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CHAPTER I

Introduction

In the era of Big Data, with new and emerging technologies such as the radio-frequency

identification (RFID), point-of-sale systems (POS) and face recognition systems, many firms

are able to gather a variety of data with very high frequency. Indeed, 90% of the data in

the world today has been created in the last two years alone.1 However, Big Data is not

just about Big Data, but is about how to extract useful and insightful information from

data. Acquiring data is only the first step for the firm. The second and more important

step is to effectively integrate the data through learning process (mining the data) in the

decision-making process, and to utilize the information extracted from data to improve the

efficiency of the firm’s supply chain operation.

Traditional supply chain management often assumes that the uncertainties in the sys-

tem (e.g., random demands, random capacities) are well-defined probability distributions or

stochastic processes that are known to the decision maker a priori, and the main focus is

to solve the corresponding (multi-stage) stochastic optimization model. However, in many

practical scenarios, correctly specifying the distributional information on these uncertainties

in the system is usually very hard and sometimes impossible. One of the major challenges

encountered is that the collected data is affected by the operational decisions by the deci-

sion maker, which then affect the decision maker’s understanding of the underlying system

in making new operational decisions. That is, in most data-driven optimization problems

in supply chains, the observed data and the operational decisions are inextricably linked.

Running an unthoughtful operational policy may lead to the so-called spiral-down effects,

where both the quality of data collected and operational decisions deteriorate over time.

This motivates us to ponder over how to design effective data-driven policies that can bal-

ance the trade-off between exploration (learning) and exploitation (earning) for optimizing

1Source: IBM, https://www-01.ibm.com/software/data/bigdata/what-is-big-data.html accessed
September 20, 2016.
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supply chains. It should be noted that, due to the fact that its system dynamics are usu-

ally complex and each operational decision tends to have a long-term effect on the outcome

standard online learning algorithms in general cannot be directly applied or adapted to a

supply chain system.

The primary focus of this dissertation is on multistage stochastic optimization problems

arising in the context of supply chains and inventory control, and on the design of efficient

algorithms to solve the respective models. This dissertation can be categorized into two

broad areas as follows.

First, in Chapter 2 and 3, we address two challenging stochastic inventory control models,

where the current decision has a long-term effect on future costs. We assume that the decision

maker has no demand distribution information available a priori and can only observe past

realized sales (censored demand) information to optimize the system’s performance on the

fly.

In Chapter 2, we focus on the perishable inventory system. Perishable products are

ubiquitous and an indispensable part of our society. Examples of perishable products include

meat, fruit, vegetable, dairy products, and frozen foods in the supermarket, pharmaceuticals

like drugs and vitamins, and the blood products in the blood bank. Study of stochastic

inventory systems with perishable products has long been a significant yet challenging topic

in the literature of operations management. Due to the inherent structural complexity,

finding the optimal policies is computationally intractable even for the most basic model.

Motivated by the studies in the literature showing that base-stock policies perform near-

optimal in these systems, we focus on finding the best base-stock policy. For this problem,

we develop the first nonparametric learning algorithm called the Cycle-Update Policy (CUP).

The CUP has a square-root convergence rate compared with the best base-stock policy, which

is the best possible rate in the online learning literature without further assumptions.

In Chapter 3, we consider the periodic-review inventory control problem with lost-sales

and positive lead times, which is one of the most fundamental yet notoriously difficult prob-

lems in the theory of inventory management. Even with complete information about the

demand distribution, it is well-known that the optimal policy does not possess a simple

form. From the literature, we know that the base-stock policy is asymptotically optimal for

this problem, and numerically it also performs very close to the optimal cost. For this prob-

lem, Huh et al. (2009a) developed a learning algorithm with average regret O(1/ 3
√
T ), which

is not tight since the known lower bound is O(1/
√
T ). To close the gap between the upper

bound and the lower bound of regret, we develop the Simulated Cycle-Update Policy (SCU),

which closed this gap. Through extensive numerical experiments, the SCU is consistently
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performing better than the learning algorithm in Huh et al. (2009a).

Second, in Chapter 4, we study perishable inventory systems. Different from traditional

perishable inventory literatures, we allow demands to be arbitrarily correlated and non-

stationary, which means we can capture the seasonality nature of the economy, and allow

the decision makers to effectively incorporate demand forecast, such as advance demand

information (ADI), martingale models of forecast evolution (MMFE), autoregressive moving

average (ARMA) demand models, and Markov modulated demand (MMD) process, among

others. The goal is to minimize the total expected cost, with known demand distribution. we

start by considering the base model with no lead time, no setup cost and the capacities are

assumed to be infinity. For this base model, even with i.i.d. demands, obtaining the optimal

solutions is intractable due to the well-known “curse-of-dimensionality”. For this problem,

we develop two approximation algorithms with worst-case performance guarantees. Through

comprehensive numerical experiments, we have shown that the numerical performances of

the approximation algorithms are very close to optimal.
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CHAPTER II

Nonparametric Learning Algorithms for Optimal

Base-Stock Policy in Perishable Inventory Systems

with Censored Demand

2.1 Introduction

Perishable products are undoubtedly an indispensable part of our lives. For example,

perishable products such as meat, fruit, vegetable, dairy products, and frozen foods consti-

tute the majority of supermarket sales. Moreover, virtually all pharmaceuticals belong to

the category of perishable products. Perhaps the most frequently discussed applications of

perishable inventory models are inventory control of blood products in blood banks (see, e.g.,

Prastacos (1984)). In Cooper (2001), the author considers an air cargo management problem

in commercial airlines, and shows that it is also an interesting (and surprising) example of

perishable inventory control problem.

Since as early as 1960s, the study of stochastic inventory systems with perishable products

has been a significant yet challenging topic in the literature of operations management (see

the survey articles Karaesmen et al. (2011), Nahmias (2011), and a series of more recent

works (Li et al. (2009), Deniz et al. (2010), Chen et al. (2014b), Li and Yu (2014), Chao

et al. (2015b,a), Zhang et al. (2015)). To this date, most, if not all, of the papers on stochastic

perishable inventory systems assume that the stochastic future demand processes are given

as an input to the models, and the inventory replenishment decisions are made with full

knowledge of the future demand distribution. However, in practice, the underlying demand

distribution may not be available to the firm a priori. This raises a natural and important

research question as to how to learn the underlying demand distribution while minimizing

the total expected costs on the fly.
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2.1.1 Model, Motivation, and Research Question

Consider a periodic-review stochastic inventory systems with perishable products. The

product lifetime m is known and fixed. The demands across periods t = 1, 2 . . . are denoted

by i.i.d. random variables Dt, t = 1, 2 . . .. The firm makes a replenishment decision at the

beginning of each period t, and then demand is realized and is satisfied to the maximum

extent from the on-hand inventory. We consider the class of First-In-First-Out (FIFO) issuing

policies, i.e., the oldest inventory is consumed first when demand arrives (see Karaesmen et al.

(2011)). Any demand that cannot be satisfied immediately with the on-hand inventory leads

to lost sales, while non-expired excess inventory at the end of a period is carried over to the

next period. At the end of each period, besides the typical inventory holding cost and lost

sales penalty cost, an inventory outdating cost is incurred, and that is proportional to the

amount of inventory units that reach the end of their lifetimes.

However, contrary to the classical perishable inventory literature, the underlying demand

distribution Dt is not known to the firm a priori. Instead, the firm makes ordering decisions

based on observed past sales, which is the minimum of the realized demand and the on-hand

inventory. In other words, the sales data are censored by the available inventory level, and

the firm cannot observe the lost-sales quantity. We note that joint learning and optimization

problems under censored demand information for non-perishable inventory systems have

received much attention in the research literature and are often challenging to analyze (see

Huh and Rusmevichientong (2009), Huh et al. (2009a, 2011), Besbes and Muharremoglu

(2013), Shi et al. (2015), Chen et al. (2015b) for more discussions.)

Even with complete information about the demand distribution a priori, it is well-known

that the (clairvoyant) optimal policy for perishable inventory systems does not have any

simple structure (see Nahmias (1975b) and Fries (1975)), and computing the exact optimal

policy is intractable using brute-force dynamic programming. Nandakumar and Morton

(1993) studied these systems and noted that “Since base stock policies are easier to implement

and widely used in practice, the interest quickly turned to analyzing such policies for this

problem”. Indeed, a number of authors have investigated the performance of base-stock, or

fixed critical number, policies for perishable inventory systems. For example, Cooper (2001)

commented on this stream of research that “The complexity of optimal policies, as well as the

difficulties involved in computing them, has led many authors to analyze heuristic methods

for controlling perishable inventories. One such method, proposed by Chazan and Gal (1977),

Cohen (1976), Nahmias (1976), is the fixed-critical number order policy, in which orders are

placed so that the total amount of inventory is the same at the end of each time period,
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regardless of the ages of the inventory. Computational studies by Nahmias (1976, 1977c)

and Nandakumar and Morton (1993) show that under a variety of different assumptions,

such as fixed-critical number policies can be quite good when compared with other methods,

as well as to optimal policies. In addition, these policies provide a good baseline against when

other types of policies can be compared.” Further theoretical and computational evidences

on the effectiveness of base-stock policies have been reported in Nahmias (1978), Deniz et al.

(2010) and Cooper (2001). In particular, after conducting comprehensive numerical tests,

Cooper (2001) summarized that

“... in all cases, the performance of the critical-number policies was nearly as good as

that of an optimal policy, thereby supporting the assertion that, in the absence of significant

fixed-charge order costs, critical-number policies provide a simple and effective means for

managing inventories of a perishable product”.

These studies motivate us to develop learning algorithms to find the best base-stock policies

for perishable inventory systems. Since the best base-stock policy performs very close to the

real optimal policy, we shall use the long-run average cost of the clairvoyant best base-stock

policy (had the distribution been known a priori) as our benchmark. We note that this

choice of benchmark is similar in spirit to Huh et al. (2009a), which finds the best base-stock

policy for the lost-sales inventory control problem with positive lead times (which is another

notoriously difficult problem in stochastic inventory theory).

We aim to develop a nonparametric closed-loop control policy π(St) for computing a

period-dependent base-stock level St in each period t with unknown demand distribution a

priori and censored demand information. Now, had the firm known the underlying demand

distribution a priori, there exists a clairvoyant optimal base-stock policy π(S∗). We measure

the performance of our proposed policy π(St) through the notion of regret, the difference

between the T -period average cost of running our adaptive policy π(St) and the long-run

average cost of the clairvoyant optimal base-stock policy π(S∗). The main research question

is to devise an effective nonparametric data-driven policy π(St) that drives the average regret

per period to zero with a provable (and tight) convergence rate.

2.1.2 Main Results and Contribution

The main result of this chapter is to present the first nonparametric learning algorithm

for periodic-review perishable inventory systems. As seen from our literature review, this

class of problems is fundamental in inventory theory that has challenged researchers for

decades.

Different than the conventional perishable inventory literature, we assume that the firm
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does not know the demand distribution a priori but makes adaptive ordering decision in each

period based only on the past sales (censored demand) data. Motivated by theoretical and

computational results showing that the class of base-stock policies performs near-optimal in

these systems, we focus on finding the best base-stock policy. In what follows, we summarize

our main results and contribution.

1) Algorithms. We develop a nonparametric adaptive inventory control policy, called

the cycle-update policy (CUP for short), for the perishable inventory system with lost-sales

and censored demand. Our CUP algorithm is a stochastic gradient descent type of algorithm

(see Burnetas and Smith (2000), Huh and Rusmevichientong (2009), Huh et al. (2009a), Shi

et al. (2015)). There are, however, several points of departure from the aforementioned

literature:

(a) First, as the name suggests, our CUP algorithm updates base-stock level in each cycle,

not in each period, and our updating cycles are not a priori fixed but are triggered

sequentially by lost-sales events as demand realizes over time, which is uniquely designed

for our perishable inventory system.

(b) Second, when we update base-stock level at the beginning of a cycle, computing the

(sample-path) gradient for the total costs accrued during the preceding cycle is a non-

trivial task. The difficulty is caused by the inter-dependence between the base-stock

level and the amount of outdates during a cycle. We develop a subroutine in §2.4.2

and show that it outputs the correct gradient of total costs of a cycle with respect to

the base-stock level (Proposition 2.5). The main idea underlying our subroutine is that

when we perturb the current base-stock level S by an infinitesimal amount δ, we count

how many of these additional orders δ eventually outdate within the cycle by using an

auxiliary vector (other than the inventory vector) to keep track of the remaining lifetime

of the δ additional units.

2) Performance analysis. Our main theoretical result Theorem 2.8 is that the average

regret per period of CUP converges to zero at the rate of O(1/
√
T ), and also in Theorem 2.12

that, under some additional technical condition, the rate can be improved to O(log T/T ).

These rates cannot be improved from theory of online learning (see Hazan (2015)).

Next we present the main features of our performance analysis.

(c) The common approach in regret analysis of online convex optimization is to compare the

costs in each period between the learning algorithm and the clairvoyant optimal policy.

In our setting, however, comparing costs in each period is not helpful, and we instead

7



compare cycle costs. Naively defining the cycles of the two policies in similar manner

will lead to different number of cycles and different cycle lengths for the two policies.

Hence, the cycles for the two systems have to be coupled in such a way that they can be

compared. We define the cycles, for both systems, using the successive periods stockouts

occur in the system operating under the CUP learning algorithm. Since the number of

periods in each cycle is random, we have a random number of cycles, leading to some

technical difficulties that do not exist for the standard online optimization problems.

(d) Since CUP updates base-stock levels in cycles, in the regret analysis we need to compare

and bound the total costs within a cycle between CUP and the clairvoyant optimal

policy π(S∗). However, one difficulty arises at the start of each cycle because the two

policies considered have different inventory age distributions. In particular, CUP has

zero initial inventory (due to a lost-sales event in the preceding period) and therefore all

the inventory units ordered in that period are brand new with remaining lifetime m. But

the age distribution of the optimal base-stock policy can be very different. To tackle this

difficulty, we introduce a new bridging policy, called the replacement of old inventories

(ROI for short), between CUP and the optimal base-stock policy. For each sample path,

similar to the optimal base-stock policy, the bridging policy ROI uses S∗ as its base-stock

level, but at the beginning of each cycle, ROI replaces all its inventory units (regardless

of their ages) with brand new inventory units (thus all having remaining lifetime m). We

establish in Proposition 2.9 that for each sample path, the total cost incurred by ROI

actually provides a lower bound on the total cost incurred by the optimal base-stock

policy π(S∗). The analysis of Theorem 2.8 crucially relies on this intermediate result.

(e) In general, the extension from convex case to strongly convex case is quite straightforward

(see, e.g., Huh and Rusmevichientong (2009)). However, this extension is rather non-

trivial in our model. The key reason is that we only have that the expected (not sample-

path) cycle cost function is strongly convex, and when we work with expected regret,

the number of random cycles depends on CUP, which then correlates with its random

cycle cost, and the standard argument based on Wald’s Theorem does not work. To

circumvent this technical issue, we “stretch” the time horizon from T period to the T -th

cycle of CUP, and show that the difference between the cumulative regret over T periods

and that over T -th cycle is bounded.

3) Other contribution. To establish our main result in this chapter, we first prove a

key structural result for perishable inventory systems operating under base-stock policies,

which is of independent interest. More specifically, we show in Theorem 2.1 that that the
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T -period total holding, lost-sales and outdating cost is convex in the base-stock level along

every sample path and for any T ≥ 1. Our approach is linear programming (LP) based,

which has been used in Janakiraman and Roundy (2004) for establishing a convexity result

for non-perishable inventory systems with lost-sales and positive lead times.

2.1.3 Relevant Literature

Our work is mostly closely related to the following two research streams.

Perishable inventory systems. With complete distributional information of demand,

there has been a vast body of literature devoted to the study of perishable inventory systems,

since as early as Veinott (1960), Bulinskaya (1964), and Van Zyl (1964). Subsequently, the

two landmark papers Nahmias (1975b) and Fries (1975) then, independently, studied the

optimal policy for the general lifetime problem with independent and identically distributed

(i.i.d.) demands, in a backlogging model and a lost-sales model, respectively. They showed

that the optimal ordering policy depends on both the age distribution of the current inventory

and the remaining time until the end of planning horizon. Since then this subfield of inventory

theory has taken off and grown rapidly, which attracted much attention from both academics

and practitioners. We refer interested readers to the survey articles Karaesmen et al. (2011)

and Nahmias (2011) for an overview. Most recently, Chen et al. (2014b) and Li and Yu (2014)

derived new structural properties of optimal policies using the concepts of L]-convexity and

multimodularity, respectively. In parallel, Chao et al. (2015b,a) and Zhang et al. (2015)

developed a series of approximation algorithms to compute provably near-optimal solutions

for such complex systems.

Since we primarily focus on the class of base-stock policies (or fixed critical number

policies), to put this chapter into the proper context, we mainly survey relevant papers that

studied the performance of base-stock policies in theory and computation. As base-stock

policy is easy to compute and implement, researchers quickly turned their interest to base-

stock policies. Nahmias (1975a) was perhaps the first paper to analyze the performance

of base-stock policies and showed that they are extremely effective in all instances tested

compared with two other simple policies. Cohen (1976) computed the stationary distribution

of the total stock for a two-period lifetime problem and thereby derived the optimal critical

number policy. Nahmias (1976), Chazan and Gal (1977) derived bounds on the expected

outdating cost and used it in the calculation of the critical number policy. Nahmias (1977c,

1978) extended this result to incorporate random lifetimes and fixed order (setup) costs,

respectively. The aforementioned papers all reported excellent computational results on the

performance of base-stock policies, with resulting cost less than 2% higher than the optimal
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cost in almost all instances tested. Cooper (2001) derived several bounds on the limiting

distribution of the number of outdates in a period, as well as an upper bound of the variance

of the stationary number of outdates, and used these bounds to search for the best possible

base-stock policy. His numerical results showed that base-stock policies perform within 1%

of optimality under various demand distributions. Nandakumar and Morton (1993) and

Deniz et al. (2010) also conducted computational studies on the effectiveness of base-stock

policies.

The results in this chapter differ from the above literature by not assuming any dis-

tributional information on demand a priori, and focuses a joint learning and optimization

problem for finding the best base-stock policy under censored demand information.

Nonparametric algorithms for inventory models. A number of papers have been

published on nonparametric algorithms for non-perishable inventory systems. Burnetas and

Smith (2000) developed a gradient descent type algorithm for repetitive newsvendor problem

(i.e., without inventory carryover), and they showed that the average profit converges to the

optimal one but did not establish the rate of convergence. Huh and Rusmevichientong (2009)

proposed a gradient descent based algorithm for lost-sales systems with censored demand.

Subsequently, Huh et al. (2009a) proposed an algorithm for finding the optimal base-stock

policy in lost-sales inventory systems with positive lead time. Besbes and Muharremoglu

(2013) examined the discrete demand case and showed that active exploration is needed. Huh

et al. (2011) applied the concept of Kaplan-Meier estimator to devise another data-driven

algorithm for censored demand. Recently, Shi et al. (2015) proposed algorithm for multi-

product inventory systems under a warehouse-capacity constraint with censored demand.

Chen et al. (2015a,b) proposed a nonparametric data-driven algorithm for the joint pricing

and inventory control problem with backorders and lost-sales, respectively.

Another nonparametric approach in the inventory literature is sample average approxi-

mation (SAA) (e.g., Kleywegt et al. (2002), Levi et al. (2007b, 2015)) which uses the empir-

ical distribution formed by uncensored samples drawn from the true distribution. Concave

adaptive value estimation (e.g., Godfrey and Powell (2001), Powell et al. (2004)) successively

approximates the objective cost function with a sequence of piecewise linear functions. The

bootstrap method (e.g., Bookbinder and Lordahl (1989)) estimates the newsvendor quantile

of the demand distribution. The infinitesimal perturbation approach (IPA) is a sampling-

based stochastic gradient estimation technique that has been used to solve stochastic supply

chain models (see, e.g., Glasserman (1991)). Maglaras and Eren (2015) employed maximum

entropy distributions to solve a stochastic capacity control problem. For parametric ap-

proaches in stochastic inventory systems, see, e.g., Lariviere and Porteus (1999) and Chen
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and Plambeck (2008) on Bayesian learning, and Liyanage and Shanthikumar (2005) and Chu

et al. (2008) on operational statistics.

The results in this chapter contribute to the literature by developing the first nonparamet-

ric learning algorithm for finding the optimal base-stock policy in periodic-review perishable

inventory systems with censored demand. The work closest to ours is perhaps Huh et al.

(2009a) on non-perishable inventory system with lost-sales and positive lead time, and the

authors proposed a learning algorithm for finding the optimal base-stock policy. However,

the two inventory systems are significantly different, and the algorithms developed in these

papers are based on different approaches. Hence, both our algorithms and results are signif-

icantly different from theirs.

2.1.4 Structure and General Notation

The rest of this chapter is organized as follows. In §2.2, we formally describe the periodic-

review perishable inventory systems with lost-sales and censored demand, and also the class

of base-stock policies. In §2.3, we establish an important structural result by showing that

the T -period total cost is convex in the base-stock level along every sample path for any

T ≥ 1. In §2.4, we introduce the cycle-update policy (CUP) in §2.4.1-§2.4.2 and conduct a

numerical study §2.4.3. In §2.5, we carry out a performance analysis of CUP and establish

a regret bound. In §2.6, we consider the strongly convex extension of our model and obtain

an improved rate of convergence under some mild technical conditions. In §2.7, we conclude

this chapter by summarize the results in this chapter.

Throughout this chapter, we often distinguish between a random variable and its real-

izations using capital and lower-case letters, respectively. For any real numbers x and y, we

denote x+ = max{x, 0}, x ∨ y = max{x, y}, and x ∧ y = min{x, y}. The indicator function

1(A) takes value 1 if A is true and 0 otherwise, and “ , ” stands for “defined as”. We use

LHS and RHS as abbreviations for “left-hand side” and “right-hand side”, respectively. The

projection function is defined as P[a,b](x) = min [b,max(x, a)] for any real numbers x, a, b.

2.2 Perishable Inventory Systems with Censored Demand

We formally describe the stochastic periodic-review perishable inventory system with

censored demand. The product lifetime m is known and fixed, i.e., items perish after staying

in inventory for m periods if not consumed. Let t ∈ {1, 2, . . .} represent the time period,

which is indexed forward. For each period t, we denote the demand in period t by a contin-

uous random variable Dt. We assume that Dt, t = 1, . . . , T , are i.i.d. across time period t.
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Contrary to the classical formulation, the firm has no prior knowledge about the true under-

lying demand distribution a priori, but can observe past sales data (i.e., censored demand

data), and make adaptive inventory decisions based on the available information.

2.2.1 System Dynamics and Objectives

For perishable inventory systems, any inventory unit that stays in the system for m

periods without meeting the demand expires and exits the system. Thus, we use a state

vector xt to keep track of the inventory age information at the beginning of any period t

(before ordering), i.e.,

xt = (xt,1, . . . , xt,m−1),

where for i = 1, . . . ,m − 1, xt,i is the on-hand inventory level of product whose remaining

lifetime is no more than i periods. It is clear that xt,m−1 is the total on-hand inventory level

in period t. For notational convenience, we use xt,m = xt,m−1 +qt to denote the total on-hand

inventory level (after ordering qt amount of new inventory units) in period t, which is in fact

our control variable.

For any FIFO issuance policy π, the sequence of events in each period t, t = 1, 2, . . . , is

as follows. (Note that qπt ,x
π
t , o

π
t all depend on π; for brevity, we shall make the dependency

implicit.)

(a) At the beginning of each period t, the firm observes the starting inventory vector xt.

(b) The firm makes a replenishment decision qt ≥ 0 in period t, and the replenishment order

arrives instantaneously. (Note that the zero lead time assumption is predominant in

perishable inventory literature, see e.g., Nahmias (2011) and Karaesmen et al. (2011)).

The total on-hand inventory level (after receiving the order qt) is xt,m = xt,m−1 + qt.

(c) Then the random demand Dt is realized (denote its realization by dt) and satisfied to the

maximum extent by FIFO issuing policy, i.e., the oldest inventory meets demand first.

Under censored demand information, the firm does not observe the realized demand dt

but observes the sales quantity min(dt, xt,m) only.

(d) At the end of the period, all the outstanding inventories incur a unit holding cost h

and all the unsatisfied demands are lost with a unit lost-sales penalty cost p. Note that

the lost-sales cost is unobservable in the event of stockout, due to demand censoring.

Finally, all the inventories that have stayed in the system for m periods expire with

unit outdating cost θ. Following the convention by Nahmias (1975b), we assume the
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inventory units that perish at the end of this period also incur a holding cost. As a

result, the period t cost, Cπ
t , is

Cπ
t (ω) = h(xt,m − dt)+ + p(dt − xt,m)+ + θot, (2.1)

where ot = (xt,1−dt)+ is the outdating inventory, and the number of lost-sales in period t

is (dt − xt,m)+, which is unobservable due to demand censoring. We will assume, without

loss of generality, that the unit purchasing cost is zero (see a detailed cost transformation

in Chao et al. (2015b)).

(e) At last, the system proceeds to period t+ 1 with xt+1 given by

xt+1,j = (xt,j+1 − dt − ot)+ =
(
xt,j+1 − dt − (xt,1 − dt)+)+ , for 1 ≤ j ≤ m− 1.(2.2)

The objective is to find a replenishment policy that only utilizes past sales data to

minimize the long-run average cost.

2.2.2 The Class of Base-Stock Policies

Even with complete information about the demand distribution a priori, it is well-known

that the (clairvoyant) optimal policy for perishable inventory systems is extremely com-

plicated (see Karaesmen et al. (2011), Nahmias (2011)), and computing the exact optimal

policy is intractable using brute-force dynamic programming. However, it has been shown

in the literature that the class of base-stock policies has near-optimal computational perfor-

mance (see Cooper (2001) and the detailed discussion in §4.1). Hence, in this chapter, we

focus our attention to find the best base-stock policy. Recall that under a base-stock policy

of level S, the total inventory level at the beginning of each period is always raised to S, i.e.,

for any period t we have qt = (S − xt,m−1)+. We assume that the system is initially empty,

i.e., x1 = 0.

Without any prior knowledge about the demand distribution, an admissible or feasible

base-stock policy π(St) is represented by a sequence of period-dependent order-up-to levels,

{St, t ≥ 1} with St ≥ xt,m−1, where St depends only on the sales and decisions made prior to

time t, i.e, St is adapted to the filtration generated by {Ss,min {Ss, Ds} : s = 1, . . . , t− 1}
under censored demand. Restricting to this class of policies, we wish to develop a nonpara-

metric adaptive inventory control policy π(St) so that its average cost per period converges
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to that of the (clairvoyant) optimal base-stock policy, i.e.,

lim sup
T→∞

1

T
E

[
T∑
t=1

C
π(St)
t

]
= inf

S

{
lim sup
T→∞

1

T
E

[
T∑
t=1

C
π(S)
t

]}
, (2.3)

where our adaptive policy π(St) on the LHS of (2.3) is constructed under unknown demand

distribution a priori and censored demand information while the optimal base-stock policy

π(S∗) on the RHS of (2.3) is constructed under known demand distribution a priori. We

will also find the rate at which the average cost of policy π(St) converges to that of the

(clairvoyant) policy.

2.3 Convexity for Base-Stock Policies

We first analyze the perishable inventory system operating under a base-stock policy.

A natural and important question is whether the total expected cost from period 1 to T is

convex in the base-stock level S for any T ≥ 1. The answer is affirmative and we shall provide

an LP-based proof in this section. This LP-based technique has been used in Janakiraman

and Roundy (2004) to prove the convexity of total cost in the base-stock level in a non-

perishable inventory system with lost-sales and positive lead times.

Theorem 2.1. For the perishable inventory systems operating under a base-stock policy

π(S), for any realization of demand ω = (d1, d2, . . .), the T -period total costs incurred by

π(S) is convex in S for any T ≥ 1.

Proof. We shall prove a stronger result that, the total holding cost, the total lost-sales

cost, and the total outdating cost are all convex in S. The total holding and lost-sales

costs from period 1 to T , when running a base-stock policy π(S), are h
∑T

t=1(S − dt)+ and

p
∑T

t=1(dt − S)+, respectively, and they are clearly convex in S. In the following, we prove

that the total outdating cost is also convex in S.

First, we observe that under the base-stock policy π(S) and zero replenishment lead time,

the amount of outdating inventory units in any period for the lost-sales model is identical to

that for the backlogging model. This holds for any realization of demand process. We can

then turn to the backlogging counterpart model for the remainder of this proof.

The backlogging perishable inventory system also starts with zero inventory, i.e., x1,i = 0

for all i = 1, . . . ,m−1. Under the base-stock policy π(S), the on-hand inventory level (after

ordering) is xt,m = S for all t = 1, . . . , T . For any given d1, . . . , dT−1, we construct a linear
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program LP(S) as follows:

min
{q,x}

T∑
t=1

qt (2.4)

subject to x1,i = 0, i = 1, . . . ,m− 1, (2.5)

xt,m = S, t = 1, . . . , T, (2.6)

xt+1,i−1 = xt,i − qt+1, t = 1, . . . , T − 1, i = 2, . . . ,m, (2.7)

qt+1 ≥ dt, t = 1, . . . , T − 1, (2.8)

qt+1 ≥ xt,1, t = 1, . . . , T − 1. (2.9)

The decision variables are q = (qt)t=1,...,T , and x = (xt,i)t=1,...,T,i=1,...,m. For notational

convenience, we denote the feasible region (2.5–2.9) by Γ(S).

We claim that, the unique feasible solution to Γ(S) and the system of equations

qt = max(dt−1, xt−1,1), t = 2, . . . , T (2.10)

is an optimal solution to LP(S). Note that Γ(S) and (2.10) completely describe the evolution

of a backlogging perishable inventory system operating under an order-up-to-S policy. Since

for any feasible solution (q,x) to LP(S), x is completely and uniquely determined by q using

(2.6) and (2.7), we will focus on q in the remainder of the proof (while leaving x implicit).

To prove the claim above, we first argue that for any given d1, . . . , dT−1, there is a unique

solution q̂ that satisfies Γ(S) and (2.10). Combining (2.6) and (2.7) from Γ(S), we have

x̂t,1 = S − q̂t−m+2 − q̂t−m+3 − · · · − q̂t, t = 2, . . . , T. (2.11)

It is clear that q̂1 = S by (2.5) and (2.6). By (2.10), q̂2 = max(d1, x̂1,1) = max(d1, 0) = d1,

which is unique. For t = 3, . . . , T , q̂t = max(dt−1, x̂t−1,1) which is determined using only

q̂2, . . . , q̂t−1 due to (2.11). Hence, the solution q̂ = (q̂1, . . . , q̂T ) can be sequentially and

uniquely determined.

We proceed to prove that q̂ is also optimal by constructing this solution from an arbitrary

optimal solution q0 in T−2 steps. (It is clear that LP(S) is bounded below by zero so optimal

solutions must exist.) For notational convenience, we denote the solution after step k by

qk (while keeping its corresponding xk implicit). In each step k = 1, . . . , T − 2, we keep qk

feasible without changing its objective value. We shall argue that qT−2 = q̂, which has the

desired property (2.10).
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In the first step, we set q1 = q0 and carry out the following operation. If q0
2 =

max(d1, x
0
1,1), then we simply do nothing. Otherwise, if q0

2 > max(d1, x
0
1,1), then we de-

crease q1
2 such that q1

2 = max(d1, x
0
1,1) and increase q1

3 such that q1
3 = q0

3 + q0
2 −max(d1, x

0
1,1).

We keep all other entries of q1 unchanged, and also determine the corresponding x1. It is

clear that the objective value remains unchanged. Moreover, q1 is also feasible, since after

this operation, x1
1,1 = 0 is unchanged, x1

2,1 is raised as much as q1
3 is raised (hence keeping q1

3

feasible), and x1
t,1 is non-increasing for all t = 3, . . . , T − 1.

Then, in the subsequent steps k = 2, . . . , T − 2, we set qk = qk−1 and apply the same

operation to change the entries qkk+1 and qkk+2 only to obtain a new qk. By the identical

argument, we can show that qk is feasible and gives the same objective value as the previous

solution qk−1.

After these T − 2 steps, we have obtained a feasible qT−2 that satisfies (2.10) for t =

2, . . . , T − 1. It remains to verify that qT−2
T = max(dT−1, x

T−2
T−1,1). This holds because if oth-

erwise qT−2
T > max(dT−1, x

T−2
T−1,1), then we could decrease qT−2

T until the inequality becomes

binding, which gives rise to a new feasible solution that has a strictly lower objective value

than q0, contradicting to the assumption that q0 is an optimal solution. Hence, we have that

qT−2 satisfies (2.10) and is also optimal by the above construction argument. Furthermore,

qT−2 = q̂, since q̂ is the unique feasible solution that satisfies (2.10). We have proven the

claim.

