success on the field and so a careful management of staff and players is 

necessary to their business potential. Sports are the perfect “laboratory” to study economic 

theory since workers can be observed on a regular basis and there is a large volume of existing 

data. With almost every game recorded in the modern age this allows for the opportunity to 

analyse not just worker productivity but also team processes and strategies. 

This thesis expands the production function literature using a framework from contest theory 

literature. Most research in soccer focuses on performance at the aggregate level while this 

thesis primarily considers performance at the player level. It consists of three papers, each 

providing a different insight into player productivity. Chapter I presents a brief introduction of 

the relevant literature and contextualizes the research. Chapter II measures the impact of 

different workers in a production process depending on their expected productivity, finding 

support for superstar theories over the O-Ring theory in the English Premier League. Chapter 



xii 
 

III looks at the effects of fatigue in professional soccer finding that under current scheduling in 

the English Premier League and European competition there are no statistically significant 

effects of receiving different days of rest on team performance. Chapter IV applies high 

dimensional techniques to European soccer data to predict match outcomes. The models 

perform almost as well and betting firms and can be used to estimate individual player 

contributions in the form of rankings. Chapter V concludes.  
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CHAPTER I 
 

THESIS MOTIVATION 

 
1. INTRODUCTION 

 
The study of productivity has historically been important to economists. Describing how inputs 

relate to outputs has been researched since the early 1800s. Chambers (1988) chronicles a 

history of the production function.  The first economist to algebraically formulate this 

relationship is generally believed to be Philip Wicksteed (1894) although Humphrey (1997) 

presents some evidence Johann von Thünen formulated it first in the 1840’s. The next major 

theoretical development came from H. L. Moore (1929) who attempted to test marginal 

productivity theory using statistical techniques. Like von Thünen this work focused on 

agricultural commodities. Later three more agricultural economists would construct empirical 

frameworks to help producers make business decisions. Tolley, Black and Ezekiel (1924) 

attempted to isolate technology in such a way that would allow the application of marginal 

productivity theory by decision makers. Black along with Cassel (1936) were some of the first 

economists to use cross-classification tables. Shephard (1970) defines production functions as 

the relationship between the maximal technically feasible output and the inputs required to 

produce it.  The econometric production functions known today originate from Cobb and 

Douglas (1928). They originally used macro data to test hypothesis about the marginal 

productivity theory and the competitiveness of labour markets (Griliches and Mairess 1995) 

before later refinements shifted to the use of micro data. This study shifted the focus away from 

supply-and-input-demand relationships and increased the attention on estimating technical 
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relationships. This can be seen from the future work on estimating first-order conditions of a 

production function after research from Marschak and Andrews (1944). After the estimation 

of production functions was common practice the next key developments were solving 

complicated mathematical programming problems. Stigler (1945) solved the diet problem 

using heuristic methods to find an optimized solution. It is widely believed to be one of the 

first instances of linear programming. Other studies developed using these methods, such as 

the study of engineering cost and production functions and efficiency frontier techniques by 

Farrell (1957). Other programming developments were also found in applied production 

economics such as Shephard’s (1953) first in depth treatment of duality relationships though 

these had previously been mentioned by Hotelling (1932) and Samuelson (1948). Later, Uzawa 

(1962) would characterize the class of production functions with constant elasticities of 

substitution. Heady et al. (1964) used experimental agricultural data to estimate technical 

production relationships for agricultural products. This was one of the first instances of using 

experimental data as opposed to market based data using statistical assumptions. Around the 

same time Mundlak (1963) conducted some empirical modelling of multi-output production 

relationships, the basis for many multi-output cost and profit function studies. This concludes 

a brief history on productions functions however more in depth reviews can be found by Fuss 

and McFadden (1978) and SK Mishra (2007).    

The motivation for this thesis concerns the investigation of inputs in the production function: 

namely worker productivity. This topic has appeal beyond just the field of economics; such as 

strategy and marketing. Being able to identify worker contributions allows not only an 

understanding of economic theory but ways in which business management and strategy can 
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be more efficient. The setting for this thesis is professional soccer. Professional soccer can be 

used to apply this theory, where the top teams are analogous to multi-billion dollar corporations 

and players are multi-million dollar assets. It is clear to see why the study of worker 

productivity would be important to teams as nearly all of their income is tied into the success 

of their players.  

Sports are in general a sort of “laboratory” in which to study economic theory. Unlike other 

markets workers are able to be observed on a regular basis. Productivity is not hidden as each 

week players are watched by millions who can see their contributions towards game results. 

Due to the interest generated by fans there is a significant amount of data available which can 

be analyzed. Thousands of games have their details recorded allowing for the opportunity to 

explore every aspect of what makes teams successful. This also allows the possibility to not 

just to analyze individual worker productivity but also to look at team processes and how 

different strategies can affect output. 

There exists a growing research of production functions in sports. Rottenberg (1956) first 

proposed that the operations of professional sports teams could be modelled using production 

functions. The first study to estimate a production function for team performance was Scully 

(1974) who investigated the relationship between wages and marginal revenue product in 

professional baseball.  Zech (1981) used a Cobb-Douglas production function to estimate the 

major skills involved in professional baseball. Zak et al. (1979) adopt a similar approach using 

a Cobb-Douglas production function in professional basketball. Similar studies exist for 

basketball (Scott et al., 1985), American football (Atkinson et al., 1988), and English country 

cricket (Schofield, 1988). Carmichael and Thomas (1995) formulate a production function for 
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rugby league football using performance influencing variables. Carmichael and Thomas (2001) 

also estimate a season-based production function for English Premiership soccer teams. 

Gerrard et al. (2000) estimates a model for manager win ratios in the English Premier League 

using wages as a measure of available playing talent. Dawson et al. (2000) provide a more 

comprehensive review of literature on sporting functions as well as using a production function 

to estimate coaching efficiency in English soccer. More recently Tiedemann et al. (2011) use 

a Based upon Data Envelopment Analysis to estimate player efficiency in the German 

Bundesliga. González-Gómez and Picazo-Tadeo (2010) estimate the efficiency of Spanish 

teams across domestic and European competition in order to measure fan satisfaction. Rimler 

et al. (2009) perform a Bayesian analysis using Markov Chain Monte Carlo estimation to 

measure the production efficiency in men’s NCAA college basketball. 

 This thesis aims to expand the applied production function literature using a framework from 

contest theory literature. Unlike other sports such as baseball the analysis of soccer data, 

although growing, is in its infancy. This presents a great opportunity to build on the existing 

research and provide contributions to sports economics. The standard model of a sports league 

is a contest in which two or more teams compete for a share of success and the productivity of 

an individual player is his contribution to the success of a team. This framework was first used 

by El-Hodiri and Quirk (1971) and Quirk and El-Hodiri (1974). This work was later extended 

by Atkinson et al. (1988), Fort and Quirk (1995), Vrooman (1995), Késenne (2000), Szymanski 

and Késenne (2004), and Dietl and Lang (2008). Given this underlying theory, Szymanski 

(2003) claims that outcomes must be determined by relative expenditure unless they are purely 

random. He summarizes the impact of wage expenditure across several leagues, showing that 
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it is correlated with success although the extent varies by league. Szymanski and Smith (1997) 

substitute money for talent in the contest success function and show evidence of correlation 

between aggregate player spending and league performance of teams. The research suggests 

that on a seasonal basis wages are a reliable measure of productivity.  

Most contest theory research in soccer focuses on performance at the aggregate level. This 

thesis expands on the literature by looking at performance at the player level. It consists of 

three papers, each providing a different insight into player productivity. Chapter 2 presents the 

first paper: “Testing the O-Ring theory using data from the English Premier League”. This 

paper measures the impact of different workers in a production process depending on their 

expected productivity. The setting is the English Premier league where expected productivity 

is measured from the transfer fees used to acquire players. In the efficient market for players 

more productive players should demand a higher transfer fee. The paper examines the impact 

of these players on the match results. The findings show that the most expensive players tend 

to have the largest impact on a game whereas the least expensive players have little impact. 

This is consistent with superstar theories rather than O-Ring theory which states that there is a 

significant disadvantage to having a weak link in the production process. The optimal spending 

distribution is found to be more skewed than the observed distribution suggesting a constraint 

in the market for players. 

Chapter 3 presents the second paper: “The Impacts of Rest Periods on results in the English 

Premier League”. This paper looks at the effects of fatigue in professional soccer using data 

from the English Premier League. Many managers and players share conflicting views on how 

much rest is required between games but there is little empirical evidence to support their 
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arguments. The production function is expanded to include information on rest times and 

distance travelled. Rest can be estimated as the number of days between games played by each 

player but also as the number of days between games played by the entire team. The spacing 

between games raise additional factors that can be measured such as team sharpness (the 

number of consecutive games for players) and team cohesion (familiarity with teammates) as 

by-products of how much rest and rotation a team experiences. Under current scheduling in 

domestic and European competition there are no statistically significant effects of receiving 

different days of rest on team performance. The limited variation in the amount of rest for 

teams can give concern about the power of the tests used but even if the effects were statistically 

significant they are found to have a negligible impact on team results. 

Chapter 4 presents the final paper in this thesis: “Individual player contributions in European 

Soccer”. This paper applies new techniques to predict match outcomes in professional soccer 

by estimating player contributions. Using data from the top 25 European soccer leagues, the 

individual contributions of players is measured using high dimensional fixed effects models. 

Nine years of data is used to train the model while a further year is used to check for predictive 

accuracy. The findings show an average prediction rate of 45% with all methods producing 

similar performance. The model highlights the most productive players but there is some bias 

towards identifying players who produce and prevent goals directly. This results in attackers 

and defenders being ranked more highly than midfield players. There is some potential for the 

models to be used in sports betting as they perform almost as well as betting firms. 

 

 



7 
 

 

2. REFERENCES 

[1] Atkinson, S. E., Stanley, L. R., & Tschirhart, J. (1988). Revenue sharing as an 

incentive in an agency problem: An example from the national football league. The 

Rand Journal of Economics, 27-43. 

[2] Carmichael, F., & Thomas, D. (1995). Production and efficiency in team sports: An 

investigation of rugby league football. Applied Economics, 27(9), 859-869. 

[3] Carmichael, F., Thomas, D., & Ward, R. (2001). Production and efficiency in 

association football. Journal of Sports Economics, 2(3), 228-243. 

[4] Cassels, J. M. (1936). On the law of variable proportions. Explorations in economics: 

notes and essays contributed in honor of F. W. Taussig. 

[5] Chambers, R. G. (1988). Applied production analysis: A dual approach Cambridge 

University Press. 

[6] Cobb, C. W., & Douglas, P. H. (1928). A theory of production. The American 

Economic Review, 18(1), 139-165. 

[7] Dawson, P., Dobson, S., & Gerrard, B. (2000). Estimating coaching efficiency in 

professional team sports: Evidence from English association football. Scottish Journal 

of Political Economy, 47(4), 399-421. 

[8] Dietl, H. M., & Lang, M. (2008). The effect of gate revenue sharing on social 

welfare. Contemporary Economic Policy, 26(3), 448-459. 

[9] El-Hodiri, M., & Quirk, J. (1971). An economic model of a professional sports 

league. Journal of Political Economy, 79(6), 1302-1319. 



8 
 

[10] Farrell, M. J. (1957). The measurement of productive efficiency. Journal of the Royal 

Statistical Society. Series A (General), 120(3), 253-290. 

[11] Fort, R., & Quirk, J. (1995). Cross-subsidization, incentives, and outcomes in 

professional team sports leagues. Journal of Economic Literature, 33(3), 1265-1299. 

[12] Fuss, M., McFadden, D., & Mundlak, Y. (1978). A survey of functional forms in the 

economic analysis of production. History of Economic Thought Chapters, 1 

[13] Gerrard, B. (2000). Football, fans and finance: Understanding the business of 

professional football. Edinburgh, Scotland: Mainstream Pubs 

[14] González-Gómez, F., & Picazo-Tadeo, A. J. (2010). Can we be satisfied with our 

football team? evidence from Spanish professional football. Journal of Sports 

Economics, 11(4), 418-442. 

[15] Griliches, Z., & Mairesse, J. (1995). Production Functions: The Search for 

Identification, 

[16] Heady, E. O., Jacobson, N., Freeman, A., & Madden, J. P. (1964). Milk production 

functions incorporating variables for cow characteristics and environment. Journal of 

Farm Economics, 46(1), 1-19. 

[17] Hotelling, H. (1932). Edgeworth's taxation paradox and the nature of demand and 

supply functions. Journal of Political Economy, 40(5), 577-616. 

[18] Humphrey, T. M. (1997). Algebraic production functions and their uses before Cobb-

Douglas. 

[19] Késenne, S. (2000). Revenue sharing and competitive balance in professional team 

sports. Journal of Sports Economics, 1(1), 56-65. 



9 
 

[20] Marschak, J., & Andrews, W. H. (1944). Random simultaneous equations and the 

theory of production. Econometrica, Journal of the Econometric Society, 143-205. 

[21] Mishra, S. K. (2007). A brief history of production functions. 

[22] Moore, H. L. (1929). Synthetic economics. Books for college libraries, Macmillan. 

[23] Mundlak, Y. (1968). Elasticities of substitution and the theory of derived demand. The 

Review of Economic Studies, 35(2), 225-236. 

[24] Quirk, J. P., & El-Hodiri, M. A. (1973). The economic theory of a professional sports 

league 

[25] Rimler, M. S., Song, S., & Yi, D. T. (2010). Estimating production efficiency in 

men’s NCAA college basketball: A Bayesian approach. Journal of Sports 

Economics, 11(3), 287-315. 

[26] Rottenberg, S. (1956). The baseball players' labor market. Journal of Political 

Economy, 64(3), 242-258. 

[27] Samuelson, P. A. (1948). Foundations of economic analysis. 

[28] Schofield, J. A. (1988). Production functions in the sports industry: An empirical 

analysis of professional cricket. Applied Economics, 20(2), 177-193. 

[29] Scott, 1., 2Frank A, Long, 1., 2James E, & Somppi, K. (1985). Salary vs. marginal 

revenue product under monopsony and competition: The case of professional 

basketball. Atlantic Economic Journal, 13(3), 50-59. 

[30] Scully, G. W. (1974). Pay and performance in major league baseball. The American 

Economic Review, 64(6), 915-930. 

[31] Shepard, R. W. (1953). Cost and production functions. Princeton: Princeton Univer, 



10 
 

[32] Shepherd, R. W. (2015). Theory of cost and production functions Princeton 

University Press. 

[33] Stigler, G. J. (1961). Economic problems in measuring changes in 

productivity. Output, input, and productivity measurement (pp. 47-78) Princeton 

University Press. 

[34] Szymanski, S. (2003). The economic design of sporting contests. Journal of 

Economic Literature, 41(4), 1137-1187. 

[35] Szymanski, S., & Késenne, S. (2004). Competitive balance and gate revenue sharing 

in team sports. The Journal of Industrial Economics, 52(1), 165-177. 

[36] Szymanski, S., & Smith, R. (1997). The English football industry: Profit, performance 

and industrial structure. International Review of Applied Economics, 11(1), 135-153. 

[37] Tiedemann, T., Francksen, T., & Latacz-Lohmann, U. (2011). Assessing the 

performance of German Bundesliga football players: A non-parametric metafrontier 

approach. Central European Journal of Operations Research, 19(4), 571-587. 

[38] Tolley H. R., Black J. D., Ezekiel M. J. B. (1924). Input as related to output in farm 

organization and cost of production studies, U.S. Department of Agriculture 

Bulletin,1924 1277 

[39] Uzawa, H. (1962). Production functions with constant elasticities of substitution. The 

Review of Economic Studies, 29(4), 291-299. 

[40] Vrooman, J. (1995). A general theory of professional sports leagues. Southern 

Economic Journal, 971-990. 

[41] Wicksteed, P. H., (1965). An essay on the co-ordination of the laws of distribution. 

[London]: [London school of economics and political Science]. 



11 
 

[42] Zak, T. A., Huang, C. J., & Siegfried, J. J. (1979). Production efficiency: The case of 

professional basketball. The Journal of Business, 52(3), 379-392. 

[43] Zech, C. E. (1981). An empirical estimation of a production function: The case of 

major league baseball. The American Economist, 25(2), 19-23. 

 

 

 

 

 

 

 

 



12 
 

CHAPTER II 
 

TESTING THE O-RING THEORY USING DATA FROM THE ENGLISH 
PREMIER LEAGUE1 

 

 

 

 

ABSTRACT 

 

This paper measures the impact of different workers in a production process dependent on their 

expected productivity. Using the setting of professional soccer, expected productivity is 

measured from the transfer fees paid to acquire players. It shows that the most expensive 

players tend to have the largest impact on the game whereas the least expensive players have 

little impact. The findings support superstar theories rather than O-ring theory. We also find 

that the optimal spending distribution is more skewed than the observed distribution suggesting 

some constraint in the market for superstars.

                                                            
1 Paper co-authored with Stefan Szymanski and published in the journal Research in Economics 
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1. INTRODUCTION 
 

Most production processes consist of several tasks, often to be completed by different workers. 

The degree of success in completing an assigned task may be very different depending on the 

task and the worker. Standard marginal productivity theory usually rests on the assumption that 

all workers are equally effective. However, some models focus on the productivity of particular 

workers – e.g. Rosen (1981). By contrast, Kremer׳s (1993) O-Ring theory suggests that the 

contribution of the least productive worker may be critical. 

In this paper we measure the impact of different workers in a production process dependent on 

their expected productivity. Our setting is professional soccer. We measure expected 

productivity from transfer fees paid to acquire players in the English Premier League and we 

examine the impact of these players on the match results. 

We find that the most expensive players tend to have the largest impact on the result of a game, 

while the least expensive players exert relatively little impact. In that sense our findings are 

consistent with superstar theories rather than O-Ring theory. 

The paper is set out as follows. In the next section we review the relevant literature, Section 

3 presents the theory and Section 4 the data. Section 5 presents our estimation methods and 

results. Section 6 concludes. 

 

2. LITERATURE REVIEW 
 

2.1 O-RING THEORY 
 

The O-Ring theory (Kremer, 1993) proposes a production function which describes a process 

that is susceptible to mistakes in many of its components. The motivation is that all production 

tasks must be completed competently in order for any of them to have full value. Kremer 
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defines the production process of the firm as a sequential series of tasks. Workers have varying 

skill levels represented by a probability that they complete their task. A process employing five 

workers who each complete their task with 90% probability will find that they produce 59% of 

the output (0 .95)  of a firm with fully competent workers (100% probability of completion). 

This implies that there is a significant disadvantage to having a weak link (very low probability 

of completion) in the process. Four fully competent workers paired with one worker who 

completes their task only 25% of the time will find their total output at 25% of the firm with 

perfect workers. In the extreme case, if one worker fails entirely to complete their task then 

output is worthless. 

In the context of professional team sports we can think of each player being matched with an 

opponent, and their relative capabilities in completing team tasks as determining the outcome 

of the contest. In football, for example, teams often adopt a “person-marking” strategy – each 

defender is allocated a specific attacker and their job is to neutralise the attacker׳s threat. The 

success of the team will then depend to a significant degree on the outcome of each of these 

contests within a contest. While this conceptualisation differs from the conventional O-Ring 

theory in that production is not sequential and is dependent on relative rather than absolute 

productivity, the problems are isomorphic. 

Anderson and Sally (2013) draw on O-Ring theory to argue that “football is a weakest link 

game where success is determined by whichever team makes the fewest mistakes”. The 

implication is that to make a successful team “you need to look less at your strongest links and 

more at your weakest ones”. Their approach suggests that only the match-up between the two 

weakest players on each team matters – whoever of these players makes the most mistakes 

determines the outcome. More generally, it is possible to model all the possible match-ups that 

might matter. For our analysis we will construct all 2047 combinations of match-ups that could 

exist among eleven distinct players on each team. These include, for example, only the two 
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weakest players, only the two strongest players, all the players, the five best players on each 

side and so on. 

Kremer׳s research builds on the analysis of superstars (Rosen, 1981). Rosen developed a model 

where productivity is multiplicative in order to account for a wage distribution which is more 

highly skewed than the underlying distribution of abilities. Small differences in ability can lead 

to very large differences in wages in the multiplicative context, one which is often associated 

with professional sport. In our data set many workers are valued close to the average, but a 

small group is valued at a significantly higher rate. 

The modelling of the production function in sports can be traced back to Tullock (1980) where 

the probability of success is a function of the relative share of resources employed. We adapt 

this function to allow for the contribution of each player on the team. The importance of each 

player on the team is measured by his market transfer fee value, which we take to be a measure 

of expected productivity. 

 

2.2 SALARY DISPERSION AND MOTIVATION 
 

In this paper we use market transfer fee values to measure expected productivity. The gap 

between the most and least valuable player on a team can be very large, a fact which has 

generated some research in the team sports literature. General theories have provided 

conflicting views and predictions on the relationship between salary dispersion and firm 

performance. Akerlof and Yellen (1988) suggested an “effort-wage variance model” that 

defines a firm׳s output as a function of the effort by its workers which depends negatively on 

the variance of wages. They hypothesise that lower salary dispersion between workers results 

in a more amicable relationship between workers which improves firm performance. This work 

was extended to produce a model using their “fair wage-effort hypothesis” (Akerlof and Yellen, 

1990). In this hypothesis the effort from a worker relates to how his/her received wage differs 
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from what is perceived as a “fair” wage. Those who are paid at or above this “fair” wage 

contribute their full effort whereas those paid below this wage proportionally reduce their 

effort. A worker׳s conception of a “fair” wage should be motivated by the wages of other 

workers in the firm and so in turn a greater variability in wages should correspond to lower 

effort by underpaid workers. Similarly, Levine (1991) formalised cohesiveness among workers 

in firm production. Levine conjectured that a smaller wage disparity between the low and high 

skilled workers would create a more harmonious relationship. 

