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Abstract 
 

Thousands of radiation portal monitors have been deployed worldwide to detect and deter 

the smuggling of nuclear and radiological materials that could be used in nefarious acts. 

Radiation portal monitors are often installed at bottlenecks where large amounts of people or 

goods must traverse. Examples of use include scanning cargo containers at shipping ports, 

vehicles at border crossings, and people at high profile functions and events. 

 Traditional radiation portal monitors contain separate detectors for passively measuring 

neutron and gamma ray count rates. 
3
He tubes embedded in polyethylene and slabs of plastic 

scintillators are the most common detector materials used in radiation portal monitors. The 

radiation portal monitor alarm mechanism relies on measuring radiation count rates above user 

defined alarm thresholds. These alarm thresholds are set above natural background count rates. 

Minimizing false alarms caused by natural background and maximizing sensitivity to weakly 

emitting threat sources must be balanced when setting these alarm thresholds. 

 Current radiation portal monitor designs suffer from frequent nuisance radiation alarms.  

These radiation nuisance alarms are most frequently caused by shipments of large quantities of 

naturally occurring radioactive material containing cargo, like kitty litter, as well as by humans 

who have recently undergone a nuclear medicine procedure, particularly 
99m

Tc treatments. 

Current radiation portal monitors typically lack spectroscopic capabilities, so nuisance alarms 

must be screened out in time-intensive secondary inspections with handheld radiation detectors. 

 Radiation portal monitors using organic liquid scintillation detectors were designed, built, 

and tested. A number of algorithms were developed to perform on-the-fly radionuclide 

identification of single and combination radiation sources moving past the portal monitor at 

speeds up to 2.2 m/s. The portal monitor designs were tested extensively with a variety of 

shielded and unshielded radiation sources, including special nuclear material, at the European 

Commission Joint Research Centre in Ispra, Italy. Common medical isotopes were measured at 

the C.S. Mott Children’s Hospital and added to the radionuclide identification algorithms. 
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Chapter 1                                                                                     

Introduction 
 

The threat of nuclear and radiological terrorism has long been simmering in the minds of 

security experts. United States President Barack Hussein Obama’s 2009 Prague speech and 

resulting four nuclear security summits have heightened the public’s awareness of this danger 

[1]. Far from just being a dramatic television plot device, nuclear smuggling and nuclear 

terrorism are a genuine threat to global security illustrated by many reports of stolen nuclear and 

radiological material, interdictions of such materials, and threats by extremist groups to utilize 

such material [2–4]. 

Materials of concern range widely in their availability, their applications and their threat 

to society. Uranium enriched to more than 20% in the isotope 
235

U and all isotopes of plutonium 

garner the most attention. These isotopes are classified as special nuclear material (SNM) for 

they are the key ingredients that make nuclear weapons such powerful instruments of 

destruction. These materials cannot be found in weapons-usable form in nature, and instead 

require complex and costly industrial processes for their production, such as uranium enrichment 

facilities and specialized plutonium production reactors. SNM was produced in large quantities 

in the nuclear weapons states. While the vast majority of this material was earmarked for 

weapons programs, tens of tons of highly enriched uranium (HEU) and plutonium were 

distributed by the United State of America and the Soviet Union to other countries under the 

auspices of the Atoms for Peace program in the 1950s and beyond for scientific research 

purposes and as fuel for research reactors [5]. Some peaceful nuclear fuel cycle facilities and 

processes can also be used to produce or divert SNM. Therefore every signatory of the Treaty on 

the Non-Proliferation of Nuclear Weapons (NPT) must agree to allow the International Atomic 

Energy Agency (IAEA) to monitor all nuclear fuel cycle facilities through the application of 

safeguards.  

While the United States Department of Energy’s National Nuclear Security 

Administration (NNSA) continues its efforts to repatriate SNM to the United States and Russia, 

and the IAEA continues its safeguards mission, no absolute guarantee can be made that SNM 
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will never be stolen or lost. The notion of terrorists acquiring SNM for an improvised nuclear 

device (IND) or indeed an intact nuclear device must be taken seriously. The collapse of the 

Soviet Union in the early 1990s led to a prolonged period of instability in its successor states. 

Accountability for SNM stockpiles was no longer fully guaranteed. Some SNM left regulatory 

control through lack of security, corruption, and theft and has since appeared for sale on the 

black market. The IAEA registered a marked spike in reported interdictions of nuclear and 

radiological sources in the decade following the collapse of the Soviet Union as seen in their 

Incident and Trafficking Database (ITDB). The ITDB lists 442 reported radioactive material 

interdictions worldwide between 1993 and 2014, though only 21 of these involved SNM [6]. The 

number of successful nuclear smuggling incidents are unknown, though several extremist 

groups, such as the Japanese doomsday cult Aum Shinrikyo [7] and the Islamist terrorist group 

Al Qaeda [8], have attempted to acquire SNM and nuclear weapons in the past. 

