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Chapter One: Introduction 

Problem Summary 

Standardized neuropsychological assessments and research instruments are 

typically administered with verbal queries, pictures and manipulatives that require verbal 

or motor responses. Requiring verbal or motor responses means that the assessments 

are often inaccessible to people with physical and communicative impairments, 

especially those who cannot talk or point [1,2]. The lack of accessible cognitive tests 

[1,3] causes those who are most vulnerable, due to physical and communication 

impairments, to be dismissed as “untestable” and excluded from medical standards-of-

care. Consequently, to the inability to be evaluated, they are denied optimal 

participation in medical decision-making, prevented from receiving full assessments of 

neurological status, and unable to consistently monitor the effects of their 

medical/pharmacological treatment. This barrier also precludes research on cognitive 

symptoms both in the early acute phases of recovery from illness or injury and in the 

final stages of progressive diseases. Overall, the inability to accurately test the cognitive 

ability of a severely physically impaired individual leads to improper medical and 

educational decisions that cost schools and medical insurance providers over $40 billion 

yearly, while significantly impacting the quality of life of the patients [4,5]. Brain-

computer interfaces (BCIs) and brain network science may provide an option to identify 

a person’s cognitive ability without the need for physical movement. 
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Literature review 

The following sections provide a high-level overview of the concepts one must 

know to understand Chapters 2-4. It is not necessary to read them in order, and one 

can also skip directly Chapter 5.  Further chapter specific background is added within 

each respective chapter.  

The goal of this project is to create a temporary device for cognitive assessment; 

therefore, only non-invasive electroencephalography (EEG) methods will be covered 

[6,7].  First, we will cover the standard tools used for measuring a subject’s cognitive 

capacity and then we will dive into how EEG could be incorporated to evaluate cognitive 

capacity in those who cannot respond to standard assessments tools due to motor and 

speech impairments.  

Neuropsychological assessments 

Clinicians use neuropsychological assessment to yield a diagnosis that will allow 

them to determine appropriate intervention strategies and assess a person’s 

performance over time. The outcomes of these tests can determine what type of care or 

resources a person has available to them. These resouces include medical planning 

and medication management, rehabilitation services, special education and vocational 

classes, and access to assistive technologies [6-8]. Neuropsychological assessments 

are usually categorized into one of five categories: intelligence quotient, academic 

achievement, adaptive function, cognitive function and psychological/behavioral tests. 

Each of these categories has multiple types of tests that measure different aspects of a 

person’s neuropsychological status [6-8]. 
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Intelligence tests are the most well-known forms of neuropsychological 

assessments. They are used to determine an individual’s broad mental capacity. A 

common test is the Wechsler Adult Intelligence Scale (WAIS) [9]. The WAIS covers 

verbal comprehension, perceptual reasoning, working memory and processing speed. 

The test spans about 65-80 minutes and provides intelligence quotient (IQ) scores. An 

average score is 100, with higher scores suggesting above average intelligence and 

lower scores suggesting lower than average intelligence [6,7,9,10]. While the WAIS and 

other intelligence test have significant advantages, the diversity of testing paradigms 

make them hard to replicate and control for test validity when altering the tests for use 

with a BCI.  

Achievement tests like Wechsler Individual Achievement Test [11] are typically 

used to measure a student’s acquired knowledge in educational areas such as reading, 

written language, oral language and mathematics. While this may seem like an 

intelligence test, achievement tests are more focused on assessing developed skills or 

knowledge instead of examining a person’s ability to act purposefully and effectively 

adapt to new problems [6,7,11]. Like the WAIS-IV, achievement tests have a diversity of 

testing paradigms, thus making it hard to replicate and control for test validity when 

altering the test for use in a BCI. 

Adaptive behavior tests like the Vineland Adaptive Behavior Scales-II [12] are 

typically given to determine how well a person can handle the demands of life and 

measure a person’s independence. Questions are usually age-based and evaluate a 

myriad of skills, including practical ones such as money management. They also assess 

social skills, like the ability to behave around others, and conceptual skills, such as 
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planning and organization [6,7,12]. Most adaptive behavior tests are focused on day-to-

day interactions, which tend to rely extensively on motor and verbal abilities [6,7,12]. 

While many of the theses measures are valuable, the purpose of our study is to 

measure cognitive capacity. In addition, we plan to use a BCI because the intended 

subjects have challenges with assessments that rely on motor or verbal responses. 

Cognitive function assessments cover the largest diversity of neuropsychological 

factors. Such factors include attention, language, memory, motor and executive function 

[6,7]. One popular test is the Peabody Picture Vocabulary Test-IV, which is a receptive 

vocabulary assessment [13]. The PPVT-IV is untimed, multiple choice, has a strong 

test-retest reliability ranging from .91 to .94 and can be used as a proxy to measure 

intelligence [13]. All these factors make it a desirable test to convert into a BCI-

facilitated test. The fact that it is untimed removes the need to control for time, while the 

multiple-choice format allows us to display all possible answers at once and reduces 

selection time compared to tests that allow for freeform responses. Additionally, the 

strong test-retest reliability allows us to compare our BCI-facilitated method with the 

standard PPVT-IV. Furthermore, the PPVT-IV only has one exam format which reduces 

the complexity of building a BCI-facilitated system. 

Personality/psychological tests are used to assess an individual’s personality and 

emotional function, which may be difficult to identify during standard clinical interviews. 

Due to the many cognitive domains covered by these tests, they are usually given as 

bundles of tests called batteries [6,7]. An example of such a test is the Minnesota 

Multiphasic Personality Inventory [14]. We decided against using 

personality/psychological tests for several reasons. The first reason is that we are not 
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targeting the personality or emotional function of an individual. Secondly, the response 

modality of the BCI is significantly limited compared to verbalizing a response. 

Attempting to translate a test that allows free form responses into a BCI may 

significantly alter the results of the assessment since the response modality of the BCI 

is significantly limited compared to verbalizing a response.  

Picking the right test to adapt for cognitive assessment is important. Based on 

our survey of testing methods, we believe the PPVT-IV is a strong candidate for 

translation to a BCI-facilitated assessment system. Before delving directly into BCIs, it is 

important to understand the basics of electroencephalography and how it can be used 

for assessing cognitive capacity of an individual.  

Electroencephalography as a tool for assessment 

Electroencephalography is a brain imaging technique that allows for the 

noninvasive recording of electrical changes of an individual’s brain. Brain activity is 

typically from ±100µV, ranges from 1-50Hz, and is measured from the scalp using non-

surgical electrodes [15,16]. Two different kinds of signals are recorded from EEG 1) 

spontaneous activity and 2) evoked potentials [16]. 

Spontaneous activity is broken down into frequency bands and the increase or 

decrease of their spectral power is associated with different mental states [16]. Delta 

waves are the slowest signal at about 4Hz or less, and are typically recorded at the 

frontal and parietal lobes during slow wave sleep. Theta waves range from 4-7 Hz, 

originate from the hippocampus, and are usually associated with light sleep. Alpha 

waves range from 8-15Hz, are typically recorded from the occipital lobe, and are 

associated with being awake but mentally relaxed. Beta waves range from 13-31Hz, are 
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typically recorded from the frontal and parietal lobes, and represent an active and 

awake individual. Lastly, gamma waves represent any brain related oscillation over 

32Hz [17-19] and these waves are typically associated with the occurrence of cross-

modal sensory processing (i.e. processing combined sensory input like sound and sight 

simultaneously) (Table 1) [17,18].  
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Table 1 Summary of brainwave
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Evoked potentials (VP) are electrical changes that occur in response to a specific 

stimulus. They are normally characterized by two distinctive features: the letters P or N, 

and a number. The letter corresponds to the electrical change being positive (P) or 

negative (N) when recorded using EEG. The number corresponds to the average time 

in milliseconds at which the change occurs [16,20]. For example, a P100 response 

would signify a positive change in brain activity at 100 ms. Some evoked potentials are 

created using repetitive stimuli such as images or sound. For example, Itakura [21] 

flashed images either to the left or right visual field of three subjects and found that, 

when the image was initially presented on the left visual field, there was P75 and N100 

present on the right occipital electrode. The electrode location of these VPs then 

reversed (left occipital electrode) when the image was presented on the right visual 

field. Itakura’s method is called a transient visually evoked potential (TVEP) [21]. If the 

flash is instead repeated consistently at a frequency greater than 4Hz, the result is 

called steady state visually evoked potentials (SSVEP). In this case, the brain activity 

recorded from the occipital lobe electrodes begins to synchronize with the frequency of 

the stimuli that is presented to the user [21-25].  

Another kind of evoked potential is an event-related potential (ERP), which is 

evoked by an event, such as something important changing. ERPs are time locked to 

the event occurring [15,16]. There are numerous types of ERP waves that are 

stimulated by different events such as language structure or presenting important visual 

stimuli [26-29]. One classical example of an ERP is elicited by asking a subject to 

perform the oddball task. During an oddball task, a subject is asked to be mentally 

aware of when an important stimulus (called a target) is being presented while 
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unimportant stimuli (called distractors) are also presented [29,30]. For example, in 

Campanella [30], 50 subjects viewed serially presented images of a woman or a man. In 

Campanella’s study, the picture of the woman was the distractor and the picture of the 

man was the target. In total, the subject was shown either the man or woman’s face 170 

times, of which 30 instances were the man’s face (target) while 140 displayed the 

woman’s face (distractor). Like many others, Campanella found that time locked 300ms 

after presenting the image of the man’s face (target), there was a positive change in the 

subject’s brain activity i.e. a P300 [29,30].  

Spontaneous activity and evoked potentials have both been used to study 

disease states and cognitive ability [15,19,20,29,31]. For example, Basar [19] studied 

the differences in alpha, beta and gamma waves between 19 schizophrenic subjects 

and 19 typically developing subjects. Afterwards, he compared this study to his previous 

study of Alzheimer’s and bipolar disorder. Basar found that subjects with schizophrenia 

demonstrated lower gamma activity than typically developing subjects. Additionally, in 

all diseased states, he noted a decrease of delta activity compared to typically 

developing subjects [19]. Another example is Vogel [32], who analyzed EEG alpha band 

power in 101 typically developing adults while their eyes were closed. Vogel found that 

alpha band power was positively correlated to a subject’s intelligence quotient (IQ).  

Similar studies on disease state and intelligence have been done with ERPs. For 

example, Bramon [33] used an auditory P300 oddball paradigm in 37 patients with 

bipolar disorder and 42 typically developing (TD) subjects. Bramon found that subjects 

with bipolar disorder had significantly delayed P300 responses. Another example is 

Barratt [34], who gave intelligence assessments to 45 subjects and also had them 

http://topics.sciencedirect.com/topics/page/Delta_wave
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undertake a P300 oddball experiment separately. He found that P300 amplitudes 

correlated positively with intelligence.  

These studies suggest that spontaneous activity and evoked potentials can 

provide insight into the cognitive capacity of those who cannot take standard cognitive 

assessments due to motor and speech impairments. Another approach uses EEG to 

look at how the signals at different regions of the brain change with respect to time. This 

is accomplished by examining coherence, and phase delay analysis. To derive 

coherence, one measures the statistical difference between two signals within a 

consistent phase shift. This comparison of the two signals is usually done to estimate 

connectedness between two regions in the brain, and higher values imply more 

connectedness. Phase delay is strictly the time difference between two similar signal 

responses. 

Gasser was one of the early thought leaders in using coherence to assess 

differences in intelligence [35]. He compared the coherency of 158 TD subjects with 47 

subjects who had low IQ. Coherence estimates were taken from the frontal, occipital 

and frontal to occipital electrodes. Gasser found that children with cognitive impairments 

had higher coherence in the theta band in the frontal to occipital lobes [35]. Another 

example is Biver [36], who analyzed coherence differences in high IQ and low IQ 

subjects. Biver found that high IQ individuals demonstrated short interhemispheric 

(localized connections e.g. frontal lobe) EEG phase delays, long intrahemispheric 

(global connections e.g. frontal to occipital lobe) phase delays and reduced coherence 

across all frequency bands. He also found that delta, alpha, beta and theta bands were 

positively correlated with intelligence [36].  
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By combining these (and other) band pass, coherence and phase delay results, it 

is possible to find a relationship between EEG biomarkers and IQ [32,35-41].  

• Delta power in the frontal cortex is negatively correlated to IQ. 

• Theta power in the frontal, central, parietal and occipital lobes are 

negatively correlated to IQ. 

• Alpha power in the frontal and occipital lobe is positively correlated to IQ. 

• Beta power in the frontal and parietal lobe is negatively correlated to IQ. 

• Beta power in the occipital lobe is positively correlated to IQ. 

• Gamma power is negatively correlated to IQ. 

• Coherence across all bands is negatively correlated to IQ. 

• Short interhemispheric phase delays and long intrahemispheric phase 

delays are correlated to IQ. 

Results for delta, theta, beta (frontal and parietal), gamma and coherence all 

agree with the neural efficiency theory[35]. The neural efficiency theory suggests that 

lower brain activation is needed to process the same information in a high IQ individual 

versus a low IQ individual. Thus, we would expect to see lower power band results in 

high IQ individuals than low IQ individuals. Alpha bands on the other hand would seem 

to violate the neural efficiency theory. However, increased alpha power bands are 

associated with a relaxed mental state and low workload. We can therefore assume that 

a high IQ individual would also display a lower workload (higher baseline alpha 

powerband) compared to a low IQ individual[39].  
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Low coherence, short interhemispheric phase delays and longer intrahemispheric 

delays suggest that brain processes are happening more locally than globally. This is in 

line with current functional connectivity EEG studies that suggest that higher IQ 

individuals use small, locally isolated and highly clustered brain regions to process 

information, while low IQ individuals require additional recruitment across the brain. In 

our studies, we expect to see a similar correlation to occur based on a subject’s 

IQ[35,36].  

Results for delta, theta, beta (frontal and parietal), gamma and coherence all 

agree with the neural efficiency theory [35]. The neural efficiency theory suggests that 

lower brain activation is needed to process the same information in a high IQ individual 

versus a low IQ individual. Thus, we would expect to see lower power band results in 

high IQ individuals than low IQ individuals. Alpha bands on the other hand would seem 

to violate the neural efficiency theory. However, increased alpha power bands are 

associated with a relaxed mental state and low workload. We can therefore assume that 

a high IQ individual would also display a lower workload (higher baseline alpha 

powerband) compared to a low IQ individual [39].  

Low coherence, short interhemispheric phase delays and longer intrahemispheric 

delays suggest that brain processes are happening more locally than globally. This is in 

line with current functional connectivity EEG studies that suggest that higher IQ 

individuals use small, locally isolated and highly clustered brain regions to process 

information, while low IQ individuals require additional recruitment across the brain. In 

our studies, we expect to see a similar correlation to occur based on a subject’s IQ 

[35,36].  
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Previous studies have investigated EEG biomarkers in CP [42,43]. For example, 

Sobaniec found that subjects with spastic displegia cerebral palsy had longer 

interhemispheric phase delays and increased coherence in the theta and delta bands 

[44]. They also exhibited increased alpha power bands in the temporal, parietal and 

occipital lobes than TD subjects. Bockoski found similar results in 26 children with 

hemiparetic cerebral palsy [45], as did Takeshita [46] in 12 subjects with preterm 

diplegia. These results imply that subjects with CP should have lowered intelligence 

[43]. However, only 50% of subjects with CP exhibit intellectual disability [8]. This 

suggests that the results as they relate to functional connectivity and intelligence may 

not apply directly to all populations. We believe this is due to a neural compensation 

from a subject’s underlying pathology [43]. This suggests that the brain of a person with 

cerebral palsy may demonstrate biomarkers of decreased intelligence due to brain 

network reorganization, but those markers may not adequately reflect his IQ. Thus, 

before these biomarkers can be used as possible cognitive assessment tools, it will be 

important to investigate how disease states alter the interpretation of these biomarkers. 