Many empirical studies have looked at the effects of salary dispersion on team success across 

professional sports leagues, most predominantly in MLB. Richards and Guell (1998), Bloom 

(1999), and Depken (2000) found a negative relationship between salary dispersion and team 

success by reference to a team׳s winning percentage. Molina (2004) also found a negative 

relationship when fitting a stochastic frontier model. This relationship has also been 

investigated in other professional sports leagues. Frick et al. (2003) studied the NFL, NHL, 

NBA, and MLB and while finding no effect from salary dispersion in the NFL or NHL found 

a negative impact on winning percentages in MLB but a positive relationship in the NBA. 

Sometimes contrasting views appear within the same league. For example, in the 

NHL Sommers (1998) found a negative effect of salary dispersion on team performance 

while Marchand et al. (2006) also found a negative relationship and Frick et al. (2003) found 

no relationship. In the NBA, Berri and Jewell (2004) and Katayama and Nuch (2011) find that 

salary dispersion does not influence team performance whereas Frick et al. (2003) found a 

positive relationship. 

Given the inconclusiveness of this literature, we feel it is safe to assume that these kinds of 

interactions play a negligible role in determining team performance. Each worker performs to 

the best of his ability and is rewarded in proportion to this ability. Given that performance on 



17 
 

the job is closely observed, many of the moral hazard and adverse selection problems affecting 

labour markets are absent. 

 

2.3 WAGE PERFORMANCE RELATIONSHIP 
 

The standard model of a sports league is a contest in which two or more teams compete for a 

share of success. The productivity of a player is his contribution to the success of the team. 

This framework was first used in the models produced by El-Hodiri and Quirk 

(1971) and Quirk and El Hodiri (1974), then extended by Atkinson et al. (1988), Fort and Quirk 

(1995), Vrooman (1995), Késenne (2000), Szymanski and Késenne (2004) and Dietl and Lang 

(2008). We use both audited wages and player transfer fee values as estimates of productivity 

for football players in the English Premier League. 

Given the underlying contest theory structure, outcomes must be determined by relative team 

expenditures unless outcomes are purely random. Szymanski (2003) summarises the impact of 

relative wage spending across a number of leagues and shows that it is indeed correlated with 

success, although the extent varies by league. Szymanski and Smith (1997) substitute money 

for talent in the contest success function. They construct a model where clubs maximise a 

weighted average of profit and success and players aim to maximise their earnings. There is an 

efficient market for players whose expected productivity is known and observed by consumers 

(fans) as well as producers. Fans demand success and so more successful clubs generate higher 

revenues. Given the heterogeneity of capital among clubs there is a dispersion of investment 

levels at equilibrium, at which spending reflects success. These assumptions seem plausible for 

the football labour market since there are many buyers and sellers and a lot of public 

information available about the players. 
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There is research which shows evidence of a high correlation between aggregate player 

spending and the league performance of teams (Garcia-del-Barrio and Szymanski, 

2009; Forrest and Simmons, 2002; Szymanski, 2003 ;  Szymanski and Smith, 1997) suggesting 

that on a seasonal basis wages are a reliable measure of productivity. Here we examine 

productivity on a game by game basis. We use data on transfer fees as a measure of 

productivity. Szymanski (2014) found that transfer fees paid capture the variation of team 

performance in the English Premier League almost as closely as audited aggregate wage 

expenditure. The transfer fees used in this paper come from a Transfer Price Index (TPI) 

constructed by Graeme Riley. The transfer fees are adjusted to allow for the considerable rate 

of transfer fee inflation. A player׳s transfer fee value depends on the year the transfer occurred 

and is inflated by this TPI. 

Given the high correlation between player spending and performance, the question of 

endogeneity naturally arises. Hall et al. (2002) tested for Granger causality and found evidence 

that the causation runs from wages to success for data from the English Premier League 

although the power of this test may not be strong. By contrast, Dobson and Goddard (1998) find 

evidence of causality running from lagged revenue to current performance for Football League 

clubs. This dependence was larger for smaller than larger clubs suggesting that success is 

concentrated among a small group of wealthy clubs. Peeters and Szymanski (2013) employ 

two distinct approaches to deal with unobserved productivity in their data. They firstly add in 

club-specific fixed effects which imply that productivity is different between teams but remains 

constant over time. They also use the method of Olley and Pakes (1992) to infer productivity 

using an instrumental variable based on accounting measures. In this paper we use a slightly 

different approach – we develop an instrument derived from the charitable donations of football 

clubs, which are correlated with club wage and transfer spending but unrelated to the success 

of a club on the pitch. 
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3. THEORY 
 

When looking at team performance, we measure the outcome on a game by game basis. The 

possible outcomes for soccer games are the home team winning, the away team winning or 

both teams playing out a tie. Teams try to win matches by using resources to acquire playing 

talent and success is determined by the relative share of these resources. We develop a model 

in which budgeting choices are made at the level of the individual player. First consider a model 

where only the total budgets of the teams matter. Success is then determined by the ratio of one 

team׳s budget relative to the other. For English soccer clubs we can measure the budget ratios 

in two ways: the flow of wages paid to players and the capital value of the player when they 

are acquired from another club (transfer value). Our measure of transfer value is based on the 

TPI, explained more fully in Section 4. Unlike wages, the TPI values are specific to each 

individual player allowing us an estimate of team budgets for each game rather than by season. 

 

3.1 THE AGGREGATE MODEL 
 

We can model the probability of success for a team in any match as a function of aggregate 

resources allocated to the team (denoted bi) relative to its opponent. Now define a contest 

success function which relates the resources of each team in the contest to the bins defined 

below; that is the probability of the home team winning, losing or both teams playing out a tie. 

The outcome of a game is defined as yij which refers to the result of a game between 

teams i and j. By adapting the Tullock contest success function to allow for the possibility of a 

draw we can use the following specification, taking the form of an ordered logit model: 
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     (1) 

 

where 

• 𝑦𝑦𝑖𝑖𝑖𝑖 is the outcome of the contest, a home win, draw or home loss. We need to map these 
continuous variables to these three possible outcomes and so introduce 𝑦𝑦𝑖𝑖𝑖𝑖∗  as a 
continuous, unobserved variable for this purpose, i.e. a latent index. When 𝑦𝑦𝑖𝑖𝑖𝑖∗  falls 
equal or below the cutoff value of 𝛾𝛾1, the away team wins the match. When 𝑦𝑦𝑖𝑖𝑖𝑖∗  is above 
the cutoff value of 𝛾𝛾2, the home team wins. When 𝑦𝑦𝑖𝑖𝑖𝑖∗  lies between both of these 
threshold values, the contest is a draw. 

• 𝑏𝑏𝑖𝑖 and 𝑏𝑏𝑗𝑗 are the budgets for teams i and j respectively. The budget can be measured 
either by total wage spending or the total capitalized (transfer) value of the team. 𝜃𝜃 is a 
parameter which measures the sensitivity of the contest to investments in the teams 
similar to the Tullock parameter. 

• 𝑤𝑤𝑖𝑖 and 𝑤𝑤𝑗𝑗 are team fixed effects, which may reflect underlying differences in 
productivities among the teams 

• 𝑚𝑚𝑖𝑖 and 𝑚𝑚𝑗𝑗 are manager fixed effects 
• 𝛼𝛼ℎ corresponds to the advantage acquired by being the home team, which might be a 

function of travelling, referee bias and the bias of home fans towards their team. 
• 𝜖𝜖𝑖𝑖𝑖𝑖 is an exponential noise term which accounts for chance factors specific to a contest. 

This could include weather conditions, errors by the officials and other ‘luck’ based 
events. 

Thus our contest success function allows for the quality of the players measured by their wages 

or transfer values, the productivity of the manager, the club and home advantage. 

 

3.2 THE VALUE MATCHING MODEL 
 

Consider an expansion of the previous ordered logit model now accounting for individual 

player values. Previously we used the ratio of the aggregate TPI values for teams to account 

for relative spending. We now consider the ratios of each individual player matched against 

their opponents with the same value rank. In other words, the most expensive players are 
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matched, the second most expensive are matched, and so on, all the way down to the least 

expensive players. The model now has the following multiplicative specification: 

  (2) 

where 

• 𝑥𝑥𝑖𝑖𝑖𝑖 is refers to the payroll (or in this case TPI value) of player t on team i. t ranges from 
1 to 11 which includes all starting 11 players for a football match 

• The sensitivity parameter 𝜃𝜃𝑡𝑡 now varies by player. Each of the starting eleven players 
on a team have a specific sensitivity that we assign to the ratio of players in the contest. 

If player salaries in the soccer market are a good indicator of player talent we can infer that the 

weakest player in a team is the one with the lowest value. Relating this to the O-ring model 

suggests that only the ratio of the weakest players should be considered. As a theory of team 

performance this seems extreme. At the other extreme, we might pose a “superstar” theory in 

which the productivity of the best (most valuable) player determined the success probability. 

From the point of view of the empirical test, we also want to allow the possibility that the 

performance of every player on the team has some importance so that the ratios of all eleven 

players should be included. This specification nests the more extreme cases. In theory, 

performance could be captured by any combination of the value ratios of the eleven matched 

players on both teams, that is we have 211-1=2047 unique model specifications allowing every 

possible combination of matches. This means that each player would feature in exactly 2014 

of the models. We estimate all 2047 of these models and take the average value of coefficients 

for each value match to determine coefficients and t-values. In this way not only do we test the 

O-Ring theory but every ranked value ratio and its contribution towards team performance. 
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Given this structure we need some boundary conditions on the model to analyse the individual 

contributions of the starting eleven players. The constraints are as follows: 

𝑥𝑥𝑖𝑖1 + 𝑥𝑥𝑖𝑖2 + 𝑥𝑥𝑖𝑖3 + ⋯+ 𝑥𝑥𝑖𝑖11 ≤ 𝐵𝐵    (3) 

B refers to a team’s total budget. This is the total TPI value spent across the starting eleven 

players. Thus the decision problem of the club is how to allocate a fixed budget across 11 

players. 

𝑥𝑥𝑖𝑖1 ≥ 𝑥𝑥𝑖𝑖2 ≥ 𝑥𝑥𝑖𝑖3 ≥ ⋯ ≥ 𝑥𝑥𝑖𝑖11     (4) 

(4) reflects the fact that there is a strict ordering of player finances by definition of the player 

ranks. 

𝑥𝑥𝑖𝑖𝑖𝑖 ≥ 𝑅𝑅    (5) 

Finally, (5) says that players have a reservation value, R. 

After running the model we would like to estimate exactly how much spending should be 

assigned to each player so as to maximize team performance. To achieve this we maximise 

equation (2) with respect to the TPI value of any individual player. We have; 

 

𝑦𝑦𝑖𝑖𝑖𝑖 = 𝛼𝛼ℎ𝑤𝑤𝑖𝑖𝑚𝑚𝑖𝑖
𝑤𝑤𝑗𝑗𝑚𝑚𝑗𝑗

∏ 𝑥𝑥𝑖𝑖𝑖𝑖
𝜃𝜃𝑡𝑡

𝑥𝑥𝑗𝑗𝑗𝑗
𝜃𝜃𝑡𝑡

11
𝑡𝑡=1 exp (𝜖𝜖𝑖𝑖𝑖𝑖)    (6) 

Let  𝛿𝛿𝑡𝑡
𝛼𝛼ℎ𝑤𝑤𝑖𝑖𝑚𝑚𝑖𝑖
𝑤𝑤𝑗𝑗𝑚𝑚𝑗𝑗

exp (𝜖𝜖𝑖𝑖𝑖𝑖)  and set up the objective function 𝑓𝑓(𝑥⃗𝑥) such that 

𝑦𝑦𝑖𝑖𝑖𝑖 = �𝛿𝛿1𝑥𝑥𝑖𝑖1
𝜃𝜃1� �𝛿𝛿2𝑥𝑥𝑖𝑖2

𝜃𝜃2� (… ) �𝛿𝛿11𝑥𝑥𝑖𝑖11
𝜃𝜃11� = 𝑓𝑓(𝑥⃗𝑥)    (7) 

where 𝑥⃗𝑥 = (𝑥𝑥1, … , 𝑥𝑥11) 

We set up the constraints as follows; 

• 𝑥𝑥1 + ⋯+ 𝑥𝑥11 ≤ 𝐵𝐵 

• 𝑥𝑥𝑡𝑡 ≥ 𝑅𝑅,           𝑡𝑡 = 1, … ,11 
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• 𝑥𝑥𝑡𝑡 − 𝑥𝑥𝑡𝑡+1 ≥ 0,      𝑡𝑡 = 1, … ,10 

Which can be used to define the following Lagrangian equation; 

𝐿𝐿(𝑥⃗𝑥, λ, 𝜇𝜇�⃗ , 𝑣𝑣�⃗ ) = 𝑓𝑓(𝑥⃗𝑥) + λ(𝑥𝑥1 + ⋯+ 𝑥𝑥11 − 𝐵𝐵) + ∑ 𝜇𝜇𝑡𝑡(𝑅𝑅 − 𝑥𝑥𝑡𝑡) + ∑ 𝑣𝑣𝑡𝑡(𝑥𝑥𝑡𝑡+1 − 𝑥𝑥𝑡𝑡)11
𝑡𝑡=1

11
𝑡𝑡=1      (8) 

where  𝜇⃗𝜇 = (𝜇𝜇1, … , 𝜇𝜇11) and   𝑣⃗𝑣 = (𝑣𝑣1, … , 𝑣𝑣11) 

By the theorem of complementary slackness we have that the Lagrangian coefficients are either 

binding or not binding. Using those constraints we can maximize with respect to the TPI value 

for individual players. Setting the first order conditions for players 1 and 2 against each other 

yields. 

𝜃𝜃1
𝑥𝑥𝑖𝑖1

= 𝜃𝜃2
𝑥𝑥𝑖𝑖2

    (9) 

𝑥𝑥𝑖𝑖2 = 𝜃𝜃2𝑥𝑥𝑖𝑖1
𝜃𝜃1

    (10) 

Therefore if a player has a larger 𝜃𝜃 coefficient then this player contributes more towards results 

and so should command more in spending relative to his team-mates. When the constraints are 

binding we have the cases where 𝑥𝑥𝑖𝑖𝑖𝑖 = 𝑅𝑅 and 𝑥𝑥𝑖𝑖𝑖𝑖 = 𝑥𝑥𝑖𝑖𝑡𝑡+1. Adding these constraints gives three 

conditions for spending on players; 

 

4. DATA 
 

This research makes use of a uniquely constructed database of player transfer values which 

comprises of 21 English Premier League seasons from 1992/1993 to 2012/2013. The database 

is supplied by Graeme Riley, author of the annual statistical reference book, Football in 

Europe. His dataset includes information on teams and their players who participated in each 

individual game over the 21 seasons, giving a total of 8226 individual soccer matches contested 

by 45 unique Premier League soccer teams. Since each game appears twice (containing the 
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home and away team line-ups) they are given a corresponding match ID used to prevent games 

from being counted twice in the analysis. Also listed are the managers for both teams and each 

individual game result. The English Premier League consists of 20 clubs where 3 teams are 

replaced on a yearly basis due to the promotion and relegation system. Teams will play each 

other on two occasions, once at home and once at away for a total of 38 games. 

The transfer fees values are adjusted to allow for the considerable rate of transfer fee inflation. 

This is achieved by using his constructed Transfer Price Index (TPI). Each player׳s transfer fee 

value, which depends on the year the transfer occurred, is inflated by this TPI. There is an 

extensive amount of player trading in the soccer market, both domestically and globally. Since 

we can observe the productivity of players regularly and player turnover is so high we can be 

confident that their transfer values reflect market value. This metric excludes players who have 

never been transferred between clubs and so have no TPI value; namely homegrown players. 

These players were assigned the median TPI value of their entire team on for that specific year. 

Of the 90,486 first team places in the starting line-ups that were filled by 2557 players, 25,669 

or 28.37% of these places contain players classified as homegrown. As well as players’ TPI 

values we also include information on the wage values for players. Deloitte׳s Annual Review 

of Football Finance Databook contains wage values for each team on a given year. This 

financial information is taken from the company accounts of every team. These wage values 

encompass all staff at the club, not just the players but including all backroom and boardroom 

staff and there is no wage breakdown for each individual player. 

Only the starting eleven players in a match are considered and not any of the substitutes. The 

starting eleven players are on the pitch for most of the match compared to the substitutes. 

Adding these players into the value matching model may include cases where unused 

substitutes are matched against an opposition starting player which will add noise within the 

contest success function. 
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Figure 1 presents a histogram of the TPI values for all players in the 2012/2013 English Premier 

League. The crosses on the x-axis represent the mean TPI values for players on each of the 20 

clubs. The wage distribution is skewed which is common in all labour markets. Table 1 presents 

summary statistics on team spending. Players are ranked one to eleven from most expensive to 

least expensive. The proportion that each player makes up of the team׳s total TPI value in that 

game is calculated. The proportion values for each ranked player are calculated over the entire 

8226 games in the database. Figure 2 presents a boxplots of the amount of TPI spending 

allocated to each player. The boxplots representing the more expensive players have larger 

quartile ranges but also contain a significant number of outliers at large share proportions. 

Teams are spending significant sums on the best players in their squad but also allocating 

widely differing amounts of their total resources on them. The least expensive players all 

receive a similar share of spending. 

 

 

Figure 1 - Frequency distribution on TPI values for all Premier League players 2013 

 

 

 

http://www.sciencedirect.com/science/article/pii/S1090944316300904%23gr1
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Table 1 - Summary statistics of player share values; the proportion of a team's total spending 
each ranked player accounts for 

Player rank Mean Standard deviation First quartile Median Third quartile 
One 0.221 0.060 0.180 0.211 0.249 
Two 0.155 0.036 0.130 0.151 0.176 
Three 0.118 0.026 0.100 0.116 0.134 
Four 0.095 0.019 0.083 0.094 0.107 
Five 0.082 0.016 0.073 0.082 0.092 
Six 0.076 0.015 0.066 0.076 0.085 
Seven 0.071 0.015 0.061 0.072 0.081 
Eight 0.065 0.016 0.054 0.065 0.076 
Nine 0.054 0.017 0.042 0.055 0.067 
Ten 0.040 0.018 0.027 0.039 0.052 
Eleven 0.023 0.015 0.011 0.019 0.032 

 

 

Figure 2 - The proportion of total team value assigned to each player (1993-2013) 

 

Table 2 presents the difference in the proportions of team spending on players relative to the 

stature of the teams contesting a game. We define “Big Teams” as the five teams who finished 

top of the league that season. The “Middle Teams” are the next ten highest finishing teams in 
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the league and the “Small Teams” are the lowest finishing five teams. Due to the relationship 

between spending and success, the “Big Teams” will generally be the teams with the largest 

financial resources available and likewise the “Small Teams” will have the fewest. The values 

are averaged over all teams and matches in that season. It is clear that proportional spending 

on the ranked players does not differ relative to the team׳s stature and financial size. We have 

no reason to believe that teams employ different strategies on resource distribution depending 

on the opponent. 

Table 2 - Difference in the average proportion of resources allocated to player ranks by 
teams of different stature (standard error in brackets) 

Player rank Match-ups by team stature 2012/2013 

 

 
Big vs. small Big vs. medium Medium vs. small 

One −0.020 (0.022) −0.030 (0.000) 0.014 (0.156) 
Two −0.014 (0.009) 0.004 (0.305) −0.024 (0.000) 
Three −0.003 (0.479) 0.009 (0.004) −0.016 (0.000) 
Four 0.004 (0.215) 0.018 (0.000) −0.013 (0.000) 
Five 0.009 (0.008) 0.006 (0.000) −0.004 (0.052) 
Six 0.009 (0.003) 0.007 (0.000) 0.001 (0.690) 
Seven 0.003 (0.207) −0.001 (0.464) 0.003 (0.176) 
Eight −0.001 (0.855) −0.006 (0.003) 0.006 (0.004) 
Nine −0.005 (0.106) −0.009 (0.000) 0.013 (0.000) 
Ten 0.006 (0.064) −0.004 (0.113) 0.014 (0.000) 
Eleven 0.003 (0.323) 0.002 (0.497) 0.006 (0.006) 

 

5. ESTIMATION 
 

5.1 EXOGENEITY IN WAGES 
 

We have argued that wages are unbiased predictors of player quality which in turn determines 

team results and ultimately overall league position. However, reverse causality is also a 

possibility through means such as team bonuses. This could result in the wage coefficient being 

overstated in the estimation process. To account for this we introduce an instrumental variable 

which while correlated with team spending is not correlated with how successful a team is. 
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This variable is the charitable donations given each season by a team. Richer teams are more 

likely to donate larger amounts of money to charity. 

In their financial accounts clubs must specify their charitable donations. Over the 21 seasons 

54% of our observations (where an observation is a team in a given year) included donations 

to charity. Since this will be used to instrument on the ratio of team wages we take a log 

transform of the ratio of charitable donations to reduce the effect of large ratio values. We can 

now follow a two-stage regression as follows: 

   (12) 

where we use an ordinary least squares regression of the wage proportion on the ratio of 

charitable donations. The residuals from this regression can now be substituted in place of the 

wage ratio values to remove the overstated effect from the wages when estimating results. 

