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ABSTRACT

Stochastic Models for Improving Screening and Surveillance Decisions for Prostate
Cancer Care

by

Christine Barnett

Chair: Brian T. Denton

Recent advances in the development of new technologies for the early detection and

treatment of cancer have the potential to improve patient survival and lower the cost

of treatment by catching cancer at an early stage. However, there is little research

investigating the health and economic implications of these new technologies. For

example, magnetic resonance imaging (MRI) and new biomarker tests have been

proposed as potential minimally invasive ways to achieve early detection of prostate

cancer. These new technologies vary in their sensitivity and specificity leading to both

false-positive and false-negative results that can have serious health implications for

patients. Moreover, due to the high cost and imperfect nature of these new tests,

whether and when to use these tests is unclear.

We present stochastic models for prostate cancer disease onset and progression

that incorporates partial observability of a patient’s prostate cancer health status.

We used statistical learning algorithms and clinical datasets combined with expert

clinical knowledge of urologists at the University of Michigan to estimate and validate

the models. The models can simulate progression through prostate cancer states to

xiv



mortality from prostate cancer or other causes for a population of patients. New

technologies, such as MRI and biomarker tests, are incorporated into the model using

a probabilistic representation of test outcomes to represent the information these

tests provide about the true health status of the patient. Since these technologies can

be used in varying ways, the choice of tests and optimal times to initiate tests are

treated as decision variables in the model. We calibrated and validated our models

using several data sources and subsequently used our models to design optimal testing

strategies that trade-off the harms and benefits of using these new technologies.

Our results show that these new technologies can lead to significantly improved

health outcomes and they are cost-effective relative to established norms for societal

willingness-to-pay. We have also used these models to provide important insights

about the optimal timing of prostate biopsies for men with low-risk prostate cancer

undergoing active surveillance. By using new technologies to better select men for

biopsy and by improving active surveillance strategies, physicians can reduce the

harms of prostate cancer screening (e.g., unnecessary biopsies and overtreatment of

low-risk disease) while continuing to reduce prostate cancer deaths through screening

and early detection. The methodological approaches we present in this thesis could

be applied to many other chronic diseases, including bladder, breast, and colorectal

cancer.

xv



CHAPTER I

Introduction

Cancer screening has the potential to improve patient survival and lower the cost

of treatment by detecting cancer at an early stage when health outcomes are most

favorable for patients. However, there are several challenges associated with screening

for cancer. For example, the tests used for cancer screening are imperfect and there

are harms associated with the screening process. Additionally, multiple grades of

cancer indicate that, while cancer screening could save the life of a patient with high-

grade cancer, it is unlikely to benefit patients with low-grade cancers. Moreover,

there is uncertainty about progression of cancers over time and uncertainty about the

benefits and side effects of treatment. Finally, the benefits of cancer screening depend

on all-cause mortality, since patients with a lower expected lifespan are unlikely to

receive the benefits of screening. Due to these issues, decisions about cancer screening

are challenging.

Prostate cancer is the ideal context to explore these challenging problems because

of (1) its societal importance (one in six men are diagnosed in the United States); (2)

the prostate-specific antigen (PSA) test is an existing biomarker that is in common

use; and (3) many new prostate cancer screening biomarkers have recently been de-

veloped. Additionally, prostate cancer can have slow progression, and patients with

different grades of prostate cancer have significantly different treatment options and
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survival outcomes.

Prostate cancer is the most common cancer among men in the United States. The

risk of developing prostate cancer varies among patients depending on many factors.

For example, patients who are African-American or have a family history of prostate

cancer are considered to be at a higher risk for the disease. Since prostate cancer

is asymptomatic at early stages, some physicians screen their patients for prostate

cancer using digital rectal examinations (DRE) and the PSA test. If the results of

these tests are “suspicious”, a biopsy is performed.

Two recent clinical trials to evaluate the effectiveness of PSA screening for pre-

venting prostate cancer death have resulted in contradictory findings. The European

Randomized Study of Screening for Prostate Cancer (ERSPC), Schröder et al. (2009,

2012, 2014), randomized 162,387 men to either a screening group or a control group at

seven centers in European countries. The relative risk after 11 years of follow-up was

a statistically significant 0.79 between the screening and control arms, interpreted as a

20% risk reduction in prostate cancer mortality due to early diagnosis and treatment.

The Prostate, Lung, Colorectal, and Ovarian Cancer Screening Trial, Andriole et al.

(2009), randomized 76,693 men to either a screening group or a control group at 10

centers in the United States. The relative risk of prostate cancer mortality after 13

years of follow-up was a non-statistically significant 1.09 between the screening and

control arms, showing no benefit from early diagnosis and treatment (Andriole et al.

(2012)). These conflicting findings suggest that randomized control trials are not the

ideal way to evaluate screening policies. Due to these conflicting findings, there is

disagreement about if and when men should be screened. For example, the American

Urological Association (AUA) recommends PSA screening for men from ages 55 to 69

with two year intervals (Carter et al. (2013)), while the U.S. Preventive Services Task

Force recommends against PSA screening due to the over-treatment and unnecessary

biopsies that have been attributed to wide-spread PSA screening (Moyer (2012)).
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Thus, in this thesis we study optimal approaches to conduct screening in a manner

that reduces unnecessary biopsies and the overtreatment of low-grade prostate cancer.

Recent advances in the development of new technologies for the early detection of

prostate cancer have the potential to supplement the PSA test and improve patient

survival by catching cancer at an early stage when health outcomes are most favorable

for patients. However, there is little research investigating the long-term health and

economic implications of these new technologies. For example, magnetic resonance

imaging (MRI) and new biomarker tests have been proposed as potential minimally

invasive ways to achieve early detection of prostate cancer, but whether and when to

use them is unclear due to the high cost and imperfect nature of these tests.

Several new diagnostic prostate cancer biomarkers have been recently discovered

(Makarov et al. (2009); Tosoian et al. (2016)). Some of these biomarkers are PSA

derivatives, such as free PSA and [-2]proPSA. Some of the biomarkers are based on

combinations of serum markers, such as the prostate health index (phi), which uses a

combination of total PSA, free PSA, and [-2]proPSA to generate a score (Bryant and

Lilja (2014); Catalona et al. (2011)), and the 4Kscore, which uses a panel of total

PSA, free PSA, intact PSA, and human kallikrein-2 (hK2) to estimate a patient’s

risk of high-grade cancer (Gleason score ≥ 7) on biopsy. Other molecular biomarkers

include prostate cancer antigen 3 (PCA3) and TMPRSS2:ERG (T2:ERG), which are

detectable in post-DRE urine (Bussemakers et al. (1999); Salagierski and Schalken

(2012); Truong et al. (2013); Tomlins et al. (2005); Brenner et al. (2013); Pettersson

et al. (2012); Young et al. (2012)). The Mi-Prostate Score (MiPS) early detection

test combines a patient’s serum PSA, urine PCA3 score, and urine T2:ERG score

into a single multivariate regression model to estimate individualized risk estimates

for all prostate cancer and high-grade prostate cancer (Tomlins et al. (2016)). These

tests vary in the outcome they predict (all-cancer versus high-grade cancer) and in

their sensitivities and specificities. No previous study has compared these biomarkers
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to determine which characteristics achieve optimal long-term health outcomes in the

context of early detection of prostate cancer.

MRI has recently been proposed as another potential minimally invasive way to

achieve early detection of prostate cancer. MRI has higher sensitivity and specificity

to high-grade disease than molecular biomarkers, so MRI could potentially reduce

overtreatment by preferentially detecting intermediate- and high-grade cancers (Sid-

diqui et al. (2015); Meng et al. (2016); Oberlin et al. (2016); Siddiqui et al. (2016)).

However, MRI is more costly than molecular biomarkers and there is limited evidence

for its effectiveness as an intermediate test in patients being screened for prostate can-

cer. Moreover, there are multiple ways to use MRI in a screening setting, and it is

not clear which is best.

Based on biomarker test results, MRI results, or other clinical findings, a patient

may be recommended to have a biopsy. During a biopsy, a hollow core needle is used

to remove between 6 and 24 (usually 12) core samples of tissue from the prostate

to determine if the tissue is malignant. Biopsies have a specificity close to 1 and a

sensitivity of approximately 0.8 according to studies in the literature (Terris (1999)).

Biopsies are painful, may cause bleeding and infection, and can be a source of anxiety

for patients (Wade et al. (2013)). If cancer cells are found upon evaluation of the

biopsy by a pathologist, the cells are given a Gleason score. The two most common

tissue patterns of the prostate tissue (obtained during the biopsy) receive a grade

between 1 and 5. This grade rates how different the cancer cells are from normal

cells. These two grades are added together to obtain a Gleason score between 2 and

10. A higher Gleason score indicates that the tumor is more likely to grow and spread

quickly.

Once a patient has been diagnosed with prostate cancer, a physician needs to

determine the stage of the disease. During clinical staging, it is important to detect

metastatic disease (i.e. when the cancer has spread to other parts of the body),
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because this determines treatment options. Thus, a computed tomography (CT)

scan or bone scan may be performed to screen patients with a high risk of metastatic

disease. CT scans and bone scans are used to detect whether the cancer has spread

to the lymph nodes and the bones, respectively.

Following diagnosis there are many factors that influence treatment decisions,

including the stage and grade of the cancer, the age and life expectancy of the patient,

possible side effects, and whether the patient has other health conditions. If a patient

is diagnosed with metastatic cancer, they will most likely receive hormone therapy or

chemotherapy. For localized cancer there are several treatment options.

Radical prostatectomy is the surgical removal of the prostate gland and surround-

ing tissue, and is an appropriate treatment option when the cancer is contained within

the prostate. This procedure can be done as an open surgery or laparoscopically,

which affects the recovery time. Radical prostatectomy has the same risks as other

major surgeries including infection, blood loss, and heart problems. Some possible

long-term side effects include impotence, urinary incontinence, and damage to the

urethra or rectum; however, it is usually effective in curing early-stage prostate can-

cer.

For men with low-grade cancer, there are currently two types of observational

treatment strategies, known as expectant management, that can serve as alternatives

to aggressive immediate treatments. Watchful waiting is an expectant management

option that delays curative treatment until symptoms arise. Active surveillance is an

expectant management option for patients with low-risk prostate cancer that delays

and possibly avoids curative treatment until there is evidence that the disease has

progressed; however, the patient must undergo repeated biopsies and there is still

the potential for the cancer to progress due to the imperfect nature of surveillance

biopsies. Expectant management has the benefit that it allows men to delay and

possibly avoid the side effects of curative treatment; however, the optimal timing of
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biopsies during active surveillance is unknown.

The two main harms of prostate cancer screening are unnecessary biopsies caused

by false-positive PSA results and the overtreatment of low-risk prostate cancer with

harsh curative treatments. The goal of this thesis is to discover ways to reduce the

harms of prostate cancer screening by providing insights on how new technologies can

be used with the established PSA test to better select men for prostate biopsy, as well

as improve the understanding of risks associated with active surveillance strategies to

encourage patients and physicians to reduce overtreatment in favor of active surveil-

lance. By reducing the harms associated with screening, physicians can safely screen

men for prostate cancer and reduce prostate cancer deaths. To achieve these goals we

describe stochastic models we developed and validated that cover the complete life

cycle of prostate cancer from early ages when the probability of prostate cancer is low,

through potential onset and progression of cancer, and subsequent treatment. These

models are used to answer key questions about prostate cancer, such as whether,

when, and how to use new technologies or procedures judiciously to improve quality

of life and lifespan for men.

This dissertation is structured as follows. In Chapter II we present a literature

review on simulation and optimization of cancer modeling. In Chapter III, we present

a prostate cancer simulation model that we used to evaluate a wide range of new

biomarkers for the early detection of prostate cancer in patients with elevated PSA. In

Chapter IV, we present cost-effectiveness analysis of using MRI for the early detection

of prostate cancer in men with elevated PSA. In Chapter V, we develop a partially

observable Markov decision process (POMDP) to determine optimal prostate biopsy

decisions using new biomarkers. In Chapter VI, we use longitudinal data from the

Johns Hopkins Active Surveillance study to create a hidden Markov model that we

used to develop optimal biopsy follow-up schedules for patients with low-risk prostate

cancer. Finally, in Chapter VII we discuss the main findings from this dissertation
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and discuss potential future research extensions.
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CHAPTER II

A Literature Review

The scope of this literature review includes simulation and optimization models for

cancer screening. It is a narrative review that describes related literature. We provide

a more specific discussion of the most relevant literature in each of the following

chapters.

2.1 Simulation Models

Many models have studied the lead time and overdetection of prostate cancer,

where the lead time of prostate cancer refers to the advanced time of diagnosis re-

sulting from the use of biomarker tests, and overdetection of prostate cancer refers to

patients who are diagnosed with prostate cancer that would not have been diagnosed

in the absence of screening. Etzioni et al. (2002) developed a computer simulation

model of PSA testing and prostate cancer to provide estimates of overdiagnosis due

to PSA screening. They found that the majority of screen-detected cancers between

1988 and 1998 would have presented clinically in the patient’s lifetime, and therefore

were not overdiagnosed. Draisma et al. (2003) developed simulation models using

the outcomes of the Rotterdam section of the ERSPC to predict mean lead times

and overdetection rates of different screening policies. Based on their results, they

concluded that a screening interval of more than one year would be optimal. Tsodikov
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et al. (2006) used a statistical model to estimate prostate cancer screening charac-

teristics, such as lead time and overdiagnosis, to try to find a connection between

the onset of PSA screening and population responses observed in Surveillance, Epi-

demiology, and End Results (SEER) registry data. Draisma et al. (2009) presented

three independent prostate cancer models that were developed using SEER registry

data to estimate the lead time of the disease, as well as the overdetection rate. They

found that their estimated lead times were similar, but differed based on the defi-

nition used, concluding that the definition of lead time in models should always be

clearly defined. Savage et al. (2010) developed an empirical lead time distribution

between an elevated PSA (≥ 3 ng/mL) and subsequent prostate cancer diagnosis,

and found that there was wide variation in lead times, with longer lead times having

a lower risk of high-grade disease. Gulati et al. (2014) developed a nomogram that

provides patients with individualized estimates of the risk that their screen-detected

prostate cancer is overdiagnosed, based on the patient and tumor information known

at diagnosis. Important factors in determining the chance of overdiagnosis are age,

Gleason score, and PSA at diagnosis.

There have also been many models that have estimated the effect of widespread

PSA-screening on prostate cancer statistics. Etzioni et al. (2008a) developed a fixed-

cohort simulation model of prostate cancer screening to determine the impact of

PSA screening on the incidence of advanced stage prostate cancer in the United

States. They determined that PSA screening accounted for 80% of the observed

decline in distant stage incidence, but concluded that other factors have most likely

also contributed to the decline, such as improved treatment modalities and increased

awareness. Etzioni et al. (2008b) presented two mathematical models that use SEER

registry data to project mortality increases in the absence of screening and decreases

in the presence of PSA screening. The models found that 45% to 70% of the observed

decline in prostate cancer mortality in the United States could be attributed to PSA
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screening.

There have also been studies that compared the effectiveness of alternative PSA

screening policies (e.g. annual screening or biennial screening, varying starting age for

screening). Ross et al. (2000) compared prostate cancer mortality, PSA testing rates,

and biopsy rates for several different PSA screening strategies using a Markov Chain-

based Monte Carlo simulation. They found that a policy that begins earlier than age

50 and screens biennially instead of annually would perform better than screening

annually beginning at age 50. Gulati et al. (2013) developed a microsimulation model

of prostate cancer to evaluate the effectiveness of PSA-based prostate cancer screening

strategies. They evaluated strategies recommended by guidelines and 32 combinations

of two ages to start screening, two ages to end screening, two screening intervals, and

four PSA thresholds for biopsy. They concluded that PSA screening strategies that

have higher thresholds for biopsy referral for older men and that screen men with

low PSA levels less frequently performed better than standard screening in terms of

minimizing both the harms of screening and prostate cancer deaths.

Gulati et al. (2011) developed a simulation model to project long-term estimates of

the number needed to screen and the number needed to treat to prevent one prostate

cancer death with PSA screening from ERSPC, and found that their long-term esti-

mates are much more favorable than the previous short-term estimates published by

Schröder et al. (2009). Heijnsdijk et al. (2012) presented a Microsimulation Screening

Analysis (MISCAN) model based on ERSPC follow-up data to predict various long-

term prostate cancer screening outcomes. Heijnsdijk et al. (2015) used the MISCAN

model to evaluate the cost-effectiveness of prostate cancer screening, and concluded

that prostate cancer screening can be cost-effective when the patient receives two or

three screenings between ages 55 and 59 years. Roth et al. (2016) also studied the

cost-effectiveness of PSA screening using a microsimulation model; however, their

cohort was based on a US population. Roth et al. (2016) concluded that for PSA
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screening to be cost effective, it needs to be used conservatively with conservative

management approaches for low-risk disease.

Underwood et al. (2012) developed a genetic algorithm simulation optimization

model based on a non-stationary finite horizon Markov chain to develop a PSA screen-

ing policy that maximizes expected quality-adjusted life years (QALYs). The genetic

algorithm uses tournament selection to choose parents, two-point crossover to create

offspring, and elitism and mutation to create the next generation. The policy gener-

ated by the genetic algorithm performed better than previously published policies in

terms of QALYs. The simulation optimization model indicated that patients should

be screened more aggressively for a shorter period of time.

Several studies have developed models to evaluate new technologies for the early

detection of prostate cancer. Heijnsdijk et al. (2016) used MISCAN to evaluate the

effects of the new biomarker, phi, on prostate cancer screening. They concluded that

the use of phi in patients with elevated PSA substantially reduced the number of

negative biopsies and improved the cost-effectiveness of prostate cancer screening.

Birnbaum et al. (2015) used a simulation model to evaluate the effect of the new

biomarker, PCA3, on prostate cancer screening, and found that supplementing PSA

with the PCA3 test significantly reduced adverse screening outcomes. Willis et al.

(2014) performed a clinical decision analysis and de Rooij et al. (2014) performed a

cost-effectiveness analysis of using MRI followed by targeted prostate biopsy for early

detection of prostate cancer. Willis et al. (2014) found that using MRI resulted in

fewer biopsies and more clinically significant cancer diagnoses, while de Rooij et al.

(2014) found that using MRI resulted in similar costs to the current standard of care

while achieving more QALYs.

Active surveillance is a treatment option for low-risk prostate cancer patients

that delays or avoids curative treatment until there is evidence of disease progres-

sion; however, the patient must receive serial prostate biopsies, there is the potential
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for misclassification at diagnosis due to undersampling at biopsy, and the optimal

timing of biopsies during surveillance is unknown. Inoue et al. (2014) used serial

prostate biopsy data from the Johns Hopkins Active Surveillance study to explore

whether Gleason score upgrading during active surveillance was due to misclassifica-

tion or true grade progression. Inoue et al. (2014) developed a statistical model that

estimated true grade progression rates, while accounting for misclassification due to

undersampling at diagnosis biopsy. They applied their model to serial prostate biopsy

results for patients enrolled in active surveillance at Johns Hopkins, and concluded

that tumor grade can progress in low-risk prostate cancer patients. In a related blad-

der cancer study, Zhang et al. (2013) studied the optimal timing of cystoscopies for

patients with low-grade noninvasive bladder cancer. They developed a partially ob-

servable Markov model to estimate QALYs, expected lifelong progression probability,

and lifetime number of cystoscopies for varying surveillance strategies.

There have also been a number of related studies in the context of breast can-

cer. Maillart et al. (2008) considered the problem of how often premenopausal and

post-menopausal women should receive mammography screening for breast cancer.

They formulated a partially observable Markov chain for breast cancer progression

including five states. The model assumes that patients are only diagnosed with breast

cancer during routine screening. Thus, the model provides a conservative, worst-case

scenario analysis, since some patients would develop symptoms and be diagnosed be-

tween screening. Unlike previous models, their model addressed multiple age-based

dynamics of breast cancer screening. Since adherence to the current routine policy

recommendation is low, Maillart et al. (2008) only considered “two-phase” policies,

which consist of only two different screening intervals. The experimental design of

Maillart et al. (2008) resulted in 1223 enumerated possible policies, and sample-path

enumeration was used to generate a frontier of efficient policies by balancing the life-

time mortality risk and the expected number of mammograms throughout a patient’s
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lifetime. The current recommendation of annual mammograms beginning at age 40

is dominated by less than 1% by the frontier efficient policies. Maillart et al. (2008)

provides a range of efficient and less than 1% efficient policies that patients can select

from based on their personal preferences. It was determined that screening should

start relatively early and end relatively late in life regardless of the interval between

mammograms.