Brain-computer Interfaces for cognitive assessments 

BCIs enable humans to communicate and control software and hardware using 

only their brain activity [47-49]. While there are many brain imaging methods for BCIs, 

we will focus on EEG related methods since they are noninvasive and highly mobile, 

which makes them ideal temporary cognitive assessment tools. 

There are four primary BCI control methods: sensory motor imagery, slow 

cortical potential (SCP), visual evoked potential (VEP) and event-related potential (ERP 

or P300) BCIs. Sensory motor imagery BCIs use changes in brain activation in the 
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motor cortex when a user imagines moving her left hand, right hand, feet or a 

combination of these sources as control inputs (Figure 1) [22,50-52]. Slow cortical 

potentials (SCP) use increased or decreased brain activation in the frontal lobe to 

control their input [53-55], thus providing a binary control (Figure 2). Both SCP and 

motor imagery BCIs can take months to reliably control. In our study, we focus on 

creating a temporary device for cognitive assessments; a long training time is not 

adequate for our purpose [22,56,57]. For this reason, we will be focusing our review on 

VEP and ERP/P300 BCIs.  
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Figure 1. Illustration of brain activation for sensory motor imagery BCI 

• The orange dot represents increased brain activation. The activations are 

with respect to what the subject using the BCI is imaging.  

• Imagining left arm movement activates the right side of the motor cortex.  

• Imagining right arm movement activates the left side of the motor cortex.  

• Imagining the feet movement activates the motor cortex more centrally. 
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Figure 2. Illustration of brain activation from slow cortical potential (SCP) BCI 

 
 

• The solid blue line represents baseline brain activity.  

• The dashed yellow lined represents a user activating their slow cortical 

potentials for a positive BCI response. 

• The dotted red lined represents a user activating their slow cortical 

potentials for a negative BCI response. 
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Visual evoked potential (VEP) BCIs use brain activity modulations in the visual 

cortex in response to visual stimuli presented to the user [21,22]. VEP BCIs are split into 

two modalities, TVEP and SSVEP. The difference is that, in regard to BCIs, the 

resultant response is used to classify a user’s selection [21-24,58]. For example, in 

Itakura [21], researchers could determine if the user wanted to select the image on the 

right or left by detecting P75 and N100 responses. Another example is Perego, who 

developed a cognitive assessment BCI, which used SSVEPs [59]. Perego used four 

flickering Light Emitting Diodes (LED) on the sides of a monitor to provide SSVEP 

stimuli. The monitor displayed the cognitive assessment questions and answers to the 

subject and provided visual feedback on the subject’s current selection. To answer a 

question, the subject focused their gaze on the left or right LEDs, which moved a 

selection cursor to the next answer. Once they had moved the selection cursor over 

their desired selection, the subject would focus their gaze on the top LED to submit the 

selection [22,23,25,59,60]. Perego’s study suggests that SSVEPs could be a strong tool 

for cognitive assessments therefore warrant further investigation in our study (Figure 3). 
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Figure 3. Illustration of brain response of visually evoked potential (VEP) BCI 

• Each large number corresponds to a different selection a subject can pick. 

These selections are all flickering from white to black at the same time 

(not shown), at the frequency described below each large number. 

• Left-side images represent when a subject is not selecting, while the right-

side images represent when the user is selecting the number 1. The red 

box indicates what the subject is selecting.  

• Lower images represent the frequency component of brain activity 

recorded from the occipital lobe. 

• When the subject selects the number 1, a frequency response occurs in 

the occipital lobe at 12 Hz. The frequency that is observed in the occipital 

lobe always matches the frequency of the subject’s selection.  
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Event-related potential (ERP or P300) BCIs use the same oddball strategy 

described above, however, they typically feature a matrix that displays all the possible 

options a user can select. In addition, selections or groups of selections on a computer 

screen are flashed one at a time [22,26,61-64]. To illustrate, in these BCIs, each 

selection flashes sequentially but the user focuses on the one selection they want to 

make and ignores all others. Under these circumstances, the P300 signal is elicited only 

when the selection they choose is flashed. The user’s choice is then determined by 

detecting which selection, when stimulated, produces a P300 signal. ERP BCIs have 

been used extensively for communication [22,26,61-64]. By simply changing the 

selection set to multiple choice cognitive assessment responses, a user would be able 

to respond to standard cognitive assessments (Figure 4). 
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Figure 4. Illustration of brain response of an event related potential (ERP or 
P300) BCI 

• Each large number corresponds to a different selection a subject can pick. 

These selections flash one at a time, as shown by having one white 

selection at a time. 

• The red square represents what the subject is selecting by focusing their 

attention. 

• The bottom images show cartoon images of the subject’s brain activity. 

Images 1, 2 and 4 show baseline brain activity while image 3 shows an 

event-related potential. 

• Brain activity is baseline except when the subject’s selection (number 1) is 

flashed. This is shown on the third image from the left. 
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Both VEP and P300 systems require little to no training and can provide a high 

degree of control inputs [22,26,65,66], which fit our criteria for a temporary system for 

cognitive assessment. This suggests they are both potential candidates for future 

cognitive assessment BCIs. 

Putting it all together 

Based on the review of suitable motor-free cognitive assessment methods, the 

strategies that seem the most suitable are using EEG based methods such as power 

band analysis, modern network functional connectivity, or using BCI approaches. 

Powerband analysis and functional connectivity can be done passively while EEG is 

recorded since they do not require user input. For our BCI approach, it is possible to do 

SSVEP and ERP BCIs separately, but numerous studies have demonstrated a hybrid 

approach that could lead to increased accuracy and speed of classification [67-72]. For 

example, Hu [67], combined SSVEP and P300 input and asked 12 healthy subjects to 

type from an alphanumeric matrix that elicited both P300 and SSVEP stimuli. Hu found 

that by using this combined methodology, he could increase BCI accuracy by about 

20% and BCI selection speed by about 50% compared to using only P300 or SSVEP. 

Therefore, we will be using a hybrid approach as well. 

It will be important to determine to what extent the use of a BCI will affect a 

user’s score. For this reason, it is important to first compare test results using subjects 

who can take both the standard assessments as well as our BCI-facilitated assessment 

[13]. 
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Outline of projects 

he primary goal of this research was to create a suitable solution for determining 

cognitive capacity in people who cannot complete standardized neuropsychological 

assessments due to motoric impairments. Two different approaches were taken. The 

first approach is covered in Chapter 2, where we used a BCI that could administer 

multiple-choice assessments. The BCI was tested in people with and without cerebral 

palsy who could take both the standard assessment and a BCI-facilitated test. This was 

done to determine if modifying the standard PPVT-IV to a BCI-facilitated PPVT-IV 

altered the psychometrics of the assessment. An essential part of the function of this 

BCI is the hold-release algorithm (described in Chapter 3). The hold-release algorithm 

was developed to integrate a simple-to-use confirmation step that prevents the BCI from 

moving forward in the PPVT-IV test until the subject confirms her selection.  

The second approach for determining the cognitive capacity of people who 

cannot access standardized neuropsychological assessments due to motoric 

impairments was to use brain dynamics, such as power band, coherence, phase delay 

and functional connectivity, which are discussed in Chapter 4.  

Overall, my work can be used to guide potential tools for future cognitive 

assesments in people with severe physical/motoric impairments.  
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Chapter Two: Asynchronous brain-computer interface for cognitive 

assessment in people with cerebral palsy 

Abstract 

Typically, clinical measures of cognition require motor or speech responses. 

Thus, a significant percentage of people with disabilities are not able to complete 

standardized assessments. This situation could be resolved by employing a more 

accessible test administration method, such as a brain-computer interface (BCI). A BCI 

can circumvent motor and speech requirements by translating brain activity to identify a 

subject’s response. By eliminating the need for motor or speech input, one could use a 

BCI to assess an individual who was previously thought of as untestable. We developed 

an asynchronous, event-related potential BCI-facilitated administration procedure for the 

Peabody Picture Vocabulary Test (PPVT-IV). We then tested our system in typically 

developing (TD) individuals (N=11), as well as people with cerebral palsy (CP) (N=19) 

to compare results to the standardized PPVT-IV format and administration. Standard 

scores on the BCI-facilitated PPVT-IV, and the standard PPVT-IV were highly correlated 

(r = 0.95, p<0.001) with a mean difference of 2.0 ± 6.4 points, which is within the 

standard error of the PPVT-IV. Thus, our BCI-facilitated PPVT-IV provided comparable 

results to the standard PPVT-IV, suggesting that populations for whom standardized 

cognitive tests are not accessible could benefit from our BCI-facilitated approach. 

Keywords: P300, EEG, Cognitive Assessment, Cerebral Palsy 
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Introduction 

Clinicians use cognitive tests that have standardized materials, procedures and 

normative scoring to measure cognitive abilities. Standard cognitive measures typically 

require motor or speech responses. Thus, a significant percentage of people with 

disabilities are not able to complete standardized assessments [1,2]. To more 

accurately measure the cognitive ability of people with severe impairments, clinicians 

and researchers have used assistive technology such as touch pads, switches, and eye 

trackers for accessible testing. However, these tools still require speech or motor input, 

so cognitive assessments remain inaccessible to the people with the most severe 

impairments [3,4]. 

Research on solving this issue has proved promising. A notable potential solution 

is to use brain activity to evaluate a person’s cognitive ability, thus eliminating the need 

for motor or speech input to administer a test. Specifically, Connolly et al. conducted 

seminal work in this area [5]. Connolly collected data on brain activity via 

electroencephalography (EEG) to identify a subject’s response to a modified version of 

the Peabody Picture Vocabulary Test-III (PPVT-III) [6]. Similarly, Perego et al.  

developed a brain-computer interface (BCI) that was used to administer the Ravens 

Colored Progressive Matrices Test [7]. These two studies provided a proof of concept 

for cognitive assessment using brain activity [7]. For these systems to move toward a 

clinical setting, it is important to formulate both standard design and administration 

methods for brain-based cognitive assessment systems. We, therefore, established 

design criteria based on an analysis of previous reports of brain activity based cognitive 
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assessment tools, extensive experience in facilitated cognitive assessment, and the 

principles of cognitive testing psychometrics [8-10].   

Only after fortifying our understanding of the concepts presented by Connolly. [5] 

on cognitive assessment tests can we better appreciate the importance of carefully 

designing interfaces for populations with impairments. The standard PPVT presents four 

illustrations in a quadrant array, and the subject must select one of the four that best 

matches a verbal prompt [1,5,11,12]. Rather than abiding by that four-illustration 

standard, Connolly’s study modified the PPVT-III by presenting single illustrations 

alongside each spoken word. During the presentation, the spoken word either matched 

or did not match the illustration. Connolly evaluated results by manually determining 

post hoc whether brain activity associated with error recognition was exemplified in 

instances where the spoken word did not match the illustration [5]. Connolly then took 

those results and categorized the subjects into one of three vocabulary groups 

(preschool, child or adult) that estimated cognitive ability. On the other hand, the 

standard PPVT-III results provide individual raw scores ranging from 0-160. Using these 

scores, a clinician can estimate a patient’s intelligence quotient. In this case, Connolly’s 

method alters the format and psychometrics of the test and thus limits the information 

the clinician has to evaluate a patient's ability. Therefore, our first criterion for 

developing a cognitive assessment BCI is, a cognitive assessment BCI should maintain 

the psychometric properties of the standardized administration procedure. 

Connolly’s approach also necessitated manual interpretation of the brain 

responses. Therefore, a clinician would likely need to undergo additional training on 

how to interpret the brain signals, thus creating the vulnerability that results could be 
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interpreted subjectively. These hindrances to clinical utility lead us to our second 

criterion: 2) Brain-based cognitive assessment systems must automatically abstract the 

complexity of brain activity analysis to provide results that are not difficult for the 

clinician to interpret, thus mitigating the risk of human-introduced inconsistency in data 

interpretation.  

An alternative to the manual interpretation of brain activity is the brain-computer 

interface (BCI) [13-17]. A BCI translates brain activity into computer commands that 

allow a subject to control devices or make determinations from a display, thus removing 

the need for manual interpretation of brain activity [18].  For example, Iversen et al. 

used a non-invasive electroencephalography slow-cortical potential (SCP) BCI for 

cognitive assessment in three people with amyotrophic lateral sclerosis (ALS) [19]. SCP 

BCIs rely on a subject’s capacity to control their EEG activity by creating either positive 

or negative EEG polarizations. In Iversen’s study, all three subjects could use the BCI 

for cognitive assessment. These results were encouraging and demonstrated the 

potential for BCIs in cognitive assessment. However, SCP BCIs require multiple months 

of training before one can control them. For that reason, they are not regularly used in 

clinical settings [19]. Thus, our third criterion: 3) A brain-based cognitive assessment 

systems must be quick to set up for an individual patient. From our experience, and 

from conversing with clinicians who administer cognitive assessment tests, we 

determined the preferred set-up and calibration time to be an hour or less. 

Perego et al. developed another cognitive assessment BCI, which used Steady 

State Visually Evoked Potentials (SSVEPs) [7]. SSVEP BCIs function by presenting 

visual stimuli that all flicker simultaneously but at different frequencies. When the BCI 
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subject focuses his/her visual attention on one of the flickering stimuli, an oscillatory 

signal with a similar frequency to the stimulus manifests in the occipital electrodes of the 

subject’s EEG. The BCI determines the subject’s selection by determining which 

presented frequency best matches the frequency recorded in the subject’s EEG.  

Perego used four flickering Light Emitting Diodes (LED) to provide SSVEP 

stimulus, placed on the top, bottom, left, and right of a monitor. The monitor displayed 

the cognitive assessment questions and answers to the subject and provided visual 

feedback on the subject’s current selection. To answer a question, the subject focused 

their gaze on the left or right LEDs, which moved a selection cursor to the next answer.  

Once they had moved the selection cursor over their desired selection, the subject 

would focus their gaze on the top LED to submit the selection. Using an SSVEP BCI 

removed many drawbacks of SCP BCIs. SSVEP BCIs present two benefits; the first is 

that they are quick to calibrate (within 5 minutes). Secondly, they allow subjects to make 

self-paced decisions by not requiring them to select a BCI command until they focus 

their gaze on a LED. In the BCI literature, this form of functionality is called 

asynchronous control [20,21].   