The results from running this regression are shown in Table 3. As expected, the coefficient on 

spending is lower when using charitable donations as an instrument. The explanatory power of 

both models is almost identical. This means that even though we use wages to explain results, 

we can be confident that the overstated effect of wages is not biasing our results. 

Table 3 - Exogeneity analysis 

Result Wage ratio CD ratio 
Home advantage 0.963 0.962 
 (0 .045)* * *  (0 .045)* * *  
Spending 0.414 0.304 
 (0 .052)* *  (0 .046)* * *  
Pseudo-R2 0.091 0.090 
Observations 8226 8226 

 

5.2 DISPERSION ANALYSIS 
 

Previous studies have examined the effect of wage dispersion on results (see literature review). 

We examine the effect of dispersion using the TPI values (the wage data is at the team level 
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and cannot be disaggregated). Running the model on the 21 seasons of data will allow us to 

determine the impact of TPI values on results. 

Table 4 displays the results from the analysis of dispersion. We wish to test the reliability of 

the TPI data relative to the wage values and so the wage model is included. Both the wage and 

TPI models have a similar fit as demonstrated by their Pseudo-R2 values. The player wage 

model has a slightly better fit, but the TPI model is almost identical. In the model that accounts 

for the variation of spending we see that the coefficient on this variance is not significant. So 

while we believe that the dispersion of spending matters in team performance, the variance is 

too coarse a measure and is not included in the full model. 

Table 4 - Dispersion analysis 

Result Wage ratio TPI ratio TPI & variance ratios 
Adv 0.963 0.948 0.948 
 (0 .045)* * *  (0 .044)* * *  (0 .044)* * *  
Spending 0.414 0.076 0.076 
 (0 .052)* *  (0 .018)* * *  (0 .018)* * *  
Variance – – 0.000 
ratio (TPI)   (0 .169) 
Pseudo-R2 0.091 0.089 0.089 
Observations 8226 8226 8226 

 

5.3 THE EFFICIENCY OF WAGES AND TPI IN PREDICTING RESULTS 
 

Pre-match betting odds are the best available predictor of match results. We estimate Brier 

scores to measure the efficiency of wages and TPI in predicting results. Where probabilities of 

outcomes lie along the continuous interval of 0 to 1, the Brier score measures the absolute 

difference between these probabilities and the actually occurring event. A lower Brier score 

reflects better predictive accuracy in the model. For the purposes of this analysis we use data 

for the 380 games played in the 2012/2013 season. 
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We take betting odds supplied by two firms, Bet365 and Blue Square who list the historic odds 

for English Premier League games on their website2. Table 5 shows that the two betting firms 

have the greatest predictive accuracy reflected by the lowest Brier scores which is expected 

given these odds best reflected the prior information before matches. The models using TPI 

values and wages not only have very similar predictive accuracy but are almost as accurate as 

odds produced by the betting firms. 

Table 5 - Betting odds comparison 

Measure Brier score 
TPI aggregate 0.579 
TPI ratios 0.576 
Wage spending 0.575 
Bet365 0.573 
Blue Square 0.572 

 

5.4 OPTIMALITY 
 

Table 6 represents the impact of ranked players on team results. The coefficients reflect the 

relative importance of the ranked player match-ups relative to the rest of the team. Of the 2047 

models we report the top 100 best fitting models and count how many times a player match-up 

appeared. A robustness check is included in the appendix comparing the results averaged over 

different numbers of the best fitting models. The coefficients on player match-ups quantify 

their relative influence of each player value rank. The coefficients were calculated by averaging 

all 1024 models in which the player appears. A larger coefficient value represents a greater 

contribution towards team results. Players Eleven and One do not appear in many of these 

models. The eleventh ranked player appears less frequently than any other player rank. This 

suggests that the data does not strongly support the O-Ring theory. Player One also appears 

                                                            
2 Betting odds taken from http://www.football-data.co.uk/englandm. 
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rarely suggesting that the superstar player in a team does not alone drive team performance. By 

contrast, Player Two appears in every model suggesting that it is better to have two excellent 

players in a team rather than one exceptional player who commands most of the budget. Other 

players which feature often are players Five, Six and Ten implying that a strong team core is 

important for positive results but not at the expense of having too many weak players. 

Table 6 - The impact of results by the starting eleven players. Top 100 best fitting models are 
included to highlight the player ranks that contribute most to results 

Player rank Average over 2047 models 

 

 Frequency in top 100 models Coefficient t-statistic 

One 16 1.307 1.857 
Two 100 2.751 6.254 
Three 37 1.966 2.325 
Four 19 1.046 0.974 
Five 52 2.283 2.654 
Six 44 2.422 1.639 
Seven 31 −1.318 −0.816 
Eight 31 −1.122 −1.533 
Nine 16 0.530 1.131 
Ten 59 0.836 5.051 
Eleven 15 −0.138 −0.996 

 

Using these results we can now solve equation (11) to obtain an estimate of the optimal 

spending distribution. Maintaining the strict ranking of players, the optimal spending for a 

player is given in terms of the ranked player immediately above. For player one there are no 

higher ranked players and so he retains the value 𝑥𝑥𝑖𝑖1. With a given 𝑥𝑥𝑖𝑖1 we can solve for player 

two. In this case 𝜃𝜃2 = 2.751 > 1.307 = 𝜃𝜃1 implying investment in player two up to the value 

of investment in player one and so 𝑥𝑥𝑖𝑖2 = 𝑥𝑥𝑖𝑖1. For player three we have that 𝜃𝜃3 = 1.966 <

2.751 = 𝜃𝜃2 meaning that investment is more valuable in player two than three. The investment 

in player three is a fraction of the investment in player two given by 𝑥𝑥𝑖𝑖3 = 𝜃𝜃3𝑥𝑥𝑖𝑖2
𝜃𝜃2

= 0.715𝑥𝑥𝑖𝑖2 =

0.715𝑥𝑥𝑖𝑖1. These rules are applied up to and including player six. For player seven 𝜃𝜃7 < 0 
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meaning that investment in player seven at the expense of the higher ranked players is 

suboptimal. The reserve value R is assigned to this player. Due to the strict ranking of players, 

all lower ranked players must now receive the reserve value as their amount of investment. 

This gives us values for all player investments in terms of either the most expensive player and 

the reserve value. 

𝑥𝑥𝑖𝑖2 = 𝑥𝑥𝑖𝑖1  

𝑥𝑥𝑖𝑖3 = 0.715𝑥𝑥𝑖𝑖1  

𝑥𝑥𝑖𝑖4 = 𝑥𝑥𝑖𝑖5 = 𝑥𝑥𝑖𝑖6 = 0.380𝑥𝑥𝑖𝑖1  

𝑥𝑥𝑖𝑖7 = ⋯ = 𝑥𝑥𝑖𝑖11 = 𝑅𝑅     (13) 

We can substitute these values into equation (3) and solve for 𝑥𝑥𝑖𝑖1 given a set B and R. This 

yields; 

𝑥𝑥𝑖𝑖1 = 𝑥𝑥𝑖𝑖1 = 0.715𝑥𝑥𝑖𝑖1 = 3(0.380)𝑥𝑥𝑖𝑖1 + 5𝑅𝑅 = 𝐵𝐵     (14) 

𝑥𝑥𝑖𝑖1 = 𝐵𝐵−5𝑅𝑅
3.856

     (15) 

We can use these results to calculate the optimal spending distribution in every game played. 

We set the reserve value for 2013 at R = £100,000. Reserve values are then calculated for the 

1992/93-2012/13 seasons relative to the index of total spending in that given season. 

Table 7 illustrates the distribution of expected values, averaged for teams across the 2012/13 

season, and compares this with the optimal distribution. For the purposes of illustration we 

show the clubs with the minimum, median and maximum variance across the season. Generally 

spending on the most expensive player exceeds spending on the second most expensive player, 

but for the median club the gap is not large. The major difference between actual and optimal 

spending is at the bottom of the team. The optimal share of the four worst players is tiny 



33 
 

compared to the actual shares. This may reflect the need of clubs to retain better players in case 

the best players are injured. 

Table 7 - Team and optimal TPI allocations over 380 games in 2012/2013 

Player 
rank 

Budget allocations for teams 2012/2013 

 

 
Minimum 

spending variance 
(%) 

Median spending 
variance (%) 

Maximum spending 
variance (%) 

Average 
Budget (%) 

 Everton Sunderland Southampton Optimal3 
One 18.04 20.44 41.23 25.76 
Two 11.14 15.87 14.57 25.76 
Three 10.00 10.82 9.10 18.41 
Four 9.30 9.60 6.56 9.80 
Five 8.69 8.96 5.37 9.80 
Six 8.36 8.16 5.21 9.80 
Seven 8.25 7.95 5.09 0.14 
Eight 8.12 7.69 4.58 0.14 
Nine 7.78 6.09 3.88 0.14 
Ten 7.15 3.24 3.08 0.14 
Eleven 3.18 1.19 1.33 0.14 

 

6. CONCLUSION 
 

In most production settings teams of workers carry out tasks, either simultaneously or in 

sequence aimed at the production of a final output. When workers are heterogeneous the 

productivity of particular workers in their given tasks may have a more than proportional 

impact on the final outcome. Examples include superstar theories where only the most 

productive workers matter, and the popular O-Ring theory, where the productivity of the least 

productive worker is crucial. 

                                                            
3 Distributions for Everton, Sunderland and Southampton are their average spending 
distributions over 38 games. These teams have the minimum, median and maximum spending 
variances respectively. The optimal spending distribution is constructed from the average 
budget across all games in the season. 



34 
 

We use data from professional football to identify the impact on team output of the expected 

productivity of each worker. We find evidence that the most valuable workers, measured by 

the transfer fee paid to acquire their services, tend to exert the greatest impact. We find little 

evidence in support of O-Ring theory. 

In a sense our findings are reassuring – the most valuable workers (who also tend to receive 

the highest wages) ought to make the greatest contribution to team production. However, our 

results also suggest a puzzle. We find that the optimal distribution of spending is more skewed 

than the observed distribution. This may reflect some constraint in the market for superstars – 

a limited number of players at the top end of the distribution such that a few players are paid 

very high wages but there are not enough players of this quality to go around. Equally it is 

possible that the observed distribution may reflect equity concerns within the organisation. 
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7. APPENDIX A 
 

7.1 LAGRANGIAN DERIVATION 
 

We can now maximise with respect to the individual wage values; 

   (16) 

  (17) 

  (18) 

and constraints; 

   (19) 

  (20) 

  (21) 

By the theorem of complementary slackness we have that either the Lagrangian coefficients 

are equal to 0 and the constraints are binding or the Lagrangian coefficients are positive and 

the constraints are not binding. We maximise with respect to the TPI value for player 1 

assuming that the constraints are binding. We have from the theorem that either; 

  (22) 
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Teams will always utilise their full budgets and so it must be the case that λ=0 and the 

constraint is binding 

 (23) 

So if this constraint is not binding we have that x i t>R and μ t=0   

  (24) 

When this constraint is not binding we have that x i t>x i t+ 1  and ν t=0. Putting this together we 

can maximise the objective function; 

   (25) 

  (26) 

   (27) 

This is analogous for any of the ten other players. For player 2 we would have; 

   (28) 

Next, set equations. (20) & (21) together to determine the relative spending on these two 

players which maximises team performance. 

  (29) 

  (30) 
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7.2 INDIVIDUAL GAME OPTIMALITY 
 

We can examine optimality on the individual game level. To see how following the distribution 

can affect win probability we take as one example the game, played between Watford and 

Portsmouth in the 2006/2007 season. The match ended 4-2 in favour of Watford. Portsmouth 

had a TPI budget of B=£30,329,936. Using the full player ratio model on the actual TPI 

player values, the predicted probabilities for a Portsmouth win, loss and draw are; 

Pr(W)=0.27208 

Pr(D)=0.30596 

Pr(L)=0.42196 

We simulate predicted probabilities from replacing the player TPI values with the optimal 

distribution. The model will now take into account the new match-ups and we should see an 

increase in the probability of Portsmouth winning the match. Holding the spending for Watford 

constant, we now have; 

Pr(W)=0.43472 

Pr(D)=0.30336 

Pr(L)=0.26188 

The reserve value for 2007 indexed with league spending is R=£106,885. We can calculate 

the optimal spending for player one and all other players by using the equations in (13). Table 

8 presents the actual TPI values from the match and also the optimal spending distribution 

using our equations. Note that the optimal and actual spending on the lowest ranked player is 

not very large. 
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Table 8 - The actual and optimal TPI values of the ranked players calculated for the 2007 
game played between Watford and Portsmouth 

Player rank Actual TPI values Optimal TPI values 
One 4,665,046 7,727,282 
Two 4,665,046 7,727,282 
Three 4,067,039 5,522,296 
Four 3,391,495 2,939,551 
Five 2,831,258 2,939,551 
Six 2,831,258 2,939,551 
Seven 2,831,258 106,885 
Eight 2,271,021 106,885 
Nine 1,892,517 106,885 
Ten 707,196 106,885 
Eleven 176,799 106,885 

 

Following the optimal spending distribution suggests that the probability of team success can 

be greatly increased. Teams do not appear to be following a strategy that matches up with these 

optimal spending distributions. If the market for buying players is efficient then why are teams 

adopting inefficient strategies for acquiring playing talent? One reason for this would be that 

there is not enough talent in the global market to go around. There are only a limited amount 

of top players and so teams will be unable to find players who match the optimal budget 

allocations. Also, many players will not want to play for the reserve valuation due to being at 

prestigious teams. The worst player at a team like Man Utd would still expect to be worth 

considerably more than the reserve valuation. 

 

7.3 MODEL ROBUSTNESS 
 

The model presented in this paper averages player coefficients over all 2047 models but there 

are other ways the coefficients can be calculated. Table 9 presents the player coefficients 

averaged over the top fitting 1000, 500, 100, 50, 10 models, and also the coefficients of the 

best fitting model top model. 
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 Table 9 - The im
pact on results by the starting eleven players. D

ifferent num
bers of the best fitting m

odels are included to highlight the player ranks 
that contribute m

ost to results. (1) corresponds to the frequency a player rank appears in the top m
odels, (2) corresponds to the player rank 

coefficient, and (3) corresponds to the t-statistic on the coefficient 

R
ank 

Top 1000 

 

Top 500 

 

Top 100 

 

Top 50 

 

Top 10 

 

Top 1 

 

 
1 

2 
3 

1 
2 

3 
1 

2 
3 

1 
2 

3 
1 

2 
3 

1 
2 

3 

O
ne 

494 
0.861 

2.273 
174 

0.725 
3.404 

16 
0.676 

20.108 
5 

0.664 
24.825 

1 
0.648 

N
A

 
0 

N
A

 
N

A
 

Tw
o 

881 
2.774 

6.628 
490 

2.842 
7.664 

100 
2.950 

8.740 
50 

3.058 
11.338 

10 
3.165 

10.838 
1 

3.182 
N

A
 

Three 
533 

1.506 
2.448 

214 
1.303 

3.334 
37 

1.266 
3.970 

10 
1.269 

4.592 
1 

1.084 
N

A
 

0 
N

A
 

N
A

 
Four 

431 
0.733 

1.091 
183 

0.840 
1.302 

19 
1.201 

1.885 
8 

1.074 
1.808 

0 
N

A
 

N
A

 
0 

N
A

 
N

A
 

Five 
494 

2.069 
3.797 

253 
2.162 

4.116 
52 

2.279 
4.244 

31 
2.377 

4.876 
7 

2.495 
4.844 

1 
2.362 

N
A

 
Six 

496 
2.372 

1.795 
496 

2.401 
1.772 

44 
2.787 

2.132 
21 

2.702 
1.787 

3 
3.262 

2.546 
0 

N
A

 
N

A
 

Seven 
459 

−1.542 
−1.099 

459 
−1.824 

−1.460 
31 

−2.339 
−2.523 

16 
−2.296 

−2.421 
3 

−1.932 
−1.491 

0 
N

A
 

N
A

 
Eight 

449 
−1.209 

−1.884 
449 

−1.292 
−2.091 

31 
−1.465 

−3.060 
14 

−1.512 
−4.066 

2 
−1.697 

−5.632 
0 

N
A

 
N

A
 

N
ine 

440 
0.480 

1.039 
440 

0.447 
0.967 

16 
0.553 

1.242 
4 

0.355 
0.589 

0 
N

A
 

N
A

 
0 

N
A

 
N

A
 

Ten 
513 

0.818 
5.054 

513 
0.803 

4.877 
59 

0.763 
4.610 

33 
0.734 

4.601 
5 

0.733 
4.826 

0 
N

A
 

N
A

 
Eleven 

417 
−0.149 

−1.089 
417 

−0.167 
−1.232 

15 
−0.235 

−2.460 
5 

−0.216 
−1.764 

0 
N

A
 

N
A

 
0 

N
A

 
N

A
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Each of the averaged models produced player coefficients with the same sign as the coefficients 

averaged over 2047 models in the paper. The relative size of the coefficients is also similar. 

Regardless of the number of models averaged over, similar results are obtained. 

Table 10 shows that the AIC scores for each of the average models are almost identical. 

Regardless of the number of models averaged, the player coefficients and AIC scores are very 

similar so even though the AIC score is lowest for the best fitting model, we are comfortable 

using the results averaged over 2047 models as this provides more information overall about 

each individual player. 

 
Table 10 - AIC scores average over the number of best fitting models 

Number of best fitting models AIC score 
Top 1 16,627.95 
Top 10 16,628.97 
Top 50 16,629.82 
Top 100 16,630.39 
Top 500 16,632.16 
Top 1000 16,633.51 
Top 2047 16,637.42 

 

 

 

 

 

 

 

 

http://www.sciencedirect.com/science/article/pii/S1090944316300904%23t0050
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CHAPTER III 
 

THE IMPACT OF REST PERIODS ON RESULTS IN THE ENGLISH 
PREMIER LEAGUE4 

 

 

 

 

ABSTRACT 

 

This paper measures the impact of fatigue in competitive soccer. Using the setting of the 

English Premier League we set up a production function to estimate results while accounting 

for the various ways to measure team rest times. The findings show that under current 

scheduling of domestic and European competition there are no statistically significant effects 

of receiving different rest days on team performance. Given the limited variation in the amount 

of rest per team we explore further and find that even if such an effect did exist, it would be 

negligible.

                                                            
4 Paper co-authored with Stefan Szymanski 
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1. INTRODUCTION 
 

People never seem to tire of debating the role of fatigue in professional soccer. Players’ 

physical condition is an essential factor towards a team’s success hence well rested players 

should be able to contribute more towards overall team performance. While many managers 

and players share conflicting views on how much rest is appropriate between games, there is 

little empirical evidence supporting their arguments. This paper focuses on the effects of rest 

times and the distances travelled between soccer matches for English Premier League teams. 

Our model takes these factors into account but also includes the length of time between 

consecutive games. The distance travelled for each game assesses the impact of team travel on 

performance. 

 

We have attempted to estimate the impact of rest in different ways. Rest periods can be 

estimated as the number of days between games played by each player, but also as the number 

of days between games played by the entire team. The spacing between games raise additional 

factors we can measure such as team sharpness (the number of consecutive games for players) 

and team cohesion (familiarity with teammates) as by-products of how much rest and rotation 

a team experiences. 

 

We find that under current scheduling in domestic and European competition there are no 

statistically significant effects of receiving different days of rest on team performance within 

the English Premier League. Given the limited variation in the amount of rest per team there 

might be a concern about the power of our tests. We find that even if the effects were 

statistically significant, they would have a negligible impact on team results. 
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The paper sets out as follows. In section 2 we review the relevant literature, section 3 presents 

the theory and section 4 the data. Results and estimations are shown in section 5 and section 6 

contains concluding remarks. 

 

2. LITERATURE REVIEW 
 

Soccer is a sport with both physically and mentally demanding components. Top-class players 

on average cover a distance of roughly 11km each match though the distance differs highly 

between players and is partly related to the team position (Bangsbo 1994; Reilly 1997). Players 

perform around 1,350 individual activities, inclusive of 69 high-speed runs and 109 moderate-

speed runs (Mohr et al., 2003). In addition to these runs, other energy-demanding activities 

include accelerating, dribbling, tackling, jumping and turning (Bangsbo 1994). These studies 

suggest that the volume of high-intensity exercise in matches can be used as a valid measure 

of physical performance in soccer. Although it is uncertain to what extent the players undergo 

fatigue during soccer games, several researchers have observed the total distance covered in 

the second half being reduced compared with the first (Reilly and Thomas, 1976; Van Gool et 

al., 1988; Bangsbo et al., 1991). This reduction may reflect the development of fatigue in the 

second half. It is often speculated whether players are able to recover from this fatigue in time 

for the next match.  

The best teams in the top European professional leagues, such as the English Premier League, 

La Liga and Bundesliga, can play over 60 matches each season from pre-season friendlies to 

the end of the domestic league competition. These teams will play in their domestic league and 

cup competitions but may also play in the Champions League or the Europa League. Often 

these players will also be called up for additional matches with the national team, increasing 

their fixture congestion. If teams/players are not well rested then it will have negative 

consequences on the physical performance of the sport and diminish the performance for fans. 
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Rest is also important for governing bodies who are responsible for the welfare of players as 

well as wanting the services of well rested stars for competitions such as the World Cup. In 

addition, if opposing teams are experiencing different days of rest then the balance of the match 

could be affected. Scheduling is planned in such a way as to minimize imbalances of rest 

periods for teams. 