Since the feasible region Γ(S) is a convex subset of the space of decision variable {q,x}
and the parameter S, it follows that the optimal objective value of the linear program LP(S)

is convex in S. Because there is a unique optimal solution q̂ that satisfies Γ(S) and (2.10)

(completely describing the evolution of a backlogging perishable inventory system operating

under an order-up-to-S policy), this shows that the total number of inventory units ordered∑T
t=1 q̂t under this order-up-to-S policy is convex in S. In addition, it is easy to see that

when running an order-up-to-S policy, we have

T∑
t=1

q̂t = S +
T−1∑
t=1

dt +
T−1∑
t=1

ot.

This shows that, for any sequence of demand realizations d1, . . . , dT−1, the total outdating

cost θ
∑T−1

t=1 ot is convex in S. This completes the proof of Theorem 2.1.

As a by-product of the proof of Theorem 2.1, we obtain an interesting relationship be-

tween the optimal base-stock level S∗ for the perishable inventory system and the optimal

base-stock level S̃∗ for the counterpart of non-perishable inventory system with infinite life-
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times. Since the optimal base-stock level for non-perishable periodic-review inventory system

has a closed form solution (i.e., the newsvendor quantile solution), this result gives an upper

bound for the optimal base-stock level of perishable inventory system. Of course, this result

is useful only when the demand distribution is known a priori.

Corollary 2.2. Consider a perishable inventory system and its counterpart of non-perishable

inventory system with infinite lifetimes, under the same initial conditions, cost parameters

and demand distributions. Denote the optimal base-stock levels for the perishable inventory

system and the nonperishable inventory system by S∗ and S̃∗, respectively. Then we have

S∗ ≤ S̃∗.

Proof. Denote the expected one-period holding and lost-sales cost by L(S) = E[h(S− d)+−
p(d−S)+]. It is well-known that S̃∗ is the unique minimizer of L(S), and L′(S̃∗) = 0. For the

corresponding perishable inventory system, besides L(S), the inventory system also incurs

an outdating cost. Denote the expected long-run outdating cost by using a base-stock policy

π(S) by A(S). By Theorem 1, A(S) is convex in S. It is clear that A(S) is increasing in S,

and therefore A′(S) ≥ 0 for any S ≥ 0. Since L′(S∗) + A′(S∗) = 0, we must have S∗ ≤ S̃∗.

This completes the proof.

2.4 Nonparametric Algorithm: Cycle-Update Policy (CUP)

Not knowing the true underlying demand distribution Dt a priori, our objective is to

find a provably good adaptive data-driven algorithm for inventory control such that its

total expected system cost is close to that of the clairvoyant optimal base-stock policy. In

the following, we present a novel Cylce-Update Policy (CUP for short) for the perishable

inventory system with lost-sales and censored demand, which achieves the aforementioned

objective.

We first make an assumption about the (clairvoyant) optimal base-stock level S∗.

Assumption 2.3. There is a known finite number S̄ such that S∗ ≤ S̄, and P(Dt > S̄) > 0.

This is a mild and reasonable assumption since typically the firm has some idea about

the maximum possible base-stock level. Similar boundedness assumptions on the optimal

base-stock levels have also appeared in Huh and Rusmevichientong (2009), Huh et al. (2009a,

2011), Shi et al. (2015), Chen et al. (2015b) for other inventory systems. We also remark that

if the firm has some prior estimate of the demand distribution, the firm can readily compute

S̃∗ for the counterpart (non-perishable) inventory system, which then serves an upper bound

for S∗ by Corollary 2.2.
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We introduce the following notation to denote the total cost in periods {n1, n1+1, . . . , n2−
1} for any 1 ≤ n1 < n2 ≤ T + 1 operating under a base-stock policy S with brand new (after

ordering) inventory level S in period n1:

G(S, (n1, n2);ω) =

n2−1∑
t=n1

C
π(S)
t (ω), (2.12)

where C
π(S)
t (ω) is given in (2.1). Then, by Theorem 1, G(S, (n1, n2);ω) is convex in S for

any n1, n2 on every sample path ω.

2.4.1 Cycle-Update Policy (CUP)

The key idea of our cycle-update policy (CUP) algorithm is to update the base-stock

level every time the system experiences a stockout, and keeps the current base-stock level

unchanged otherwise. Define the stockout period as the end of a cycle. Algorithm 1 below

describes the algorithm, which calls to a detailed routine for computing a cycle gradient

described in §2.4.2, that is used to compute the base-stock level for a new cycle.

In contrast to the existing literature on online convex optimization, the cycles in our

algorithm are not a priori fixed or known, and they are triggered sequentially by lost-sales

events as demands realize over time. Specifically, let τk be the beginning of k-th cycle for

which CUP implements a newly computed base-stock level Sk, k = 1, . . ., the cycle ends

the first time after τk that stockout occurs. That is, for each sample path ω = {d1, d2, . . .},
τ1(ω) = 1, and for k ≥ 1,

τk+1(ω) = inf {t ≥ τk(ω) + 1 : xt,m−1(ω) = 0} .

The k-th cycle cost of the CUP is G(Sk, (τk, τk+1);ω). Note that τk+1 − τk is geometrically

distributed with parameter P (D > Sk), where D is a generic single-period demand. In

addition, τk+1 is not independent of the costs C
π(Sk)
τk , . . . , C

π(Sk)
τk+1−1 incurred in cycle k.

In what follows, we let∇1G(Sk, (n1, n2);ω)) denote the partial derivative of G(Sk, (n1, n2);ω)

with respect to Sk. For notational convenience, we often make the dependency on ω implicit.

Remark 2.4. One important observation of our CUP algorithm is that the starting inventory

level in each period is always below the base-stock level. This is because CUP updates the

base-stock level only when the system becomes empty, and keep the same base-stock level

otherwise. This implies that CUP can always attain the desired base-stock level exactly in

each period. It shall be noted that many papers in the demand learning literature need to deal
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Algorithm 1 Cycle-Update Policy (CUP)

(Initialization.) Set τ1 = 1, and the initial base-stock level S0 for period 1 is arbitrarily
chosen from (0, S̄). Set x1,m−1 = S0, and set the cycle counter to k = 1. For each period
t ≥ 2, repeat the following procedure:

Case 1: If the starting inventory level xt,m−1 > 0 (meaning that lost-sales did not occur
in period t − 1), then keep the same base-stock level as in period t − 1, i.e., order up
to Sk in period t so that xt,m = Sk. Go to the next period.

Case 2: If the starting inventory level xt,m−1 = 0 (meaning that lost-sales occurred in
period t− 1), then set τk+1 = t as the beginning of a new cycle k + 1, and update the
base-stock level Sk+1 by

Sk+1 := P[0,S̄]

(
Sk − ηk∇1G(Sk, (τk, τk+1))

)
, (2.13)

where the step-size ηk = γ/
√
k for some positive constant γ, and ∇1G(Sk, (τk, τk+1))

is the gradient of the k-th cycle cost with respect to Sk fixing τk and τk+1, which can
be efficiently computed using a subroutine presented in §2.4.2 via (2.15). Order up to
Sk+1 for period t so that xt,m = Sk+1, and set k := k + 1. Go to the next period.

with the “overshooting” or “undershooting” issue of not being able to achieve the desired

base-stock levels in some periods due to either positive inventory carry-over or capacity

constraints (e.g., Huh and Rusmevichientong (2009), Huh et al. (2009a), Shi et al. (2015),

Chen et al. (2015b)). We resolve this issue by the clever algorithmic design of CUP, which

greatly simplifies the performance analysis.

We also remark that one cannot design cycles based on successive stockouts of any feasible

policy, e.g., between successive events {D > S̄}. Although this particular cycle design makes

coupling of two policies much easier as it is independent of policies, the event {D > S̄} is

unobservable due to censored demand. In contrast, designing cycles based on successive

stockouts of CUP remains feasible under censored demand. We point out that even when

the event {D > S̄} can be observed (for example, in the backlog case of our model), we

prefer to not use it as the chance for {D > S̄} may be rather small. �

2.4.2 Computing the Cycle Gradient

The above CUP algorithm requires computing the (sample-path) gradient of the total

cost within a cycle with respect to Sk for every sample path ω. The cycle gradient is the

sum of the following two parts. It is important to note that, τk+1 depends on Sk, however,

we only compute the partial derivative of cycle cost for fixed τk and τk+1.
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The cycle gradient of the holding and lost-sales cost. The computation of the

gradient of the cycle holding and lost-sales cost is straightforward. For each cycle k = 1, 2, . . .,

the gradient (with respect to the base-stock level Sk) is simply

h · (τk+1 − τk − 1)− p. (2.14)

This is because, by the definition of the k-th cycle, namely periods τk to τk+1 − 1, the

CUP algorithm ends with strictly positive inventory during the first (τk+1− τk − 1) periods,

and experiences a stockout in the last period τk+1 − 1. Hence the result follows from the

assumption that the demand is a continuous random variable.

The cycle gradient of the outdating cost. The computation of the gradient of the

cycle outdating cost is more involved (but can be efficiently computed). Focus on the k-th

cycle, namely {τk, . . . , τk+1 − 1}, where the base-stock level is kept at Sk, and objective is

to compute the gradient of the cycle outdating cost with respect to Sk. Let ut,i denote the

gradient of inventory with remaining lifetime i with respect to Sk for fixed τk and τk+1. In

each period t, besides the inventory vector xt, where the newly received order qt in period

t is considered as inventory with remaining lifetime m, we will keep track of another m-

dimensional vector

ut = (ut,1, . . . , ut,m),

which represents the derivatives of inventory levels of different remaining lifetimes with

respect to Sk. Since the sum of all inventory units is Sk in each period t during cycle k,

the sum of all the entries of ut must be 1. In fact, it can be argued that ut,i ∈ {0, 1} for

all i = 1, . . . ,m. For notational convenience, we use emi to denote an m-dimensional vector

whose i-th entry is 1 and all other entries are 0. Then ut ∈ {em1 , . . . , emm} for each period t.

The following subroutine specifies how ut is updated during the k-th cycle, and it is used

to determine the cycle gradient of outdating cost.

The main idea underlying this subroutine is the following: We perturb the base-stock

level Sk by an infinitesimal amount to Sk + δ, and compute the additional amount of out-

dating inventory due to such a change within the cycle (see Figure 3.3 as an example). Call

the two systems, with base-stock levels Sk and Sk + δ, the original system and the perturbed

system, respectively. By base-stock policy, the total inventory of different remaining lifetimes

in the two systems are always Sk and Sk + δ, respectively, in each period of cycle k. By

the assumption of continuous demand, with probability 1, the inventory levels of different

remaining lifetimes in the two systems are identical except at one entry, at which the per-

turbed system has δ more units of inventory than the original system. By keeping track of
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Subroutine Computing the k-th Cycle Gradient for Algorithm 1

Initialization: In period t = τk, initialize ut := emm, and a counter n = 0.

Main Step: For each subsequent period t = τk + 1, . . . , τk+1, suppose ut−1 := emi for
some i ∈ {1, . . . ,m}.

Case 1: If no outdating occurs in period t − 1, then let j = min{` : xt,` > 0}
denote the remaining lifetime of the oldest inventory in period t (after ordering),
and set ut := emmax (i−1,j).

Case 2: If outdating occurs in period t− 1, then

(i) if i = 1, then set ut := emm, and set n := n+ 1;

(ii) otherwise set ut := emi−1.

the extra inventory level δ, which is precisely the unit vector ut, the subroutine allows us

to compute how much more inventory outdate in the perturbed system than in the original

system, and it is exactly nδ if n is the output of the subroutine. The following result presents

the gradient of the cycle outdating cost using the described subroutine.

Proposition 2.5. Let n be the output of the subroutine for cycle k, then the gradient for

the k-th cycle outdating cost is θn.

Proof. The main idea underlying this subroutine is that when we perturb the current base-

stock level Sk by an infinitesimal amount δ, we compute how many δ’s outdate within the

cycle (see Figure 3.3 as an example). To that end, we keep track of the additional δ units

of inventory by using the auxiliary vector ut in each period t. More precisely, if ut = emi for

some 1 ≤ i ≤ m, then there is an additional δ (as a result of raising the base-stock level to

Sk + δ) that have remaining lifetime i in the on-hand inventory in period t. Indeed, since

the inventory levels of different remaining lifetimes add to Sk + δ, the extra δ units have to

appear somewhere (and the assumption of continuous demand ensures that they do not split

to different age groups).

We prove, by induction, that for any t = τk, . . . , τk+1 − 1, if ut = emi then after we raise

the base-stock level Sk by an infinitesimal amount δ, the inventory with remaining lifetime i

will increase by δ in period t, while inventory levels with any other remaining lifetime remain

unchanged.

First, following our subroutine, uτk = emm. Recall that the system is empty at the be-

ginning of period τk, hence the ordering quantity qτk = Sk + δ and inventory levels with

remaining lifetime not equal to m are all 0. So the claim is true for t = τk. Suppose that
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the claim has been shown for period t− 1, and we want to prove that it also holds for ut.

For clarity we consider two systems, one with base-stock level Sk, called the original

system, and the other with base-stock level Sk + δ, called by the perturbed system. By

induction assumption suppose ut−1 = emi for some i, i.e., in period t − 1 the perturbed

system has the same inventory vector as the original system except for an additional δ with

remaining lifetime i. We consider two cases separately below.

Case 1: If no outdating occurs in period t− 1, then we have the following subcases.

a) If i = 1 or ut−1 = em1 , then all units with remaining lifetime 1 are consumed by

demand in both the original and the perturbed systems, and by FIFO, there will

be δ extra units in the perturbed system with the oldest inventory in period t,

i.e., ut = emj where j = min{` : xt,` > 0}.

b) If i > 1, then the δ extra units in the perturbed system are either consumed or

still in system in period t. In the former case, ut = emj where j = min{` : xt,` > 0}
is the oldest inventory in period t; and in the latter case, ut = emi−1 since the δ

units have one less period of remaining lifetime in period t.

For both subcases a) and b), we update the vector ut = emmax(i−1,j), but no change is

made on outdating quantities. This is consistent with Case 1 in the Subroutine.

Case 2: If outdating occurs in period t− 1, then we have the following subcases.

c) If i = 1 or ut−1 = em1 , then all units with remaining lifetime being 1 either

satisfy demand or outdate in both systems, and because there are δ more units in

the perturbed system with remaining lifetime being 1, δ more units of inventory

outdate in the perturbed system, incurring extra outdating cost. In this subcase

the number of outdated inventory is increased by δ in the perturbed system. At

the beginning of period t, an ordering quantity of Sk and Sk + δ will be ordered,

respectively, in the original and perturbed systems all having remaining lifetime

m, hence ut = emm.

d) If i > 1, then the fact that there is oudatinng in period t − 1 implies that the

extra δ units with remaining lifetime i will still be in system and its remaining

lifetime will be reduced to i− 1 in period t. Thus, ut = emi−1.

This shows that in period t, ut also represents the position of the extra δ inventory units

in the perturbed system, which completes the induction proof. The argument above also
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shows that, at the end of the Subroutine procedure, it has counted the number of extra

δ’s that outdate during the k-th cycle, and hence the output n represents the gradient of

outdating cost with respect to Sk. This completes the proof of Proposition 2.5.

Combining Proposition 2.5 and (2.14), we obtain the gradient of the k-th cycle total cost

∇1G(Sk, (τk, τk+1)) = θn+ h · (τk+1 − τk − 1)− p. (2.15)
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Figure 2.1: An example of how ut is updated, with m = 3.

Example 2.6. To better understand the above subroutine, we use a concrete example with

m = 3 to illustrate how ut is updated during a cycle. This example is designed to cover all

possible scenarios. In the upper portion of Figure 3.3, we keep track of ut for every period t,

while in the lower portion of Figure 3.3, we perturb the base-stock level by a small amount δ.

We can see that after this perturbation, there is always an additional δ amount of inventory

in each period t, and more importantly, the exact position (or remaining lifetime) of this δ

amount of inventory is tracked using ut for every period t.

In this example, there is no outdating in periods 1, 2, 5, 6. As a result, when we update

ut for t = 2, 3, 6, 7, we identify the remaining lifetime of the oldest on-hand inventory unit

in period t, and they are 2, 1, 2, 3, respectively. We then update ut = emmax (i−1,j) as shown in
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Figure 3.3. Outdating happens in period 3 and 4, and we need to check the events {u3 = e3
1}

and {u4 = e3
1}. It turns out that the event {u3 = e3

1} is true but the event {u4 = e3
1} is

false. Hence, the δ-outdating event happens only once during this cycle, and therefore the

cycle gradient for the outdating cost is θ. �

Remark 2.7. One may initially think that the gradient of the total outdating cost within a

cycle is simply θ times the number of outdating periods within a cycle. We remark that this

naive way of computing the gradient does not give the right answer. As shown in Figure 3.3,

when we raise the base-stock level by δ, the outdating amount in period 3 increases by δ, but

the outdating amount in period 4 stays unchanged (which in fact equals to d1 − d4 in both

cases). In this example, the naive way of computing the cycle gradient of total outdating

cost would give us 2θ, but in fact it should be θ. �

2.4.3 A Numerical Study

An important question is how the proposed CUP algorithm performs numerically. We

have conducted a numerical study, and the results are reported below. Our computations

were done using Matlab R2014a on a desktop computer with an Intel(R) Xeon(R) CPU

E31230 @ 3.20 Ghz.

We compare the performance of CUP against the (clairvoyant) optimal base-stock poli-

cies. To the best of our knowledge, there exist no benchmark learning algorithms or even

heuristics reported in the literature for perishable inventory systems with demand distribu-

tion unknown a priori, and neither can we adapt any of the existing learning algorithms

for other inventory systems to our perishable setting. The performance of CUP is measured

by the percentage of total T -period cost increase compared with that of the (clairvoyant)

optimal base-stock policies.

We test two types of demand distributions: uniform on [0, 100] and truncated normal

on [0, 100] with mean 50 and standard deviation 25. The cost parameters are h = 1, θ = 5

and p ∈ {5, 10}. We set the step-size γ = 1 in CUP, S̄ = 95, and the initial inventory

level is 50. The (clairvoyant) optimal base-stock policy is computed through simulation.

Each instance is run 5000 times to compute the average costs of CUP and the (clairvoyant)

optimal base-stock policy.

Figure 2.2 reports the percentage of cost increase of CUP under different settings when T

goes from 200 to 2000 periods. In every graph in Figure 2.2, the x-axis denotes the number

of periods and y-axis is percentage of cost increase compared with that of the clairvoyant

optimal base-stock policy. The exact numerical results in these graphs are given in Table
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Figure 2.2: Percentage of total expected cost increase of CUP under different problem in-
stances

Number of Periods 200 400 600 800 1000 1200 1400 1600 1800 2000

Normal
p=5 3.61% 2.00% 1.48% 1.15% 0.97% 0.84% 0.73% 0.65% 0.59% 0.53%

p=10 6.09% 3.96% 3.05% 2.51% 2.17% 1.91% 1.72% 1.58% 1.46% 1.36%

Uniform
p=5 5.05% 2.67% 1.87% 1.44% 1.16% 0.98% 0.84% 0.75% 0.65% 0.58%

p=10 7.00% 4.18% 3.11% 2.55% 2.17% 1.92% 1.72% 1.56% 1.44% 1.33%

Table 2.1: Percentage of total expected cost increase of CUP under different problem in-
stances

From Figure 2.2 and Table 2.1, it is seen that CUP performs consistently well on all

the tested problem instances, with a maximum average cost increment of 7.00% after 200

periods, 2.17% after 1000 periods, and 1.36% after 2000 periods.

2.5 Performance Analysis of CUP

Given a sample path ω = {d1, d2, . . . , } of demand process, the T -period regret of our

nonparametric adaptive inventory policy CUP is defined as the difference between the clair-

voyant optimal cost (given the demand distribution a priori) and the cost incurred by CUP

(which learns the demand distribution over time under censored demand information) over
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T periods. More precisely,

RCUP
T (ω) =

T∑
t=1

(
C
π(St)
t (ω)− Cπ(S∗)

t (ω)
)
,

where St is the base-stock level implemented by our nonparametric (closed-loop) algorithm

CUP, and S∗ is the (clairvoyant) optimal base-stock level defined in (2.3). The average regret

of CUP is E[RCUP
T ], and the average regret per period is defined as E[RCUP

T ]/T .

Theorem 2.8 below states the main result in this chapter.

Theorem 2.8. Suppose Assumption 2.3 holds. Then, there exists some positive constant

K1, such that for each problem instance of the perishable inventory system described in §2.2,

the expected regret of the cycle-update policy (CUP) satisfies

E
[
RCUP
T

]
≤ K1

√
T , for all T ≥ 1.

In other words, the average regret per period approaches 0 at the rate of O(1/
√
T ).

It is known that in the general convex case (without assuming smoothness and strong

convexity), this rate of O(
√
T ) is unimprovable (see, e.g., Theorem 3.2. of Hazan (2015)).

2.5.1 A Bridging Policy – Replacement of Old Inventories (ROI)

Our general strategy towards establishing Theorem 2.8 is to compare and bound the

k-th (k = 1, 2, . . .) cycle cost between CUP and the clairvoyant optimal policy. A difficulty

arises at the start of each cycle τk. More precisely, our CUP algorithm will update the

base-stock level to Sk and order up to it. Due to the construction of CUP, the system is

empty at the beginning of τk, and therefore all the Sk inventory units ordered are new with

remaining lifetime m. However, the age distribution of the (clairvoyant) optimal inventory

at the beginning of τk is unknown and impossible to determine. This creates much difficulty

when we compare the cost difference between these policies going forward towards τk+1 − 1.

To circumvent this difficulty, we introduce a bridging policy, called the replacement of old

inventories (ROI for short), between CUP and the optimal base-stock policy π(S∗). For each

sample path, similar to the optimal policy, the bridging policy ROI uses S∗ as its base-stock

level. However, at the beginning of τk (k = 1, 2, . . .), ROI replaces all its inventory units

(regardless of their ages) with brand new inventory units with remaining lifetime m.

We then establish that for each sample path, the total cost incurred by ROI in fact

provides a lower bound on the total cost incurred by the optimal base-stock policy π(S∗).
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Proposition 2.9. For each problem instance of the perishable inventory system described in

§2.2, given any sample path ω = {d1, d2, . . .} and any T ≥ 1, the total cost incurred by the

bridging policy ROI is less or equal to the total cost incurred by the optimal base-stock policy

π(S∗).

Proof. It suffices to show that for a given sample path ω and a given base-stock level S, an

empty system with zero initial inventory gives the lowest total cost from period 1 to any

period T , among all possible configurations of initial inventory that is less or equal to S and

with any age distributions.

We first make a simple yet important observation. That is, under a base-stock policy

π(S), the holding and lost-sales costs are independent of the initial inventory as well as its

age distribution, and is only affected by demands and the given base-stock level S. Hence,

the initial inventory and its age distribution only affect the outdating cost. To analyze the

outdating cost, we consider a variant of the linear program (LP) introduced in the proof of

Theorem 1.

Denote the initial inventory configuration by a = (a1, . . . , am−1), where 0 ≤ a1 ≤ a2 ≤
· · · ≤ am−1 ≤ S. Note that ai represents the initial inventory with remaining lifetime no

more than i periods. For any given d1, . . . , dT−1 and any initial inventory configuration a,

we construct a linear program LP′(S, a) as follows.

min
{q,x}

T∑
t=1

qt (2.16)

subject to x1,i = ai, i = 1, . . . ,m− 1, (2.17)

xt,m = S, t = 1, . . . , T, (2.18)

xt+1,i−1 = xt,i − qt+1, t = 1, . . . , T − 1, i = 2, . . . ,m, (2.19)

qt+1 ≥ dt, t = 1 . . . , , T − 1, (2.20)

qt+1 ≥ xt,1, t = 1, . . . , T − 1. (2.21)

The decision variables are q = (qt)t=1,...,T , and x = (xt,i)t=1,...,T,i=1,...,m. For notational

convenience, we denote the feasible region (2.17–2.21) by Γ′(S, a).

Let the unique solution satisfying (2.10) and Γ′(S,0) be q0, and the optimal solution

satisfying (2.10) and Γ′(S, a) be q̂. Following an identical argument as that in the proof of

Theorem 1, we have that q0 is optimal for LP′(S,0) and q̂ is optimal for LP′(S, a). Hence,

to prove Proposition 2.9, it suffices to prove the following claim: The optimal objective value

of LP′(S,0) is less than or equal to that of LP′(S, a) for any a with 0 ≤ a1 ≤ a2 ≤ · · · ≤
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am−1 ≤ S, i.e., the objective value of solution q0 is less than or equal to that of solution q̂.

We shall prove this claim by constructing q̂ from q0 in at most T − 1 steps, where the

objective value is kept non-decreasing in each step.

In the optimal solution q0 for LP′(S,0), we have q0
t+1 = dt for t = 1, . . . ,m − 1, since

x0
t,1 ≤ x0

1,t = 0 ≤ dt for t = 1, . . . ,m−1. In fact, this means that with zero starting inventory,

the system will not have any outdating units in the first m−1 periods. This solution q0 may

not be feasible for LP′(S, a); however, if q0 turns out to be feasible, then it must be also

optimal for LP′(S, a) because max(dt, xt,1) remains unchanged for each t = 1, . . . , , T − 1.

Now consider the more involved case where q0 is not feasible for LP′(S, a). In this case,

we have q0
t ≤ max(dt−1, x

0
t−1,1) for any 2 ≤ t ≤ T . We shall construct q̂ from q0 in at most

T − 1 steps. Denote the solution after step k by qk (while keeping its corresponding xk

implicit).

In the first step, we set q1 = q0 and carry out the following operation. If q0
2 =

max(d1, x
0
1,1), then we simply do nothing. Otherwise, if q0

2 < max(d1, x
0
1,1), then we increase

q1
2 such that q1

2 = max(d1, x
0
1,1) and decrease q1

3 such that q1
3 = q0

3 −max(d1, x
0
1,1) + q0

2. We

keep all other entries of q1 unchanged, and also determine the corresponding x1. It is clear

that the objective value remains unchanged. Then in the subsequent step k = 2, . . . , T − 2,

we set qk = qk−1 and apply the same operation to change the entries qkk+1 and qkk+2 only to

obtain a new qk satisfying qk+1 = max(dk, x
k−1
k,1 ). The objective value remains unchanged

after these operations. In the final step k = T − 1, we set qT−1 = qT−2, and increase qT−1
T

such that qT−1
T = max(dT−1, x

T−2
T−1,1). Then, we obtain qT−1 = q̂, with unchanged objective

value in the first T − 2 steps and a possible increase in objective value in the final step

k = T − 1. This proves the claim and the desired result then follows.

2.5.2 Establishing the Regret Rate using ROI

With the bridging policy ROI introduced in the preceding subsection, we are ready to

prove the regret rate for our CUP algorithm.

Proof of Theorem 2.8. Consider an arbitrary sample path ω = {d1, d2, . . .} and a fixed T .

We use N = N(ω) to denote the total number of cycles before period T , including possibly

the last incomplete cycle. If the last cycle is not completed at T , then we truncate the cycle

and also let τN+1 − 1 = T .

By Proposition 2.9, we know that the bridging policy ROI provides a lower bound on

the (clairvoyant) optimal base-stock policy π(S∗). We shall compare the costs between CUP

28



and ROI.

RCUP
T (ω) =

T∑
t=1

(
CCUP
t (ω)− Cπ(S∗)

t (ω)
)

≤
T∑
t=1

(
CCUP
t (ω)− CROI

t (ω)
)

=
N∑
k=1

τk+1−1∑
i=τk

(
CCUP
i (ω)− CROI

i (ω)
)

=
N∑
k=1

(
G(Sk, (τk, τk+1);ω)−G(S∗, (τk, τk+1);ω)

)
. (2.22)

Note that CUP starts with brand new inventory units in period τk for all k = 1, . . . , N ,

because CUP has experienced lost-sales in the previous period τk − 1 (by the construction

of CUP). Similarly, ROI starts with brand new inventory units in period τk as well for all

k = 1, . . . , N , as we have replaced all the old inventory units in these periods with new ones.

By Theorem 2.1, we have that the cycle cost function G(Sk, (n1, n2);ω) is convex in Sk, thus

G(Sk, (τk, τk+1);ω)−G(S∗, (τk, τk+1);ω) ≤ ∇1G(Sk, (τk, τk+1);ω) (Sk − S∗) . (2.23)

Substituting (2.23) into (2.22) yields

RCUP
T (ω) ≤

N∑
k=1

∇1G(Sk, (τk, τk+1);ω) (Sk − S∗) . (2.24)

On the other hand, by our CUP algorithm (2.13), we have that for every ω and k =

1, . . . , N ,

(Sk+1−S∗)2 ≤ (Sk−S∗)2− 2γ√
k

(Sk−S∗)∇1G(Sk, (τk, τk+1);ω)+
γ2 (∇1G(Sk, (τk, τk+1);ω))2

k
.

(2.25)

Combining (2.24) and (2.25), and taking expectation on both sides over all sample paths,

we obtain
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E
[
RCUP
T

]
≤ E

[
N∑
k=1

√
k

2γ

(
(Sk − S∗)2 − (Sk+1 − S∗)2

)]

+E

[
N∑
k=1

γ

2
√
k

(∇1G(Sk, (τk, τk+1)))2

]
. (2.26)

We first analyze the first term on the RHS of (2.26). By some simple algebra, we have

E

[
N∑
k=1

√
k

2γ

(
(Sk − S∗)2 − (Sk+1 − S∗)2

)]

≤ 1

γ
E

[
1

2
(S1 − S∗)2 −

√
N

2
((SN+1 − S∗)2

]
+

1

2γ
E

[
N∑
k=2

(√
k −
√
k − 1

)
(Sk − S∗)2

]

≤ 1

γ
S̄2

[
1

2
+

1

2

N∑
k=2

(√
k −
√
k − 1

)]
=

√
N

2γ
S̄2 ≤

√
T

2γ
S̄2. (2.27)

Then we analyze the second term on the RHS of (2.26). By (2.15), it is seen that for

almost every ω, the absolute value of cycle gradient ∇1G(Sk, (τk, τk+1);ω) is bounded above

by max(h + θ, p) · (τk+1 − τk). Noting that τk+1 − τk is a geometric random variable with

parameter P(D > Sk). Letting µ , P(D > S̄) > 0 (by Assumption 2.3), then we have

P(D > Sk) ≥ P(D > S̄) = µ.

Denote U ∼ Geo(µ) as a geometric random variable with parameter µ, then we can write

E

[
N∑
k=1

γ

2
√
k

(
∇1G(Sk, (τk, τk+1))

)2

]
≤ γ (max(h+ θ, p))2 · E[U2] ·

T∑
k=1

1

2
√
k

≤ γ(2− µ) (max(h+ θ, p))2

µ2
·
√
T , (2.28)

where the second inequality follows from
∑T

k=1 1/
√
k ≤ 2

√
T and

E[U2] = VAR(U) + (E[U ])2 =
2− µ
µ2

.

30



Combining (2.27) and (2.28), we obtain

E
[
RCUP
T

]
≤
√
T

2γ
S̄2 +

γ(2− µ) (max(h+ θ, p))2

µ2
·
√
T ≤ K1

√
T (2.29)

for some positive constant K1. This completes the proof of Theorem 2.8. �

Remark 2.10. If the value of µ is known a priori, then the theoretical bound for regret can

be optimized by choosing γ to be

γ =
µS̄

max (h+ θ, p) ·
√

4− 2µ
.

This balances the two terms in the middle of (2.29), and it gives a minimized value of K1 as

K1 =
max (h+ θ, p) · S̄ ·

√
4− 2µ

µ
.

2.6 Strongly Convex Extension

We extend our algorithm and results to the strongly convex case, and obtain an improved

regret rate. A differentiable function g(·) defined on a convex set of R is called strongly convex

with parameter λ > 0 (see e.g., Hazan (2015)), if for all points x, y in its domain,

g(y) ≥ g(x) +∇g(x)T (y − x) +
λ

2

(
y − x

)2
. (2.30)

Assumption 2.11. There exist three known finite numbers S̄, S and λ, such that

(i) 0 ≤ S < S̄, λ > 0 ,

(ii) S ≤ S∗ ≤ S̄, and P(Dt > S̄) > 0, and

(iii) the probability density function f(x) of single-period demand D satisfies infx∈[S,S̄] f(x) ≥
λ.

Let ū , P(D > S) > 0 and u , P(D > S̄) > 0. Then 1 ≥ ū ≥ u > 0. With the slightly

stronger Assumption 2.11 (in place of Assumption 2.3), we can show that the expected cost

of a cycle is strongly convex in the base-stock level S, and a modified version of CUP achieves

a logarithmic regret rate, i.e., the average regret of CUP converges to zero at the rate of

O(log T/T ), which is formally stated in Theorem 2.12 below.

Theorem 2.12. For the perishable inventory system described in §2.2, we modify CUP or

Algorithm 1 as follows:
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(1) Use the projection operator P[S,S̄], instead of using P[0,S̄].