Tejada et al. (2015) developed a natural history simulation model of breast cancer

in a simulated population of women in the United States over age 65. Tejada et al.

(2014) used the natural histories of the simulated population to model breast cancer

screening for women over age 65. They combined discrete-event simulation and system

dynamics submodels to compare screening policies based on overall cost-effectiveness,

cost incurred, and the numbers of life-years and QALYs saved. They considered inter-

val screening policies (i.e. one policy for the entire population), risk-based screening

policies, and factor-based screening policies accounting for factors such as age, race

and body mass index. Their final recommendation is annual screening between ages

65 and 80.

Mandelblatt et al. (2016) was a collaboration of six simulation models that eval-

uated breast cancer screening outcomes, accounting for recent advances in mam-

mography and treatment. They found that biennial breast cancer screening with

mammography is efficient for average-risk patients, and that optimal starting ages

and screening intervals depend on patient characteristics and preferences. Ayer et al.

(2015) found that since adherence to mammography screening policies is imperfect

and heterogeneous, an aggressive screening strategy recommending annual screening

to the general population should be recommended.

Similar studies have been published related to lung cancer screening. For example,

de Koning et al. (2014) conducted a comparative modeling study using five indepen-

dent models, and suggested annual lung cancer screening with CT for patients age
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55 to 80 with ≥ 30 pack-years of smoking. This screening policy resulted in 50% of

cases diagnosed at an early stage and a 14% reduction in lung cancer mortality.

2.2 Optimization Models

There have been a number of previous studies that have used optimization models

to investigate screening and treatment decisions for cancer in the context of imperfect

screening tests.

Zhang et al. (2012a) developed a nonstationary POMDP for prostate biopsy refer-

ral decisions that maximizes expected QALYs, and found that the decision of when

to stop screening is highly dependent on the patient and the disutility of life after

treatment. It is proven that there exists a control-limit type policy, and the computa-

tional experiments performed indicate that there is a nondecreasing belief threshold

in age. Sufficient conditions for discontinuing PSA screening for older patients are

presented. Zhang et al. (2012b) expanded on this work by including PSA screening

decisions about whether and when to screen over the course of a patient’s lifetime.

Zhang (2011) presents a POMDP for prostate cancer treatment decisions, incorporat-

ing active surveillance. At each decision epoch, the patient can wait, receive a PSA

test or biopsy, or receive definitive treatment. The underlying partially observable

Markov chain formed the initial basis of the model that we developed and validated,

which we describe in Chapter III.

Lavieri et al. (2012) investigated a model to optimize the timing of when to begin

radiation therapy in prostate cancer patients based on the patient’s PSA level. Their

model balances the risk of beginning radiation therapy too soon before hormone

therapy has achieved its maximum effect with the risk of beginning radiation therapy

too late when tumor cells become resistant to treatment.

Simmons Ivy et al. (2009) developed a simulation model that combines statisti-

cal control and a POMDP to quantify the impact of variability and noise on patient
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outcomes in breast cancer decision making. They found that variability among radiol-

ogists in interpreting mammography results has the largest impact on a patient’s out-

comes. Thus, reducing this variability should be a primary goal to improve women’s

healthcare.

Chhatwal et al. (2010) developed a finite-horizon discrete-time Markov decision

process for breast biopsy referral decisions. The model takes into account a patient’s

mammographic features and demographic factors. The optimal policy shows that

there is a control-limit type policy based on the patient’s breast cancer risk and

nondecreasing control-limits with age. Using clinical data, their model outperforms

radiologists in the biopsy decision-making problem, which may have the ability to

reduce the variability noted in Simmons Ivy et al. (2009).

Ayer et al. (2012) was the first paper to consider personalized mammography-

screening policies, based on both static and dynamic risk factors. They develop a

discrete-time, finite-horizon POMDP model to determine the optimal policy for an

individual patient in terms of maximizing the total expected QALYs. The POMDP

consists of six states, including multiple cancer states. Every six months, based on

the woman’s current risk of breast cancer a decision is made about whether the pa-

tient should receive a mammogram or should wait six months. In this model, if a

mammogram comes back positive, the patient receives a biopsy, which is assumed to

be perfect. Ayer et al. (2012) also incorporates the possibility of self-detection into

the problem, and shows that self-detection increases the total expected QALYs, while

reducing the number of mammograms. This POMDP is solved optimally using Mon-

ahan’s algorithm; however their results are sensitive to the disutility values associated

with a mammogram.

Models have also been used to optimize cancer screening and treatment decisions

for colorectal cancer. For example, Erenay et al. (2014) developed a POMDP to

optimize colonoscopy screening policies to maximize expected QALYs. They report
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that optimal screening policies recommend women with a history of colorectal cancer

should be screened via colonoscopy more frequently than men, while women without

a history of colorectal cancer should be screened via colonoscopy less frequently than

men.

2.3 Contributions to the Literature

Zhang et al. (2012a) and Underwood et al. (2012) developed models to study opti-

mal prostate cancer screening policies that maximize expected QALYs; however, both

of these models only have one preclinical cancer state. Approximately half of screen-

detected cases are considered low-risk with slow growing tumors, and these patients

have different treatment options than patients with high-risk tumors. Thus, our work

extends that of Zhang et al. (2012a) and Underwood et al. (2012) by accounting for

different grades of prostate cancer, and can therefore differentiate between different

treatment options for patients. Our simulation models in Chapters III and IV also

contribute to the literature by evaluating new prostate cancer diagnostic biomarkers

and MRI, including multi-stage approaches for using these new technologies. Our

work provides a way to directly compare the long-term health impacts of these new

technologies. Additionally, we have included behavioral aspects of treatment choice

into our simulation models by using a predictive model for active surveillance selec-

tion. In Chapter V, we developed a POMDP, which we solved using a new data-driven

sampling approach to develop a set of relevant grid points in the belief space based

on our special problem structure. Finally, in Chapter VI we present what is, to the

best of our knowledge, the first hidden Markov model based on longitudinal active

surveillance data. We fit our model using data from 1499 patients enrolled in ac-

tive surveillance at Johns Hopkins over 20 years. Using this hidden Markov model,

we quantified the trade-off among a large number of biopsy strategies and provide

insights about how to improve upon strategies proposed in the literature.
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CHAPTER III

A Simulation Model of Prostate Cancer Screening

Decisions Using Newly Discovered Biomarkers

3.1 Introduction

Although prostate cancer is the most common solid tumor in American men,

there is controversy surrounding prostate cancer screening. The AUA recommends

shared decision-making for men from ages 55 to 69 considering PSA-based screening,

and specifies screening intervals of two years preserve the majority of the benefits of

screening and reduce overdiagnosis and false positives (Carter et al. (2013)). How-

ever, the U.S. Preventive Services Task Force recommends against prostate cancer

screening with the PSA test due to the potential harms from unnecessary biopsies

and overtreatment of low-risk disease (Moyer (2012)). In recent years many new

biomarkers have been discovered for early detection of prostate cancer that may be

able to supplement the PSA test to reduce unnecessary biopsies. Patients and their

healthcare providers now have access to these new biomarkers which could potentially

be combined into multi-stage biomarker screening strategies that improve the preci-

sion with which screening can be performed. These discoveries have the potential to

improve patient survival and lower the burden of screening by better discriminating

between patients with and without cancer. However, these tests vary in their predic-
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tive characteristics, and the ideal way to use them to achieve optimal long-term health

benefits is unclear. In this chapter we study the question of how to design two-stage

biomarker screening strategies in the context of prostate cancer. A two-stage strategy

uses one biomarker (e.g. PSA) to stratify patients into two groups that either receive

biopsy or no biopsy and a third group that receives a second stage biomarker test.

Such strategies have to potential to better select men for biopsy.

Several new diagnostic prostate cancer biomarkers have recently come to market

(Makarov et al. (2009); Tosoian et al. (2016)). Some of these biomarkers are PSA

derivatives, such as free PSA and [-2]proPSA. Some of the biomarkers are based on

combinations of serum markers, such as phi, which uses a combination of total PSA,

free PSA, and [-2]proPSA to generate a score (Bryant and Lilja (2014); Catalona et al.

(2011)), and the 4Kscore, which uses a panel of total PSA, free PSA, intact PSA, and

hK2 to estimate a patient’s risk of high-grade cancer (Gleason score ≥ 7) on biopsy.

Other molecular biomarkers include PCA3 and T2:ERG, which are detectable in post-

DRE urine (Bussemakers et al. (1999); Salagierski and Schalken (2012); Truong et al.

(2013); Tomlins et al. (2005); Brenner et al. (2013); Pettersson et al. (2012); Young

et al. (2012)). The MiPS early detection test combines a patient’s serum PSA, urine

PCA3 score, and urine T2:ERG score into a single multivariate regression model to

estimate individualized risk estimates for all prostate cancer and high-grade prostate

cancer (Tomlins et al. (2016)). These tests vary in the outcome they predict (all-

cancer versus high-grade cancer) and in their sensitivities and specificities. No study

has yet attempted to compare these biomarkers to determine which characteristics

achieve optimal long-term health outcomes in the context of early detection of prostate

cancer.

In order to better understand the optimal design of screening strategies in a multi-

biomarker setting, we estimated long-term health outcomes using a partially observ-

able Markov model. We validated the model by comparing model-based estimates of
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health outcomes with independent estimates reported in the literature. Based on the

AUA screening policy, we compared each of the biomarkers in the context of patients

who were screened from ages 55 to 69 with a screening interval of two years. Dur-

ing each screening period, we employed an innovative two-stage biomarker screening

strategy. If the patient’s serum PSA was over a specified threshold (2 or 4 ng/mL), a

second biomarker test was administered. We estimated the number of prostate cancer

deaths and screening biopsies per 1000 men, as well as the gain in QALYs compared

to no screening in order to identify the ideal biomarker characteristics. We drew con-

clusions about optimal screening strategy design characteristics that may generalize

to other disease contexts in which multiple biomarkers can be used to achieve early

detection.

3.2 Model

To evaluate screening strategies that use biomarkers of varying sensitivity and

specificity, we developed a partially observable Markov model in which pretreatment

states are not directly observable. Biomarker tests give (imperfect) information about

the true state of the patient. The partially observable pretreatment states in the

model include no prostate cancer, undetected organ-confined prostate cancers based

on Gleason score (GS < 7, GS = 7, GS > 7), and extraprostatic or lymph node-

positive cancer (EPLN). The EPLN state aggregates these two conditions into one

state because they are similarly associated with decreased survival. The states were

selected because they distinguish patients on the basis of likely treatment options,

outcomes, and survival.

3.2.1 Model Parameters

Figure 3.1 displays the health states and possible state transitions for the model.

Each year that the screening strategy calls for testing the following sequence of events
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Figure 3.1: State transition diagram. Health states and progression paths in the
Markov model are shown, where transitions between states are repre-
sented by arrows. Patients who are detected with prostate cancer (PCa)
are treated immediately with radical prostatectomy (RP) or active surveil-
lance (AS). GS = Gleason score; EPLN = extraprostatic or lymph node-
positive cancer.

in the model occur: the patient receives one or more biomarker tests according to the

specified strategy; the biomarker test results determine whether a biopsy is performed;

and the patient transitions to their next health state. As our model focuses on

screening of the general population, the screening strategy terminates after an initial

biopsy and the patient continues to make state transitions in the absence of screening

until reaching one of the absorbing states, all-other-cause mortality or prostate cancer

mortality. The parameters used to calculate the transition probabilities are described

in Table 3.1, and how these parameters were calculated is described in this section.
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Annual transition rate from No PCa to GS < 7 (wt); We assume that when

patients are in No PCa, they can only transition to organ confined GS < 7 or death,

which is consistent with the assumption made in Draisma et al. (2003). In Figure

2 of Haas et al. (2007), the predicted proportion of patients with prostate cancer is

reported by age based on needle biopsies on autopsy prostates. Let wt be the annual

transition probability from No PCa to GS < 7 during the period from t to t+ 1. Let

at and at+1 be the predicted proportion of patients with prostate cancer at age t and

age t+1, respectively. Let Nt and Nt+1 denote the size of the male population at age

t and t + 1, respectively. Then, wt is the cumulative incidence over the age range t

to t+ 1, and we have the following relation:

at+1Nt+1 = atNt
Nt+1

Nt

+ (1− at)wtNt
Nt+1

Nt

where at+1Nt+1 is the number of prostate cancer patients at age t+ 1, atNt
Nt+1

Nt
is the

number of prostate cancer patients who developed prostate cancer at age t and are

still alive at age t+ 1, and (1−at)wtNt
Nt+1

Nt
is the number prostate cancer patients at

age t+ 1 who did not have prostate cancer at age t. Note that in a closed population,

Nt > Nt+1. Thus, the ratio Nt+1

Nt
is the proportion of age t patients who live to age

t+ 1. By simple algebraic manipulation, we can simplify the equation to:

wt =
at+1 − at

1− at

We used this equation to calculate the annual transition rates based on the estimates

of at reported in Haas et al. (2007).

Annual other-cause mortality rate (dt); The annual other-cause mortality

rate was obtained from the CDC Life Tables (Arias (2010)).

Annual metastasis rate for patients with undiagnosed prostate cancer

(et); Since the metastasis rate for patients with undiagnosed prostate cancer is un-
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observed, we calibrated the values of et with respect to long-term outcomes reported

in the literature. Specifically, we varied the metastasis rate in 10-year periods, and

calibrated the values so the resulting age-dependent risk of prostate cancer death un-

der routine screening matched the values reported in the literature (Howlader et al.

(2012)):

Age Risk of prostate cancer death

50 2.82%

60 2.98%

70 3.18%

80 3.36%

For calibration, 30,000,000 samples were taken and confidence intervals were

0.01%. The resulting age-dependent metastasis rates were:

t et

40–59 0.0017

60–69 0.0054

70–79 0.0139

80–89 0.0343

90–100 0.0345

Annual prostate cancer-specific mortality rate given metastasized prostate

cancer (zt); Let St be defined as the five-year prostate cancer-specific survival rate

for metastasized prostate cancer at age t. Then we can calculate annual prostate

cancer-specific mortality rate given metastasized prostate cancer, zt, as:

zt = 1− S1/5
t
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Table 22.5 of Ries et al. (2007) reports the 5-year prostate cancer-specific mortality

rate for metastasized prostate cancer to be 0.319, 0.366, and 0.368 for age groups

20–64, 65–74, and 75+, respectively. Thus,

zt =


0.204, if t ≤ 64

0.182, if 65 ≤ t ≤ 74

0.181, if t ≥ 75

Sensitivity of prostate biopsy procedure (f); Haas et al. (2007) reported

the sensitivity of biopsy from the mid peripheral zone and the lateral peripheral zone

combined for clinically significant cancer to be 80%.

Annual transition rate calculations from Draisma et al. (2003); The

model in Draisma et al. (2003) has three localized stages (Loc G1, Loc G2, Loc

G3). Loc G1 is equivalent to organ confined GS < 7 PCa in our model, Loc G2 is

equivalent to organ confined GS = 7 PCa in our model, and Loc G3 is equivalent to

organ confined GS > 7 PCa in our model. The model in Draisma et al. (2003) has

three regional stages (Reg G1, Reg G2, Reg G3), and our model has one regional state

(EPLN). Draisma et al. (2003) reported the average dwelling time (µ) for each state.

We used these reported dwelling times to calculate stationary transition probabilities

between states. For a discrete-time Markov chain, we let Ti be the time spent in

state i before transitioning to another state. Ti is a random variable of geometric

distribution, which has a mean of 1
p

where p is the annual transition rate of leaving

the state. Thus, we can use µ to calculate the annual transition rate of leaving a

state: 1
µ
.

• Annual transition rate from GS < 7 to GS = 7 (o1o2); Draisma et al.

(2003) reported the average dwelling time in Loc G1 to be 6.95, and reported

that 0.7 proportion of patients departing Loc G1 transition to Loc G2. Thus the

transition rate of leaving the state of GS < 7 is 1
6.95

= 0.144, and the transition

rate from GS < 7 to GS = 7 is 0.144× 0.70 = 0.101.
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• Annual transition rate from GS = 7 to GS > 7 (o2o3); Draisma et al.

(2003) reported the average dwelling time in Loc G2 to be 4.81, and reported

that 0.42 proportion of patients departing Loc G2 transition to Loc G3. Thus

the transition rate of leaving the state of GS = 7 is 1
4.81

= 0.208, and the

transition rate from GS = 7 to GS > 7 is 0.208× 0.42 = 0.087.

• Annual transition rate from GS < 7 to EPLN (o1e); Draisma et al.

(2003) reported the average dwelling time in Loc G1 to be 6.95, and reported

that 0.2 proportion of patients departing Loc G1 transition to regional disease.

Thus the transition rate of leaving the state of GS < 7 is 1
6.95

= 0.144, and the

transition rate from GS < 7 to EPLN is 0.144× 0.20 = 0.029.

• Annual transition rate from GS=7 to EPLN (o2e); Draisma et al. (2003)

reported the average dwelling time in Loc G2 to be 4.81, and reported that 0.39

proportion of patients departing Loc G2 transition to regional disease. Thus the

transition rate of leaving the state of GS = 7 is 1
4.81

= 0.208, and the transition

rate from GS = 7 to EPLN is 0.208× 0.39 = 0.081.

• Annual transition rate from GS > 7 to EPLN (o3e); Draisma et al. (2003)

reported the average dwelling time in Loc G3 to be 5.25, and reported that 0.51

proportion of patients departing Loc G3 transition to regional disease. Thus the

transition rate of leaving the state of GS > 7 is 1
5.25

= 0.190, and the transition

rate from GS > 7 to EPLN is 0.190× 0.51 = 0.097.

Metastasis of treated prostate cancer (pnc, g); Metastasis following radical

prostatectomy depends on the stage of the disease at treatment. There are two

post-treatment states patients can transition to following treatment: no recurrence

following treatment (NRFT) and possible recurrence following treatment (PRFT).

If a patient has organ-confined disease at surgery, they transition directly to NRFT

following radical prostatectomy. Patients who transition to NRFT have been cured
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and will not develop metastasis. If a patient has extraprostatic or lymph node-positive

disease at treatment, they transition to NRFT with probability 0.468 (defined as

pnc in Table 3.1), and they transition to PRFT with probability 0.532 (Roehl et al.

(2004)). The annual metastasis rate for patients in PRFT is 0.006 based on the

Mayo Clinic Radical Prostatectomy Registry (defined as g in Table 3.1) as used

in a previous prostate cancer model (Zhang et al. (2012a)). If a patient’s Gleason

score was upgraded as a result of a surveillance biopsy, they were assumed to have a

radical prostatectomy. From the post-diagnosis states patients eventually transition

to metastasis and/or death from prostate cancer or other causes.

Proportion of patients detected with GS < 7 who undergo active surveil-

lance (s); We estimated the mean probability that low-risk patients initiate active

surveillance to be 0.485 based on the logistic regression model presented in Liu et al.

(2015).

QALY Disutilities; The QALY disutility values were all obtained from Heijns-

dijk et al. (2012). As an example calculation, Heijnsdijk et al. (2012) reported a 0.9

utility for 3 weeks following a prostate biopsy. This is equivalent to a 0.9 utility for

3 weeks, and a 1.0 utility for the remaining 49 weeks of the year. Thus, the annual

utility in a year where the patient receives a prostate biopsy is:

0.9× 3

52
+ 1.0× 49

52
= 0.99423

and the QALY disutility for the year is 1 − 0.99423 = 0.00577. We calculated the

other disutilities using the same technique. The disutility for living with metastasis

is based on the disutility of palliative therapy presented in Heijnsdijk et al. (2012).
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3.2.2 Prostate Cancer Screening

The structure of the two-stage biomarker screening strategy is illustrated in Fig-

ure 3.2 in which two thresholds divide PSA values into low, intermediate, and high.