Asynchronous control is a crucial feature for cognitive assessment BCIs. Those 

people in most need of cognitive assessments may have some form of cognitive 

impairment that prevents them from responding at the same pace as a non-impaired 

person. Also, the difficulty of the test questions will almost certainly vary between tests 

and within a test. If a person must rush to answer a question, due to limitations of the 

BCI, then the results of the cognitive assessment may not accurately measure a 
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person’s capacity. Thus, our fourth criterion: 4) A brain-based cognitive assessment 

system must have asynchronous control.   

Perego’s study also allows us to glean information on the applicability of SSVEP 

BCIs. Perego’s BCI was only usable in 57% of his subjects, and six out of the seven 

subjects unable to use the BCI were people with cerebral palsy (CP). Other studies 

have also shown mixed results when using SSVEP BCIs in populations with CP. Lower 

classification accuracy is usually attributed to the involuntary movements and muscle 

contractions in the neck, which are typical of CP. SSVEP BCIs rely heavily on occipital 

electrodes, which are the electrodes closest to the subject’s neck [7,22,23]. These 

electrodes are profoundly affected by muscle artifacts from the neck, which can 

significantly alter signal quality. This unintentional interference can ultimately lead to 

decreased BCI performance in people with CP. Another issue is that most SSVEP BCIs 

function like an eye-tracking system, requiring a person to focus and maintain their 

vision on the stimulus that corresponds to their selection [7,17,23]. For populations with 

conditions that include oculomotor impairments, maintaining such a gaze may be too 

difficult. While some SSVEP systems can be operated with closed eyes, or function 

using covert orienting of attention, these systems typically reduce the selection set to 

only two illustrations [24]. The reduced selection set means many cognitive assessment 

tests would have to be modified to a two-choice format, creating psychometric 

incompatibilities and violating our first design criterion.  

An alternative to SSVEP BCIs is the visual event-related potential (ERP) BCI 

[25]. Like SSVEP BCIs, ERP BCIs use visual stimuli of flashing objects to elicit brain 

responses for control. In an ERP BCI, each object (or group of objects) flashes one at a 
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time. The flashing elicits an ERP brain response only to flashes emitted by the object 

the subject is interested in selecting. By determining which flashing object elicited the 

ERP response, an ERP BCI can identify the subject’s desired selection. Like SSVEP 

BCIs, ERP BCIs are easy to learn and can incorporate asynchronous control [26]. The 

primary advantage of ERP BCIs over SSVEP BCIs is that they do not rely as heavily on 

occipital electrodes for classification and do not require subjects to maintain visual 

fixation on the flashing object they want to select. For these reasons, ERP BCIs have a 

potential advantage over SSVEP BCIs in people with CP. Thus, our final criterion is 

that: 5) the BCI must be able to function in the population it is targeting.  

In summary, our criteria are as follows: 

1. A cognitive assessment BCI should maintain the psychometric properties of 

the standardized administration procedure. 

2. Brain-based cognitive assessment systems must automatically abstract the 

complexity of brain activity analysis to provide results that are not difficult for 

the clinician to interpret.  

3. Brain-based cognitive assessment systems must be quick to set up (one hour 

or less).  

4.  Brain-based cognitive assessment system must have asynchronous control, 

thus allowing the subject to control the pace of the assessment.  

5. The BCI must be able to function in the population it is targeting.  

Using the criteria above, we developed an asynchronous ERP/SSVEP BCI, 

which retains the test and result format of the Peabody Picture Vocabulary Test (PPVT-

IV) [27]. We administered the BCI-facilitated PPVT-IV to people without impairments 
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and to people with CP. We chose the PPVT-IV because it has a strong test-retest 

reliability ranging from .91 to .94 across two different versions, Form A and Form B [27]. 

The strong retest reliability allowed us to compare our BCI-facilitated PPVT-IV with the 

standard PPVT-IV. 

Methods 

The Institutional Review Board of the University of Michigan approved 

recruitment and data collection protocols. In total, we recruited 11 people without 

impairments and 19 individuals with CP. Participants were ages 8-27, and were drawn 

from the University of Michigan Health System and surrounding areas. Subjects or their 

parents signed informed consent forms and filled out demographic surveys.  

Subjects attempted the standard PPVT-IV and the BCI-facilitated PPVT-IV. 

Subjects took the tests in a pseudo-random order. We used two matched difficulty 

versions of the PPVT-IV, Form A and Form B, to minimize practice effects. We used 

Form A for the standard PPVT-IV and Form B for the BCI-facilitated PPVT-IV. To 

document perceived workload of our BCI-facilitated PPVT-IV and the standard PPVT-

IV, subjects filled out a NASA Task Load Index survey (NASA-TLX) after each test 

[28,29]. 

BCI Setup 

The BCI was set up and calibrated for each subject using a 32-electrode 

(Locations: F3, F4, FC3, FCZ, FC4, T7, C3, CZ, FZ, FC5, FC1, FC2, FC6, C5, C1, C2, 

C4, T8, CP3, CPZ, CP4, P3, P4, PO8, C6, CP5, CP1, CP2, CP6, PZ, PO7, and OZ) 

EEG cap (Electro-Cap, Inc.), with a sampling rate of 600hz. Online classification only 

used 16 channels (F3, Fz, F4, T7, C3, Cz, C4, T8, CP3, CP4, P3, Pz, P4, PO7, Oz, and 
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PO8), to match the classification montage of our previous studies for future comparison 

[30,31]. We reserved the other channels for future analysis. [30-32]. Before taking the 

BCI-facilitated PPVT-IV, subjects responded to 60 PPVT-like questions where the 

computer provided the correct answer to the subject by highlighting the answer. Each 

question was presented on a monitor and showed four different illustrations. A spoken 

word was played through a pair of speakers that corresponded to the correct answer. 

The subject made his or her selection by focusing their attention on the corresponding 

flashing box of each illustration. We called theses boxes the selection boxes (figure 5). 

The subject did two 30 question runs which took about 7 minutes per run. The data 

collected from these runs were used to calibrate the BCI. 

NASA-TLX 

The NASA-TLX is a survey instrument that is commonly used to assess the 

workload of a task. It consists of six questions, and each question features a 21-point 

scale that the subject uses to convey the perceived difficulty of the task they did. The 

questions ask subjects to rate their perceived performance, mental demand, physical 

demand, temporal demand, the degree of effort and level of frustration about the task 

they performed [28].  

Peabody Picture Vocabulary Testing 

We licensed the PPVT-IV from Pearson Education, Inc for research purposes. 

The standard PPVT-IV contains 228 questions separated into 12 sets of increasing 

difficulty. Each question consists of a page with four illustrations in color.  In the 

standard administration method, the examiner speaks a word when each question is 
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presented. To respond, the subject must either point to or say the number of the 

illustration that best matches the word spoken by the examiner [27]. 

The test procedure involves identifying the subject’s basal and ceiling set. The 

basal set is identified as the first set the subject completes with one or fewer incorrect 

responses. The starting set is based on age and is labeled the basal set if the subject 

meets the basal set criterion. Otherwise, the subject goes down one set at a time until 

they answer a set with one or fewer errors. After determining the basal set, the subject 

moves through the test questions until they have completed all the sets, or until they 

submit eight or more incorrect responses in one set. The final set is labeled the ceiling 

set, and the number of incorrect responses is subtracted from the highest question 

tested to determine the raw PPVT-IV score. Using the PPVT-IV normative conversion 

score tables, the raw PPVT-IV scores are converted into standardized scores that are 

utilized in statistical analyses.   

When the subject took the standard PPVT-IV, we used the standard PPVT-IV 

protocol outlined above [27]. The BCI-facilitated PPVT-IV used the same logic flow as 

the standard PPVT-IV. However, the subject viewed illustrations on a 28-inch monitor 

(running at 120 Hz refresh rate), and the subject heard each question spoken a from 

computer speakers (Figure 5).  

The BCI-facilitated PPVT-IV displayed both ERP and SSVEP stimuli in the 

selection box to the subject, thus enabling us to test the performance of both ERP and 

SSVEP BCI modalities in people with CP (Figure 5). The checkerboards (SSVEP box) 

in each selection box flickered continuously at unique frequencies, eliciting SSVEP 

responses. The SSVEP boxes flashed as follows: the upper left-hand corner flashed at 
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5 Hz, the upper right at 15 Hz, the lower left at 20 Hz, and the lower right at 24 Hz and 

the cancel SSVEP box at 30 Hz (Figure 5). The numbers in each selection box and the 

X in the cancel box elicited ERP responses. Only one number or the X flashed at a time, 

prompting an ERP response only when the subject’s choice flashed (Figure 5). Subjects 

responded to the BCI-facilitated PPVT-IV by focusing their attention on the selection 

box that corresponded to the illustration they wanted to choose (Figure 5). During online 

testing sessions, we only used ERP responses to determine BCI state and commands. 

However, offline, we tested subject responses using both SSVEP by itself and hybrid 

SSVEP and ERP. 

Classification 

We used a three-stage classifier for ERP classification. During the first stage 

(stage 1), we applied the weights derived using stepwise linear discriminant analyses 

(SWLDA) during the calibration step to the subject’s EEG responses. SWLDA uses 

feature space reduction to find suitable features in a subject’s data to classify between 

two classes. In our case, the two classes were whether an EEG response contained an 

ERP or not. After establishing the features, the SWLDA classifier can then classify a 

subject’s EEG. EEG classification produces a value called the classification value. The 

classification values are either a negative or positive value, depending on whether a 

subject does or does not exhibit an ERP response. The larger the positive or negative 

magnitude of the classifier value, the more likely the EEG response falls into either 

category. Thus, a large positive classifier value strongly suggests an ERP occurred 

compared to a small positive classifier value. After all selection boxes on the computer 
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display had flashed at least once (called a flash sequence), our three-stage classifier 

entered its second stage called certainty.  

We developed the certainty algorithm (Stage 2) to generate values 

corresponding to the probability that the subject is making a choice from the display. 

The certainty algorithm takes the SWLDA classifier values calculated for each flash 

sequence in stage one and performs a t-test, then normalizes the results. The outputs 

are the probabilities that a subject is selecting, which we termed ‘certainty values’ [33]. 

To better estimate the certainty values of each selection box, we averaged the classifier 

values from different flash sequences for each selection. Averaging provides a better 

result than using only one ERP instance because it reduces the signal to noise issues of 

EEG. In our application, we averaged up to five of the most recent flash sequences. If 

certainty was reached before five sequences, we moved on to the next classification 

stage without waiting for more sequences.  

In our application, we used the certainty algorithm as a gatekeeper that 

prevented the BCI from making any decisions until one of the selection boxes reached a 

certainty value of 90% [33]. In literature, this form of BCI is called an asynchronous BCI 

since it prevents the BCI from making a choice until the subject is ready to respond. 

These steps prevent false positives and allow subjects to take their time to think about 

which illustration they want to choose. Once a subject has made his/her choice, he/she 

can then focus on the respective selection box allowing the BCI to reach the 90% 

certainty threshold. Once the threshold was met, we labeled the selection box the 

subject choose the ‘target,’ and our classification system entered stage 3; hold-release 

[30]. 
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During the hold-release stage, we dimmed all illustrations except the target. At 

this point, the cancel box in the middle of the screen began to flash with the other 

selection boxes (Figure 5). We asked subjects to continue focusing their attention on 

the selection box they chose (i.e. the target) if no color change occurred on the 

illustration they were selecting. If their illustration dimmed, they were instructed to focus 

their attention on the cancel box.   
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Figure 5. Labeled image of BCI-Facilitated PPVT-IV screen 

 

• The entire screen is one PPVT question 

• Each PPVT question has four illustrations 

• Each checkered square with a number is considered a selection box 

• The center selection box is the only selection box with an X, and we call 

this the cancel box 

• Checkerboard patterns all flicker at different frequencies eliciting VEPs. 

We call these the SSVEP boxes. 

• The numbers and the letter X flash only one at a time and elicit 

ERP/P300s. We call these the P300 boxes. 
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The hold-release algorithm produces a decision when any one of three 

conditions is met. The first condition uses as a threshold (called the positive threshold) 

the smallest classifier value that separated ERPs from non-ERP. In the original hold-

release paper, this threshold was set to 99% accuracy difference between ERP and 

non-ERPs, determined from the subject’s training data. In our study, the positive hold-

release threshold was set to the mean plus the standard deviation of the classifier 

values for the attended labels in the calibration data. This represented a threshold that 

separated ERPs from non-ERP with 85% accuracy. We changed the method of setting 

the positive threshold to explore how a lower threshold would impact hold-release 

performance. If the classifier value of either the target or cancel box was above the 

positive threshold, that was considered the choice of the subject. The second condition 

was whether the target was a negative classifier value. In this case, the cancel selection 

was classified as the choice of the subject. The final condition was invoked when both 

the target and cancel box had positive classifier values, but those values were below 

the positive threshold. In this case, the subject’s choice was whichever had the largest 

classifier value (Figure 6).  
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Figure 6. Example of hold-release confirmation step 

 
 

• During the confirmation step, all illustrations are dimmed except the target 

selected by the certainty algorithm. Aside from the target, subjects can 

also select the cancel box (centrally located X label) to cancel their 

selection and try the question again. 
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To further increase accuracy, the hold-release algorithm can be adjusted to 

prevent classification until the subject selects the target selection box a predetermined 

number of times (called number of times to verify). In the original hold-release paper 

(Chapter 3), two times to verify were used. In our study, four times to verify were used 

to increase BCI accuracy. In contrast to the original paper, we increased the times to 

verify because, in real-time, classification accuracy dropped compared to the original 

hold-release paper. We hypothesized that the decrease in accuracy was because of the 

decreased number of items displayed to the user (11 versus 4).  

Two other variations (3 total variations) of the original hold-release algorithm 

were used to test potential optimization methods. In the first variation, the third hold-

release condition was ignored. Thus, the classification was not altered, even when both 

illustrations had positive classifier values but were still below the positive classification 

threshold.  

In the second variation, the third hold-release condition was applied when the 

target had a classifier value larger than the cancel box. Otherwise, the times to verify 

were not altered. This modification biases the BCI into choosing the target, thus, 

increasing the speed of confirmation if the target was selected correctly initially. 

SSVEP Classification 

For SSVEP offline analysis, we used a two-second long windowed Fast Fourier 

Transform (FFT). Windowing began from the moment a question was presented to the 

subject until the moment the subject made a P300 selection. The classified selection 

box was determined by which of the 5 EEG frequencies collected and averaged from 

P07, P08 and Oz had the highest frequency power. 
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Hybrid Classification 

For hybrid classification, we applied same classification techniques as with the 

SSVEP and ERP BCIs. However, the final classification was whichever BCI modality 

reached a result first.    

Analysis 

Across all subjects and both CP vs. TD groups, we calculated the mean and 

standard deviation for the following measures: time/set, time/question, time/attempt at a 

question, time in classification stages 2 and 3; the number of cancellations/question and 

the number of attempts/question. 

 The mean and standard deviation of the difference in the PPVT-IV scores for the 

two administration methods (standard and BCI-Facilitated) were calculated. The 

Pearson correlation between the scores was determined. NASA-TLX scores and the 

time required for test administration were evaluated using paired t-tests.  

An MANOVA was used to compare SSVEP, ERP (using SWLDA) and hybrid BCI 

accuracy. An ANOVA was used to test hold-release accuracy based on changes to the 

third hold-release rule, and a t-test was used to compare the accuracy of our 3-stage 

classifier (SWLDA ►Certainty ► Hold-release) to only using SWLDA and certainty. 