The role of fatigue in sports has mostly been researched from outside the perspective of 

economics but some research exists that looks not just at rest, but other similar factors that may 

affect performance. Looking at the National Basketball Association (NBA) over a 19-year 

period, (Ashman, Bowman and Lambrinos 2010) find that the home team performs poorly 

when playing the second of back-to-back games where the visiting team had 1 or 2 days of rest. 

This effect is greater when the home team had travelled easterly across time zones between the 

games. The betting market was not able to account for the home team’s fatigue when creating 

spreads, mispricing the games. (Entine and Small 2008) analyze the relationship between home 

court advantage and the fewer days of rest between games visiting teams receive, looking at 

two seasons (2004-2006). The results show that lack of rest for the road team is an important, 

although not dominant, factor to the home court advantage. (Scoppa 2013) investigated the 

effect of rest on international soccer teams in the World Cup and European Championship. 

Scoppa related team performance to the respective days of rest teams had after their previous 

match, finding that under the current structure of the international tournaments, there are no 

relevant effects of different days of rest on team performance. 

Differences in rest and travelling times between teams can also contribute to home field 

advantage. (Carmichael and Thomas 2005) find evidence for home field advantage in the 

English Premier League. (Neville and Holder 1999) provide evidence to suggest that travel 

factors contribute to part of home advantage provided the journey crosses a number of time 

zones. In countries where the travel distance is not so large, crowd factors appeared to be the 
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main cause of home advantage rather than travel distance. Some papers analyze the relationship 

between team performance in soccer and the distance travelled to an away game. Oberhofer, 

Philippovich and Winner (2010) show that team performance declines the further the distance 

to the away venue, in particular the travelling team is more likely to concede goals. In the 

National Football League (Nichols 2012) finds that teams are more likely to lose if they are 

travelling a longer distance, especially when the crossing at least one time zone from east to 

west. 

(Krumer and Lechner 2016) investigate whether midweek games give an advantage to teams 

in the German Bundesliga. They find that home advantage disappears for midweek games, 

since the midweek matches are allocated unevenly among teams. Home teams perform worse 

for midweek games, due to lower attendances and the perception of these home beings as being 

less important. This favours teams with fewer midweek home matches. 

 

3. THEORY 
 

To capture the effect of rest times on results we would ideally conduct a randomized controlled 

trial where we randomly allocate different rest teams between games for all teams and produce 

some experimental data. Team performance can then be in part attributed to how much rest a 

team received before the game. However, scheduling is not randomly assigned for professional 

soccer teams so we must use observational data based over previous seasons. The main reason 

for the variability of rest times comes from the allocation of midweek games. If we assume that 

midweek games are allocated randomly to teams then we could compare the results for teams 

at the weekend by whether they had played a midweek game or not. The difference between 

the results would be a consistent estimate of the midweek effect. But, scheduling is not always 

randomly assigned to teams as for example, fixture congestion can result in matches being 

rescheduled. Successful teams are also more likely to play midweek games through domestic 



50 
 

cup and European cup competitions. As a result stronger teams will receive biased scheduling 

since they are likely to play more games and therefore have a tighter schedule. These deviations 

must be accounted for in our estimations especially if they are correlated with our outcome 

variable. 

We use a selection-on-observable strategy to identify the effect of midweek games. Since we 

know the scheduling must take account of certain factors we can capture these characteristics 

as well as other such as stadium location and team finances which also influence scheduling. 

Since the effect of midweek games might be different for different teams, and this 

heterogeneity is unknown we use a flexible propensity score matching approach to control for 

the various confounding factors. Rubin (1976) presents work on a class of matching methods 

which are called ‘equal percent bias reducing’ (EPBR) because they yield the same percentage 

reduction in bias for all matching variables, and thus for any linear combination of these 

variables. We use an extension of this work (Rubin 1980) by using Monte Carlo values for the 

percent reduction in bias where Mahalanobis-metric pair matching is used. This method is 

implemented in the Stata “psmatch2” package which we will use for our propensity score 

matching analysis. It is appropriate for this analysis as the metric attempts to find pair matches 

close on all matching variables. 

Rest times are only part of what drives performance in soccer and other research has examined 

the relationship of pay and performance in sport. Scully (1974) carried out an econometric 

study on pay versus performance in Major League baseball. Scully estimates a production 

function which relates team outputs to the win percentage by using several team performance 

inputs. Szymanski and Smith (1997) adopt a similar approach in English soccer. Money is 

substituted for talent in the contest success function, finding that on a seasonal basis wages are 

a reliable measure of productivity (Forrest and Simmons 2002, Szymanski 2003). When 

considering team performance, we measure results on a game by game basis. There are two 
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different ways we assess a game result. One is by looking at a team’s goal difference. A team 

will have a positive goal difference if they score more goals than they concede and a negative 

goal difference if they concede more goals than they score. A goal difference of zero 

corresponds to a tied game. This measure allows us to determine a scale of success beyond 

simply whether a game is won. The second way results are assessed is by choosing the game 

outcome. These are either the home team winning, the away team winning, or both teams 

playing out a tie. Teams try to win matches by using resources to acquire playing talent and 

success is determined by the relative share of these resources. Using the pay on performance 

framework we estimate the relationship between player rest and team performance. To estimate 

this relationship, we look at two different parametric linear models (3.1):  the Ordinary Least 

Squares estimator and the Ordered Logistic model. These models correspond to each of the 

two ways we express game outcomes. The OLS estimator is used to form a relationship 

between goal difference and the explanatory variables while the ordered logit model uses game 

outcome; namely a home win, loss, or draw.   For each we develop three frameworks which 

will define the variables we use to quantify rest (3.1.1 - 3.1.3). 

 
3.1 PARAMETRIC LINEAR MODELS 
 

First consider the model using an OLS estimator specification. Success is then determined by 

one team’s budget relative to the other, in addition to our rest and distance explanatory 

variables. Team and manager fixed effects are also included. For English football clubs we can 

measures the budgets in two ways: wages paid to players and the capital value of the player 

when they are acquired from another club (transfer value). Our measure of transfer value come 

from a Transfer Price Index (TPI) constructed by Graeme Riley, author of the annual statistical 

reference book, Football in Europe. The transfer fees are adjusted to allow for the considerable 

rate of transfer fee inflation. A player’s transfer fee value depends on the year in which the 
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transfer occurred and is inflated by this TPI index. Unlike wages, the TPI values are specific 

to each individual player allowing us an estimate of team budgets for each game rather than by 

season. Results are measured by the goal difference between teams.  

The second model uses an ordered logit specification. We consider the second measure of team 

performance by looking at the game outcome where the possible results are a home team win, 

loss or a tie. Success is again determined by one team’s budget relative to the other, in addition 

to rest and distance factors. For each of the two estimation methods we adopt the following 

three frameworks which define the different variables used to quantify team rest. 

 

3.1.1 RELATIVE REST MODEL 
 

The first framework considered is the proportional rest between teams. All English Premier 

League games are included for this analysis. The regressions alternate between different 

groupings of rest variables so that we capture the rest effect in different ways. All specifications 

contain the variables on team finances, home advantage, distance, team sharpness and team 

cohesion as well as team and manager fixed effects. The rest specifications are set out as 

follows. The first compares the total rest days for the objective team and the opponent team. 

The second specification takes a ratio of these rest days and sorts them into bins from where 

the objective team has the least rest to the most rest compared to their opponent. The final 

specification takes these bins and further splits them by adding which half of the year the game 

is being played, to determine whether fatigue plays a role in specific parts of the season. 

 

3.1.2 MIDWEEK EFFECT MODEL 
 

The second framework looks at the effect of playing midweek games on weekend results. Only 

weekend games from the English Premier League are considered for this model. Regressions 
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alternate between different ways of specifying midweek games. This includes whether teams 

play a midweek game, the type of midweek game (league, cup, or European game), the rotation 

of squads due to midweek games and fixture congestion caused by midweek games. All 

specifications again contain the variables on team finances, home advantage, distance, team 

sharpness and team cohesion as well as team and manager fixed effects. 

 

3.1.3 WEEKEND EFFECT MODEL 
 

The final model looks at the effect of playing weekend games on the following midweek games. 

Only midweek games from the English Premier League are considered for this model. 

Regressions alternate between different ways of specifying weekend games. These are 

analogous to the Midweek Effect Model where indicators for midweek games are substituted 

for indicators for weekend games.  All specifications again contain the variables on team 

finances, home advantage, distance, team sharpness and team cohesion as well as team and 

manager fixed effects. 

 

4. DATA 
 

This research makes use of a uniquely constructed database of player and team rest values 

which comprises of 21 English Premier League seasons from 1992/93 to 2012/13. The English 

Premier League consists of 20 clubs where 3 teams are replaced on a yearly basis due to the 

promotion and relegation system. Teams will play each other on two occasions, once at home 

and once away for a total of 38 games each, yielding 7980 league games in our database. 

In addition to the English Premier League fixtures the data includes the line-ups for every 

Domestic Cup and European fixture Premier League teams played between the 1992/93 and 

2012/13 seasons. Altogether this accounts for 1250 European Cup (Champions League, Europa 
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League, UEFA Cup and Cup Winners Cup), 1380 League Cup, and 1469 FA Cup fixtures. This 

allows us to compute the individual rest times for players as well as the distance travelled by 

teams to those matches in addition to the existing variables. 

Variables were created to capture the total rest times for teams. TRP corresponds to the Total 

Rest Period for the objective team measures as the total number of days each starting player on 

the team has rested before the current game (up to a maximum of 77 days). TORP measures 

the Total Opponent Rest Period.  Next, we take the ratio of the TRP and TORP and order the 

observations from smallest to largest. The smallest 10% are assigned a dummy variable R1 

where the objective team has the smallest amount of rest relative to the opponent team. 

Symmetrically the largest 10% are assigned to R5. The lowest observations above 10% and up 

to 30% are assigned to R2. Symmetrically the observations between 70% and 90% are assigned 

to R4. The remaining 40% are assigned to R3 which is used as a baseline for when teams have 

approximately even rest times. These variables are then further split down depending on the 

half of the year where H1 corresponds to games between July-December and H2 for games 

between January-June. 

The spacing between games allows for additional variables to be measured. The match 

sharpness variable captures the match fitness of a player; the more often he plays the better he 

should perform. Sharpness ranges from 1-5 depending on the number the previous 5 games he 

has played for the team. SharpProp is a variable defined as the ratio of match sharpness for all 

players on a given team against the opponent team. We also define a cohesion variable, which 

captures how familiar the squad is playing with each other. Cohesive teams are likely to 

perform better since each player is more familiar with their teammates’ playing styles and 

working to a settled pattern of play. The variable is defined as the number of unique players 

who played in the last 5 games (ranging between 11 and 55), normalized by dividing through 

by 11. Thus the variable ranges from 1 to 5 where a lower value corresponds to a more cohesive 
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team. CohProp is defined as the ratio between a given team and its opponent. The variables 

lnDist and lnDistOpp are the log of distance travelled in kilometers by both teams to the current 

game. The lnDistLast and lnDistLastOpp variables are the distance travelled for the previous 

game. 

 

Additional variables were created to capture the effect of midweek/weekend games and other 

causes of team rotation. The Midweek and MidweekOpp variables note if a team has played a 

midweek game before the current weekend game. MidEuro, MidCup, MidLeague, OppEuro, 

OppCup, and OppLeague reflect whether the midweek game was a European, domestic cup, 

or league game. ChangedSquad and ChangedOpp represent how many players have changed 

from the starting eleven since the last match while lnTPIChange and lnTPIChangeOpp capture 

the net TPI value of this change. The number of games played in weekly periods are captured 

in the OneWeek, TwoWeek, ThreeWeek, and FourWeek variables to highlight extended fixture 

congestion. Finally the WkndMid and WkndMidOpp variables note if a team has played a 

weekend game before the current midweek game. 

We take the log values of the objective team (lnTeamXI) and opponent team (lnOppXI) finances 

to account for the skewed distribution of team budgets due to the richest teams. The Adv 

variable corresponds to the advantage gained by being the home team, which might be a 

function of traveling, referee bias and the bias of home fans towards their team. 

Table 11 presents some summary statistics about the game variables. We find that teams tend 

to have a similar match sharpness variable but differ somewhat in the cohesion value. The mean 

value for rest days of 62.58 suggests that teams are almost always fully rested and as such 

games where one team notably has more rest than another is uncommon.  
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Table 11 - Rest variable summary statistics 

Variable Mean Standard Deviation Median 
lnTeamXI 17.77 0.743 17.80 
lnOppXI 17.77 0.743 17.80 
Adv 0.5 0.5 0.5 
SharpProp 1.027 0.293 1 
CohProp 1.424 0.178 1.450 
lnDist 2.434 2.541 0 
lnDistOpp 2.434 2.541 0 
lnDistLast 2.445 2.641 0 
lnDistLastOpp 2.445 2.641 0 
TRP 62.58 15.975 68.00 
TORP 62.58 15.975 68.00 
R1 0.1002 0.3 0 
R2 0.2022 0.402 0 
R4 0.2006 0.4 0 
R5 0.0983 0.298 0 
H1R1 0.0453 0.208 0 
H1R2 0.1093 0.312 0 
H1R4 0.1088 0.311 0 
H1R5 0.0440 0.205 0 
H2R1 0.0549 0.228 0 
H2R2 0.0929 0.290 0 
H2R4 0.0918 0.289 0 
H2R5 0.0543 0.227 0 

 

Figure 3 shows the number of unique starting players averaged across English Premier League 

teams in each year. We can see that this average does not change significantly from year to 

year so we have no reason to believe squad size or depth is affecting how much rest players 

receive.  
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Figure 3 - Unique players in English Premier League starting lineups by year 

 

5. RESULTS 
 

5.1 REGRESSION RESULTS 
 

In this section we conduct an econometric analysis of rest times on team performance 

while controlling for other variables that could determine team performance. Several 

specifications are considered using both a parametric linear model and an ordered logit model. 

For the linear model we use Goal Difference as the dependent variable. The variable Goal 

Difference is positive if Team A scores more than Team B and is negative if they score less. 

For the ordered logit model we use Game Result as the dependent variable. Soccer games can 

have one of three results: a home win, home loss or a draw.  The tables below will report only 

the variables relating to rest. The full analysis can be found in the appendix but in short all 

variables not related to rest are found to be consistent with the framework built by previous 

literature. 
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Table 12 reports the results of the Relative Rest Model estimates using all Premier 

League games. Columns (1)-(3) contain OLS estimates of the linear model and columns (4)-

(6) estimates with the ordered logit model. None of the R1 to R5 variables are significant but 

have varying signs for coefficients. This is also true when including the H1 and H2 variables. 

The TRP variable has a positive coefficient while the TORP variable has a negative coefficient. 

Both variables are statistically insignificant. 

Table 13 reports the results of the Midweek Effect Model estimates using weekend 

Premier League games only. Columns (1)-(5) contain OLS estimates of the linear model and 

columns (6)-(10) estimates with the ordered logit model. The coefficient of the Midweek 

variable is negative and statistically insignificant. By contrast the MidweekOpp variable has a 

positive coefficient. The Midweek variables corresponding to competition types are 

statistically insignificant. The ChangedSquad coefficient is negative and statistically 

insignificant while the ChangedOpp coefficient is positive. The lnTPIChange coefficient is 

negative and statistically insignificant while the lnTPIChangeOpp coefficient is positive. The 

OneWeek and TwoWeek coefficients are positive and statistically insignificant while the 

ThreeWeek and FourWeek coefficients are negative. All interaction coefficients are statistically 

insignificant. 

Table 14 reports the results of the Weekend Effect Model estimates using midweek games only. 

Columns (1)-(4) contain OLS estimates of the linear model and columns (5)-(8) estimates with 

the ordered logit model. The coefficient of the WkndMid variable is positive and statistically 

insignificant. By contrast the WkndMidOpp variable has a negative coefficient. The 

ChangedSquad coefficient is negative and statistically insignificant while the ChangedOpp 

coefficient is positive. The lnTPIChange coefficient is negative and statistically insignificant 

while the lnTPIChangeOpp coefficient is positive. The OneWeek, TwoWeek, ThreeWeek and 

FourWeek coefficients are statistically insignificant. 
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Table 12 - Relative rest periods on team performance 

 (1) (2) (3) (4) (5) (6) 

R1 -0.0054 
(0.0628)   -0.0337 

(0.0799)   

R2 0.0255 
(0.0483)   0.0321 

(0.0613)   

R4 -0.0267 
(0.0485)   -0.0272 

(0.0615)   

R5 0.006 
(0.0633)   0.0344 

(0.0805)   

H1R1  0.0011 
(0.088)   -0.0512 

(0.1127)  

H1R2  -0.0172 
(0.0603)   -0.021 

(0.0763)  

H1R4  0.0231 
(0.0605)   0.0148 

(0.0765)  

H1R5  0.0005 
(0.089)   0.0564 

(0.1142)  

H2R1  -0.0059 
(0.0804)   -0.0136 

(0.1019)  

H2R2  0.081 
(0.0646)   0.0881 

(0.0822)  

H2R4  -0.08 
(0.0649)   -0.0835 

(0.0826)  

H2R5  0.0153 
(0.0809)   0.02 

(0.1024)  

TRP   0.0004 
(0.0013)   0.0013 

(0.0017) 

TORP   -0.0004 
(0.0013)   -0.0013 

(0.0017) 

Observations 8226 8226 8226 8226 8226 8226 

AIC 31013.2 31016.5 31011.1 16578.8 16583.8 16576.2 
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Table 13 - Midweek game effect on weekend team performance 

 (1) (2) (3) (4) (5) 

Midweek -0.0181 
(0.0466) 

-0.0237 
(0.0704)   -0.0172 

(0.0466) 

MidweekOpp 0.0143 
(0.0466) 

0.0227 
(0.0705)   0.0171 

(0.0466) 

MidEuro   0.1243 
(0.101)   

MidCup   0.0612 
(0.0752)   

MidLeague   -0.0549 
(0.0692)   

OppEuro   -0.1197 
(0.1009)   

OppCup   -0.0626 
(0.0752)   

OppLeague   0.0545 
(0.0692)   

ChangedSquad  -0.0186 
(0.0197)    

ChangedOpp  0.0162 
(0.0199)    

Midweek:ChangedSquad  1.2308 
(1.0838)    

MidweekOpp:ChangedOpp  0.6608 
(0.8744)    

lnTPIChange -0.0306 
(0.0363)     

lnTPIChangeOpp 0.0294 
(0.0364)     

Midweek:lnTPIChange 1.216 
(1.0787)     

MidweekOpp:lnTPIChangeOpp 0.5993 
(0.8736)     
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OneWeek    0.0035 
(0.0419)  

TwoWeek    0.0108 
(0.0434)  

ThreeWeek    -0.0107 
(0.0436)  

FourWeek    -0.0009 
(0.0287)  

Observations 6397 6397 6397 6397 6397 

AIC 24380.1 24379.5 24378.2 24376.0 24375.7 

 

 (6) (7) (8) (9) (10) 

Midweek -0.0507 
(0.0587) 

-0.0311 
(0.0881)   -0.0545 

(0.0587) 

MidweekOpp 0.0546 
(0.0587) 

0.023 
(0.0882)   0.0544 

(0.0587) 

MidEuro   0.1593 
(0.1314)   

MidCup   0.012 
(0.0949)   

MidLeague   -0.0804 
(0.087)   

OppEuro   -0.1534 
(0.1315)   

OppCup   -0.0152 
(0.0948)   

OppLeague   0.0769 
(0.0869)   

ChangedSquad  -0.0149 
(0.0248)    

ChangedOpp  0.0111 
(0.025)    

Midweek:ChangedSquad  -0.0049 
(0.0302)    
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MidweekOpp:ChangedOpp  0.0088 
(0.0303)    

lnTPIChange -0.0336 
(0.0455)     

lnTPIChangeOpp 0.0324 
(0.0455)     

Midweek:lnTPIChange -0.0144 
(0.0745)     

MidweekOpp:lnTPIChangeOpp 0.0126 
(0.0745)     

OneWeek    -0.0061 
(0.0525)  

TwoWeek    0.0159 
(0.0542)  

ThreeWeek    -0.0158 
(0.0549)  

FourWeek    0.0018 
(0.036)  

Observations 6397 6397 6397 6397 6397 

AIC 12994.2 12996.7 12996.4 12994.5 12990.8 
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Table 14 - Weekend game effect on midweek team performance 

 (1) (2) (3) (4) 

WkndMid 0.1437 
(0.1741) 

0.1498 
(0.1745) 

0.1068 
(0.2346)  

WkndMidOpp -0.1356 
(0.174) 

-0.1483 
(0.1745) 

-0.0773 
(0.2347)  

lnTPIChange  -0.0287 
(0.1376)   

lnTPIChangeOpp  0.0325 
(0.1373)   

WkndMid:lnTPIChange  0.0846 
(0.1625)   

WkndMidOpp:lnTPIChangeOpp  -0.1008 
(0.1625)   

ChangedSquad   -0.0341 
(0.0613)  

ChangedOpp   0.0431 
(0.0614)  

WkndMid:ChangedSquad   0.0183 
(0.0718)  

WkndMidOpp:ChangedSquad   -0.0296 
(0.0719)  

OneWeek    0.0143 
(0.1131) 

TwoWeek    -0.0019 
(0.1188) 

ThreeWeek    -0.0262 
(0.1206) 

FourWeek    0.0307 
(0.0732) 

Observations 1829 1829 1829 1829 

AIC 3932.7 3936.7 3939.1 3935.5 
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 (5) (6) (7) (8) 

WkndMid 0.1408 
(0.1252) 

0.1415 
(0.1254) 

0.1069 
(0.1673) 

0.1348 
(0.1428) 

WkndMidOpp -0.1421 
(0.1252) 

-0.1407 
(0.1254) 

-0.105 
(0.1675) 

-0.1456 
(0.1257) 

lnTPIChange  0.0086 
(0.0994)   

lnTPIChangeOpp  -0.0106 
(0.0993)   

WkndMid:lnTPIChange  0.654 
(1.9556)   

WkndMidOpp:lnTPIChangeOpp  0.7888 
(1.7209)   

ChangedSquad   -0.0216 
(0.0429)  

ChangedOpp   0.0228 
(0.043)  

WkndMid:ChangedSquad   0.7729 
(1.947)  

WkndMidOpp:ChangedSquad     

OneWeek    -0.0206 
(0.0952) 

TwoWeek    0.0455 
(0.0864) 

ThreeWeek    -0.0691 
(0.087) 

FourWeek    0.0442 
(0.0529) 

Observations 1829 1829 1829 1829 

AIC 6952.4 6955.4 6956.2 6956.1 
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5.2 PROPENSITY SCORE MATCHING 
 

We define the propensity score, which is the probability of a midweek match given the team 

characteristics. We choose logistic regression where we include variables that could be 

correlated with team performance. Table 15 presents a logistic regression estimating this 

probability. The lnTeamXI variable is positive and significantly implying that teams with 

higher squad value are more likely to have played a midweek game previously. Squad rotation 

variables such as SharpProp, CohProp, ChangedSquad are significant implying that teams are 

likely to change their players after a midweek game. The MidweekOpp and ChangedOpp 

variables are also significant suggesting that teams which have played a midweek game are 

often matched together on the weekend. Finally the OneWeek and TwoWeek variables are 

positive and significant confirming that midweek games are more likely to be played during 

weeks in which a team plays more games. 