While a successful nuclear terrorist attack remains a serious and devastating possibility, 

the vast majority of radioactive material interdictions involve radiological sources. Radiological 

sources, sometimes with dangerously high activity, are commonly used in a variety of industries. 

Industrial and medical radiological sources are not to be confused with SNM and cannot be used 

to produce INDs. 
192

Ir and 
60

Co are commonly used in radiation therapy and in industrial 

radiography to inspect welds, and large 
60

Co sources are also commonly used for sterilizing 

instruments at hospitals and sterilizing food. A variety of radiological sources are used for 

treatments and diagnostics in medicine, backscatter gauges, smoke detectors, radioisotope 

thermoelectric generators and oil well gauging. When used by a trained technician, these 

radiological sources are a valuable tool in many industries. However, in the wrong hands these 

materials could be integrated into a radiological dispersal device (RDD), often referred to as a 

“dirty bomb”.  

While the destructive capability of an RDD pales in comparison to a nuclear device, its 

economic and psychological repercussions at the target site should not be underestimated. 

Industrial radiological sources may lack the stringent security protocols implemented for 

protecting SNM stockpiles. Historically, many radiological sources also were never disposed of 

properly. Such orphan radiological sources are a common nuisance at scrap metal yards 

particularly, and have led to a number of high profile and in some cases deadly accidental 
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exposures of radiation to unwitting members of the public [9]. Potential thefts pose a threat as 

well. In Mexico alone there have been at least three high profile incidents of vehicle thefts that 

led to national security alerts over the past three years because these vehicles were transporting 

radiological sources [10–12]. While in all cases the radiological material was eventually 

recovered and the thieves confessed to being solely after the vehicles and ignorant of the 

radiological cargo, these incidents nevertheless demonstrate the relative ease with which 

extremist groups could obtain such materials. In Iraq, the so called Islamic State has on multiple 

occasions stolen radiological sources, including from a university in 2014 [13] and from an oil 

field in 2016 [14]. The group has subsequently threatened to use stolen radiological materials in 

RDDs against nations in Europe who participated in air strikes against the Islamic State [15].  

The first line of defense must be to improve the security protocols in place for the 

protection of SNM and radiological sources and to find replacement technologies when feasible. 

However, these actions do not address the material already available in the black market and in 

the hands of extremist organizations. To detect and deter the smuggling of SNM and radiological 

sources, the United States has been pursuing a variety of policies that share one key 

commonality: the deployment of radiation portal monitors (RPM). RPMs contain detectors that 

will alarm on the detection of neutrons and gamma-ray photons emitted from SNM and 

radiological sources. These systems are commonly deployed anywhere a large volume of people 

and goods traverse some bottleneck, like a border crossing.  

A variety of governmental agencies and programs are involved in RPM deployment. The 

NNSA’s Second Line of Defense (renamed Nuclear Smuggling Detection and Deterrence) 

program has provided RPMs and specialized training in over 50 countries [16]. This program 

first started in Russia to address unaccounted-for nuclear and radiological material after the 

Soviet Union breakup. RPMs were installed at border crossings, airports and cargo container 

ports in order to prevent SNM being smuggled out of Russia. The 2006 SAFE Port Act by the 

United States Congress also required 100% of the millions of cargo containers entering the 

United States annually to be screened for SNM and radiological material[17]. The NNSA 

launched the Megaports Initiative which has installed RPMs at dozens of the world’s busiest 

cargo container ports so that cargo containers are screened well before they even approach the 

American mainland [18]. Domestically the United States Custom and Border Protection (CBP) 
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within the Department of Homeland Security (DHS) operates over 1,300 RPMs that screen all 

vehicular traffic entering from Canada and Mexico, all international mail entering the United 

States, cargo and luggage entering the United States on international flights and cargo entering 

the United States at major seaports [19,20]. 

1.1. Problem Description 

On a fundamental level, the threat of nuclear terrorism and nuclear smuggling has been 

addressed by the United States government through the development and deployment of RPMs 

both domestically and abroad. That is not to say, however, that there is no room for 

improvement. As will be shown, much time and money is wasted on processing non-threat RPM 

alarms. As will be addressed in more detail in subsequent chapters, RPMs operate on relatively 

simple principles. Neutrons and gamma-ray photons that interact in the RPM radiation detectors 

are counted. We live in a radioactive world, which means that radiation detectors will always see 

some contribution from background radiation. This background radiation varies across the world 

and through time because it depends on myriad factors such as local geology, weather, altitude, 

cosmic particle fluxes incident on earth, and many more factors.  