A patient receives a biopsy if his PSA value is high (> 10 ng/mL). If his PSA value is

low at a given screening age, then no biopsy is recommended. If the PSA is between

the low and high thresholds, then a second biomarker test is employed. If the second

biomarker test is positive, the patient receives a biopsy; otherwise, the patient does

not receive a biopsy and continues to be screened in future years. We evaluated two

PSA thresholds to trigger a second biomarker test: 2 and 4 ng/mL. We selected these

thresholds because it has been reported that phi, 4Kscore, and [-2] proPSA have the

ability to select men with PSA values of 2-10 ng/mL for prostate biopsy, and because

4 ng/mL is a commonly used biopsy threshold (Bratt and Lilja (2015)). We chose to

use this two-stage screening strategy for multiple reasons. First, PSA is an established

test and many new biomarkers are only approved to be used along with the PSA test.

Second, new biomarkers can be expensive, and this approach pragmatically uses the

new biomarkers when they will add greatest value and does not use them when they

have little value. Additionally, we assumed 100% adherence to the screening strategy

for our base case, and performed sensitivity analysis on the adherence rates.

We sampled PSA scores using a random effects model that includes the patient’s

current age and their age at onset of a preclinical tumor (Gulati et al. (2010)):

log{yi(t)} = β0i + β1it+ β2i(t− toi)I(t > toi) + ε,

where yi(t) is the PSA level for individual i at age t, t = 0 corresponds to age 35, toi

is the age at onset of a preclinical tumor for individual i, I is an indicator function,

and ε is random noise. Finally, individual intercepts and slopes for each individual i

are given by βki ∼ N(µk, σ
2
k) for k = 0, 1, 2.
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Figure 3.2: Two-stage biomarker screening strategy where the result of the PSA test
determines whether a second biomarker is used. If a patient’s PSA score
is greater than 10 ng/mL, they will automatically receive a biopsy. B
represents the observed second biomarker result for the patient, x is the
PSA threshold to trigger a second biomarker test, and y is the threshold
for the second biomarker to trigger biopsy.
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Table 3.2: Biomarker sensitivities and specificities for all-cancer and high-grade can-
cer (Gleason score ≥ 7) reported in the literature. The sensitivities and
specificities for 4Kscore and the MiPS tests were calculated using data pre-
sented in Parekh et al. (2015) and from the study Tomlins et al. (2016),
respectively. These 14 tests were evaluated for two PSA thresholds (2
ng/mL and 4 ng/mL), resulting in 28 screening strategies. Blank entries
for thresholds indicate no threshold given in the source.

Biomarker Test Threshold Sensitivity Specificity Source
All-cancer

% p2PS ≥ 1.7 0.70 0.70 Ferro et al. (2012)
% p2PS ≥ 2.5 0.38 0.90 Ferro et al. (2012)
phi ≥ 38.7 0.85 0.61 Ferro et al. (2012)
PCA3 − 0.93 0.37 Salami et al. (2013)
T2:ERG − 0.67 0.87 Salami et al. (2013)
T2:ERG − 0.37 0.93 Sartori and Chan (2014)

High-grade cancer
4Kscore ≥ 9% 0.90 0.52 Parekh et al. (2015)
4Kscore ≥ 12% 0.86 0.62 Parekh et al. (2015)
4Kscore ≥ 15% 0.79 0.70 Parekh et al. (2015)
All-cancer MiPS ≥ 25% 0.94 0.41 Tomlins et al. (2016)
All-cancer MiPS ≥ 52% 0.68 0.78 Tomlins et al. (2016)
High-grade MiPS ≥ 10% 0.95 0.36 Tomlins et al. (2016)
High-grade MiPS ≥ 15% 0.88 0.55 Tomlins et al. (2016)
High-grade MiPS ≥ 26% 0.70 0.76 Tomlins et al. (2016)

For the sensitivity and specificity of the second biomarker test, we used values re-

ported in the literature. We performed a systematic review of the literature and chose

the sensitivities and specificities that were non-dominated (i.e., biomarkers such that

no other biomarker had both a higher sensitivity and a higher specificity). Table 3.2

shows sensitivity and specificity values we used for all-cancer and high-grade cancer

(Gleason score ≥ 7). These 14 (second-stage) tests were evaluated for two (first-stage)

PSA thresholds (2 ng/mL and 4 ng/mL), resulting in 28 screening strategies. Biopsy

results were randomly sampled as either positive or negative, assuming a sensitiv-

ity of 0.8 (Haas et al. (2007)). If the biopsy result was positive, we estimated the

probability that the biopsy provides an incorrect grading at diagnosis based on data

reported in Epstein et al. (2012).
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3.2.3 Clinical Detection of Prostate Cancer

Patients were diagnosed with prostate cancer in one of two ways: by routine

screening (i.e., an elevated biomarker score that leads to a positive biopsy) or by

clinical detection (i.e., prostate cancer that develops symptoms). We assumed that

the lead time clock for clinical detection starts once a patient has both prostate

cancer and a PSA score ≥ 3 ng/mL. Savage et al. (2010) developed a distribution

of lead times from an elevated PSA measurement of ≥ 3 ng/mL to clinical diagnosis

of prostate cancer. For each patient, we randomly sampled a lead time from this

distribution. If a patient’s lead time is x years, after the patient has had prostate

cancer and a PSA score ≥ 3 ng/mL for x years, if the patient is alive and has neither

been diagnosed nor treated for prostate cancer, then the patient is assumed to be

clinically detected.

3.2.4 Prostate Cancer Treatment

Following diagnosis, patients received watchful waiting, active surveillance or rad-

ical prostatectomy. We assumed patients with Gleason score ≥ 7 received radical

prostatectomy. Patients diagnosed with Gleason score < 7 were assumed to be treated

via active surveillance or radical prostatectomy. Based on practice patterns reported

in Liu et al. (2015), we assumed that 48.5% of patients diagnosed with Gleason score

< 7 received active surveillance, while the other 51.5% received radical prostatec-

tomy. Given the lack of consensus in published guidelines for active surveillance, we

assumed that patients received a biopsy one year after diagnosis, followed by a biopsy

every two years for 10 years following diagnosis (Cooperberg et al. (2011)). Patients

over age 80 were assumed to receive watchful waiting.

Patients receiving active surveillance continue to progress through the natural

history of the disease until they have a biopsy result of Gleason score ≥ 7. We made

the same assumptions about surveillance biopsies as described above. If a patient’s
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Gleason score was upgraded as a result of a surveillance biopsy, they were assumed

to have a radical prostatectomy. However, if they are never detected to have higher

risk disease, they have the survival of an untreated patient. Survival following radical

prostatectomy depends on the stage of the disease at treatment. There are two

post-treatment states patients can transition to following treatment: no recurrence

following treatment (NRFT), and possible recurrence following treatment (PRFT).

If a patient has organ-confined disease at surgery, they transition directly to NRFT.

If a patient has extraprostatic or lymph node-positive disease at treatment, they

transition to NRFT with probability 0.468 (defined as pnc in Table 3.1), and they

transition to PRFT with probability 0.532. The annual metastasis rate for patients

in PRFT is 0.006 based on the Mayo Clinic Radical Prostatectomy Registry (defined

as g in Table 3.1). From the post-diagnosis states patients eventually transition to

metastasis and/or death from prostate cancer or other causes.

3.2.5 Model Validation

To perform model validation, we compared estimates of clinical statistics from our

model with literature estimates. The model estimates were based on the assumption

that all men were screened annually from age 50 to 75 with a PSA threshold of 4

ng/mL, because that was a common strategy at the time upon which the literature

estimates are based (Ross et al. (2000); Andriole et al. (2009)). We compared our

model results with independent estimates from the literature for age-dependent risks

of prostate cancer death, expected lifespan for a 40-year-old man, age-dependent risks

of prostate cancer diagnosis, Gleason score distribution at diagnosis, and biopsy-

detectable prostate cancer prevalence rates by age.
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3.2.6 Simulation Parameters

The AUA recommends shared decision-making for men considering PSA-based

screening from ages 55 to 69 with a screening interval of two years. Based on this rec-

ommendation, patients were PSA-screened every two years from ages 55 to 69 (Carter

et al. (2013)). Each patient simulation began at age 40. The model was used to eval-

uate 28 different prostate cancer screening strategies based on published estimates of

sensitivity and specificity for biomarkers reported in the literature. Table 3.2 shows

the sensitivity and specificity values for all cancer and high-grade cancer (Gleason

score ≥ 7). We compared these values with using PSA alone and to hypothetical

perfect biomarkers that have a sensitivity and specificity of 1.0 for either all cancer or

high-grade cancer. We also investigated the trade-off of sensitivity and specificity by

evaluating long-term health outcomes for patients under 30 different thresholds for

the high-grade MiPS test. To perform this analysis, we used a large data set of PSA,

PCA3, and T2:ERG scores from a presumed cancer-free population of patients under-

going diagnostic prostate biopsy to estimate the high-grade sensitivity and specificity

of the high-grade MiPS test under each threshold (Tomlins et al. (2016)).

For each strategy evaluated, we estimated the mean number of screening biopsies

and prostate cancer deaths per 1000 men, and the mean QALYs gained per 1000

men relative to no screening. Our QALY measurements account for disutilities of

screening, biopsy, diagnosis, active surveillance, radical prostatectomy, recovery from

radical prostatectomy, and metastasis; the values of the disutilities with their sources

are shown in Table 3.1. The reward update function for QALYs was:

rt(st, at) = 1− δScr(at)− δBiop(at)− δDia(at)− δTre(at)− δRec(at)− δAS(at)− δMet(st)

where rt(st, at) is the reward a patient receives at age t, which is 1 minus the disutilities

associated with screening, biopsy, diagnosis, treatment and the presence of metastatic
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cancer, as defined in Table 3.1. The arguments for the reward are the health state, st,

that defines the cancer status of the patient and the action, at, that defines whether a

screening test or biopsy was performed. The total expected QALYs a patient receives

in their lifetime is:

R = Eπ
[

T∑
t=40

rt(st, at)

]
(3.1)

where T denotes maximum lifespan and the expectation is with respect to the stochas-

tic process induced by the screening strategy π that defines the frequency of testing

and the thresholds at which to perform biomarker tests and/or biopsies. This amounts

to assuming a risk neutral decision maker (e.g. the patient). Since we are not analyz-

ing costs, we did not use a discount factor. Since exact evaluation of R in equation 3.1

is not straight-forward due to history dependence of rewards up to a given decision

epoch t, we used forward simulations to obtain statistical estimates based on N pa-

tient samples each starting at age 40:

R̂ =
1

N

N∑
n=1

T∑
t=40

r
(n)
t (st, at) (3.2)

We synchronize patient histories using the method of common random numbers. Each

patient has his own stream of random numbers to determine his sequence of health

states and test results. This approach allows our model to compare a patient’s “nat-

ural history” of prostate cancer in the absence of screening to their health outcomes

under several screening approaches.

Simulation was performed to generate sample paths and obtain statistical esti-

mates of expected rewards for each strategy. This simulation model was implemented

in C/C++. We ran each strategy for 30,000,000 sample paths, which took less than

12.5 minutes to run using 3.40 GHz with 16 GB of RAM. The largest 95% confi-

dence interval reflecting Monte Carlo error was less than 1% of the corresponding

sample-mean point estimate.
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3.2.7 Sensitivity Analysis

We performed one-way sensitivity analysis on all of the model parameters by esti-

mating R̂ for varying choices of each parameter from a low to a high value, as defined

in Table 3.1. We also performed probabilistic sensitivity analysis, during which we

varied each model parameter by sampling from a uniform distribution between the

low and high values reported in Table 3.1. During the probabilistic sensitivity analy-

sis, we performed 30 experiments with 30,000,000 sample paths for each experiment.

Additionally, we looked at the impact of varying screening adherence (i.e., partici-

pation and attendance rates). We looked at the effect of varying these parameters

on the expected number of prostate cancer deaths per 1000 men and the increase in

QALYs per 1000 men relative to no screening. To perform sensitivity analysis, we

used the strategy with a PSA threshold of 2 ng/mL and a second biomarker test with

a high-grade sensitivity and specificity of 0.86 and 0.62, respectively.

3.3 Results

3.3.1 Model Validation

Table 3.3 compares estimates of clinical statistics from our model with literature

estimates from external validation studies. Overall, our estimates from the model

compare well with estimates from the literature. The SEER estimates that we have

compared to in Table 3.3 are from the years 2006 to 2008 (Howlader et al. (2012)).

Any variations are most likely due to our assumption that patients have perfect

adherence to the screening strategy.

Table 3.4 presents validation results in the absence of screening. Compared to

Table 3.3, the risk of prostate cancer death is higher, expected lifespan is lower, and

the Gleason score distribution at diagnosis shifts to higher grade disease. The risk

of diagnosis decreases for younger ages. After age 80, patients with advanced stage
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Table 3.3: Results from validation of the Monte Carlo simulation model based on the
partially observable Markov chain. The model estimates were based on the
assumption that all men were screened for prostate cancer (PCa) annually
from age 50 to 75 with a PSA threshold of 4 ng/mL.

Statistic Model Estimate Literature Estimate Literature Source
Overall risk of PCa death for
40-year-old man

2.73% 2.73% Howlader et al. (2012)

Age-dependent risk of PCa death Age Risk Age Risk
50 2.82% 50 2.82%
60 2.98% 60 2.98% Howlader et al. (2012)
70 3.18% 70 3.18%
80 3.36% 80 3.36%

Expected lifespan for 40-year-old
man (yr.)

38.19 37.7 Arias (2010)

Overall diagnosis risk for
40-year-old man

16.5% 16.6% Howlader et al. (2012)

Age-dependent risk of being Age Risk Age Risk
diagnosed with PCa within 10 50 3.1% 50 2.3%
years 60 6.1% 60 6.6% Howlader et al. (2012)

70 7.0% 70 8.2%
80 7.3% 80 5.1%

Gleason score (GS) distribution GS Proportion GS Proportion
at diagnosis < 7 53% < 7 49%

= 7 31% = 7 29% Draisma et al. (2003)
> 7 16% > 7 22%

Biopsy-detectable PCa Age Prevalence Age Prevalence
prevalence 50 13% 50 13%

60 22% 60 22% Haas et al. (2007)
70 36% 70 36%
80 50% 80 51%

disease present with symptoms or develop metastasis, which leads to a large number

of delayed diagnoses.

3.3.2 Base Case Analysis

We estimated the expected number of QALYs gained per 1000 men relative to no

screening for each of the biomarkers defined in Table 3.2 as well as two hypothetical

perfect biomarkers. Ten of the new biomarkers maximized expected QALY gains with

overlapping confidence intervals. The performance outcomes for these ten biomarkers

are shown in Table 3.5 along with the results for the hypothetical perfect biomarkers.

While there was no statistically significant difference between these ten tests in the

QALYs gained per 1000 men, the number of biopsies per 1000 men varied from 184 to

237. These ten tests also performed significantly better than using PSA alone with a
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Table 3.4: Results of the Monte Carlo simulation model based on the partially ob-
servable Markov chain for the case of no screening for prostate cancer
(PCa).

Statistic Model Estimate
Overall risk of PCa death for
40-year-old man

3.23%

Age-dependent risk of PCa death Age Risk
50 3.33%
60 3.53%
70 3.80%
80 4.00%

Expected lifespan for 40-year-old
man (yr.)

38.15

Overall diagnosis risk for
40-year-old man

12.0%

Age-dependent risk of being Age Risk
diagnosed with PCa within 10 50 0.7%
years 60 3.1%

70 7.0%
80 10.2%

Gleason score (GS) distribution GS Proportion
at diagnosis < 7 39%

= 7 34%
> 7 27%

Biopsy-detectable PCa Age Prevalence
prevalence 50 13%

60 22%
70 36%
80 50%
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Table 3.5: Best performing strategies in terms of QALYs gained per 1000 men com-
pared to no screening. Each strategy has a PSA threshold of 2 ng/mL to
trigger a second biomarker test, and assumes a biopsy will automatically
be performed on any patient with a PSA ≥ 10 ng/mL.

Second Biomarker Expected QALYs
gained per 1000 men

Number of screening
biopsies per 1000 men

Number of PCa deaths
per 1000 menTest Threshold Sensitivity Specificity

Perfect: HG * − 1.00 1.00 21.04 128.2 27.5
4Kscore * ≥ 12% 0.86 0.62 18.59 211.9 27.7
4Kscore * ≥ 15% 0.79 0.70 18.52 200.2 27.8
4Kscore * ≥ 9% 0.90 0.52 18.51 222.6 27.6
HG MiPS * ≥ 15% 0.88 0.55 18.48 219.6 27.7
MiPS * ≥ 25% 0.94 0.41 18.38 231.7 27.6
HG MiPS * ≥ 10% 0.95 0.36 18.30 235.0 27.6
Perfect: all − 1.00 1.00 18.01 146.5 27.1
HG MiPS * ≥ 26% 0.70 0.76 17.93 188.4 27.9
MiPS * ≥ 52% 0.68 0.78 17.79 184.2 28.0
PSA alone − − − 17.75 251.7 27.5
PCA3 − 0.93 0.37 17.65 236.9 27.6
phi ≥ 38.7 0.85 0.61 17.46 218.7 27.6

PCa = prostate cancer; QALYs = quality-adjusted life years.
* Sensitivity and specificity to high-grade (HG) prostate cancer (GS ≥ 7).

threshold of 4 ng/mL, achieving between 55% and 65% more QALYs gained per 1000

men. In terms of the initial PSA threshold to trigger a second biomarker test, a PSA

threshold of 2 ng/mL performed significantly better than 4 ng/mL in all two-stage

strategies, where using an initial PSA threshold of 2 ng/mL achieved between 55%

and 65% more QALYs gained per 1000 men than using an initial PSA threshold of 4

ng/mL.

Table 3.6 presents the expected QALYs gained per 1000 men, the number of

screening biopsies, and the number of prostate cancer deaths per 1000 men for each

of the screening strategies we evaluated. An initial PSA threshold of 2 ng/mL results

in more expected QALYs and fewer prostate cancer deaths compared to an initial

PSA threshold of 4 ng/mL.
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Figure 3.3 provides results for the number of screening biopsies and prostate can-

cer deaths per 1000 men. The figure displays tests from the literature that were

on the efficient frontier (i.e., any strategy that resulted in more biopsies and more

prostate cancer deaths than another strategy was removed), in addition to the perfect

biomarkers and using PSA alone. Figure 3.3 shows the trade-off that occurs between

minimizing prostate cancer deaths and minimizing the number of screening biopsies.

Although a PSA threshold of 4 ng/mL resulted in fewer biopsies, it also resulted in

more prostate cancer deaths. For example, consider the strategy with a PSA thresh-

old of 4 ng/mL and a second biomarker test with a sensitivity and specificity of 0.67

and 0.87 compared to the same strategy with a PSA threshold of 2 ng/mL. The latter

strategy is more aggressive, and thus reduces prostate cancer deaths by 6% compared

to the former strategy; however, it increases the number of screening biopsies being

performed by 49%. As expected, screening strategies with higher sensitivity resulted

in fewer prostate cancer deaths and more biopsies, while strategies with higher speci-

ficity resulted in fewer biopsies and more prostate cancer deaths. The only two tests

that maximized QALYs and also appeared on the efficient frontier of Figure 3.3 was

using PSA alone with a threshold of 2 ng/mL and the phi test with threshold of

38.7. Intuitively, using PSA alone with a threshold of 2 ng/mL minimized prostate

cancer deaths. The screening strategy that used a PSA threshold of 2 ng/mL and

a second biomarker test with high-grade sensitivity and specificity of 0.86 and 0.62,

respectively, maximized QALYs, and resulted in a prostate cancer death rate within

1% of using PSA alone with a threshold of 2 ng/mL, while reducing the number of

biopsies by 20%.