Accuracy for certainty was taken each time certainty was met and whether certainty’s 

classification of the target was equal to the subject’s final selection (counting the 

selections that led to cancellations). Accuracy for hold-release was based on whether 

hold-release canceled or confirmed a subject’s selection correctly. 
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Results   

Out of all 30 subjects, eight people with CP did not complete the study. For the 

21 who did complete the test, standard scores on the BCI-facilitated PPVT-IV, and the 

standard PPVT were highly correlated (r = 0.95, p<0.001) with a mean difference of 2.0 

± 6.4 points, which is within the measurement agreement of the PPVT-IV (Figure 7). 

 

Figure 7. Correlation between Standard and BCI-facilitated PPVT-IV 

• Blue diamonds represent the typically developing subjects, and yellow 

squares represent subjects with cerebral palsy. 

• The correlation coefficient r = 0.95. 
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The BCI-facilitated test took about four times longer to complete than the 

standard PPVT-IV (p<0.05), with a mean of 43.05 ± 13.00 minutes compared to 12.1 ± 

3.28 minutes for the standard test.  

The NASA-TLX ANOVA results showed that people with CP perceived the BCI-

facilitated PPVT-IV as more mentally demanding, physically demanding and requiring 

more effort by (p<0.05) than did the TD subjects. This group difference was not noted 

with the standard version. There was also a significant difference in perceived 

performance (p<0.05) between those with CP and TD subjects. Subjects with CP 

believed they did worse on the BCI-facilitated test compared to the standard test, while 

TP subjects believed they did similarly on both test formats. However, both groups did 

equally on both test formats (Table 2). 

  



 49 

 

Table 2, NASA-TLX results summary 

• NASA TLX results of CP and TD means for perceived: Mental Demand, 

Physical Demand, Temporal Demand, Perceived Performance, Effort and 

Frustration. 

• Symbols:’, *, **, ***, # and ## correspond to statistical significance 

between each respective group. 

• Entries with no symbols had no statistically significant differences  
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Offline processing found no significant differences between our modified hold-

release rules. Therefore results were averaged during our analysis. The accuracy of 

using our 3-stage classifier (97.78 ± 4.06) was significantly higher (p< 0.001) than using 

only SWLDA and certainty (82.34 ± 0.97) together. Accuracy for hold-release to 

determine the choice of a subject between the target and cancel box was 85.18 ± 4.29. 

SSVEP classification accuracy was 27.29 ± 3.298, and hybrid classification accuracy 

was 52.23 ± 5.613. Due to the low accuracies of the SSVEP and hybrid systems, we did 

not use these results for further analysis. 

 A mean of 24.57 ± 17.41 seconds was needed to answer a BCI-facilitated 

PPVT-IV question. It took subjects about 1.29 ± 0.67 attempts per question to answer 

them correctly. It took a mean of 3.85 ± 4.28 seconds for a selection to reach certainty 

and a mean of 6.26 ± 4.44 seconds for hold-release to determine a subject choice 

(about 12.13 ± 9.60 individual flashes). Questions were canceled a mean of 0.29 ± 0.67 

times per questions (Table 3). 
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Table 3. Three stage classifier results summary 

 

 

 

 

 

 

 

 

 

•  

 

• There were no significant differences between groups 
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The subjects who did not complete the BCI-facilitated PPVT-IV had a mean age 

of 10.6 ± 2.9 years old. One subject was screened ineligible due to the inability to take 

the standard PPVT-IV. Two subjects did not complete the BCI-facilitated test because 

we could not establish reliable training weights. Offline we looked at the subjects 

training data sets and found that for one subject’s data was inconsistent and for the 

other subject we had forgotten to add the hold-release thresholds. 

 The remaining five subjects showed difficulty in maintaining their attention and 

interest after the one-hour setup and calibration process. For example, some children 

would only look at the BCI for a few seconds and then look away from the BCI or talk to 

their parent. We asked subjects how they were feeling, if they wanted to stop or if they 

wanted to take a break before resuming. All subjects who struggled with attention and 

interest verbally told us they were bored, tired or wanted to stop the test. 

Discussion 

Our findings demonstrate that our BCI-facilitated PPVT-IV provides equivalent 

results to the standard PPVT-IV. This suggests that our BCI-facilitated PPVT-IV could 

potentially be useful in testing populations for whom standardized testing is 

inaccessible.   

The BCI-facilitated PPVT-IV takes approximately four times longer than the 

standard PPVT-IV. The additional time it took to take the BCI-facilitated assessment is 

due to the slow selection speeds of ERP BCIs [34,35]. That established, a typical 

cognitive assessment session lasts more than two hours, and our cognitive assessment 

BCI’s test time is within that two-hour window of time. While in those sessions a subject 
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normally takes more than one test, this would mean a patient using our technology 

would have to make additional visits compared to TD developing patient.  

The NASA-TLX results showed that our BCI-facilitated PPVT-IV was perceived 

as having a higher physical demand than the standard PPVT-IV. The BCI-facilitated test 

does not require movement. Therefore, we believe this increase in physical demand 

was due to fatigue from sitting during the set-up and calibration period, and the 

increased test length compared to the standard test. Upon asking the BCI subjects why 

they felt the BCI-facilitated method was more physically demanding, we received 

comments that supported our impressions. We believe the increase in mental demand 

and effort was because the BCI-facilitated test required people to focus their attention 

on making selections, compared to verbalizing a selection as in the standard PPVT-IV. 

For populations without impairment or those that can take the standard test easily, such 

as those in our study, we expected the BCI-facilitated test to be more challenging than 

simply replying verbally. The results of our study support this as our BCI-facilitated 

assessment was perceived as more physically challenging (but not mentally 

challenging).  However, we believe that for populations with severe movement and 

speech impairments for whom actual physical movement is a great burden, the BCI-

facilitated test will be less challenging than the standard PPVT-IV, and perhaps the only 

accessible option.  

There was no significant difference between the PPVT-IV scores of subjects with 

or without CP. However, on the NASA TLX, subjects with CP reported significantly 

lower perceived performance for both the standard and BCI-facilitated PPVT-IV, 

suggesting that the CP subjects had lower confidence than the TD subjects.  
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Accuracy using SSVEP was poor and only slightly above chance. Previous 

studies have shown varied performance gains from using a hybrid BCI approach [36-

41]. Studies using SSVEP in subjects with cerebral palsy have reported low SSVEP 

accuracy. These studies suggest that muscle artifacts in the neck may interfere with the 

signal of the electrodes most used in SSVEP classification. While these studies suggest 

the presence of muscle artifacts as a possible reason for decreased SSVEP/hybrid BCI 

accuracy in subjects with CP, this does not explain the poor performance in typically 

developing people. For this reason, we believe the most probable cause of low 

accuracy in our SSVEP/hybrid BCI classification may be due to other factors, such as 

design errors with the SSVEP setup. 

Our 3-stage classifier significantly increased the accuracy compared to other 

classification methods we used (SWLDA and Certainty, SSVEP or hybrid). Along with 

accuracy gains, our 3-stage classifier also allowed the BCI to function asynchronously. 

Asynchronous functionality allows subjects the time to think as much as needed to 

provide their best answer, while a confirmation step reduces incorrect selection.  

Two other variations of the original hold-release algorithm were used offline to 

test potential accuracy differences. In the first variation, the third hold-release condition 

was ignored. In the second variation, the third hold-release condition was applied when 

the target had a classifier value larger than the cancel box. When these changes were 

applied to both conditions, there was a decreased accuracy for hold-release system 

compared to the original paper [26]. This is most likely due to our comparatively lenient 

positive hold-release threshold of 85% vs. 99% compared to the original hold-release 

paper. 
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Confirmation steps usually require a subject to respond to a secondary prompt or 

make another choice to confirm. To illustrate, Perego’s cognitive BCI used an indirect 

selection method and a secondary response [7]. Subjects would first indirectly scroll 

through the possible choices and then provide a second command to confirm their final 

choice. This form of verification can become quite slow as the number of responses in a 

cognitive test increase. For example, in a two-choice test, 2-3 actions are required to 

select, but if presented with six choices (as is in Perego’s study), it may take the subject 

2-7 actions or more to confirm a choice. These additional steps break the flow of the 

assessment and may become frustrating to a subject, leading to changes in 

assessment results. Using hold-release allows for a more natural confirmation step 

compared to using a secondary prompt to confirm a subject’s choice. In our 

implementation, the subject only needs to provide an additional response if their choice 

is being classified incorrectly. Otherwise, the subject continues focusing on their choice 

until the BCI progresses to the next question. 

Other research groups have also developed asynchronous BCIs. Typically, 

probabilistic models of ERP’s, ERP amplitude, classifier values, SSVEP, or EEG power 

bands are used to determine when a subject is making a choice [42]. Some groups 

have also combined two methods to increase the reliability of their asynchronous BCI. 

These hybrid systems typically combine an ERP based method (probabilistic models of 

ERP’s, ERP amplitude or classifier values) along with a frequency-based method (EEG 

power bands, spectral analysis or SSVEP responses). Frequency-based methods rely 

heavily on occipital electrodes to determine whether a subject is selecting a response 

with the BCI, making SSVEP BCIs less suitable for people with CP [36,42-45]. Our 
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method has the advantage of not requiring frequency-based analysis, reducing the 

likelihood of incorrect classification due to neck muscle artifacts. 

In our approach, we used our certainty algorithm for asynchronous BCI 

functionality. Based on the classification methods described above, we will now 

consider how our BCI met the criteria we outline previously.  

1. The first criterion, a cognitive assessment BCI should maintain the 

psychometric properties of the standardized administration procedure. 

Results from the difference analysis suggest that our BCI-facilitated PPVT-IV 

yields adequate measurement agreement with the standard version of the 

PPVT-IV, though more extensive analyses with larger samples would be 

important in this regard.  

2. The second criterion was that brain-based cognitive assessment systems 

must automatically abstract the complexity of brain activity analysis to provide 

results that are not difficult for the clinician to interpret. Our adapted BCI 

provided an output that matched the format of the standard PPVT-IV. 

Therefore, our approach meets the second criterion.  

3. Our third criterion was that brain-based cognitive assessment systems must 

be quick to set up (one hour or less). While our current system does fall within 

an hour of setup, there were still subjects who could not complete the test due 

to the lengthy setup time. Most of the setup time was spent applying gel to 

each electrode. New dry electrode technology developed by companies such 

as Wearable Sensing have the potential of removing this barrier and reducing 

setup time to less than 10 minutes [34]. 
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4.  Our fourth criterion was that a brain-based cognitive assessment system 

must have asynchronous control, thus allowing the subject to control the pace 

of the assessment. Due to our certainty and hold-release algorithms, we 

satisfied our fourth criterion. 

5.  Our fifth criterion was that the BCI must be able to function in the population 

it is targeting. We tested our technology with people who have cerebral palsy 

and selected a BCI modality that appears to function well in this relatively 

high-functioning population. Before we can fully say we met our fifth criterion, 

testing should be done to people with a higher severity of cerebral palsy. 

Limitations 

There were some limitations with our system and methodology. First, all subjects 

that went fully through our study were able to take both standard and BCI adapted 

PPVT-IV. While this allowed us to validate the measurement agreement of the system, 

future studies should focus on subjects with more significant motor and speech 

impairments. Furthermore, our sample size was small, thus precluding more extensive 

psychometric analyses of reliability and validity. Additionally, our implementation of an 

SSVEP BCI did not provide the accuracy needed to allow for either SSVEP or hybrid 

control. Lastly, we only tested our BCI on the PPVT-IV, which is an untimed multiple 

choice test. Different BCI adaptions would be required for time-sensitive assessments 

or assessments with different presentation formats and response demands.  

Conclusion 

Here, we presented a BCI that can administer the PPVT-IV, a test of receptive 

vocabulary. Our BCI provided equivalent results to the standard PPVT-IV, suggesting 



 58 

that our BCI-facilitated PPVT-IV could be used for cognitive assessment in populations 

for whom standardized tests are not accessible [41,42]. Our method was only applied to 

the PPVT-IV, a multiple-choice format test with a quadrant stimulus array. However, our 

system can be extended to other visual multiple-choice tests. Also, we demonstrated a 

novel, natural confirmation step that significantly increases BCI accuracy without the 

need for a secondary prompt. 
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Chapter Three: Novel Hold-release Functionality in a P300 Brain-computer 

Interface 

This is a published paper in the Journal of Neural Engineering.  

Abstract 

Assistive technology control interface theory describes interface activation and 

interface deactivation as distinct properties of any control interface. Separating 

coBCIntrol of activation and deactivation allows precise timing of the duration of the 

activation.  We propose a novel P300 BCI functionality with separate control of the initial 

activation and the deactivation (hold-release) of a selection. Using two different layouts 

and off-line analysis, we tested the accuracy with which subjects could 1) hold their 

selection and 2) quickly change between selections. Mean accuracy across all subjects 

for the hold-release algorithm was 85% with one hold-release classification and 100% 

with two hold-release classifications. Using a layout designed to lower perceptual errors, 

accuracy increased to a mean of 90% and the time subjects could hold a selection was 

40% longer than with the standard layout. Hold-release functionality provides improved 

response time (6-16 times faster) over the initial P300 BCI selection by allowing the BCI 

to make hold-release decisions from very few flashes instead of after multiple 

sequences of flashes. For the BCI user, hold-release functionality allows for faster, 

more continuous control with a P300 BCI, creating new options for BCI applications. 

Keywords: P300, EEG, speller, activation/deactivation, assistive technology 
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Introduction 

A brain-computer interface (BCI) is an assistive technology interface intended to 

provide operation of technology directly from the interpretation of brain signals to benefit 

those with the most severe physical impairments.  The science of assistive technology 

describes the human/control interface as “the boundary between the human and 

assistive technology.” For a BCI, the human/technology interface characterizes the 

utility the BCI provides [1]. Here we consider the characteristics of BCIs as 

human/technology control interfaces and present a novel P300 BCI functionality. For the 

three most commonly used electroencephalography (EEG)-based BCIs: P300 [2], 

steady-state visual evoked potential (SSVEP) [3], and motor imagery [4], we performed 

a literature search to define the most common BCI control interface characteristics and 

identify novel BCI control methods.  

Human/Technology Interface Characteristics 

The human/technology interface can be characterized by 1) the control interface, 

2) the selection set, 3) the selection method and 4) the user interface [1]. The control 

interface is described as the hardware between the human and technology through 

which information is exchanged. For non-invasive EEG BCIs, the control interface would 

be the electrodes, amplifier, and computer that convert the user’s brain signals to BCI 

commands. The selection set of a human/technology interface is the group of available 

choices a user can make. Examples of selection sets include the letters/numbers on an 

alphanumeric matrix or the directional arrows on a control display [1]. The selection 

method describes how a command from a user will be interpreted by the BCI, either 

directly or indirectly.  Direct selection allows a user to directly select any item from the 
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selection set, while indirect selection requires an intermediary step before a user can 

select [1].  