In general, the neutron background can be considered to be relatively small. Very few 

naturally occurring radioactive materials (NORM) emit copious amounts of neutrons. Instead, 

the small observable neutron background arises from interactions of high energy cosmic 

particles, such as protons and alpha particles, that produce showers of spallation neutrons when 

interacting with molecules in the Earth’s atmosphere. The neutron background varies spatially 

with altitude and the amount of atmosphere shielding cosmic ray-induced neutrons, and it varies 

temporally with changes in solar activity and other space weather phenomena [21]. 

The gamma-ray photon background, however, is orders of magnitude higher than the 

natural neutron background and can vary tremendously in space and time. The Earth’s crust 

contains a wide array of NORM, particularly from the Uranium and Thorium decay series. 

Concentrations of these ores vary geographically, and thus too does the gamma-ray photon 

background. Even at a given location, however, the gamma-ray photon background will vary 

with events such as rain which will temporarily increase an RPM’s exposure to the radiation 

from radon daughters [22]. 
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RPMs are frequently calibrated with the most recent background count rates. Alarm 

levels are typically set five standard deviations above expected background count rates. If the 

neutron and/or gamma-ray photon count rate exceeds these levels during an inspection, the 

appropriate alarm is issued. However, not every alarm is created equal. An alarm that is triggered 

by the presence of SNM, an IND, or an RDD is classified as a “threat alarm.” These are the only 

RPM alarms that matter to the CBP and a positive threat alarm will trigger a chain of events in 

the national security apparatus. As illustrated by the IAEA ITDB, threat alarms are exceedingly 

rare worldwide. However, in the United States, hundreds of thousands of RPM alarms occur 

annually that result in tens of thousands of hours of CBP personnel work, consuming tens of 

millions of tax dollars processing non-threat alarms [19]. 

What causes these non-threat alarms? A few of these alarms are “false alarms”. These 

alarms arise when natural background radiation exceeds an alarm level setting on the RPM. Such 

alarms can occur due to improper RPM calibrations but also due to statistical flukes such as a 

rare large cosmic ray-induced neutron burst or a rapid change in gamma-ray photon background 

following a heavy deluge. False alarms can be minimized through frequent RPM calibrations for 

natural background. Also, a tradeoff exists between optimizing the minimum detectable activity 

(MDA) and minimizing the false alarm rate depending upon how high above natural background 

the alarm levels are set [23–26]. 

The most common alarms, however, are “nuisance alarms” [27,28]. SNM and RDDs are 

by far not unique in their propensity to emit copious amounts of gamma-ray photons. In fact, 

many commonly-used and transported goods contain enough NORM to set off an RPM gamma-

ray photon alarm. The various radioactive isotopes in the Uranium and Thorium decay series are 

common throughout the Earth’s crust, so that many earth extracted raw materials and their 

finished products are naturally radioactive. These include common construction materials, such 

as granites, cement and bricks, phosphate derived materials, like fertilizer, and many other 

products, including cat litter that was estimated to account for a third of RPM nuisance alarms in 

2003 [28]. NORM triggered nuisance alarms are common in cargo containers and semi-trailers 

transporting large amounts of NORM-bearing cargo [29].  

Amongst personal vehicles, the largest and growing source of RPM nuisance alarms 

stems from nuclear medicine and nuclear diagnostics patients. A wide variety of gamma-ray 
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photon-emitting radionuclides are used in over ten million nuclear medicine procedures annually 

in the United States. While the most commonly used radionuclides in medicine nearly all have 

half-lives on the order of hours or days, the doses administered to patients in some procedures 

are large enough that patients who have very recently been injected with medical isotopes will 

trigger RPM nuisance alarms when travelling across international borders. The time in days it 

takes for a medical isotope to decay away sufficiently in a patient to no longer trigger an RPM 

alarm varies from a few days (
99m

Tc) to several months (
131

I) [28,30]. In 2005, it was estimated 

that greater than 1 in 2,600 Americans carried detectable levels of medical radionuclides [28,30]. 

While a wide variety of procedures exist, about 98% of nuclear medicine patients undergo 

diagnostic procedures while only about 2% of cases involved therapeutic procedures that 

typically involve higher activity sources. While over 17 medical radionuclides are commercially 

available in the United States for a variety of diagnostic and therapeutic procedures, 
99m

Tc is by 

far the most likely isotope to trigger an RPM alarm, as it is used in over 90% of nuclear medicine 

procedures [28,30].   