In addition to the efficient frontier of tests, Figure 3.3 also shows the results

for using PSA alone and for hypothetical biomarkers with perfect sensitivity and

specificity to all cancer and to high-grade cancer. There exists a two-stage biomarker

strategy that can simultaneously reduce the number of prostate cancer deaths and
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Figure 3.3: Estimated number of prostate cancer (PCa) deaths and screening biopsies
per 1000 men from modeled screening strategies. Each point on the graph
represents a different screening strategy and is labeled with the sensitivity
and specificity of the second biomarker. An asterisk (*) indicates that
the sensitivity and specificity are for high-grade prostate cancer (Gleason
score ≥ 7). This graph only displays the nondominated strategies of each
strategy type, i.e., strategies such that no other strategy resulted in both
a lower number of screening biopsies and a lower number of PCa deaths
per 1000 men screened (with the exception of the hypothetical perfect
biomarkers and PSA alone, which have been shown for reference). The
largest 95% confidence interval reflecting Monte Carlo error was less than
1% of the corresponding sample-mean point estimate.
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the number of screening biopsies compared to using PSA alone with a threshold of 4

ng/mL. In particular, using a PSA threshold of 2 followed by a test with sensitivity

and specificity of 0.37 and 0.93, respectively, can reduce the number of prostate cancer

deaths by 2% and the number of screening biopsies by 7% compared to using PSA

alone with a threshold of 4 ng/mL. For both PSA thresholds, the test with perfect

sensitivity and specificity to high-grade cancer resulted in more prostate cancer deaths

but fewer biopsies compared to the test with perfect sensitivity and specificity to all

cancer. This further highlights the trade-off between these two competing objectives.

To further investigate the relationship between possible biomarker thresholds, the

subsequent sensitivities and specificities that they imply, and long-term health out-

comes, we evaluated 30 different thresholds for the high-grade MiPS test using the

logistic regression model presented in Tomlins et al. (2016); the thresholds we consid-

ered ranged from 6% to 35% risk of high-grade cancer on biopsy. Figure 3.4 shows the

relationship between the 30 MiPS thresholds, the resulting sensitivity and specificity

to high-grade disease, and the mean increase in QALYs per 1000 men compared to no

screening. The maximum QALY gain was achieved with a high-grade MiPS threshold

of 18% and a corresponding high-grade sensitivity and specificity of 0.83 and 0.63,

respectively. Figure 3.4 demonstrates that as specificity is increased and sensitivity

is decreased, the expected number of QALYs decreases, which indicates that it is im-

portant to maximize sensitivity to high-grade disease in order to maximize expected

QALYs. The dotted lines show the 95% confidence interval, showing that thresholds

6− 29% have confidence intervals that overlap with the maximum achieved at 18%.

There is no statistically significant difference in QALYs gained and prostate cancer

deaths between the strategies with thresholds from 6% to 22%; however, the number

of screening biopsies per 1000 men ranged from 200 to 244. Thus, by looking at

performance outcomes in addition to QALYs, we can distinguish between strategies

that perform equally well in terms of QALYs.
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Figure 3.4: The relationship between sensitivity and specificity and their effect on
the performance of the screening strategy for a range of high-grade (HG)
MiPS thresholds to trigger biopsy. The performance of each threshold is
assessed by calculating expected QALYs gained per 1000 men compared
to no screening. Each of these strategies uses a PSA threshold of 2 ng/mL
to trigger a high-grade MiPS test. The maximum QALY gain is achieved
at a threshold of 18.
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3.3.3 Sensitivity Analysis

We performed one-way and probabilistic sensitivity analysis on the screening strat-

egy that maximized expected QALYs, which has a PSA threshold of 2 ng/mL and a

second biomarker test with a high-grade sensitivity and specificity of 0.86 and 0.62,

respectively. Using the base case parameter values, this 4Kscore strategy resulted in

27.7 prostate cancer deaths, 212 screening biopsies, and a gain of 19 QALYs per 1000

men. Additionally, we evaluated the impact of low screening adherence rates.

One-Way Sensitivity Analysis; One-way sensitivity analysis results are shown

in Figure 3.5, which is a tornado diagram that displays the effect each parameter

has on the expected increase in QALYs. The two parameters that had the greatest

effect on expected gain in QALYs were dt, the annual other-cause mortality rate, and

δRec, the annual QALY disutility for the 9-year post-radical prostatectomy recovery

period.

Figure 3.6 presents the one-way sensitivity analysis on the number of prostate

cancer deaths per 1000 men. The two parameters that had the greatest effect on the

prostate cancer mortality rate were: dt, the annual other-cause mortality rate, and

wt, the annual transition rate from No PCa to GS < 7 PCa, suggesting that patient

groups that have a higher risk of developing prostate cancer (e.g. African Americans

and patients with a family history) will be more likely to benefit from screening.

The parameter that had the greatest effect on both mean gain in QALYs and mean

number of prostate cancer deaths was dt, the annual other-cause mortality rate. When

the low and high values of the annual other-cause mortality rate are used, the increase

in QALYs per 1000 men ranged from 8 to 35 relative to the base case value of 19

QALYs, and the expected number of prostate cancer deaths per 1000 men ranged

from 22.4 to 35.5 relative to the base case value of 27.7. This suggests that patients

with comorbidities that are likely to have an increased risk of other-cause mortality

may not receive as many benefits from screening.
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Figure 3.5: One-way sensitivity analysis on expected gain in quality-adjusted life
years (QALYs) per 1000 men relative to no screening. The model pa-
rameters that we varied are defined in Table 3.1.

Probabilistic Sensitivity Analysis; The probabilistic sensitivity analysis re-

sults are presented in Figure 3.7, which shows the number of screening biopsies versus

the number of prostate cancer deaths per 1000 men from 30 experiments. The num-

ber of prostate cancer deaths ranged from 19.2 to 33.8, while the number of screening

biopsies ranged from 196 to 215 per 1000 men.

Varying Adherence Rates; As mentioned previously, patient adherence to

screening is often imperfect. To analyze the impact of adherence, we varied screening

participation and attendance rates for the screening strategy that maximized ex-

pected QALYs, which has a PSA threshold of 2 ng/mL and a second biomarker test

with a high-grade sensitivity and specificity of 0.86 and 0.62, respectively. We de-

fined the participation rate as the proportion of patients that participate in screening.

This is particularly relevant to prostate cancer screening, because fewer patients are
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Figure 3.6: One-way sensitivity analysis on expected number of prostate cancer (PCa)
deaths per 1000 men relative to no screening. The model parameters that
we varied are defined in Table 3.1.
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Figure 3.7: Probabilistic sensitivity analysis on the expected number of prostate can-
cer (PCa) deaths and screening biopsies per 1000 men. The model pa-
rameters that we varied and their bounds are defined in Table 3.1. The
base case value on the figure is labeled, and the other points represent
the 30 experiments.
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Table 3.7: Strategy performance in terms of QALYS gained relative to no screen-
ing, number of screening biopsies, and number of prostate cancer (PCa)
deaths per 1000 men after varying the screening participation rate in the
population.

Screening
participation rate

Expected QALYs
gained per 1000 men

Number of screening
biopsies per 1000 men

Number of PCa
deaths per 1000 men

0.50 9.02 106.0 30.0
0.60 11.28 127.1 29.5
0.70 12.79 148.3 29.1
0.80 14.88 163.6 28.6
0.90 16.72 190.7 28.6
1.00 18.59 211.9 27.7

Table 3.8: Strategy performance in terms of QALYS gained relative to no screening,
number of screening biopsies, and number of prostate cancer (PCa) deaths
per 1000 men after varying the screening attendance rate in the population.

Screening
attendance rate

Expected QALYs
gained per 1000 men

Number of screening
biopsies per 1000 men

Number of PCa
deaths per 1000 men

0.50 15.94 163.5 28.6
0.60 16.67 177.2 28.3
0.70 17.22 188.3 28.1
0.80 17.97 197.5 28.0
0.90 18.18 205.3 27.8
1.00 18.59 211.9 27.7

participating in the screening process since the U.S. Preventive Services Task Force

recommended against prostate cancer screening. We define the attendance rate as

the probability that patients participate in screening in a particular year. We varied

each of these values from 50% to 100%.

Table 3.7 presents our results from varying the screening participation rate (i.e.

the proportion of the population that participates in screening), and Table 3.8 presents

our results from varying the screening attendance rate (i.e. the probability a patient

shows up for screening in a particular year). As suspected, as participation and atten-

dance rates increase, the QALY gains increases, the number of prostate cancer deaths

decrease, and the number of biopsies being performed increases. We found that par-

ticipation rates have significantly more impact on patient outcomes than attendance

rates.
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3.4 Conclusions

We developed and validated a new partially observable Markov model that con-

siders prostate cancer screening and treatment decisions for a cohort of men, starting

at age 40, through to end of life. We used this model to examine alternative choices of

two-stage biomarker-based screening strategies based on newly discovered biomark-

ers. The screening strategy with a PSA threshold of 2 ng/mL and a second biomarker

with high-grade sensitivity and specificity of 0.86 and 0.62, respectively, increased the

number of QALYs per 1000 men by 19 QALYs compared to no screening and by 7

QALYs compared to using the PSA test alone with a threshold of 4 ng/mL. Our

model predicts one prostate cancer death averted per 200 men screened, assuming

men were screened annually from age 50 to 75 with a PSA threshold of 4 ng/mL.

Gulati et al. (2011) reported similar findings with a number needed to screen between

186 and 220.

Two recent modeling studies also examined the use of new biomarkers for prostate

cancer screening. Birnbaum et al. (2015) and Heijnsdijk et al. (2016) evaluated the

use of PCA3 and phi, respectively. We build on this previous work by evaluating

many new biomarkers head-to-head in the same model, providing useful information

when choosing between the many new biomarkers available. Another key differ-

ence from both of these studies is that we evaluated how the trade-off in sensitivity

and specificity affects performance of new biomarkers, including hypothetical perfect

biomarkers that provide an upper bound on the potential benefits of new biomarkers.

Finally, we evaluated the biomarkers in the context of QALYs as well as prostate

cancer deaths and number of biopsies per 1000 men.

A related study, Merdan et al. (2015), that considered the use of PCA3 and

T2:ERG for repeat biopsy decisions found similarly significant reductions in the num-

ber of biopsies in this more specific context. We found that using an initial PSA

threshold with a high sensitivity (2 ng/mL) and a second biomarker that has a high
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sensitivity (between 0.68 and 0.95) and low to moderate specificity (between 0.36 and

0.78) to high-grade disease appears to maximize expected QALYs. Interestingly, high

specificity in the second biomarker test, which is concomitant with low sensitivity,

results in significant reduction in QALYs, but minimizes the number of screening

biopsies. In our model, there are two populations of prostate cancer patients: (1)

patients with low-grade disease (Gleason score 6), and (2) patients with high-grade

disease (Gleason score ≥ 7). Patients with low-grade disease are unlikely to die from

prostate cancer, and therefore, are unlikely to benefit from screening. Patients with

high-grade cancer are more likely to develop metastatic disease, which is very likely to

cause prostate cancer death. Thus, biomarker tests for high-grade cancer outperform

all-cancer biomarkers for two reasons: (1) they are more likely to detect high-grade

disease and prevent a prostate cancer death, and (2) these high-grade biomarkers re-

duce the number of biopsies for patients with low-grade disease reducing the burden

of screening on patients that are unlikely to benefit.

In our one-way sensitivity analysis, we found that other-cause mortality has the

greatest impact on the expected increase in QALYs relative to no screening, suggest-

ing that the presence of comorbidity is an important consideration when determining

the optimal prostate cancer screening strategy. We found that the results were most

sensitive to variation in the QALY disutilities and the metastasis rate for patients with

undiagnosed prostate cancer, and least sensitive to variation in transition probabili-

ties. In our probabilistic sensitivity analysis, the prostate cancer mortality rate was

more sensitive to variation in model parameters than the mean number of biopsies.

Many different screening strategies performed similarly in terms of QALYs; how-

ever, we have found that it is possible to distinguish these similar screening strategies

by looking at additional performance measures that may better account for patient

preferences. For example, some strategies that achieved similar QALYs varied sig-

nificantly in rates of biopsy and prostate cancer deaths, with reductions in prostate
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cancer deaths coming at the expense of a greater biopsy rate. This trade-off em-

phasizes the importance of a shared decision making approach to account for patient

preferences regarding risk of prostate cancer mortality and harms from biopsy.

The hypothetical biomarkers that perfectly detect all cancer and high-grade can-

cer performed significantly better than screening strategies based on sensitivities and

specificities reported in the literature. This suggests there may be potential for ad-

ditional gains from new biomarker discoveries. Interestingly, the high-grade hypo-

thetical perfect biomarker achieved similar rates of prostate cancer mortality when

compared to the perfect all cancer biomarker, while reducing the number of screening

biopsies patients are subjected to. These data suggest screening biomarkers with an

ability to detect high-grade cancers may reduce unnecessary biopsies.

Our study has some limitations based on assumptions used in the modeling pro-

cess. First, estimates of sensitivity and specificity for biomarkers can be dataset-

dependent, as the estimates come from different datasets and, therefore, may have

different biases; however, our analysis still provides useful insights into how the sen-

sitivity and specificity of biomarkers impact long-term health outcomes. Second, we

are not aware of any longitudinal studies of long-term health outcomes associated

with these new biomarkers. In the absence of data to support correlations between

disease status, risk of preclinical progression and recurrence, PSA levels, and new

biomarkers operating characteristics, we have assumed no explicit correlations. If

correlations exist, it could lead to biased results and conclusions. Lastly, we assumed

that each patient receives at most one screening biopsy in his life. About 7− 12% of

men undergoing biopsy have had a previous negative biopsy (Nguyen et al. (2010);

Thompson et al. (2006)); however, the majority of patients receive a single biopsy,

and cancers detected on second biopsy are typically less clinically significant. Since

our intent is to measure the public health impact of biomarker screening, we do not

believe this assumption significantly influenced our results.
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These limitations notwithstanding, a number of conclusions can be drawn from

this study. Identifying biomarkers and risk thresholds optimized for identification of

high-grade cancers has the greatest impact on measures of performance in the screen-

ing setting. Combining new biomarkers with PSA has the potential to reduce the

number of screening biopsies (thus decreasing overdiagnosis) and decrease the rate of

prostate cancer mortality. The sensitivity analysis suggests our conclusions are robust

with respect to plausible variation in model parameters. New biomarkers with risk

thresholds optimized for identification of high-grade cancer can reduce the number of

prostate cancer deaths compared to PSA alone, while also increasing quality-adjusted

survival. These results support prospective clinical-validation trials using rationally

selected thresholds in order to design more efficient strategies for the early detection

of prostate cancer. We have shown that two-stage biomarker screening strategies can

be beneficial for the early detection of prostate cancer and have provided a founda-

tion for how this approach could potentially be adapted for other types of cancer

screening.
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CHAPTER IV

Cost Effectiveness of Magnetic Resonance (MR)

Imaging and Targeted MR/Ultrasound Fusion

Biopsy for Prostate Cancer Screening

4.1 Introduction

Concerns about the poor sensitivity and specificity of the PSA test have led to rec-

ommendations to discontinue prostate cancer screening in the United States (Moyer

(2012)). In Chapter III we discuss the potential use of new molecular biomarkers

in patients with elevated PSA to better select men for initial biopsy. MRI has re-

cently been proposed as another potential minimally invasive way to achieve early

detection of prostate cancer. MRI has higher sensitivity and specificity to high-grade

disease than the new biomarkers we evaluated in Chapter III. Additionally, MRI

could potentially reduce overtreatment by preferentially detecting intermediate- and

high-grade cancers (Siddiqui et al. (2015); Meng et al. (2016); Oberlin et al. (2016);

Siddiqui et al. (2016)); however, MRI is more costly than molecular biomarkers and

there is limited evidence for its effectiveness as an intermediate test in patients being

screened for prostate cancer. Moreover, there are multiple ways to use MRI in a

screening setting, and it is not clear which is best. For example, if an MRI does not

detect lesions suspicious for prostate cancer, either no biopsy or a standard biopsy
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(which randomly samples cores of tissue from the entire prostate gland) can be per-

formed. If an MRI detects suspicious lesions, a targeted MR/ultrasound fusion biopsy

(i.e. targeted fusion biopsy) can be performed in which the MR images are used with

real-time ultrasound to sample cores of tissue directly from suspicious lesions; alterna-

tively, a combined approach can be used in which both standard and targeted fusion

biopsies are performed during a single biopsy session. Since there are multiple ways

to implement MRI in a screening setting, the optimal clinical pathway is unknown.

We used a Markov model to evaluate the cost-effectiveness of MRI in a screening

setting. We used the model to predict outcomes for five screening strategies and

report the results on the basis of 1000 men. The frequency of screening for each

strategy was based on the AUA guideline for PSA screening (Carter et al. (2013)).

The first strategy employed standard biopsy for men with elevated PSA (> 4 ng/mL).

The other four strategies performed MRI on men with elevated PSA, and the results

were used to decide whether the men should be referred for no biopsy, standard

biopsy, targeted fusion biopsy, or combined (standard + targeted fusion) biopsy. We

estimated the number of deaths averted, QALYs, and total cost for each strategy.

Additionally, we estimated the incremental cost-effectiveness ratios (ICERs).

4.2 Model

We adapted the partially observable Markov model described in Chapter III to

estimate outcomes for five screening strategies that utilize MRI. We also updated the

annual metastasis rate based on the following estimates from the literature (Johansson

et al. (2004)), with 95% confidence intervals shown in parentheses:

et =


0.024 (0.016− 0.035), if t ≤ 70

0.015 (0.009− 0.026), if t ≥ 71
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Table 4.1: Definitions of five screening strategies.

Screening strategy PSA > 4 ng/mL Positive MRI Negative MRI
1 Standard Biopsy - -
2 MRI Targeted Fusion Biopsy Standard Biopsy
3 MRI Targeted Fusion Biopsy No Biopsy
4 MRI Combined Biopsy Standard Biopsy
5 MRI Combined Biopsy No Biopsy

We adopted this revised model because estimates for QALYs gained from PSA screen-

ing validate well relative to another recent cost-effectiveness study of PSA screening

(Heijnsdijk et al. (2015)). For example, Heijnsdijk et al. (2015) reports that screening

from ages 55 to 69 with two-year intervals and a PSA threshold of 3 ng/mL with a

3.5% discount rate results in 83 life-years gained and 61 QALYs gained per 1000 men.

Under the same conditions, our model estimates 71 life-years gained and 59 QALYs

gained per 1000 men.

For each strategy, for simulation purposes we used 30,000,000 samples of biopsy-

näıve men who were screened every two years from age 55 to 69 according to the

AUA guideline. In strategy 1, a standard biopsy was recommended for elevated

PSA (> 4 ng/mL). The decision-rule diagram for strategies 2 through 5 is shown in

Figure 4.1. Each strategy recommended MRI for elevated PSA, while actions based

on the MRI results depended on the strategy as defined in Table 4.1. Our model

focuses on initial biopsy decisions; thus, the screening strategy terminates after the

patient receives an initial biopsy or two negative MRIs; however, the patient continues

to make state transitions in the absence of screening until all-other-cause mortality

or clinical detection and subsequent prostate cancer mortality.

The model was comprised of discrete health states based on Gleason score, which

are not directly observable, but can be inferred from PSA and/or MRI subject to

published estimates of sensitivity and specificity. For standard biopsy, the results

were randomly sampled as either positive or negative, assuming a sensitivity to any
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Figure 4.1: Decision rule diagram for screening strategies 2 through 5. All of the
decision rules were compared to no screening and the case of standard
biopsy for PSA greater than 4 ng/mL.

Table 4.2: Standard biopsy simulator based on data provided in Epstein et al. (2012).
Biopsy result

No cancer GS <7 GS = 7 GS >7

True health
state

No cancer 1.00 0.00 0.00 0.00
GS <7 0.20 0.71 0.08 0.00
GS = 7 0.20 0.32 0.43 0.04
GS >7 0.20 0.12 0.26 0.42

cancer of 0.8 (Haas et al. (2007)). If the biopsy result was positive, the probability

that the biopsy provides an incorrect grading at diagnosis was based on data reported

in Epstein et al. (2012). The exact standard biopsy data is provided in Table 4.2.

For targeted fusion and combined biopsy, we used the values of sensitivity and

specificity to high-grade cancer reported in Siddiqui et al. (2015): 0.77 and 0.68,

respectively, for targeted fusion biopsy, and 0.85 and 0.49, respectively, for combined

biopsy. Based on Medicare infection rates reported in Loeb et al. (2011), 1.1% of

biopsies performed led to hospitalization for post-biopsy infection (Gonzalez et al.