Overall, no reported variable means change drastically between the matched and unmatched 

samples although there is a net decrease in the overall bias for the matched sample variables. 

We can look to see how the matching has affected variables which were significant in the 

logistic regression. The bias has been reduced for lnTeamXI so matches can be found when 

considering team TPI value. By contrast variables such as SharpProp and CohProp show a 

small increase in bias suggesting that matching these variables is more difficult. This is because 

the exogenous variables are correlated with each other and so matching on one variable to 

reduce its bias may increase the bias on another correlated variable. The variables which are 

easier to match will primarily experience the reduction in bias which in this case is the team 

TPI value. 

 A 95% confidence interval on the propensity score is (0.293, 0.308) so the average probability 

for all teams to have played a midweek game is approximately 30%. Using Mahalanobis-metric 
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pair matching with the propensity score metric, for teams who have played midweek games, 

their goal difference decreases by -0.001 on average with a 95% confidence interval of (-0.003, 

0.005). Despite matching the exogenous variables there are no statistically significant effects 

of playing midweek games on team performance. Table 16 displays the success at matching 

the exogenous variables. 

Figure 4 demonstrates further why this is not a great setting for matching. We find that the 

propensity score, or the likelihood for teams to play midweek games is very different between 

teams which do and do not midweek games in our dataset. There are almost no examples of 

teams which do not play midweek games that have a propensity score of 0.6 or above, 

demonstrating this imbalance. This reinforces the conclusion that it is not possible to match 

teams on most of our exogenous variables. 

Table 15 - Logistic Regression of Midweek game probability 

Midweek Coef. Standard Error t-statistic 
lnTeamXI 0.265 0.150 0.076 
lnOppXI -0.041 0.155 0.790 
Adv 0.170 0.353 0.629 
SharpProp 0.393 0.199 0.048 
CohProp 0.569 0.286 0.047 
lnDist 0.379 0.051 0.461 
lnDistOpp -0.019 0.052 0.722 
lnDistLast 0.025 0.015 0.102 
lnDistOppLast 0.020 0.015 0.180 
MidweekOpp 2.429 0.086 0.000 
ChangedSquad 0.146 0.023 0.000 
ChangedOpp -0.154 0.024 0.000 
lnTPIChange 0.004 0.051 0.934 
lnTIPChangeOpp -0.059 0.053 0.271 
OneWeek 2.826 0.092 0.000 
TwoWeek 0.181 0.078 0.021 
ThreeWeek 0.037 0.079 0.637 
FourWeek 0.036 0.053 0.500 
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 Table 16 - M
atching of exogenous variables 

 
U

nm
atched 

M
ean 

M
atched 

M
ean 

%
 

bias 
t-test U

nm
atched 

t-test 
M

atched 
V

ariable 
Treated 

C
ontrol 

Treated 
C

ontrol 
U

nm
atched 

M
atched 

t 
p >|t| 

t 
p >|t| 

lnTeam
X

I 
17.927 

17.706 
17.927 

17.985 
29.5 

-7.8 
12.36 

0.000 
-2.72 

0.007 
lnO

ppX
I 

17.762 
17.770 

17.762 
17.699 

-1.1 
8.6 

-0.48 
0.635 

3.05 
0.002 

A
dv 

0.493 
0.496 

0.493 
0.484 

-0.6 
1.9 

-0.26 
0.792 

0.65 
0.513 

SharpProp 
1.012 

1.034 
1.012 

0.969 
-8.3 

16.6 
-3.40 

0.001 
6.35 

0.000 
C

ohProp 
1.027 

1.006 
1.027 

1.058 
11.5 

-17.6 
4.82 

0.000 
-5.59 

0.000 
lnD

ist 
2.484 

2.452 
2.484 

2.565 
1.2 

-3.2 
0.52 

0.604 
-1.12 

0.264 
lnD

istO
pp 

2.388 
2.416 

2.388 
2.317 

-1.1 
2.8 

-0.46 
0.645 

0.98 
0.325 

lnD
istLast 

2.616 
2.379 

2.616 
2.420 

8.8 
7.2 

3.72 
0.000 

2.56 
0.011 

lnD
istLastO

pp 
2.556 

2.389 
2.556 

2.467 
6.3 

3.4 
2.64 

0.008 
1.19 

0.233 
M

idw
eekO

pp 
0.595 

0.159 
0.595 

0.203 
100.7 

90.5 
44.46 

0.000 
30.69 

0.000 
C

hangedSquad 
2.715 

1.886 
2.715 

2.780 
41.8 

-4.3 
18.94 

0.000 
-1.34 

0.180 
C

hangedO
pp 

2.273 
2.078 

2.273 
1.755 

10.5 
27.7 

4.50 
0.000 

9.85 
0.000 

lnTPIC
hanged 

0.023 
-0.010 

0.023 
0.013 

4.7 
1.7 

1.92 
0.055 

0.63 
0.531 

lnTPIC
hangedO

pp 
0.013 

0.146 
0.013 

0.245 
-0.3 

-32.2 
-0.12 

0.906 
-9.16 

0.000 
O

neW
eek 

1.650 
0.752 

1.650 
1.952 

169.7 
-57.0 

68.11 
0.000 

-15.80 
0.000 

Tw
oW

eek 
2.836 

1.845 
2.836 

2.992 
116.8 

-18.3 
47.54 

0.000 
-6.69 

0.000 
ThreeW

eek 
3.897 

2.932 
3879 

4.215 
85.4 

-28.1 
34.89 

0.000 
-10.15 

0.000 
FourW

eek 
4.994 

4.013 
4.994 

5.356 
69.3 

-25.6 
28.16 

0.000 
-9.75 

0.000 
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Figure 4 - Histogram of propensity scores 

 

5.3 ANALYSIS OF ECONOMIC SIGNIFICANCE 
 

In the previous section we did not find evidence of a statistically significant effect that a 

reduction in rest time reduces team performance in the context of English Premier League 

scheduling, but the coefficients were of the right sign and potentially economically significant. 

To examine this further, we hold all coefficients constant in the Relative Rest model and allow 

the total rest days for one team to fluctuate. Figure 5 displays how this fluctuation affects the 

predicted average goal difference for the team. We find that if this effect were to exist it would 

only increase the predicted average goal difference by 0.05, or about 1 goal in 20 games when 

changing from a least rested to fully rested team. This makes us confident that even if we were 

unable to capture the true effect of rest times in our model, the impact of this effect would be 

negligible.   
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Figure 5 - Effect of rest days on goal difference 

 

6. CONCLUSION 
 

Players’ physical condition is an essential factor towards a team’s success hence well rested 

players should be able to contribute more towards overall team performance. We use data from 

the English Premier League to estimate the effects of rest times and the distances travelled 

between soccer matches, expanding on previous research that observed the relationship 

between aggregate player spending and success in soccer.  
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We can estimate the rest periods of players by calculating the number of days between games 

but we also want to take account of additional factors. Team sharpness (the number of 

consecutive games for players) and team cohesion (familiarity with teammates) are by-products 

of how much rest and rotation a team experiences. The effect of playing midweek games on 

weekend performance is also explored. The distance travelled for each game assesses the 

impact of team travel on performance. 

We find that under current scheduling in domestic and European competition there are no 

statistically significant effects of receiving different days of rest on team performance within 

the English Premier League. A team with increased match sharpness experiences an 

improvement in results. We show that despite concern in the power of our tests, if a midweek 

effect did exist it would likely account for 1 goal in 20 games. For policy implications, 

scheduling is not the problem it is often made out to be by managers and the media. Manager 

complaints are driven by cognitive biases and convenience. If a team loses on the weekend 

after playing a midweek game a manager might complain that his players are tired but these 

excuses rarely appear if the team wins. Premier League teams win 39.6% and lose 34.7% of 

games played within three days of their last while they win 35.5% and lose 37.1% otherwise. 

 

That is not to say that being tired does not matter. Players train all the time and it may well be 

that they are just as tired while training. It is often reported that players prefer playing games 

to training and so the chance to play another game instead of train is would be preferable. Extra 

games would simply change the type of exercise a player would perform on those given days 

but there is no statistically significant evidence to suggest that this change is to the detriment 

of team performance. 
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7. APPENDIX B 
 

In Section 5 we conduct an econometric analysis of rest times on team performance while 

controlling for other variables that could determine team performance. Several specifications 

are considered using both a parametric linear model and an ordered logit model. For the linear 

model we use Goal Difference as the dependent variable. The variable Goal Difference is 

positive if Team A scores more than Team B and is negative if they score less. For the ordered 

logit model we use Game Result as the dependent variable. Soccer games can have one of three 

results: a home win, home loss or a draw.  

Table 17 reports the results of the Relative Rest Model estimates using all Premier 

League games. Columns (1)-(3) contain OLS estimates of the linear model and columns (4)-

(6) estimates with the ordered logit model. The team and opponent financial variables 

lnTeamXI and lnOppXI are both statistically significant, opposite and equivalent supporting 

previous literature on pay and performance. Home advantage is positive and not statistically 

significant. The distance variables lnDist and lnDistOpp are both statistically significant, 

opposite and equivalent. This again supports the literature that home advantage is tied into the 

distance that teams travel to play games. SharpProp is positive and statistically significant 

showing that teams with better more match sharpness perform better. CohProp is negative and 

not statistically significant. There is no evidence to support that teams that play together more 

often perform better but the coefficient is of the correct sign. lnDistLast and lnDistLastOpp are 

of the correct sign but statistically insignificant suggesting that only distance travelled for the 

previous game matters and not further lagged games.  None of the R1 to R5 variables are 

significant but have varying signs for coefficients. This is also true when including the H1 and 

H2 variables. The TRP variable has a positive coefficient while the TORP variable has a 

negative coefficient. Both variables are statistically insignificant. 
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Table 18 reports the results of the Midweek Effect Model estimates using weekend Premier 

League games only. Columns (1)-(5) contain OLS estimates of the linear model and columns 

(6)-(10) estimates with the ordered logit model. The variables not associated with rest are 

identical in interpretation to those in Table 16. The coefficient of the Midweek variable is 

negative and statistically insignificant. By contrast the MidweekOpp variable has a positive 

coefficient. The Midweek variables corresponding to competition types are statistically 

insignificant. The ChangedSquad coefficient is negative and statistically insignificant while 

the ChangedOpp coefficient is positive. The lnTPIChange coefficient is negative and 

statistically insignificant while the lnTPIChangeOpp coefficient is positive. The OneWeek and 

TwoWeek coefficients are positive and statistically insignificant while the ThreeWeek and 

FourWeek coefficients are negative. All interaction coefficients are statistically insignificant. 

 

Table 19 reports the results of the Weekend Effect Model estimates using midweek games only. 

Columns (1)-(4) contain OLS estimates of the linear model and columns (5)-(8) estimates with 

the ordered logit model. The variables not associated with rest are identical in interpretation to 

those in Table 16 and Table 17. The coefficient of the WkndMid variable is positive and 

statistically insignificant. By contrast the WkndMidOpp variable has a negative coefficient. The 

ChangedSquad coefficient is negative and statistically insignificant while the ChangedOpp 

coefficient is positive. The lnTPIChange coefficient is negative and statistically insignificant 

while the lnTPIChangeOpp coefficient is positive. The OneWeek, TwoWeek, ThreeWeek and 

FourWeek coefficients are statistically insignificant. 
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Table 17 - Relative rest periods on team performance 

 (1) (2) (3) (4) (5) (6) 

lnTeamXI 
0.2638 

(0.0744)
*** 

0.2567 
(0.0745)**

* 

0.2662 
(0.0744)**

* 

0.3379 
(0.0951)**

* 

0.3251 
(0.0952)**

* 

0.3234 
(0.0679)**

* 

lnOppXI 
-0.2616 
(0.0744)

*** 

-0.2654 
(0.0745)**

* 

-0.2624 
(0.0744)**

* 

-0.3161 
(0.0951)**

* 

-0.3254 
(0.0952)**

* 

-0.3313 
(0.0676)**

* 

Adv 0.1208 
(0.1689) 

0.1225 
(0.1689) 

0.1236 
(0.1689) 

0.1068 
(0.2134) 

0.1078 
(0.2134) 

0.1124 
(0.213) 

SharpProp 
0.1751 

(0.0765)
* 

0.1815 
(0.0772)* 

0.1789 
(0.0767)* 

0.3284 
(0.118)** 

0.3285 
(0.1176)** 

0.327 
(0.1171)** 

CohProp -0.212 
(0.127) 

-0.2075 
(0.1273) 

-0.2162 
(0.127) 

-0.2238 
(0.1698) 

-0.2256 
(0.1697) 

-0.235 
(0.1685) 

lnDist 
-0.0733 
(0.0247)

** 

-0.0724 
(0.0247)** 

-0.072 
(0.0247)** 

-0.0902 
(0.0312)** 

-0.0925 
(0.0313)** 

-0.0925 
(0.0311)** 

lnDistOpp 
0.0715 

(0.0247)
** 

0.0721 
(0.0247)** 

0.0722 
(0.0247)** 

0.0937 
(0.0312)** 

0.0915 
(0.0312)** 

0.0904 
(0.0312)** 

lnDistLast -0.0004 
(0.0073) 

-0.0003 
(0.0073) 

-0.0006 
(0.0073) 

-0.0034 
(0.0093) 

-0.0027 
(0.0093) 

-0.0034 
(0.0093) 

lnDistLast-
Opp 

0.0004 
(0.0073) 

0.0002 
(0.0073) 

0.0001 
(0.0073) 

0.0031 
(0.0093) 

0.0035 
(0.0093) 

0.0031 
(0.0093) 

R1 -0.0054 
(0.0628)   -0.0337 

(0.0799)   

R2 0.0255 
(0.0483)   0.0321 

(0.0613)   

R4 -0.0267 
(0.0485)   -0.0272 

(0.0615)   

R5 0.006 
(0.0633)   0.0344 

(0.0805)   

H1R1  0.0011 
(0.088)   -0.0512 

(0.1127)  
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H1R2  -0.0172 
(0.0603)   -0.021 

(0.0763)  

H1R4  0.0231 
(0.0605)   0.0148 

(0.0765)  

H1R5  0.0005 
(0.089)   0.0564 

(0.1142)  

H2R1  -0.0059 
(0.0804)   -0.0136 

(0.1019)  

H2R2  0.081 
(0.0646)   0.0881 

(0.0822)  

H2R4  -0.08 
(0.0649)   -0.0835 

(0.0826)  

H2R5  0.0153 
(0.0809)   0.02 

(0.1024)  

TRP   0.0004 
(0.0013)   0.0013 

(0.0017) 

TORP   -0.0004 
(0.0013)   -0.0013 

(0.0017) 

Observati-
ons 8226 8226 8226 8226 8226 8226 

AIC 31013.2 31016.5 31011.1 16578.8 16583.8 16576.2 

 

Table 18 - Midweek game effect on weekend team performance 

 (1) (2) (3) (4) (5) 

lnTeamXI 
0.2996 

(0.0874)**
* 

0.2792 
(0.0859)*

* 

0.2807 
(0.0858)** 

0.2775 
(0.0858)** 

0.2805 
(0.0859)*

* 

lnOppXI 
-0.3002 

(0.0875)**
* 

-0.2765 
(0.0858)*

* 

-0.2767 
(0.086)** 

-0.2829 
(0.0858)**

* 

-0.2811 
(0.0858)*

* 

Adv 0.2136 
(0.1991) 

0.2069 
(0.1991) 

0.2128 
(0.1991) 

0.2122 
(0.199) 

0.2092 
(0.199) 
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SharpProp 0.3291 
(0.1009)** 

0.2964 
(0.1038)*

* 

0.3368 
(0.1012)**

* 

0.3223 
(0.1011)** 

0.3263 
(0.101)** 

CohProp -0.0223 
(0.152) 

0.0175 
(0.1554) 

-0.0281 
(0.1521) 

-0.0331 
(0.152) 

-0.0238 
(0.152) 

lnDist -0.0643 
(0.0291)* 

-0.0655 
(0.029)* 

-0.0648 
(0.0291)* 

-0.0666 
(0.0291)* 

-0.0648 
(0.0291)* 

lnDistOpp 0.0646 
(0.0291)* 

0.064 
(0.0292)* 

0.0641 
(0.0291)* 

0.0623 
(0.0291)* 

0.0646 
(0.0291)* 

lnDistLast 0.0005 
(0.0083) 

0.0012 
(0.0083) 0 (0.0083) 0.0007 

(0.0083) 
-0.0002 
(0.0083) 

lnDistLastOpp -0.0004 
(0.0083) 

-0.0003 
(0.0083) 

0.0003 
(0.0083) 

0.0003 
(0.0083) 

-0.0008 
(0.0083) 

Midweek -0.0181 
(0.0466) 

-0.0237 
(0.0704)   -0.0172 

(0.0466) 

MidweekOpp 0.0143 
(0.0466) 

0.0227 
(0.0705)   0.0171 

(0.0466) 

MidEuro   0.1243 
(0.101)   

MidCup   0.0612 
(0.0752)   

MidLeague   -0.0549 
(0.0692)   

OppEuro   -0.1197 
(0.1009)   

OppCup   -0.0626 
(0.0752)   

OppLeague   0.0545 
(0.0692)   

ChangedSquad  -0.0186 
(0.0197)    

ChangedOpp  0.0162 
(0.0199)    

Midweek:ChangedSqu-
ad  1.2308 

(1.0838)    
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MidweekOpp:Changed
-Opp  0.6608 

(0.8744)    

lnTPIChange -0.0306 
(0.0363)     

lnTPIChangeOpp 0.0294 
(0.0364)     

Midweek:lnTPIChange 1.216 
(1.0787)     

MidweekOpp:lnTPICh
a-ngeOpp 

0.5993 
(0.8736)     

OneWeek    0.0035 
(0.0419)  

TwoWeek    0.0108 
(0.0434)  

ThreeWeek    -0.0107 
(0.0436)  

FourWeek    -0.0009 
(0.0287)  

Observations 6397 6397 6397 6397 6397 

AIC 24380.1 24379.5 24378.2 24376.0 24375.7 

 
 
 

 (6) (7) (8) (9) (10) 

lnTeamXI 
0.4037 

(0.1108)*
** 

0.374 
(0.1086)*

** 

0.3708 
(0.1085)*

** 

0.3776 
(0.1085)*

** 

0.3808 
(0.1086)*

** 

lnOppXI 
-0.3938 

(0.1107)*
** 

-0.3698 
(0.1085)*

** 

-0.3808 
(0.1087)*

** 

-0.3774 
(0.1085)*

** 

-0.3726 
(0.1084)*

** 

Adv 0.3025 
(0.2512) 

0.2979 
(0.2513) 

0.3002 
(0.2513) 

0.2996 
(0.2511) 

0.3016 
(0.2512) 

SharpProp 
0.4211 

(0.1355)*
* 

0.373 
(0.1381)*

* 

0.4297 
(0.137)** 

0.4033 
(0.1347)*

* 

0.4088 
(0.1349)*

* 



77 
 

CohProp -0.1421 
(0.1941) 

-0.1205 
(0.1973) 

-0.1568 
(0.1947) 

-0.1718 
(0.1937) 

-0.1583 
(0.1937) 

lnDist -0.0747 
(0.0366)* 

-0.073 
(0.0367)* 

-0.0756 
(0.0367)* 

-0.0741 
(0.0367)* 

-0.0726 
(0.0367)* 

lnDistOpp 0.0738 
(0.0367)* 

0.0752 
(0.0367)* 

0.0734 
(0.0367)* 

0.0745 
(0.0367)* 

0.0756 
(0.0367)* 

lnDistLast -0.0026 
(0.0104) 

-0.0011 
(0.0105) 

-0.003 
(0.0105) 

-0.0018 
(0.0105) 

-0.0022 
(0.0104) 

lnDistLastOpp 0.0009 
(0.0104) 