  The issue with nuisance alarms is that currently-deployed RPM technology is unable to 

rapidly sort these alarms out. Current RPMs only provide gamma-ray photon and neutron count 

rates. Given an alarm, a second inspection will take place at a secondary RPM screening station 

to rule out a false alarm or a technical glitch. If both RPM stations result in alarms, CBP 

personnel must perform a lengthy inspection with handheld and spectroscopy-capable radiation 

detectors in order to locate and identify all sources of radiation that may have triggered the RPM 

alarms. As already mentioned, performing these inspections for hundreds of thousands of 

nuisance alarms annually is not a valuable use of CBP’s personnel and budget. 

In order to maintain a reasonable pace for the flow of traffic and goods, RPMs must 

perform their radiation measurement and produce a reliable result in the extremely short time 

span of a few seconds. This constriction requires the RPM to cover a large solid angle so that 

sufficient data can be collected in a very short amount of time. For gamma-ray photon detection, 

almost all deployed RPMs use slabs of poly-vinyl toluene (PVT), an organic scintillator. PVT 

has the advantage of being capable of being manufactured in large shapes. Other classes of 

gamma-ray photon detectors, such as inorganic scintillators and semi-conductor materials, are 

used in the hand-held detectors that CBP uses to screen out nuisance alarms. The material 
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characteristics of these detectors are such that they are capable of directly measuring the 

individual gamma-ray photon emission energies that are unique to each radionuclide. This 

capability allows for the application of gamma spectroscopy, in which detected gamma-ray 

photon energy peaks are compared to a library of gamma-ray photon spectra in order to identify 

all present radionuclides. However, these detectors often are impossible or prohibitively 

expensive to manufacture in the size or number needed for RPMs to be able to provide on-the-fly 

spectroscopic identification of radionuclides. The spectroscopic RPM has long been desired, but 

currently commercially available spectroscopic RPMs are sparsely deployed [31–33] and mired 

in controversy [34]. Much money was spent on developing spectroscopic RPMs that, in the end, 

performed no better than existing non-spectroscopic RPMs [34].  

Organic scintillators typically are incapable of measuring gamma-ray photon full energy 

depositions which results in the absence of the full energy photo-peaks necessary for gamma-ray 

photon spectroscopy. Organic scintillators nevertheless are energy-sensitive. For instance, 

Pacific Northwest National Laboratory (PNNL) has upgraded many of the CBP’s RPMs with an 

energy windowing algorithm that can screen out many NORM sources that have high gamma-

ray photon energy emissions above 1 MeV as opposed to the SNM emissions that all occur 

below 1 MeV [35]. This does not address all NORM sources or many medical radionuclides but 

this upgrade has already reduced annual RPM nuisance alarms in some cases by over 50% 

resulting in 230,000 fewer RPM alarms per year and 57,000 hours of savings in CBP personnel 

time [19].  A cost-effective spectroscopic RPM would result in another round of similar savings 

for the CBP by completely eliminating gamma-ray photon nuisance alarms. 

The cost and time saving benefits of reducing the number of gamma-ray photon nuisance 

alarms is the first priority in times of heightened security and tight budgets. A long term 

challenge for current RPM technology surrounds the use of 
3
He as the neutron detection 

medium. This gas is obtained from the 12.3 year half-life decay of tritium stockpiles produced in 

the United States and the Soviet Union for the nuclear weapons complex during the Cold War. 

Large-scale production of tritium ceased several decades ago. New tritium production is 

considered to be too cost-prohibitive as a source of new 
3
He production. In the United States, 

3
He is distributed to government and commercial users in annual federal auctions. Apart from 

RPMs, 
3
He is widely used as a neutron detection medium in nuclear safeguards equipment, 
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nuclear physics experimental setups, and in the oil and gas exploration industry. After remaining 

flat at around $50 per liter the price of 
3
He skyrocketed to $765 per liter for federal users and 

$2500 per liter for commercial users in 2012. While old 
3
He can be recycled and auction prices 

have stabilized, the 12.3 year half-life of tritium means that new supplies 
3
He will continue to 

shrink in the coming decades. Therefore there has been much interest in developing alternatives 

to 
3
He that would benefit not only RPMs but many other fields dependent upon a reliable neutron 

detector [36,37].  

 

1.2. Contributions from this Work 

This work presents the feasibility of using a variety of organic scintillation detectors in a 

RPM. One detector material functions as both the neutron and gamma-ray photon detector, thus 

eliminating the use of 
3
He prevalent in currently deployed RPM technology. Using a template 

fitting approach on cumulative distribution functions (CDF) of the measured gamma-ray photon 

distributions, these new RPM designs are capable of performing on-the-fly distinction of a 

variety of SNM, industrial and medical radionuclides despite the short measurement time of less 

than three seconds. These new developments have the potential of significantly reducing the 

number of RPM radiation nuisance alarms that need to be processed by CBP personnel. The cost 

and time savings for CBP would be significant, and would allow CBP to devote more of their 

limited resources and attention towards their many other border protection duties beyond 

preventing smuggling of nuclear and radiological material. 