(2) Change the step-size to ηk =
(

1
λ(h+p)

)
1
k

for all k.

Then under Assumption 2.11, there exists some positive constant K2, such that for any

T ≥ 1, the expected regret of CUP for any problem instance satisfies

E
[
RCUP
T

]
≤ K2 log T.

It is well-known that in the strongly convex case, this rate of O(log T ) is unimprovable

(see, e.g., Hazan (2015)).

In general, the extension from general convex case to strongly convex case is straight-

forward (see, e.g., Huh and Rusmevichientong (2009)). However, this extension is rather

non-trivial in our model. The key reason is that we only have that the expected (not sample-

path) cycle cost function is strongly convex, and the CUP algorithm involves random cycles

that correlate with the random cycle costs, which leads to some technical difficulties in devel-

oping the regret bound. Indeed, when we work with expected regret, the number of random

cycles depends on CUP, which then correlates with its random cycle cost, and the standard

argument based on Wald’s Theorem does not work. To circumvent this technical issue, we

“stretch” the time horizon from period T to the T -th cycle of CUP, then show that the

cumulative regret over T periods is upper bounded by the cumulative regret over T cycles

plus a constant, and study the regret of the T -cycle problem.

To facilitate our analysis, we call the event {D > S̄} as β, and define N i
β as the period in

which the event β occurs the i-th time. More precisely, given a sample path ω = {d1, d2, . . .},

N i+1
β (ω) = inf

{
t ≥ N i

β(ω) + 1 : dt > S̄
}
, N0

β(ω) = 0.

Recall that given a sample path ω, C
π(S)
t (ω) is the cost incurred in period t when applying

a base-stock level S in every period. We first present the following auxiliary result.

Lemma 2.13. The (clairvoyant) optimal base-stock level satisfies

S∗ = argmin
S

E

 N i+1
β∑

t=N i
β+1

C
π(S)
t

 , i = 0, 1, 2, . . . .

Proof. Since the inventory system becomes empty every time event β occurs, the costs

between N i
β + 1 and N i+1

β are i.i.d. random variables, i = 0, 1, . . ., where we define N0
β as 0.
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Hence, it suffices to prove

S∗ = argmin
S

E

 N1
β∑

t=1

C
π(S)
t

 .
Consider an arbitrary base-stock level S and an arbitrary sample path. For any t ≥ 1,

let J(t) = max{k : Nk
β ≤ t} be the number of cycles completed by time t, then we have

N
J(T )
β ≤ T ≤ N

J(T )+1
β . As the total cost is non-decreasing in the number of periods, we must

have

∑J(T )
j=1

[∑Nj
β

t=Nj−1
β +1

C
π(S)
t

]
J(T )

· J(T )

T
≤
∑T

t=1C
π(S)
t

T
≤

∑J(T )+1
j=1

[∑Nj
β

t=Nj−1
β +1

C
π(S)
t

]
J(T ) + 1

· J(T ) + 1

T
.

Since the cycles have i.i.d. length with geometric distribution of mean 1/µ, it follows from

renewal theory that J(T )/T , as well as (J(T )+1)/T , converge almost surely to µ. Moreover,

since
∑Nj+1

β

t=Nj−1
β +1

C
π(S)
t for i = 1, 2, . . . are also i.i.d., it follows from the Strong Law of Large

Numbers that, with probability 1,

lim
T→∞

1

T

T∑
t=1

C
π(S)
t = µ · E

 N1
β∑

t=1

C
π(S)
t

 . (2.31)

It can be seen that the LHS of (2.31) is almost surely bounded by (h+ θ) · S̄+ p · 1
T

∑T
t=1Dt,

which is integrable, thus applying Lebesgue’s Dominated Convergence Theorem we obtain

lim
T→∞

E

[
1

T

T∑
t=1

C
π(S)
t

]
= E

[
lim
T→∞

1

T

T∑
t=1

C
π(S)
t

]
= µ · E

 N1
β∑

t=1

C
π(S)
t

 . (2.32)

Because S∗ minimizes the first term of (2.32), it also minimizes the third term.

With Lemma 2.13, we are ready to prove Theorem 2.12.

Proof of Theorem 2.12.

We define b(t) as the first period after t that an event β occurs, i.e., b(t) = inf
{
s ≥ t : dt > S̄

}
.

It is important to note that these stopping times b(t)’s are policy-independent. We further

introduce the notation l(T ) to denote the end of T -th cycle of CUP, and it is clear that
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l(T ) ≥ T almost surely. With the new notation l(T ) and b(t), we have

E
[
RCUP
l(T ) −R

CUP
T

]
= E

l(T )∑
t=1

CCUP
t −

l(T )∑
t=1

C
π(S∗)
t

−( T∑
t=1

CCUP
t −

T∑
t=1

C
π(S∗)
t

)
= E

b(l(T ))∑
t=1

CCUP
t −

b(T )∑
t=1

CCUP
t

− E

b(l(T ))∑
t=1

C
π(S∗)
t −

b(T )∑
t=1

C
π(S∗)
t


−E

b(l(T ))∑
t=1

CCUP
t −

l(T )∑
t=1

CCUP
t

+ E

b(l(T ))∑
t=1

C
π(S∗)
t −

l(T )∑
t=1

C
π(S∗)
t


+E

b(T )∑
t=1

CCUP
t −

T∑
t=1

CCUP
t

− E

b(T )∑
t=1

C
π(S∗)
t −

T∑
t=1

C
π(S∗)
t

 (2.33)

≥ −E

b(l(T ))∑
t=1

CCUP
t −

l(T )∑
t=1

CCUP
t

+ E

b(l(T ))∑
t=1

C
π(S∗)
t −

l(T )∑
t=1

C
π(S∗)
t


+E

b(T )∑
t=1

CCUP
t −

T∑
t=1

CCUP
t

− E

b(T )∑
t=1

C
π(S∗)
t −

T∑
t=1

C
π(S∗)
t

 , (2.34)

where the inequality follows from that the sum of the first two terms of (2.33) is non-negative

since S∗ minimizes the total cost between events β by Lemma 2.13.

Since the expected one-period cost difference between any two feasible policies is bounded

above by (S̄ − S) max(h + θ, p), and the expected number of periods between b(l(T )) and

l(T ) is 1/µ which is also the same as that between b(T ) and T . By (2.34), we have

E
[
RCUP
l(T ) −RCUP

T

]
≥ − 2

µ
(S̄ − S) max(h+ θ, p). (2.35)

Thus, in what follows we shall focus on the evaluation of E[RCUP
l(T ) ], the expected regret

of a T -cycle problem. Since under our CUP algorithm, τk is a stopping time determined

by demand process and previous base-stock levels and in particular, Sk−1. To emphasize its

dependency on Sk−1, in the following we shall also write it as τk(Sk−1), k = 1, 2, . . ..

To derive the regret for the strongly convex case, similar as in §2.5, for an arbitrary S, we

define G(S, τk(Sk−1), τk+1(Sk)) as the total cost of base-stock policy S during a fixed cycle

between periods τk(Sk−1) and τk+1(Sk)− 1, with brand new (after ordering) inventory level

S in period τk(Sk−1). It is important to note that not only the cost in each period is random,

the number of periods in the cycle is also random. Then, the conditional expected cost of the

k-th cycle is E[G(Sk, τk(Sk−1), τk+1(Sk)) | Fk], where Fk , ((D1, . . . , Dτk−1); (S1, . . . , Sk); τk).

We shall compare this conditional expected cost with that of the bridging problem ROI,
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i.e., E[G(S∗, (τk(Sk−1), τk+1(Sk)) | Fk], that starts in period τk(Sk−1) with all brand new

inventories. Our idea is to evaluate, for a fixed Sk, the cost difference between policies S

and S∗, i.e.,

E[G(S, τk(Sk−1), τk+1(Sk)) | Fk]− E[G(S∗, (τk(Sk−1), τk+1(Sk)) | Fk], (2.36)

where the expectation is taken with respect to future random demand (Dt; t ≥ τk).

We first show that fixing Sk, E[G(S, τk(Sk−1), τk+1(Sk)) | Fk] is strongly convex in S. By

Wald’s Theorem, the expected total holding and shortage cost during the cycle is

hE[(S −D)+] + bE[(D − S)+]

P(D > Sk)
.

By Theorem 1, the expected outdating cost during a cycle is also convex in S, hence

(
E[G(S, τk(Sk−1), τk+1(Sk)) | Fk]

)′′
S
≥ (h+ b)f(S)

P(D > Sk)
≥ (h+ b)f(S)

P(D > S)
≥ (h+ b)λ

µ̄
≥ (h+ b)λ > 0.

(2.37)

This shows that E[G(S, τk(Sk−1), τk+1(Sk)) | Fk] is strongly convex in S with parameter

(h+ p)λ. Therefore, applying Taylor’s expansion in (2.36) on S then set S = Sk we obtain

E[G(Sk, τk(Sk−1), τk+1(Sk)) | Fk]− E[G(S∗, (τk(Sk−1), τk+1(Sk)) | Fk]

≤ ∇1E[G(Sk, (τk(Sk−1), τk+1(Sk))) | Fk](Sk − S∗)−
1

2
(h+ p)λ(Sk − S∗)2, (2.38)

where∇1E[G(S, (τk(Sk−1), τk+1(Sk))) | Fk] is the partial derivative of E[G(S, (τk(Sk−1), τk+1(Sk))) |
Fk] with respect to the first argument S. Using (2.38), we have
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E
[
RCUP
l(T )

]
≤ E

[
T∑
k=1

(
G(Sk, (τk(Sk−1), τk+1(Sk)))−G(S∗, (τk(Sk−1), τk+1(Sk)))

)]

= E

[
T∑
k=1

(
E[G(Sk, (τk(Sk−1), τk+1(Sk))) | Fk]− E[G(S∗, (τk(Sk−1), τk+1(Sk))) | Fk]

)]

≤ E

[
T∑
k=1

∇1E[G(Sk, (τk(Sk−1), τk+1(Sk))) | Fk](Sk − S∗)

]

−E

[
T∑
k=1

1

2
(h+ p)λ(Sk − S∗)2

]
. (2.39)

Following the same argument used in (2.25), we have, for k = 1, . . . , T ,

(Sk+1 − S∗)2

≤ (Sk − S∗)2 − 2ηk(Sk − S∗)∇1G(Sk, (τk(Sk−1), τk+1(Sk))) + η2
k

(
∇1G(Sk, (τk(Sk−1), τk+1(Sk)))

)2
.

Conditioning on Fk and taking expectation with respect to future demand, yield

∇1E[Gk(Sk, (τk(Sk−1), τk+1(Sk))) | Fk](Sk − S∗) (2.40)

≤ 1

2ηk

(
E[(Sk − S∗)2 | Fk]− E[(Sk+1 − S∗)2 | Fk]

)
+
ηk
2
E
[(
∇1G(Sk, (τk(Sk−1), τk+1(Sk)))

)2 | Fk
]
.
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Combining (2.39) and (2.40), we have

E
[
RCUP
l(T )

]
≤ E

[ T∑
k=1

1

2ηk

(
E[(Sk − S∗)2 | Fk]− E[(Sk+1 − S∗)2 | Fk]

)
+
ηk
2
E
[(
∇1G(Sk, (τk(Sk−1), τk+1(Sk)))

)2 | Fk
]
− (h+ p)λ

2

T∑
k=1

(Sk − S∗)2

]

= E
[ T∑
k=1

( 1

2ηk
[(Sk − S∗)2 − (Sk+1 − S∗)2

)
+
ηk
2

(∇1G(Sk, (τk(Sk−1), τk+1(Sk)))
)2 − (h+ p)λ

2

T∑
k=1

(Sk − S∗)2

]

≤ E
[ T∑
k=1

1

2λ(h+ p)k

(
∇1G(Sk, (τk(Sk−1), τk+1(Sk)))

)2 − T (ST+1 − S∗)2

]

≤ E
[ T∑
k=1

1

2λ(h+ p)k

(
∇1G(Sk, (τk(Sk−1), τk+1(Sk)))

)2
]

≤
(

max(h+ θ, p)
)2 ·

2− µ
2(h+ p)λµ2

·
T∑
k=1

1

k
, (2.41)

where the second inequality follows from plugging in the step-size ηk = 1
(h+p)λk

, and the last

inequality holds because, using the identical argument used in (2.28), we have that for each

k = 1, . . . , T ,

E
[(
∇1G(Sk, (τk(Sk−1), τk+1(Sk)))

)2
]
≤
(

max(h+ θ, p)
)2 ·

2− µ
µ2

.

Consequently, combining (2.41) and (2.35), we have

E
[
RCUP
T

]
≤

(
max(h+ θ, p)

)2 ·
2− µ

2(h+ p)λµ2
·

T∑
k=1

1

k
+

2

µ
(S̄ − S) max(h+ θ, p) ≤ K2 · log T,

for some positive constant K2 when T is large enough. This completes the proof of Theorem

2.12. �

Remark 2.14. The algorithm, as well as the regret analysis, for the strongly convex case

assumes that µ̄ is not known to the firm a priori. If µ̄ is known a priori, then as seen from

(2.37), the strong convexity coefficient can be improved to (h + b)λ/µ̄. In this case, the

step-size of the algorithm is modified to ηn =
(

µ̄
λ(h+b)

)
1
k
, and the corresponding regret is

reduced by the factor µ̄. �
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2.7 Conclusions

We developed the first nonparametric learning algorithm for periodic-review perishable

inventory systems. Our CUP algorithm converges to the long-run average cost of the best

base-stock policy at the theoretical best rate of convergence. To design and analyze CUP,

we first established an important structural result that the total holding, lost-sales and

outdating cost is convex in the base-stock level along every sample path. We devised a

novel (stochastic) cycle updating scheme for adjusting the base-stock levels, and designed

a key subroutine to compute the (sample-path) gradient of total cost over a finite number

of periods. Finally, we introduced a clever bridging policy (called the replacement of old

inventories) that plays an important role in comparing the total cost of CUP and that of the

(clairvoyant) optimal base-stock policy. Our numerical results demonstrated the effectiveness

of the proposed algorithms. In this chapter we focused on lost-sales models, and it should

be noted that, because of zero ordering lead time, our results and analysis extend almost

immediately to the backlogging model.
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CHAPTER III

Nonparametric Learning Algorithms for Optimal

Base-Stock Policy in Lost-sales Inventory Systems with

Positive Lead Times and Censored Demand

3.1 Introduction

The periodic-review inventory control problem with lost-sales and positive lead times is

one of the most fundamental yet notoriously difficult problems in the theory of inventory

management (see Zipkin (2000)). The model assumes that unmet demand at the end of

each period is lost, rather than being backlogged and carried over to the next period. For

example, in many retail applications demand can be met by competing suppliers, making

lost-sales a more appropriate modeling assumption (cf. Bijvank and Vis (2011)). There is a

constant delivery lead time measured by the delay between placing an order and receiving

it, which leads to an enlarged state-space in which the pipeline orders need to be tracked (cf.

Zipkin (2008b)). In this chapter, contrary to the classical inventory setting, we assume that

the firm does not know the demand distribution a priori but can only collect past sales data

over time. Because the sales in a period are the minimum of the actual demand and the

on-hand inventory level, the demand information is censored (cf. Huh et al. (2009a)). The

firm wishes to minimize the long-run average holding and lost-sales penalty cost per period.

Even with complete information about the demand distribution, it is well-known that the

optimal policy does not possess a simple form (see Karlin and Scarf (1958), Morton (1969),

Janakiraman and Roundy (2004), Janakiraman et al. (2007)). To analyze the structure of

the optimal policies, Zipkin (2008b) used a partial sum of inventory to represent the state

and showed that the minimum cost function is L]-convex, and as a result, the optimal order

quantities exhibit monotonicity and bounded sensitivity (more sensitive to newer orders).

Although analyzing the dynamic program with large state space yields such nice structural
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properties, the computation of optimal policies remains intractable due to the well-known

curse of dimensionality. As a result, a considerable amount of efforts has been devoted

to designing various effective heuristic policies (Reiman (2004), Levi et al. (2008a), Zipkin

(2008a), Lu et al. (2015), Goldberg et al. (2016), Xin and Goldberg (2016)). In particular,

Huh et al. (2009b) showed that the best base-stock policy is an effective heuristic. Levi

et al. (2008a) proposed a dual-balancing policy for this problem so that the expected cost of

their policy is always within two times the expected optimal cost, and Chen et al. (2014a)

applied the L]-convexity results to devise a pseudo-polynomial time approximation scheme

that solves this problem within an arbitrary prespecified additive error. More recently, Xin

and Goldberg (2016) showed that the best constant-order policy converges to optimality

exponentially fast as lead time grows large.

As we have witnessed the recent progress for this fundamental class of problems, the

incomplete information counterpart problem (under censored demand) remains relatively

under-explored. In many practical scenarios (e.g., furniture retailing), the firm does not

know the underlying demand distribution a priori and is forced to make replenishment

decisions based on historical sales data. However, the sales data, as we discussed earlier, are

in fact censored demand information. The joint learning and optimization problem in the

underlying lost-sales system is therefore practically relevant and theoretically challenging.

The only paper (and the closest to ours) in the literature is Huh et al. (2009a) who studied the

exact same model and proposed an online learning algorithm whose regret against the full-

information optimal base-stock policy is O(T 2/3) over a T -period problem. The motivations

and justifications for using the optimal base-stock policy as a valid benchmark for this

incomplete information problem are two-fold. First, the class of base-stock policies is easily

implemented and widely used (see e.g., Janakiraman and Roundy (2004)). Second, Huh

et al. (2009b) showed that, with complete information, as the unit penalty cost increases,

with other parameters unchanged, the ratio of the cost of the best base-stock policy to the

optimal cost converges to one. Their numerical results suggest “when the ratio between the

lost-sales penalty and the holding cost is 100, the cost of the best base-stock policy typically

is within 1.5% of the optimal cost”. In many applications, this ratio “typically exceeds 200”

(see Huh et al. (2009a)). We also refer interested readers to Bijvank et al. (2014) for a

robustness result on the asymptotic optimality of base-stock policy in lost-sales inventory

systems. Therefore, the class of base-stock policies is expected to perform very well.

An important open question left by Huh et al. (2009a) is that whether there exists a

nonparametric learning algorithm whose regret matches the theoretical lower bound O(
√
T ).
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3.1.1 Main Results and Contributions

This chapter provides an affirmative answer to the open question left by Huh et al.

(2009a). More specifically, for the periodic-review inventory control problem with lost-sales

and a positive lead time L ≥ 1 under censored demand information, we present a new non-

parametric learning algorithm, termed the simulated cycle-update algorithm (SCU for short),

and show that the expected regret, defined as the difference in cost between the SCU and the

optimal base-stock policy, is in the order of O(
√
T ) for a T -period problem, which matches

the theoretical lower bound (see Theorem 3.3 and Proposition 3.4). Our numerical results

also show that the SCU algorithm performs better than the learning algorithm proposed in

Huh et al. (2009a).

The SCU algorithm belongs to the broad family of online gradient decent (OGD) type of

algorithms developed for various other inventory systems (cf. Burnetas and Smith (2000),

Huh and Rusmevichientong (2009), Shi et al. (2015), Zhang et al. (2016)). Most studies on

lost-sales inventory systems, with the exception of Huh et al. (2009a), considered models

with zero lead times, that are significantly easier to analyze. One major challenge is that

with positive lead times, each order placed has a prolonged impact (for at least a lead time

of L periods) on the state of the system as well as the cost. Conventional online learning

algorithms in the literature cannot be readily adapted to such a stochastic system, due to

this lasting impact on decision-making and the complex system dynamics.

To tackle the aforementioned challenge, at a high-level, we develop a random cycle-

updating rule (on the base-stock levels) based on another simulated system running in par-

allel, so that the (prolonged) cost impact of revising a target base-stock level can be readily

quantified and compared between two feasible policies. Next, we highlight the main novelties

of our approach below.

(a) First, our SCU algorithm cyclically updates base-stock level in a subset of periods termed

the triggering periods. More specifically, the triggering periods are sequentially deter-

mined whenever another parallel auxiliary simulated system (operating under a lower

base-stock level) experiences no lost-sales for L consecutive periods, then it triggers the

beginning of a new cycle. The intuition is as follows. Consider two systems operating

under different base-stock levels, if both systems experience no lost-sales for L consec-

utive periods, then the difference in state between these two systems would be only in

the on-hand inventory, as both systems would share the same pipeline inventories. As

a result, we can effectively compare the costs of any two feasible policies within a cycle

(between two consecutive triggering periods). It can also be shown that the cost of
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any feasible base-stock policy within each cycle is convex with respect to the base-stock

level. Note that this needed convexity result does not hold for pre-determined fixed

cycles, where the initial state at the start of each cycle remains unknown.

(b) The second idea is that we introduce a new concept termed withheld on-hand inventory

in which we iteratively temporarily mark off some inventory units (according to a well-

defined rule). The purpose of introducing this concept is to trigger ordering decisions that

allow us effectively learn about demand. Note that we are not throwing these withheld

inventory units away, but rather we pretend them to be nonexistent when ordering

decisions are made. We use the withheld on-hand inventory to serve demand only when

all the other on-hand inventory has been consumed. The rationale is as follows. By

temporarily marking off these inventory units, we will order minimum extra inventory

to maintain no less on-hand inventory than the simulated system, thereby allowing us

to gather sufficient demand information to keep the simulated system running properly.

If it happens that the on-hand inventory is less than the simulated system, then when

our system experiences a lost-sales, we will be unable to determine if the simulated

system also experiences a lost-sale or not. While having the withheld on-hand inventory

is necessary to run the simulated system, we show that the additional average regret

introduced by the withheld on-hand inventory is bounded by O(
√
T ), so that it does not

affect the overall regret bound.

(c) The third idea is that we use a double-phase approach to obtain a biased but good cost

gradient estimator. The reason for introducing this new approach is that, with positive

lead times, whenever we revise the base-stock level, it is not possible to immediately

adjust the on-hand inventory level and therefore we may not have enough demand in-

formation to extract the cost gradient within a cycle. The cost gradient obtained by our

double-phase approach is subject to estimation bias. However, we show that this esti-

mation bias vanishes by establishing some convergence results for Markov chains with

continuous state space (or Harris chains).

There are key differences between the results in this chapter and Huh et al. (2009a). The

first difference is the cycles constructed: The cycles in Huh et al. (2009a) are pre-determined

and increasing in length (with cycle k containing d
√
ke periods), while the cycles in the SCU

algorithm have random lengths. The second difference is in the estimation of gradient: The

estimate of gradient in SCU is based on data from the second phase of each cycle, while

the estimate in Huh et al. (2009a) only uses demand information from one period of each

cycle (considering the fact that their cycle lengths are increasing). Result-wise, the main
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improvement is that the regret upper bound of the SCU algorithm matches the theoretical

lower bound of any learning algorithms, which closes the gap.

3.1.2 Outline and General Notation

The rest of this chapter is organized as follows. In §3.2, we formally describe the periodic-

review inventory systems with lost-sales and positive lead times under censored demand

information. In §3.3, we introduce the simulated cycle-update (SCU) algorithm and offer a

detailed discussion on the main ideas underlying its algorithmic design. In §3.4, we analyze

the performance of SCU and discuss how to change SCU to achieve a better numerical

performance when the demand is uncensored (see §3.4.4). In §3.5, we test the empirical

performance of SCU against the algorithm proposed in Huh et al. (2009a) as well as the

uncensored counterpart algorithm of SCU proposed in §3.4.4. Finally, we conclude the

chapter in §3.6.

For any real numbers x and y, we denote x+ = max{x, 0}. The indicator function

1(A) takes value 1 if A is true and 0 otherwise. The projection function is defined as

P[a,b](x) = min [b,max(x, a)] for any real numbers x, a, b.

3.2 Model Description

Consider a periodic-review inventory system with lost-sales, positive ordering lead times

and censored demand. The demands over periods {D1, D2, . . . , Dt, . . .} are i.i.d. continuous

random variables. Let t denote the period, t = 1, 2, . . ., and let D denote a generic one-period

demand, which is non-negative with E[D] > 0. The ordering lead time is a fixed integer

L ≥ 1. Contrary to the classical formulation, the firm has no access to the true demand

distribution a priori. The firm can only observe the past censored demand data and adjust

the ordering decisions on the fly.

For the lost-sales inventory system under consideration, any new order will stay in the

pipeline for L periods before arrival. Hence, together with the on-hand inventory, we need

to use an (L + 1)-dimensional vector to keep track of the inventory information. For every

period t, the starting inventory, or state of the system, is denoted by

xt = [qt−1, . . . , qt−L+1, It] ,

where It is the on-hand inventory at the beginning of period t, and qk is the order placed

in period k. Let yt = [qt, qt−1, . . . , qt−L+1, It] denote the inventory after ordering in period t.
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Clearly, all the entries of xt and yt are non-negative. For simplicity, let qk = 0 for all k ≤ 0.

For any feasible policy π, the sequence of events in each period t, t = 1, 2, . . . , is as

follows. (Note that all the states and decisions depend on π, but in general we shall make

the dependency implicit for notational simplicity. However, whenever necessary, we use xπt

and qπt to represent the state and ordering decision of policy π in period t.)

(i) At the beginning of each period t, the firm observes the starting inventory vector

xt = [qt−1, . . . , qt−L+1, It] , and makes a replenishment decision qt ≥ 0.

(ii) Then, the demand Dt is realized, and we denote its realization by dt. The demand is

satisfied to the maximum extent by on-hand inventory It. Since demand is censored,

the firm only observes sales quantity min(dt, It). Thus, if dt ≥ It, then the firm does

not know the exact demand.

(iii) At the end of the period, each remaining on-hand inventory unit incurs a per-unit

holding cost h, and each unsatisfied demand unit incurs a per-unit lost-sales penalty

cost p. As a result, the cost in period t, denoted by Cπ
t , is

Cπ
t = h(It − dt)+ + p(dt − It)+.

Note that the lost-sales quantity and its penalty cost (as an opportunity cost) are

unobservable to the firm due to demand censoring.

(iv) At last, the system proceeds to period t+ 1 with system state xt+1 given by

xt+1 =
[
qt, . . . , qt−L+2, It+1 = qt−L+1 + (It − dt)+] . (3.1)

The objective is to find an ordering policy, based on historical sales information, that

minimizes the expected average cost of the lost-sales inventory system with positive lead

times.

As seen from §4.1, even when the demand distribution is known, the computation of

an optimal policy is intractable due to the curse of dimensionality. When the demand

distribution is not known a prori, it becomes even harder if we use the optimal policy as

the benchmark. Hence in this chapter, we follow Huh et al. (2009a) to use the best base-

stock policy as the benchmark. The class of base-stock policies is parametrized by a single

parameter, the base-stock level S ≥ 0. Under a base-stock policy with a base-stock level S,

the ordering quantity in period t is qt =
(
S − It −

∑t−1
i=t−L+1 qi

)+
. Note that It+

∑t−1
i=t−L+1 qi

is the inventory position at the beginning of period t. Thus, essentially, the base-stock policy
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orders to raise the inventory position to S if the starting inventory position is less than S,

and orders nothing otherwise. We refer to Huh et al. (2009b) and Huh et al. (2009a) for the

asymptotic optimality and the effectiveness of base-stock policies.

In this chapter, we will design an adaptive learning inventory policy that only uses the

past sales data, and show that the expected average cost of the policy converges to that of

the optimal base-stock policy at rate O(1/
√
T ), which matches the theoretical lower bound.

3.3 Nonparametric Algorithm - Simulated Cycle-Update Policy

(SCU)

We present a learning algorithm which we refer to as simulated cycle-update policy (SCU

for short). Before introducing the SCU policy, we make the following assumption on the

optimal (full information) base-stock level S∗.

Assumption 3.1. There exist two known finite numbers D and D̄, such that (i) P (D ≤ D) =

c1 > 0, (ii) P
(
D ≥ D̄

)
= c2 > 0, and (iii) S∗ ∈ [(L+ 1) ·D, (L+ 1) · D̄].

Assumption 3.1(i)(ii) essentially means that the decision maker has some prior knowledge

about the tail demand distribution, and Assumption 3.1(iii) gives an upper and a lower bound

on the optimal base-stock level S∗, which is a predominant assumption in the nonparametric

learning literature in inventory management (see, e.g., Huh and Rusmevichientong (2009),

Huh et al. (2009a), Shi et al. (2015), Zhang et al. (2016)).

It is worthwhile noting that when c1 and c2 in Assumption 3.1(i)(ii) are sufficiently small,

then Assumption 3.1(iii) is automatically satisfied. The reasoning is as follows. Under a base-

stock policy, the firm orders min(dt, It) in each period. If demand is higher than D̄ with very

low probability, then the ordering quantity is higher than D̄ with very low probability. As a

result, the total pipeline inventories should be lower than L · D̄ with very high probability.

Also, the firm would like to keep the on-hand inventory lower than D̄ to avoid a high holding

cost. Hence, the optimal base-stock level is not likely to be higher than (L+1) ·D̄. Similarly,

if the demand is lower than D with very low probability, then the optimal base-stock level

is not likely to be lower than (L + 1) ·D. For notational convenience, we let S , (L + 1)D

and S̄ , (L+ 1)D̄.

3.3.1 Random Cycles, the Simulated System, and the Function G

One of the main challenges in designing our algorithm is that the total cost of the system

cannot be readily written in a form that is amenable for online optimization. To overcome
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this, our first step is to divide the time periods into appropriately designed learning cycles,

and then update the inventory target levels from cycle to cycle (instead of from period to

period). That is, we use the (censored) demand information collected from one particular

cycle to update the base-stock level for its subsequent cycle.

Random cycles based on the simulated system. As its name suggests, the SCU

algorithm is designed based on a concurrently simulated inventory system. This system is

run in the background and it implements a base-stock policy S where S = (L + 1)D. For

convenience, we shall refer to this simulated system as the simulated S-system. In what

follows, we shall define a sequence of cycles using the simulated S-system; and the SCU

algorithm updates the base-stock level at the beginning of each cycle using data collected

from the SCU-system in the previous cycle.

Specifically, we define a “triggering event” as the event that simulated S-system expe-

riences no stockouts for L consecutive periods. We call the period after a triggering event

a triggering period. Let tk denote the k-th triggering period, and for convenience, we let

period 1 be the first triggering period. Mathematically, the triggering periods are defined by

t1 = 1, tk+1 = min
{
n
∣∣∣ n ≥ tk + L, ISi ≥ Di, for all n− L ≤ i < n

}
.

Note that in this definition, once a triggering period is found, it resets the counter for the

consecutive number of stockout periods to zero. Huh et al. (2009a) have shown that, the

on-hand inventory of a lost-sales inventory system with positive lead times is non-decreasing

in its base-stock levels. This implies that, if t is a triggering period, then it is also a triggering

period for the inventory system operating under any base-stock policy S ≥ S, and therefore

the pipeline inventory under any base-stock policy S ≥ S is (dt−1, dt−2, . . . , dt−L).

The cycles are defined as follows: Let τk be the first period of cycle k, k = 1, 2, . . .,

then τ1 = t1 = 1, and for k > 1, τk = t2(k−1). That is, the first cycle starts in period 1,

and starting from the second cycle, each cycle contains two phases, and each phase begins

with a triggering period. Let τ ′k denote the first period of the second phase of cycle k, then

τ ′k = t2k−1, k = 2, 3, . . ., as depicted in Figure 3.1. Note that the cycle length is a priori

random, it is independent of the learning algorithm.

The function G. Next, we define an important function, G(S, a, b), which denotes the

total cost from period a to period b (both included), by using a base-stock level S ≥ S, and

its starting state is specified as follows: If a ≥ L+1 then we assume that the starting state in

period a is
[
da−1, da−2, . . . , da−L, S −

∑a−1
i=a−L di

]
, otherwise the starting state is [S, 0, . . . , 0] in

period a. Note that the function G(S, a, b) also clearly depends on (da−1, da−2, . . . , da−L), but
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τ1 τ2 τ3 τ4 
τ2' τ3' τ4' 

Figure 3.1: For k ≥ 1, tk is a triggering period, and τk and τ ′k are first periods of the two
phases of cycle k ≥ 2.

we will make this dependency implicit for notational simplicity. We shall only consider the

vector (da−1, da−2, . . . , da−L) satisfying
∑L

t=1 da−t ≤ S. By Theorem 8 in Janakiraman and

Roundy (2004), we know that G(S, a, b) is convex in the base-stock level S. Let ∇G(S, a, b)

denote the partial gradient of G(S, a, b) with respect to S. The computation of ∇G(S, a, b)

is discussed in §3.3.2.

3.3.2 The Simulated Cycle-Update (SCU) Policy

With the necessary definitions in place, we present the detailed SCU algorithm. For

convenience, we let τ ′1 = τ1 = 1. For any vector x, we use
∑

x to denote the sum of all

its entries, i.e.,
∑

x =
∑L

i=1 xi if x = (x1, . . . , xL). Let the step-size ηk = γ/
√
k for all

k = 1, 2, . . ., for some positive constant γ.