(2012)).
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As described in Chapter III, the model incorporated the clinical detection of symp-

tomatic prostate cancer in addition to detection of prostate cancer through routine

screening. For each patient, we randomly sampled a lead time from an elevated PSA

measurement of ≥ 3 ng/mL to clinical diagnosis of prostate cancer from a distribution

developed by Savage et al. (2010). After a patient had prostate cancer and a PSA

score ≥ 3 ng/mL for their lead time and had not yet been diagnosed with prostate

cancer, it was assumed the patient was clinically detected due to symptoms.

4.2.1 Treatment

In the updated model, patients with PSA > 20 ng/mL or a Gleason score ≥ 8

were assumed to receive a bone scan and a CT scan for staging (Merdan et al. (2014);

Risko et al. (2014)). As described in Chapter III, patients with a biopsy result

of Gleason score ≥ 7 received radical prostatectomy. Based on practice patterns

reported in Liu et al. (2015), we assumed that 48.5% of patients diagnosed with

Gleason score 6 prostate cancer received active surveillance, while the rest received

radical prostatectomy. If a patient was clinically detected to have prostate cancer

after age 80, we assumed they received watchful waiting. Men on active surveillance

received an annual PSA test and a biopsy every two years. For men with no indication

of progression, survival was consistent with survival for men with Gleason score 6

disease. If any biopsy indicated progression in Gleason score, the patient received

radical prostatectomy. Men treated via radical prostatectomy had survival consistent

with a treated population (Roehl et al. (2004)), with the potential for progression to

metastatic prostate cancer and prostate cancer mortality. Other-cause mortality was

based on estimates from CDC life tables (Arias (2010)).
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Table 4.3: Clinical interpretation of PI-RADS scores (Barentsz et al. (2012)).
PI-RADS score Clinical interpretation

1 Clinically significant disease is highly unlikely to be present
2 Clinically significant cancer is unlikely to be present
3 Clinically significant cancer is equivocal
4 Clinically significant cancer is likely to be present
5 Clinically significant cancer is highly likely to be present

4.2.2 PSA and MRI Sensitivity and Specificity

A published statistical model from the Prostate Cancer Prevention Trial was

used to sample age-dependent and cancer onset-dependent PSA scores (Gulati et al.

(2010)). The outcome of MRI was based on prostate imaging reporting and data

system (PI-RADS) scores, between 1 and 5, which are defined in Table 4.3 with an

increasing score indicating an increasing likelihood of the presence of clinically sig-

nificant cancer (Barentsz et al. (2012)). We considered two PI-RADS thresholds to

trigger biopsy: 3 and 4. A PI-RADS threshold of ≥ 3 had a sensitivity and speci-

ficity to clinically significant disease of 0.965 (95% CI: 0.868–0.994) and 0.597 (95%

CI: 0.512–0.677), respectively, and a PI-RADS threshold of ≥ 4 had sensitivity and

specificity values of 0.789 (95% CI: 0.658–0.882) and 0.789 (95% CI: 0.699–0.841),

respectively (Grey et al. (2015)). Table 4.4 reports the probability that MRI results

will be positive and negative for each threshold for a patient with no prostate cancer,

prostate cancer with a Gleason score < 7, and prostate cancer with a Gleason score

≥ 7. To calculate the values in Table 4.4, we extracted the data from Figure 2 of

Grey et al. (2015).

4.2.3 Costs and Quality of Life

For each combination of the five screening strategies and the two PI-RADS score

thresholds, we estimated the mean cost and the mean QALYs gained per 1000 men

relative to no screening. The values of the disutilities with their sources are shown
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Table 4.4: The probability of positive and negative MRI results for different PI-RADS
thresholds for no prostate cancer, Gleason score < 7 prostate cancer, and
Gleason score ≥ 7 prostate cancer (Grey et al. (2015)).

No prostate cancer Gleason score < 7 Gleason score ≥ 7
PI-RADS
threshold

P(+ MRI) P(− MRI) P(+ MRI) P(− MRI) P(+ MRI) P(− MRI)

≥ 3 0.387 0.613 0.525 0.475 0.967 0.033
≥ 4 0.204 0.796 0.311 0.689 0.796 0.204

in Table 4.5. Our assumptions were similar to those of previous studies (Aizer et al.

(2015); Roth et al. (2016); Heijnsdijk et al. (2012)). The post-recovery period for

radical prostatectomy was assumed to last 9 years (Heijnsdijk et al. (2012)). Li et al.

(2016) reported the disutility for hospitalization due to post-biopsy infection to be

0.28, which we assumed lasted for three weeks (Heijnsdijk et al. (2012)). Grann et al.

(2011) reported the disutility for MRI as 0.04, which we assumed lasted for one week

(Heijnsdijk et al. (2012)).

The reward update function for QALYs was:

qt(st, at) = 1−∆Scr(at)−∆MRI(at)−∆Biop(at)−∆Inf(at)−∆Dia(at)

−∆AS(at)−∆RP(at)−∆Rec(at)−∆Met(st)−∆Term(st)

(4.1)

where qt(st, at) is the reward a patient receives at age t, which is 1 minus the disutil-

ities associated with screening, MRI, biopsy, post-biopsy infection, diagnosis, active

surveillance, radical prostatectomy, recovery from radical prostatectomy, metastasis,

and terminal disease, as defined in Table 4.5. The arguments for the reward are the

health state, st, that defines the cancer status of the patient and the action, at, that

defines whether screening tests or biopsy was performed. Since we are also analyz-

ing costs, we used discount factor of 3%. Thus, the number of discounted QALYs a

patient receives at age t is:

qt(st, at)

(1.03)t−40
(4.2)
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The total expected discounted QALYs a patient receives in their lifetime under screen-

ing policy i is:

Qi = Ei
[

T∑
t=40

qt(st, at)

(1.03)t−40

]
(4.3)

where T denotes maximum lifespan and the expectation is with respect to the stochas-

tic process induced by the screening strategy i that defines the screening pathway and

the thresholds at which to perform biopsies. Since exact evaluation of Qi in equa-

tion 4.3 is not straight-forward due to history dependence of rewards up to a given

decision epoch t, we used forward simulations to obtain statistical estimates:

Q̂i =
1

N

N∑
n=1

T∑
t=40

q
(n)
t (st, at)

(1.03)t−40
(4.4)

Cost estimates with their sources are shown in Table 4.6. At each age, the cost

of prostate cancer screening and treatment, ct, is calculated. The discounted cost at

age t with a discount rate of 3% is:

ct
(1.03)t−40

(4.5)

The total expected discounted cost in a patient’s lifetime under screening policy i is:

Ci = Ei
[

T∑
t=40

ct
(1.03)t−40

]
(4.6)

Since exact evaluation of Ci in equation 4.6 is not straight-forward due to history

dependence of costs up to a given decision epoch t, we used forward simulations to

obtain statistical estimates:

Ĉi =
1

N

N∑
n=1

T∑
t=40

c
(n)
t

(1.03)t−40
(4.7)
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Table 4.5: Annual disutilities for health states considered in our cost-effectiveness
analysis.

Health state Annual disutility (range) Source
PSA screnning 0.00019 (0.0–0.00019) Heijnsdijk et al. (2012)
MRI 0.00077 (0.00038–0.0012) Grann et al. (2011)

Heijnsdijk et al. (2012)
Biopsy 0.00577 (0.00346–0.0075) Heijnsdijk et al. (2012)
Post-biopsy infection 0.0161 (0.00969–0.0291) Li et al. (2016)

Heijnsdijk et al. (2012)
Diagnosis 0.0167 (0.0125–0.0208) Heijnsdijk et al. (2012)
Radical prostatectomy 0.247 (0.0917–0.323) Heijnsdijk et al. (2012)
Post-radical prostatectomy recovery 0.05 (0.0–0.07) Heijnsdijk et al. (2012)
Active surveillance 0.03 (0.0–0.15) Heijnsdijk et al. (2012)
Palliative therapy 0.4 (0.14–0.76) Heijnsdijk et al. (2012)
Terminal illness 0.3 (0.3–0.38) Heijnsdijk et al. (2012)

Table 4.6: Costs considered in our cost-effectiveness analysis. Costs from the litera-
ture have been updated to 2016 US dollars based on inflation.

Intervention Unit costs in $ Source
PSA screening 33.86 Medicare data
MRI 964.21 Medicare data
Standard prostate biopsy a 2,953.67 Medicare data
Targeted fusion prostate biopsy b 3,018.35 Medicare data
Combined prostate biopsy b 3,018.35 Medicare data
Post-biopsy infection-related hospitalization 6,361.31 Adibi et al. (2012)

Gonzalez et al. (2012)
Staging 1,059.28 Medicare data
Active surveillance – standard biopsy (per year) c 1,642.58 Medicare data
Active surveillance – targeted biopsy (per year) c 1,674.92 Medicare data
Active surveillance – combined biopsy (per year) c 1,674.92 Medicare data
Radical prostatectomy 15,752.37 Aizer et al. (2015)
Distant-stage initial treatment 17,831.29 Roth et al. (2016)
Distant-stage management (per year) 2,500.65 Roth et al. (2016)
Other cause of death 5,975.15 Mariotto et al. (2011)
Prostate cancer death (age < 65) 103,884.24 Mariotto et al. (2011)
Prostate cancer death (age ≥ 65) 69,256.16 Mariotto et al. (2011)
a Includes professional, technical, and facility fees, pathology costs, and office visit.
b Includes professional, technical, and facility fees, pathology costs, office visit, and 3D recon-
struction.
c Assumed to include an annual office visit, annual PSA test, and a biopsy every two years.
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4.2.4 Cost Effectiveness

Future costs and QALYs were discounted to net present value using an annual

discount rate of 3% (Shepard (1996)). Net costs per QALY gained were calculated

for strategies 1 through 5 relative to no screening as the incremental costs of the

screening strategy divided by the incremental QALYs of the screening strategy.

We identified the efficient strategies by removing dominated strategies (i.e., strate-

gies that are more expensive and less effective than another strategy) as well as strate-

gies ruled out by extended dominance (i.e., strategies that have higher ICERs than

a more effective strategy) (Shepard (1996)). The ICERs of the efficient policies were

calculated as the incremental costs divided by the incremental health gains compared

to the next most effective strategy:

ICER =
Ca − Cb

Qa −Qb
, where Qa > Qb. (4.8)

If the ICER is under $100,000/QALY, the screening strategy is considered cost-

effective (Neumann et al. (2014)).

4.2.5 Sensitivity Analysis

To evaluate the robustness of our results, we performed one-way sensitivity anal-

ysis on the ICER for the optimal screening strategy. Ranges of the QALY disutilities

appear in Table 4.5. Cost estimates and other-cause mortality rates (Arias (2010))

were varied by ±20%. The sensitivity and specificity of PI-RADS threshold 3 were

varied using the 95% confidence intervals reported in Grey et al. (2015). The annual

metastasis rate for patients with undiagnosed prostate cancer was varied within the

95% confidence interval reported in Johansson et al. (2004). Finally, we varied the

annual prostate cancer incidence rate within the 95% confidence interval reported

in Haas et al. (2007). Threshold analysis was also performed on the sensitivity and
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specificity of MRI and combined biopsy under the optimal strategy. Base case values

of the sensitivity and specificity of MRI were 0.965 and 0.597, respectively, and base

case values of the sensitivity and specificity of combined biopsy were 0.850 and 0.490,

respectively. During threshold analysis, we simultaneously reduced the sensitivity

and specificity of MRI and combined biopsy until it was no longer cost-effective to

use MRI for screening.

4.3 Results

4.3.1 Base Case Analysis

Table 4.7 presents the deaths averted, life-years and QALYs gained, the costs, and

cost-effectiveness estimates for each screening strategy. The largest 95% confidence

interval for QALY and cost per patient reflecting Monte Carlo statistical error was less

than 1% of the corresponding sample-mean point estimate. The net discounted costs

per QALY gained compared to no screening for each screening strategy was below

$100,000/QALY. Strategy 5 with a PI-RADS threshold of 3 maximized expected

QALYs and number of prostate cancer death averted, and had the lowest net cost

per QALY gained at $33,953/QALY.

Figure 4.2 compares the QALYs gained per 1000 men under a PI-RADS threshold

of 3 versus a PI-RADS threshold of 4. For each strategy, a PI-RADS threshold of 3

outperforms 4 in QALYs gained. Figure 4.3 shows the QALYs gained per 1000 men

when using a targeted fusion biopsy versus a combined biopsy after a positive MRI.

In each case, performing a combined biopsy after positive MRI resulted in additional

QALY gains compared to performing a targeted fusion biopsy.

Figure 4.4 shows the incremental effectiveness in QALYs versus the incremental

cost for each strategy relative to no screening. Dominated strategies were simultane-

ously more expensive and less effective than at least one other strategy. Interestingly,
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Table 4.7: Predicted effects, costs, and cost-effectiveness for various screening strate-
gies per 1000 men. Screening strategies are defined in Table 4.1.

Screening strategy
PCa deaths
averted a

Life-years
gained a QALYs gained a Costs ×

$1000

Net costs per
QALYs gained

(3% discounted) a

No screening - - - 12,413 -
Strategy 1 4.7 58.7 47.8 (47.2–48.3) 12,964 39,381
Strategy 2, PI-RADS≥ 3 5.2 64.1 53.0 (52.4 –53.5) 13,050 40,019
Strategy 2, PI-RADS≥ 4 5.1 63.0 51.9 (51.3 –52.5) 13,064 41,415
Strategy 3, PI-RADS≥ 3 5.2 64.3 53.9 (53.3 –54.5) 13,034 37,218
Strategy 3, PI-RADS≥ 4 4.9 60.3 50.9 (50.3 –51.4) 13,038 38,059
Strategy 4, PI-RADS≥ 3 5.8 71.4 59.2 (58.6 –59.8) 13,021 36,138
Strategy 4, PI-RADS≥ 4 5.5 68.7 56.8 (56.2 –57.5) 13,041 37,725
Strategy 5, PI-RADS≥ 3 5.9 72.6 60.7 (60.1 –61.3) 13,002 33,953
Strategy 5, PI-RADS≥ 4 5.5 67.8 57.2 (56.6 –57.8) 13,009 34,426

Effects and costs are shown without discount. Cost-effectiveness is calculated at 3% discount rate for costs and
QALYs. In 2016 US dollars. PCa = prostate cancer; QALY = quality-adjusted life year.
a Compared with no screening.

Figure 4.2: QALYs gained per 1000 men relative to no screening using a PI-RADS
threshold of 3 versus 4 for Strategies 2–5. Strategy 1 resulted in 47.8
QALYs gained per 1000 men. Screening strategies are defined in Ta-
ble 4.1. QALY = quality-adjusted life years; PI-RADS = prostate imag-
ing reporting and data system.
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Figure 4.3: QALYs gained per 1000 men relative to no screening using a targeted fu-
sion biopsy versus combined biopsy after positive MRI. Strategy 1 resulted
in 47.8 QALYs gained per 1000 men. Columns are labeled with the type
of biopsy performed after negative biopsy (no biopsy or standard biopsy)
and the PI-RADS threshold used to indicate a positive MRI. QALY =
quality-adjusted life years; PI-RADS = prostate imaging reporting and
data system.
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Figure 4.4: Incremental health benefits and costs associated with alternative screen-
ing strategies relative to no screening. Costs and QALYs are discounted
at a rate of 3%. Each point is labeled with the screening strategy and
PI-RADS threshold. Screening strategies are defined in Table 4.1. Lines
connecting points representing two efficient screening strategies indicate
the incremental cost-effectiveness ratio (ICER). QALY = quality-adjusted
life years; PI-RADS = prostate imaging reporting and data system.

all four schemas that performed a standard biopsy after a negative MRI (strategies

2 and 4, with PI-RADS thresholds of 3 or 4) were dominated by strategies that per-

formed no biopsy after negative MRI (strategies 3 and 5). The efficient strategies were

strategy 1, strategy 5 with PI-RADS threshold of 4 with an ICER of $14,031/QALY,

and strategy 5 with PI-RADS threshold of 3 with an ICER of $23,483/QALY. Thus,

we found strategy 5 (i.e., MRI if PSA > 4 ng/mL, combined biopsy if MRI posi-

tive, no biopsy if MRI negative) with PI-RADS threshold of 3 to be optimal under a

willingness-to-pay threshold of $100,000/QALY.
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4.3.2 Sensitivity Analysis

Figure 4.5 shows the one-way sensitivity analysis on the net costs per QALY

gained relative to no screening for strategy 5 with a PI-RADS threshold of 3. We

performed one-way sensitivity analysis on all model parameters; Figure 4.5 shows the

parameters that varied the net costs per QALY gained by at least $5,000/QALY when

using the low and high values. The three model parameters that had the greatest

impact were: (1) the metastasis rate for undiagnosed prostate cancer; (2) the annual

QALY disutility for the 9-year post-radical prostatectomy recovery period; and (3)

the annual QALY disutility for living with metastasis. In the sensitivity analysis,

the only scenario that is not cost-effective under a willingness-to-pay threshold of

$100,000/QALY is a patient with a very low risk of developing metastasis, suggesting

that our results are robust for most patients and cost-effective under a willingness-

to-pay threshold of $100,000/QALY. Threshold analysis shows that strategy 5 with

a PI-RADS threshold of 3 remains cost-effective under a willingness-to-pay threshold

of $100,000/QALY when sensitivity and specificity of MRI and combined biopsy

to high-grade cancer are all simultaneously reduced by 0.19. In particular, it is

still cost-effective when sensitivity and specificity of MRI are ≥ 0.775 and ≥ 0.407,

respectively, and sensitivity and specificity of combined biopsy are ≥ 0.660 and ≥

0.300, respectively.

4.4 Conclusions

Based on our study, MRI as an intermediate test in the screening of men for

prostate cancer is cost-effective assuming a willingness-to-pay threshold of $100,000/

QALY threshold. The optimal strategy was the use of MRI if PSA > 4 ng/mL,

followed by combined biopsy if MRI was positive and no biopsy if MRI was negative,

using a PI-RADS threshold of 3 to indicate a positive MRI. These results were robust
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Figure 4.5: Tornado diagram of one-way sensitivity analysis on the net costs per
QALY gained of strategy 5 with a PI-RADS threshold of 3 relative to
no screening. Costs and QALYs are discounted at a rate of 3%. RP =
radical prostatectomy; PCa = prostate cancer.

over a range of sensitivity analyses and were maintained even if the sensitivity and

specificity of MRI and combined biopsy were reduced by 19 percentage points.

Although MRI has recently been proposed as an effective way to achieve early

detection of prostate cancer, evidence in support of the use of MRI for early detection

of prostate cancer in biopsy-näıve men is sparse. Ahmed et al. (2017) showed that MRI

could be effective from a clinical perspective by reducing primary biopsy and clinically

insignificant cancer diagnoses, but did not consider the cost-effectiveness. Willis et al.

(2014) performed clinical decision analysis and de Rooij et al. (2014) performed cost-

effectiveness analysis; however, both studies assumed a fixed sensitivity and specificity

of MRI and assumed that positive MRI is automatically followed by a targeted fusion

biopsy, while negative MRI automatically results in no biopsy. Thus, they evaluated

one clinical pathway compared to the standard of care. Our study evaluated strategies

that performed targeted fusion biopsy or combined biopsy on positive MRI, as well

as the option to perform a standard biopsy or no biopsy on negative MRI. Thus, our

study evaluated eight MRI-based clinical pathways (two PI-RADS thresholds for each
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of the four MRI-based strategies) compared to screening with PSA alone, allowing us

to estimate the effects of varying PI-RADS thresholds and biopsy techniques on the

cost-effectiveness of using MRI for prostate cancer screening.

Additionally, our study focuses on long-term costs and health outcomes over the

patient’s entire lifetime, rather than assessing short-term outcomes. Including long-

term costs and health impacts enabled us to assess the potentially negative impact of

detecting low-risk cancers related to harm from biopsy(-ies) and overtreatment. Prior

studies did not account for the costs and harms associated with biopsy complications,

resulting in an overestimation of the benefit from screening and an underestimation

of the costs.

Heijnsdijk et al. (2015) evaluated the cost-effectiveness of several PSA screening

policies in the absence of MRI, and our models produced similar expected outcomes

for PSA screening. The net cost per QALY gained we present for PSA screening is

lower than the results reported in Heijnsdijk et al. (2015) because we include more

costs in our model, including the significant cost of a prostate cancer-related death.