This work includes a large array of Monte Carlo radiation transport simulations and 

laboratory scale experiments. This initial research supported the construction of a pedestrian and 

a vehicle RPM prototype, both of which were tested extensively at a purpose-built facility for 

RPM testing at the European Commission Joint Research Centre (JRC) in Ispra, Italy. Both 

prototypes were able to successfully detect a range of SNM and industrial sources under a wide 

range of test conditions while also maintaining the American National Standards Institute 

(ANSI)-recommended false alarm rate of less than 1 in 10,000 [38–41]. On-the-fly radionuclide 

identification proved to be successful for a wide energy range of gamma-ray photon emitting 

radionuclides. The identification algorithm was successfully extended to include over half a 
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dozen of the most common medical radionuclides thanks to measurements performed at the 

oncology unit of the University of Michigan’s C. S. Mott Children’s Hospital.  
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Chapter 2                                                                                     

Gamma-Ray Photon and Neutron Detection for RPMs 
 

The gamma-ray photon and neutron signatures measured by RPMs are typically acquired 

with slabs of the organic scintillator PVT and 
3
He gas-filled proportional tubes embedded in high 

density polyethylene (HDPE). Both of these detectors typically only provide gross count rates 

which are compared to background radiation count rates. For this work, organic liquid 

scintillation detectors are used for both neutron and gamma-ray photon detection. The properties 

and operation of these different detector types are introduced and compared. 

2.1. Inorganic Scintillation Detectors 

In the field of gamma-ray spectroscopy, inorganic scintillators with high detector material 

density and high atomic number are favored as these parameters affect the degree of attenuation 

of gamma-ray photons, i.e. intrinsic detection efficiency, and the probability of the gamma-ray 

photons undergoing photoelectric absorption, respectively, as show in equations (2-1) and (2-2) 

below: 

                                                  1 −
𝐼

𝐼0
= 1 − 𝑒

−(
𝜇

𝜌
)𝜌𝑡

,                                                   (2-1) 

                                                𝜏 ≅ 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 ∗
𝑍𝑛

𝐸𝛾
3.5,                                                     (2-2) 

where I and I0 are the number of transmitted gamma-ray photons with and without the presence 

of an absorber of density ρ, thickness t, and linear attenuation coefficient µ. For (2-2), 𝜏 is the 

probability of a gamma-ray photon undergoing photoelectric absorption as a function of the 

detector atomic number 𝑍 to an exponent 𝑛 that can vary between 4 and 5, and the incident 

gamma-ray photon energy 𝐸𝛾[42]. In a photoelectric absorption, the entire incident gamma-ray 

photon is absorbed by the absorber atom resulting in the subsequent emission of a photoelectron 

from the k-shell with energy equaling the incident gamma-ray photon less the typically 

negligible binding energy of the photoelectron. These photoelectrons then cause excitations 

while traversing the inorganic scintillator and the subsequent de-excitations emit scintillation 

light photons. These scintillation photons are the information carrier and proportional to the 
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energy deposited by the gamma-ray photons in the detector. The brightness of an inorganic 

scintillator is defined as the number of scintillation photons emitted per unit of energy deposited 

in the crystal. The crystal may be painted or wrapped in a diffuse or reflective tape so that the 

scintillation photons are collected at the unpainted or unwrapped surface to which the 

photocathode is coupled. At the photocathode, typically a Bialkali material, the scintillation 

photons now undergo the photoelectric absorptions. The probability of this interaction varies 

with the scintillation photon wavelength, so photocathode materials must be chosen carefully to 

match the specific inorganic scintillator scintillation photon emission wavelength spectrum as to 

maximize the quantum efficiency, defined as the ratio of the number of photoelectrons emitted 

by the photocathode to the number of incident scintillation photons. The photoelectron signal 

then finally is amplified through a series of dynodes at high voltage called a photomultiplier tube 

(PMT) [42]. Alternatively, a solid state light sensor known as a silicon photomultiplier (SiPM) 

has shown promise as a light readout for scintillation photons. SiPMs are much more compact 

than PMTs and require a much lower applied voltage to operate [43]. 

Therefore gamma-ray photons undergoing photoelectric absorption in an inorganic 

scintillator may result in signal pulses with amplitude directly proportional to the original 

incident gamma-ray photon energy. When plotted as a pulse height distribution, these pulses 

result in photopeaks corresponding to the incident gamma-ray photon energies which are unique 

to each radionuclide. These radioisotope-specific photopeaks allow a spectroscopist to identify 

the radionuclides present in a pulse height spectrum. Photopeaks exhibit a Gaussian shape, and 

the sharpness of photopeaks and the ability to separate adjacent peaks in energy determine the 

resolution of the detector which is often expressed as the ratio of the photopeak full width at half 

maximum and the photopeak energy [42]. 