The final component is the user interface, which describes the characteristics of 

the interface between the user and the BCI. Three types of characteristics describe the 

user interface: 1) spatial, 2) sensory and 3) activation/deactivation. The spatial 

characteristics describe the dimension, number, and shape of the targets. The sensory 

characteristics describe the feedback provided to the user, whether auditory, visual or 

somatosensory [1]. The activation/deactivation describes the quality of the 

human/technology interaction. The effort describes the quality of interaction (how 

difficult it is to use the BCI), displacement (how much movement is required to respond), 

flexibility (the number of ways in which the BCI can be used), durability (how reliable the 

BCI hardware is), maintainability (how easily the BCI can be repaired) and the method 

of activation or release (the ability to make/activate or stop/deactivate a selection and 

how that selection is made) [1]. It is important to distinguish between activation and 

deactivation because they can both be given distinct functionality. Using activation as a 

control input can be thought of as a trigger or momentary switch. In this case, only the 

activation causes an effect, and the duration with which the activation is held does not 

alter the outcome. Using both activation and deactivation allows for more complicated 

control functionality, and the control input can act as a button. For example, on a 

television remote control, you can activate and hold one of the volume keys to keep 

increasing the volume. In this case, holding a selection causes continued change, while 

releasing it keeps the current state. 
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Literature search 

We performed a literature search on EEG-based P300, SSVEP, and motor 

imagery BCIs to 1) describe typical BCI implementations using the human/technology 

interface characteristics and 2) identify P300, SSVEP, and motor imagery BCIs with 

novel selection or activation/release methods. 

We search PubMed [5] from 1991-2014 using the terms: brain-computer 

interface control, brain-computer interface asynchronous, brain-computer control 

interface, brain-computer interface hybrid, brain-computer interface novel control, 

analog control brain-computer interface, analog control brain-computer interface, and 

proportional brain-computer interface. This generated over 600 unique publications. 

Review articles were identified by articles that did not focus on one study but instead 

described basic information on P300, SSVEP and motor imagery BCIs. Older review 

articles were dropped if a more recent article covered similar material. We used 13 

review articles to categorize the typical implementation of P300, SSVEP and motor 

imagery BCIs per the characteristics of the selection set, selection method, and user 

interface.  Insufficient information was present in the literature to categorize the lifespan 

of BCI hardware, durability, or maintainability. All P300, SSVEP, and motor imagery 

articles using typical implementations were excluded to identify 47 candidate novel 

interfaces articles.  

Literature results 

Over 99% of P300 studies used selection sets of characters or images. Selection 

sets typically had 36 items (6x6 matrices) [6] but ranged from 4 to 84 items (4 

independent options [7] to a 7x12 [8] matrix). P300 BCIs primarily used a direct 
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selection method with activation as the only control method. Although P300 signals 

could be used for indirect selection, most examples of this approach still used the P300 

signal to directly select from nested menus [2]. Only Citi et al. [9] used the P300 in a 

truly novel BCI paradigm to control a computer mouse in two dimensions by combining 

the P300 amplitudes of the filtered output. This implementation allowed for indirect 

selection and could also allow for deactivation. With only one published alternative 

control method for using the P300, this suggests that P300 BCIs have little flexibility. 

P300 BCIs tended to require less effort than SSVEP or motor imagery BCIs. P300 

accuracy increases substantially if a person can maintain a steady gaze [10], but gaze 

control is not strictly necessary [11-13]. Thus, P300 have low to medium displacement, 

as little to no eye movement is required for some layouts (Table 4).  

SSVEP BCIs are more flexible than P300 BCIs and have been used in direct and 

indirect selection methods and for activation/deactivation [3,14]. SSVEP selection sets 

typically consist of flashing characters or objects [3]. The number of objects is typically 

four [15] but ranges from 2 to 48 [16,17]. Displacement varies depending on the type of 

SSVEP BCI. Like P300 BCIs, the accuracy of SSVEP BCIs increases if the user can 

maintain gaze [18]. Newer SSVEP systems such as eyes-closed SSVEP BCIs eliminate 

the displacement issue, but such BCIs have a small selection set [19](Table 4). This 

suggests that displacement of SSVEP BCIs varies depending on the application. 

Motor imagery BCIs have greater flexibility than SSVEP BCIs and have been 

used for direct and indirect selection and activation/deactivation. Direct selection motor 

imagery BCIs tend to have smaller selection sets, typically 2-4 selections [20-22] 

because the number of selections is limited to the number of distinguishable imagined 
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actions [23,24]. Selection set size for indirect selection motor imagery BCIs is limited by 

the number of selections presented to the user and the precision of control.  Motor 

imagery BCIs require more effort to learn and use than P300 or SSVEP BCIs [25-27]. 

Required displacement of motor imagery BCIs varied greatly with simple protocols such 

as binary selection requiring no displacement while more complex protocols such as 

controlling robotic devices required the user to monitor the activity of the robot (Table 4).  
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Table 4. Assistive functionality BCI overview 

• Selection set of a human/technology interface is the group of available 

choices a user can make.  

• The selection method describes how a command from a user will be 

interpreted by the BCI, either directly or indirectly.   

• Activation/deactivation describes the control option of the 

human/technology interaction.  

• Flexibility describes the number of ways in which the BCI can be used 

• Effort describes how difficult it is to use the BCI 

• Displacement describes how much movement is required to respond 
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Our literature search shows that P300 BCIs utilize the same activation/release 

methods, producing less flexibility in P300 BCIs compared to SSVEP and motor 

imagery BCIs. This may result from the low signal-to-noise ratio of the P300, which 

often requires multiple P300 responses to accurately determine a user’s selection, 

reducing the response speed of the P300 BCI. Thus, P300 BCIs are typically used for 

direct selection from large sets of predetermined choices, such as a keyboard.  In this 

application, the advantage of a large selection set is considered more important than 

rapidly changing between selections. 

However, speed is a critical factor for many applications that do not naturally 

have quantified discrete outputs. For example, in applications such as BCI control of the 

position of a reclining seat, it is desirable to sustain a command (such as ‘recline’) until 

the desired condition is met (seat angle) or a safety concern arises. While motor 

imagery BCIs are often thought of as BCIs of choice for analog outputs, the time 

needed to learn sufficient motor imagery control for functional use can be prohibitive 

[25-30]. While SSVEP has been used for rapid response applications, there is no 

equivalent of this for P300 BCIs.  

Several P300 based systems have used different classification and feature 

extraction techniques to increase accuracy for classification of single P300 flashes. This 

includes using principal component analysis, independent component analysis, and 

neural networks. However, accuracies tend to be under 60% [31-35]. This can be 

largely attributed to the tendency for single trial studies using P300 to have a large 

matrix of choices (36 vs. two selections). However, in some situations, it may be 

beneficial to have a limited number of choices for a quick response. Results from 
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studies that use fewer selections suggest that fewer averages are needed to achieve a 

high classification accuracy. For example, Kubler [36] used an auditory P300 BCI for 

binary selection on twenty subjects and achieved 66% accuracy with one sequence, 

78% accuracy with two sequences, and 93% with 25 sequences. Further insight on how 

presentation methods can affect accuracy can be derived by evaluating data from rapid 

serial visual presentation (RSVP) BCIs that use the P300 signal but only display one 

option to the user at a time [37-39]. For example, in Blankertz [38], users were able to 

achieve 83% classification accuracy after their selections flashed on the screen about 

four times. Similar results were found in other RSVP studies [37-39]. While accuracy is 

still significantly less than ideal, findings from these studies and an abundance of others 

suggest that a smaller number of selections (if presentation rarity is maintained i.e. how 

often the subject’s selection is presented) and a presentation method that increases 

discernibility will yield an increase in P300 classification accuracy [38,40-42]. Thus, 

requiring less P300 events to occur for a correct classification can be reached.  

Hold-release Functionality 

We propose a novel P300 BCI functionality in which the initial activation and the 

deactivation (hold-release) of targets in a P300 BCI can be separately controlled. This 

would allow P300 BCIs to be used in applications that require indirect selection or 

applications that require quick changes between states. Further, it would allow 

confirmation-cancelation of a selected target by either holding the selection or switching 

attention to a release target.   

In a potential real-world application, the targets on the BCI display would have 

different activation/deactivation characteristics.  Some items would be hold-release 
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enabled to allow fine adjustment, for example, reclining a wheelchair (Figure 8: B1), 

changing the temperature (Figure 8: A3 and B3), or increasing the volume of a 

television (Figure 8: A2 and B2). Safety-critical items, such as unlocking/locking a door 

(Figure 8: D1 and E1), could require a hold-release confirmation-cancelation step, 

where a short hold period was required before activation.  The remaining items would 

perform traditional discrete P300 actions, such as turning on lights or changing a 

television channel. (Figure 8: C1, A2, and A3). Once the user selected a target with a 

hold-release response (for adjustment or confirmation) then the screen would change to 

a hold-release mode (Figure 8, right panel), in which only the previously selected target 

and a release target would be active, and the rest of the targets on the BCI matrix would 

not be selectable. If the BCI had correctly identified the desired target, the user would 

hold the selected target and the BCI would perform the action either until the user 

wanted the action to stop (reclining wheelchair or changing television volume) or for a 

specified duration to confirm the selection (thereby preventing inadvertent activation of a 

safety-critical action).  Thus, hold-release functionality would expand the utility of P300 

BCIs in ways that mirror the multiple control modes available on existing assistive 

technology and other BCI modalities [1,15,43-45]. 
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Figure 8. Concept image of future hold-release enabled BCI 

 

• Example BCI matrix with targets for different actions. Some actions are 

enabled for hold-release functionality and others are not. 

•  Right: After the subject selects an action that is hold-release enabled, in 

this case, recline wheelchair, the screen changes to a hold-release mode.  

• In this case, the subject can then recline their chair until they want to stop. 
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During the holding process, the only information required by the BCI is when the 

user changes their selection (e.g. stops increasing/decreasing volume or recline a 

wheelchair). The binary nature of the release decision allows the BCI to make the 

decision from very few flashes instead of after multiple sequences of flashes.  For the 

BCI user, this means a faster response time and a more continuous control than using 

the traditional P300 BCI method.  

To test the feasibility of P300 hold-release functionality, we asked subjects to 

perform hold-release tasks with two P300 BCI display layouts. Our first layout was a 

standard P300 BCI speller matrix.  The second was designed to reduce perceptual 

issues known to decrease P300 BCI classification accuracy and represented a change 

in the layout that would indicate the entry into the hold-release mode. The feasibility of 

hold-release functionality was determined through off-line analysis.  

Methods 

Layouts 

To get data to develop and test hold-release functionality, we created a 5x6 

matrix for a P300 speller with two selectable objects; one object was an ‘X’ in the upper 

left-hand corner of the matrix, and the other was ‘O’ in the lower right-hand corner 

(Figure 9). For this feasibility study, the locations of these “selectable targets” were 

chosen to maximize the distance between targets, minimizing the potential for 

inadvertent reactions to the incorrect target. The two selectable targets represent how 

hold-release would be used in a real-world application. The user would select on a 

standard BCI matrix with all the targets active.  Then the screen would change to hold-
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release mode, in which only the previously selected target and the “release target” 

would be active. The user would then hold the target (‘X’ in our case or raise/lower 

volume in case of figure 8) until the user wants to change the state (‘O’ in our example 

or stop in Figure 9). The rest of the objects on the BCI matrix would not be selectable, 

and responses from their flashes would not be used to determine the state the user was 

selecting. 

Two variations of the layout for the operating matrix were tested (Figure 9), both 

representing realistic usage options where a subject must alternate their selection 

between two targets (e.g., for volume control or wheelchair reclining).  In layout 1, the 

non-selectable objects of the matrix contained numbers to provide the visual clutter 

typical of P300 BCIs. Layout 2 was designed to remove two common perceptual issues 

in P300 spellers; adjacency response errors and double flashing errors. Adjacency 

response errors can happen when a flash occurs adjacent to the item the BCI user is 

selecting. This can cause the user to erroneously produce a P300 for an object that is 

not being selected. Double flash errors happen when the item the user is selecting is 

flashed twice in a row. This can cause the BCI user to miss the second flash or have a 

delayed reaction to the second flash [46-50]. To remove adjacency response errors, we 

surrounded each selectable object with white space. All other locations were filled with 

‘*’ characters for reduced visual clutter while keeping rarity of stimuli equal to a 

traditional BCI display. To remove double flashes, we ensured that the row and column 

containing a selectable item were never flashed sequentially. Layout 1 represents an 

eventual application in which activating a hold-enabled-selection results in the 

appearance of the release target, but no other changes.  Layout 2 represents an 



 76 

eventual application in which activating the hold-enabled-selection results in activation 

of the release target and other changes to the display to eliminate perceptual errors and 

indicate the entrance into the hold-release mode.  

 

 

 

Figure 9. Different layouts tested using hold-release technology 

• Left image is layout 1 which represents a typical event-related potential 

BCI typing matrix with numbers providing visual clutter.   

• The right image is layout 2 which has asterisks instead of numbers and 

whitespace to reduce perceptual errors.  

• Illuminated areas represent a flash group. 
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Protocol 

We tested seven able-bodied subjects ages 27 ± 13 years (2 females and five 

males) using a 16-channel EEG electrode cap from Electro-Cap International (electrode 

locations in figure 10). Subjects sat in front of a computer screen that contained one of 

our BCI layouts. We instructed our subjects to select and hold an object until a tone 

sounded to indicate a switch of the target object.  Subjects “held” the object by counting 

how many times it flashed. The target in the upper left corner was designated as the 

starting target.  Subjects performed ten hold-release runs, five using layout 1 and 5 

using layout 2. The order in which they used the layouts was pseudo-random. The tone 

played five times per run, creating five transitions between objects. The timing for the 

tone was pseudo-random and happened after 10-60 flashes (1560-9360 ms). All tones 

were separated by at least ten flashes, no tones played when a group that contained a 

selectable object was flashing, and no tones played during the first or last 5 seconds of 

each run. Each run lasted about a minute, containing 330 flashes and a total of 120 

hold-release decisions. During the collection, subjects were not given feedback 

regarding whether the object they were holding was selected.  
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Figure 10. Electrode cap montage 

• Circles denote electrode locations used for the study. 
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•  

Classification 

 The hold-release process used two classifiers. An initial selection classifier (such 

as is typically used for a P300 BCI) assigned classification values to the flashing 

objects.  The selection classifier used a least squares regression from training data 

collected by having the BCI user focus on each letter in the phrase “THE QUICK 

BROWN FOX” for 30 flashes per letter on a 6x6 BCI speller matrix.  

The hold-release classifier used the values produced by the selection classifier to 

determine which object was being held. The determination of the hold state assumed 

that, no matter how many objects were present in the BCI display, the user was 

attending to one of the two selectable objects. The held object was identified by 

comparison of the most recent classifier values of the two objects to each other and a 

threshold value. The held object decision could occur as frequently as each time that a 

new classifier value was available for either object. Because the selectable objects were 

placed in distinct flash groups, a hold-release decision could be made in less than an 

entire sequence of flashes.  The key variables in the response time of the hold-release 

functionality were, therefore, the amount of EEG used for classification (762 ms) and 

the number of flashes of the hold and released objects that were used in the decision 

process.  Results were calculated for one flash and two flashes of hold-release objects. 