The algorithm below involves a new concept called the withheld inventory – in each

period t, the algorithm divides the total on-hand inventory ISCUt into two parts, namely,

the withheld on-hand inventory denoted by Ît
SCU

, and the regular (or non-withheld) on-

hand inventory denoted by ĨSCUt . The detailed evolution of the withheld inventory is given

explicitly in the description of the algorithm. We shall defer discussing the main ideas behind

this concept in §3.3.3.

Algorithm 1: Simulated Cycle-Update Algorithm (SCU)

Step 0 (Initialization):

• Start with an arbitrary target base-stock level S1 ∈ [S, S̄].

• Initialize the withheld on-hand inventory ÎSCU1 = 0.

• Set the initial inventory of both the SCU- and the simulated S- systems to xSCU1 =

xS1 = 0.
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• Set the counter for consecutive no lost-sales events for the simulated system ψ = 0.

(Recall that cycles are defined using the simulated S-system. In our SCU algorithm,

we use ψ to record the number of consecutive no stockout periods in the simulated

S-system. When ψ reaches L, it signals a triggering period and ψ is reset to 0.)

Step 1: For the first cycle k = 1 starting with period t = 1, do the following.

1(a). Order qSCUt for the SCU system and qSt for the simulated S system as follows:

qSCUt =
(
Sk −

∑
xSCUt + ÎSCUt

)+

, (3.2)

qSt =
(
S −

∑
xSt

)+

. (3.3)

The ordering decision in the SCU-system is given as follows: It implements the modified

base-stock policy Sk based on the regular inventory only (by temporarily ignoring the

withheld inventory ÎSCUt ). More precisely, since the regular (or non-withheld) inventory

position is
∑

xSCUt − ÎSCUt , we order qSCUt of (3.2) to raise the regular inventory to Sk.

1(b). Observe the sales quantity min(dt, I
SCU
t ), and update the withheld on-hand inventory

by

ÎSCUt+1 :=

[
ÎSCUt −

(
min(dt, I

SCU
t )− ĨSCUt

)+
]+

. (3.4)

The demand fulfillment rule for the SCU-system is given as follows: It first uses the

regular (non-withheld) on-hand inventory to satisfy demand, and then uses the with-

held on-hand inventory to satisfy demand (only after the regular on-hand inventory

has been fully consumed). Thus, we update the withheld on-hand inventory following

(3.4).

1(c). Update the states of both the SCU system and the simulated S system following the

system dynamics (3.1), with the demand in period t for the simulated S-system being

replaced by min(dt, I
SCU
t ).

1(d). If there is no lost-sales in the simulated S system, set the counter for consecutive no

lost-sales events for the simulated system ψ := ψ + 1. Otherwise reset ψ := 0.

1(e). If ψ = L, then label period t + 1 as a triggering period and reset ψ = 0. The sales

data is used to compute ∇G(S1, 1, t) following a well-defined subroutine presented in

§3.3.4, and update the base-stock level S2 for the second cycle as

S2 = P[S,S̄] (S1 − η1∇G(S1, 1, t)) .
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Set τ2 := t+ 1, and update the withheld on-hand inventory by

ÎSCUτ2
:=
(
ÎSCUτ2

− (S2 − S1)
)+

,

and proceed to Step 2 with k = 2. On the other hand, if ψ < L, then repeat procedures

1(a) to 1(e) with t := t+ 1 if t < T , and stop otherwise.

Step 2: For cycles k ≥ 2, each cycle contains two phases.

Phase 1: Start from period t = τk.

2(a) Conduct procedures 1(a)–1(d) in Step 1.

2(b) If ψ = L, then set τ ′k = t + 1 and ψ = 0, and proceed to Phase 2. Otherwise, repeat

2(a) with t := t+ 1 if t < T , and stop otherwise.

Phase 2: Start from period t = τ ′k.

2(a’) Conduct procedures 1(a)–1(d) in Step 1.

2(b’) If ψ = L, then set τk+1 := t+ 1. Update the target base-stock level for the next cycle

as

Sk+1 = P[S,S̄] (Sk − 2ηk∇G (Sk, τ
′
k, t)) ,

Note that here we double the gradient of the second phase to estimate the gradient of

the whole cycle. We then update the withheld on-hand inventory by

ÎSCUt :=
(
ÎSCUt − (Sk+1 − Sk)

)+

.

Set ψ := 0, k := k + 1, and repeat Step 2. If ψ < L, then repeat 2(a’) with t := t + 1

if t < T , and stop otherwise.

This concludes the description of the SCU algorithm.

Example 3.2. In Figure 3.2, we use a simple example to illustrate how the dynamics of the

SCU-system evolves and how it differs from the G-system. In this example, the lead time

L = 2. We simulate the S-system to determine the cycle length. Consider two cycles and

suppose S2 > S1. In this case, the SCU policy will order more in the first period of cycle 2 to

increase the inventory position from S1 to S2. Compared with the G-system, the inventory

vectors of the two systems differ by 1 unit until τ ′2. In the fourth cycle, we have S4 < S3. In

this case, the SCU policy marks 2 units of on-hand inventory as the withheld inventory. We
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can see that the withheld inventory amount keeps dropping, and apart from the withheld

inventory, the two systems are the same. Note that in the second period of this cycle, by

ignoring the withheld on-hand inventory, the SCU policy orders 4 (instead of 5), which is

the same as what the G-system orders.

Cycles

Does S system have lost-sales?_

d=4 d=1 d=3 d=2

SCU system

d=4 d=1 d=3 d=2

Suppose S2 > S1

Suppose S4 < S3

d=5 d=1 d=2 d=7 d=0

d=5 d=1 d=2 d=7 d=0

Pipeline inventory 
that is just ordered

Pipeline inventory 
that is ordered 
last period

Regular on-hand 
inventory

Withheld on-hand
inventory

G system

SCU system

G system

1 2 '2 3 '3 4 '4 5

2 '2 3

4
'4 5

Figure 3.2: An graphical illustration of SCU policy with L = 2. For illustration purpose, all
the numbers are integers

3.3.3 Main Ideas of the SCU Algorithm

The SCU algorithm involves several main ideas, and we have discussed one of them,

which is the construction of random cycles based the simulated system in §3.3.1. In the

following, we will discuss the rest of the challenges in the algorithmic design and how we

resolve them.

Simulation of the S-system. We have described the simulated S-system in §3.3.1,

and the main purpose of this simulated system is to help decide triggering periods and form
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cycles.

An immediate important question is whether the simulated S-system can be correctly

simulated. Since the SCU algorithm is implemented under sales data (or censored demand),

we do not know the exact demand in a period whenever a stockout occurs. For example,

if the on-hand inventory level in our SCU-system in a period is zero, we do not know the

true demand for this period since the sales is always zero regardless of demand. In this case,

we cannot simulate the S-system in question (as the system gives us insufficient demand

information). This shows that we must design the learning algorithm in such a way that it

yields the necessary demand information for simulating the S-system correctly.

A sufficient condition for achieving the correct simulation of the S-system is to ensure

that our SCU-system always has no lower on-hand inventory than the simulated S-system.

To see that, suppose the states of our system and the simulated S-system at the beginning

of period t are
(
qat−1, q

a
t−1, . . . , q

a
t−L+1, I

a
t

)
, a = SCU , S, respectively. Then, the on-hand

inventory level at the beginning of period t+ 1 will be

Iat+1 = qat−L+1 + (Iat − dt)
+ , a = SCU, S.

In general, we may not be able to simulate the S system using only the sales quantity

min(ISCUt , dt). However, if ISCUt ≥ ISt , then the S-system can be correctly simulated

because

ISt+1 = qSt−L+1 +
(
ISt − dt

)+

= qSt−L+1 +
[
ISt −min

(
dt, I

SCU
t

)]+

.

This shows that, under the condition ISCUt ≥ ISt for all t, the S-system can be correctly

simulated by pretending that the demand in period t is equal to the sales quantity in the

SCU-system. This sufficient condition is will be carefully embedded in our algorithmic design,

which will be formally established in Lemma 3.6 in §3.4.2.

The bridging G-system, and its connection with the SCU-system. We introduce

an auxiliary (non-implementable) bridging system, which we refer to as the G-system. The

G-system is defined as follows: i) For cycle k = 1, 2, . . ., it implements base-stock policy Sk

as prescribed by the algorithm (which starts in period τk and ends in period τk+1 − 1); and

ii) its state at the beginning of period 1 is set at (S1, 0, . . . , 0), and its state at the start of

cycle k ≥ 2 (i.e., in period τk) is artificially set as(
dτk−1, dτk−2, . . . , dτk−L, Sk −

τk−1∑
t=τk−L

dt

)
.
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Note that the main feature in the G-system is that, its inventory state at the beginning

of each cycle is artificially set (hence not implementable). This change of state essentially

removes the end-of-cycle effect (from the previous cycle) when implementing a different base-

stock policy for the new cycle. Thus the total cost of the G-system, with the total number

of cycles denoted by N , can be written as

N∑
k=1

G(Sk, τk, τk+1 − 1). (3.5)

It is well-known that dynamic optimization problem with cost function (3.5) is amenable

for online algorithm design (see, e.g., Hazan (2015)). Our algorithm will be based on the

stochastic gradient descent method for minimizing objective function (3.5) of the G-system,

which requires the gradient evaluation of G with respect to Sk.

However, there are still several significant challenges in evaluating the G-system based

on the (censored) demand data collected from the SCU-system, due to the difference in

their starting states. Our learning algorithm modifies, using historical (censored) demand

information, the base-stock level from cycle to cycle. Clearly, the prescribed new base-stock

level for the next cycle can be either higher or lower than the previous base-stock level, each

creating critical issues. This is because, due to positive lead times, when a new base-stock

level is suggested by the SCU algorithm for the following cycle, there is a random transition

time before this new base-stock policy can be fully implemented (with the desired starting

state).

Now, suppose that the base-stock level for period τk − 1 is Sk−1, and that the SCU

algorithm recommends a new base-stock policy Sk in period τk for the next cycle. In the

following, we discuss the main issues encountered for the two cases, Sk < Sk−1 and Sk ≥ Sk−1.

To tackle the difficulties arising in the first case Sk < Sk−1, we shall introduce a new concept

called the withheld inventory. To tackle the difficulties arising in the second case Sk ≥ Sk−1,

we adopt a double-phase gradient estimation approach.

The concept of withheld inventory. In the first case where Sk < Sk−1, the inventory

position of the SCU-system in the first few periods of cycle k may be higher than Sk even if

no order is placed. In this case, if we blindly and naively implement the base-stock policy Sk,

we may suffer from a severe consequence that the S-system may not be simulated correctly.

Indeed, under this case, the desired order quantity at the beginning of cycle k may be 0 (if

the inventory position after satisfying demand in period τk − 1 is still no lower than Sk).

However, ordering 0 in period τk will affect the on-hand inventory level of the SCU-system

at the start of period τk +L. If, for instance, the on-hand inventory level of the SCU-system
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at the beginning of period τk + L is 0, then it will reveal no demand information for period

τk+L. As a consequence, as we discussed earlier in §3.3.3, the S-system cannot be simulated

correctly in period τk + L. This shows that we cannot naively follow the exact base-stock

policy Sk, but need to revise the policy in such a way that the sufficient demand information

for simulating the S-system can be yielded.

Our approach to resolve this issue is to order the minimum but sufficient quantity to

guarantee the correct simulation of the S-system, but mark any excess on-hand inventory

as what-we-define withheld inventory. (Note that the detailed formulae for the withheld

inventory and its evolution are given in the description of the SCU algorithm.) At a high-

level, in each period t, we shall divide the total on-hand inventory ISCUt into two parts,

namely, the withheld on-hand inventory denoted by Ît
SCU

, and the regular (or non-withheld)

on-hand inventory denoted by ĨSCUt . When making replenishment decisions in cycle k, we

operate the base-stock policy Sk based on the regular inventory position only. More precisely,

the order quantity is given in (3.4), the difference between Sk and the regular inventory

position (rather than the total inventory position). Also, when satisfying demands, the

withheld inventory is used only when the regular on-hand inventory has been exhausted.

The proposed (modified) base-stock policy based only on regular (or non-withheld) in-

ventory position enables the system to gradually adjust its base-stock level from Sk−1 down

to Sk. This modification is essential because it ensures that the SCU system orders enough

(more than what the S-system orders) in each period, in order to gather sufficient demand in-

formation that guarantees the correction simulation of the S-system. Note that when all the

withheld on-hand inventory is consumed by demand, the SCU-system will coincide with the

G-system. The exact connection between the SCU-system with the withheld inventory and

the G-system will be formally established in Lemma 3.7 in §3.4.2, which plays an essential

role in comparing costs between our SCU algorithm and the optimal base-stock policy.

The double-phase gradient estimation. In the second case where Sk ≥ Sk−1, because

theG-system artificially sets its on-hand inventory level to Sk−
∑τk−1

t=τk−L dt at the beginning of

period τk, this particular on-hand inventory level could be higher than the on-hand inventory

level of the SCU-system at the beginning of cycle k. At the beginning of period τk, the

inventory vector of the SCU-system, having just experienced no stockouts for L consecutive

periods, is (
dτk−1, dτk−2, . . . , I

SCU
τk

= Sk−1 −
τk−1∑

t=τk−L

dt + Ît

)
.
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This is different from the starting state of the G-system, which according to our definition is(
dτk−1, dτk−2, . . . , Sk −

τk−1∑
t=τk−L

dt

)
.

Since the on-hand inventory level of the G-system could be higher than that of the SCU-

system in period τk, it leads to the following critical issue: Due to demand censoring and the

same reasoning as in the first case, we may not able to obtain sufficient demand information

from the SCU-system to compute the total cost, nor its gradient, of the G-system during

periods τk, τk + 1, . . . , τ ′k − 1 with respect to the base-stock level Sk. This is precisely the

reason why we need to use two phases for each cycle k ≥ 2 in our algorithm design: In

the triggering period τ ′k, having just experienced no stockouts for L consecutive periods, the

G-system and our SCU-system become identical during the second phase if all the withheld

inventory in the SCU-system is ignored.

Regardless of Sk ≤ Sk−1 or Sk ≥ Sk−1, we will show in Lemma 3.7 in §3.4.2 that during

the second phase of each cycle, the SCU-system always has no less on-hand inventory than

that of the G-system . This enables us to compute (and simulate) the total cost of the

G-system during the second phase of cycle k as well as its gradient with respect to Sk.

Thus, we can construct an estimate of the gradient of the entire cycle cost based on the

demand data collected from the second phase. This clearly gives a biased estimation of the

gradient. Nevertheless, we will show in §3.4.3 that the error of this estimation is very small

in expectation and it vanishes at k grows.

3.3.4 Computation of Gradient ∇G(S, a, b)

Let It(S) and qt(S) denote the on-hand inventory and the ordering quantity in period t

under the base-stock policy S, respectively. Also let I ′t(S) and q′t(S) denote their respective

gradients with respect to the base-stock level S. Since

∇G(S, a, b) =
b∑
t=a

[
h · 1 (I ′t(S) = 1, Dt < It(S))− p · 1 (I ′t(S) = 1, Dt > It(S))

]
,

we only need to keep track of It(S) and I ′t(S) from period a to b. The inventory level It(S)

is easy to compute. For I ′t(S), it follows from Theorem 1 in Huh et al. (2009a) that

q′t(S) = I ′t−1(S) · 1 [Dt−1 > It−1(S)] , (3.6)

I ′t(S) = 1−
∑t

i=t−L+1 q
′
i(S), (3.7)
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Thus, I ′t(S) and q′t(S) can be computed recursively if we can evaluate 1 [Dt−1 > It−1(S)] and

have the necessary boundary conditions.

In the SCU algorithm, we need to compute the gradient ∇G(Sk, τ
′
k, τk+1 − 1) of the G-

system (not the SCU-system). Note that∇G(Sk, τ
′
k, τk+1−1) represents the partial derivative

with respect to Sk assuming τ ′k and τk+1 are fixed. The boundary conditions for the G-

system are (qGt )′(S) = 0 for t < τ ′k and (qGτ ′k
)′(S) = 1. To evaluate 1

[
Dt−1 > IGt−1(Sk)

]
for

τ ′k ≤ t < τk+1 − 1, we need the demand information Dt−1 in relation to IGt−1(Sk). Since

the only available demand data is from the SCU-system, the comparison between Dt−1 and

IGt−1(Sk) is possible only when ISCUt−1 ≥ IGt−1. This is true, according to our algorithm design

and Lemma 3.7, for the second phase of each cycle. Thus, the gradient ∇G(Sk, τ
′
k, τk+1 − 1)

can be readily computed.

3.4 Performance Analysis and Discussions

We first formally define regret. Given a sample path ω = {d1, d2, . . . , } of the demand

process, the T -period regret of the SCU algorithm is defined as the difference between the

clairvoyant optimal cost (under full information) and the cost incurred by SCU over T

periods. More specifically,

RSCU
T (ω) =

T∑
t=1

(
CSCU
t (ω)− CS∗

t (ω)
)
,

where CSCU
t (ω) is the cost incurred in period t by our nonparametric (closed-loop) SCU

algorithm, and CS∗
t (ω) is the cost incurred in period t by the system operated under the

(clairvoyant) optimal base-stock level S∗. The average regret of SCU algorithm is E
[
RSCU
T

]
,

and the average regret per period is defined as E
[
RSCU
T

]
/T .

3.4.1 Main Result

We formally state the main theoretical result of this chapter below.

Theorem 3.3. Suppose Assumption 3.1 holds. For each problem instance of the lost-sales

inventory system with positive lead times and censored demand, the expected regret of the

SCU algorithm is upper bounded by O(
√
T ). That is, there exists some positive constant K,

such that the expected regret of SCU algorithm satisfies

E
[
RSCU
T

]
≤ K
√
T , for all T ≥ 1.
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In other words, the average regret per period approaches 0 at the rate of O(1/
√
T ).

We also show that the regret is tight, which is formally stated below.

Proposition 3.4. Suppose T > 2. Even with uncensored demand, there exist problem

instances such that the expected regret for any learning algorithm is lower bounded by Ω(
√
T ).

The problem instance with continuous demand constructed for Proposition 3.4 is very

similar to the discrete demand example constructed by Besbes and Muharremoglu (2013).

Following their arguments, we provide the proof of Proposition 3.4.

Proof. We provide an example with continuous demand and show that its regret under any

learning policy is lower bounded by Ω(
√
T ). This example is a slight modification of the

discrete demand example provided in Besbes and Muharremoglu (2013), and the lower bound

proof also follows their argument.

Example 3.5. Consider an inventory control problem with lost sales and h = p = 1, L = 0

and T > 2. The demand follows one of two potential distributions, with the cdf Fa and Fb

given by

Fa(x) =


(50− 100√

T
)x for 0 ≤ x < 0.01,

1
2
− 1√

T
for 0.01 ≤ x < 1,

(50 + 100√
T

)(x− 1) + 1
2
− 1√

T
for 1 ≤ x < 1.01,

1 for x ≥ 1.01,

and

Fb(x) =


(50 + 100√

T
)x for 0 ≤ x < 0.01,

1
2

+ 1√
T

for 0.01 ≤ x < 1,

(50− 100√
T

)(x− 1) + 1
2

+ 1√
T

for 1 ≤ x < 1.01,

1 for x ≥ 1.01

Then, the optimal base-stock level for Fa, denoted by S∗a, is within (0, 0.01), and the opti-

mal base-stock level for Fb , denoted by S∗b , is within (1, 1.01). We prove that, even with

observable demand, no policy can achieve a worst-case expected regret better than Ω(
√
T ).

Let π be an arbitrary policy. The worst-case expected regret of π is bounded from below

by

(h+ p)
0.98

2
√
T

max

{
T∑
t=1

Pπa
(
Sπt (ω) >

1

2

)
,

T∑
t=1

Pπb
(
Sπt (ω) ≤ 1

2

)}
,
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which can be further bounded from below by

(h+ p)
0.98

4
√
T

T∑
t=1

max

{
Pπa
(
Sπt (ω) >

1

2

)
, Pπb

(
Sπt (ω) ≤ 1

2

)}
. (3.8)

By Theorem 2.2 in Tsybakov (2009), we have

max

{
Pπa
(
Sπt (ω) >

1

2

)
,Pπb

(
Sπt (ω) ≤ 1

2

)}
≥ 1

4
· exp{−Kt−1(Pa,Pb)}, (3.9)

where

Kt(Pa,Pb) = Ea

[
log

Pa(D1, . . . , Dt)

Pb(D1, . . . , Dt)

]
is the Kullback-Leibler divergence (see Kullback and Leibler (1951)) between the distribu-

tions of {D1, . . . , Dt} under Fa and under Fb, which is equal to

Kt(Pa,Pb) = t

[(
1

2
+

1√
T

)
log

(
1 + 2√

T

1− 2√
T

)
+

(
1

2
− 1√

T

)
log

(
1− 2√

T

1 + 2√
T

)]
.

It is a simple exercise to show that 2x ≤ log 1+x
1−x ≤ 2x+2x2 for x ∈ (0, 1/2). Substituting

the inequality to the equation above we obtain Kt(Pa,Pb) ≤ 7t
T
. Plugging this into (3.9) yields

max

{
Pπa
(
Sπt (ω) >

1

2

)
, Pπb

(
Sπt (ω) ≤ 1

2

)}
≥ 1

4
exp

{
−7(t− 1)

T

}
≥ 1

4
e−7.

Consequently, (3.8) is bounded from below by

(h+ p)
0.98

4
√
T

T∑
t=1

1

4
e−7 =

2 · 0.98

16
e−7
√
T .

This completes the proof of Proposition 3.4.

3.4.2 Building Blocks for Regret Analysis

To prove our main result (i.e.,Theorem 3.3), we first need to establish several important

building blocks for the regret analysis, which are presented below.

The first result ensures that the cycles used in designing the SCU algorithm are well

defined: By maintaining no less on-hand inventory in SCU-System than in the S-system,

the system dynamics of the S-system can always be correctly simulated.
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Lemma 3.6. The SCU-system always has no less on-hand inventory than the simulated

S-system.

Proof. It suffices to prove that for every sample path and in every period, after dropping

the withheld on-hand inventory, every entry of the inventory vector of the SCU-system is no

lower than that of the simulated S-system.

From Theorem 1 in Huh et al. (2009a), we know that the inventory vector of a system

operating under a base-stock level S ≥ S is always no lower than that of the S-system in

all the entries. During the first cycle, since the SCU-system is the same as the base-stock

system with S1 ≥ S, the result clearly holds for the first cycle.

We prove the result for other periods using induction. Suppose the claim holds true from

the first cycle to the (k− 1)-th cycle for some k ≥ 2, which is from period 1 to period τk− 1.

Then, we want to prove that the result is also true from period 1 to period τk+1 − 1.

Since the S-system has no lost-sales from period τk − L to period τk − 1, and the SCU-

system has more on-hand inventory than the S-system in these periods, then the pipeline

inventory of the SCU-system at τk must be of the form [·, dτk−2, . . . , dτk−L], where the first

entry (which is the order quantity in period τk) remains to be specified. There are two

possible cases: 1) ISCUτk
≥ ISkτk = Sk −

∑τk−1
i=τk−L di and 2) ISCUτk

< ISkτk .

In Case 1), the SCU algorithm marks Iτk − Sk +
∑τk−1

i=τk−L di amount of the on-hand

inventory as withheld and orders dτk−1 in period τk. By the SCU algorithm, the regular (or

non-withheld) inventory vector during this cycle in the SCU-system is the same as that of

the base-stock system with the base-stock level Sk, which we shall refer to as the Sk-system.

Now, comparing the Sk-system and the S-system at the beginning of period τk, the only

difference lies in their on-hand inventory levels, namely, Sk−
∑τk−1

i=τk−L d` and S−
∑τk−1

i=τk−L d`,

which are achieved in period τk when both systems started out empty in period 1 and

followed their own base-stock policies. By the monotonicity result in Theorem 1 of Huh

et al. (2009a), this implies that the inventory vector for the Sk-system is no lower than that

of the S-system between period τk and period τk+1 − 1. Hence, the result follows from the

fact that the inventory vector of the SCU-system is no lower than that of the Sk-system, and

that the inventory vector of the Sk-system is no lower than that of the S-system during the

k-th cycle.

In Case 2), the SCU algorithm orders

dτk−1 + Sk −
τk−1∑
i=τk−L

di − Iτk = Sk −
τk−2∑
i=τk−L

di − Iτk
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in period τk to bring the inventory position up to Sk. Now consider another system that

starts in period τk with the same inventory vector as the SCU-system, but implements

a base-stock policy Sk−1 between period τk and period τk+1 − 1. With a slight abuse of

notation, call the latter system the Sk−1-system. Then, it can be seen that the inventory

vector of the SCU-system between period τk and period τk+1 − 1 is always no lower than

that of the Sk−1-system. On the other hand, by applying Theorem 1 in Huh et al. (2009a) to

the Sk−1-system and similar arguments as in Case 1) above, we can show that the inventory

vector in the Sk−1-system is no lower than that of the S-system between period τk and period

τk+1 − 1. This proves that the inventory vector of the SCU-system is no lower than that of

the S-system during cycle k.

Thus, the result holds for both cases during the k-th cycle. This completes the induction

argument and the proof of Lemma 3.6.

The next result ensures that the gradient of the G-system, which is used in the SCU

algorithm, can indeed be computed using (censored) demand data collected from the SCU-

system. Recall that only the gradient in the second phase of each cycle k ≥ 2 is computed

and used in the SCU algorithm.

Lemma 3.7. For the SCU algorithm, in each period of the second phase of any cycle k ≥ 2,

the SCU-system has no less on-hand inventory than the G-system.

Proof. We consider the following two cases: 1) ISCUτk
≥ ISkτk , and 2) ISCUτk

< ISkτk , separately.

First suppose that ISCUτk
≥ ISkτk . In this case, it follows from ÎSCUτk

:=
(
ÎSCUτk

−(Sk−Sk−1)
)+

that there are two sources of excess withheld on-hand inventory at the beginning of cycle k in

the SCU-system. The first is inherited from the previous cycle, and the second is the newly

created ones due to a decrease in the target base-stock level. Since the pipeline inventories

at the beginning of cycle k in both SCU- and G-systems are equal (as both experienced

no stockouts for L consecutive periods), the SCU-system and the G-system would be the

same in period τk if the withheld on-hand inventory is ignored. Furthermore, since the

withheld on-hand inventory is not counted when making ordering decisions in SCU-system,

the ordering quantities of the two systems would be the same within this cycle, and the SCU

system will always have no lower on-hand inventory than the G-system for each period in

both the first and second phase of cycle k.

Next suppose that ISCUτk
< ISkτk . In this case, the sales data collected from SCU-system

may not allow us to simulate the G-system as it has lower on-hand inventory in period τk

(and maybe also in some subsequent periods). Since both SCU- and G-systems implement

the base-stock level Sk, it follows from Lemma 3.6 above and Huh et al. (2009a) that both
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systems would have experienced no stockouts for L consecutive periods before the triggering

period τ ′k. This implies that, the inventory state of SCU- and G- systems, after placing order,

will be both equal to
(
dτk−1, . . . , dτ ′k−L, Sk −

∑τ ′k−1

t=τ ′k−L
dt

)
. This show that the SCU- and G-

systems would be identical during the second phase of cycle k, and in particular, they will

have the same on-hand inventory level in each period of the second phase of cycle k.

Combining the two cases, we complete the proof of Lemma 3.7.

The following two lemmas delineate the relationships between demand characteristics

and lost-sales events in the lost-sales inventory system, and they will play important roles in

the proof of our main result. They also explain why Assumption 3.1 is needed for the main

result to hold.

Lemma 3.8. For the simulated S-system, if dk ≤ S
L+1

for consecutive 2L periods k = t to

t+ 2L− 1, then there is no lost-sales in the simulated S-system from period t+ L to period

t+ 2L− 1.

Proof. Denote the lost-sales from period a to period b in S system as mS[a, b], then under

the stated condition, we have, for any k = t+ L, . . . , t+ 2L− 1,

ISk = S − d[k−L,k−1] +mS[a, b] ≥ S − d[k−L,k−1] ≥
S

L+ 1
≥ dk.

This implies that there will be no lost-sales from period t+ L to t+ 2L− 1.

Lemma 3.9. For the SCU-system, if dk >
S̄
L+1

for k = t, . . . , t + L, then there is at least

one lost-sales period from period t to period t+ L.

Proof. First note that by the design of the SCU algorithm, the inventory position of the

SCU-system is never more than S̄.

We prove by contradiction. Suppose the opposite it true, i.e., dk >
S̄
L+1

for k = t to t+L,

but there is no lost sales from period t to period t + L. Because the inventory position at

the beginning of period t is at most S̄ and all will have arrived by period t+L, the on-hand

inventory level at the beginning of period t + L is no more than S̄ − S̄L
L+1

= S̄
L+1

. Because

dt+L >
S̄
L+1

, this would imply that a lost-sale event occurs in period t+ L, which leads to a

contradiction. This proves Lemma 3.9.

Following Lemmas 3.8 and 3.9, we define, for any period t, two random variables:

t = min
k

{
k ≥ t+ 2L− 1 : max

k−2L+1≤i≤k
di ≤

S

L+ 1

}
, (3.10)

t̄ = min
k

{
k ≥ t+ L− 1 : min

k−L+1≤i≤k
di ≥

S̄

L+ 1

}
. (3.11)
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By Assumption 3.1, both t and t̄ are well-defined. In fact, t − t and t̄ − t are known as

geometric random variables of orders 2L and L respectively (see Philippou et al. (1983)).

They represent the number of periods it takes after t such that demand is no more than

S/(L+ 1) for 2L consecutive periods for the first time, and no less than S̄/(L+ 1) for L

consecutive periods for the first time, respectively. By Lemma 3.8, between t and t, there

must exist L consecutive periods such that the S-system has no lost-sales. Similarly, by

Lemma 3.9, between t and t̄, the SCU-system must have at least one lost-sales period.

The following lemma discusses the impact of perturbing the initial inventory vector in

an inventory system that implements a base-stock policy, and it will be used in comparing

the SCU- and G- systems during a cycle. It states that the perturbation does not amplify

during the cycle.

Lemma 3.10. Fix a sample path of demand process and consider two systems, referred

to as the original system and β-system respectively, both operating the same base-stock

policy S, but their states at the beginning of the first period are [q1, q0, . . . , q2−L, I1] and

[q1 + β, q0, . . . , q2−L, I1 − β], with 0 ≤ β ≤ I1. Then, we have
∣∣∣Iot − Iβt ∣∣∣ ≤ β for all t ≥ 1,

where Iot and Iβt are the on-hand inventory levels of the original system and the β-system,

respectively.

Proof. Since

|Iot − I
β
t | = (Iot − I

β
t )+ + (Iβt − Iot )+,

and at most one term on the right hand side can be positive, it suffices to prove, for all t ≥ 1,

(Iot − I
β
t )+ ≤ β, (Iβt − Iot )+ ≤ β.

In the following, we prove, by induction, that much stronger results hold: For all t ≥ 1,

(Iot − I
β
t )+ +

L−1∑
i=0

(qot−i − q
β
t−i)

+ ≤ β, (3.12)

(Iβt − Iot )+ +
L−1∑
i=0

(qβt−i − qot−i)+ ≤ β. (3.13)

By our definition of the original and β-system, (3.12) and (3.13) are clearly satisfied when

t = 1. Suppose (3.12) and (3.13) hold at t, we will show that (3.12) and (3.13) continue to

hold at t+ 1.
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We first focus on (3.12). By the system dynamics of base-stock policy S, we have

(Iot+1 − I
β
t+1)+ +

L−1∑
i=0

(qot+1−i − q
β
t+1−i)

+ (3.14)

=
(
(Iot − dt)+ − (Iβt − dt)+ + qot−L+1 − q

β
t−L+1

)+
+

L−2∑
i=0

(qot−i − q
β
t−i)

+ +
(

min(Iot , dt)−min(Iβt , dt)
)+
.

We prove (3.12) holds by considering four cases separately: 1) dt ≥ max(Iot , I
β
t ), 2)

dt ≤ min(Iot , I
β
t ), 3) Iot ≤ dt ≤ Iβt , and 4) Iβt ≤ dt ≤ Iot .

Case 1): By (3.14), the left hand side of (3.12) at t+ 1 is

(
(Iot − dt)+ − (Iβt − dt)+ + qot−L+1 − q

β
t−L+1

)+
+

L−2∑
i=0

(qot−i − q
β
t−i)

+ +
[
min(Iot , dt)−min(Iβt , dt)

]+

= (qot−L+1 − q
β
t−L+1)+ +

L−2∑
i=0

(qot−i − q
β
t−i)

+ + (Iot − I
β
t )+

= (Iot − I
β
t )+ +

L−1∑
i=0

(qot−i − q
β
t−i)

+

≤ β,

where the inequality follows from the inductive assumption.