  However, not all gamma-ray photons will undergo photoelectric absorption. Compton 

scattering is defined as an interaction in which an incident gamma-ray photon imparts only some 

of its energy to a recoil electron and is deflected at a scatter angle with diminished energy. This 

is often the most common interaction for gamma-ray photons. The recoil electron is imparted 

energy (𝐸𝑒−) equal to the difference between the incident and scattered photon and it otherwise 

behaves identically to the previously described photoelectron. The scattered photon energy, and 

thus also the recoil electron energy, depends upon the scatter angle 𝜃 as shown in (2-3): 
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                            𝐸𝑒− = ℎ𝑣 − ℎ𝑣′ = ℎ𝑣 −
ℎ𝑣

1+
ℎ𝑣

𝑚𝑜𝑐2(1−cos(𝜃))
,                                         (2-3)   

where ℎ𝑣′ and ℎ𝑣 are the scattered and incident gamma-ray photon energies, and 𝑚0𝑐2 is the 

electron rest mass energy. As the scatter angle can vary from zero to 𝜋 this leads to the Compton 

continuum. The Compton continuum is bounded on the lower end by grazing scatters in which 

almost no energy is imparted upon the recoil electron. The Compton continuum does not, 

however, stretch all the way to the photopeak as the maximum energy the recoil electron can 

receive occurs in a head-on collision at 𝜃 = 𝜋 as shown in (2-4). This maximum is known as the 

Compton edge: 

                                                    𝐸𝑒−|.𝜃=𝜋 = ℎ𝑣 (

2ℎ𝑣

𝑚𝑜𝑐2

1+
2ℎ𝑣

𝑚0𝑐2 
).                                         (2-4)    

2.2. Organic Scintillation Detectors 

 Almost all RPMs, however, do not use inorganic scintillation detectors for gamma-ray 

photon detection. Instead they use PVT, an organic scintillation detector consisting mostly of 

hydrogen and carbon. Three major categories of organic scintillators include organic crystals 

(stilbene, anthracene), organic plastics (PVT), and organic liquids (EJ309). Though vastly 

different in physical appearance they all depend upon the same radiation detection mechanisms. 

The effective atomic number of organic scintillation detectors is very low. Therefore the 

probability of photoelectric absorption of gamma-ray photons is exceedingly rare for incident 

gamma-ray photon energies over 100 keV. Nearly all gamma-ray photon interactions involve 

Compton scattering. Thus organic scintillation detectors are typically ill-suited for gamma-ray 

photon spectroscopy as they produce spectra with no photopeaks. However, some attempts have 

been made at loading scintillators with high atomic number additives, like bismuth, [44,45], or 

using deconvolution algorithms [32] to achieve some ability to perform gamma ray spectroscopy 

with organic scintillation detectors. 

 Organic scintillation detectors are not only sensitive to gamma-ray photons, but are also 

efficient detectors for fast neutrons. As organic scintillators consist predominantly of low-atomic 

number materials, like hydrogen and carbon, the most probable interaction for fast neutrons is 

elastic scattering in which some of the incident neutron kinetic energy is transferred to the recoil 
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nucleus. The resulting recoil nucleus of energy 𝐸𝑅 will cause excitations in the scintillator which 

will lead to the emission of scintillation photons, similar to the process already described for 

photoelectron and recoil electrons for gamma-ray photon photoelectric absorption and Compton 

scattering. The resulting recoil nucleus energy for a fast neutron of energy 𝐸𝑛 elastic scattering 

depends upon both its scattering angle 𝜃 and the recoil nucleus atomic mass number 𝐴 as shown 

in (2-5) below: 

                                     𝐸𝑅 =
4𝐴

(1+𝐴)2
(cos2(𝜃))𝐸𝑛, 0 ≤ 𝜃 ≤

𝜋

2
.                              (2-5)    

(2-5) shows that for a head on collision (𝜃 = 0) on hydrogen (𝐴 = 1) the entire incident neutron 

energy 𝐸𝑛 will be imparted to the recoil nucleus 𝐸𝑅,  while for a grazing collision (𝜃 =
𝜋

2
) 

effectively zero energy is transferred to the recoil nucleus. For recoil nuclei heavier than 

hydrogen, the maximum fractional energy transfer in neutron elastic scattering decreases rapidly 

with increasing recoil nucleus atomic mass number. For instance, for the other main constituent 

of organic scintillators, carbon (𝐴 = 12), the maximum possible energy transfer to the recoil 

carbon nucleus is only 28.4% of the incident fast neutron energy. 