Since the group that flashed happened at random, it took an average of 421 ± 250 ms 

for a new flash of one of the hold-release objects to occur. Thus, decisions based on 

one flash occurred on average every 1221 ± 250 ms, and those based on two flashes 

occurred on average every 1642 ± 363 ms.   
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The hold-release classifier produced a state change when any one of three 

conditions was met. The first condition used as a threshold the smallest selection 

classifier value that separated the selected objects with 99% accuracy (calculated from 

the training data).  The strict 99% accuracy was selected to maximally prevent 

unwanted state change for initial feasibility analysis.  If either object returned a selection 

classifier value that was equal to or greater than this threshold, that object was set as 

the held object. The second condition was whether the selection classifier value of one 

of the objects was negative. Whenever an object returned a negative selection classifier 

value, the held object was set to the other object. The second conditions directly 

implemented a release of a formerly held item. These conditions were applied on an 

individual flash basis. The final condition was invoked when both objects had positive 

selection classifier values, but those values were below the threshold.  This condition 

required data from flashes of both objects. Therefore no change occurred until the 

second object flashed. In this case, whichever object had the largest classifier value 

was considered the held object.  

When analyzing data utilizing two flashes of the hold-release objects, we 

required the classification decision from both flashes to agree on which selectable 

object was being held before the hold decision changed. If both flashes did not agree, 

then the previous hold decision was kept. 

Analysis 

In real world applications, the hold-release functionality would be associated only 

with certain objects in the BCI display and the mode would activate on the selection of 

one of those objects.  Thus, the held object would be known.  For the start of each run, 
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we, therefore, assumed that the held object was known to be the object in the upper left 

that the subject was instructed to observe first.  This object considered the held object 

until information from one of the two selectable objects was available, triggering a new 

hold decision.  Flashes of rows and columns that did not contain either selectable object 

did not result in a new hold decision.  

Ideal algorithm performance was a release decision at the first flash of either 

selectable target after the occurrence of the signal tone. This allowed each flash of the 

selectable targets to be assigned a correct decision value. Algorithm results for both 

layouts were compared to this standard.  With only two selectable objects, chance 

accuracy would be 50% during each hold-release decision.  For each run, we then 

calculated the mean accuracy of all decisions and the number of flashes between the 

transition points.  Then, we used a two-way ANOVA to compare accuracy across 

subjects and layouts.  

The duration of continuous correct hold-release classification was also analyzed. 

Ideal performance required correctly tracking the transitions between the held objects.  

No tolerance was allowed for delayed classifications of a state change.     

Results  

Minimum accuracy for the hold-release algorithm was 80% or higher for all 

subjects when calculated with information from one flash of a hold-release object. Mean 

accuracy from one flash of a hold-release object using layout 1 was 85 ± 3.5% and 

mean accuracy using layout 2 was 90 ± 3.6%.  Figure 11 shows an example of result 

data from the two layouts.  Using information from two flashes (from any combination of 

the two selectable objects) before deciding increased accuracy to 100% for both 
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layouts.  A two-way ANOVA across subjects and layouts showed a significant difference 

in accuracy depending on the layout used (=0.0003).  

 

Figure 11. Sample data of hold-release protocol 

• Left images are sample outcomes of our hold-release protocol using 

layout 1. 

•  Right images are sample outcomes of our hold-release protocol using 

layout 2. 

• Top images represent when only one flash was used for classification. 

• Bottom images represent when two flashes were used for classification.  

• The red line shows the ideal hold result for each flash.  The blue line 

shows which target the algorithm classified as held.  
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This accuracy results in sequences of continuous correct performance, which 

represent correct tracking of the hold condition, including transitions between hold 

targets.  There was a significant difference (p < 0.0001) between the continuous correct 

hold-release classifications between layouts. Layout 1 tended to have a greater number 

of shorter continuous correct classifications while layout 2 had longer continuous correct 

classifications. Using two flash classifications, all subjects held the correct target for the 

full duration of the run (Figure 12).  

 

 

Figure 12. Length of consecutive hold-release intervals 

• The length of consecutive correct performance intervals (in flashes) for all 

subjects by layout and single vs. double flash classification.  

• Note that each run was 330 flashes. 



 84 

Discussion 

Our results demonstrate that hold-release functionality is possible using P300 

BCIs. Using hold-release allows us to extend the use of P300 BCIs to applications that 

require fast and analog-like responses. Using layout 2, all subjects performed the hold-

release task with an accuracy of 86% or higher from the classification of one flash of 

either hold-release object.  Using two flashes of any combination of the two hold-release 

objects gave 100% accuracy.  

 P300 BCI spellers typically require 4-15 sequences for adequate classification 

accuracy (about 2 seconds per sequence)[2]. While a BCI with hold-release functionality 

would still require this time frame for activation of the hold-release mode, a response 

time advantage would be seen in the precision with which the duration of the hold was 

controlled.  Thus, multiple sequences of flashes would be used to activate a hold-

release selection, but deactivation would require only a single flash. This makes our 

release functionality much faster (Figure 13) than traditional P300 BCI system activation 

functionality, where each sequence adds to the classification time.  This faster response 

time comes from a decrease of information needed to make a classification among 

fewer targets.  

While motor imagery BCIs may provide faster responses than our hold-release 

P300 potential BCI [51,52], some BCI users have difficulty learning precise EEG-based 

motor imagery control [25,27-30]. SSVEP and P300 BCIs are both relatively easy to 

learn and have comparable responsiveness. SSVEP BCIs typically require 0.5-4 

(average 1) seconds [3,15,18,53-56] for accurate classification, while hold-release 

functionality requires 1.23 seconds (Figure 13). The largest time requirement for our 
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hold-release functionality is the collection of 762ms of EEG activity after each flash of a 

hold-release object. This window size was a default value to ensure that the P300 

potential was captured.  Optimization of this window size may increase the interface 

responsiveness without loss of accuracy and responsiveness may approach the lower 

bound of SSVEP systems. However, the current hold-release system is comparable to 

current SSVEP systems regarding response time.     

 

 

Figure 13. Comparison of standard ERP BCIs vs hold-release BCI 
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Since our algorithm operates using data from only one or two flashes, it can be 

expected to be extremely sensitive to perceptual errors in those flashes. As expected, 

layout 2, which was designed to reduce perceptual errors, produced a significant 

increase of 5% points in average accuracy from a single flash (from 85% to 90%). 

Furthermore, layout 2 has on average 40% longer continuous correct classifications and 

a larger maximum interval of continuous correct classifications compared to layout 1 

(210 vs. 182 flashes). 

These results support previous literature showing that BCI display characteristics 

have a direct effect on performance [15,46,57]. The increase in accuracy achieved from 

our simple changes to layout suggests that that other changes such as using color, 

flash brightness or frequency may further increase the robust of single flash 

classification using our hold-release functionality. Our layout changes are also 

reasonable within the applications in which hold-release functionality will be used. Many 

applications exist where it is important to rapidly change between two selections. For 

example, in the assistive technology realm, hold-release functionality has been used for 

volume control, item scanning and wheelchair control [1]. Our method can also be 

integrated with traditional P300 item selection in a two-step process to expand 

functionality. For example, a BCI user could use the traditional BCI speller to select the 

desired command from all possible commands, and then the screen could change to a 

hold-release screen to allow the user to have a precise termination of the command’s 

effect. Also, the hold-release could be used to provide a seamless confirmation step, 

allowing a user to cancel an erroneous selection in less time than would be required to 

select a backspace. This means that our hold-release functionality can naturally expand 
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the functionality of traditional P300 BCIs, changing their functionality depending on the 

application. 

Limitations  

This was a proof-of-concept study to demonstrate that hold-release functionality 

is possible using a P300 BCI. This study used offline data processing; we expect on-line 

tests to vary depending on the difficulty of the task. Future testing should also include 

longer duration runs to quantify better the timing of hold sequences, which in this data 

are limited by the one-minute duration of runs.   

Some steps were taken to avoid perceptual errors, such as the maximal spatial 

separation of the selectable targets. The success of rapid serial visual presentation 

(RSVP) BCI keyboards show that such separation of targets may not be necessary [58]. 

Conclusion 

We presented a novel BCI functionality in which activation and deactivation of a 

selection can be separately controlled. This functionality improves response time by 

allowing the BCI to make hold-release decisions from very few flashes instead of after 

multiple sequences of flashes. For the BCI user, this faster response time and a more 

analog-like control open new applications and interaction methods.  Further study is 

needed to verify on-line function and optimize the hold-mode flash patterns and visual 

layout for maximum responsiveness. 
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Chapter Four: Intelligence and functional connectivity in people with 

Cerebral Palsy 

Abstract 

Human cognitive assessment methodologies currently require a motor or speech input, 

which may prevent clinicians from obtaining accurate measurements of the cognitive 

capacity of subjects absent motor and speech. One potential method of mitigating this 

issue is to use electroencephalography (EEG) biomarkers to estimate cognitive 

capacity. In this study, we examine the relationship between oscillatory frequency power 

spectra, coherence, and phase lag between frontal and parietal cortices as they relate 

to intelligence in people with cerebral palsy (CP) who took a Peabody Picture 

Vocabulary Test (PPVT)-IV. Here, we observe frontal lobe biomarkers in EEG theta and 

delta oscillatory bands of children with CP that are traditionally associated with lower 

intelligence, compared to typically developing children. However, importantly, children 

with CP performed equally well in the PPVT-IV, which has been used as a proxy for 

intelligence. Therefore, EEG theta and delta power band spectra may not be a suitable 

biomarker for determining intelligence in subjects with CP. We suggest this may relate 

to neural compensation mechanisms in CP subjects, and propose alpha band power 

and theta phase lag as possible candidates for EEG biomarkers of cognitive capacity in 

CP subjects. 

Keywords: Functional Connectivity, PPVT, Intelligence, Cerebral Palsy 
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Introduction 

Standardized cognitive assessment tests provide a valid, meaningful measure of 

cognitive functioning for use in treatment planning, acute evaluation after injury, 

medication monitoring, academic curriculum, and accommodation planning. However, 

these standardized cognitive tests and the evidence-based practice that they support 

are inaccessible to individuals who cannot provide reliable verbal or motor responses, 

such as individuals with severe cerebral palsy (CP) [1-4]. The lack of accessible 

cognitive testing can result in under-estimation of cognitive abilities due to the common 

but mistaken assumption that one’s quality of movement and speech correlates to the 

quality of the mind [1,4]. Despite modifications to existing systems [1], most cognitive 

tests still require some degree of motor or speech input. Some studies have used brain-

computer interfaces (BCI) which allow a subject to control a device using their brain 

activity to answer assessment questions [5-7]. Unfortunately, most BCI methods alter 

the tests in ways that create psychometric concerns [1,8,9]. An alternative approach in 

estimating cognitive ability is to use non-invasive neuroimaging techniques while 

correlating intelligence to various biomarkers. This is typically done with 

electroencephalography (EEG), magnetoencephalography (MEG) or functional 

magnetic resonance imaging (fMRI). One of the earliest approaches was to look at 

power spectral analysis of EEG [10,11].  

 There are two methods for investigating intelligence with power spectral 

analysis. The first method was used by Doppelmayr [10], who recorded EEG signals in 

74 participants, who sat with their eyes closed for 3 minutes. Afterwards, participants 

took two different intelligence assessments, the Intelligenze-Struktur-Test (IST-70) and 
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the Lern-und Gedachtnistets (LGT3). Both the IST-70 and the LGT-3 are multi-

dimensional intelligence tests, however the IST-70 is more focused on semantic 

memory demands, while the LGT-3 focuses on the ability to learn new material. 

Doppelmayr found that lower alpha band power (8-10Hz) was positively correlated with 

IQ in the LGT-3 test, while the upper alpha band power (10-13Hz) correlated with IQ in 

the IST-70. Similar results regarding alpha band power and intelligence have also been 

reported by numerous other studies [10,12-14].  

The second method which leads to an opposite relationship between alpha band 

power and intelligence, has been used by Neubauer as well as other researchers 

[11,15-17]. Neubauer [17] tested 47 tournament chess players of varying intelligence on 

mental speed, memory and reasoning tests, while recording their brain activity with 

EEG. Subjects with higher intelligence demonstrated decreased upper alpha band (10-

13Hz) power than subjects with lower intelligence. This study suggests that more 

intelligent players exhibited decreased upper alpha band (10-13Hz) power because they 

required less mental resources to process the tasks presented to them.  

In regards to alpha responses, the different relationships shown by each method 

is due to the testing methodology. In Doppelmayr’s [10] study, EEG was recorded while 

subjects had their eyes closed. Therefore, alpha waves that were recorded were resting 

state alpha waves, also called tonic alpha waves. The subjects in the Neubauer [17] 

study, on the other hand, were actively performing a task while the EEG was being 

recorded, creating so-called phasic alpha waves [10]. Studies have demonstrated that 

intelligence is positively correlated to tonic alpha waves [10,12-14] and negatively 

correlated to phasic alpha waves [10]. Thus, it is important to consider whether 
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experimental methods will elicit tonic or phasic alpha band responses and interpret 

results accordingly. Studies in subjects with intellectual deficiencies have also 

generated significant insight regarding brain dynamics and intelligence. For example, 

Psatta’s study of 15 subjects and Gasser’s study of 25 subjects (among others) 

demonstrated that delta and theta waves are increased in people who were diagnosed 

with intellectual deficiencies [18-21]. In most cases, tonic and phasic power band results 

with respect to intelligence agree except for alpha and gamma. Gamma has been 

shown to be negatively correlated to intelligence in the frontal and occipital lobes but 

positively correlated to intelligence in the parietal lobe [19]. 

Signal coherence and phase delay are two other biomarkers that have been 

correlated to intelligence in previous studies [19]. Coherence is the term for the 

statistical difference between two signals with respect to signal phase shift. Therefore, 

this comparison may estimate the connectedness between two regions in the brain, 

such that higher values imply more connectedness. In contrast, phase delay strictly 

measures the difference in time between two simultaneously recorded signal responses 

[19].  

Seminal work from Gasser [19] first explored EEG coherence as an assessment 

of intelligence. The authors compared the coherency of 158 TD subjects with 47 

subjects who had a low IQ. Coherence estimates were taken from the frontal and 

occipital electrodes, as well as the electrodes linking the frontal to occipital region. 

Gasser found that children with cognitive impairments had higher coherence in the theta 

band in the frontal to occipital lobes. Separately, a comparison of coherence between 

high IQ and low IQ participants revealed a positive correlation of IQ with short 
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interhemispheric (localized connections e.g. frontal lobe) EEG phase delays, long 

intrahemispheric (global connections e.g. frontal to occipital lobe) phase delays and 

reduced coherence across all frequency bands. Furthermore, delta, alpha, beta (frontal 

and parietal; occipital is positively correlated) and theta bands were negatively 

correlated with IQ intelligence.   

Altogether, we find the several distinct relationships between EEG biomarkers 

and intelligence [10,13,14,18-22] (Figure 14): 

• Delta power in the frontal cortex is negatively correlated to IQ. 

• Theta power in the frontal, central, parietal and occipital lobes are 

negatively correlated to IQ. 

• Tonic alpha power in the frontal and occipital lobe is positively correlated 

to IQ. 