0.0009 
(0.0105) 

0.0022 
(0.0105) 

0.0023 
(0.0105) 

0.0014 
(0.0104) 

Midweek -0.0507 
(0.0587) 

-0.0311 
(0.0881)   -0.0545 

(0.0587) 

MidweekOpp 0.0546 
(0.0587) 

0.023 
(0.0882)   0.0544 

(0.0587) 

MidEuro   0.1593 
(0.1314)   

MidCup   0.012 
(0.0949)   

MidLeague   -0.0804 
(0.087)   

OppEuro   -0.1534 
(0.1315)   

OppCup   -0.0152 
(0.0948)   

OppLeague   0.0769 
(0.0869)   

ChangedSquad  -0.0149 
(0.0248)    

ChangedOpp  0.0111 
(0.025)    

Midweek:ChangedSq-
uad  -0.0049 

(0.0302)    

MidweekOpp:Changed
Opp  0.0088 

(0.0303)    
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lnTPIChange -0.0336 
(0.0455)     

lnTPIChangeOpp 0.0324 
(0.0455)     

Midweek:lnTPIChange -0.0144 
(0.0745)     

MidweekOpp:lnTPIC-
hangeOpp 

0.0126 
(0.0745)     

OneWeek    -0.0061 
(0.0525)  

TwoWeek    0.0159 
(0.0542)  

ThreeWeek    -0.0158 
(0.0549)  

FourWeek    0.0018 
(0.036)  

Observations 6397 6397 6397 6397 6397 

AIC 12994.2 12996.7 12996.4 12994.5 12990.8 

 

Table 19 - Weekend game effect on midweek team performance 

 (1) (2) (3) (4) 

lnTeamXI 0.1462 
(0.2322) 

0.1003 
(0.2372) 

0.1397 
(0.233) 

0.1499 
(0.2323) 

lnOppXI -0.1362 
(0.2324) 

-0.1287 
(0.2374) 

-0.1267 
(0.2328) 

-0.1273 
(0.2326) 

Adv -0.5103 
(0.4716) 

-0.4884 
(0.4728) 

-0.5031 
(0.4721) 

-0.5185 
(0.4714) 

SharpProp 0.1777 
(0.2569) 

0.164 
(0.2572) 

0.1236 
(0.2671) 

0.1725 
(0.2594) 

CohProp -0.5389 
(0.4121) 

-0.569 
(0.4126) 

-0.4611 
(0.4282) 

-0.5565 
(0.4145) 

lnDist -0.1663 
(0.0715)* 

-0.1601 
(0.0716)* 

-0.1625 
(0.0714)* 

-0.1646 
(0.0713)* 
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lnDistOpp 0.1652 
(0.0713)* 

0.1664 
(0.0716)* 

0.1662 
(0.0716)* 

0.1681 
(0.0711)* 

lnDistLast -0.0098 
(0.0251) 

-0.0097 
(0.0251) 

-0.0095 
(0.0251) 

-0.009 
(0.0251) 

lnDistLastOpp 0.0076 
(0.0251) 

0.0084 
(0.0251) 

0.0065 
(0.0251) 

0.0085 
(0.0251) 

WkndMid 0.1437 
(0.1741) 

0.1498 
(0.1745) 

0.1068 
(0.2346)  

WkndMidOpp -0.1356 
(0.174) 

-0.1483 
(0.1745) 

-0.0773 
(0.2347)  

lnTPIChange  -0.0287 
(0.1376)   

lnTPIChangeOpp  0.0325 
(0.1373)   

WkndMid:lnTPIChange  0.0846 
(0.1625)   

WkndMidOpp:lnTPIChangeOpp  -0.1008 
(0.1625)   

ChangedSquad   -0.0341 
(0.0613)  

ChangedOpp   0.0431 
(0.0614)  

WkndMid:ChangedSquad   0.0183 
(0.0718)  

WkndMidOpp:ChangedSquad   -0.0296 
(0.0719)  

OneWeek    0.0143 
(0.1131) 

TwoWeek    -0.0019 
(0.1188) 

ThreeWeek    -0.0262 
(0.1206) 

FourWeek    0.0307 
(0.0732) 

Observations 1829 1829 1829 1829 
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AIC 3932.7 3936.7 3939.1 3935.5 

 
 
 
 
 

 (5) (6) (7) (8) 

lnTeamXI 0.2119 
(0.1641) 

0.183  
(0.1679) 

0.2106 
(0.1646) 

0.1922 
(0.1647) 

lnOppXI -0.2036 
(0.1643) 

-0.1831 
(0.1676) 

-0.2025 
(0.1644) 

-0.2184 
(0.1643) 

Adv -0.1745 
(0.3455) 

-0.155 
(0.3462) 

-0.1701 
(0.346) 

-0.1657 
(0.3461) 

SharpProp 0.0304 
(0.1574) 

0.0367 
(0.1494) 

0.0088 
(0.1654) 

0.0245 
(0.1547) 

CohProp -0.607 
(0.2842)* 

-0.5903 
(0.2812)* 

-0.5688 
(0.2966) 

-0.6139 
(0.2834)* 

lnDist -0.1008 
(0.0517) 

-0.0973 
(0.0518) 

-0.0982 
(0.0517) 

-0.0996 
(0.0517) 

lnDistOpp 0.0993 
(0.0517) 

0.0994 
(0.0518) 

0.1009 
(0.0519) 

0.0982 
(0.0519) 

lnDistLast -0.0048 
(0.0179) 

-0.0041 
(0.018) 

-0.0044 
(0.018) 

-0.0036 
(0.018) 

lnDistLastOpp 0.0034 
(0.0179) 

0.0049  
(0.018) 

0.0036 
(0.018) 

0.004   
(0.018) 

WkndMid 0.1408 
(0.1252) 

0.1415 
(0.1254) 

0.1069 
(0.1673) 

0.1348 
(0.1428) 

WkndMidOpp -0.1421 
(0.1252) 

-0.1407 
(0.1254) 

-0.105 
(0.1675) 

-0.1456 
(0.1257) 

lnTPIChange  0.0086 
(0.0994)   

lnTPIChangeOpp  -0.0106 
(0.0993)   

WkndMid:lnTPIChange  0.654  
(1.9556)   
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WkndMidOpp:lnTPIChangeOpp  0.7888 
(1.7209)   

ChangedSquad   -0.0216 
(0.0429)  

ChangedOpp   0.0228 
(0.043)  

WkndMid:ChangedSquad   0.7729 
(1.947)  

WkndMidOpp:ChangedSquad     

OneWeek    -0.0206 
(0.0952) 

TwoWeek    0.0455 
(0.0864) 

ThreeWeek    -0.0691 
(0.087) 

FourWeek    0.0442 
(0.0529) 

Observations 1829 1829 1829 1829 

AIC 6952.4 6955.4 6956.2 6956.1 
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CHAPTER IV 
 

INDIVIDUAL PLAYER CONTRIBUTIONS IN EUROPEAN SOCCER 

 

 

 

 

ABSTRACT 

 

This paper looks at applying new techniques to predict match outcomes in professional soccer. 

To achieve this models are used which measure the individual contributions of soccer players 

within their team. Using data from the top 25 European soccer leagues, the individual 

contribution of players is measured using high dimensional fixed effects models. Nine years of 

results are used to produce player, team and manager estimates. A further year of results is used 

to check for predictive accuracy. Since this has useful applications in player scouting the paper 

will also look at how well the models rank players. The findings show an average prediction 

rate of 45% with all methods showing similar rankings for player productivity. While the model 

highlights the most productive players there is a bias towards players who produce and prevent 

goals directly. This results in more attackers and defenders ranking highly than midfield 

players. There is potential for these techniques to be used in the betting market as most models 

almost as well as betting firms. 
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1. INTRODUCTION 
 

This paper focuses on producing models with a high prediction rate in professional soccer. The 

main challenge is to produce accurate estimations of player ability, a problem analogous to 

research on worker productivity. The study of worker productivity is of great value to 

businesses in almost every industry. Hiring the best workers will improve the overall 

performance of business and increase profit. It is of great importance for firms to be able to 

screen potential employees efficiently to determine their value. Often it is difficult to assess 

the individual contributions of workers when their productivity is unobserved from previous 

firms or they are part of a team. For that reason, European soccer is a suitable industry since 

worker productivity is observed. Twenty-five top flight leagues are considered so that players 

can be tracked as they move between different teams. High dimensional fixed effect models 

are used to determine the productivity of individual players. 

The models yield on average a 45% prediction rate with the different methods producing very 

similar player rankings. While wins and losses are predicted well the models struggle with 

predicting games which end in draws. Compared to betting firms all models perform 

reasonably with some able to outperform the betting firms for a few leagues. The highest ranked 

players in the models have often won the most prestigious soccer tournaments and play for the 

best teams. While the model highlights the most productive players there is a bias towards 

players who produce and prevent goals directly. This results in more attackers and defenders 

ranking highly than midfield players.  

The paper sets out as follows. Section 2 contains a review of the relevant literature, section 3 

presents the theory and section 4 the data. Section 5 shows the predictions and estimations 

while section 6 contains concluding remarks. 
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2. LITERATURE REVIEW 
 

Previous work on player estimation ability can be found in team and player efficiency literature. 

The first methodology to relate team output to team input measures was established by Scully 

(1974) in his study of US baseball. Some research attempts to estimate production functions 

with a focus on performance at the game level over one or multiple seasons. Zak et al. (1979) 

estimate a Cobb-Douglas production function in basketball, identifying specific play variables 

which contribute towards team output. Scott et al. (1985) use a similar approach but an entire 

season rather than individual games is used as the unit of observation. Zech (1981) uses the 

Richmond technique to estimate the potential output of basketball teams. Schofield (1988) 

estimated production functions for English country cricket to develop strategies on and off the 

field. Carmichael and Thomas (1995) examine team performance over a season in rugby league 

by also including team characteristics as well as play variables. Ruggiero et al. (1996) use panel 

data to estimate the efficiency of baseball teams. Hoeffler and Payne (1997) use a stochastic 

production frontier model to provide efficiency measures for NBA teams. Carmichael et al 

(2000) adopt a range of specific play variables and characteristics to estimate a linear 

production function for the English Premier League.  Hadley et al. (2000) use a Poisson 

regression model to estimate the performance of teams in the NFL.  

Other literature looks at also estimating the productivity of team management. Pfeffer and 

Davis-Blake (1986) look at manager performance and how succession affects subsequent 

performance. Khan (1993) estimates managerial quality using salary regressions, finding that 

higher-quality managers lead to higher winning percentages. Dawson et al. (2000) find that 

coaching performance should be measured in terms of the available playing talent rather than 

purely on match outcomes. Frick and Simmons (2008) use a stochastic frontier analysis to 

estimate coach quality, finding that a team hiring a better coach can reduce technical 

inefficiency and improve league standing. Gerrard (2005) uses data on the English Premier 
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League to estimate a production function for coaches. Bridgewater et al. (2011) use frontier 

production functions to estimate managerial ability. Bell et al. (2013) use a fixed effects model 

with a bootstrapping approach to estimate the performance of English Premier League 

managers. Del Corral et al. (2015) estimate the efficiency of basketball coaches using a 

stochastic production function. Muehlheusser et al. (2016) investigate the effects of managers 

on team performance in the German Bundesliga by estimating a manager ability distribution.    

High dimensional regression techniques are used for the analysis in this paper. Sparse 

estimators like the Lasso (Tibshirani 1996) and some extensions (Zou 2006, Meinshausen 

2007) are particularly popular because they perform well on high-dimensional data and 

produce interpretable results. While these methods perform well there is not a consensus on a 

statistically valid method of calculating standard errors for the lasso predictions. Osborne et al. 

(2000) derive an estimate for the covariance matrix of lasso estimators. Although these yield 

positive standard errors for coefficients estimates, the distribution of coefficient estimates will 

have a concentration at probability zero and may be far from normally distributed. Tibshirani 

(1996) suggested an alternative method for computing standard errors: the bootstrap. Knight 

and Fu (2000) argue that the bootstrap has problems estimating the sampling distribution of 

bridge estimators when parameter values are close to or exactly zero. Kyung et al. (2010) also 

claim that the bootstrap does not allow valid standard errors to be attached to values of the 

lasso which are shrunk to zero. In addition they propose a Bayesian Lasso which can be used 

to produce valid standard errors. Lockhart et al. (2014) propose a significance test for the lasso 

based on the fitted values called the covariance test statistic.  

Due to the ongoing debate and uncertainty about the validity of high dimensional standard 

errors the R packages used for the analysis in this paper do not implement standard errors and 

as such will not be reported in the model results. 
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3. THEORY 
 

The purpose of this paper is to develop a model which estimates the contributions of individual 

soccer players. In order to estimate player coefficients we need to use a framework which is 

flexible for a large number of model parameters, since the dataset contains 33,297 individual 

players, 1,990 individual managers, and 711 individual teams.  The method used will be fixed 

effects estimators similar to Abowd, Kramarz, and Margolis (1999) which allows for a flexible 

control of inputs. In professional soccer teams are often rotated within a season and players 

move to different teams regularly so this condition holds. Using such a large dataset will allow 

the model to identify how players contribute to team results individually by estimating how 

their impact on team performance within different lineups and across different leagues. 

Naturally the problem of collinearity can arise with such a large number of parameters which 

is why different approaches to estimating the fixed effects model will be included. 

Before defining the models it is important to consider other research which estimates 

performance in sporting contests. Scully (1974) produced an econometric study in Major 

League Baseball looking at pay versus performance. Tullock (1980) developed a production 

function where the probability of success is a function of relative resources employed. 

Szymanski and Smith (1997) adopt a similar approach for English soccer. While the dataset in 

this paper does not contain financial information, it follows a similar approach to the 

performance literature in that it relates a variety of match inputs to a measure of performance, 

in this case goal difference. 

The fixed effects model takes the following specification: 

𝑦𝑦𝑖𝑖𝑖𝑖 = 𝛼𝛼ℎ + 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑖𝑖 − 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑗𝑗 + 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑖𝑖 − 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑗𝑗 + 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑖𝑖 − 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑗𝑗 + 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝑖𝑖

− 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝑗𝑗 + 𝜀𝜀𝑖𝑖𝑖𝑖 

where 
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• 𝑦𝑦𝑖𝑖𝑖𝑖 is the goal difference of a match, relative to team i. This will be positive when team 

i wins, negative when they lose and equal to zero when the game is a draw. 

• 𝛼𝛼ℎ corresponds to the advantage acquired by being the home team. This could be a 

function of referee bias, the bias of home fans towards their team, and may be a function 

of travelling. 

• 𝑃𝑃𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑖𝑖 are the starting 11 players of Team i while 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑗𝑗 are the starting 11 

players of team j. Since the results are relative to Team i the coefficients for 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑖𝑖 

will take a positive value in the model and likewise the coefficients for 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑗𝑗 will 

take a negative value. This is achieved by modelling using contrasts so that we produce 

only one distinct variable for each player, regardless of which team he plays on.  

• 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑖𝑖 is the manager of Team i while 𝑀𝑀𝑎𝑎𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑗𝑗 is the manager of team j. Since 

the results are relative to Team i these coefficients for 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑖𝑖 will take a positive 

value in the model and likewise the coefficients for 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑗𝑗 will take a negative 

value. This is achieved again by modelling using contrasts. 

• 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑖𝑖 is the relative team in the model while 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑗𝑗 is the opposition team. Since the 

results are relative to Team i these coefficients will take a positive value in the model 

and likewise the coefficients for 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑗𝑗 will take a negative value. This is achieved 

again by modelling using contrasts. 

• 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝑖𝑖 corresponds to a league strength coefficient in the model for Team i while 

𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝑗𝑗 is the league strength coefficient for Team j. Since the results are relative to 

Team i these coefficients for 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝑖𝑖  will take a positive value in the model and 

likewise the coefficients for 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝑗𝑗 will take a negative value. This is achieved again 
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by modelling using contrasts. League strength coefficients are only included for the 25 

with the highest UEFA associations’ club coefficients rankings for 2014/15.5 

• 𝜀𝜀𝑖𝑖𝑖𝑖 is an exponential noise term which accounts for chance factors specific to a soccer 

contest. This may include weather conditions, errors by the referees or other “luck” 

based events. 

To give the model a relative interpretation, baseline variables are included for the team specific 

coefficients. Players who have not played at least 35 games over in the data period correspond 

to the baseline for players. Managers are also treated in a similar fashion. Teams which are not 

included in the 25 leagues are the baseline for teams. This corresponds to teams in European 

competition out with these leagues. Finally the baseline variable for leagues corresponds to all 

other leagues outside of the 25 in the data. This gives a reasonable interpretation for player 

contributions as being above a “replacement” level player.  

Given the large number of fixed effect coefficients in the model sparse matrices will need to 

be used to improve the computational efficiency. These will be created by using the Matrix6 

package in R. In order to run a regression using a sparse matrix in R the glmnet7 package will 

also be used. This presents a series of computationally efficient regularization algorithms that 

can be used to produce the estimates. These algorithms are standard for research with big data. 

The three regularizations methods used are LASSO, Ridge Regression and Elastic-net.  

The main difference between LASSO and Ridge regression is the specified penalty term. Ridge 

regression uses a sum of squares penalty to produce proportional shrinking while LASSO 

produces shrinkage towards zero using an absolute value penalty. This means that LASSO does 

a sparse selection while Ridge regression does not. For highly correlate variables Ridge 

                                                            
5 http://www.uefa.com/memberassociations/uefarankings/country/season=2015/index.html 
6 https://cran.r-project.org/web/packages/Matrix/index.html 
7 https://cran.r-project.org/web/packages/glmnet/index.html 
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regression shrinks the two coefficients towards one another while LASSO generally picks one 

over the other, setting the other to zero. This means that Ridge regression penalizes the larger 

coefficients more than the smaller ones whereas LASSO produces a more uniform penalty. 

Elastic-net is a mix of the two methods, adopting a compromise of the two penalty terms. Ridge 

regression will be preferable as it does not shrink any coefficients to zero, giving a clear player 

ranking output, however all three methods be used to produce estimates. A rank order 

correlation test will then be used to compare the methods. Even though there may be differences 

in the rank order between methods they should all closely correlate with each other. This will 

show that we can be happy with the Ridge regression results over the other methods since they 

are all similar regardless. 

4. DATA 
 

This research makes use of a database of player lineups from various European soccer 

competitions. The database contains 25 top tier leagues which have almost 10 years of lineups, 

running from 2006/07 to 2015/16. The included leagues represent the 25 with the highest 

UEFA associations’ club coefficients rankings for 2014/15. Also included are lineups for the 

group and knockout stages of The UEFA Champions League and UEFA Europa League (and 

previous incarnations) over this 10-year period. In total this contributes 133,536 unique lineups 

over 66,768 individual games. Team managers are included with every lineup along with the 

game result. 

Table 20 presents a breakdown of the database. Listed in the table are the number of unique 

players, teams and managers appearing in each league. Also listed are the number of unique 

teams who appear in European competitions. The total number of games and lineups in the data 

are also listed but this is not fully complete as the source data from footballdatabase.eu is 
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incomplete. The sample sizes are large enough across all leagues to make this small amount of 

missing data negligible. 

The high dimensional analysis relies on the movement of players within teams and leagues to 

produce accurate estimates. Table 21 presents information on player movements. It contains 

how many times a player has transferred, how many unique teams and competitions they appear 

in, as well as how long they have appeared in the data. We can see that although many players 

to move between teams on multiple occasions although over half of the players do not. This 

suggests that there may be some collinearity issues between specific groups of players who 

stay on one team. The players who do move should be able to obtain accurate estimates of their 

ability. 
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Table 20 - Lineup Breakdown 

Competition Unique 
Players 

Unique 
Managers 

Unique 
Teams 

Intercontinental 
Teams 

Total 
Games 

Total 
Lineups 

Austria 933 65 17 4 1794 3588 
Belarus 983 58 25 2 1654 3308 
Belgium 1629 91 27 7 2779 5558 
Croatia 1243 82 22 3 1850 3700 
Cyprus 1398 92 22 5 1546 3092 
Czech Rep 1330 64 27 5 2399 4798 
Denmark 1008 48 18 6 1978 3956 
England 1688 114 37 17 3800 7600 
France 1725 103 38 14 3800 7600 
Germany 1499 107 33 15 3060 6120 
Greece 1944 139 32 8 2504 5008 
Israel 1238 77 23 4 2318 4636 
Italy 1744 112 36 14 3800 7600 
Netherlands 1513 96 25 9 3060 6120 
Norway 980 49 24 4 1680 3360 
Poland 1584 122 28 3 2567 5134 
Portugal 1840 101 30 12 2532 5064 
Romania 2010 163 45 9 3021 6042 
Russia 1441 112 28 9 2512 5024 
Scotland 1267 63 18 3 2280 4560 
Spain 1813 128 35 17 3800 7600 
Sweden 1141 48 24 4 2103 4206 
Switzerland 989 78 16 8 1782 3564 
Turkey 1733 113 34 5 3026 6052 
Ukraine 1282 64 25 7 2017 4034 
European 6827 461 215 N/A 3106 6212 
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Table 21 - Player movement summary 

Count Players 
transferring to 
another team8  

Players 
appeared on 
unique teams9 

Players 
appeared in 
unique 
competition10 

Years in the 
data11 

1 14186 14186 17752 9015 
2 5842 6220 4592 4753 
3 3238 3360 2141 3284 
4 1670 1596 1155 2522 
5 870 683 508 2014 
6 364 252 196 1663 
7 153 82 49 1187 
8 61 26 9 1048 
9 20 1 5 921 
10 2 1 0 0 
11 1 0 0 0 
Total 26407 26407 26407 26407 

 

5. RESULTS 
 

5.1 PREDICTIONS 
 

This section focuses on the predictive accuracy of the models tested on the 2015/16 season. 