For both gamma-ray photon and neutron interactions, the energy deposited in the detector 

is directly related to the measured light output measured in units of keVee (keV electron 

equivalent). While the ratio between deposited energy in keV and light output in keVee is 

defined as one-to-one for gamma-ray photon interactions, the relationship between deposited 

energy and light output is non-linear and significantly less than one-to-one for heavier particles 

like the recoil protons from neutron elastic scattering. 

Calibrating organic liquid scintillation detectors for their response to gamma-ray photons 

involves measuring their response to a series of mono-energetic gamma-ray photon sources. One 

popular choice is the 
137

Cs 662 keV gamma-ray photon that according to equation (2-4) should 

result in a visible Compton edge at 478 keVee light output. Measured 
137

Cs pulse height 

distributions (PHDs) are shown in Figure 2-1a from a variety of organic scintillation detectors. 

These PHDs are simply histograms of the pulse heights for all measured pulses. For the 

particular digitizer used, pulse heights can vary between zero and two volts.  For the gamma-ray 

photon calibration, one simply needs the location in volts of the Compton edge of known energy. 
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This value is then used for linear conversion of deposited energy to light output. Picking the 

exact location of the Compton edge, however, is not trivial, because one must include the effects 

of the inherent resolution of the detector. Using a Monte Carlo particle transport code, like 

MCNP6, one can obtain both simulated un-broadened and resolution broadened PHDs for 
137

Cs, 

both of which have been normalized and are shown in Figure 2-1b. The true Compton Edge is 

given by the peak of the un-broadened simulation. The location where this peak intersects with 

the Compton edge of the simulated resolution broadened PHD tells one what percentage of the 

Compton edge peak to use for calibration purposes. This value can then be used to convert 

measured PHDs from the digitizer units of volts to light output with units of keVee, as shown in 

Figure 2-1b. For many organic liquid scintillation detectors a calibration value of approximately 

80% of the 
137

Cs Compton edge peak leads to good agreement between measurement and 

simulation taking into account detector resolution.  For larger volume detectors, however, like 

the 25 cm by 25 cm by 10 cm BC501A liquid organic scintillation detector shown in Figure 2-

1b, multiple scattering effects result in a much larger percentage of the Compton edge peak (e.g. 

96% for the BC501A detector) being necessary for calibrations. 

 

Fig. 2-1. (a) Examples of 
137

Cs PHDs obtained with a variety of organic liquid scintillation detectors such as liquids 

(EJ309), plastics (BB3) and crystals (stilbene). Pulse heights are still in digitizer units of volts, and no energy 

calibration has taken part yet. (b) MCNP6 simulated un-broadened and resolution broadened PHDs for 

measurements of 
137

Cs with a 25 cm by 25 cm by 10 cm BC501A liquid organic scintillation detector reveal that a 

calibration value of 96% of the Compton edge peak should be set to equal the 478 keV Compton edge. This 

conversion is used to convert the measured 
137

Cs PHD from volts to light output in keVee. 

 In traditional PVT organic scintillator RPMs, the contribution of neutron elastic 

scattering to the PVT signal is accepted as a negligible nuisance relative to the contributions of 

gamma-ray photon Compton scattering interactions. For background radiation alone, the gamma-

ray photon count rate in the PVT will be around three orders of magnitude higher than the 

neutron background count rate. In currently deployed RPMs, the neutron count rate is acquired 
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separately with 
3
He proportional tubes. However, for some organic scintillation detectors one can 

distinguish the light pulses arising from neutron versus gamma-ray photon interactions through 

pulse shape discrimination (PSD) with the charge integration method. 

2.2.1. Pulse-Shape Discrimination via the Charge Integration Method 

 As previously described, the recoil electrons and recoil protons resulting from gamma-ray photon 

Compton scattering and neutron elastic scattering interactions in the organic scintillator will cause 

excitations in the detectors material. The subsequent de-excitations result in the emission of visible light 

that is collected at the photocathode. In the 1950s, it was discovered for organic scintillators like stilbene 

and anthracene that this light has both a prompt and a delayed component, and the heavier the interacting 

particle (alpha particle versus neutron vs gamma-ray photon), the greater the fraction of the total light 

emission occurred as part of the delayed component [46,47], as shown in Figures 2-2a and 2-2b. 

 

Fig. 2-2. (a) On the left is one of the first measurements showing increasing delayed scintillation light component 

with increasing mass (stopping power) of incident radiation on organic scintillator (stilbene) [47]; (b) On the right, 

typical pulses for EJ309 organic liquid scintillation detector showing increased delayed light component for neutron 

vs gamma-ray photon interaction, thus forming basis for PSD. 
 