• Phasic alpha power in the frontal and occipital lobe is positively correlated 

to IQ. 

• Beta power in the frontal and parietal lobe is negatively correlated to IQ. 

• Beta power in the occipital lobe is positively correlated to IQ. 

• Tonic gamma power is negatively correlated to IQ. 

• Phasic gamma is negatively correlated to IQ in the frontal and occipital 

lobes 

• Phasic gamma is positively correlated to IQ in the parietal lobes. 

• Coherence across all bands is negatively correlated to IQ. 

• Short interhemispheric phase delays and long intrahemispheric phase 

delays are correlated to IQ 
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Figure 14. Summary of power band and intelligence 
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These results are all in accordance with the neural efficiency theory that 

suggests that lower brain activation is needed to process the same information in high 

IQ individuals compared to lower IQ individuals [19]. Low coherence, short 

interhemispheric phase delays and longer intrahemispheric delays suggest that brain 

processes are happening more locally than globally [14,19]. This is consistent with 

current functional connectivity EEG studies that suggest that higher IQ individuals use 

small, locally isolated and highly clustered brain regions to process information, while 

low IQ individuals require additional recruitment across the brain. Similar results have 

also been found in CP subject populations [23,24]. For example, Sobaniec [25] found 

that subjects with spastic displegia cerebral palsy exhibit longer interhemispheric phase 

delays and increased coherence in the theta and delta bands. Subjects also exhibited 

an increased alpha power band in the temporal, parietal and occipital lobes. [26] yielded 

similar results from 26 children with hemiparetic cerebral palsy, as did Takeshita [27] 

when studying 12 subjects with preterm diplegia.  

Per previous literature all CP subjects should have lowered intelligence [24]. 

However, only fifty percent of subjects with CP exhibit intellectual disability [1]. This 

suggests that results related to functional connectivity and intelligence may not apply 

equally to all populations. We believe that this is due to a neural compensation, which 

may relate to subjects’ pathologies [24]. If so, the brain of a CP subject may 

demonstrate biomarkers of decreased intelligence due to brain network reorganization, 

but these markers may not adequately reflect a person’s IQ. Currently it is unknown 

whether EEG biomarkers are directly correlated with intelligence in subjects with CP. 
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Therefore, understanding the relationship between EEG biomarkers and intelligence in 

CP could allow researchers and clinicians to assess cognitive capacity in CP.  

Here, we investigated the relationship between EEG power band, coherence and 

phase delay in CP subjects who used a brain-computer interface adapted to the 

Peabody Picture Vocabulary Test (PPVT)-IV.  

Methods 

We recruited participants ages 8 and older who could complete both a standard 

Peabody Picture Vocabulary Test (PPVT-IV) and a BCI-facilitated PPVT-IV.  In total, 11 

participants without impairments and 19 subjects with CP were recruited (ages 16.03 ± 

5.71;17 male and 12 female). Out of the 30 participants overall, 8 CP subjects were 

excluded from the study. The PPVT-IV is a commonly used cognitive assessment for 

determining receptive vocabulary and can be used as a proxy for intelligence. We chose 

the PPVT-IV because it has a strong test-retest reliability, ranging from .91 to .94 across 

two different versions (Form A and Form B) [28].  

The participants who did not complete the BCI-facilitated PPVT-IV had a mean 

age of 10.6 ± 2.9 years old. One subject was screened ineligible due to the inability to 

take the standard PPVT-IV. Two subjects did not complete the BCI-facilitated test 

because we could not establish reliable training weights. Offline, we looked at the 

subjects’ training data sets and found that one subject’s data was inconsistent, and due 

to an error, a different subject’s data was missing the hold-release thresholds. 

 The remaining five subjects had trouble maintaining their attention and interest after the 

one-hour setup and calibration process. For example, some children would only look at 



 101 

the BCI for a few seconds and then look away or talk to their parent. We asked subjects 

how they were feeling, and if they wanted to stop or rest before resuming. All subjects 

who struggled with attention and interest verbally indicated they were bored, tired or 

wanted to stop the test.  

 Subjects were recruited from the University of Michigan Health System and 

surrounding areas. The University of Michigan Institutional Review Board approved 

recruitment and data collection protocols. Participants and their parents signed informed 

consent forms and filled out demographic surveys.  

The study consisted of subjects taking the standard PPVT-IV and a BCI-

facilitated PPVT-IV. Both tests were performed, to compare exam score variability 

between the standard and BCI-facilitated PPVT-IV. Subjects were seated in front of a 

computer monitor and set up with a 32-electrode electroencephalography cap, channels 

F3, F4, FC3, FCZ, FC4, T7, C3, CZ, FZ, FC5, FC1, FC2, FC6, C5, C1, C2, C4, T8, 

CP3, CPZ, CP4, P3, P4, PO8, C6, CP5, CP1, CP2, CP6, PZ, PO7, and OZ. 

The BCI was set up as a hybrid BCI that combined Steady State Visually Evoked 

Potentials (SSVEP) and Event Related Potentials (ERP) [9,29]. During our study, we 

only used the ERP to classify user intent due to poor SSVEP performance. ERP 

classification was handled using the three-stage classifier outlined in Chapter 3 

[9,29,30]. This allowed subjects to take as much time as needed to respond to each 

PPVT-IV question and allowed subjects to confirm their selections without needing 

secondary prompts. 
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The standard PPVT-IV was administered using the standard protocol [9,28,29]. 

The BCI-facilitated PPVT-IV differed by using a pair of laptop speakers to play each 

question’s respective word and by displaying each question on a computer monitor 

[9,29]. To respond, the subject focused his/her attention on the number that 

corresponded with the image he/she wanted to select. The BCI would then move 

through the test after a response was registered. To help keep the subjects focused, we 

instructed them to say, in their head, the number they wanted to select each time it 

flashed. 

Analysis 

After the subject completed both tests, we compared the scores of the standard 

PPVT-IV by taking the mean and standard deviation of the difference in the PPVT-IV 

scores for the two administration methods (standard and BCI-facilitated). Furthermore, a 

Pearson correlation was taken between the scores of the standard and BCI-facilitated 

test.  

We then examined subjects’ data (total across-subjects length of 12 minutes) 

gathered during the calibration process described in Chapter 3. Like Langer [31], we 

used 40 seconds of EEG data, sampled five times. These five sample locations were 

randomly taken from each subject’s EEG data and manually inspected for eye and 

muscle artifacts. If artifacts were found in the sample, then a new random sample was 

taken and manually inspected. This was repeated until five clean, 40-second EEG 

samples were collected for each subject’s respective data with no overlapping data. For 

each subject, we concatenated their data to create 200-second chunks of data. Like 

Langer, no changes were done for the edge conditions since they represent an 
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insignificant amount of the over-all data. These chunks of data were analyzed for 

differences in power in the delta (1-4Hz), theta (4-7Hz), lower alpha (8-10Hz), upper 

alpha (10-13Hz), beta 1(13-18Hz) and beta 2(18-25Hz) bands. 

Coherence and phase delays were also analyzed, using the same 200-second 

chunks of data, broken up into the same 8 frequency bands. Afterwards, the results for 

the CP and TD groups were averaged separately. We separately analyzed the 

coherence and phase lag (interhemispheric) of the frontal lobe electrodes (F3, F4, Fz, 

FC3, FCz, FC4, FC5, FC1, FC2 and FC6,) and the posterior electrodes (P3, P4, PO8 

PZ, PO7 and OZ). We then analyzed the coherence and phase lag (intrahemispheric) 

between the frontal and posterior electrodes. An ANOVA was performed on the power 

band, coherence, and phase lag measures, with respect to both the standard PPVT-IV 

scores and BCI-facilitated PPVT-IV.  

Results  

We found no significant differences when analyzing global (frontal to posterior) or 

posterior power band between subjects with CP and TD. However, when considering 

power from only the frontal lobe electrodes, there was a significant difference between 

CP and TD in the theta power bands (mean and standard deviation: TD 490 ± 410 vs. 

CP 1100 ± 730, p<0.01) and delta power bands (mean and standard deviation: TD 1900 

± 1000 vs. CP 3500 ± 230 p<0.0001).  

There were no significant differences between TD and CP subject’s coherence 

and interhemispheric phase delay when analyzing the frontal and posterior electrodes. 

However, there was a significant difference in the global (frontal to posterior) electrodes, 

with CP subjects having higher coherency but not larger intrahemispheric phase delays.   
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Discussion 

The purpose of this study was to investigate the feasibility of using EEG 

biomarkers as a method to assess intelligence in people with motor impairments, such 

as CP, for whom it is difficult or impossible to perform standardized intelligence tests. 

Numerous studies have investigated functional connectivity and power band analyses 

with respect to intelligence in typically-developing subjects, and in subjects diagnosed 

with intellectual impairments. Other studies have focused on understanding the power 

band differences in subjects with CP compared to TD subjects. However, none have 

explored how these EEG biomarkers relate to intelligence in subjects with motor 

impairments such as CP. In CP in particular this is critical, because biomarkers of 

intelligence suggest that subjects with CP have lower intelligence even though close to 

half of the subjects with CP are reported to have no intelligence impairments [1]. In our 

study, we compared EEG biomarkers of intelligence with PPVT-IV scores recorded 

using the standard PPVT and a BCI-facilitated PPVT-IV. 

Power band analysis provided the most prominent biomarker in our study. 

Compared to TD subjects, frontal lobe power in subjects with CP was greater by nearly 

five times, thus suggesting that CP subjects should have lower PPVT-IV scores than TD 

subjects. The second metric, frontal lobe delta wave power, was also significantly higher 

in people with CP compared to TD. This result also suggests that CP subjects should on 

average exhibit lower measures of IQ as compared to TD subjects, as implied by 

findings from previous studies such as Gasser’s [18-20]. The significant increase in 

theta and delta in the frontal lobe in people with CP compared to TD suggests that 

subjects with CP require more cognitive resources to take the PPVT-IV. This result has 
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major implications for the current prevailing theories of power band analysis and 

intelligence, since it suggests that current metrics may not apply to subjects with CP. 

Therefore, these EEG biomarkers are not recommended for assessing the intelligence 

capacity of someone with severe CP who cannot take a standard cognitive exam as 

those methods of measurement may not be appropriate.  

This theory is supported by fMRI studies that have been conducted in subjects 

with CP. For example, in Burton’s [24] study on 11 subjects with CP and 11 typically 

developing subjects, he found that subjects with CP had expanded networks with larger 

clustering. Taken together, our results indicate that the reorganization of the brain that 

occurs in subjects with CP significantly alters the brain dynamics, thus altering how 

EEG biomarkers of intelligence should be interpreted. 

Interestingly, we did not find any difference between CP subjects and healthy 

participants when analyzing the global power band. Previous studies rarely find 

significant difference in all power bands. That could explain why there was no significant 

difference between beta and gamma power band analysis. However, global alpha band 

difference between high IQ vs low IQ individuals is usually a consistent metric that 

usually shows significant results across studies. Since there wasn’t a significant 

difference between age and PPVT-IV score, we would expect the CP and TD subjects 

to fail to display significant differences in alpha band pass power difference. Indeed, it 

was shown in our results that some biomarkers (in our case alpha band pass) may still 

be a suitable biomarker for assessing cognitive capacity in people with CP. Future 

studies should investigate how low/high IQ CP subjects compare to low/high IQ TD 

subjects.  
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We found no significant differences between coherence and interhemispheric 

phase delay when analyzing the frontal and posterior electrodes. However, we saw a 

significant difference in the global (frontal to posterior) electrodes, with CP subjects 

having higher coherency but not larger phase delays. The higher coherence suggests 

that a CP subject recruits more brain areas to process the same task as a TD subject, 

suggesting that they would possess lower intelligence [14]. Thus, on the PPVT-IV, we 

would predict the CP subjects would have lower scores then TD subjects, however, this 

is not the case.  

Coherence is a statistical measure of phase consistency between two signals. 

Previously, coherence has been described as an indicator of shared information 

processing. Thus, decreased coherence may indicate increased spatial differentiation 

as well as increased complexity, leading to increased speed and efficiency of 

information processing [10,13,14,18-22]. Phase delay is the lead or lag between two 

time series signals, and is also amplitude independent. This measure has not been 

heavily explored in the literature but it is speculated that phase delay is associated to 

signal transduction or processing speed [14]. Therefore, greater phase delay between 

frontal and posterior brain regions may correspond to slower processing and thus lower 

intelligence. Here, we observed that CP subjects with similar intelligence to TD subjects 

exhibited higher EEG coherence, but similar phase delay, between frontal and posterior 

regions. Based on this, we suggest that coherence may reveal cortical organization, 

which may or may not directly correlate with intelligence. CP subjects have brain 

reorganization due to their pathology, and this is reflected as a higher coherence, but 

overall, they can function cognitively equal to TD as shown by the lack of phase delay 
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and equal PPVT-IV score. This suggests that phase delay may be a strong correlate to 

intelligence but not coherence.  

The results of this study suggest that different strategies must be employed to 

accurately use EEG biomarkers as tools for assessing intelligence. Using EEG 

biomarkers found to correlate with intelligence in TD may not be the best approach in 

subjects with CP as they may falsely indicate lowered intelligence inconsistent with their 

actual cognitive capacity. There are however two biomarkers that may still be good 

candidates for assessing cognitive capacity: frontal to posterior alpha power band, and 

phase delay. Further research is required to understand how intelligence changes with 

respect to IQ, and to examine whether these biomarkers are also suitable for assessing 

cognitive capacity in other disease states.  

Limitations 

The primary limitations of this study are related to sample size and the task the 

subject had to perform. Our small subject number was a possible reason why some 

biomarker measures did not reach statistical significance. For example, Thatcher used a 

total of 442 subjects [14]. To our knowledge, Thatcher is only group that has studied 

neural correlates of phase delay and intelligence. Therefore, it is not well established 

what the subject size norms should be.  

A limitation is that our study used EEG data of subjects while they performed a 

BCI-facilitated test. While previous connectivity studies have been done while people 

perform tests, most connectivity results are obtained by recording a subject’s EEG after 

the test with their eyes closed. Additionally, in a BCI, the subject uses their brain activity 

for control and that control input could affect our connectivity results. 
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Conclusion 

Standardized cognitive tests are inaccessible to individuals without a reliable 

verbal or motor response. The lack of accessible cognitive testing can result in under-

estimation of cognitive abilities. An alternative approach to estimating cognitive capacity 

is to use non-invasive neuroimaging techniques while correlating intelligence to power 

band analysis or functional connectivity. In this study, we investigated how accurately 

power band analysis and functional connectivity measure intelligence in people with CP. 

Our results suggest that previous findings relating functional connectivity and power 

band analysis to intelligence do not directly apply to subjects with CP. Subjects with CP 

demonstrated features that correlate with lower intelligence than TD subjects. However, 

they scored similarly to TD subjects on a PPVT-IV, which we used as a proxy for 

intelligence. We believe this is due to the neural compensation resulting from the 

subject’s pathology.  

  



 109 

References 

[1]Yin Foo R, Guppy M, et al 2013 Intelligence assessments for children with cerebral 
palsy: a systematic review. Dev.Med.Child Neurol. 55(10):911-918. 