Using MRI for prostate cancer screening resulted in health benefits for the patient

compared to both no screening and screening using PSA alone. For example, the

screening strategy where men with a PI-RADS score ≥ 3 were recommended for

combined biopsy (i.e., strategy 5) resulted in 5.9 prostate cancer deaths averted, 60.7

QALYs gained, and 72.6 life-years gained per 1000 men compared to no screening.

For every screening strategy, a PI-RADS threshold of 3 outperformed a threshold of

4 in terms of QALYs, while also resulting in lower costs. Our results also suggest that

performing a combined biopsy after a positive MRI outperforms performing a targeted

fusion biopsy in terms of QALYs. However, there does not appear to be a benefit to

performing standard biopsy on negative MRI, because it results in additional costs

and disutility to the patient and overall does not provide sufficient health benefits.

This conclusion has been supported in the literature. For example, Hansen et al.
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(2016) concluded that biopsies may not be necessary for men with elevated PSA and

nonsuspicious MRI because the negative predictive value for excluding Gleason score

≥ 7 disease on MRI was very high. Our study adds additional evidence in support of

this conjecture.

Given the wide variability in the quality of radiology reporting and interpretation

of MRI results, we performed threshold analysis on the sensitivity and specificity of

MRI and combined biopsy. These analyses found this approach to be a cost-effective

method of early detection even if the sensitivity and specificity were substantially

lower than estimates reported in the literature, suggesting that our results may be

relevant in a community setting where sensitivity and specificity may be lower than

specialized medical centers where most previous MRI studies have been conducted.

Sensitivity analysis suggests our results are robust with respect to reasonable variation

of the model parameters; however, the results are sensitive to the annual metastasis

rate for an undiagnosed prostate cancer patient. Under the metastasis rate assump-

tion from Chapter III, MRI is not cost-effective when QALYs are discounted.

One potential limitation of our study is that there is the potential for bias in the

data we used to estimate MRI results because the population used includes patients

with previous negative biopsies in addition to biopsy-näıve patients; however, by us-

ing the estimates based on the larger patient population we were able to obtain better

estimates of sensitivity and specificity. Our sensitivity analysis further confirms our

conclusions are not sensitive to this assumption. Another possible limitation is the

inconsistent definition of clinically significant prostate cancer in the literature. For

example, Siddiqui et al. (2015) defined clinically significant disease as high-volume

Gleason 3+4, or Gleason ≥ 4 + 3, while Grey et al. (2015) defined clinically signifi-

cant disease to be cancer core involvement ≥ 6 mm or the presence of any Gleason

pattern 4. In our model, we considered clinically significant disease to be any Gleason

score ≥ 7. Additionally, the only curative treatment included in our model was rad-
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ical prostatectomy, because it is the most common curative treatment, and patients

undergoing radiation therapy have similar health outcomes (Hamdy et al. (2016)).

Finally, our model uses many different sources of data; however, given the long-term

evaluation period needed for prostate cancer screening, randomized trials are unlikely

to be able to assess long-term QALYs and costs. These limitations notwithstanding,

we believe this study provides important evidence in support of the use of MRI for

early detection of prostate cancer in biopsy-näıve men, both from a health benefit

and cost perspective.

Our results show that incorporating MRI into prostate cancer screening in biopsy-

näıve men is cost-effective under a willingness-to-pay threshold of $100,000/QALY.

The strategies that performed a standard biopsy on negative MRI were more expen-

sive and less effective than strategies that perform no biopsy on negative MRI. The

screening strategy where men with PI-RADS score ≥ 3 were recommended for com-

bined biopsy, while men with PI-RADS score< 3 were recommended for no biopsy was

optimal and cost-effective with an ICER of $23,483/QALY. Therefore MRI appears to

be a viable approach for early detection of prostate cancer from a cost-effectiveness

perspective. More analysis would need to be done to explore whether the use of

molecular biomarkers could also be cost-effective, since biomarkers are less expensive

and have lower sensitivity and specificity to high-grade prostate cancer compared to

MRI.
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CHAPTER V

Optimization of Biomarker-Based Screening

Policies

5.1 Introduction

The policies evaluated in Chapter III are myopic in the sense that they make

biopsy decisions based solely on a patient’s most recent test results, without con-

sidering the patient’s full medical history. However, benign conditions can cause a

sudden spike in a patient’s biomarker scores, which motivates the potential to use

Bayesian updating to estimate the belief state for patients so decisions can be made

based on estimates of patient risk of cancer, rather than biomarker scores. Thus, we

have extended the model of Chapter III to create a new POMDP model to investigate

optimal prostate cancer screening decisions based on a patient’s belief state, which

is calculated using Bayesian updating and comprises a patient’s complete history of

biomarker test results in a way that is similar to the model first proposed by Small-

wood and Sondik (1973). This POMDP can be used to determine how, if at all, new

biomarker tests should be used for prostate cancer screening. We present results for

the case of high-grade MiPS. We chose high grade MiPS because it was found to be

a good biomarker in Chapter III and because we had access to the data necessary

to estimate the probability distribution of MiPS conditional on the patient cancer
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status. However, the approach we lay out could be applied to other biomarkers and

in other disease contexts.

5.2 Model

We have developed a POMDP model that maximizes total expected QALYs by op-

timizing the decision to conduct a biopsy based on the patient’s belief state at annual

decision epochs. In this chapter, to be consistent with the literature on POMDPs we

will refer to the patient’s underlying health state as the core state of the patient. The

set of core states and the one-step transition probability matrix are the same as defined

in Chapter III: S = {NC, OCG1, OCG2, OCG3, EPLN, PRFT, NRFT, M, D}.

At each decision epoch from ages t = 1, . . . , T , we assume a high-grade MiPS

test is performed. The set of actions is A = {Wait, Biopsy}, i.e. wait until the

next decision epoch or perform a biopsy. The observations that result from the high-

grade MiPS test inform the action. The observation space for the high-grade MiPS

test are continuous values between 0 and 1; however, to simplify the problem we

discretized these observations into clinically relevant bins. The set of observations is

Θ, which includes the MiPS discretized observations in addition to Post-treatment

(PT), Metastasis (M), Death (D). The observations for the action “Biopsy” are NC,

OCG1, OCG2, and OCG3. Since only a small amount of tissue is sampled during a

biopsy, sampling error can result in a false negative or incorrect grading at diagnosis.

Based on the discretization of the MiPS test results, we have developed information

matrices by age, Qt, t = 55, . . . , 69. The information matrix has rows associated with

the core health states and columns associated with the set of possible observations.

We denote the components of each information matrix by qt(θ|st), which defines the

probability of observing θ ∈ Θ at age t given the core state of the patient is st ∈ S.

In the following description of the model we use notation consistent with the

notation used in Smallwood and Sondik (1973). Let πt = [πt1, π
t
2, . . . , π

t
9] be the belief
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vector, where πti is the probability that the patient is in state i at decision epoch t and∑
i π

t
i = 1. The belief vector is updated via Bayesian updating after the observations

at each decision epoch, using the following equation:

πt+1
j =

∑
i π

t
iP

Tr
t (i, j)q(θ|j)∑

i,j π
t
iP

Tr
t (i, j)q(θ|j)

,

where q(θ|j) denotes the probability of observing θ, given the core state of the patient

is j. The numerator calculates the probability of transitioning to state j and observing

output θ, and the denominator is the probability of observing output θ. This is an

application of Bayes law, and the equation is developed in detail in Appendix A of

Smallwood and Sondik (1973).

Our model seeks to maximize expected QALYs, using the following set of opti-

mality equations:

Vt(π
t) = max

at∈A

{
r(πt, a, πt+1) +

∑
i,j,θ

πtiP
Tr
t (i, j)qt(θ|j)Vt+1(j)

}
, t = 1, ..., T − 1

VT (πT ) = R(πT )

where r(πt, a, πt+1) is the immediate reward in QALYs and Vt(j) is the maximum

expected future QALYs for a patient in state j at age t.

5.3 Methods

The terminal reward vector, αT , consists of the expected QALYs for a patient at

age 70 in each core state. The infinite state space of a POMDP makes it difficult to

solve. Thus, we have divided the space into a fixed-finite grid, which allows us to

approximate the infinite belief space, B = {πt|
∑

i π
t
i = 1}, with a finite grid of points.

By discretizing the belief space, we can associate every sampled belief state with one

of the grid points (e.g. based on the closest grid point). Thus, the continuously
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sampled states are mapped to a finite set of states.

At any given decision epoch, we know that the patient will be in one of three

subsets of the state space: S1 = {NC, OCG1, OCG2, OCG3, EPLN}, S2 = {PRFT,

NRFT}, or S3 = {M, D}. The set S1 includes the unobservable pre-diagnosis states,

S2 includes the unobservable post-treatment states, and S3 includes the observable

states. In other words, if a patient has not yet been diagnosed with prostate cancer,

we know that they are in one of the five states in S1; if a patient has been treated

for prostate cancer, we know they are in one of the post-treatment states in S2; and

we know the exact state of the patient when they are in the completely observable

S3. Therefore, any grid point in the discretized state space we generate will have

non-zero entries in only one of the three subsets. The grid points in S3 will consist of

(0, 0, 0, 0, 0, 0, 0, 1, 0) and (0, 0, 0, 0, 0, 0, 0, 0, 1), i.e., the states in S3 are

perfectly observable.

We utilized a data-driven sampling approach to develop the grid at each age. We

denote a sample path to be the stochastic progression of a patient’s health states,

biomarker test results, biopsy results, and belief states. A patient’s sample path

depends on the screening strategy being used. For this reason, we generated sample

paths using varying policies. The sample paths provided information about not only

where patients’ beliefs are located in the belief space at each age, but also information

about where a patient’s belief’s are not located in the belief space. Due to the

computational burden of having a large number of grid points we then used these

samples to create a smaller grid of points at each age using k-means clustering. The

goal of k-means clustering is to divide L points (i.e., the sample belief states) in M

dimensions (i.e., the partially observable health states) into k clusters so that within-

cluster sum of squares is minimized (Hartigan and Wong (1979)). The centroid of

each cluster then defines a unique grid point. Algorithm 1 gives a description of the

k-means clustering algorithm and an example is given in Figure 5.1.
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Algorithm 1 k-means clustering algorithm for grid development.

Inputs: x sample paths through the belief space; number of grid points at each
age, k

1: for t = 55, . . . 69 do
2: Randomly divide the x sample belief states into k clusters.
3: Calculate the centroid of each cluster and let that be the mean.
4: while convergence is not reached do
5: Cluster each simulated sample belief state with the nearest mean.
6: Calculate the centroid of each cluster and let that be the new mean.
7: end while
8: The k means represent the k grid points for age t.
9: end for

Smallwood and Sondik (1973) presented the first exact method for POMDPs,

known as the “One-Pass Algorithm”. Smallwood and Sondik (1973) shows that the

value function of a POMDP is piecewise linear and convex, and can be written as

Vt(π
t) = max

k

{ N∑
i=1

αki (t)π
t
i

}
,

for some set of vectors αk(t) = [αk1(t), αk2(t), . . . , αkN(t)], k = 1, 2 . . . , which are re-

ferred to as α-vectors. Each α-vector has an action associated with it; therefore, we

can evaluate each α-vector at a fixed belief state to determine the α-vector that max-

imizes the value function and the optimal action associated with it. However, there

may be many α-vectors in the set that are not needed to define the value function

(i.e. they are not a maximum α-vector over the entire belief space). The algorithm

described in Smallwood and Sondik (1973) defines regions for an α-vector and searches

for a belief where that α-vector is not dominant. The “One-Pass Algorithm” solves

a series of linear programs to try to find a minimal α-vector set. However, we must

solve a linear program for each α-vector in the set, which is computationally expen-

sive since the set of α-vectors grows exponentially in the size of the set of possible

observations.

Cassandra et al. (1994) proposed the “Witness Algorithm”, which also defines
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Figure 5.1: An example of k-means for a simple 2-dimensional case, where the unfilled
points represent the L = 13 sample points and the filled points represent
the k = 3 grid points.

regions for a vector and looks for a point where that vector is not dominant. As

a result, the “Witness Algorithm” only needs to solve one linear program for each

α-vector in the minimal α-vector set, which is an improvement on the “One-Pass

Algorithm”.

In our approach, we draw on the basic idea of the witness algorithm to accelerate

the one-pass algorithm. Terminal rewards define the α-vector in decision epoch T +1.

At each age moving backwards starting from decision epoch T , we use Monahan’s

algorithm (Monahan (1982)) to calculate the set of α-vectors in decision epoch t using

the α-vectors from decision epoch t+ 1. We then eliminate any α-vectors that do not

define the value function at one of the grid points that approximates the belief space,

i.e., each grid point acts as a witness point for one α-vector and thus the number of

α-vectors is limited to the number of grid points. We use our simulation model and

the k-means clustering model to develop a set of grid points that represent the areas
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of the belief space that our patient population is most likely to be, and use those grid

points to calculate a subset of the relevant α-vectors by finding the dominant α-vector

associated with each grid point. After we complete this step, we have developed a

policy, where we determine the (approximated) optimal action at any point in the

belief space by selecting the action associated with the α-vector that maximizes the

value function, αTπ.

5.4 Results

To develop age-dependent grids, we generated 600 randomly sampled patient sam-

ple paths through the belief space for 110 different MiPS policies. The 110 policies

included every combination of the previously recommended schedules described in

Table 5.1 with the following thresholds: {0.05, 0.10, 0.15, 0.20, 0.25, 0.30, 0.35, 0.40,

0.45, 0.50}. We then used these samples to create a grid of points at each age using

the k-means clustering heuristic in Matlab, where k = 200, L = 66, 000, and M = 5.

As shown in Figure 5.2, we found that at older ages there are more grid points with a

higher belief of having prostate cancer, which agrees with the fact that the prevalence

of prostate cancer increases at older ages.

Patients were screened at each decision epoch from ages 55 to 69. In our exper-

iments, we discretized the continuous observations space of MiPS scores into three

observations: Θ = {[0, .125), [.125, .375), > .375}, which equally divided patients into

low, median, and high risk groups. We evaluated two types of POMDP screening

policies. The first was based on the policy developed using the data-driven sampling

method above to prune α-vectors and create an approximation of the optimal pol-

icy subject to error induced by using a finite set of grid points. The second uses a

risk-based threshold to trigger prostate biopsy based on a patient’s current belief of

having Gleason score > 7 or extraprostatic or lymph node-positive disease (i.e., the

belief the patient is in states OCG3 or EPLN). Under this risk-based POMDP policy
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Table 5.1: Screening schedules for the prostate cancer screening policies used to gen-
erate sample paths. The screening schedule defines the set of decision
epochs during which screening occurs.

Schedule Label Range of Ages (yr) Screening Interval (yr) Source
S1 40-75 5 Ross et al. (2000)
S2 50-75 2 Ross et al. (2000)
S3 50-75 1 Ross et al. (2000),

Andriole et al. (2009)
S4 40,45 - Ross et al. (2000)

50-75 2
S5 40,45 - Ross et al. (2000)

50-75 1
S6 55-69 1 Heijnsdijk et al. (2012)
S7 55-74 1 Heijnsdijk et al. (2012)
S8 55-69 4 Heijnsdijk et al. (2012)
S9 55 - Heijnsdijk et al. (2012)
S10 60 - Heijnsdijk et al. (2012)
S11 65 - Heijnsdijk et al. (2012)

Figure 5.2: The grids generated for ages 55 and 69, where the belief of cancer is
calculated by adding the belief of each of the four cancer states.

78



with a risk threshold of x, when πOCG3+πEPLN > x, the patient receives a biopsy. We

found that a risk threshold of 0.35 maximized expected QALYs for the patient. We

evaluated the resulting POMDP policies using our simulation model. We compared

the results to the following six myopic screening policies based on commonly used

thresholds:

• No screening

• PSA with a threshold of 4 ng/mL

• PSA with a threshold of 2 ng/mL to trigger a PCA3 test with a threshold of

25 (patients with a PSA > 10 ng/mL will automatically receive a biopsy)

• PSA with a threshold of 2 ng/mL to trigger a T2:ERG test with a threshold of

10 (patients with a PSA > 10 ng/mL will automatically receive a biopsy)

• High-grade MiPS test with a threshold of 15

• MiPS test with a threshold of 25

A PSA threshold of 4 is common, the two-stage policies were evaluated in Chap-

ter III, and the MiPS and high-grade MiPS thresholds performed well in previous

experiments.

We estimated the terminal reward vector using our simulation model of Chapter III

with 10,000,000 sample paths starting at age 70 from each core state:

αT =

( NC OCG1 OCG2 OCG3 EPLN NRFT PRFT M D

14.062 13.887 13.609 13.532 9.826 14.104 13.592 2.823 0

)
.

Each element of αT is an estimate of expected remaining lifespan for the corresponding

state.
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Figure 5.3 shows the results in terms of QALYs with confidence intervals for

10,000,000 samples. We found that by using the policy generated by our approximated

POMDP solution which accounts for a patient’s entire history of their biomarker

test results, we can gain 181.7 QALYs, which significantly outperformed all myopic

policies. Thus, we found that it is possible to develop screening policies using our

approximated solution technique on a discretized POMDP, and that it results in

health benefits for the patient. The POMDP policy with a risk threshold of 0.35

gained 193.4 QALYs per 1000 men. The difference between these POMDP policies

was not statistically significant. The POMDP approximated solution depends on

the grid selection, while the risk-based POMDP policy does not, suggesting there is

potential of increased gains through better grid selection.

5.5 Conclusions

In this chapter, we presented a new POMDP model to estimate optimal biopsy

screening policies based on a patient’s belief state rather than their latest biomarker

test results. The underlying health states of the patient are not directly observable;

however, their high-grade MiPS results provide some information about their core

health state. Patients were screened annually with the high-grade MiPS test from

ages 55 to 69. Due to the large number of observations and unobservable states, we

presented a data-driven approximation method to solve this POMDP. We found that

it is possible to develop screening policies using our approximated solution technique

on a discretized POMDP, and that it results in significant health benefits for the

patient. We also found that an easier to implement risk threshold based policy has

similar performance to the optimal solution to the discretized POMDP.

Our study has limitations based on assumptions used in the modeling process.

First, active surveillance and radical prostatectomy were assumed to be the only treat-

ment options, because radical prostatectomy is the most common curative treatment,
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Figure 5.3: Expected increase in QALYs per 1000 men compared to no screening
for a range of myopic policies compared to two policies based on our
POMDP with three HG MiPS observations. The first POMDP policy
was generated by our approximated POMDP solution and the second
POMDP policy performs a biopsy when a patient’s belief of having OCG3
or EPLN is ≥ 0.36.
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and patients undergoing radiation therapy have similar health outcomes (Hamdy et al.

(2016)). Lastly, we assumed that each patient receives at most one screening biopsy

in his life. About 7 − 12% of men undergoing biopsy have had a previous negative

biopsy (Nguyen et al. (2010); Thompson et al. (2006)); however, the majority of pa-

tients receive a single biopsy, and cancers detected on second biopsy are typically

less clinically significant. Since our intent is to measure the public health impact of

biomarker screening, we do not believe this assumption significantly influenced our

results.

5.6 Future Work

Both POMDP policies depended on the discretization of the continuous obser-

vation space. In our experiments, we discretized the continuous observation space

into three observations. In the future, we will explore whether expanding the num-

ber of observations in the discrete approximation has an impact on long-term health

outcomes. Additionally, our experiments had approximately 200 grid points for each

age. The POMDP approximated solution depends on the grid selection, while the

risk-based POMDP policy does not. The risk-based POMDP policy outperforming

the approximated POMDP solution which suggests there could be potential addi-

tional health gains that could be achieved through better grid selection. We propose

two different ways to improve the grid. First, we could simply increase the number

of grid points at each age. Second, we could develop a closed-loop algorithm, where

the policy developed by our POMDP approximation technique informs our grid point

selection. A diagram showing how this closed-loop would work is shown in Figure 5.4.