Once the validity of the models is tested then we can look in more detail at the coefficients 

from the estimations. Estimations are based on training data consisting of the 9 seasons from 

2006/07 – 2014/15. For making predictions players will be given their coefficient value 

estimated from the training data. New players appearing only in the final year will be given the 

player baseline coefficient value. Figure 6 contains 6 graphs presenting a visual representation 

of predictive accuracy from the perspective of the home team. The top row of plots show 

predicted vs observed goal difference for the 2015/16 season using each of the three methods. 

There is not much difference between each method and they are all able to predict more goals 

                                                            
8 Players moving from a current club to a new club. 
9 The number of unique clubs a player has played for. 
10 The number of leagues and European competitions a player has competed in. 
11 How many of the ten seasons a player has played a game in. 
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when more are observed. There is a high degree of variability observed for each goal difference 

bin showing the difficulty in capturing the scale of victory for individual games. Since the 

predicted goal difference is on a continuous scale the likelihood of predicting zero for goal 

difference is effectively null. To predict draws more accurately a sensitivity parameter is 

created from the training data which best captures the distribution of results. This parameter is 

then used for the test data to convert the predicted goal difference into wins, losses and draws. 

From the perspective of home teams in the training data, 46.2% of games are won, 28.1% of 

games are lost and 25.7% are drawn. The sensitivity parameter mirrors this distribution for 

estimated goal difference and by applying it to the test data can create the bins for results. These 

results are shown in the boxplots in the bottom row. There is little difference between the 

regularization methods though we find that games predicted as wins have a higher observed 

mean goal difference. Those predicted a loss have a lower observed mean goal difference 

however this is close to the observed mean goal difference for games predicted as a draw. The 

next step is to check the accuracy of the game predictions 

Tables 22, 23 and 24 contain contingency matrixes for the predicted results. This will indicate 

how well the models perform at predicting each specific result. We find that all models predict 

wins and losses with reasonable accuracy, predicting around 57% and 42% of these cases 

correctly. The models struggle at predicting draws, where around 26% of cases are predicted 

correctly. This is not uncommon for any soccer predictive model as draws are more uncommon 

than wins or losses in the data. We find that the Lasso and Elastic Net models have almost 

identical predictive accuracy, so the Elastic Net model prefers variable selection over the 

penalty term from the Ridge regression 

Table 25 displays this overall predictive accuracy. This is broken down for individual leagues 

as well as the complete data set. The predictive accuracy ranges from between 34% to 60% 

depending on the league but around 45% overall. There appears to be no link between the 
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overall quality of the league and the predictive rate (the correlation between them is 0.28 for 

Ridge, 0.11 for Lasso and 0.12 for Elastic Net) however it could reflect the balance between 

teams within the league. Further analysis can be found in the appendix. Overall this prediction 

rate is consistent with the literature for models which do not update during the season. 

 

Figure 6 - Observed Goal Difference/Result vs. Predicted Goal Difference 
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Table 22 - Ridge Regression 2015/16 Contingency Matrix 

Ridge  Observed Draw Observed Loss Observed Win Row Total 

Predicted Draw 475 
26.8% 

557 
26.9% 

752 
24.6% 1784 

Predicted Loss 540 
30.4% 

877 
42.4% 

566 
18.5% 1983 

Predicted Win 760 
42.8% 

635 
30.7% 

1744 
57.0% 3139 

Column Total 1775 
25.7% 

2069 
30.0% 

3062 
44.3% 6906 

 

Table 23 - Lasso 2015/16 Contingency Matrix 

Lasso Observed Draw Observed Loss Observed Win Row Total 

Predicted Draw 452 
25.5% 

554 
26.8% 

692 
22.6% 1698 

Predicted Loss 553 
31.2% 

864 
41.8% 

593 
19.4% 2010 

Predicted Win 770 
43.4% 

651 
31.5% 

1777 
58.0% 3198 

Column Total 1775 
25.7% 

2069 
30.0% 

3062 
44.3% 6906 

 

Table 24 - Elastic Net 2015/16 Contingency Matrix 

Lasso Observed Draw Observed Loss Observed Win Row Total 

Predicted Draw 451 
25.4% 

553 
26.7% 

696 
22.7% 1700 

Predicted Loss 552 
31.1% 

866 
41.9% 

592 
19.3% 2010 

Predicted Win 772 
43.5% 

650 
31.4% 

1774 
57.9% 3196 

Column Total 1775 
25.7% 

2069 
30.0% 

3062 
44.3% 6906 
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Table 25 - Prediction accuracy for 2015/16 

Competitions Ridge Lasso Elastic Net 
All (mean) 44.8% 44.8% 44.8% 
Austria 42.2% 41.7% 41.7% 
Belarus 40.7% 42.9% 43.4% 
Belgium 45.2% 44.8% 44.1% 
Croatia 44.4% 48.9% 48.9% 
Cyprus 50.2% 53.9% 53.9% 
Czech Republic 45.4% 47.5% 47.9% 
Denmark 48.2% 49.7% 49.2% 
England 42.1% 45.3% 45.3% 
France 44.7% 41.8% 41.1% 
Germany 43.8% 41.5% 41.5% 
Greece 44.8% 50.2% 50.2% 
Israel 44.6% 43.8% 43.8% 
Italy 50.5% 47.9% 47.6% 
Netherlands 44.1% 44.8% 44.8% 
Norway 45.8% 43.3% 43.3% 
Poland 35.8% 38.2% 37.8% 
Portugal 46.4% 49.3% 49.3% 
Romania 35.4% 34.3% 34.3% 
Russia 41.7% 42.9% 43.3% 
Scotland 37.7% 35.1% 36.0% 
Spain 49.7% 47.9% 48.2% 
Sweden 42.5% 37.9% 37.9% 
Switzerland 46.1% 43.9% 43.9% 
Turkey 47.2% 44.3% 43.9% 
Ukraine 59.9% 56.4% 57.0% 
Europe 46.7% 48.5% 48.5% 
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5.2 BETTING ANALYSIS 
 

Pre-match betting odds are the best available predictor of match results. We take betting 

odds supplied by seven firms and calculate the percentage profit and loss achieved by 

betting £1 on games in 2015/2016 using our predicted results. Tables 26, 27, and 28 present 

these results. Betting odds are taken from archives online12. We find that our models on 

average perform almost as well as the betting firms with mostly small losses occurring. In 

some leagues, the models perform better than the betting firms. The Ridge regression 

performs well in the Italian and Turkish league while the Lasso and Elastic Net models 

perform well in England, Greece and Portugal. Since overall predictive performance is 

almost as good as with the betting firms we can be confident that we can find meaningful 

conclusions from our estimations on player contributions. 

Table 26 - Ridge Regression against betting odds 

Ridge Bet365 Bet&W
-in 

Interwetten Ladbrokes Pinnacle William 
Hill 

VC 
Bet 

Belgium -11.7% -11.2% -12.0% -11.3% -8.7% -4.2% -10.9% 
England -6.6% -9.4% -10.9% -8.7% -6.4% 0.2% -6.7% 
France -1.0% -1.4% -2.6% -2.5% 0.8% -7.6% -0.2% 
Germany -9.3% -9.9% -9.8% -10.4% -6.9% -18.5% -8.0% 
Greece -12.4% -12.9% -15.1% -12.6% -9.1% 11.6% -3.5% 
Italy 3.1% 2.9% 1.6% 2.0% 5.4% -5.6% 3.4% 
Netherla-
nds 

-5.4% -6.3% -8.1% -5.0% -1.6% -7.4% -2.9% 

Portugal -2.4% -2.5% -4.0% -2.2% 1.5% 2.9% -0.5% 
Scotland -15.9% -19.0% -18.9% -15.7% -14.3% -22.1% -12.5% 
Spain -2.4% -3.3% -3.9% -3.1% 0.2% -8.3% -0.3% 
Turkey 3.7% 3.7% -0.7% 3.1% 8.7% -7.8% 5.3% 

 

 

                                                            
12 Betting odds taken from http://www.football-data.co.uk/. 
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Table 27 - Lasso against betting odds 

Lasso Bet365 Bet&W
-in 

Interwetten Ladbrokes Pinnacle William 
Hill 

VC 
Bet 

Belgium -3.5% -3.4% -4.6% -3.4% 0.2% -4.2% -2.4% 
England 2.0% -1.3% -3.2% -0.5% 2.3% 0.2% 2.2% 
France -7.2% -7.5% -8.4% -8.6% -5.4% -7.6% -6.3% 
Germany -18.0% -18.6% -17.8% -18.9% -16.1% -18.5% -17.0% 
Greece 3.4% 2.6% -0.1% 2.9% 10.0% 11.6% 13.1% 
Italy -5.7% -5.8% -6.6% -6.6% -3.6% -5.6% -5.3% 
Netherla-
nds 

-6.6% -7.3% -10.1% -6.3% -3.2% -7.4% -4.5% 

Portugal 3.6% 3.5% 2.0% 3.8% 7.5% 2.9% 5.5% 
Scotland -24.5% -27.1% -26.9% -24.3% -21.9% -22.1% -21.6% 
Spain -8.1% -8.9% -9.4% -8.8% -5.8% -8.3% -6.3% 
Turkey -7.4% -7.3% -11.4% -7.5% -3.3% -7.8% -6.0% 

 

Table 28 - Elastic Net against betting odds 

Elastic 
Net 

Bet365 Bet&W
-in 

Interwetten Ladbrokes Pinnacle William 
Hill 

VC 
Bet 

Belgium -8.3% -8.1% -8.9% -8.0% -4.7% -8.7% -7.2% 
England 2.0% -1.3% -3.2% -0.5% 2.3% 0.2% 2.2% 
France -9.5% -9.8% -10.8% -10.9% -7.7% -9.9% -8.6% 
Germany -18.0% -18.6% -17.8% -18.9% -16.1% -18.5% -17.0% 
Greece 3.4% 2.6% -0.1% 2.9% 10.0% 11.6% 13.1% 
Italy -6.6% -6.6% -7.5% -7.4% -4.5% -6.4% -6.2% 
Netherla-
nds 

-6.6% -7.3% -10.1% -6.3% -3.2% -7.4% -4.5% 

Portugal 3.6% 3.5% 2.0% 3.8% 7.5% 2.9% 5.5% 
Scotland -21.3% -24.2% -24.0% -21.2% -18.6% -19.1% -18.3% 
Spain -7.3% -8.1% -8.5% -8.0% -4.9% -7.5% -5.4% 
Turkey -8.3% -8.2% -12.2% -8.4% -4.2% -8.6% -6.9% 

 

5.3 ESTIMATIONS 
 

This section presents player ability estimations for the individual contributions model. 

Estimations for manager, team and leagues coefficients will be included in the appendix. For 

this analysis the first 9 years of data are used to produce the estimates. This means that the 
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coefficients are reflective of player contributions going into the 2015/16 season. Two ways of 

interpreting the coefficients are presented as follows: 

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑖𝑖 = 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝚤̂𝚤        (1) 

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑖𝑖 = 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑒𝑒𝑒𝑒𝚤̂𝚤 + 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝚤̂𝚤 + 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝚤̂𝚤       (2) 

The identification of player coefficients can be thought of in layers. As mentioned in the theory 

section the model controls for a player’s teammates, team, league, manager and team home 

advantage. For specification (1) the player coefficient alone accounts for the extra value unique 

to a player above and beyond these controls, examined in isolation. This picks up the way a 

player is outlying within all his typical playing conditions. Specification (2) adds in the 

coefficients for the player’s most recent team and league to level out the playing conditions for 

players and give an unbiased ranking of player abilities. 

Table 29 represents the 25 largest player coefficients from the 11,584 players who have played 

at least 35 games in this 9 year period using specification (2). This specification produces a 

weighting that reduces the impact of dominant players in weaker leagues and increase the 

impact of weaker players in stronger leagues. The rankings list contains many world famous 

players who have won the UEFA Champions League, many league titles and even international 

honours. Lionel Messi and Cristiano Rolando, who have won 9 Ballon d’Ors (an award given 

to the best soccer player in a calendar year) between them rank very highly. Almost every 

player on the list has played in the top five ranked soccer leagues (see appendix) and the UEFA 

Champions League.  While these models pick out world class players, the order in rankings 

will not match the perception from soccer fans, since the variable selection and penalty terms 

penalize players with high collinearity. This can often be found in the top sides who amass the 

best lineups and don’t often rotate them. Since the model measures goal difference a high 

premium is placed on players who both score and prevent goals. The rankings contain many 
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strikers and defenders but not so many midfielders. For example Xavi and Andrés Iniesta have 

performed very well with Barcelona for the duration of the data set but since Lionel Messi 

scores most of the goals the models select him to have a higher coefficient when collinearity 

occurs. 
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Table 29 - Combined Coefficients Model Results (Players) 

Model Ridge Lasso Elastic Net 
Rank Name Coef Name Coef Name Coef 

1 Gabriel 
Paulista 1.494 Gabriel 

Paulista 2.120 Gabriel 
Paulista 2.232 

2 Iván de la 
Peña 1.205 Nabil Fekir 2.104 Nabil Fekir 2.085 

3 Jon Flanagan 1.197 Frank 
Lampard 2.001 Frank 

Lampard 1.982 

4 Nabil Fekir 1.182 Cristiano 
Ronaldo 1.959 Cristiano 

Ronaldo 1.950 

5 Cristiano 
Ronaldo 1.177 N'Golo Kanté 1.882 N'Golo Kanté 1.866 

6 Asier 
Illarramendi 1.173 Willy Sagnol 1.830 Willy Sagnol 1.818 

7 Chechu 
Dorado 1.160 Chechu 

Dorado 1.818 Chechu 
Dorado 1.806 

8 Carles Puyol 1.135 Fernandinho 1.789 Fernandinho 1.770 
9 Dani Carvajal 1.103 David Albelda 1.774 David Albelda 1.762 

10 Rubén de la 
Red 1.102 Arjen Robben 1.745 Per 

Mertesacker 1.752 

11 Leroy George 1.095 Dani Carvajal 1.739 Arjen Robben 1.734 
12 Keylor Navas 1.093 Fernando 1.734 Dani Carvajal 1.730 

13 Lionel Messi 1.092 Asier 
Illarramendi 1.731 Asier 

Illarramendi 1.725 

14 Nicola Pozzi 1.091 Wilfried Bony 1.718 Fernando 1.717 

15 Frank 
Lampard 1.089 Mario Götze 1.711 Mario Götze 1.700 

16 David 
Beckham 1.072 Franck Ribéry 1.708 Wilfried Bony 1.700 

17 Wes Morgan 1.067 Iván de la 
Peña 1.698 Franck Ribéry 1.697 

18 Per 
Mertesacker 1.051 Jô 1.693 Iván de la 

Peña 1.687 

19 Toby 
Alderweireld 1.044 Sergio Agüero 1.686 Jô 1.675 

20 Mario Cotelo 1.043 Martín 
Demichelis 1.684 Mehdi Benatia 1.671 

21 Willy Sagnol 1.041 Sergi Darder 1.682 Sergi Darder 1.671 

22 David 
Albelda 1.030 Mehdi Benatia 1.680 Sergio Agüero 1.670 

23 Javier 
Saviola 1.029 Toby 

Alderweireld 1.671 Martín 
Demichelis 1.666 

24 Vicente 
Iborra 1.018 Paco Peña 1.664 Toby 

Alderweireld 1.658 

25 Sergi Darder 1.018 Gaël Clichy 1.662 Keylor Navas 1.650 
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Table 30 - Player Coefficients Model Results 

Model Ridge Lasso Elastic Net 
Rank Name Coef Name Coef Name Coef 

1 Shota 
Arveladze 0.953 Shota 

Arveladze 1.268 Shota 
Arveladze 1.266 

2 Gabriel 
Paulista 0.939 Gabriel 

Paulista 1.247 Gabriel 
Paulista 1.243 

3 Kenneth 
Omeruo 0.881 Thomas 

Grogaard 1.184 Thomas 
Grogaard 1.169 

4 Geert-Arend 
Roorda 0.834 Kenneth 

Omeruo 1.056 Kenneth 
Omeruo 1.050 

5 Alexander 0.827 Jan Dolezal 1.028 Jan Dolezal 1.026 
6 Toni Doblas 0.805 Martin Milec 1.018 Martin Milec 1.01 
7 Niko Kovac 0.789 N'Golo Kanté 1.011 N'Golo Kanté 1.007 

8 Mateusz 
Piatkowski 0.787 Toni Doblas 1.000 Toni Doblas 0.997 

9 Wim 
Raymaekers 0.778 Ralf Pedersen 0.999 Ralf Pedersen 0.994 

10 Emiliano 
Dudar 0.773 Kostadin 

Bashov 0.982 Kostadin 
Bashov 0.975 

11 Joan Tomás 0.768 Niko Kovac 0.976 Niko Kovac 0.974 
12 Hezi Dilmoni 0.765 Alexander 0.974 Alexander 0.971 
13 Jan Dolezal 0.759 Hezi Dilmoni 0.965 Hezi Dilmoni 0.963 

14 Tobias 
Linderoth 0.740 Emiliano 

Dudar 0.959 Emiliano 
Dudar 0.957 

15 Mathias Abel 0.738 Wim 
Raymaekers 0.952 Wim 

Raymaekers 0.950 

16 Ralf Pedersen 0.712 Slobodan 
Markovic 0.950 Slobodan 

Markovic 0.947 

17 Johan Lind 0.709 Paul McGinn 0.948 Paul McGinn 0.943 

18 Terence 
Kongolo 0.707 Terence 

Kongolo 0.944 Terence 
Kongolo 0.942 

19 Antonio 
Rojas 0.701 Antonio Rojas 0.938 Antonio Rojas 0.936 

20 Hamza 
Younes 0.700 Geert-Arend 

Roorda 0.921 Geert-Arend 
Roorda 0.920 

21 Razak 
Omotoyossi 0.695 Mads Rieper 0.915 Mads Rieper 0.910 

22 Evgeniy 
Pankov 0.693 Danijel 

Madjaric 0.900 Danijel 
Madjaric 0.896 

23 Kostadin 
Bashov 0.690 Tobias 

Linderoth 0.893 Tobias 
Linderoth 0.892 

24 Danijel 
Madjaric 0.685 Mateusz 

Piatkowski 0.887 Mateusz 
Piatkowski 0.885 

25 Nabil Fekir 0.683 Slavko Bralic 0.887 Nabil Fekir 0.884 
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Table 30 represents the coefficient results from specification (1). Results are presented for each 

of the 3 regularization methods. Since this specification does not consider team and league 

ability we should expect to see players who are particularly dominant within their normal 

playing conditions. The highest ranked player for all methods is Shota Arverladze. He appeared 

in the data predominantly for Dutch size AZ Alkmaar, winning most games when he was a 

starting player and finishing high up the table. Most of these games were in the Dutch 

Eredivisie and the UEFA Cup so will not include the highest quality of opposition. This 

becomes clear as you look further down the table as many of the players listed performed very 

well in weaker leagues. That considered, many of the players listed do move onto better teams. 

For example, N’Golo Kante plays for French side Caen in the training data. He would later win 

the English Premier League with Leicester City before being transferred to Chelsea. 

While many players appear across all 3 regularization methods there are some differences. It 

is worth noting how large these differences are and whether different methods will result in a 

notably different set of rankings. Table 31 contains estimates of the Spearman’s rank-order 

correlation test. This determines the strength and direction of association between two ranked 

variables. Testing between all regularization methods produces correlation values above 0.96 

suggesting that player rankings are very close between each of the methods. For that reasons if 

a complete ranking of players was desired then Ridge Regression would be used since it does 

not perform variable shrinkage to zero. 

Table 31 - Spearman's Rank-Order Correlation 

 Ridge Lasso Elastic Net 

Ridge 1 0.960 0.961 

Lasso 0.960 1 0.999 

Elastic Net 0.961 0.999 1 
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6. CONCLUSION 
 

The study of worker productivity is important to businesses in any industry since the best 

workers will improve the overall performance of business and increase profit. Firms would like 

to be able to screen potential employees efficiently to determine their potential value. This 

paper chooses an industry in which worker productivity is observed. The setting is European 

soccer where twenty-five top flight leagues are considered so that players can be tracked as 

they move between different teams. High dimensional fixed effect models are used to 

determine the productivity of individual players. 

The models yield on average a 45% prediction rate with the different methods producing very 

similar player rankings. Some leagues are more easily to predict than others with prediction 

rates ranging between 35% and 59%. Wins and losses are predicted well though the models 

struggle predicting games which end in draws. Compared with betting firms the models predict 

almost as well and in a few leagues, outperform them. The highest ranked players in the models 

have often won the most prestigious soccer tournaments and play for the best teams. Another 

specification of player value can determine outlying players within their normally playing 

conditions which may be of use for player scouting. While the model highlights the most 

productive players there is a bias towards players who produce and prevent goals directly. This 

results in more attackers and defenders ranking highly than midfield players. Most of the 

contribution goes towards players who score goals rather than players who help produce them.  

These results have many benefits to teams, fans and business in general. Teams can track 

players at all levels who can benefit their teams. With such a large dataset, this can help make 

the scouting process more efficient. Fans will not only be able to gain insight into which players 

contribute the most towards teams but the prediction accuracy could be of benefit in the betting 

market. Businesses can use similar approaches to help screen potential new hires as a fixed 
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effects model requires limited information from other firms. Improvements to the model can 

be made by accounting for team form or by updating the model every week before matches. 