[2]Bagnato S, Neisworth J 1994 A national study of the social and treatment "invalidity" 
of intelligence testing for early intervention. School Psychology Quarterly, Sch Psych 
Quart 9(2):81. 

[3]Hill-Briggs F, Dial JG, et al 2007 Neuropsychological assessment of persons with 
physical disability, visual impairment or blindness, and hearing impairment or deafness. 
Arch.Clin.Neuropsychol. 22(3):389-404. 

[4]Losch H, Dammann O 2004 Impact of motor skills on cognitive test results in very-
low-birthweight children. J.Child Neurol. 19(5):318-322. 

[5]Byrne JM, Dywan CA, et al 1995 An innovative method to assess the receptive 
vocabulary of children with cerebral palsy using event-related brain potentials. 
J.Clin.Exp.Neuropsychol. 17(1):9-19. 

[6]Iversen IH, Ghanayim N, et al 2008 A brain-computer interface tool to assess 
cognitive functions in completely paralyzed patients with amyotrophic lateral sclerosis. 
Clin.Neurophysiol. 119(10):2214-2223. 

[7]Byrne JM, Connolly JF, et al 1999 Brain activity and language assessment using 
event-related potentials: development of a clinical protocol. Dev.Med.Child Neurol. 
41(11):740-747. 

[8]Connolly JF, D'Arcy RC, et al 2000 The application of cognitive event-related brain 
potentials (ERPs) in language-impaired individuals: review and case studies. 
Int.J.Psychophysiol. 38(1):55-70. 

[9]Huggins JE, Alcaide RE 2013 Brain-Computer Interfaces to Assess the Cognitive 
Capabilities of Locked-In Children.  

[10]Doppelmayr M, Klimesch W, et al 2002 EEG alpha power and intelligence. 
Intelligence 30(3):289-302. 

[11]Neubauer AC, Fink A 2009 Intelligence and neural efficiency: Measures of brain 
activation versus measures of functional connectivity in the brain. Intelligence 
37(2):223-229. 

[12]Klimesch W 1999 EEG alpha and theta oscillations reflect cognitive and memory 
performance: a review and analysis. Brain Res.Brain Res.Rev. 29(2-3):169-195. 



 110 

[13]Anokhin A, Vogel F 1996 EEG alpha rythm frequency and intelligence in normal 
adults. Intelligence 23(1):1-14. 

[14]Thatcher RW, North D, et al 2005 EEG and intelligence: relations between EEG 
coherence, EEG phase delay and power. Clin.Neurophysiol. 116(9):2129-2141. 

[15]Klimesch W, Doppelmayr M, et al 1998 Induced alpha band power changes in the 
human EEG and attention. Neurosci.Lett. 244(2):73-76. 

[16]Klimesch W, Doppelmayr M, et al 2006 Upper alpha ERD and absolute power: their 
meaning for memory performance. Prog.Brain Res. 159:151-165. 

[17]Neubauer AC, Grabner RH, et al 2004 Intelligence and individual differences in 
becoming neurally efficient. Acta Psychol.(Amst) 116(1):55-74. 

[18]Gasser T, Von Lucadou-Muller I, et al 1983 Correlating EEG and IQ: a new look at 
an old problem using computerized EEG parameters. 
Electroencephalogr.Clin.Neurophysiol. 55(5):493-504. 

[19]Gasser T, Rousson V, et al 2003 EEG power and coherence in children with 
educational problems. J.Clin.Neurophysiol. 20(4):273-282. 

[20]Gasser T, Mocks J, et al 1983 Topographic factor analysis of the EEG with 
applications to development and to mental retardation. 
Electroencephalogr.Clin.Neurophysiol. 55(4):445-463. 

[21]Martin-Loeches M, Munoz-Ruata J, et al 2001 Electrophysiology and intelligence: 
the electrophysiology of intellectual functions in intellectual disability. 
J.Intellect.Disabil.Res. 45(Pt 1):63-75. 

[22]Psatta DM, Goldstein R, et al 1991 EEG mapping in mentally retarded children by 
synthetic arginine vasotocin administration. Rom.J.Neurol.Psychiatry 29(1-2):9-16. 

[23]Klingner CM, Volk GF, et al 2014 The effects of deefferentation without 
deafferentation on functional connectivity in patients with facial palsy. Neuroimage Clin. 
6:26-31. 

[24]Burton H, Dixit S, et al 2009 Functional connectivity for somatosensory and motor 
cortex in spastic diplegia. Somatosens.Mot.Res. 26(4):90-104. 

[25]Kulak W, Sobaniec W 2003 Spectral analysis and EEG coherence in children with 
cerebral palsy: spastic diplegia. Przegl.Lek. 60 Suppl 1:23-27. 

[26]Kulak W, Sobaniec W, et al 2005 EEG spectral analysis and coherence in children 
with hemiparetic cerebral palsy. Med.Sci.Monit. 11(9):CR449-55. 



 111 

[27]Koeda T, Takeshita K 1998 Electroencephalographic coherence abnormalities in 
preterm diplegia. Pediatr.Neurol. 18(1):51-56. 

[28]Dunn LM, Dunn DM 2007 Peabody Picture Vocabulary Test – Fourth Edition.  

[29]Alcaide R, Warchausky S, et al Asynchronous brain-computer interface for cognitive 
assessment in people with cerebral palsy. In review J of Neuro Eng.  

[30]Alcaide R, Huggins J 2013 Evaluating hold-release functionality in a P300 BCI. BCI 
Meeting; 1(1). 

[31]Langer N, Pedroni A, et al 2012 Functional brain network efficiency predicts 
intelligence. Hum.Brain Mapp. 33(6):1393-1406. 

  



 112 

Chapter Five: Closing Discussion  

Standardized cognitive assessments are typically administered with verbal 

queries, pictures and manipulatives that require verbal or motor responses.  This 

prevents them from being used by people with physical and/or communicative 

impairments [1,2]. By using assessments that require verbal or motor responses, those 

with physical and/or communication impairments are dismissed as untestable [1,2], thus 

leaving them vulnerable to not receiving the aid they need. To circumvent these issues, 

researchers have used assistive technologies such as touch pads, switches, and eye 

trackers. However, these tools still require some form of speech or motor input [3,4]. 

The goal of this dissertation was to investigate alternative approaches that do not 

require any motor or speech input to assess the cognitive capacity of an individual. The 

first approach involved using a BCI [5-8] that was adapted to facilitate the administration 

of a PPVT-IV [5,6]. The second approach used EEG biomarkers such as power band, 

coherence and phase delay analyses [9-14].  

Our results demonstrate that our BCI-facilitated PPVT-IV performs equally to the 

standard PPVT-IV in subjects with mild cerebral palsy (CP), suggesting that it is 

potentially useful in populations for whom standardized testing may be inaccessible. We 

have also outlined five criteria for the development of future BCI-facilitated cognitive 

assessments. The criteria are as follows: 
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1)  A cognitive assessment BCI should maintain the psychometric properties of 

a test.  

2) Brain-based cognitive assessment systems must automatically abstract the 

complexity of brain activity analyses to provide results that are not difficult for 

the clinician to interpret.  

3) Brain-based cognitive assessment systems must be quick to set up (less than 

one hour).  

4) Brain-based cognitive assessment systems must have asynchronous control.  

5) The BCI must be able to function in the population it is targeting.  

When evaluating our BCI-faciliated cognitive assessment system, we were able 

to meet all but one of the criteria we had outlined. Specifically, our fifth criterion was 

only partially met because we only tested mildy impaired CP subjects [5,6].  In light of 

that caveat, future studies will need to test our BCI-facilicated PPVT-IV in populations 

who have severe impairments, before our system can be considered clinically valuable. 

In order to meet these criteria, we had to develop a method for confirming a 

subject’s selection. Confirmation steps usually require a subject to respond to a 

secondary prompt or make additional choices to confirm a response [7,8]. These 

additional steps break concentration while taking a cognitive assessment and may 

become frustrating to a subject. Therefore, we developed the hold-release methodology 

that allows for a more natural confirmation step (chapter 3) [15]. 

The concept of the hold-release system was inspired by assistive technology 

functionality in which the initial activation and the deactivation (hold-release) are 

separately controlled. Specifically, we applied these methodologies to a P300 BCI 
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system. Hold-release enabled us to improve response times in binary selection (6-16 

times faster) tasks compared to traditional P300 BCIs. This was made possible by 

allowing the BCI to make classifications after a single P300 event rather than after 

multiple sequences of P300 events. This change resulted in a faster and more 

continuous P300 BCI control, thus opening possibilities for new P300 based 

applications [15]. 

The NASA-TLX results showed that our BCI-facilitated PPVT-IV was perceived as 

having a higher physical demand than the standard PPVT-IV. The BCI-facilitated test 

does not require movement. Therefore, we believe this increase in physical demand 

was due to fatigue from sitting during the set-up and calibration period. Interestingly we 

also had 5 subjects who did not complete the BCI-facilitated PPVT-IV because they 

could not maintain the concentration to complete the BCI configuration step.  Their 

fatigue compared to our other CP subjects may suggest that the subjects who were 

unable to finish had possible attentional impairments. This suggests that our BCI may 

be successful in subjects with sever motoric/verbal impairments as long as their 

attentional capacity is not compromised. This also suggests that revisions will be 

needed to our current system to function in children who may have cognitive 

impairments. Three major areas for improvement include: 1) BCI calibration time, 2) BCI 

headset setup and 3) BCI presentation method. BCI calibration method could be 

successfully removed if new riemannian geometry classification methods are used [16]. 

This method leverages previously collected data and creates a minimum distance to 

mean classification framework that can be used to allow a subject to use a BCI without 

training.  
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In our study, it took about thirty minutes to setup a subject with a headset and 

this also lead to attentional issues in subjects. New dry electrode technology developed 

by companies such as Wearable Sensing have the potential of removing this barrier and 

reducing setup time to less than 10 minutes [17]. Thus, reducing the amount of time a 

subject must wait to start the using the BCI.  

Lastly, we could alter the presentation method to display more interesting 

selectable items. Instead of numbers in the selection boxes, we could use images or 

flash the selection using different colors [18-21]. These changes have been explored in 

previous research. For example, Cochocki [22] did a comprehensive study on 6 males 

using a P300 BCI that flashed faces with varying emotional states to a user. While there 

was not a significant performance increase based on the emotional state that was 

shown to the user, using faces was significantly faster than using the standard P300 

BCI flashing. Faces seem to trigger larger areas of the brain and provide stronger P300 

response, thereby increasing the ability to accurately classify a P300 response. Other 

BCI changes could be done strictly to increase subject attention or to create 

discernibility to increase P300 results. For example, Sellers found that accuracy 

increased in 7 subjects when they used a P300 BCI that displayed different colors and 

stimulation methods compared to the traditional row-column white and black 

presentation method [23].   

CP subjects reported significantly lower perceived performance for both the 

standard and BCI-facilitated PPVT-IV. Since both CP and TD subjects scored similarly 

this suggests that CP subjects had lower confidence than the TD subjects. This is 

particularly troubling because self-confidence affects how a person handles failure and 
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goal making, which attributes to long-term success. While the focus of this research was 

not to explore user confidence, our results may nevertheless provide an interesting 

insight regarding how pathology affects self-perception [24]. 

In addition to using a BCI, we are also assessed cognitive capacity through the 

use of EEG biomarkers such as power band, coherence and phase delay analyses [9-

14]. Summarizing previous studies (Chapter 1 and 4), led to the following conclusions 

[10-12,25-29]: 

• Delta power in the frontal cortex is negatively correlated to IQ 

• Theta power in the frontal, central, parietal and occipital lobes are 

negatively correlated to IQ 

• Tonic alpha power in the frontal and occipital lobe is positively correlated 

to IQ 

• Phasic alpha power in the frontal and occipital lobe is positively correlated 

to IQ 

• Beta power in the frontal and parietal lobe is negatively correlated to IQ 

• Beta power in the occipital lobe is positively correlated to IQ 

• Tonic gamma power is negatively correlated to IQ 

• Phasic gamma is negatively correlated to IQ in the frontal and occipital 

lobes 

• Phasic gamma is positively correlated to IQ in the parietal lobes 

• Coherence across all bands is negatively correlated to IQ 

• Short interhemispheric phase delays and long intrahemispheric phase 

delays are correlated to IQ 
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In our studies, we expect to see similar correlations to occur based on a subject’s 

IQ. However, in previous studies and in our own subjects, people with CP exhibit 

biomarkers associated with lower intelligence, suggesting that they would have lower 

intelligence [30-33]. However, in our study, both CP and typically developing (TD) 

subjects scored similarly on a PPVT-IV, which is a proxy for intelligence [5,6]. This 

suggests that the current perception of the relationships between EEG biomarkers and 

intelligence may not fully apply to subjects with CP.  Burton suggest that this is due to 

the reorganization that occurs after a brain lesion [33]. Based on their we postulate that 

the brain of person with CP may demonstrate biomarkers of decreased intelligence due 

to brain network reorganization, but that those markers may not adequately reflect a 

person’s IQ. Based on our results we do postulate that two biomarkers may be potential 

candidates in CP for assessing intelligence, alpha and phase delay. In our case CP 

subjects had similar intelligence to TD subjects, higher coherence but, similar phase 

delay. Coherence is an amplitude independent statistical measure of phase consistency 

between two signals. Based on previous studies coherence is an indication of shared 

information processing [10-12,25-29]. Thus, decreased coherence means increased 

spatial differentiation as well as increased complexity leading to increased speed and 

efficiency of information processing. Phase delay is the lead or lag delay between two 

time series and is also amplitude independent. It is speculated that phase delay is 

associated to processing speed, where greater phase delay corresponds to slower 

processing and thus lower intelligence [12]. Taken together our results suggest that 

coherence may not be strictly an intelligence measure in CP, instead it may represent 

reorganization. Phase delay on the other hand may be correlated to intelligence since 
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there was no significant change between TD and CP which was reflected in PPVT-IV 

results. Further investigation on how intelligence in CP affects phase delay and other 

EEG markers is needed before they can be used for cognitive assessment.  

Taking this dissertation and the reviewed literature we currently recommend using a BCI 

to assess cognitive measures in an individual with severe motoric impairments. By 

using a BCI, a user can respond to standardized cognitive assessments that already 

have well-established norms. However, it is important to ensure that when designing 

these systems, the changes made to adapt the cognitive assessment for the BCI do not 

alter the format or psychometrics of the test. 

In summary, my dissertation 

 1) Provides a possible solution for assessing cognitive capability (BCI-facilitated 

PPVT-IV) in people who may not be able to take a traditional standardized cognitive 

assessment.  

2) Provides guidelines for the development of future cognitive assessment brain-

based systems.  

3) Introduces the published hold-release functionality that allows for new BCI 

applications.  

4) Demonstrates one of the many possible uses of the hold-release algorithm 

and exemplifies how this new technique can create a more natural confirmation step. 

5) Summarizes the findings relating intelligence to EEG biomarkers for typically 

developing subjects.  
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6) Provides the first evaluation that studies how EEG biomarkers relate to 

intelligence in people with cerebral palsy. 

7) Highlights the potential pitfalls of using EEG biomarkers for measuring 

cognitive capacity in people with cerebral palsy.  
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