Case 2): In this case, we have, by (3.14),

(
(Iot − dt)+ − (Iβt − dt)+ + qot−L+1 − q

β
t−L+1

)+
+

L−2∑
i=0

(qot−i − q
β
t−i)

+ +
(

min(Iot , dt)−min(Iβt , dt)
)+

=
(
Iot − I

β
t + qot−L+1 − q

β
t−L+1

)+
+

L−2∑
i=0

(qot−i − q
β
t−i)

+

≤ (Iot − I
β
t )+ + (qot−L+1 − q

β
t−L+1)+ +

L−2∑
i=0

(qot−i − q
β
t−i)

+

= (Iot − I
β
t )+ +

L−1∑
i=0

(qot−i − q
β
t−i)

+

≤ β,

where the first inequality follows from (a+ b)+ ≤ a+ + b+ for any real numbers a and b, and

the second inequality follows from the inductive assumption.
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Case 3): This case can happen only when Iot ≤ Iβt . We have

(
(Iot − dt)+ − (Iβt − dt)+ + qot−L+1 − q

β
t−L+1

)+
+

L−2∑
i=0

(qot−i − q
β
t−i)

+ +
(

min(Iot , dt)−min(Iβt , dt)
)+

=
(
qot−L+1 − q

β
t−L+1 − (Iβt − dt)+

)+
+

L−2∑
i=0

(qot−i − q
β
t−i)

+

≤
L−1∑
i=0

(qot−i − q
β
t−i)

+

≤ β,

where the equality follows from min(Iot , dt)−min(Iβt , dt) ≤ 0 (and hence the last term is 0),

the first inequality follows from (a − b)+ ≤ a+ for any real numbers a and b ≥ 0, and the

second inequality follows from the inductive assumption.

Case 4): This last case can occur when Iot ≥ Iβt , and we have

(
(Iot − dt)+ − (Iβt − dt)+ + qot−L+1 − q

β
t−L+1

)+
+

L−2∑
i=0

(qot−i − q
β
t−i)

+ +
(

min(Iot , dt)−min(Iβt , dt)
)+

=
(
(Iot − dt) + qot−L+1 − q

β
t−L+1

)+
+

L−2∑
i=0

(qot−i − q
β
t−i)

+ + (dt − Iβt )

≤ (Iot − dt) + (qot−L+1 − q
β
t−L+1)+ +

L−2∑
i=0

(qot−i − q
β
t−i)

+ + (dt − Iβt )

= (Iot − I
β
t )+ +

L−1∑
i=0

(qot−i − q
β
t−i)

+

≤ β,

where again we used (a+ b)+ ≤ a+ + b+ in the first inequality, and the second inequality is

by the inductive assumption.

Hence (3.12) is satisfied for t+ 1 as well. Similar argument proves (3.13) for t+ 1. This

finishes the induction proof and the proof of Lemma 3.10.

3.4.3 Proof of the Main Result

In what follows, we prove Theorem 3.3 based on Lemmas 3.6–3.10 established above.

The proof makes use of three bridging systems, and we will show that the cost difference

between any two adjacent systems is on the order O(
√
T ).

The three bridging systems are the S-system, the G-system, and the SCU-system which
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is defined as the SCU-system that ignores all the withheld on-hand inventory. Note that the

SCU-system can also be considered as the SCU-system that does not incur any holding cost

for the withheld on-hand inventory. Figure 3.3 shows the roadmap of our proof.

S*-system G-system

SCU-system SCU-system
___

Proposition 2

Proposition 3

This gap contains the regret of 
standard OGD and the additional error
 introduced by estimating the gradient

This gap contains the additional 
cost due to "undershooting"

Proposition 4

This gap contains the additional 
cost due to "overshooting"

Theorem 1

Figure 3.3: A roadmap for the proof of Theorem 3.3

For a fixed T , we let N denote the number of cycles (including the last possibly incomplete

one). With a slight abuse of notation, we let τN+1 = T + 1 so the last cycle ends at T . Note

that N is a random variable that depends on the demand process.

In the following, we first show that the difference between the expected costs of S∗-system

and G-system is upper bounded by O(
√
T ).

Proposition 3.11. There exists some positive constant K1, such that

E

[
N∑
k=1

G(Sk, τk, τk+1 − 1)

]
− E

[
T∑
t=1

CS∗

t

]
≤ K1

√
T .

Proof. For the first cycle, we have

E [G(S1, τ1, τ2 − 1)]− E

[
τ2−1∑
t=τ1

CS∗

t

]
≤ E [τ2 − τ1] ·max(h, p)

(
S̄ − S

)
≤ E [t− τ1] ·max(h, p)

(
S̄ − S

)
=

1− c2L
1

(1− c1)c2L
1

·max(h, p)
(
S̄ − S

)
,

where the last equality follows from Proposition 2.1 of Philippou et al. (1983). Similarly, for

64



the last cycle, we have

E [G(SN , τN , T )]− E

[
T∑

t=τN

CS∗

t

]
≤ 2 · 1− c2L

1

(1− c1)c2L
1

·max(h, p)
(
S̄ − S

)
.

Every cycle 1 < k < N contains two phases. The first phase is from period τk to period

τ ′k−1, and the second phase is from period τ ′k to period τk+1−1. Recall that the cost gradient

for the first phase cannot be evaluated due to lack of demand information. To complete the

proof of Proposition 3.11, we first claim Equation (3.15) is correct, which shows that, the

gradient for the first phase approaches that of the second phase in expectation, which can

be evaluated, when k increases.

∣∣∣E [∇G(Sk, τk, τ
′
k − 1)]− E [∇G(Sk, τ

′
k, τk+1 − 1)]

∣∣∣ = o
(

1/
√
k
)
. (3.15)

To prove this equation, first recall that τk, τ
′
k and τk+1 are three adjacent triggering

periods defined by the S-system. Thus, ∇G(Sk, τk, τ
′
k − 1) and ∇G(Sk, τ

′
k, τk+1 − 1) are

determined by [dτk−1, dτk−2, . . . , dτk−L] and [dτ ′k−1, dτ ′k−2, . . . , dτ ′k−L], respectively. If we re-

index {τ1, τ2, τ
′
2, τ3, τ

′
3, . . .} as {r(1), r(2), r(3), r(4), r(5), . . .}, then the process {di =

[dr(i)−1, dr(i)−2, . . . , dr(i)−L]; i ≥ 1} is a Markov chain on a general state space (or a Har-

ris chain). It is important to keep in mind that this Markov chain is solely determined by

the S-system, and it is not affected by the SCU- or the G-system.

We show that, under Assumption 3.1, {di; i ≥ 1} is ergodic and converges to a stationary

distribution d∞ exponentially fast. Following the approach in Huh et al. (2009a), we use

uniform ergodicity to prove this result. A measurable set U ⊆ RL
+ is called a small set with

respect to a nontrivial measure ν, if there exists an i∗ > 0 such that for any d ∈ U and

any measurable set B = (B1, . . . , BL) ⊆ RL
+, it holds that P(di∗ ∈ B | d1 = d) ≥ ν(B).

By Theorem 16.0.2 of Meyn and Tweedie (1993), if U is a small set with respect to ν, then

there exists a stationary random variable d∞ such that for any d ∈ U and i ≥ i∗, it satisfies

δi+1(d) ≤ (1− ν(RL
+))

i
i∗−1 , where

δi(d) = sup
B

{
|P(di ∈ B | d1 = d)−P(d∞ ∈ B)| : measurable set B ⊆ RL

+

}
.

By the Scheffe’s theorem, we have

δi(d) =
1

2

∫
z

∣∣(P (di ∈ dz|d1 = d)− P (d∞ ∈ dz)
)∣∣. (3.16)
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The first step is to define U, B, ν and i∗ for our Markov chain. Since d is the pipeline

inventory of the S-system at the beginning of a triggering period, we must have d · 1L ≤ S,

where d · 1L is the sum of all entries of d. Let U = {d ∈ RL
+ | d · 1L ≤ S}, and Bk be any

measurable set in R+ for k = 1, . . . , L, and denote B = B1 × · · · ×BL. Define

ν(B) =

(
P

(
D ∈

(
∩Lk=1 Bk

)
∩
[
0,

S

L+ 1

]))2L

,

where D represents a generic demand. We now prove that U is a small set with respect to

ν and i∗ = 2, i.e., for any d ∈ U and B ∈ RL
+, we have P

(
d3 ∈ B | d1 = d

)
≥ ν(B).

Consider the event that the demands in periods 1, 2, . . . , 2L satisfy

E =

{
Dk ∈

(
∩Lk=1 Bk

)
∩
[
0,

S

L+ 1

]
, for k = 1, 2, . . . , 2L

}
.

By Lemma 3.8, for any initial state d1 = d, there is no lost sales in the S-system from

periods L to 2L, implying r(2) ≤ 2L. Moreover, on the event E, it is seen that the pipeline

inventory at the beginning of period r(2) satisfies d2 ∈ B. Hence, for any d ∈ B, we have

P(d2 ∈ B | d1 = d) ≥ P(E) = ν(B).

This shows that the Markov chain {dk; k ≥ 1} is uniformly ergodic. Applying Theorem

16.0.2 of Meyn and Tweedie (1993), we obtain, for all i > 2,

δi(d) ≤ (1− c2L
1 )

i+1
2 . (3.17)

For notational convenience, we define

H(dτk−1, dτk−2, . . . , dτk−L) = E[∇G(Sk, τk, τ
′
k − 1)

∣∣dτk−1, dτk−2, . . . , dτk−L].

Then for any [dτk−1, dτk−2, . . . , dτk−L], H(dτk−1, dτk−2, . . . , dτk−L) is upper bounded by

H(dτk−1, dτk−2, . . . , dτk−L) ≤ 1− cL1
(1− c1)cL1

max(h, b). (3.18)
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Therefore, we have

∣∣E[H(dk)− E[H(d∞)]
∣∣ =

∣∣∣ ∫
z

H(z)
(
P (di ∈ dz|d1 = d)− P (d∞ ∈ dz)

)∣∣∣
≤

∫
z

H(z)
∣∣(P (di ∈ dz|d1 = d)− P (d∞ ∈ dz)

)∣∣
≤ 1− cL1

(1− c1)cL1
max(h, b)

∫
z

∣∣(P (di ∈ dz|d1 = d)− P (d∞ ∈ dz)
)∣∣

=
1− cL1

(1− c1)cL1
max(h, b) · δk(d)

≤ 1− cL1
(1− c1)cL1

max(h, b)(1− c2L
1 )

k+1
2

= o

(
1√
k

)
,

where the second inequality follows (3.18), the second equality follows from the Scheffe’s

theorem (3.16), the last ineqaulity follows from (3.17), and the last equality follows from the

fact that ρk tends to 0 faster than 1/
√
k for any ρ ∈ (0, 1).

Applying the above result, we obtain∣∣∣E[∇G(Sk, τk, τ
′
k − 1)]− E[∇G(Sk, τ

′
k, τk+1 − 1)]

∣∣∣
=

∣∣∣E[E[∇G(Sk, τk, τ
′
k − 1)]

∣∣dk)]− E
[
E[∇G(Sk, τ

′
k, τk+1 − 1)]

∣∣d∞)
]∣∣∣

=
∣∣E[H(dk)]− E[H(dk+1)]

∣∣
= o(1/

√
k).

This completes the proof of Equation (3.15).

Equation (3.15) shows that, although a biased gradient is used in the SCU algorithm in

the search for the best base-stock level, it is close to the true gradient when k is large and
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converges at a rate faster than o(1/
√
k). Applying this result, we obtain

E

[
N∑
k=1

G(Si, τk, τk+1 − 1)−
T∑
t=1

CS∗

t

]

= E

[
N∑
k=1

(G(Sk, τk, τk+1 − 1)−G(S∗, τk, τk+1 − 1))

]

≤ E

[
N∑
k=1

∇G(Sk, τk, τk+1 − 1)(Sk − S∗)

]

≤ E

[
N−1∑
k=2

∇G(Sk, τk, τk+1 − 1)(Sk − S∗)

]
+ 3 · 1− c2L

1

(1− c1)c2L
1

·max(h, p)(S̄ − S)

≤ E

[
N−1∑
k=2

(
2∇G(Sk, τ

′
k, τk+1 − 1)(Si − S∗) + o(1/

√
k)
)]

+ 3 · 1− c2L
1

(1− c1)c2L
1

·max(h, p)(S̄ − S)

≤ E

[
N−1∑
k=2

(√
k

2γ

(
(Sk − S∗)2 − (Sk+1 − S∗)2

))]
+ E

[
N−1∑
k=2

2γ∇G(Sk, τ
′
k, τk+1 − 1)2

√
k

]
+ o

(√
T
)
,

(3.19)

where the first inequality follows from the convexity of function G(S, τk, τk+1 − 1) in S, the

third inequality is due to (3.15), and the last inequality is because of, by our SCU algorithm,

(Sk+1 − S∗)2 ≤ (Sk − S∗)2 − 4γ√
k

(Sk − S∗)∇G(Sk, τ
′
k, τk+1 − 1) +

4γ (∇G(Sk, τ
′
k, τk+1 − 1))2

k
.

We evaluate the first term on the right hand side of (3.19) as follows:

E
N−1∑
k=2

[√
k

2γ

(
(Sk − S∗)2 − (Sk+1 − S∗)2

) ]

≤ 1

γ
E

[√
2

2
(S2 − S∗)2 −

√
N − 1

2
(SN − S∗)2

]
+

1

2γ
E
N−1∑
k=3

[
(
√
k −
√
k − 1)(Sk − S∗)2

]
≤
√

2

2γ
(S̄ − S)2 +

1

2γ
E

[ T∑
k=3

(
√
k −
√
k − 1)(S̄ − S)2

]
=

√
T

2γ
(S̄ − S)2. (3.20)

To evaluate the second term on the right hand side of (3.19), we first focus on the term

E[(∇G(Sk, τ
′
k, τk+1 − 1))2]. From Lemma 3.8, τk+1 − 1 is no larger than τ ′k with probability
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1. Therefore, we have

E
[
∇G(Sk, τ

′
k, τk+1 − 1)

]2 ≤
[
max(h, p)

(
S̄ − S

)]2 ·E [(τ ′k − τ ′k)2
]

(3.21)

=
[
max(h, p)

(
S̄ − S

)]2 · 2 + (4L− 1)c2L
1 − (4L+ 1)c2L+1

1 + c4L
1 − c

4L+1
1

c4L
1 − c

4L+2
1

,

where the equality above follows from Proposition 2.1 in Philippou et al. (1983). Thus, we

obtain, for some constant K1,

E

[
N∑
k=2

2γ∇G(Sk, τ
′
k, τk+1 − 1)2

√
k

]
≤ E

[
T∑
k=1

2γ∇G(Sk, τ
′
k, τk+1 − 1)2

√
k

]
≤ K1 ·

√
T . (3.22)

Combining (3.19), (3.21) and (3.22), we complete the proof of Proposition 3.11.

We next compare the G-system with the SCU-system. The difference between these two

systems lies in the “undershooting” of the SCU-system. That is, both systems operate under

the same base-stock level, but at the beginning of each cycle, the SCU-system potentially

has less on-hand inventory and has to order more to keep the same inventory position as

G-system. We will show that the cost difference created by “undershooting” the target levels

is upper bounded by O(
√
T ) in expectation.

Proposition 3.12. There exists some positive constant K2, such that

E

[
T∑
t=1

CSCU
t

]
− E

[
N∑
k=1

G(Sk, τk, τk+1 − 1)

]
≤ K2

√
T .

Proof. Let ĨSCUt and IGt denote the on-hand inventory levels of SCU- and G- systems, respec-

tively. Then, for every sample path, we have

T∑
t=1

CSCU
t −

N∑
k=1

G(Sk, τk, τk+1 − 1) ≤
T∑
t=1

max(h, p)
∣∣∣IGt − ĨSCUt

∣∣∣
=

N∑
k=1

τk+1−1∑
t=τi

max(h, p)
∣∣∣IGt − ĨSCUt

∣∣∣ . (3.23)

For the first cycle, we have IGt = ĨSCUt for every period t. For cycle k ≥ 2, if Sk < Sk−1,

then by the construction of the SCU algorithm, IGt = ĨSCUt for every period t in cycle k; if

Sk ≥ Sk−1, then IGt may differ from ĨSCUt for t in the first phase of the cycle (i.e., periods

from τk to τ ′k − 1), and they will become the same from τ ′k until τk+1 − 1.
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Suppose Sk ≥ Sk−1, we will show that∣∣∣IGt − ĨSCUt

∣∣∣ ≤ IGτk − Ĩ
SCU
τk
≤ Sk − Sk−1, for periods t = τk, . . . , τ

′
k − 1.

We first prove the second inequality IGτk − Ĩ
SCU
τk

≤ Sk − Sk−1. For the G-system, its inven-

tory vector at period τk is
[
dτk−1, dτk−2, . . . , dτk−L, Sk −

∑τk−1
i=τk−L di

]
. For the SCU-system, if

Îτk−1 = 0, then the inventory vector at τk would be
[
dτk−1 − Sk−1 + Sk, dτk−2, . . . , dτk−L, Sk−1 −

∑τk−1
i=τk−L di

]
.

In this case we have

IGτk − Ĩ
SCU
τk

= IGτk − I
SCU
τk

= Sk − Sk−1.

If Îτk−1 > 0, then some of the withheld on-hand inventory will be included back to the regular

on-hand inventory by equation Îτk = (Îτk − (Sk − Sk−1))+, and as a result, the regular on-

hand inventory in the SCU-system may be higher and we will have IGτk − Ĩ
SCU
τk

< Sk − Sk−1.

Hence in all cases IGτk − ĨSCUτk
≤ Sk − Sk−1 is satisfied. Then, we apply Lemma 3.10 to

obtain
∣∣IGt − ĨSCUt

∣∣ ≤ IGτk − Ĩ
SCU
τk

for all t = τk, . . . , τ
′
k. Combining the two scenarios shows∣∣IGt − ĨSCUt

∣∣ ≤ |Sk − Sk−1| for t = τk, . . . , τ
′
k− 1 and

∣∣IGt − ĨSCUt

∣∣ = 0 for t = τ ′k, . . . , τk+1− 1.

Taking expectation on both sides of (3.23), we obtain

E

[
T∑
t=1

CSCU
t −

N∑
k=1

G(Sk, τk, τk+1 − 1)

]
≤ max(h, p)E

[
N∑
k=1

τ ′k∑
t=τk

∣∣∣IGt − ĨSCUt

∣∣∣ ]

≤ max(h, p)E

[
N∑
k=2

(τ ′k − τk + 1) |Sk − Sk−1|

]
≤ max(h, p)E

[
T∑
k=2

(τ ′k − τk + 1) |Sk − Sk−1|

]

= max(h, p)E

[
T∑
k=2

|Sk − Sk−1|

]
E [(τ ′k − τk + 1)] = max(h, p)E

[
N∑
k=2

|Sk − Sk−1|

]
1− c2L

1

(1− c1)c2L
1

≤ max(h, p)2E

[
N∑
k=2

2γ√
k

(τ ′k−1 − τk−1)

]
1− c2L

1

(1− c1)c2L
1

≤
(

max(h, p)
1− c2L

1

(1− c1)c2L
1

)2 T∑
k=1

2γ√
k
≤ K2 ·

√
T

for some constant K2. The first equality above is by the independence of |Sk − Sk−1| and

τk − τk, and the second equality and the inequality after that are by Proposition 2.1 in

Philippou et al. (1983). This completes the proof of Proposition 3.12.

Following the roadmap in Figure 3.3, the last part of the regret analysis is to bound the

gap between the SCU-system and the SCU-system. The cost difference between these two

systems is upper bounded by the total holding cost of the withheld on-hand inventory. The

following lemma shows that this part is also bounded by O(
√
T ) in expectation.
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Proposition 3.13. There exists some positive constant K3 such that

E

[
T∑
t=1

CSCU
t

]
− E

[
T∑
t=1

CSCU
t

]
≤ K3

√
T .

Proof. First, we have

E

[
T∑
t=1

CSCU
t

]
− E

[
T∑
t=1

CSCU
t

]
≤ h

T∑
t=1

E
[
Ît

]
. (3.24)

According to the SCU algorithm, we have Ît+1 = (Ît − (dt − Ĩt)+)+ from period to period

during the cycle, thus the withheld inventory is gradually consumed by demand; and when

going from one cycle to the next, new withheld inventory may be created by Îτk+1
:= (Îτk+1

−
(Sk+1 − Sk))

+ at the beginning of cycle k + 1. This shows that, the only source of new

withheld inventory is generated at the beginning of the cycles, and the maximum added at

the beginning of cycle k + 1 is (Sk − Sk+1)+, k = 1, 2, . . . , N .

When evaluating the RHS of (3.24), instead of evaluating it vertically by finding the total

amount of Ît in every period and then adding up over periods, we compute it horizontally

by identifying the total number of periods in which an withheld inventory unit stays in the

system and then adding up over all the withheld inventory units. At the beginning of period

τk+1, a maximum of (Sk − Sk+1)+ units of the withheld inventory are created in the system,

and from Ît+1 = (Ît− (dt− Ĩt)+)+, it is seen that within a cycle, the amount of the withheld

on-hand inventory is non-increasing, and dropping to 0 when the SCU-system experiences

a lost-sale. By Lemma 3.9, we know that there is at least one lost-sale from τk+1 to τ̄k+1

(defined similarly as in (3.11)). Thus the maximum of (Sk − Sk+1)+ units of the withheld

inventory will be consumed by external demand by time τ̄k+1. That is, these units incur a

maximum holding cost of h(Sk − Sk+1)+(τ̄k+1 − τk+1). Therefore,

h
T∑
t=1

Ît ≤ h
N∑
k=1

(Sk − Sk+1)+ (τ̄k+1 − τk+1) ≤ h
N∑
k=1

|Sk − Sk+1| (τ̄k+1 − τk+1) .
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Taking expectation yields, for some constant K3,

E

[
T∑
t=1

CSCU
t

]
− E

[
T∑
t=1

CSCU
t

]
≤ hE

[
N∑
k=2

|Sk−1 − Sk| (τ̄k − τk)

]

= hE

[
N∑
k=2

|Sk−1 − Sk|

]
· E [(τ̄k − τk)]

≤ hE

[
N∑
k=2

|Sk−1 − Sk|

]
· 1− cL2

(1− c2)cL2

≤ hmax(h, p)
N∑
k=2

2γ√
k

E [τk − τk−1] · 1− cL2
(1− c2)cL2

≤
T∑
k=1

2γ√
k

[
h ·max(h, p) · 2(1− c2L

1 )

(1− c1)c2L
1

· 1− cL2
(1− c2)cL2

]
≤ K3 ·

√
T ,

where the first equality holds by independence, and the second and third inequalities are by

Proposition 2.1 in Philippou et al. (1983). This completes the proof of Proposition 3.13.

Combining Propositions 3.11, 3.12 and 3.13, we complete the proof of Theorem 3.3.

3.4.4 The SCU Algorithm for Uncensored Demand

The censored demand assumption in this chapter brings two main challenges in the devel-

opment of our learning algorithm. The first challenge is to guarantee the correct simulation

of the S-system, which requires our system to always have no less on-hand inventory than

the S-system. To achieve that, we have to dynamically modify the target base-stock levels.

This is the reason for introducing the concept of withheld on-hand inventory. When demand

is uncensored, this is not necessary, as the S-system can always be simulated in each and

every period. Thus, we can simply apply the target base-stock level Sk for every cycle k.

The second challenge is the evaluation of gradient for our learning algorithm. With censored

demand, we cannot evaluate the gradient of function G when the SCU-system less on-hand

inventory than the G-system. To overcome this issue, we design two phases in each cycle

k ≥ 2 where the gradient of G-system can always be evaluated in the second phase, and that

is then used to estimate the gradient for cycle k. (We double the gradient of the second phase

to provide a close yet biased estimate for the gradient of the whole cycle.) With uncensored

demand, this is again not necessary, as the gradient of G can always be computed.

These observations lead to a much simpler SCU algorithm for the case with uncensored
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demand in which neither the withheld inventory nor an additional phase for the learning cycle

is needed. Denote this modified SCU algorithm for the uncensored demand case by SCU-UN,

and we formally present it below. In this algorithm, the gradient ∇G(Sk, τk, τk+1 − 1) for

cycle k is computed following the same procedure in §3.3.2 but using uncensored demand

data in cycle k.

Algorithm 2: SCU-UN

Step 0 (Initialization): Start with an arbitrary target base-stock level S1 ∈ [S, S̄]. Set

τ1 = 1, cycle number k = 1. Let step size ηk = γ√
k

for k = 1, 2, . . ., for some positive

constant γ. Set the consecutive no lost-sales indicator ψ := 0. Set t = 1, and the initial

inventory of SCU-UN-system and simulated S-system to xSCU−UN1 = xS1 = 0.

Step 1 In each period t, do the following:

(a) For SCU-UN-system, order qSCU−UNt =
(
Sk −

∑
xSCU−UNt

)+
; for the simulated

S-system, order qSt = (S −
∑

xSt )+.

(b) Observe demand dt, and update the states of SCU-UN-system and S-system ac-

cording to system dynamics (3.1).

(c) If there is no lost-sales in the S-system, then set ψ := ψ+1. Otherwise set ψ := 0.

(d) If ψ = L, then label period t + 1 as a triggering period. Set τk+1 = t + 1, and

ψ := 0. Update the target base-stock level for the next cycle as

Sk+1 = P[S,S̄] (Sk − ηk∇G (Sk, τk, τk+1 − 1)) .

Set t := t+ 1 and k := k + 1, and repeat Step 1.

This concludes the description of the SCU-UN algorithm.

Although the SCU-UN algorithm is much simpler than the SCU algorithm, the essential

idea of (random) cycle-updating rule based on the simulated S-system remains the same.

The performance analysis of SCU-UN is similar and simpler compared to SCU, and under

the same Assumption 1, it achieves a regret of rate O(
√
T ) for uncensored demand case. We

omit the details of performance analysis for the SCU-UN algorithm.

One purpose of introducing the SCU-UN algorithm is to study the value of observing

lost-demand information. That is, how much cost savings can be resulted from knowing the

lost-demand information? In the next section, we will conduct a numerical study of both

SCU and SCU-UN to investigate the performance gap between these two cases.
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3.5 Numerical Experiments

We conduct a numerical study on the performance of the SCU algorithm. We first test

against the algorithm proposed in Huh et al. (2009a), denoted by HJMR. We then test

against the SCU-UN algorithm described in §3.4.4, which will reveal the value of censored

demand information. The performances of the algorithms are evaluated by the percentage of

total cost increase (over the planning horizon) compared with that of the clairvoyant optimal

base-stock policy, i.e.,

κ =
E[Rt]

E
[∑T

t=1C
S∗
t

] × 100%,

where S∗ is the clairvoyant optimal base-stock level.

Design of experiments. We present the design of our numerical experiments. Three

lead times are considered L ∈ {2, 4, 6}. For the cost structure, we normalize the holding

cost to h = 1, and consider four lost sales costs p ∈ {20, 30, 40, 50}. For the demand, we

consider gamma distribution with mean 10 and different shape parameters α ∈ {2, 3, 4}. We

let S = 8 · L+ 1 and S̄ = 30 · L+ 1 for SCU, HJMR and SCU-UN. The optimal solution is

always contained in [S, S̄]. We set the step-size parameter γ = 2−4 in SCU and SCU-UN.

We consider three planning horizons T ∈ {100, 200, 500, 1000}. The system starts with 0

initial inventory. For each testing instance, we generate 5000 sample paths of the random

demand process, and use that to compute the average cost of the learning algorithm.

Numerical results. The performance of SCU, HJMR and SCU-UN under all the testing

instances are summarized in Tables 3.1, 3.2 and 3.3. We first compare the performances

between SCU and HJMR. It can be seen that SCU generally performs better. Under some

instances, HJMR converges faster at the beginning but gets dominated as T grows. We note

that SCU algorithm is quite robust when the lead time increases but it seems that HJMR’s

performance gets worse when the lead time becomes longer.

We then compare the performances between SCU and SCU-UN. As expected, SCU-UN

indeed performs better, demonstrating the value of the censored demand information. On

average, SCU has 26.5% of cost increase (over the clairvoyant optimal base-stock solution)

when T = 100, while SCU-UN has 21.1% of cost increase. And when T = 1000, SCU has

5.2% of cost increase while SCU-UN has 3.1% of cost increase. This shows that the value

of uncensored demand information is quite significant. Thus, if feasible, it pays for the

inventory manager to invest the necessary resource to collect such lost-demand information.

For the SCU (and SCU-UN) algorithm, another question apart from its expected average

regret is the policy update frequency, which is determined by the number of periods between
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L consecutive periods of no lost-sales (without overlapping) of the S system. The cycle

length only depends on the demand process, and is independent of SCU policy or the cost

parameters. In our theoretical analysis, we upper bound the time between triggering periods

by a geometric distribution of order 2L. By Philippou et al. (1983), for our testing instances,

the expected value of this upper bound is about 50 for L = 2, about 1500 for L = 4, and

about 44000 for L = 6. In our numerical examples, we find that the average number of

periods between triggering periods is around 5 period for L = 2, around 12 periods when

L = 4, and around 25 periods when L = 6. Hence the actual cycle length is much shorter

than the theoretical upper bound.

Table 3.1: Performances (κ in %) of SCU, HJMR and SCU-UN when L = 2

shape 2 3 4

p t 100 200 500 1000 100 200 500 1000 100 200 500 1000

20
SCU 29.0 22.7 9.0 5.4 26.7 20.5 7.5 4.3 24.6 18.2 6.2 3.6

HJMR 64.9 46.0 16.8 10.8 93.0 71.4 24.7 15.4 113.3 97.7 32.7 20.0
SCU-UN 22.4 16.5 5.5 3.1 19.4 13.7 4.2 2.4 17.4 11.8 3.5 2.0

30
SCU 38.0 29.0 10.7 6.3 34.4 25.5 8.6 4.9 30.6 22.7 7.6 4.3

HJMR 52.7 47.2 20.8 13.0 76.3 78.0 35.6 21.1 95.1 105.1 51.2 29.5
SCU-UN 27.9 19.4 6.2 3.5 23.8 16.2 4.8 2.7 20.6 13.7 4.0 2.3

40
SCU 42.3 32.2 11.4 6.6 35.8 26.5 8.8 5.0 31.3 22.8 7.6 4.3

HJMR 43.5 45.5 25.2 16.4 65.8 76.7 46.4 28.8 81.0 101.6 68.3 43.2
SCU-UN 31.0 21.5 6.7 3.8 25.5 17.4 5.3 3.0 22.3 15.1 4.6 2.6

50
SCU 44.2 33.2 11.7 6.8 38.3 27.9 9.4 5.4 33.5 24.7 8.2 4.7

HJMR 36.9 42.5 28.0 19.1 57.9 72.9 52.4 36.5 72.3 98.3 77.0 56.0
SCU-UN 32.4 22.4 6.9 3.9 27.3 18.4 5.6 3.3 23.2 16.0 5.1 3.0

Table 3.2: Performances (κ in %) of SCU, HJMR and SCU-UN when L = 4

shape 2 3 4

p t 100 200 500 1000 100 200 500 1000 100 200 500 1000

20
SCU 17.7 15.9 7.5 4.7 17.0 14.8 6.2 3.7 15.2 13.4 5.3 3.1

HJMR 113.6 105.6 37.9 22.3 141.5 145.0 52.6 30.6 161.4 177.7 66.8 38.8
SCU-UN 15.3 12.1 4.6 2.7 14.0 10.9 3.7 2.1 13.5 9.9 3.2 1.8

30
SCU 27.8 24.0 9.9 5.8 24.2 20.6 8.1 4.7 21.9 18.3 6.9 4.1

HJMR 89.3 104.4 54.9 31.9 110.4 142.6 84.6 49.0 127.9 176.8 111.8 64.5
SCU-UN 22.7 17.3 5.9 3.3 19.8 14.8 4.7 2.6 18.0 13.3 4.2 2.4

40
SCU 33.0 27.7 10.7 6.2 29.3 24.4 9.0 5.2 26.2 22.2 8.3 5.0

HJMR 73.2 98.5 68.1 44.8 93.7 137.1 105.9 72.3 105.9 164.8 137.3 97.2
SCU-UN 27.4 20.2 6.6 3.7 23.9 17.5 5.5 3.0 21.2 15.7 5.1 2.9

50
SCU 37.1 30.9 12.0 7.0 33.9 27.3 9.9 5.8 29.8 24.9 10.2 6.6

HJMR 63.5 93.2 74.9 55.1 80.1 128.8 115.4 89.5 90.9 154.9 147.7 119.3
SCU-UN 30.6 22.5 7.2 4.0 25.6 19.2 6.2 3.5 23.4 17.8 6.7 4.0
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Table 3.3: Performances (κ in %) of SCU, HJMR and SCU-UN when L = 6

shape 2 3 4

p t 100 200 500 1000 100 200 500 1000 100 200 500 1000

20
SCU 10.8 10.6 5.7 3.6 10.5 10.1 5.1 3.1 9.7 9.4 4.6 2.8

HJMR 144.0 160.8 62.8 35.8 169.2 209.0 86.1 48.6 186.9 244.7 105.6 59.6
SCU-UN 9.7 8.7 3.7 2.2 9.3 8.3 3.1 1.9 9.0 7.8 2.9 1.7

30
SCU 19.8 18.1 8.8 5.3 17.6 16.4 7.2 4.3 16.2 15.6 7.0 4.3

HJMR 111.3 152.5 96.0 56.8 131.4 199.2 138.0 82.3 143.8 233.4 173.4 105.1
SCU-UN 17.3 14.5 5.4 3.1 16.2 13.1 4.5 2.6 14.6 12.4 4.4 2.6

40
SCU 25.3 23.6 10.5 6.2 22.8 21.5 9.0 5.4 21.2 20.0 9.0 6.0

HJMR 91.1 142.2 114.7 80.5 107.3 183.6 161.9 119.4 117.7 213.9 200.5 152.8
SCU-UN 22.4 18.5 6.4 3.6 20.9 17.0 5.9 3.3 19.6 16.4 6.9 4.2

50
SCU 29.5 27.1 11.3 6.6 25.9 23.7 10.3 6.2 23.3 22.9 11.7 8.2

HJMR 78.1 133.7 122.6 97.0 90.5 168.8 170.5 140.2 100.7 197.4 210.5 178.6
SCU-UN 25.8 20.6 7.1 4.0 24.1 19.5 7.3 4.2 23.3 20.0 8.9 5.3

3.6 Conclusions

In this chapter, we proposed an improved nonparametric learning algorithm for the fun-

damental lost-sales inventory problem with positive lead times and censored demand, the

simulated cycle-update (SCU) algorithm, and showed that its regret rate is O(T 1/2), which

matches the lower bound of regret for any learning algorithms and closes the gap left in Huh

et al. (2009a).