By improving our discretization of the continuous observation space and belief space,

we can observe what impact these parameters have on the policy and the resulting

long-term health outcomes for the patient.
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Figure 5.4: Closed-loop diagram showing how we will use the policy generated by our
POMDP approximation technique to develop a new more-relevant grid.
Arrows pointing to a box indicate inputs that are needed in the process.
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CHAPTER VI

A Hidden Markov Model for Optimizing Active

Surveillance Strategies for Low Risk Prostate

Cancer

6.1 Introduction

Although prostate cancers often demonstrate indolent clinical behavior (Miller

et al. (2006)), many men with low-risk tumors still receive surgery or radiation ther-

apy, both of which are associated with potentially serious complications including

incontinence, impotence, and other side effects (Anandadas et al. (2011)). These

complications are particularly distressing given that evidence shows that these men

may not survive longer with surgery or radiation than they do with expectant man-

agement approaches. Active Surveillance is a form of expectant management that

involves monitoring patients by conducting regular clinical exams, biomarker tests,

radiologic imaging, and biopsies. Due to concerns that many men who are diagnosed

with prostate cancer are overtreated, active surveillance has been promoted as a way

for low-risk men to delay and possibly avoid surgery or radiation treatment. However,

many approaches to implementing active surveillance have been recommended and

the best approach is unclear (DallEra et al. (2012)).

Due to a lack of evidence in support of a single optimal active surveillance strat-
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egy, it is left to individual urologists and patients to decide how frequently to conduct

follow-up biopsies. No previous study has made a link between different active surveil-

lance follow-up strategies and the delay in the detection of progression to high-grade

cancer. Risk of progression is one of the most important considerations when weigh-

ing long-term risk for patients on active surveillance. The ideal strategy to minimize

risk of delaying the detection of high-grade cancer progression is to biopsy patients

frequently (e.g. annually as suggested by Tosoian et al. (2011)). However, this risk

competes with the harms of frequent biopsies resulting in pain and anxiety for pa-

tients, and the potential for complications such as infection. Infection rates for biopsy

are approximately 1-2% (Gonzalez et al. (2012)); however, recent studies suggest that

infection rates for patients undergoing active surveillance increases as a function of

the number of biopsies they have received (Ehdaie et al. (2014)). Studies have also

observed discontinuation of active surveillance by patients without signs of progres-

sion (Loeb et al. (2015)) and some have suggested that reducing surveillance biopsies

may encourage compliance with active surveillance (Al Otaibi et al. (2008))

We used a hidden Markov model to evaluate longitudinal data from the Johns

Hopkins Active Surveillance study to estimate initial biopsy sampling error, biopsy

accuracy, and the rate of progression from low to intermediate or high-grade prostate

cancer over time. Note that we use the term “progression” broadly to refer to biologi-

cal progression of cancer grade and the occurrence of de novo cancer. We implemented

a version of the Baum-Welch algorithm tailored to consider uncertainty in the initial

population’s health status due to biopsy sampling error. Next, we used sensitivity

analysis based on simulated data to establish the algorithm converges to accurate pa-

rameter estimates for hidden Markov models. Finally, we used the model to evaluate

all possible follow-up surveillance strategies as well as previously proposed strategies

for active surveillance found in the literature on the basis of mean delay time to

grade progression and the number of planned biopsies over the first 10 years following
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initiation of active surveillance.

6.2 Model

In this section, we summarize the data from the Johns Hopkins Active Surveil-

lance study; the hidden Markov model we used to estimate initial risk of the active

surveillance cohort, biopsy sampling error, and prostate cancer grade progression; and

how we used these estimates to develop a simulation model to evaluate alternative

active surveillance strategies.

6.2.1 Data

The Johns Hopkins Active Surveillance study collected longitudinal data for men

initially believed to have “favorable risk” prostate cancer. The data includes 1499

men with data collected over 20 years. The enrollment criteria were: clinical stage ≤

T1c, PSA density ≤ 0.15, Gleason score ≤ 6, total positive cores ≤ 2, and single core

positivity ≤ 50%. Due to patient preference, older men with low-risk disease (i.e.,

clinical stage ≤ T2a, PSA < 10 ng/mL, and Gleason score ≤ 6) were also enrolled

in the study. The data collected includes PSA, age, and biopsy results (e.g., Gleason

score, number of positive cores, maximum percentage core involvement). The dataset

used was anonymized with respect to patient identifiers and approval of the University

of Michigan IRB was obtained prior to initiation of the study.

The original dataset included longitudinal data for 1521 patients. We removed

22 patients from the dataset due to missing diagnostic biopsy information. Table 6.1

describes the patient characteristics at diagnosis of the 1499 patients included in the

study. Among men who discontinue active surveillance and receive treatment, 50.9%

received surgery and 46.2% received radiation therapy. The study protocol called

for patients to be biopsied annually. The mean and variance of the time between

biopsies was 14.2 and 60.1 months, respectively. The median number of biopsies per
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patient, including diagnosis biopsy, was 3 and ranged from 1 to 14. Table 6.2 shows

the biopsy characteristics, where we have defined progression to be transition from a

Gleason score ≤ 6 to Gleason score ≥ 7 on biopsy. Due to this definition, we excluded

the six patients diagnosed with Gleason 7 disease from the analysis in Table 6.2.
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Table 6.1: Patient characteristics at time of diagnosis. AS = active surveillance.
Characteristic AS cohort (N = 1499), no. (%)
Age at diagnosis, yr
≤ 49 18 (1.2)
50–59 208 (13.9)
60–69 911 (60.8)
70–79 352 (23.5)
≥ 80 10 (0.7)

Race
White 1314 (87.7)
Black 115 (7.7)
Other 60 (4.0)
NA 10 (0.7)

PSA at diagnosis, ng/mL
0–2.5 162 (10.8)
2.5–4 249 (16.6)
4–6 558 (37.2)
6–10 322 (21.5)
> 10 85 (5.7)
NA 123(8.2)

PSA density at diagnosis
0–0.05 166 (11.1)
0.05–0.10 538 (35.9)
0.10–0.15 428 (28.6)
0.15–0.20 134 (8.9)
> 0.20 114 (7.6)
NA 119 (7.9)

Gleason score at diagnosis
≤ 6 1488 (99.3)
3 + 4 5 (0.3)
4 + 3 1 (0.1)
NA 5 (0.3)
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6.2.2 Hidden Markov Model for Prostate Cancer Grade Progression

The specific type of model we employ is a hidden Markov model in which patient’s

progress through health states as defined by their prognostic grade groups based on

Gleason score, the most important clinical factor for assessing risk of prostate cancer

mortality. The term hidden refers to the fact that the exact health state of the

patient is unknown in the absence of prostatectomy. The probability of progression

to a higher prognostic grade group is determined by transition probabilities. We

based the model on one-year time periods between state transitions to be consistent

with the highest proposed frequency of biopsies and because that was the planned

frequency of biopsies in the Johns Hopkins study.

In the remainder of this section, we use the notation from Rabiner (1989) to

describe the hidden Markov model. We index annual time periods as t = 0, 1, . . . , T .

The model has states at time period t denoted by st ∈ S ≡ {S0, S1}, where S0

denotes patients with low-grade cancer (defined as Gleason score ≤ 6), and S1 denotes

patients whose cancer has progressed to a higher grade cancer (defined as Gleason

score ≥ 7). Since patients in the high-grade state cannot regress to the low-grade

state the transition probability matrix is that of an absorbing Markov chain:

A =

 P (S0|S0) P (S1|S0)

0 1


These states are not directly observable. At t = 0, patients begin active surveil-

lance under the belief that they are in state S0; however, due to biopsy sampling

error they could be in state S1. We let π = (π0, π1) denote the initial distribution of

patients in states S0 and S1 at their first surveillance biopsy. Biopsies are performed

at each time period (annually). The model has observations o ∈ O ≡ {O0, O1} where

O0 denotes a biopsy observation of Gleason score ≤ 6 and O1 denotes a biopsy obser-

vation of Gleason score ≥ 7 . Biopsies are imperfect due to sampling error and the
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Figure 6.1: Illustration of the state transition and observation process for the hidden
Markov model.

conditional probability of biopsy observations are denoted by the following matrix:

B =

 P (O0|S0) P (O1|S0)

P (O0|S1) P (O1|S1)


If a biopsy result is O1 (Gleason score ≥ 7), the patient exits the system and re-

ceives treatment. Collectively the model parameters for the hidden Markov model

are denoted by λ = (π,A,B). Figure 6.1 illustrates the stochastic active surveillance

process.

We used the Baum-Welch algorithm to compute maximum likelihood estimates for

the hidden Markov model parameters (Rabiner (1989)). The Baum-Welch algorithm

is a special case of the general expectation-maximization (EM) algorithm (Dempster

et al. (1977)), an iterative algorithm that combines forward and backward passes

on a longitudinal observation sequence to find the choice of λ that maximizes the

likelihood of observing the collection of sequences. In our application, we have biopsy

results for a collection of k = 1, . . . , N patients. Each patient, k, results in an

observation sequence, O(k) = [O
(k)
1 , O

(k)
2 . . . O

(k)
Tk

], which represents a patient’s biopsy

results over Tk time periods. We denote the set of N observation sequences as O =
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[O(1), O(2), . . . , O(N)]. Thus, our goal is to find the λ that maximizes:

P (O|λ) =
N∏
k=1

P (O(k)|λ) =
N∏
k=1

Pk (6.1)

where we assume that observation sequences between patients are independent.

To describe the Baum-Welch algorithm, we define some additional parameters.

We denote elements of matrices A and B as aij and bij, respectively. First, we define

the forward variable αkt (i) as:

αkt (i) = P (O
(k)
1 , O

(k)
2 , . . . , O

(k)
t , st = Si|λ)

which is the probability of observing the partial observation sequence, O
(k)
1 , O

(k)
2 , . . . O

(k)
t ,

(until time t) and being in state Si at time t, given the model λ. We use forward

induction to solve for αkt (i):

αk1(i) = πibi(O
(k)
1 ), i = 1, 2

αkt+1(j) =

[
N∑
i=1

αkt (i)aij

]
bj
(
O

(k)
t+1

)
, 2 ≤ t ≤ T − 1, j = 1, 2

Next, we define the backward variable βkt (i) as

βkt (i) = P (O
(k)
t+1, O

(k)
t+2, . . . , O

(k)
Tk
|λ, st = Si)

which is the probability of the partial observation sequence from t+1 to Tk, given the

model λ and given the patient is in state Si at time t. We use backward induction to

solve for βkt (i):

βkT (i) = 1, i = 1, 2
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βkt (i) =
N∑
j=1

aijbj
(
O

(k)
t+1

)
βkt+1(j), t = T − 1, T − 2, . . . , 1, i = 1, 2

To define the iterative procedure, Rabiner (1989) defines ξkt (i, j) to be the prob-

ability of patient k being in state Si at time t and state Sj at time t + 1 given the

model λ and observation sequences of patient k, O(k):

ξkt (i, j) = P (st = Si, st+1 = Sj|O(k), λ) =
αkt (i)aijbj(O

(k)
t+1)βt+1(j)

Pk
.

γkt (i) is the probability of patient k being in state Si at time t, given the model and

the observation sequences of patient k, O(k). Thus, we can relate γkt (i) and ξkt (i, j):

γkt (i) =
N∑
j=1

ξkt (i, j)

Based on these definitions we can write the following update formulas, which

iteratively improve P (O|λ) using forward-backward equations:

aij =

∑N
k=1

1
Pk

∑Tk−1
t=1 ξkt (i, j)∑N

k=1
1
Pk

∑Tk−1
t=1 γkt (i)

(6.2)

bj(l) =

∑N
k=1

1
Pk

∑Tk−1
t=1 s.t. O

(k)
t =l

γkt (j)∑N
k=1

1
Pk

∑Tk−1
t=1 γkt (j)

(6.3)

πi =
N∑
k=1

γk1 (i)

Pk
(6.4)

The update equation for aij calculates the expected number of transitions from state

Si to state Sj divided by the expected number of transitions from state Si. The

update equation for bj(l) calculates the expected number of times a patient is in state

Sj and observes l divided by the expected number of times a patient is in state Sj.

Finally, the update equation for πi is the expected number of times a patient is in
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state Si at t = 1. The Baum-Welch algorithm uses the above formulas to iteratively

update the parameters of λ. A proof of convergence follows from the convergence

guarantees for the EM algorithm (Rabiner (1989)). However, convergence to a local

optimum is possible since the maximization problem is not strictly convex, and thus

the limiting point for the sequential updates may be sensitive to the starting point.

For this reason we conducted sensitivity analysis using data generated by sampling

from known models to confirm convergence of the Baum-Welch algorithm.

Algorithm 2 Baum-Welch algorithm for parameter estimation.

Input: Initial model parameter estimates λ0 = (A0, B0, π0).
1: Calculate P (O|λ0) using equation 6.1.
2: Calculate λ1 = (A1, B1, π1), which is a function of λ0 using the update equa-

tions 6.2, 6.3, and 6.4.
3: Calculate P (O|λ1) using equation 6.1.
4: v ← 1
5: while P (O|λv)− P (O|λv−1) > 10−6 do
6: v ← v + 1
7: Calculate λv = (Av, Bv, πv), which is a function of λv−1 using equations 6.2,

6.3, and 6.4.
8: Calculate P (O|λv).
9: end while

6.2.3 Model Validation

To further validate the results obtained, we used the base case estimates of our

model to simulate the detection rate based on 10,000 samples assuming annual biopsy

as planned in the Johns Hopkins Active Surveillance study protocol, and compared

the results to the observed detection rates in the Johns Hopkins data.

Next, we conducted experiments based on a hypothetical hidden Markov model

for which we knew the true values for model parameters, and we tested our implemen-

tation of the Baum-Welch algorithm on sampled results for 1375 simulated patient

observation sequences, which is the number of patients in the study who received

their first surveillance biopsy. Since there was missing data in the Johns Hopkins Ac-
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tive Surveillance study resulting from patients who discontinued active surveillance in

the absence of grade progression, we sought to test the assumption that the missing

data was not informative. Therefore, we censored the data for simulated observa-

tion sequences according to the observed mean rate of patients discontinuing active

surveillance without grade progression. We then ran the Baum-Welch algorithm on

the simulated data and compared the parameter estimates to the true parameters

used to generate the simulated data.

6.2.4 Sensitivity Analysis

To validate that the resulting parameter estimates were not sensitive to the initial

starting points, we varied our initial estimate for each parameter using a range of

±0.1 with an upper limit of 0.99. We then ran the Baum-Welch algorithm on each

new set of initial estimates, and compared the resulting parameter estimates.

Additionally, we performed bootstrapping analysis for which we randomly sampled

1375 patients with replacement from the Johns Hopkins dataset. We generated 30

different bootstrap samples and ran the Baum-Welch algorithm on each sample, and

compared the resulting parameter estimates.

6.2.5 Simulation Model

The hidden Markov model can be used to compute statistical estimates of health

outcomes such as the mean delay in detection of grade progression for patients who

experienced grade progression. The delay time depends on the hidden Markov model

parameter estimates, λ, which includes the initial probability a patient has Gleason

Score ≤ 6 (i.e., π0) or Gleason Score ≥ 7 (i.e., π1) at the time of diagnosis, the

transition probability from Gleason Score ≤ 6 to Gleason Score ≥ 7 (i.e., a01), and

the sensitivity (i.e., b11) and specificity of biopsy (i.e., b00). Together with the active

surveillance biopsy schedule these parameters collectively govern the time to reach the
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high-grade cancer state and subsequent detection of grade progression. We defined

the biopsy schedule as a vector, ~x = (x1, x2, . . . , xT ) of binary decision variables where

xt = 1 indicates a biopsy is planned at period t and xt = 0 indicates that a biopsy is

not planned at period t. The problem of determining the optimal active surveillance

schedule can be expressed as follows:

~x∗ = argmin
x

(
E[D(ω, ~x)|λ]

∣∣∣∣ T∑
i=1

xi ≤ δ

)

where D(ω, ~x) denotes the delay time for detection of progression for a given random

sample path, ω, that indexes all the outcomes of the hidden Markov model including

the true state at each time period, st, sampled using transition probability matrix A

and the biopsy outcome, sampled using the observation matrix, B. The expectation

is with respect to the hidden Markov model and can be estimated by random sam-

pling. The parameter δ is a limit on the number of biopsies allowed over the T year

time horizon. By varying δ, the set of Pareto optimal schedules can be obtained. The

number of possible active surveillance strategies is 2T and the optimization problem

can be solved via total enumeration. We simulated all possible strategies and iden-

tified those strategies that were non-dominated, i.e., those strategies for which no

other strategy simultaneously recommended fewer biopsies and had lower mean time

to detect high-grade cancer.

6.3 Results

6.3.1 Hidden Markov Model Analysis

To initiate the Baum-Welch algorithm, we needed initial estimates of the model

parameters λ = (π,A,B). These estimates are not directly observable in the dataset,

because biopsies are imperfect; thus, we used estimates from the literature. Alam et al.

(2015) studied reclassification rates for men in the Johns Hopkins Active Surveillance
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study, and found that the majority of men are reclassified within the first two years,

most likely due to initial biopsy misclassification. We estimated annual progression

rate from Gleason score ≤ 6 to Gleason score ≥ 7 to be 5% by calculating the

rate of progression at patients’ third through thirteenth biopsies. Estimates for the

sensitivity and specificity of biopsy to Gleason score ≥ 7 disease were calculated to be

62.5% and 89.4%, respectively, based on data reported in Epstein et al. (2012), which

compared biopsy results to Gleason score at radical prostatectomy. Finally, using

data reported in Epstein et al. (2012), we estimated that 74.9% of patients diagnosed

with Gleason score ≤ 6 disease on biopsy have Gleason score ≤ 6 disease at radical

prostatectomy, while 25.1% have Gleason score ≥ 7 disease at radical prostatectomy.

Based on these estimates from the literature, we used the following parameter starting

points to initiate the Baum-Welch algorithm:

A =

 0.950 0.050

0 1

 , B =

 0.894 0.106

0.375 0.625

 , π =

[
0.749 0.252

]

After estimating these initial parameter estimates, we ran the Baum-Welch algo-

rithm with a stopping criteria defined by a tolerance of 10−6 on the difference between

the log likelihoods for consecutive iterations. The resulting parameter estimates from

the Baum-Welch algorithm were:

Ã =

 0.960 0.040

0 1

 , B̃ =

 0.986 0.014

0.390 0.610

 , π̃ =

[
0.866 0.134

]

Thus, we found that annual progression rate from Gleason score ≤ 6 to Gleason

score ≥ 7 to be 4%; the sensitivity and specificity of biopsy to Gleason score ≥ 7

disease to be 61.0% and 98.6%, respectively; and the initial proportion of patients

undergoing active surveillance with Gleason score≤ 6 disease at their first surveillance

biopsy to be 86.6%.
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Table 6.3: Results comparing hidden Markov model parameter estimates from the
Baum-Welch algorithm to the true model parameter estimates from a
known model.

Model Parameter True Value 95% Confidence Interval
a00 0.960 [0.961,0.967]
b00 0.986 [0.980,0.988]
b11 0.610 [0.582,0.688]
π0 0.866 [0.846,0.889]

6.3.2 Validation

To validate the results obtained, we used the base case estimates of our model to

simulate the detection rate of Gleason score ≥ 7 disease assuming annual biopsy as

planned in the Johns Hopkins Active Surveillance study protocol. Figure 6.2 compares

the model-based results and the observed results. Model predicted results were based

on 10,000 samples. The confidence intervals for the observed results are reported in

the figure. There was no statistically significant difference between the predicted and

observed biopsy detection rate at the p=0.05 threshold.

Results for the hypothetical hidden Markov model for which the true values for

model parameters are known are presented in Table 6.3, which shows the true model

parameters from the known model and the 95% confidence interval for our model

parameter estimates based on the Baum-Welch algorithm applied to the simulated

sequences. The true value of π0, b11, and b00 all lie within the 95% confidence intervals,

while the true value of a01 is 0.040 and does not lie within the 95% confidence interval,

0.033− 0.039.