This would could allow for rolling coefficient values rather than annual updates which may 

improve overall prediction accuracy.        
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7. APPENDIX C 
 

In Section 5 a small analysis was presented concerning the correlation between predictive rate 

and league strength. Figures 7, 8 and 9 present an additional visual element of this relationship. 

All plots measure the league coefficient (as determined by Ridge regression, Lasso and Elastic 

Net) against the predictive rate for these models. Historically strong leagues such as the top 5 

in Europe sit over on the right of the plots and the weaker leagues towards the left. There 

appears to be no relationship between league strength and predictive accuracy as most leagues 

have between a 40%-50% prediction rate regardless of the model.  

 

Figure 7 - Ridge Regression 
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Figure 8 - Lasso 
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Figure 9 - Elastic Net 

 

While player contributions are the main focus of the paper, manager, team and league 

coefficients were also produced from the models. Table 32 displays the results for manager 

coefficients accounting for team and league strength. The list of managers once again contains 

famous names who have won domestic, intercontinental and international honours. Many of 

the managers are still active and at top teams to this day.  

Table 33 looks at managers who are outlying in their normal managerial conditions. While 

some famous names exist in the rankings many of the managers there are some who are not so 

familiar. For example Giorgio Contini who helped Swiss side FC Vaduz to survive in the top 
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flight for the first time with a team record total of points. Again many of the managers do not 

often face the highest quality of opposition.  

Table 34 displays the results for team coefficients accounting for league strength. In the 

rankings we see many top European sides but also interspersed with some weaker teams. These 

teams are often teams who have been recently promoted into a top league and performed better 

than expectations. Many of their players will not have individual coefficient values and so there 

is a bias towards increasing the club coefficient when they perform better than the baseline 

coefficient would suggest (which is quite often losing every game).  

Table 35 contains just the club coefficients and so should highlight teams who are outlying 

among teams they normally play. The rankings are mostly filled with teams who historically 

perform very well within their own league but don’t always perform well in European 

competition. There are some teams who perform well both in domestic and European 

competition to such a degree that they also appear on this list such as Real Madrid, Bayern 

Munich and Manchester City. 
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Table 32 - Combined Coefficients Model Results (Managers) 

Model Ridge Lasso Elastic Net 
Rank Name Coef Name Coef Name Coef 
1 Luis Enrique 1.522 A. Jonker 1.908 A. Jonker 1.905 
2 A. Jonker 1.517 J. Heynckes 1.737 J. Heynckes 1.734 
3 R. Schmidt 1.492 R. Schmidt 1.722 R. Schmidt 1.722 
4 C. Contra 1.388 J. Guardiola 1.629 J. Guardiola 1.625 
5 L. Banide 1.372 Luis Enrique 1.511 C. Ancelotti 1.513 
6 J. Lillo 1.368 C. Ancelotti 1.509 Luis Enrique 1.510 
7 J. Heynckes 1.366 M. Pellegrini 1.500 M. Pellegrini 1.492 
8 C. Ancelotti 1.363 W. Sagnol 1.456 W. Sagnol 1.456 
9 W. Sagnol 1.292 C. Contra 1.440 C. Contra 1.437 
10 G. Garitano 1.284 L. Banide 1.430 L. Banide 1.428 
11 B. Rodgers 1.278 J. Lillo 1.410 J. Lillo 1.407 
12 M. Allegri 1.260 J. Lopetegui 1.405 J. Lopetegui 1.401 
13 M. Pellegrini 1.254 E. Gerets 1.390 E. Gerets 1.385 
14 J. Guardiola 1.253 S. Eriksson 1.388 S. Eriksson 1.380 
15 E. Gerets 1.250 M. Allegri 1.323 M. Allegri 1.327 
16 M. Sarri 1.248 G. Garitano 1.298 G. Garitano 1.297 
17 G. Camolese 1.247 F. Capello 1.258 F. Capello 1.262 
18 F. Capello 1.239 J. Muñiz 1.248 J. Muñiz 1.247 
19 J. Tigana 1.234 H. Fournier 1.244 O. Hitzfeld 1.245 
20 L. Jardim 1.227 L. Jardim 1.238 L. Jardim 1.238 
21 A. Wenger 1.205 O. Hitzfeld 1.237 H. Fournier 1.234 
22 O. Hitzfeld 1.193 J. Klinsmann 1.227 J. Klinsmann 1.226 
23 H. Fournier 1.191 R. Garde 1.220 J. Tigana 1.219 
24 P. Chaparro 1.180 M. Gisdol 1.216 M. Gisdol 1.213 
25 S. Ferguson 1.179 J. Tigana 1.214 R. Garde 1.213 
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Table 33 - Manager Coefficients Model Results 

Model Ridge Lasso Elastic Net 
Rank Name Coef Name Coef Name Coef 
1 Z. Mamic 0.766 G. Contini 1.510 G. Contini 1.492 
2 D. Tholot 0.695 D. Canadi 1.039 D. Canadi 1.033 
3 A. Bigon 0.626 L. Smerud 1.017 D. Tholot 1.012 
4 G. Contini 0.606 D. Tholot 1.017 L. Smerud 0.997 
5 R. Schmidt 0.594 M. Kek 0.990 M. Kek 0.976 

6 Augusto 
Inácio 0.588 R. Schmidt 0.956 R. Schmidt 0.946 

7 W. Fornalik 0.583 A. Bigon 0.936 A. Bigon 0.933 
8 C. Adriaanse 0.557 W. Fornalik 0.929 W. Fornalik 0.923 

9 A. Jonker 0.556 Augusto 
Inácio 0.792 Augusto 

Inácio 0.787 

10 A. Benado 0.551 A. Axén 0.762 A. Axén 0.758 
11 M. Jansen 0.548 A. Hütter 0.752 A. Hütter 0.747 
12 I. Petev 0.534 A. Benado 0.701 A. Benado 0.698 
13 D. Canadi 0.508 A. Jonker 0.681 A. Jonker 0.679 
14 A. Hütter 0.498 O. Christensen 0.661 O. Christensen 0.658 
15 A. Axén 0.498 Z. Mamic 0.632 Z. Mamic 0.647 
16 J. Lillo 0.498 Luis Enrique 0.624 Luis Enrique 0.624 
17 C. Contra 0.477 J. Kocian 0.613 J. Kocian 0.608 

18 O. 
Christensen 0.477 J. Boskamp 0.604 J. Boskamp 0.601 

19 L. Banide 0.476 E. Rasmussen 0.601 E. Rasmussen 0.599 
20 I. Stimac 0.474 H. Hamzaoglu 0.594 H. Hamzaoglu 0.593 
21 Luis Enrique 0.474 E. Levy 0.575 E. Levy 0.572 
22 J. Lopetegui 0.474 I. Petev 0.568 I. Petev 0.569 
23 N. Clausen 0.473 L. Banide 0.559 L. Banide 0.557 
24 Y. Sergen 0.468 V. Lavicka 0.555 Z. Barisic 0.553 
25 L. Smerud 0.466 Z. Barisic 0.554 C. Contra 0.551 

 

 

 

 

 

 

 

 

 

 



114 
 

 

Table 34 - Combined Coefficients Model Results (Teams) 

Model Ridge Lasso Elastic Net 
Rank Name Coef Name Coef Name Coef 

1 Leicester 1.165 Manchester 
City 1.388 Manchester 

City 1.380 

2 ESTAC 
Troyes 1.145 Real Madrid 1.258 Real Madrid 1.262 

3 Brescia 1.135 Bayern 
Munich 1.227 Bayern 

Munich 1.226 

4 Real Madrid 1.131 Lyon 1.220 Lyon 1.213 

5 Manchester 
City 1.108 Qarabag 

Agdam 1.194 Qarabag 
Agdam 1.187 

6 Novara 1.104 Fiorentina 1.161 Fiorentina 1.162 

7 Xerez 1.103 Xerez 1.146 Werder 
Bremen 1.145 

8 Hellas 
Verona 1.085 Werder 

Bremen 1.142 Xerez 1.140 

9 Eibar 1.067 Lorient 1.136 Lorient 1.137 
10 Mallorca 1.058 Juventus 1.092 Juventus 1.096 

11 FC Barcelona 1.048 Deportivo La 
Coruña 1.071 Deportivo La 

Coruña 1.071 

12 Juventus 1.043 FC Porto 1.056 FC Porto 1.049 
13 Arsenal 1.035 Hellas Verona 1.031 Hellas Verona 1.031 

14 Deportivo La 
Coruña 1.030 ESTAC 

Troyes 1.027 ESTAC 
Troyes 1.028 

15 Liverpool 1.014 Parma 1.018 Parma 1.023 
16 Fiorentina 1.003 Mallorca 1.009 Mallorca 1.009 

17 Manchester 
United 0.999 Novara 0.995 Arsenal 0.999 

18 Lorient 0.998 Brescia 0.994 Brescia 0.995 

19 Lyon 0.998 Ludogorets 
Razgrad 0.990 Novara 0.995 

20 Parma 0.997 Villarreal 0.976 Ludogorets 
Razgrad 0.983 

21 Villarreal 0.996 AS Roma 0.941 Villarreal 0.976 
22 Elche 0.992 Bordeaux 0.922 AS Roma 0.940 
23 Celta Vigo 0.983 Leicester 0.918 Bordeaux 0.928 
24 Sevilla FC 0.980 Torino 0.912 Leicester 0.919 
25 Sochaux 0.977 Eibar 0.907 Torino 0.913 

 

 

 

 

 



115 
 

 

Table 35 - Team Coefficients Model Results 

Model Ridge Lasso Elastic Net 
Rank Name Coef Name Coef Name Coef 
1 Qarabag Agdam 0.905 Dinamo Zagreb 1.588 Dinamo Zagreb 1.549 

2 Ludogorets 
Razgrad 0.717 Qarabag Agdam 1.194 Qarabag 

Agdam 1.187 

3 ASA Târgu-
Mures 0.517 Grödig 1.003 Grödig 0.994 

4 Dinamo Zagreb 0.440 Ludogorets 
Razgrad 0.990 Ludogorets 

Razgrad 0.983 

5 Istanbul 
Basaksehir 0.440 Rosenborg 0.946 Rosenborg 0.928 

6 Grödig 0.429 PSV Eindhoven 0.897 PSV Eindhoven 0.881 

7 MTZ-RIPO 
Minsk 0.381 Olympiacos 0.849 Olympiacos 0.842 

8 Pula 0.345 Panathinaikos 0.766 Panathinaikos 0.754 
9 Petrolul Ploiesti 0.331 FC Porto 0.747 FC Porto 0.740 

10 Rosenborg 0.313 ASA Târgu-
Mures 0.694 ASA Târgu-

Mures 0.689 

11 Olympiacos 0.295 MTZ-RIPO 
Minsk 0.645 MTZ-RIPO 

Minsk 0.642 

12 Leicester 0.293 Krasnodar 0.643 Krasnodar 0.635 

13 Unirea Alba-
Iulia 0.286 Istanbul 

Basaksehir 0.627 Istanbul 
Basaksehir 0.629 

14 Krasnodar 0.275 Petrolul Ploiesti 0.577 Petrolul Ploiesti 0.574 
15 ESTAC Troyes 0.274 La Gantoise 0.575 La Gantoise 0.567 

16 Brescia 0.271 Glasgow 
Rangers 0.559 Glasgow 

Rangers 0.554 

17 Gornik Leczna 0.267 FC Copenhagen 0.550 FC Copenhagen 0.545 

18 Panathinaikos 0.264 Manchester City 0.517 Manchester 
City 0.509 

19 Volendam 0.251 Bayern Munich 0.503 Bayern Munich 0.502 

20 Real Madrid 0.244 Lokomotiv 
Moscow 0.480 Lokomotiv 

Moscow 0.477 

21 Lokomotiv 
Minsk 0.242 APOEL 0.463 APOEL 0.457 

22 Olympiakos 
Volos 0.242 CFR Cluj-

Napoca 0.457 CFR Cluj-
Napoca 0.451 

23 Anorthosis 
Famagusta 0.242 Sheriff Tiraspol 0.429 Werder Bremen 0.421 

24 FC Porto 0.241 Werder Bremen 0.419 Sheriff Tiraspol 0.421 

25 Novara 0.240 Red Bull 
Salzburg 0.401 Red Bull 

Salzburg 0.402 
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Section 5 also considered overall predictive accuracy using 9 years of training data and 1 year 

of testing data. The average predictive accuracy was 44.8% for all models predicting the 

2015/2016 season. To further explore predictive accuracy the split between training and testing 

data is altered by one year. Table 36 shows the predictive accuracy from 8 years of training 

data and 2 years of testing data. While there are some individual fluctuations within leagues 

the overall predictive accuracy decreased to around 43.5%. While the accuracy is lower as 

expected not a large amount of predictive power is lost. 

Table 37 contains the results for 7 years of training data and 3 years of testing data. This is 

almost identical to Table 14 although on average produces a slightly higher prediction rate. 

Since using smaller training data results in less information about players the results suggest 

that teams who are expected to perform well stay relatively constant throughout the period. 

Even with reduced player coefficients there is not much change overall in league results. 
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Table 36 - Prediction accuracy for 2014/15 - 2015/16 

Competitions Ridge Lasso Elastic Net 
All (mean) 43.4% 43.5% 43.7% 
Austria 41.4% 41.4% 42.2% 
Belarus 40.4% 39.5% 40.4% 
Belgium 41.7% 41.1% 41.7% 
Croatia 48.2% 50.1% 50.1% 
Cyprus 45.7% 46.4% 46.2% 
Czech Republic 45.4% 43.8% 44.2% 
Denmark 41.0% 40.8% 41.5% 
England 41.6% 42.5% 42.8% 
France 43.8% 42.2% 42.9% 
Germany 45.4% 44.6% 44.0% 
Greece 42.6% 45.7% 45.7% 
Israel 44.4% 43.5% 43.5% 
Italy 47.4% 47.4% 47.1% 
Netherlands 40.2% 42.2% 42.5% 
Norway 39.0% 39.0% 39.4% 
Poland 40.7% 39.0% 39.5% 
Portugal 44.4% 44.0% 44.3% 
Romania 37.6% 40.1% 40.4% 
Russia 43.5% 44.4% 44.6% 
Scotland 38.8% 38.4% 39.3% 
Spain 48.2% 48.2% 48.9% 
Sweden 40.2% 40.0% 40.6% 
Switzerland 42.8% 41.9% 42.8% 
Turkey 41.6% 40.8% 41.4% 
Ukraine 52.7% 53.5% 51.3% 
Europe 48.0% 48.3% 47.9% 
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Table 37 - Prediction accuracy for 2013/14 - 2015/16 

Competitions Ridge Lasso Elastic Net 
All (mean) 43.3% 43.7% 43.7% 
Austria 40.2% 41.5% 41.3% 
Belarus 43.5% 43.5% 43.5% 
Belgium 40.2% 40.7% 40.6% 
Croatia 46.0% 50.8% 50.8% 
Cyprus 47.4% 48.1% 48.0% 
Czech Republic 43.5% 44.2% 44.3% 
Denmark 37.3% 38.4% 38.6% 
England 43.8% 43.7% 43.9% 
France 42.8% 43.2% 43.2% 
Germany 43.2% 44.6% 44.6% 
Greece 40.0% 43.3% 43.3% 
Israel 39.9% 37.9% 38.2% 
Italy 46.5% 47.2% 47.1% 
Netherlands 45.0% 47.2% 47.3% 
Norway 43.6% 42.9% 43.1% 
Poland 41.4% 41.4% 41.2% 
Portugal 43.5% 44.4% 44.2% 
Romania 39.8% 40.5% 40.3% 
Russia 42.8% 43.8% 43.9% 
Scotland 38.6% 38.6% 38.5% 
Spain 47.4% 46.1% 46.1% 
Sweden 42.3% 41.2% 41.0% 
Switzerland 41.1% 39.4% 39.8% 
Turkey 40.5% 40.6% 40.3% 
Ukraine 52.3% 51.8% 51.8% 
Europe 49.0% 49.4% 49.2% 
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CHAPTER V 
 

THESIS CONCLUSION 

 

1. CONCLUSION 
 

This thesis examined production functions in sport using the setting of contest theory literature. 

It focuses on the inputs of the production function, namely player productivity. The setting for 

the analyses were in European soccer with a focus on the English Premier League. This 

research is important to soccer teams (and all sport organizations) where the top teams are 

multi-billion dollar corporations and players are multi-million dollar assets. Better performance 

by players will allow teams to experience increased financial success and global prestige. 

Beyond that, the methods and techniques developed in this thesis can be used generally in the 

fields of economics and management by substituting performance variables and output 

appropriately. Sports are almost unique in that unlike other markets workers can be observed 

on a regular basis. Productivity is easily observed as each week players can be seen playing 

and their contributions to games are observed. 

Previous research has almost exclusively considered at performance on the aggregate level, 

looking at teams’ inputs and relating them to league performance, often at the season level. 

Originating with Rottenberg (1956) and Scully (1974), many techniques and approaches have 

been used to model the process relating to inputs to outputs in a variety of sports. This was first 

adopted into a contest success function by El-Hodiri and Quirk (1971) and Quirk and El-Hodiri 

(1974). Szymanski and Smith (1997) would eventually substitute money for talent in the 

contest success function show it as a driving factor behind team results. This thesis expanded 
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on the literature with a focus in breaking down the contest success function from an aggregate 

level. Finances and other input variables are therefore able to be considered on a player level 

by using high dimensional regression techniques. The main body of the thesis consists of three 

papers presented in Chapters 2-4, each looking at different inputs at the player level and how 

the relate to team performance. 

 

Chapter 2 presented the first paper: “Testing the O-Ring theory using data from the English 

Premier League”. This paper measures the impact of different workers in a production process 

depending on their expected productivity. The setting is the English Premier league where 

expected productivity is measured from the transfer fees used to acquire players. The findings 

show that the most expensive players tend to exert the largest impact on games whereas the 

least expensive players have relatively little impact. This is consistent with superstar theories 

rather than O-Ring theory. The optimal spending distribution is found to be more skewed than 

the observed distribution suggesting a constraint in the market for players. This paper adds to 

the literature labour market theory, particularly in those with very few high ability workers. It 

shows in particular that you should aim to improve on your higher ability workers rather than 

spend the money to make modest improvements on your lower ability workers.  

Chapter 3 presented the second paper: “The Impacts of Rest Periods on results in the English 

Premier League”. This paper looks at the effects of fatigue in professional soccer using data 

again from the English Premier League. Many managers and players share conflicting views 

on how much rest is required between games but there is little empirical evidence to support 

their arguments. The production function is expanded to include information on rest times and 
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distance travelled. Under current scheduling in domestic and European competition there are 

no statistically significant effects of receiving different days of rest on team performance. The 

limited variation in the amount of rest for teams can give concern about the power of the tests 

used but even if the effects were statistically significant they are found to have a negligible 

impact on team results. This paper while expanding the literature on contest success theory in 

soccer also targets a popular argument in the professional game. Managers frequently complain 

about the amount of rest time their teams experience due to playing more European or domestic 

cup games. There is a cognitive bias that when results go poorly after these games that the 

managers can use the extra game as an excuse. The paper results show that such an effect does 

not exist and that teams are generally unaffected by the fatigue additional games bring during 

a season. 

Chapter 4 presents the final paper in this thesis: “Individual player contributions in European 

Soccer”. This paper applies new techniques to predict match outcomes in professional soccer 

by estimating player contributions. Using data from the top 25 European soccer leagues, the 

individual contributions of players is measured using high dimensional fixed effects models. 

Nine years of data is used to train the model while a further year is used to check for predictive 

accuracy. The findings show an average prediction rate of 45% with all methods producing 

similar performance. The model highlights the most productive players but there is some bias 

towards identifying players who produce and prevent goals directly. This results in attackers 

and defenders being ranked more highly than midfield players. There is some potential for the 

models to be used in sports betting as they predict almost as accurately as betting firms. This 

paper is more ambitious in scope in that it directly tries to measure the abilities of a very large 

number of players. It uses high dimensional modelling techniques not often found in the 
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literature in order to rank players, managers, teams and leagues. The results suggest potential 

for such techniques to be used by teams for future player scouting in a variety of sports. 

This thesis set out to add an applied contribution to production function and contest success 

theory. It contributes by breaking down inputs in the production function at the worker level 

and by adopting some high dimensional regression techniques rarely applied to sport data. This 

empirical research can be replicated not just in sports but in the fields of economics, 

management and strategy.  

Future research can extend these results to better understand production functions in sports, 

focussing on the player level, and adopting a variety of advanced high dimensional techniques. 

Paper 1 could be extended by adopting some budget constraints which were not considered in 

the model, tightening up the optimization on player spending. This in particular refers to being 

unable to allocate players the reserve value in reality. Other approaches to play matching could 

be considered, such as taking into account the player position. Paper 2 covered a lot of ground 

when looking at the different ways to consider rest. This could be expanded by looking across 

other leagues in Europe, particularly when there were cases for such an effect existing in 

Germany found in the literature. Paper 3 has the potential for a lot of future work. We are very 

much in the early stages of such large amounts of data being modelled in soccer. In the future 

entire careers of players could be captured as opposed to just a ten year snapshot. On a smaller 

scale of just considering individual leagues, particular player attributes could be included into 

the model to see what drives some of the fixed effect player contributions. Predictive models 

could also be improved by adding in form functions and having updated rolling coefficients. 

On the whole, these suggestions would be a great asset in understanding the motivations and 

productivity of individual workers in a production process. 
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