As its name suggests, the SCU algorithm constructs (random) cycles using a simulated

system, and updates base-stock level at the beginning of each cycle. To overcome the chal-

lenges introduced by positive lead time and censored demand, we instituted two key ideas,

namely, the withheld on-hand inventory and the double-phase gradient estimation. To ana-

lyze the performance of SCU algorithm, we introduced several bridging systems between the

SCU-system and the optimal clairvoyant system. We also presented a simplified algorithm

for the problem when the demand data is uncensored. Our numerical results demonstrated

the effectiveness of the SCU algorithm.
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CHAPTER IV

Approximation Algorithms for Perishable Inventory

Systems with Correlated Demand

4.1 Introduction

In this chapter, we study the classic periodic-review stochastic inventory systems with

perishable products. The product lifetime is known and fixed. Initial interest in these sys-

tems was sparked by blood bank applications (see, e.g., Prastacos (1984), Pierskalla (2004),

Karaesmen et al. (2011)), but the scope of applications is far greater. For example, per-

ishable products such as food items and pharmaceuticals constitute the majority of sales

revenue of grocery retailing industry. Food Market Institute (2012) reported that perish-

ables accounted for 52.63% of the 2011 total supermarket sales of about $459 billion, and

mismanagement of perishable products (such as spoilage and shrinkage) represents a major

threat to the profitability of companies in grocery retailing industry. A survey by the Na-

tional Supermarket Research Group reported an average loss of $34 million a year due to

spoilage in one major 300-store grocery chain. Thus, finding effective inventory management

policies for perishable products has always been of great interest to both practitioners and

academic researchers.

We restrict our attention to the first-in-first-out (FIFO) issuing policy which is commonly

adopted in the literature (see, e.g., Nahmias (2011) and Karaesmen et al. (2011)), i.e., the

oldest inventory is consumed first when demand arrives. This assumption is reasonable for

blood inventory systems and online grocery network (e.g., AmazonFresh). It also applies

to the retailers who display only the oldest items on the shelves. The demands in different

periods in our model can be non-stationary (or time-dependent) and correlated over time,

capturing such demand features as seasonality and forecast updates as well as many other

demand processes of practical interest. Both backlog model and lost-sales model will be
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studied.

These systems are fundamental but notoriously hard to analyze in both theory and

computation. As seen from our literature review below, the optimal policy is very complex

even when the demands are independent and identically distributed. The optimal order

quantity depends on both the age distribution of the on-hand inventory and the length till

the end of the planning horizon. The computation of the optimal policy using dynamic

programming is in general intractable due to the “curse-of-dimensionality”. Thus, many

researchers turned to seek effective heuristic policies for these problems. To the best of

our knowledge, almost all heuristics developed thus far have been focused on the case with

independent and identically distributed demands. Moreover, none of the heuristic policies

in the literature admits provably worst-case performance guarantees. In this chapter, we

propose the first approximation algorithm with a worst-case performance guarantee of 2

for these important systems when the demands in different periods are independent and

stochastically non-decreasing over time.

The demand processes in practical settings are often seasonal, forecast-based, or driven

by the state of the economy (e.g., Markov modulated demand processes). The demands of

these processes are correlated over time. For example, many firms employ forecasting meth-

ods to learn about the future demands and periodically update their forecasts; and such

forecast-based demand processes can often be modeled by the martingale model of forecast

evolution (MMFE for short, see, e.g., Graves et al. (1986), and Heath and Jackson (1994)),

in which the updated forecast is the original forecast plus an adjustment (or random error)

with mean 0. In addition, in practice firms often receive advance demand information (ADI)

from some customers for the future periods, so managers have to periodically incorporate

such ADI in the future demands (see, e.g., Gallego and Özer (2001)). These models are prac-

tically important, but finding the optimal policies using brute-force dynamic programming is

computationally intractable, since the state space of the corresponding dynamic programs is

usually large (see, e.g., Lu et al. (2006)). The computational burden is even more severe for

perishable inventory systems, given the fact that the age distribution of on-hand inventory

has to be tracked too.

To overcome this prohibitive computational challenge, we propose another approximation

algorithm for perishable inventory systems with arbitrarily correlated demand processes,

and show that it admits a worst-case performance guarantee less than 3. To the best of

our knowledge, no effective heuristic policy has ever been developed in the literature for

perishable inventory systems with correlated demand processes.
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4.1.1 Main Results and Contributions

The main results and contributions of this chapter are summarized as follows.

Algorithms.

We develop two approximation algorithms which admit provably worst-case performance

guarantees for perishable inventory systems.

Firstly, we develop a proportional-balancing (PB) policy for the perishable inventory

systems with product lifetime of m (≥ 2) periods under an arbitrarily non-stationary and

correlated demand process. We show that the PB policy has a worst-case performance

guarantee of
(

2 + (m−2)h
mh+θ

)
, where h = ĥ + (1 − α)ĉ, θ = θ̂ + αĉ, and ĉ, ĥ, θ̂, and α are

the per-unit ordering, holding, outdating costs, and one-period discount factor, respectively.

That is, for any instance of the problem, the expected cost of the PB policy is at most(
2 + (m−2)h

mh+θ

)
times the expected cost of an optimal policy. Therefore, the theoretical worst-

case performance guarantee is between 2 and 3 and it equals 2 when the product lifetime

m = 2.

Secondly, when the demand process is independent and stochastically non-decreasing

over time, we develop a dual-balancing (DB) policy which has a worst-case performance

guarantee of 2, i.e., for any instance of the problem, the expected cost of the DB policy is

at most twice the expected cost of an optimal policy.

To the best of our knowledge, our proposed policies are the first set of computationally

efficient policies with worst-case performance guarantees in stochastic periodic-review per-

ishable inventory systems. In contrast, computing the exact optimal policy using dynamic

programming suffers from the well-known “curse of dimensionality” and is intractable even

with short product lifetimes (e.g., m = 4) and under independent and identically distributed

demand processes.

Worst-case analysis.

In our algorithmic design, we develop a nested marginal cost accounting scheme for per-

ishable inventory systems. This scheme is similar in spirit to that developed in Levi et al.

(2007a), but has a much more complex and nested structure due to the multi-dimensional

inventory state representing the age distribution of on-hand inventory. The main idea of this

approach is to associate the costs with each ordering decision instead of each period. How-

ever, the techniques developed for our worst-case performance analysis depart significantly

from those in the previous studies (e.g., Levi et al. (2007a), Levi et al. (2008a)), which heavily
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rely on the existence of a one-to-one matching between the supply and demand units when

the inventory units are consumed in an first-in-first-out manner. That is, when analyzing

the performances of the approximation algorithms, all the previous studies “geometrically”

match product units in a one-to-one manner for the systems operating under two different

policies; and the costs for each pair of matched units can be readily compared. However,

the perishability of products destroys this matching mechanism, thus the existing techniques

developed for non-perishable inventory systems are no longer applicable. To overcome this

difficulty, we introduce a key new concept, called the “trimmed on-hand inventory level”,

defined as the part of on-hand inventory units ordered before a particular time. This key

concept enables us to compare the costs of two perishable inventory systems operating under

two different policies. Compared with the previous geometric approach, our new approach is

purely algebraic and we expect it to be useful in studying other perishable inventory systems.

Empirical performances.

Our extensive computational studies show that our proposed policies perform consistently

near-optimal for all the tested instances, which are significantly better than the theoretical

worst-case performance guarantees. More specifically, for independent and identically dis-

tributed demand processes and short product lifetimes (for which the optimal policies can

be numerically computed), our numerical results are comparable to those reported in Nah-

mias (1976, 1977b) and are very close to the optimal (around 0.3% above the optimal cost);

for long product lifetimes for which computing optimal policies is intractable, we compare

the performance of our methods with Nahmias (1976, 1977b); the overall performance of

our policies is also comparable to those of Nahmias (1976, 1977b) and it improves as the

frequency of oudating increases. For non-stationary and correlated demand processes includ-

ing Markov modulated demand process, Martingale models of forecast evolution (MMFE),

autoregressive (AR) models, and models with advance demand information (ADI), the pro-

posed algorithms also perform close to optimal for all the problem instances tested – with

maximum performance error below 3%, and average error below 1%, of the optimal costs.

4.1.2 Literature Review

The problem of managing stochastic periodic-review inventory systems with perishable

products has attracted the attention of many researchers over the years. The dominant

paradigm in the existing literature has been to formulate these models using a dynamic

programming framework. Nahmias and Pierskalla (1973) characterized the structure of the
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optimal ordering policy for a two-period product lifetime problem. Nahmias (1975b) and

Fries (1975) then, independently, studied the optimal policy for the general lifetime problem

with independent and identically distributed (i.i.d.) demands, in a backlogging model and

a lost-sales model, respectively. They showed that the optimal ordering quantity depends

on both the age distribution of the current inventory and the remaining time until the

end of planning horizon. Thus, computing the optimal policy using brute-force dynamic

programming is intractable due to the multi-dimensional state space. The complexity of this

problem is later reinforced by Cohen (1976) who characterized the stationary distribution

of inventory for the two-period lifetime problem, and showed that the optimal policy is a

state-dependent policy. Recently, Li and Yu (2014) revisited the structural properties of the

optimal inventory policy in perishable inventory systems by employing the “multimodularity”

concept; and Chen et al. (2014b) studied the joint inventory control and pricing problem

for perishable inventory systems and characterized the structural properties of the optimal

inventory and pricing policies.

Due to the complexity of the optimal policies for perishable inventory systems, a lot of

efforts have been dedicated to the design of efficient heuristic policies for both backlogging

and lost-sales models. When the demands are i.i.d., Nahmias (1976) constructed a bound on

the outdating cost which is a function of only the total on-hand inventory, and developed a

base-stock myopic policy using this bound. Nahmias (1977a) employed the same myopic poli-

cies to compare two dynamic perishable inventory models developed by Nahmias (1975b)

and Fries (1975). Subsequently, Nahmias (1977b) used a more refined approximate state

transition function which treats the product lifetime as if it were only two periods, thereby

resulting in a one-dimensional state variable. The numerical results for problems with prod-

uct lifetimes of 2 and 3 periods are near-optimal under i.i.d. demands. Nandakumar and

Morton (1993) derived upper and lower bounds for the dynamic programming formulation of

the lost-sales model, and used a weighted average of the lower and upper bounds to construct

an efficient heuristic. The numerical results showed that the heuristic again performs close

to optimal for short product lifetimes and i.i.d. demands. Cooper (2001) derived bounds

on the stationary distribution of the number of outdated units in each period, under a fixed

critical number order policy. Recently, following the approximation scheme of the outdating

costs developed by Nahmias (1976), Chen et al. (2014b) proposed two heuristic policies for

the joint inventory control and pricing models. Since the future demands depend on the

future prices, they approximated the expected demands and prices in the future periods by

solving the corresponding deterministic models. Their numerical study showed that the two

heuristic policies perform very well when the demands are i.i.d., but the performance error
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could go up to 15% for the independent but time-varying demands. Li et al. (2009) also

designed an effective heuristic following the approximation method of Nahmias (1976) for

the joint inventory control and pricing model. Li et al. (2013) proposed two myopic heuris-

tics for perishable inventory systems with last-in-first-out issuing policy and clearance sales.

To reduce the state space, the first heuristic treats all on-hand inventories as if they would

expire in one period whereas the second heuristic keeps track of the total inventory level and

the inventory level of items whose remaining lifetime is one period. Their numerical results

showed that these heuristics perform very close to optimal under i.i.d. demands. As seen

from the literature above, almost all the existing heuristic policies have been focused on i.i.d.

demands, and none of them admits provably worst-case performance guarantees.

There is also a large body of literature discussing other aspects of perishable inventory sys-

tems. We partition these studies into the following categories (our list below is by no means

exhaustive): (a) continuous-review perishable inventory systems (see, e.g., Weiss (1980),

Goh et al. (1993), Liu and Lian (1999), Perry (1999)); (b) perishable inventory systems with

multiple products or demands (see, e.g., Nahmias and Pierskalla (1976), Deuermeyer (1979),

Ferguson and Koenigsberg (2007), Deniz et al. (2010), Cai and Zhou (2014)); (c) joint in-

ventory and pricing control of perishables (see, e.g., Li et al. (2009), Chen and Sapra (2013),

Chen et al. (2014b)); (d) perishable inventory systems with depletion or clearance sales (see,

e.g., Cai et al. (2009), Xue et al. (2011), Li and Yu (2014), Li et al. (2013)); and (f) blood

banks and health-care applications (see, e.g., Prastacos (1984), Haijema et al. (2005, 2007),

Zhou et al. (2011)). We also refer interested readers to Nahmias (1982, 2011), Goyal and

Giri (2001), and Karaesmen et al. (2011) for comprehensive literature reviews.

Our work is also closely related to the recent stream of literature on approximation al-

gorithms for stochastic periodic-review inventory systems pioneered by Levi et al. (2007a).

The systems allow for correlated stochastic demand processes, including all of the known

approaches to model dynamic demand forecast updates (e.g., Gallego and Özer (2001), Iida

and Zipkin (2006), and Lu et al. (2006)). Levi et al. (2007a) first introduced the concept of

marginal cost accounting which associates the costs with each decision a particular policy

makes. They proposed a 2-approximation policy which admits a worst-case performance

guarantee of 2 for the backlogging model with generally correlated demands. Subsequently,

Levi et al. (2008a) proposed a 2-approximation algorithm for the lost-sales models under inde-

pendent demand processes; and Levi et al. (2008b) introduced the concept of forced marginal

backlogging cost accounting and proposed a 2-approximation algorithm for the capacitated

systems with backlogging. More recently, Levi and Shi (2013) and Shi et al. (2014) pro-

posed two approximation algorithms for the lot-sizing backlogging models without and with
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capacity constraints, respectively; and Tao and Zhou (2014) proposed a 2-approximation al-

gorithm for inventory systems with remanufacturing. All these previous studies assume that

the inventory is non-perishable, and therefore there exists a one-to-one matching between

the supply and demand when the inventory issuing policy is FIFO. Perishability, however,

destroys this matching mechanism and the existing techniques for the worst-case analysis

cannot be applied to perishable inventory systems.

4.1.3 Structure

The remainder of this chapter is organized as follows. In §4.2, we present the mathe-

matical formulation for the backlogging model. In §4.3, we design a nested marginal cost

accounting scheme for perishable inventory systems. In §4.4, we construct the proportional-

balancing policy and the dual-balancing policy, and provide their worst-case performance

guarantees. In §4.5, we provide the main proofs, while leaving some of the more involved

technical details in the supplemental material. In §4.6, we conduct an extensive numerical

study on our proposed policies. Finally, we conclude the chapter in §4.7. Throughout this

chapter, for any real numbers x and y, we denote x+ = max{x, 0}, x ∨ y = max{x, y}, and

x∧ y = min{x, y}. In addition, for a sequence x1, x2, . . . and any integers t and s with t ≤ s,

we denote x[t,s] =
∑s

j=t xj and x[t,s) =
∑s−1

j=t xj. Also, we use “expiration”, “outdating”, and

“perishing”, interchangeably.

4.2 Stochastic Periodic-Review Perishable Inventory Control Prob-

lem

In this section, we provide the mathematical formulation of the stochastic periodic-review

perishable inventory system over a planning horizon of T (possibly infinite) periods, indexed

by t = 1, . . . , T . The lifetime of the product is m periods, i.e., a product perishes after

staying m periods in stock. Our model allows for a non-stationary and generally correlated

demand process. We assume that the order lead time is zero, i.e., an order placed at the

beginning of a period can be used in the same period. This is a common assumption in the

perishable inventory literature (see Karaesmen et al. (2011)). We shall focus our presentation

on the backlogging model but our results can also be easily extended to lost-sales models.

Demand structure. The demands over the planning horizon are random, denoted by

D1, . . . , DT . The demands in different periods can be non-stationary and correlated over

time. At the beginning of each period t, there is an observed information set denoted by

ft, which contains all of the information accumulated up to period t. More specifically, the

83



information set ft consists of the realized demands d1, . . . , dt−1 in the first t − 1 periods,

and possibly some exogenous information denoted by (w1, . . . , wt). The information set ft in

period t is one specific realization in the set of all possible realizations of the random vector

Ft = (D1, . . . , Dt−1,W1, . . . ,Wt). The set of all possible realizations is denoted by Ft. With

the information set ft, the conditional joint distribution of the future demands (Dt, . . . , DT )

is known. We assume that the conditional expectations, given ft, are well defined. Note that

this demand structure is very general, that includes a wide range of demand processes such as

Markov modulated demand process (see, e.g. Song and Zipkin (1993) and Sethi and Cheng

(1997)), MMFE (see, e.g., Heath and Jackson (1994)), AR(p), ARMA(p, q), ARIMA(p, r,

q), (see, e.g., Mills (1990)), and models with advance demand information (ADI) (see, e.g.,

Gallego and Özer (2001)), among others.

Cost structure. In each period t, four types of costs may occur: a unit ordering cost ĉ,

a unit holding cost ĥ for leftover inventory, a unit backlogging cost b̂ for unsatisfied demand,

and a unit outdating cost θ̂ for expired products. There is also a one-period discount factor

α, with 0 < α ≤ 1 when T <∞ and 0 < α < 1 when T =∞. We assume that b̂ > (1− α)ĉ

and θ̂+αĉ ≥ 0. Thus, θ̂ can be negative, and in this case it can be interpreted as unit salvage

value. Following Nahmias (1975b) we assume that any remaining inventory at the end of

the planning horizon can be salvaged with a return of ĉ per unit and unsatisfied demand

can be satisfied by an emergency order at a cost of ĉ per unit. We note that our analysis

can be extended to the case with a unit salvage value v̂ for any on-hand inventory and a

unit penalty cost p̂ for any unsatisfied demand at the end of the planning horizon, as long

as v̂ ≤ ĉ and b̂+αp̂ > ĉ. However, our analysis cannot be directly extended to the case with

age-dependent salvage values.

System dynamics. For each period t, the sequence of events is as follows. First, at the

beginning of period t, the information set ft ∈ Ft and the inventory vector

xt = (xt,1, . . . , xt,m−1) (4.1)

are observed, where xt,i is the quantity of on-hand products whose remaining lifetime is i

periods, i = 1, . . . ,m − 2, and xt,m−1 is the quantity of on-hand products whose remain-

ing lifetime is m − 1 periods minus the quantity of backlogged demands (if any). Thus,

xt,1, . . . , xt,m−2 are always nonnegative; while xt,m−1 can be positive or negative. For sim-

plicity, we assume that the inventory system is initially empty at the beginning of period 1,

i.e., x1,i = 0, for all i = 1, . . . ,m − 1; but our analysis and results can be extended to the

case with an arbitrary initial state.
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Second, an order with quantity qt is placed, incurring an ordering cost ĉqt. Following the

discussions in Levi et al. (2007a), we assume that qt is a continuous decision variable, but

it can be extended to the case of integer values. Denote yt as the total inventory level after

receiving the order in period t. Then, yt =
∑m−1

i=1 xt,i + qt.

Third, the demand in period t is realized and satisfied as much as possible by the on-

hand inventory using the FIFO issuing policy, i.e., the oldest inventory is consumed first

when demand arrives. At the end of period t, if yt − Dt ≥ 0, then the excess inventory

incurs a holding cost ĥ(yt − Dt). Following Nahmias (1975b), we assume that all excess

inventory (including the inventory which perishes at the end of this period) incurs a holding

cost. On the other hand, if yt−Dt < 0, then the system incurs a backlogging cost b̂(Dt−yt).
Furthermore, if the inventory with one period remaining life xt,1 > Dt, then et := (xt,1−Dt)

+

units perish and incur an outdating cost θ̂et.

Finally, the system proceeds to the subsequent period t + 1. By the definition of the

inventory vector xt and the FIFO issuing policy, we obtain the following state transition

from xt to xt+1:

xt+1,j =

xt,j+1 −

(
Dt −

j∑
i=1

xt,i

)+
+

, for 1 ≤ j ≤ m− 2,

xt+1,m−1 = qt −

(
Dt −

m−1∑
i=1

xt,i

)+

. (4.2)

We remark that in defining the inventory state xt in (4.1), it is convenient and natural to

combine the inventory having m − 1 periods of remaining life with the number of backlogs

in xt,m−1. This is because when demand arrives, by the FIFO issuing policy, it is first

met by xt,1, and when xt,1 is consumed then the remaining demand is met by xt,2. This

process continues and when (and if) xt,m−2 also depletes to 0, the remaining demand will

be satisfied by xt,m−1. Clearly, when the demand is large, this last number will continue to

go down after reaching 0, representing the backlog level. We also note that inventory only

outdates through the first dimension, xt,1, of vector xt, while backlogs always stay in the

last dimension, xt,m−1 (hence backlogs will not disappear after m periods). Moreover, if in

period t there are backlogs (thus xt,m−1 is negative and xt,j = 0 for j = 1, . . . ,m− 2), then

by (4.2), in the next period xt+1,j will be equal to 0 for all j = 1, . . . ,m − 2, but xt+1,m−1

can be positive or negative, depending on whether qt is greater or less than Dt − xt,m−1.

Objective. For clarity, we often distinguish between a random variable and its real-

ization using a capital letter and a lowercase letter, respectively. Then the expected total
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discounted cost incurred under a given policy P that orders qt in period t can be written as

C (P ) = E

[
T∑
t=1

αt−1
(
ĉqt + ĥ(Yt −Dt)

+ + b̂(Dt − Yt)+ + θ̂et

)
− αT ĉ

m−1∑
i=1

XT+1,i

]
. (4.3)

Note that, the quantities qt, Yt, et, andXt all depend on the policy P ; and whenever necessary,

we shall make the dependency explicit, i.e., write them as qPt , Y
P
t , e

P
t , and XP

t , respectively.

The objective is to coordinate the sequence of orders to minimize the expected total

discounted cost. As discussed in Section 4.1, it is known that finding the exact optimal

policy using dynamic programming is computationally intractable. Thus, our focus in this

chapter is to design easy-to-compute and near-optimal approximation algorithms.

Approximation policy assessment. To measure the effectiveness of an approximation

algorithm P , we define its performance measure by the ratio C (P )/C (OPT ), where C (OPT )

is the cost under an optimal policy. Clearly, the value of this ratio depends on the problem

instance, and is at least 1. If under algorithm P this ratio is always equal to 1 for all

problem instances, then P is an optimal policy. Otherwise, if there exists some number

r (> 1) such that this ratio is less than or equal to r for any problem instance, then we

say that the algorithm admits a worst-case performance guarantee of r, or simply call it an

r-approximation algorithm. As mentioned earlier, we will present efficient approximation

algorithms for the perishable inventory systems with worst-case performance guarantees of

2 and 3, respectively.

Cost transformation. Next we carry out a cost transformation to obtain an equivalent

model with the unit ordering cost equal to 0. This will enable us to assume, without loss of

generality, that the unit ordering cost is 0 in the subsequent analysis.

Proposition 4.1. For every perishable inventory system with cost parameters ĉ, ĥ, b̂ and

θ̂, there is an equivalent system with non-negative cost parameters c = 0, h = ĥ + (1− α)ĉ,

b = b̂− (1− α)ĉ and θ = θ̂ + αĉ. And the expected total discounted cost can be rewritten as

C (P ) = E

[
T∑
t=1

αt−1
(
h(Yt −Dt)

+ + b(Dt − Yt)+ + θet
)]

+
T∑
t=1

αt−1ĉE [Dt] . (4.4)

Proof. Recall that the amount of outdating products in period t is

et := (xt,1 −Dt)
+.

The starting inventory level in period t+ 1 is equal to the ending inventory level in period t
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minus the demand and also the outdated units in period t, i.e.,

m−1∑
i=1

xt+1,i = Yt −Dt − et. (4.5)

Hence using the relationship

qt = Yt −
m−1∑
i=1

xt,i = (Yt −Dt)
+ − (Dt − Yt)+ +Dt −

m−1∑
i=1

xt,i, (4.6)

we can rewrite the cost C (P ) in (4.3) as

C (P ) = E

[
T∑
t=1

αt−1
(
ĉqt + ĥ(Yt −Dt)

+ + b̂(Dt − Yt)+ + θ̂et

)
− αT ĉ

m−1∑
i=1

XT+1,i

]

= E

[
T∑
t=1

αt−1

(
ĉDt − ĉ

m−1∑
i=1

xt,i + (ĥ+ ĉ)(Yt −Dt)
+ + (b̂− ĉ)(Dt − Yt)+ + θ̂et

)
− αT ĉ

m−1∑
i=1

XT+1,i

]

= E

[
T∑
t=1

αt−1

(
−αĉ

m−1∑
i=1

xt+1,i + (ĥ+ ĉ)(Yt −Dt)
+ + (b̂− ĉ)(Dt − Yt)+ + θ̂et

)]
+R

= E

[
T∑
t=1

αt−1
(
−αĉ(Yt −Dt) + (ĥ+ ĉ)(Yt −Dt)

+ + (b̂− ĉ)(Dt − Yt)+ + (θ̂ + αĉ)et

)]
+R

= E

[
T∑
t=1

αt−1
(

(ĥ+ ĉ− αĉ)(Yt −Dt)
+ + (b̂− ĉ+ αĉ)(Dt − Yt)+ + (θ̂ + αĉ)et

)]
+R

= E

[
T∑
t=1

αt−1
(
h(Yt −Dt)

+ + b(Dt − Yt)+ + θet
)]

+R,

where the second equality follows from (4.6), the fourth equality follows from (4.5), h =

ĥ+ (1− α)ĉ, b = b̂− (1− α)ĉ, θ = θ̂ + αĉ, and

R = −ĉ
m−1∑
i=1

x1,i +
T∑
t=1

αt−1ĉE[Dt] =
T∑
t=1

αt−1ĉE[Dt].

Note that we have used the assumption that the inventory system is initially empty, i.e.,

x1,i = 0, for all i = 1, . . . ,m− 1. The proof is complete.

4.3 Nested Marginal Cost Accounting Scheme

The traditional cost accounting scheme given in (4.3) decomposes the total cost by pe-

riods. Levi et al. (2007a) presented a marginal cost accounting scheme for the classical
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non-perishable inventory systems. In this section, we develop a marginal cost accounting

scheme for perishable inventory systems, similar in spirit to that in Levi et al. (2007a). Our

marginal cost accounting scheme exhibits a nested structure due to the multi-dimensionality

of system state. The main idea underlying this approach is to decompose the total cost in

terms of the marginal costs of individual decisions. That is, we associate the decision in pe-

riod t with its affiliated cost contributions to the system. These marginal costs may include

costs (associated with the decision) incurred in both the current and subsequent periods.

Given the inventory vector xt = (xt,1, . . . , xt,m−1) at the beginning of period t, and that a

policy P orders qt, we aim to compute the marginal cost contributions to the system by these

qt units on the holding, outdating, and backlogging costs. To this end, for i = 1, . . . ,m− 1,

we let Bt(xt, i) denote the number of outdated units in periods [t, t + i − 1] given that the

inventory vector at the beginning of period t is xt, with the convention that Bt(xt, 0) ≡ 0.

Then, for 1 ≤ i ≤ m− 1, we have

Bt(xt, i) = max
{ i∑

j=1

xt,j −D[t,t+i−1], Bt(xt, i− 1)
}
. (4.7)

To see why this is true, note that
∑i

j=1 xt,j−Bt(xt, i−1) is the number of non-expired units

in xt,1, . . . , xt,i that would meet demands in periods [t, t+i−1]. These units, if not consumed,

will expire at the end of period t + i − 1. Thus
(∑i

j=1 xt,j − Bt(xt, i − 1) − D[t,t+i−1]

)+
, if

positive, would be the number of units that will expire at the end of period t+ i−1. Adding

Bt(xt, i− 1) to it gives the total number of expired units in [t, t+ i− 1], which is (4.7).

The nested structure in the auxiliary function Bt(·, ·) follows from the fact that some

inventory units reach their expiration date before meeting the demand, and have to be

discarded from the on-hand inventory. Using this auxiliary function, the number of outdated

units in period t+ i− 1, for 1 ≤ i ≤ m− 1, is given as

et+i−1 =
( i∑
j=1

xt,j −Bt(xt, i− 1)−D[t,t+i−1]

)+

,

and the number of oudated units in period t+m− 1 is

et+m−1 =
(
qt +

m−1∑
j=1

xt,j −Bt(xt,m− 1)−D[t,t+m−1]

)+

.
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4.3.1 Nested Marginal Holding Cost Accounting

We first focus on the marginal holding cost accounting of a given policy P . The holding

cost for the qt units ordered in period t may be incurred in any period from t to t + m − 1

(after which the remaining ones will perish), or T , whichever is smaller. Let HP
t (qt) be the

discounted marginal holding cost (to period 1) incurred by these qt units. Then it follows

from the FIFO issuing policy that

HP
t (qt) := h

(t+m−1)∧T∑
i=t

αi−1
(
qt −

(
D[t,i] +Bt(xt, i− t)−

m−1∑
j=1

xt,j
)+
)+

, (4.8)

where the auxiliary function Bt(xt, i) is given recursively via (4.7). To see why (4.8) is valid,

note that the total number of units in xt that do not expire until t+i is
∑m−1

j=1 xt,j−Bt(xt, i),

thus the net demand after consuming the units in xt is
(
D[t,t+i] − (

∑m−1
j=1 xt,j −Bt(xt, i))

)+
.

Hence, the number of unconsumed units from qt at the end of period t+ i is
(
qt−

(
D[t,t+i] +

Bt(xt, i)−
∑m−1

j=1 xt,j
)+)+

.

Because the marginal holding cost is computed based on the nested structure of the aux-

iliary function Bt(·, ·), we call it the nested marginal holding cost accounting. It is important

to note that the marginal holding cost associated with the qt units ordered in period t is

only affected by the future demands but not by the future decisions.

4.3.2 Nested Marginal Outdating Cost Accounting

Similarly, we can compute the marginal outdating cost associated with the qt units or-

dered by policy P in period t using the following nested scheme. For t = 1, . . . , T −m+ 1,

ΘP
t (qt) := αt+m−2 θ et+m−1 = αt+m−2 θ

(
qt +

m−1∑
j=1

xt,j −Bt(xt,m− 1)−D[t,t+m−1]

)+

, (4.9)

where Bt(·, ·) is defined in (4.7); and for t = T −m + 2, . . . , T , we have ΘP
t ≡ 0 since the

ordered units do not expire within the planning horizon.
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4.3.3 Marginal Backlogging Cost Accounting

For each period t = 1, . . . , T , the discounted (to period 1) marginal backlogging cost of

the qt units ordered in period t by policy P can be expressed as

ΠP
t (qt) := αt−1 b

(
Dt −

m−1∑
i=1

xt,i − qt
)+

, (4.10)

which is exactly the same as the traditional backlogging cost using the period-by-period

accounting scheme. The intuition is that any negative consequence of under-ordering can

be corrected by placing an order in the next period; thus it suffices to only consider the

backlogging cost incurred in the current period.