6.3.3 Sensitivity Analysis

To validate that the resulting estimates are not sensitive to the starting points, for

each parameter, we varied the initial estimates of the model parameters in the range

of ±0.1 with an upper limit of 0.99. We found the resulting parameter estimates
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Figure 6.2: Comparison of Gleason score ≥ 7 detection rates predicted by the sim-
ulation model to the observed rate in the Johns Hopkins study. Model
predicted results were based on 10,000 samples. The confidence intervals
for the observed results are shown, and the confidence intervals for the
model predicted results are too small to see on the figure.
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Table 6.4: Bootstrapping results.
Parameter Mean 95% Confidence Interval

a00 0.964 [0.960, 0.968]
b00 0.984 [0.980, 0.988]
b11 0.611 [0.587, 0.635]
π0 0.867 [0.857, 0.876]

varied by less than 0.5% from the values calculated using our original starting points,

suggesting that starting points did not significantly impact our parameter estimates.

For our bootstrapping analysis we generated 30 different bootstrap samples and

ran the Baum-Welch algorithm on each sample. The resulting 95% confidence in-

tervals based on bootstrapping are presented in Table 6.4, with b11 having the most

variation.

6.3.4 Optimization of Active Surveillance Strategies

The Baum-Welch algorithm calculated that 86.6% of patients were correctly di-

agnosed to have Gleason score ≤ 6 and 13.4% of patients were undersampled at their

first surveillance biopsy and actually had Gleason score ≥ 7. In our simulation model

we assumed diagnosis occurred 12 months prior to the first surveillance biopsy. Thus,

based on hidden Markov model parameters from the Baum-Welch algorithm we es-

timated that 90.22% of patients had Gleason score ≤ 6 at diagnosis, and 9.78% of

patients were undersampled and had Gleason score ≥ 7 at diagnosis.

We used the hidden Markov model parameter estimates to simulate mean delay

time in detecting progression among patients who progress to high-grade cancer over a

10-year period following diagnosis of prostate cancer for all 210 possible active surveil-

lance strategies. Our simulation model found that 40% of patients would progress

to high-grade cancer in 10 years, and that a strategy that performs annual biopsies

(the Johns Hopkins strategy) takes a mean of 14.1 months to detect progression. The

strategy that minimized the mean delay time for each choice of planned number of
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Figure 6.3: Simulation results for optimal active surveillance strategies and published
strategies based on the estimated hidden Markov model parameters. In-
cremental time to detection and the reduction in biopsies are relative
to an annual biopsy strategy. (Note: mean time to detection of grade
progression for annual biopsy plan = 14.1 months)

biopsies over 10 years are plotted in Figure 6.3, which shows the incremental time to

detection and the reduction in biopsies relative to a strategy that performs annual

biopsies. We have also included active surveillance strategies from the literature.

University of California, San Francisco (UCSF) recommends a biopsy 1 year after

diagnosis, then every 1 to 2 years. We modeled two versions of this policy: UCSF1

performs a biopsy after 1 year, then every 1.5 years and UCSF2 performs a biopsy af-

ter 1 year, then every 2 years. PRIAS/University of Toronto (UT) performs a biopsy

after 1, 4, 7, and 10 years (van den Bergh et al. (2007)). Figure 6.3 displays that

UCSF performs well compared to the optimal policies, while the PRIAS/UT policy

increases mean time to detection by 5.2 months compared to our optimal policy that

performs biopsies after 1, 3, 5, and 8 years.
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6.4 Conclusions

Many experts have called for the use of active surveillance to address overtreat-

ment concerns for men with low-risk prostate cancer. active surveillance delays and

possibly avoids immediate treatment via surgery or radiation therapy until and unless

there is evidence that the disease has progressed; however, it comes with a burden to

patients due to the need to conduct follow-up clinical exams, tests, and surveillance

biopsies. Biopsies in particular are a significant burden to patients. The intensiveness

of follow-up determines the frequency of clinical exams, tests, and biopsies. In the ab-

sence of randomized trials comparing active surveillance pathways there is no consen-

sus among urologists about the best way to trade-off the burden of surveillance with

the benefits of avoiding cancer progression (Lawrentschuk and Klotz (2011)). Fur-

thermore, little is known about the factors that determine why men initially choose

active surveillance over immediate treatment (surgery or radiation therapy), or why

they choose to abandon active surveillance. We provide a new active surveillance

precision medicine (ASPM) model for quantifying the trade-off between benefits and

harms of various active surveillance strategies. These decisions must trade-off between

the potential long-term benefits of detecting disease progression with the burden of

surveillance, including patient anxiety, and the potential harms and side effects of

biopsies (e.g. pain, anxiety, and hospitalization for infection in 2–3% of cases).

Our results suggest that there are diminishing benefits as the number of biopsies

increases. It is interesting to note that we can eliminate six biopsies in 10 years, which

has a substantial impact on the patient, while only increasing the time to detection

by 11.4 months. Additionally, the optimal biopsy schedules tend to perform more

biopsies in the beginning to catch patients misdiagnosed with low-risk cancer due to

undersampling of biopsies.

There are multiple definitions of progression for prostate cancer, including defini-

tions based on increase in PSA, PSA velocity and density, and tumor volume. Grade
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progression, which refers to a change in Gleason score, is a definitive form of progres-

sion recognized by all published active surveillance guidelines. However, currently

there is debate about whether grade progression is possible, or if the occurrence of

higher grade cancer on biopsy occurs due to biopsy sampling error. Some studies

suggest that that a combination of sampling error and progression are responsible

for increased grade detection over time (Epstein et al. (2012); Inoue et al. (2014)).

Our findings lend additional evidence to these studies, suggesting a combination of

sampling error and progression are responsible for detection of higher grade cancers

in the future.

A chief concern about active surveillance is the possibility that prostate cancer

progresses in the interval of time between biopsies or that progression is missed due

to imperfect sensitivity of biopsies. The potential for undetected progression raises

questions about health outcomes for patients on active surveillance who progress and

receive treatment. Studies comparing radical prostatectomy outcomes for patients

initially on active surveillance to patients receiving radical prostatectomy immediately

following diagnosis have shown that low-risk men who receive annual biopsy on active

surveillance do not have worse surgery outcomes (Tosoian et al. (2011)). Additionally,

Klotz et al. (2014) reported that patients undergoing active surveillance with biopsies

every 3 to 4 years had mortality rates consistent with patients who received initial

definitive treatment. Assuming a uniform distribution of progression times during

the 3 to 4 years intervals would suggest delays of 1.5 to 2 years in detecting grade

progression may not have a clinically significant impact.

The most related work to ours is an article by Inoue et al. (2014) in which the au-

thors develop a statistical model based on the assumption that patients may progress

prior, during, or following the active surveillance study period. The authors’ ap-

proach assumes that the risk of progression is stationary and the change point (at

which progression occurs) can be modeled as a multinomial distribution. Their model
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is premised on the assumption that the misclassification error is known, or can be

estimated, and the authors’ results show that these estimates are critically important.

Unfortunately such estimates are never available in practice and must be estimated

from other study populations. Our proposed approach relaxes this assumption, pro-

viding estimates of misclassification error that can be used to inform the optimal

strategy for active surveillance.

One limitation is that our results apply to patients with “favorable risk” prostate

cancer (i.e., clinical stage≤ T1c, PSA density≤ 0.15, Gleason score≤ 6, total positive

cores ≤ 2, and single core positivity ≤ 50%) and older men with low-risk disease (i.e.,

clinical stage ≤ T2a, PSA < 10, and Gleason score ≤ 6), since these are the patients

that were enrolled in the Johns Hopkins Active Surveillance study and thus there

is a need to validate our findings on other active surveillance studies; however, this

initial study lays the groundwork for such future validation work. A related limitation

is that our study is based on a single active surveillance study. Missing data from

patients that drop out of the study without progression could confound the results,

although our sensitivity analysis helped to mitigate this concern. Finally, our results

provide the trade-off between number of biopsies and mean delay time to detection

of progression; however, the amount of time that is considered safe to delay detection

is not known. Nevertheless, data from the literature suggests that short delay times

may not have significant clinical impact. Metastases is a better endpoint, but the data

needed to fit a hidden Markov model with this endpoint does not yet exist. These

limitations notwithstanding, we believe this study provides important evidence about

the trade-off between varying active surveillance strategies and the optimal timing of

biopsies during active surveillance. In the future, we would like to use datasets from

other active surveillance studies to study optimal biopsy strategies for intermediate-

risk patients.

While annual biopsy for low-risk men on active surveillance is associated with the
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shortest time to detection of Gleason ≥ 7 disease, several alternative strategies may

allow for less frequent biopsy without sizable increases in time to detecting grade

progression. It is interesting to note that by performing biopsies in 1, 3, 5, and 8

years after diagnosis, we can eliminate six biopsies in 10 years, which has a substantial

impact on the patient’s quality of life and risk of infection, while only increasing the

time to detection by 11.4 months. Additionally, the optimal biopsy schedules tend to

perform more biopsies in the beginning to catch patients misdiagnosed with low-risk

cancer. Moreover, we found that while the UCSF policy performed almost as well as

optimal policies with the same number of biopsies over a 10 year period, we could

reduce the time to detection by an additional 5.2 months compared to the PRIAS/UT

policy while performing the same number of biopsies in 10 years.
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CHAPTER VII

Conclusions

Prostate cancer screening can improve patient outcomes by catching cancer at an

early stage when health outcomes are most favorable for patients; however, widespread

prostate cancer screening has led to unnecessary biopsies caused by false-positive

PSA results and the overtreatment of low-risk prostate cancer with harsh curative

treatments. In this dissertation we presented a series of prostate cancer models to

evaluate the use of new technologies for prostate cancer screening to better select men

for prostate biopsy, as well as the optimal timing of surveillance biopsies for men with

low-risk disease undergoing active surveillance. Following is a summary of the most

important findings from Chapters III, IV, V, and VI.

In Chapter III, we developed and validated a new partially observable Markov

model that considers prostate cancer screening and treatment decisions for a cohort

of men, starting at age 40, through to end of life. We used this model to exam-

ine alternative choices of two-stage biomarker-based screening strategies based on

newly discovered biomarkers with varying thresholds. The screening strategy with a

PSA threshold of 2 ng/mL and a second biomarker with high-grade sensitivity and

specificity of 0.86 and 0.62, respectively, increased the number of QALYs per 1000

men by 19 QALYs compared to no screening and by 7 QALYs compared to using

the PSA test alone with a threshold of 4 ng/mL. Our model predicts one prostate
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cancer death averted per 200 men screened. In our one-way sensitivity analysis, we

found that other-cause mortality had the greatest impact on the expected increase

in QALYs relative to no screening, suggesting that the presence of comorbidity is

an important consideration when determining the optimal prostate cancer screening

strategy.

In our analysis, we found that many different screening strategies performed simi-

larly in terms of QALYs; however, it is possible to distinguish these similar screening

strategies by looking at additional performance measures that may better account

for patient preferences. For example, some strategies that achieved similar QALYs

varied significantly in rates of biopsy and prostate cancer deaths, with reductions in

prostate cancer deaths coming at the expense of a greater biopsy rate. This trade-

off emphasizes the importance of a shared decision making approach to account for

patient preferences regarding risk of prostate cancer mortality and harms from biopsy.

Identifying biomarkers and risk thresholds optimized for identification of high-

grade cancers had the greatest impact on measures of performance in the screening

setting. Combining new biomarkers with PSA has the potential to reduce the number

of screening biopsies (thus decreasing overdiagnosis) and decrease the rate of prostate

cancer mortality. The sensitivity analysis suggests our conclusions are robust with

respect to plausible variation in model parameters.

In Chapter IV, we developed a Markov model to evaluate the cost-effectiveness

of using MRI in a screening setting. We estimated the number of prostate cancer

deaths averted, QALYs, and total cost for each strategy. Additionally, we estimated

the ICERs. Interestingly, the strategies that performed a standard biopsy on negative

MRI were more expensive and less effective than strategies that perform no biopsy

on negative MRI. Based on our study, MRI as an intermediate test in the screening

of men for prostate cancer is cost-effective assuming a willingness-to-pay threshold

of $100,000/QALY threshold. The most efficient strategy was the use of MRI if
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PSA > 4 ng/mL, followed by combined biopsy if MRI was positive and no biopsy if

MRI was negative, using a PI-RADS threshold of 3 to indicate a positive MRI (ICER:

$23,483/QALY gained). These results were robust over a range of sensitivity analyses

and were maintained even if the sensitivity and specificity of MRI and combined

biopsy were reduced by 19 percentage points. This helps to establish the viability

of MRI in a non-academic medical center setting where radiologists may be less

experienced with MRI. Overall, our findings suggest that MRI appears to be a viable

approach for early detection of prostate cancer from a cost-effectiveness perspective.

In Chapter V, we developed a new POMDP model to investigate optimal prostate

cancer screening decisions using new biomarkers based on a patient’s belief state

rather than making decisions based solely on a patient’s most recent test results. The

belief state is calculated using Bayesian updating and comprises a patient’s complete

history of biomarker test results. We solved an approximation of the POMDP, which

maximized total expected QALYs, based on a data-driven sampling approach to cre-

ate a set of grid points in the belief space, and evaluated the resulting policy using

our simulation model. Although exact solutions to the POMDP were not possible, we

showed the grid based approximation could be solved to optimality. We also found

that it is possible to develop approximate POMDP solutions based on data about fre-

quently visited parts of the belief space, and that basing screening decisions on belief

estimates that use the complete history of biomarker results may improve screening.

In Chapter VI, we used a hidden Markov model to estimate initial biopsy sam-

pling error, biopsy accuracy, and the rate of progression from low to intermediate

or high-grade prostate cancer over time based on longitudinal data from the Johns

Hopkins Active Surveillance study. We used maximum likelihood estimation based

on the Baum-Welch algorithm to estimate the hidden Markov model parameters and

sensitivity analysis to establish robustness of the results. We used the resulting model

to evaluate all possible follow-up surveillance strategies as well as previously proposed
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strategies for active surveillance found in the literature on the basis of mean delay

time to grade progression and the number of planned biopsies over the first 10 years

following initiation of active surveillance.

While annual biopsy for low-risk men on active surveillance is associated with the

shortest time to detection of Gleason ≥ 7 disease, several alternative strategies may

allow for less frequent biopsy without sizable increases in time to detecting grade

progression. In particular, performing biopsies in 1, 3, 5, and 8 years after diagnosis

reduces the number of planned biopsies in 10 years by 6 compared to an annual biopsy

schedule, while only increasing the mean time to detection by 11.4 months. We found

that while the UCSF policy performed almost as well as our optimal policies, we could

reduce the time to detection by an additional 5.2 months compared to the PRIAS/UT

policy while performing the same number of biopsies in 10 years.

Chapters III, IV, and V of this dissertation have limitations based on assump-

tions used in the modeling process. First, estimates of sensitivity and specificity for

biomarkers can be dataset-dependent, as the estimates come from different datasets

and, therefore, may have different biases; however, our analysis still provides useful

insights into how the sensitivity and specificity of biomarkers impact long-term health

outcomes. Second, there is the potential for bias in the data we used to estimate MRI

results because the population used includes patients with previous negative biopsies

in addition to biopsy-näıve patients; however, by using the estimates based on the

larger patient population we were able to obtain better estimates of sensitivity and

specificity. Our sensitivity analysis further confirms our conclusions are not sensitive

to this assumption.

Another potential limitation is that we assumed each patient receives at most one

screening biopsy in his life. About 7 − 12% of men undergoing biopsy have had a

previous negative biopsy (Nguyen et al. (2010); Thompson et al. (2006)); however, the

majority of patients receive a single biopsy, and cancers detected on second biopsy are
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typically less clinically significant. Since our intent is to measure the public health

impact of prostate cancer screening, we do not believe this assumption significantly

influenced our results. Another possible limitation is the inconsistent definition of

clinically significant prostate cancer in the literature. For example, Siddiqui et al.

(2015) defined clinically significant disease as high-volume Gleason 3+4 or Gleason

≥ 4 + 3, while Grey et al. (2015) defined clinically significant disease to be cancer

core involvement ≥ 6 mm or the presence of any Gleason pattern 4. In our model,

we considered clinically significant disease to be Gleason score ≥ 7. Finally, the only

curative treatment included in our model was radical prostatectomy, because it is the

most common curative treatment, and patients undergoing radiation therapy have

similar health outcomes (Hamdy et al. (2016)).

One potential limitation of Chapter VI is that our results apply to patients with

“favorable risk” prostate cancer (i.e., clinical stage ≤ T1c, PSA density ≤ 0.15,

Gleason score ≤ 6, total positive cores ≤ 2, and single core positivity ≤ 50%) and

older men with low-risk disease (i.e., clinical stage ≤ T2a, PSA < 10, and Gleason

score ≤ 6), since these are the patients that were enrolled in the Johns Hopkins

Active Surveillance study and thus there is a need to validate our findings on other

active surveillance studies; however, this initial study lays the groundwork for such

future validation work using other populations with different risk profiles. A related

limitation is that our study is based on a single active surveillance study. Missing

data from patients that drop out of the study without progression could confound

the results, although our sensitivity analysis helps to mitigate this concern. Finally,

our results provide the trade-off between number of biopsies and mean delay time to

detection of progression; however, the amount of time that is considered safe to delay

detection is not known. Nevertheless, data from the literature suggests that short

delay times may not have significant clinical impact.

There are several possible research extensions from this dissertation. In our work
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we have shown that new biomarkers provide clinical benefits to patients when used

in conjunction with the PSA test; however, in the future it would be valuable to

evaluate the cost-effectiveness of these new biomarkers for prostate cancer screening.

Additionally, we evaluated the cost-effectiveness of MRI for prostate cancer screening

for men from ages 55 to 69 with two year screening intervals; however, it would be

interesting to further investigate the impact of screening ages on the cost-effectiveness

of MRI. Furthermore, we studied the optimal use of new biomarkers and MRI in

patients with elevated PSA with a fixed PSA threshold. Since PSA naturally increases

as a patient ages, it would be beneficial to evaluate age-dependent PSA thresholds

to trigger these secondary tests. Finally, it would be beneficial to validate our active

surveillance precision medicine (ASPM) model on other cohorts of patients including

intermediate risk patients, which would allow our results to be informative for a larger

portion of the patient population.

In conclusion, we have provided important insights into how new technologies,

like molecular biomarkers and MRI, can be used to supplement the PSA test for the

early detection of prostate cancer, as well as the optimal timing of prostate biop-

sies for men with low-risk prostate cancer undergoing active surveillance. By using

new technologies to better select men for biopsy and by improving active surveillance

strategies, physicians can reduce the harms of prostate cancer screening (e.g., un-

necessary biopsies and overtreatment of low-risk disease) while continuing to reduce

prostate cancer deaths through screening and early detection. Finally, the work pre-

sented in this thesis could help lay the groundwork for early detection and treatment

of other cancers.
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Bangma, et al. (2007), Prospective validation of active surveillance in prostate
cancer: the PRIAS study, European Urology, 52 (6), 1560–1563.

Wade, J., et al. (2013), Psychological impact of prostate biopsy: Physical symptoms,
anxiety, and depression, Journal of Clinical Oncology, 31 (33), 4235–4241.

Willis, S. R., H. U. Ahmed, C. M. Moore, I. Donaldson, M. Emberton, A. H. Miners,
and J. van der Meulen (2014), Multiparametric MRI followed by targeted prostate
biopsy for men with suspected prostate cancer: a clinical decision analysis, BMJ
Open, 4 (6), e004,895.

Young, A., N. Palanisamy, J. Siddiqui, D. Wood, J. Wei, A. Chinnaiyan, L. Kunju,
and S. Tomlins (2012), Correlation of urine TMPRSS2:ERG and PCA3 to ERG+
and total prostate cancer burden, American Journal of Clinical Pathology, 138 (5),
685–696.

Zhang, J. (2011), Partially observable markov decision processes for prostate cancer
screening, Ph.D. thesis, North Carolina State University.

Zhang, J., B. T. Denton, H. Balasubramanian, N. D. Shah, and B. A. Inman (2012a),
Optimization of prostate biopsy referral decisions, Manufacturing & Service Oper-
ations Management, 14 (4), 529–547.

121



Zhang, J., B. T. Denton, H. Balasubramanian, N. D. Shah, and B. A. Inman (2012b),
Optimization of PSA screening policies: a comparison of the patient and societal
perspectives, Medical Decision Making, 32 (2), 337–349.

Zhang, Y., B. T. Denton, and M. E. Nielsen (2013), Comparison of surveillance
strategies for low-risk bladder cancer patients, Medical Decision Making, 33 (2),
198–214.

122