4.3.4 Total Cost of a Given Policy

Note that the marginal costs defined above, HP
t (qt), ΘP

t (qt), and ΠP
t (qt), are random as

they depend on the future demands. Since the system is initially empty, the expected total

system cost C (P ) of policy P can be obtained by summing (4.8), (4.9) and (4.10) over t

from 1 to T , and then taking expectations. Thus, by (4.4) we have

C (P ) = E
[ T∑
t=1

(
HP
t (qt) + ΠP

t (qt) + ΘP
t (qt)

)]
+

T∑
t=1

αt−1ĉE[Dt]. (4.11)

If we ignore the constant terms that are independent of the policy, then we can write the

effective cost of a policy P as

C(P ) = E
[ T∑
t=1

(
HP
t (qt) + ΠP

t (qt) + ΘP
t (qt)

)]
. (4.12)

Clearly, to compare different policies, we only need to compare their effective costs.

4.4 Balancing Policies and Worst-Case Performance Guarantees

In this section, we propose two efficient cost-balancing algorithms for perishable inventory

systems with general product lifetime using the nested cost accounting scheme defined in

the previous section. The first one is for arbitrary non-stationary and correlated demand

processes; while the second is for independent and stochastically non-decreasing demand

processes. These policies will be shown to admit worst-case performance guarantees of 3 and
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2, respectively.

4.4.1 Proportional-Balancing (PB) Policy

For each period t = 1, . . . , T , with an observed information set ft ∈ Ft, the proportional-

balancing (PB) policy orders qPBt = qt that balances a proportion of the expected marginal

holding and outdating costs with the expected backlogging cost as follows:

mh+θ
2(m−1)h+θ

E[HPB
t (qt) + ΘPB

t (qt) | ft] = E[ΠPB
t (qt) | ft]. (4.13)

It can be verified that the left hand side (LHS) of (4.13) is an increasing convex function

of the order quantity qt, which equals 0 when qt = 0 and approaches infinity when qt tends

to infinity. On the other hand, the right hand side (RHS) of (4.13) is a decreasing convex

function of the order quantity qt, which equals a non-negative number when qt = 0 and tends

to 0 when qt goes to infinity. Since qt can take any non-negative real value and both functions

are continuous, qt in (4.13) is well defined. Furthermore, since LHS minus RHS of (4.13) is

increasing in qt, q
PB
t can be very efficiently computed using bisection methods. It should

be noted that qPBt is a function of ft and xt, but for simplicity we make this dependency

implicit.

For the special case where the demands in different periods are independent, qPBt does

not depend on the information set ft, and it becomes a function of only the inventory

vector xt at the beginning of period t. Several studies in the literature have analyzed the

qualitative properties of the optimal order quantity qOPTt on the starting inventory vector

of period t for the case of independent and identically distributed demands (see, e.g., Fries

(1975) and Nahmias (1982)). Suppose the inventory vector at the beginning of period t is

xt = (x1, . . . , xm−1). It has been shown that qOPTt decreases at a rate less than one when

the product inventory of any age group increases, and that it decreases more rapidly in the

inventory level of newer product than that of older product. The following result shows that,

the order quantity qPBt under the PB policy satisfies these properties as well.

Proposition 4.2. For each period t, the order quantity qPBt under the PB policy satisfies

−1 ≤ ∂qPBt
∂xm−1

≤ ∂qPBt
∂xm−2

≤ · · · ≤ ∂qPBt
∂x1

≤ 0.

Proof. The marginal costs are functions of x and q, thus in this proof we write them as
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HPB
t (x, q), ΘPB

t (x, q), and ΠPB
t (x, q). Define

ht(x, q) = mh+θ
2(m−1)h+θ

E[HPB
t (x, q) + ΘPB

t (x, q) | ft]− E[ΠPB
t (x, q) | ft].

Then, qPBt is the solution of the equation ht(x, q) = 0. First, one can easily verify that ht(x, q)

is increasing in x and in q. Thus, it follows that qPBt is decreasing in xi, i = 1, . . . ,m−1. Next,

we argue that to complete the proof it suffices to show that ht(x1, x2−x1, . . . , xm−1−xm−2, q̂−
xm−1) is decreasing in (x1, . . . , xm−1) while increasing in q̂. Now suppose these results are

true. Define q̂∗(x1, . . . , xm−1) as the solution of the equation ht(x1, x2 − x1, . . . , xm−1 −
xm−2, q̂−xm−1) = 0. Then, it follows from our assumption that q̂∗(x1, . . . , xm−1) is increasing

in (x1, . . . , xm−1). From the definition of qPBt , we must have, if we write the dependency on

state variables explicit,

qPBt (x1, x2 − x1, . . . , xm−1 − xm−2) = q̂∗(x1, . . . , xm−1)− xm−1.

After taking derivative with respect to xi, i = 1, . . . ,m− 1, we obtain

−1 ≤ ∂qPBt
∂xm−1

≤ ∂qPBt
∂xm−2

≤ · · · ≤ ∂qPBt
∂x1

.

Now we prove that ht(x1, x2−x1, . . . , xm−1−xm−2, q̂−xm−1) is decreasing in (x1, . . . , xm−1)

while increasing in q̂. To this end, it suffices to show that, for any realizations of demands

Dt, . . . , DT , HPB
t (x1, x2−x1, . . . , xm−1−xm−2, q̂−xm−1), ΘPB

t (x1, x2−x1, . . . , xm−1−xm−2, q̂−
xm−1) and −ΠPB

t (x1, x2 − x1, . . . , xm−1 − xm−2, q̂ − xm−1) all satisfy the above properties.

First, notice that

−ΠPB
t (x1, x2 − x1, . . . , xm−1 − xm−2, q̂ − xm−1) = −αt−1b(Dt − q̂)+.

Thus the desired results are trivially true.

To show that HPB
t (·) and ΘPB

t (·) also satisfy the desired results, we first prove by induc-

tion that Bt(x1, x2 − x1, . . . , xm−1 − xm−2, i) is increasing in (x1, . . . , xi) and independent in

(xi+1, . . . , xm−1), i = 1, . . . ,m− 1. When i = 1, the results are obviously true. Now suppose

the results hold for i. For i+ 1, we have

Bt(x1, x2 − x1, . . . , xm−1 − xm−2, i+ 1)

= max
{
xi+1 −D[t,t+i−1], Bt(x1, x2 − x1, . . . , xm−1 − xm−2, i)

}
.
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Then, it follows from the above expression that Bt(x1, x2 − x1, . . . , xm−1 − xm−2, i + 1) is

increasing in (x1, . . . , xi+1) and independent in (xi+2, . . . , xm−1). Hence, by induction, the

desired results on Bt(·, i) hold for i = 1, . . . ,m− 1.

Now consider ΘPB
t (·). Since

ΘPB
t (x1, x2 − x1, . . . , xm−1 − xm−2, q̂ − xm−1)

=αt+m−2θ(q̂ −Bt(x1, x2 − x1, . . . , xm−1 − xm−2,m− 1)−D[t,t+m−1])
+,

then ΘPB
t (x1, x2−x1, . . . , xm−1−xm−2, q̂−xm−1) is decreasing in (x1, . . . , xm−1) while increas-

ing in q̂. Similarly, we can prove that the desired results hold for HPB
t (x1, x2−x1, . . . , xm−1−

xm−2, q̂ − xm−1). The proof is complete.

The more important question is how well the PB policy performs. In what follows, we first

provide a theoretical worst-case performance guarantee; then in Section 6, we will provide a

comprehensive numerical study to demonstrate its empirical performance.

Theorem 4.3. For an arbitrary non-stationary and correlated demand process, the proportional-

balancing policy for the perishable inventory system with m ≥ 2 periods of product lifetime

has a worst-case performance guarantee of
(

2 + (m−2)h
mh+θ

)
, i.e., for any instance of the prob-

lem, the expected cost of the proportional-balancing policy is at most
(

2 + (m−2)h
mh+θ

)
times the

expected cost of an optimal policy.

Theorem 4.3 shows that, when the product lifetime m = 2, the PB policy has a worst-case

performance guarantee of 2; while for a general lifetime m, the PB policy has a worst-case

performance guarantee between 2 and 3.

We remark that the balancing coefficient on the LHS of (4.13) is chosen so that the

resulting PB policy admits our best provable worst-case performance guarantee. If we select

a general positive balancing coefficient β to construct the PB policy, then we can prove that

it admits a worst-case performance guarantee of (β + 1)/min{β, β0}, where β0 = mh+θ
2(m−1)h+θ

.

Since the worst-case performance guarantee is minimized when β = β0, we construct the PB

policy with this optimized parameter.

4.4.2 Dual-Balancing (DB) Policy

In this subsection, we propose another approximation policy, referred to as the dual-

balancing policy, which has a worst-case performance of 2 for an arbitrary fixed lifetime

m when the demands D1, . . . , DT are independent and stochastically non-decreasing over
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time. The random variables D1, . . . , DT are said to be stochastically non-decreasing if for

any 1 ≤ t ≤ s ≤ T , Dt is less than Ds in the usual stochastic order, or equivalently,

Pr(Dt > d) ≤ Pr(Ds > d) for all d. For more detailed discussions on stochastic orders, we

refer interested readers to Shaked and Shanthikumar (2007). In the remainder of this section,

we assume that the demands D1, . . . , DT are independent and stochastically non-decreasing.

To introduce the dual-balancing policy, we first define the discounted (to period 1)

marginal holding cost for period t for an arbitrary policy P by

ĤP
t (qt) := αt−1 h

(
m−1∑
i=1

xt,i + qt −Dt

)+

.

Then, we define the discounted marginal outdating and discounted marginal backlogging

costs for a policy P in exactly the same way as those in (4.9) and (4.10). In addition, for

each period t, let St be the solution of y to the equation hE[(y − Dt)
+] = bE[(Dt − y)+],

which depends only on the distribution of Dt in period t. Since the demands D1, . . . , DT are

stochastically non-decreasing, it follows that St is non-decreasing in t.

The dual-balancing (DB) policy is described as follows: Suppose at the beginning of

period t the state is xt = (xt,1, . . . , xt,m−1), the DB policy orders qDBt = qt if
∑m−1

i=1 xt,i ≤ St,

where qt is the solution of

E[ĤDB
t (qt) + ΘDB

t (qt) | xt] = E[ΠDB
t (qt) | xt], (4.14)

and qDBt = 0 otherwise. Note that, since the demands are independent random variables,

the information set ft can be removed, and qDBt is only a function of the inventory vector xt.

The qt in (4.14) balances the expected discounted marginal holding and outdating costs

with the expected marginal backlogging cost. It can be verified that the LHS of (4.14) is an

increasing convex function of the order quantity qt, which equals αt−1hE[(
∑m−1

i=1 xt,i −Dt)
+]

when qt = 0 and approaches infinity when qt goes to infinity. On the other hand, the RHS

of (4.14) is a decreasing convex function of qt, which equals αt−1bE[(Dt−
∑m−1

i=1 xt,i)
+] when

qt = 0 and approaches 0 when qt goes to infinity. When
∑m−1

i=1 xt,i ≤ St, the quantity qt in

(4.14) is well defined with 0 ≤ qt ≤ St −
∑m−1

i=1 xt,i. When
∑m−1

i=1 xt,i > St, Equation (4.14)

does not have a nonnegative solution and in this case the DB policy orders qDBt = 0.

It is important to note that since St is non-decreasing in t, if for some period t we have∑m−1
i=1 xt,i ≤ St, then following the DB policy we have

∑m−1
i=1 xt′,i ≤ St′ for all t′ ≥ t regardless
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of the demand realizations of Dt, . . . , DT . This is because when
∑m−1

i=1 xt,i ≤ St, we have

m−1∑
i=1

xt+1,i =
m−1∑
i=1

xt,i + qt −Dt − et ≤ St −Dt − et ≤ St ≤ St+1.

This implies that when the demands are independent and stochastically non-decreasing, the

DB policy can perfectly balance the expected marginal holding and outdating costs with

the expected marginal backlogging cost after placing its first order. If the demands are not

independent or stochastically non-decreasing, then St will not necessarily be monotonically

non-decreasing in t and as a result, the DB policy will not have the above property. This

is the reason why we need to assume that the demands are independent and stochastically

non-decreasing over time.

The following result shows that, again, the desired properties exhibited by the optimal

control policy for the perishable inventory system are inherited by the DB policy. Its proof

is very similar to that of Proposition 4.2 and hence it is omitted.

Proposition 4.4. For each period t, the order quantity qDBt under the DB policy satisfies

−1 ≤ ∂qDBt
∂xm−1

≤ ∂qDBt
∂xm−2

≤ · · · ≤ ∂qDBt
∂x1

≤ 0.

The following theorem shows that, the DB policy has a worst-case performance guarantee

of 2 when the demands are independent and stochastically non-decreasing over time.

Theorem 4.5. For an arbitrary independent and stochastically non-decreasing demand pro-

cess, the dual-balancing policy for the perishable inventory system with an arbitrary fixed

product lifetime has a worst-case performance guarantee of 2, i.e., for any instance of the

problem, the expected cost of the dual-balancing policy is at most twice the expected cost of

an optimal policy.

4.5 Worst-Case Analysis

The arguments used in the literature on proving worst-case performance guarantees for

approximation algorithms utilize a “unit-matching” approach (see, e.g., Levi et al. (2007a,

2008a,b, 2012), Levi and Shi (2013)). In a sense, the approach is geometric, and it relies on

the correspondence of units in the systems operating under different policies throughout the

planning horizon, and then it compares the costs incurred by the matched units in different

systems. However, the unit-matching approach fails to work for perishable inventory systems
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because the inventory units can perish and the number of outdating units differs in systems

operating under different policies.

To overcome this difficulty, we develop an algebraic approach for comparing different

systems. A key concept in our approach is the trimmed on-hand inventory level, which is

defined as the part of on-hand inventory units ordered before any given particular time.

These trimmed inventory levels serve as a generalization of the traditional inventory level, as

they provide critical (partial) information on the ages of the products on-hand. Due to the

nature of perishable systems, it is impossible to quantify the effect of the decision made in

the current period t on future costs only through the traditional total inventory level Yt. The

trimmed inventory levels provide a tractable way to analyze this effect, and also provide the

right framework for coupling the marginal holding and outdating costs in different systems.

More technically, the difference between the trimmed inventory levels of our policy and the

optimal policy OPT can be bounded by the difference between the outdating units of the

two policies. An essential part of this worst-case analysis presented below is based on this

new concept.

The main ideas and arguments for the proofs of our key results are given below. We

leave some of the more involved technical analysis in the online Appendix. For simplicity,

whenever possible we will abbreviate the marginal costs HP
t (qt), ΘP

t (qt) and ΠP
t (qt) by HP

t ,

ΘP
t and ΠP

t , respectively, i.e., we make the ordering quantity qt in these functions implicit.

In the following, we first study the PB policy and its worst-case performance, and then

study the DB policy.

4.5.1 Analysis of PB Policy

We now compare the PB policy with the optimal policy OPT. To this end, we make

the dependency of the relevant quantities on the policy, PB or OPT, explicit. For each

realization of demands D1, . . . , DT and the exogenous information W1, . . . ,WT , we compare

and analyze the inventory processes of the systems operating under these two policies.

Given a realization fT ∈ FT , let TH be the set of periods in which the optimal policy

has more total inventory level than the PB policy does. In other words, we denote

TH =
{
t ∈ [1, T ] : Y OPT

t ≥ Y PB
t

}
.

In addition, we let its complement set be denoted by

TΠ =
{
t ∈ [1, T ] : Y OPT

t < Y PB
t

}
.
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Lemma 4.6. For each realization fT ∈ FT , we have

∑
t∈TH

HPB
t ≤

T∑
t=1

HOPT
t + (m− 2)

h

θ

T∑
t=1

ΘOPT
t .

Proof. For brevity, we only prove the result for the case when the discount factor α = 1.

The general case with α ∈ [0, 1] can be proved similarly. For any t = 1, . . . , T , denote et

as the amount of perished products in period t. Since the lifetime of the products is m, we

have Θt = θet+m−1. In addition, for any t and s ≥ t ≥ 0, denote Yt,s as the part of on-hand

inventory at the beginning of period s which is ordered in period t or earlier. Note that

Yt,s − Y0,s is the part of on-hand inventory at the beginning of period s which is ordered in

between periods 1 and t (in the case of 0 initial inventory level, Y0,s ≡ 0). Thus, Yt,s ≥ Y0,s.

For convenience, we denote D0 = e0 = 0. From the definition of Yt,s, it is readily verified

that

Yt,s = (Yt −D[t,s) − e[t,s))
+, s = t, t+ 1, . . . , t+m− 1, (4.15)

and Yt,s = 0 when s ≥ t+m.

For any period t = 1, . . . , T , we define the notation R(t) as follows: if the set {s ∈ TH :

s > t} is not empty, then R(t) := min{s ∈ TH : s > t}; otherwise, R(t) := T + 1. In

addition, for any s ≥ 1, denote H̃s as the part of holding cost incurred in period s which is

associated with the products ordered in periods {t : t ∈ TH , t ≤ s}. Since the lifetime of the

products is m, all products ordered in period t or earlier will leave the system at the end of

period t+m− 1. Then, it follows that for any t ∈ TH , H̃s = 0 when t+m ≤ s ≤ R(t)− 1.

Consequently, by the definitions of Ht, H̃s, and R(t), we have

∑
t∈TH

Ht =
∑
t∈TH

R(t)−1∑
s=t

H̃s =
∑
t∈TH

(t+m)∧R(t)−1∑
s=t

H̃s. (4.16)

For each period s ∈ [t, R(t) − 1], the amount of leftover inventories (after satisfying the

demand Ds but before product outdating) associated with the orders in periods 1, . . . , t can

be expressed as (Yt,s − Y0,s − (Ds − Y0,s)
+)

+
, which also equals (Yt,s −Ds)

+ − (Y0,s −Ds)
+.

It is clear that these leftover inventories consist of two parts: 1) the leftover inventories

associated with the orders in periods {t : t ∈ TH , t ≤ s}; and 2) the leftover inventories

associated with the orders in periods {t : t ∈ TΠ, t ≤ s}. Note that the outdating products

during periods s, . . . , t + m − 1 only come from the above leftover inventories. Thus, the
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total outdating products in periods {t′ : t′ = s, . . . , t+m− 1, t′−m+ 1 ∈ TΠ} are less than

or equal to the leftover inventories associated with the orders in periods {t : t ∈ TΠ, t ≤ s}.
For convenience, for t = m, . . . , T , we denote

eΠ
t =

{
et, if t−m+ 1 ∈ TΠ;

0, otherwise.

In addition, we denote eHt = et − eΠ
t . Then, we have

H̃s ≤ h(Yt,s −Ds)
+ − h(Y0,s −Ds)

+ − heΠ
[s,t+m−1]. (4.17)

Combining (4.16) and (4.17), we obtain

∑
t∈TH

Ht ≤ h
∑
t∈TH

(t+m)∧R(t)−1∑
s=t

(
(Yt,s −Ds)

+ − (Y0,s −Ds)
+ − eΠ

[s,t+m−1]

)
. (4.18)

On the other hand, for any t < s, since Ys ≥ Yt,s + qs, it is clear that (Ys − Ds)
+ ≥

(Yt,s −Ds)
+ + es+m−1. Therefore, we have

T∑
t=1

Ht =h
T∑
t=1

((Yt −Dt)
+ − (Y0,t −Dt)

+)

≥h
∑
t∈TH

R(t)−1∑
s=t

(
(Yt,s −Ds)

+ − (Y0,s −Ds)
+
)

+ h
∑
s∈TΠ

es+m−1

≥h
∑
t∈TH

(t+m)∧R(t)−1∑
s=t

(
(Yt,s −Ds)

+ − (Y0,s −Ds)
+
)

+ h
T∑
t=m

eΠ
t . (4.19)

Note that Y0,s is the part of on-hand inventory at the beginning of period s which is

ordered before period 1, it follows from the FIFO issuing policy that Y0,s is independent of

the ordering policy. Hence,

∑
t∈TH

(t+m)∧R(t)−1∑
s=t

(Y PB
0,s −Ds)

+ =
∑
t∈TH

(t+m)∧R(t)−1∑
s=t

(Y OPT
0,s −Ds)

+. (4.20)
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Combining (4.18), (4.19), and (4.20), we obtain

∑
t∈TH

HPB
t −

T∑
t=1

HOPT
t ≤h

∑
t∈TH

(t+m)∧R(t)−1∑
s=t

(
(Y PB

t,s −Ds)
+ − (Y OPT

t,s −Ds)
+ − ePB,Π[s,t+m−1]

)
− h

T∑
t=m

eOPT,Πt

≤h
∑
t∈TH

(
(Y PB

t −Dt)
+ − (Y OPT

t −Dt)
+ − ePB,Π[t,t+m−1]

)
− h

T∑
t=m

eOPT,Πt

+h
∑
t∈TH

(t+m)∧R(t)−1∑
s=t+1

(eOPT[t,s) − ePB[t,s))
+, (4.21)

where the second inequality holds because

(Y PB
t,s −Ds)

+−(Y OPT
t,s −Ds)

+ ≤ (Y PB
t,s −Y OPT

t,s )+ = (Y PB
t −Y OPT

t −ePB[t,s)+e
OPT
[t,s) )+ ≤ (eOPT[t,s) −ePB[t,s))

+,

where the equality is from (4.15) and the second inequality holds since Y PB
t ≤ Y OPT

t when

t ∈ TH .

For convenience, we denote êt as follows: when 1 ≤ t ≤ m − 1, êt := 0; and when

m ≤ t ≤ T , êt := et. Since inventories are consumed in a first-in-first-out manner, it is seen

that ePBt = eOPTt for 1 ≤ t ≤ m− 1 for any realization of the demands. Then, for 1 ≤ t ≤ T ,

eOPTt − ePBt = êOPTt − êPBt . Thus, we have

∑
t∈TH

(t+m)∧R(t)−1∑
s=t+1

(eOPT[t,s) − ePB[t,s))
+ =

∑
t∈TH

(t+m)∧R(t)−1∑
s=t+1

(êOPT[t,s) − êPB[t,s))
+

≤
∑

t∈TH , t≥m
R(t)≥t+m

(eOPTt − ePBt )+ +
∑
t∈TH

R(t)≥t+m

t+m−1∑
s=t+2

êOPT[t,s) +
∑
t∈TH

R(t)≤t+m−1

R(t)−1∑
s=t+1

êOPT[t,s)

≤
∑

t∈TH , t≥m
R(t)≥t+m

(eOPTt − ePBt )+ + (m− 2)
∑
t∈TH

R(t)≥t+m

êOPT[t,R(t)) + (m− 3)
∑
t∈TH

R(t)≤t+m−1

êOPT[t,R(t)) +
∑
t∈TH

R(t)=t+m−1

êOPTt

=
∑

t∈TH , t≥m
R(t)≥t+m

(eOPTt − ePBt )+ + (m− 2)
∑
t∈TH

êOPT[t,R(t)) −
∑
t∈TH

R(t)≤t+m−2

êOPT[t,R(t)) −
∑
t∈TH

R(t)=t+m−1

êOPT[(t+1),R(t)).

(4.22)
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Note that

∑
t∈TH

êOPT[t,R(t)) ≤
T∑
t=1

êOPTt =
T∑
t=m

eOPTt =
1

θ

T∑
t=1

ΘOPT
t . (4.23)

Hence, according to (4.21)-(4.23), to prove the lemma, it suffices to show

∑
t∈TH , t≥m
R(t)≥t+m

(eOPTt − ePBt )+ ≤
∑
t∈TH

(
(Y OPT

t −Dt)
+ − (Y PB

t −Dt)
+ + ePB,Π[t,t+m−1]

)
+

T∑
t=m

eOPT,Πt

+
∑
t∈TH

R(t)≤t+m−2

êOPT[t,R(t)) +
∑
t∈TH

R(t)=t+m−1

êOPT[t+1,R(t)). (4.24)

Denote T̂H = {t : t ∈ TH , R(t) ≥ t+m}, and define L̂(t) as follows: if the set {s ∈ T̂H : s <

t} is not empty, then L̂(t) := max{s ∈ T̂H : s < t}; otherwise, L̂(t) := 0. Then, to prove

(4.24), it suffices to show that, for any s ≥ m and s ∈ T̂H ,

(eOPTs − ePBs )+ ≤
∑

t∈TH ,L̂(s)<t≤s

(
(Y OPT

t −Dt)
+ − (Y PB

t −Dt)
+ + ePB,Π[t,t+m−1]

)
+

s∑
t=L̂(s)∨m

eOPT,Πt

+
∑

t∈TH ,L̂(s)<t≤s
R(t)≤t+m−2

êOPT[t,R(t)) +
∑

t∈TH ,L̂(s)<t≤s
R(t)=t+m−1

êOPT[t+1,R(t)). (4.25)

Furthermore, to prove (4.25), it is sufficient to show that, for any s ≥ m,

(eOPTs − ePBs )+ ≤ 1{s−m+1∈TH}

(
(Y OPT

s−m+1 −Ds−m+1)+ − (Y PB
s−m+1 −Ds−m+1)+ + ePB,Π[s−m+1,s]

)
+ eOPT,Πs + 1{R(s−2m+2)<s−m+1∈TH}ê

OPT
[R(s−2m+1),s−m+1)

+ 1{s−2m+2∈TH ,R(s−2m+2)=s−m+1}
(
(eOPTs−2m+2 − ePBs−2m+2)+ + êOPT[s−2m+3,s−m+1)

)
.

(4.26)

In what follows, we prove that (4.26) is indeed true for any s ≥ m and s ∈ T̂H , which

then completes the proof of Lemma 4.6.

Note that (eOPTs − ePBs )+ = 0 when eOPTs ≤ ePBs , and (eOPTs − ePBs )+ ≤ eOPT,Πs when

s − m + 1 ∈ TΠ. (4.26) is obviously true in both cases. In the following, we assume

eOPTs > ePBs and s−m+ 1 ∈ TH .
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From the definition of Ys and es, the following identity holds for any policy:

es =
(
(Ys−m+1 −Ds−m+1)+ −D[s−m+2,t] − e[s−m+1,s−1]

)+
. (4.27)

Since eOPTt > ePBt , with some simple algebra, it follows from the above identity that

eOPTs − ePBs ≤ (Y OPT
s−m+1 −Ds−m+1)+ − (Y PB

s−m+1 −Ds−m+1)+ + ePB[s−m+1,s−1] − eOPT[s−m+1,s−1]

≤ (Y OPT
s−m+1 −Ds−m+1)+ − (Y PB

s−m+1 −Ds−m+1)+ + ePB,Π[s−m+1,t] + ePB,H[s−m+1,s−1] − e
OPT
[s−m+1,s−1].

If ePB,H[s−m+1,s−1] ≤ eOPT[s−m+1,s−1], then (4.26) is proved. Now suppose ePB,H[s−m+1,s−1] > eOPT[s−m+1,s−1].

In this case, there must exist a period w(s) ∈ [s−m+ 1, s− 1] such that ePB,Hw(s) > eOPTw(s) , and

ePB,H(w(s),s−1] ≤ eOPT(w(s),s−1]. From the definition of ePB,Hw(s) , we also have w(s)−m+ 1 ∈ TH . Now

applying the identity (4.27) and the fact that Y OPT
w(s)−m+1 ≥ Y PB

w(s)−m+1, we obtain

ePB,H[s−m+1,t−1] − e
OPT
[s−m+1,t−1] ≤ePB[s−m+1,w(s)] − eOPT[s−m+1,w(s)] ≤ eOPT[w(s)−m+1,s−m+1) − ePB[w(s)−m+1,t+m+1)

=êOPT[w(s)−m+1,s−m+1) − êPB[w(s)−m+1,t+m+1). (4.28)

Since both w(s) −m + 1 and s −m + 1 belong to TH , R(s − 2m + 1) ≤ w(s) −m + 1,

and s− w(s) ≤ m− 1, it can be verified that

êOPT[w(s)−m+1,s−m+1) − êPB[w(s)−m+1,s+m+1) ≤ 1{R(s−2m+2)<s−m+1∈TH}ê
OPT
[R(s−2m+1),s−m+1)

+ 1{s−2m+2∈TH ,R(s−2m+2)=s−m+1}
(
(eOPTs−2m+2 − ePBs−2m+2)+ + êOPT[s−2m+3,s−m+1)

)
.

(4.29)

Hence, (4.26) is proved, and the proof of Lemma 4.6 is complete.

Lemma 4.7. For each realization fT ∈ FT , we have
∑

t∈TH
ΘPB
t ≤

∑T
t=1 ΘOPT

t .

Proof. We first establish a preliminary result: For any period t ∈ TH , if ΘPB
t > ΘOPT

t , then

there exists a period wt such that (t−m+ 1) ∨ 1 ≤ wt < t and

t∑
s=wt

ΘPB
s ≤

t∑
s=wt

ΘOPT
s . (4.30)

Suppose t ∈ TH and ΘPB
t > ΘOPT

t . Since Θt = θαt+m−2et+m−1, we have ePBt+m−1 >

eOPTt+m−1 ≥ 0. Recall that et is the number of perished products in period t, and it satisfies
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the following identity under any policy:

et+m−1 = (Yt −D[t,t+m−1] − e[t,t+m−1))
+.

Thus it follows from ePBt+m−1 > 0 that

ePB[t,t+m−1] =
(
Y PB
t −D[t,t+m−1] − ePB[t,t+m−1)

)+
+ ePB[t,t+m−1)

= Y PB
t −D[t,t+m−1]. (4.31)

On the other hand, for the OPT policy we have

eOPT[t,t+m−1] =
(
Y OPT
t −D[t,t+m−1] − eOPT[t,t+m−1)

)+
+ eOPT[t,t+m−1)

≥ Y OPT
t −D[t,t+m−1], (4.32)

Subtracting (4.32) from (4.31) yields

ePB[t∨m,t+m−1] − eOPT[t∨m,t+m−1] = ePB[t,t+m−1] − eOPT[t,t+m−1] ≤ Y PB
t − Y OPT

t ≤ 0, (4.33)

where the equality holds since ePBt = eOPTt for 1 ≤ t ≤ m− 1 and the last inequality follows

from t ∈ TH . This proves ePB[t∨m,t+m−1] < eOPT[t∨m,t+m−1].

We argue that (4.33) implies the existence of wt ∈ [(t−m+ 1)∨1, t) that satisfies (4.30).

To this end, we apply Abel’s lemma (see e.g., Chow and Teicher (2012)) and the identity

Θs = θαs+m−2es+m−1 to obtain, under any policy, that

θe[t∨m,t+m−1] =
t∑

s=(t−m+1)∨1

α−s−m+2Θs

= α−t∨m+1

[ t∑
s=(t−m+1)∨1

Θs

]
+

t∑
t′=(t−m+1)∨1+1

α−t
′−m+2(1− α)

[ t∑
s=t′

Θs

]
.

Therefore, ePB[t∨m,t+m−1] < eOPT[t∨m,t+m−1] together with the condition that ΘPB
t > ΘOPT

t imply

the existence of at least one wt ∈ [(t−m+ 1) ∨ 1, t), such that (4.30) holds.

We are now ready to prove Lemma 4.7. Since any products ordered after period T−m+1

do not perish within the planning horizon, we only need to consider periods t = 1, . . . , T−m+

1. For each realization of fT and the resulting TH , we partition the periods {1, . . . , T−m+1}
as follows: First, start in period T − m + 1 and search backward for the latest period

t ∈ TH such that ΘPB
t > ΘOPT

t . If no such period exists, then we terminate the partition
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process. Otherwise, let t′ be that period, and by the preliminary result, there exists a

wt′ ∈ [(t′ − m + 1) ∨ 1, t′) that satisfies
∑t′

s=wt′
ΘPB
s ≤

∑t′

s=wt′
ΘOPT
s . Mark the periods

wt′ , wt′ + 1, . . . , t′. Next, repeat the above procedure over periods 1, . . . , wt′ − 1 until the

remaining set of periods is empty. As a result, the above procedure partitions the periods

{1, . . . , T −m + 1} into marked and unmarked periods. Let TM denote the set of marked

periods.

Consider any period t ∈ TH \TM . By the definition of TM , we have ΘPB
t ≤ ΘOPT

t . Thus,

∑
t∈TH\TM

ΘPB
t ≤

∑
t∈TH\TM

ΘOPT
t . (4.34)

On the other hand, if a period t ∈ TH is also in t ∈ TM , then by the construction of TM it

belongs to an interval of the form [wt′ , . . . , t
′], and the preliminary result above has shown∑t′

s=wt′
ΘPB
s ≤

∑t′

s=wt′
ΘOPT
s . This proves

∑
t∈TM

ΘPB
t ≤

∑
t∈TM

ΘOPT
t . (4.35)

Since

TH ⊂ (TH \TM) ∪TM ⊂ {1, 2, . . . , T},

we obtain, using (4.34) and (4.35), that

∑
t∈TH

ΘPB
t ≤

∑
t∈TH\TM

ΘPB
t +

∑
t∈TM

ΘPB
t ≤

∑
t∈TH\TM

ΘOPT
t +

∑
t∈TM

ΘOPT
t ≤

T∑
t=1

ΘOPT
t .

This completes the proof of Lemma 4.7.

Note that for each perished unit ordered in periods 1, . . . , T , it must stay in the system

for exactly m periods. Thus, for any policy, we have the following inequality

mh

T∑
t=1

Θt ≤ θ

T∑
t=1

Ht. (4.36)

Combining this inequality with Lemmas 4.6 and 4.7 leads to the following result.

Corollary 4.8. For each realization fT ∈ FT , we have

∑
t∈TH

(
HPB
t + ΘPB

t

)
≤
(

1 + (m−2)h
mh+θ

) T∑
t=1

(
HOPT
t + ΘOPT

t

)
. (4.37)
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Proof. We apply Lemmas 4.6 and 4.7, and (4.36) to obtain

∑
t∈TH

(
HPB
t + ΘPB

t

)
≤

T∑
t=1

HOPT
t +

(m− 2)h

θ

T∑
t=1

ΘOPT
t +

T∑
t=1

ΘOPT
t

=
T∑
t=1

(
HOPT
t + ΘOPT

t

)
+

(m− 2)h

mh+ θ

(
1 +

mh

θ

) T∑
t=1

ΘOPT
t

≤
(

1 +
(m− 2)h

mh+ θ

) T∑
t=1

(
HOPT
t + ΘOPT

t

)
,

Lemma 4.9. For each realization fT ∈ FT , we have
∑

t∈TΠ
ΠPB
t ≤

∑T
t=1 ΠOPT

t .

Proof. From the definition of Πt and TΠ, we have

∑
t∈TΠ

ΠPB
t = b

∑
t∈TΠ

αt−1(Dt − Y PB
t )+ ≤ b

∑
t∈TΠ

αt−1(Dt − Y OPT
t )+ ≤

T∑
t=1

ΠOPT
t ,

where the first inequality holds since Y OPT
t < Y PB

t when t ∈ TΠ.

With the preparations above, we are now ready to prove our first main result in this

chapter, i.e., Theorem 4.3.

Proof of Theorem 4.3. For each period t = 1, . . . , T , denote ZPB
t as the conditional expected

balanced cost by the PB policy in period t. That is,

ZPB
t = mh+θ

2(m−1)h+θ
E[HPB

t + ΘPB
t |Ft] = E[ΠPB

t |Ft].

Note that ZPB
t is a random variable before period t; and in period t, Ft = ft is realized and

its value is the expected balanced cost conditional on the observed information set ft. Using

the marginal cost accounting scheme and a standard argument of conditional expectations,

we have

C(PB) =
T∑
t=1

E[HPB
t + ΘPB

t + ΠPB
t ] =

T∑
t=1

E[E[HPB
t + ΘPB

t + ΠPB
t |Ft]]

=
(

2 + (m−2)h
mh+θ

) T∑
t=1

E[ZPB
t ]. (4.38)

Applying Corollary 4.8, Lemma 4.9, and the fact that {t ∈ TH} and {t ∈ TΠ} are
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completely determined by Ft, we obtain

C(OPT ) = E
[ T∑
t=1

(HOPT
t + ΘOPT

t ) +
T∑
t=1

ΠOPT
t

]
≥ E

[
1

1 + (m−2)h
mh+θ

∑
t∈TH

(HPB
t + ΘPB

t ) +
∑
t∈TΠ

ΠPB
t

]

=
T∑
t=1

E

[
1

1 + (m−2)h
mh+θ

1(t ∈ TH)(HPB
t + ΘPB

t ) + 1(t ∈ TΠ)ΠPB
t

]

=
T∑
t=1

E

[
E

[
1

1 + (m−2)h
mh+θ

1(t ∈ TH)(HPB
t + ΘPB

t ) + 1(t ∈ TΠ)ΠPB
t |Ft

]]

=
T∑
t=1

E

[
1

1 + (m−2)h
mh+θ

1(t ∈ TH)E
[
HPB
t + ΘPB

t | Ft
]

+ 1(t ∈ TΠ)E
[
ΠPB
t |Ft

]]

=
T∑
t=1

E
[
(1(t ∈ TH) + 1(t ∈ TΠ))ZPB

t ] =
T∑
t=1

E[ZPB
t ].

Thus, it follows from (4.38) that C(PB) ≤
(

2 + (m−2)h
mh+θ

)
C(OPT ). The proof is complete.

�

4.5.2 Analysis of DB Policy

We next analyze the DB policy for the case of independent and stochastically non-

decreasing demand processes. Similar to the analysis for the PB policy, for each real-

ization of D1, . . . , DT and W1, . . . ,WT , we denote TH =
{
t ∈ [1, T ] : Y OPT

t ≥ Y DB
t

}
and

TΠ =
{
t ∈ [1, T ] : Y OPT

t < Y DB
t

}
. Then, we have the following result.

Lemma 4.10. For each realization fT ∈ FT , we have

∑
t∈TH

(
ĤDB
t + ΘDB

t

)
+
∑
t∈TΠ

ΠDB
t ≤

T∑
t=1

(
ĤOPT
t + ΘOPT

t + ΠOPT
t

)
.

Proof. By the definition of Ĥt and TH , we have

∑
t∈TH

ĤDB
t = h

∑
t∈TH

αt−1(Y DB
t −Dt)

+ ≤ h
∑
t∈TH

αt−1(Y OPT
t −Dt)

+ ≤
T∑
t=1

ĤOPT
t ,

where the first inequality follows from Y OPT
t ≥ Y DB

t for t ∈ TH . Combining the above

inequality with Lemmas 4.7 and 4.9, which can be shown to continue to hold under the DB
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policy, we obtain the desired result.

Lemma 4.11. Suppose D1, . . . , DT are independent and stochastically non-decreasing. For

each period t and realization ft ∈ Ft, if t ∈ TΠ, then E[ĤDB
t + ΘDB

t |ft] = E[ΠDB
t |ft].

Proof. From the definition of the DB policy, to prove the lemma, we only need to prove that∑m−1
i=1 xDBt,i ≤ St. When the demands are independent and stochastically non-decreasing,

based on our discussions in Section 4.2, it suffices to show that there exists one period t′ (≤ t)

such that
∑m−1

i=1 xDBt′,i ≤ St′ . This is clearly true if t ∈ TΠ (or equivalently Y OPT
t < Y DB

t ),

because otherwise by definition the DB policy will not place any order in periods 1, . . . , t

and consequently we must have Y OPT
t ≥ Y DB

t , leading to a contradiction. The proof is

complete.

We are now ready to prove our second main result, i.e., Theorem 4.5.

Proof of Theorem 4.5. For any policy P , define Ĉ(P ) :=
∑T

t=1 E[ĤP
t + ΘP

t + ΠP
t ]. Then,

it follows from (4.4) and (4.11) that C (P ) = Ĉ(P ) +
∑T

t=1 α
t−1ĉE[Dt]. Thus, to prove

C (DB) ≤ 2C (OPT ), it suffices to show that Ĉ(DB) ≤ 2Ĉ(OPT ). Using the marginal cost

accounting scheme and a standard argument of conditional expectations, we have

Ĉ(DB) =
T∑
t=1

E
[
ĤDB
t + ΘDB

t + ΠDB
t

]
=

T∑
t=1

E
[
(1(t ∈ TH) + 1(t ∈ TΠ))(ĤDB

t + ΘDB
t + ΠDB

t )
]

≤Ĉ(OPT ) +
T∑
t=1

E
[
1(t ∈ TΠ)(ĤDB

t + ΘDB
t ) + 1(t ∈ TH)ΠDB

t

]
=Ĉ(OPT ) +

T∑
t=1

E
[
E
[
1(t ∈ TΠ)(ĤDB

t + ΘDB
t ) + 1(t ∈ TH)ΠDB

t |Ft
]]

≤Ĉ(OPT ) +
T∑
t=1

E
[
E
[
1(t ∈ TΠ)(ĤDB

t + ΘDB
t ) + 1(t ∈ TH)(ĤDB

t + ΘDB
t )|Ft

]]
=Ĉ(OPT ) +

T∑
t=1

E
[
E
[
1(t ∈ TΠ)ΠDB

t + 1(t ∈ TH)(ĤDB
t + ΘDB

t )|Ft
]]

≤2Ĉ(OPT ),

where the first and last inequalities follow from Lemma 4.10, the second inequality holds

since E[ΠDB
t |Ft] ≤ E[ĤDB

t + ΘDB
t |Ft] for each period t and any realization of Ft under the
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DB policy, and the fourth equality follows from Lemma 4.11. The proof of Theorem 4.5 is

thus complete.

4.6 Numerical Experiments

To test the empirical performance of our proposed policies, we have conducted an ex-

tensive numerical study. The numerical results show that our proposed policies perform

consistently close to optimal for a large set of demand and parameter instances.

Parameterized policies. Similar to Levi and Shi (2013), we can slightly improve the

performance of the approximation algorithms by employing an instance-dependent balanc-

ing parameter if the system parameters and demand process are stationary over time, and

the planning horizon is long. The parameterized policies involve a balancing parameter

β. Specifically, the parameterized proportional-balancing policy (PPB) computes the bal-

ancing quantity qPPBt that solves βE[HPPB
t (qPPBt ) + ΘPPB

t (qPPBt )|ft] = E[ΠPPB
t (qPPBt )|ft].

Similarly, the parameterized dual-balancing policy (PDB) computes the balancing quantity

qPDBt that solves β̂E[ĤPDB
t (qPDBt ) + ΘPDB

t (qPDBt )] = E[ΠPDB
t (qPDBt )]. In addition to the PB

and DB policies, we also report the empirical performance of the PPB and PDB policies

when comparing with optimal policies.

Design of experiments. In our numerical experiments, we consider five demand settings

(one independent and four correlated demand settings).

(a) Independent and identically distributed (i.i.d.) demands;

(b) ADI demands with two periods of advance demand information;

(c) Autoregressive demands AR(1);

(d) MMFE demands with two periods of forecast evolution;

(e) Markov modulated demands with three states of the economy.

For the i.i.d. demand setting (a), we consider the lifetime m = 2, 3, 4 and 6 (see, e.g.,

Haijema et al. (2005) for blood bank applications where platelet pools are the most expensive

and most perishable blood product having a shelf life of four to six days). When m = 2 and

3, computing the exact optimal policies using dynamic programming is tractable. Thus, we

compare the performance of our proposed policies directly with that of the optimal policies.
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In addition, we adopt the same set of numerical parameters as that in Nahmias (1976,

1977b), and also compare the performance of our proposed policies with their heuristics.

When m = 4 and 6, computing the exact optimal policies becomes intractable (even for

this i.i.d. demand case); thus we compare our policies with two other effective policies in

Nahmias (1976, 1977b). (The key idea behind these heuristics in Nahmias (1976, 1977b) is to

collapse the state space into a single scalar, which has also been used in Li et al. (2009) and

Chen et al. (2014b) for other perishable inventory systems.) For correlated demand settings

(b) to (e), we are not aware of any heuristic policies in the literature, thus we only consider

the lifetime m = 2 and 3. Following the numerical studies in the literature on perishable

inventory systems, we assume for all testing instances that the system starts empty in period

1, the unit holding cost ĥ is normalized to 1, and the discounted factor is α = 0.95.

Performance metrics. We use two types of performance metrics in our numerical study.

First, when the product lifetime m = 2 or 3, we are able to compare the performance of our

proposed policies with that of an optimal policy. From (4.11) and (4.12), the cost ratio is

C (P )

C (OPT )
=

C(P ) +
∑T

t=1 α
t−1ĉE[Dt]

C(OPT ) +
∑T

t=1 α
t−1ĉE[Dt]

.

We define the performance error of an approximation policy P as the percentage of increase

in the total cost of this policy over the planning horizon compared to the optimal total cost,

i.e.,

% error =

(
C (P )

C (OPT )
− 1

)
× 100%.

Second, when the product lifetime m = 4 or 6, since computing the exact optimal solution

using dynamic programming is intractable, we compare the performance of our policies

against those of Nahmias (1976, 1977b). Denote the heuristic algorithms in Nahmias (1976)

and Nahmias (1977b) by N1 and N2, respectively. We define the performance ratio of an

approximation policy P as the ratio of Nahmias’ minimum cost to the cost of P , i.e.,

r(P ) =
min {C (N1),C (N2)}

C (P )
.

Demand setting (a). When the product lifetime m = 2 and 3, we adopt the same set

of parameters as that in Nahmias (1976, 1977b) for our numerical test and directly use the

optimal costs reported in those papers. More specifically, the planning horizon is T = 50
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periods, the ordering cost ĉ ∈ {0, 5, 10}, the backlogging cost b̂ ∈ {5, 10}, and the outdating

cost θ̂ ∈ {0, 5, 10}. Same as Nahmias (1976, 1977b), we also test two demand distributions,

i.e., exponential distribution and Erlang-2 distribution, both with mean 10. The numerical

results are summarized in Table 4.1.

Table 4.1: Performance errors of heuristics for i.i.d. demands (% Errors) for m = 2 and
m = 3

m = 2 m = 3
Exponential Demand Erlang-2 Demand Exponential Demand Erlang-2 Demand

ĉ, b̂, θ̂ PB PPB DB PDB PB PPB DB PDB PB PPB DB PDB PB PPB DB PDB
0,5,5 0.89 0.21 0.82 0.18 0.44 0.35 0.27 0.11 0.95 0.36 0.63 0.27 0.80 0.59 0.65 0.28

0,10,5 0.76 0.36 0.92 0.11 0.63 0.13 0.22 0.21 0.93 0.48 0.74 0.12 1.05 0.82 0.66 0.16
0,5,10 1.37 0.81 1.41 0.42 0.73 0.13 0.59 0.27 1.12 0.88 1.40 0.52 1.63 0.59 0.56 0.47
5,10,5 0.63 0.09 0.96 0.05 0.12 0.07 0.09 0.06 1.06 0.92 1.25 0.15 0.22 0.13 0.57 0.22
5,5,10 0.49 0.36 0.69 0.34 0.35 0.03 0.47 0.28 0.57 0.31 0.62 0.29 0.17 0.12 0.22 0.13
5,5,5 0.32 0.15 0.64 0.13 0.15 0.06 0.11 0.10 0.68 0.38 0.58 0.35 0.16 0.12 0.24 0.11

5,10,0 0.28 0.10 0.18 0.11 0.36 0.11 0.15 0.11 0.58 0.39 0.56 0.21 0.45 0.18 0.89 0.24
10,10,5 0.52 0.07 0.78 0.06 0.27 0.08 0.25 0.18 0.79 0.56 1.28 0.60 0.19 0.11 0.62 0.42

10,10,10 0.80 0.18 1.38 0.21 0.09 0.08 0.24 0.15 0.92 0.74 1.07 0.15 0.06 0.04 0.17 0.04
10,5,5 0.77 0.28 0.92 0.22 0.13 0.11 0.19 0.12 0.74 0.46 0.24 0.05 0.10 0.06 0.26 0.10

10,10,0 0.08 0.06 0.54 0.14 0.07 0.05 0.19 0.03 0.44 0.25 0.47 0.13 0.14 0.09 0.46 0.17

max 1.37 0.81 1.41 0.42 0.73 0.35 0.59 0.28 1.12 0.92 1.40 0.60 1.63 0.82 0.89 0.47
mean 0.63 0.24 0.84 0.18 0.30 0.11 0.25 0.15 0.80 0.52 0.80 0.26 0.45 0.26 0.48 0.21

The empirical performance error of the DB policy does not exceed 1.41% in all test cases,

with an average error of 0.84% (resp., 0.80%) under exponential demands and m = 2 (resp.,

m = 3), and with an average error of 0.25% (resp., 0.48%) under Erlang-2 demands and

m = 2 (resp., m = 3). Hence, the average performance error is uniformly within 1%. Similar

to the numerical results in Nahmias (1976, 1977b), the approximation algorithms perform

better under Erlang-2 demands than exponential demands due to a smaller coefficient of

variation. Furthermore, if the balancing parameter is optimized (we search for β and β̂ over

{0.5, 0.6, 0.7, . . . , 1.8, 1.9, 2}), then the performance error of the PPB policy does not exceed

0.92%, with an average performance error of 0.28%; and the performance error of the PDB

policy does not exceed 0.60%, with an average performance error of 0.20%.

When the product lifetime m = 4 and 6, computing the exact optimal policies is in-

tractable. Thus, we compare the performance of our proposed policies with that of Nahmias

(1976, 1977b), and report the performance ratios r(DB) and r(PB). We consider the prob-

lem with T = 50, ĉ = 0, b̂ ∈ {5, 10, 15} and θ̂ ∈ {10, 50, 100}. We test Erlang-2, exponential,

and hyper-exponential demands with mean 10. The performance ratios are summarized in

Table 4.2.

Our numerical results show that the PB policy outperforms Nahmias’ policies in 54%

of the cases, and the DB policy outperforms Nahmias’ policies in 65% of the cases. The
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Table 4.2: Performance ratios of heuristics for i.i.d. demands (r) for m = 4 and m = 6

b̂,θ̂

m=4
Erlang-2 Exponential Hyper-exponential

PB DB PB DB PB DB

5,10 99.14% 99.52% 99.73% 101.11% 99.09% 100.56%
5,50 100.27% 100.43% 100.43% 100.96% 99.96% 100.70%
5,100 99.78% 100.29% 100.22% 100.02% 100.88% 100.59%
10,10 98.66% 99.01% 101.18% 102.43% 101.49% 102.43%
10,50 101.67% 101.80% 107.57% 106.69% 106.71% 107.43%
10,100 100.89% 101.70% 100.05% 101.07% 102.02% 102.84%
15,10 100.06% 100.28% 102.17% 103.85% 102.81% 103.35%
15,50 102.71% 102.81% 116.69% 111.59% 110.86% 111.55%
15,100 100.46% 101.06% 110.21% 108.46% 115.87% 116.65%

m=6

5,10 98.78% 97.80% 98.76% 98.93% 99.13% 99.23%
5,50 98.79% 98.93% 98.38% 100.06% 100.00% 100.40%
5,100 98.48% 98.79% 100.04% 100.06% 100.57% 100.60%
10,10 97.58% 97.38% 98.39% 97.97% 98.30% 98.15%
10,50 98.41% 98.84% 99.07% 99.35% 99.05% 100.31%
10,100 98.67% 98.71% 100.79% 100.66% 101.14% 101.57%
15,10 98.28% 98.19% 99.65% 99.50% 98.71% 98.60%
15,50 97.05% 97.24% 99.53% 99.79% 100.03% 100.17%
15,100 97.37% 97.57% 101.38% 102.50% 100.94% 102.08%
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PB and DB policies perform 1.09% and 1.34% better on average than Nahmias’ polices,

respectively. From the numerical results, we can also see that the PB and DB policies have

similar performance ratios, which improve as the outdating cost becomes more significant.

Our explanation for this finding is as follows: When the frequency of outdating is low, the

problem almost reduces to a non-perishable inventory model, for which a myopic policy is

optimal in the case of i.i.d. demand. Nahmias’ policies, using modified single period cost,

yield near-optimal solution when outdating frequency is low.

In summary, under i.i.d. demands, for short product lifetime m = 2 and 3, the numerical

results of our proposed policies are comparable to those reported in Nahmias (1976, 1977b),

as both ours and their policies are very close to optimal. For longer product lifetime m = 4

and 6, the overall performance of our proposed policies is also comparable with those of

Nahmias (1976, 1977b) and it improves as the frequency of oudating increases.

Since we are more interested in the performances of our policies under correlated demand

processes, we conduct more comprehensive studies for this case. As mentioned earlier, when

the demand process is correlated over time, the computation of exact optimal solution is

intractable for reasonable problem sizes. Thus, in order to compare with the optimal cost

under demand settings (b) to (e), we consider a planning horizon T = 20 periods and

product lifetime m = 2 or 3 periods (the same as the majority of the literature under i.i.d.

demands). More specifically, we consider m = 2 and 3 for the setting (e) and m = 2 for the

other settings. The cost parameters for each demand class are ĉ ∈ {0, 5, 10}, b̂ ∈ {5, 10, 15},
and θ̂ ∈ {0, 5, 10, 15}. For these instances, the optimal costs are computed using dynamic

programming via backward induction.

Demand setting (b). For demand processes with advance demand information (ADI),

we adopt a model proposed in Gallego and Özer (2001). We assume that customers can

place orders two periods ahead. Thus, in each period t, a demand vector (Dt,t, Dt,t+1, Dt,t+2)

is received, where Dt,s is the order placed in period t for period s ≥ t. The total demand for

period t is Dt = Dt−2,t+Dt−1,t+Dt,t. We tested the cases for which each entry Dt,s follows an

exponential distribution, an Erlang-2 distribution, or a truncated normal distribution with

coefficient of variation (cv) being 0.1, 0.3, or 0.5. The mean value for each Dt,s is 3, thus the

average demand for each period is 9.

To report the numerical results under ADI, we group the instances as follows. The

ordering costs are L (ĉ = 0), M (ĉ = 5), and H (ĉ = 10); the outdating costs are L (θ̂ ∈ {0, 5}),
and H (θ̂ ∈ {10, 15}). The first five rows of Table 4.3 report the numerical results under ADI.
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The row corresponds to the demand processes (one for exponential demands, one for Erlang-

2 demands, and three for truncated normal demands with different cv’s). For each pair (ĉ, θ̂),

we choose between one value of ĉ, two values of θ̂, and three values of b̂ ∈ {5, 10, 15}, giving 6

combinations for each pair (b̂, θ̂). The maximum and the average performance errors for both

PB and PPB policies are reported in Table 4.3. Among all the test instances under ADI,

the average error of the PB (resp., PPB) policy is 0.45% (resp., 0.32%), and the maximum

performance error of the PB (resp., PPB) policy is 2.65% (resp., 1.79%).

Demand setting (c). For the autoregressive demand model, we consider an AR(1)

process Dt = Dt−1 + εt with D0 = 10, where the perturbation term εt follows a normal

distribution with mean 0 and variance 1. The numerical results are reported in the sixth row

of Table 4.3. The average performance error of the PB (resp., PPB) policy is 0.66% (resp.,

0.40%) while the maximum performance error of the PB (resp., PPB) policy among all test

instances is 2.21% (resp., 1.88%).

Demand setting (d). For demand processes of Martingale model of forecast evolution

(MMFE), we assume that the system in each period t updates its forecast for the next-two-

period demands (Dt,t+1, Dt,t+2). The true demand in period t is given by

Dt = Dt−1,t + εt,1 = Dt−2,t + εt−1,2 + εt−1,1,

where εt,i follows a normal distribution with mean 0 and variance 1 for all t and i = 1, 2, and

Dt−2,t follows a normal distribution with mean 10 and variance 10 for all t. The numerical

results are reported in the last row of Table 4.3. The average performance error of the PB

(resp., PPB) policy is 0.61% (resp., 0.34%); and the maximum performance error of the PB

(resp., PPB) policy for all the test instances is 2.39% (resp., 1.50%).

Demand setting (e). The Markov modulated demand process (MMDP) is governed

by the state of the economy: poor (1), fair (2), and good (3). If the state of the economy

in period t is i (i = 1, 2, 3), then the demand in period t is iDt, where Dt has mean 10

and follows one of the following distributions: exponential, Erlang-2, and truncated normal

with coefficient of variation being 0.1, 0.3, or 0.5. We assume that the state of the economy

follows a Markov chain with transition probabilities

p11 = 0.6, p12 = 0.3, p13 = 0.1, p21 = 0.4, p22 = 0.2, p23 = 0.4, p31 = 0.1, p32 = 0.3, and p33 = 0.6.

Note that this Markov chain is stochastically monotone, i.e., the state of the economy in
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Table 4.3: Performance errors of heuristics for ADI, AR(1), and MMFE demands (% Errors)

ĉ L M H
All

θ̂ L H L H L H
demand Policy mean max mean max mean max mean max mean max mean max mean max

ADI PB 0.56 1.04 0.61 0.94 0.34 0.55 0.33 0.48 0.14 0.24 0.10 0.13 0.33 1.04
cv=0.1 PPB 0.36 0.69 0.40 0.69 0.30 0.51 0.28 0.46 0.12 0.21 0.08 0.12 0.25 0.69

ADI PB 1.02 1.45 0.77 1.62 0.32 0.99 0.12 0.19 0.10 0.19 0.06 0.10 0.34 1.62
cv=0.3 PPB 0.74 1.39 0.60 1.30 0.21 0.67 0.07 0.11 0.07 0.13 0.05 0.07 0.25 1.39

ADI PB 0.33 0.53 1.13 2.04 0.51 0.68 0.42 0.56 0.40 0.56 0.17 0.27 0.51 2.04
cv=0.5 PPB 0.24 0.38 0.87 1.58 0.33 0.53 0.32 0.42 0.29 0.48 0.07 0.17 0.36 1.58

ADI PB 0.75 1.08 1.10 1.89 0.45 0.98 0.40 0.64 0.33 0.55 0.23 0.50 0.52 1.89
Erlang-2 PPB 0.61 0.91 0.79 1.49 0.19 0.55 0.19 0.33 0.15 0.32 0.15 0.28 0.32 1.49

ADI PB 1.35 2.65 0.86 1.57 0.38 0.65 0.49 0.83 0.30 0.54 0.32 0.58 0.55 2.65
Exp. PPB 0.97 1.79 0.74 1.49 0.31 0.50 0.37 0.73 0.22 0.46 0.17 0.33 0.42 1.79

AR(1)
PB 1.51 1.95 1.68 2.21 0.36 0.43 0.42 0.76 0.22 0.35 0.22 0.34 0.66 2.21

PPB 1.06 1.42 1.19 1.88 0.18 0.26 0.14 0.32 0.11 0.20 0.07 0.13 0.40 1.88

MMFE
PB 1.60 2.26 1.49 2.39 0.35 0.58 0.38 0.50 0.15 0.21 0.19 0.42 0.61 2.39

PPB 0.84 1.26 0.93 1.50 0.14 0.18 0.17 0.23 0.09 0.15 0.09 0.19 0.34 1.50

the next period is stochastically non-decreasing in the state of the economy in the current

period.

The performance of our proposed policies under MMDP is reported in Table 4.4. The

first column specifies the product lifetimes and demand processes. Similar to Table 4.3, ĉ

takes three possible values, denoted by L, M and H, and θ̂ is divided into two groups, with

L standing for {0, 5} and H standing for {10, 15}. Thus, for each demand process and each

pair (ĉ, θ̂), there are 6 combinations of θ̂ and b̂. The numerical results for both PB and PPB

policies are reported in Table 4.4. The average performance error of the PB (resp., PPB)

policy among all test instances is 0.71% (resp, 0.44%), and the maximum performance error

of the PB (resp., PPB) policy is 2.94% (resp., 1.88%).

Computation time. For the instances with product lifetime m = 2 or 3, the optimal

policies were computed using dynamic programming. For ADI and AR(1) demand settings,

the average computation times for one instance are 784 seconds and 152 seconds, respectively.

For MMFE, the average computation time for one instance is 1148 seconds. For MMDP,

the average computation time for one instance is 94 seconds for m = 2 and 435 seconds for

m = 3.

In contrast, our proposed policies (including PB, DB, PPB, and PDB policies) do not

require any recursive computation and the ordering decisions can be computed in an online

manner. In period t, the main computation effort lies in the computation of expectation
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Table 4.4: Performance errors of heuristics for MMDP demands (% Errors)

ĉ L M H
All

θ̂ L H L H L H
case Policy mean max mean max mean max mean max mean max mean max mean max

m=2 PB 1.57 2.00 2.44 2.94 0.31 0.49 0.41 0.67 0.30 0.59 0.17 0.27 0.80 2.94
cv=0.1 PPB 1.05 1.41 1.22 1.57 0.17 0.33 0.24 0.53 0.16 0.24 0.10 0.19 0.44 1.57
m=2 PB 0.91 1.94 1.79 2.47 0.31 0.67 0.41 0.91 0.30 0.54 0.30 0.65 0.65 2.47

cv=0.3 PPB 0.57 1.27 1.09 1.74 0.16 0.52 0.21 0.38 0.19 0.48 0.14 0.24 0.38 1.74
m=2 PB 0.39 0.75 1.30 2.18 0.29 0.52 0.49 0.77 0.33 0.61 0.31 0.49 0.53 2.18

cv=0.5 PPB 0.29 0.56 0.76 1.44 0.15 0.23 0.25 0.60 0.19 0.40 0.15 0.23 0.30 1.44
m=2 PB 0.85 1.51 1.55 2.69 0.69 1.06 0.85 1.12 0.66 0.93 0.58 0.77 0.86 2.69

Erlang-2 PPB 0.70 1.20 1.00 1.51 0.44 0.68 0.54 0.74 0.42 0.76 0.34 0.57 0.56 1.51
m=2 PB 0.58 1.32 1.61 2.82 0.95 1.60 0.98 1.44 0.64 1.03 0.68 0.97 0.94 2.82
Exp. PPB 0.45 1.03 0.89 1.59 0.51 0.91 0.64 1.15 0.27 0.42 0.46 0.77 0.55 1.59
m=3 PB 1.32 1.62 1.90 2.43 0.74 1.34 0.47 0.56 0.41 0.80 0.24 0.46 0.80 2.43

cv=0.1 PPB 0.96 1.13 1.34 1.88 0.44 1.18 0.27 0.47 0.25 0.37 0.14 0.35 0.53 1.88
m=3 PB 1.21 1.28 1.69 1.95 0.45 0.97 0.47 0.59 0.17 0.26 0.14 0.19 0.64 1.95

cv=0.3 PPB 0.61 0.89 1.11 1.62 0.32 0.75 0.40 0.54 0.10 0.17 0.10 0.15 0.43 1.62
m=3 PB 1.15 1.65 0.83 1.51 0.33 0.67 0.38 0.82 0.24 0.38 0.30 0.38 0.48 1.65

cv=0.5 PPB 0.95 1.41 0.57 1.03 0.21 0.44 0.22 0.74 0.13 0.25 0.14 0.23 0.32 1.41
m=3 PB 1.31 1.94 1.41 1.78 0.53 0.85 0.59 0.79 0.40 0.62 0.44 0.64 0.73 1.94

Erlang-2 PPB 0.73 1.04 0.98 1.58 0.38 0.84 0.38 0.51 0.27 0.42 0.27 0.43 0.48 1.58
m=3 PB 0.98 1.41 1.18 1.81 0.53 0.96 0.69 1.05 0.53 0.66 0.35 0.75 0.69 1.81
Exp. PPB 0.61 0.69 0.68 1.51 0.35 0.88 0.43 0.64 0.32 0.52 0.22 0.56 0.42 1.51

E[Ht(qt) + Θt(qt) | ft] via (4.8) and (4.9). The PB policy takes on average 0.05 second to

find a decision for m = 2 and 0.6 second for m = 3. For longer lifetimes, the PB policy takes

on average 1.52 seconds to make a decision for m = 4 and 1.94 seconds for m = 6. We note

that the heuristics proposed in Nahmias (1976, 1977b) are also very efficient as they ignore

most of the inventory and future demand information when making a decision. To compute

mathematical expectations, both in our procedure and in that of Nahmias (1976, 1977b),

we use Monte Carlo simulation with 10000 sample paths. All computations were done using

Matlab R2013a on a desktop computer with an Inter Core I7-3770 3.40GHz CPU.

4.7 Conclusions

It is well known that the optimal control policy for perishable inventory systems is com-

plicated and computationally challenging. In this chapter, we develop two approximation

algorithms for perishable inventory systems with worst-case performance guarantees. For

systems with independent and stochastically non-decreasing demand processes, we propose

a dual-balancing (DB) policy that admits a worst-case performance guarantee of 2; and for
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systems with arbitrarily correlated demand processes, we propose a proportional-balancing

(PB) policy that admits a worst-case performance guarantee between 2 and 3 (2 when the

product lifetime is 2). Both policies are easy to compute and implement. More importantly,

our numerical study shows that they perform consistently close to optimal for all the tested

instances for which we are able to compute their optimal policies: the maximum performance

error for the PB policy among all tested instances is below 3%, while the maximum error for

the parameterized proportional-balancing (PPB) policy among all tested instances is below

2%. In addition, the average performance errors of the PB policy and the PPB policy among

all the correlated demand processes tested, including ADI, AR(1), MMFE, and MMDP, are

0.625% and 0.397%, respectively. For the instances where we are unable to compute the

optimal policies, we compare the performances of our approximation algorithms with those

of the heuristic policies reported in the literature (Nahmias (1976, 1977b)), and our numer-

ical results show that the performance of our policies is comparable with those of Nahmias

(1976, 1977b) and it improves as the frequency of oudating increases.
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