The underlying physics of this prompt versus delayed scintillation components were 

described in the 1960s [48]. For organic molecules with 𝜋-electron structure (such as organic 

scintillators), the energy levels of the molecule include both a number of singlet and triplet 

excited states (see Figure 2-3). Energy from the recoil electrons and recoil protons is absorbed by 

exciting the electron configurations of the organic scintillator molecules to the excited states 

shown in Figure 2-3. Transitions between the 𝑆10 excited singlet state and any of the 𝑆0# ground 
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states occurs with an exponential decay with decay time constant of a few nanoseconds. This 

light emission therefore is relatively fast and contributes to the prompt scintillation light 

component shown in Figure 2-2b. This process is known as fluorescence. Singlet excited states 

can also be converted to triplet states. The lifetime of the triplet states, like 𝑇1, however, is much 

longer (~10−3 𝑠). Therefore de-excitations from triplet states contribute to the delayed 

scintillation light component and are known as phosphorescence. When two molecules that have 

been excited to a triplet state meet while migrating, they will annihilate to a molecule in the 

ground state and a singlet excited state molecule. This triplet-triplet annihilation thus also 

contributes to the delayed scintillation light component. Therefore a greater concentration of 

triplet states would lead to a higher probability of triplet-triplet annihilation and thus an increased 

delayed scintillation light component. The Bethe formula, equation (2-6) for stopping power 

shows that heavier particles, like recoil protons versus recoil electrons, travel more slowly 

through the detector material and have a shorter range, thus depositing their energy in a smaller 

volume and thus creating a greater density of triplet excited states: 

                                              𝑆 = −
𝑑𝐸

𝑑𝑥
~

(𝑧𝑒)2

𝑣2 ,                                                     (2-6) 

where 𝑣 is the velocity of the exciting particle (recoil electron, recoil proton) and 𝑧𝑒 is its charge. 

As shown in Figure 2-2a, heavier incident particles lead to a greater delayed light scintillation 

light fraction in organic scintillators. This is related to the linear energy transfer rate of the 

exciting particle and its effects on triplet state density. Recoil electrons from gamma-ray photon 

Compton scattering produce lower triplet state density than heavier and slower recoil protons 

from fast neutron elastic scattering which produce lower triplet state density than the even 

heavier and slower alpha particles, thus leading to the differences in delayed scintillation light 

for these three types of radiation shown in Figure 2-2a.   
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Fig. 2-3. Energy levels for organic molecule with 𝜋-electron structure with singlet and triplet excited states. 

The de-excitation of these states (fluorescence and phosphoresence) cause the prompt and delayed scintillation light 

components in organic scintillators [48].  

When one plots the tail and total integral for organic scintillator pulses, like those shown 

in Figure 2-2b as a density plot, one can see distinct bands from gamma-ray photon and neutron 

interactions, where the neutron band clearly exhibits a larger tail integral on average. An 

example of such a PSD plot is shown in Figure 2-4 for a 
252

Cf measurement with a liquid organic 

scintillation detector. A discrimination curve separates these two bands and all interactions above 

this curve are classified as neutron interactions and all interaction below this curve are classified 

as gamma-ray photon interactions. 

 

Fig. 2-4. Pulse shape discrimination for measurement of  
252

Cf with 7.62 cm diameter EJ309 liquid 

[39][49]. 
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When creating a PSD plot, as shown in Figure 2-4, the user’s goal will be to minimize the 

amount of misclassification, i.e. gamma-ray photon interactions being misclassified as neutron 

interactions and vice versa. This is best achieved by maximizing the separation between the two 

PSD bands. While this depends heavily upon detector material characteristics, the user also plays 

a critical role in the quality of the PSD via the choice of the PSD integral windows and the 

choice of the PSD discrimination curve. Going back to Figure 2-2b, the user must choose where 

to start the tail integral and where to set bounds for the total integral. These settings will affect 

the slopes of the PSD bands as well as the PSD quality. The PSD quality is often expressed with 

a figure of merit (FOM), as shown in equation (2-7) below: 

                                              𝐹𝑂𝑀 =
𝐶𝑒𝑛𝑡𝑟𝑜𝑖𝑑𝑁−𝐶𝑒𝑛𝑡𝑟𝑜𝑖𝑑𝐺

𝐹𝑊𝐻𝑀𝑁+𝐹𝑊𝐻𝑀𝐺
,                                            (2-7) 

where the centroids and full-width-half-maxima (FWHM) are taken from the fitted 

Gaussian distributions of the neutron and gamma-ray photon distributions when plotting the 

histograms of the tail-to-total integral ratios, as shown for Figure 2-5. The greater the separation 

between the two Gaussian distributions and the narrower the two distribution are individually, 

the greater the FOM will be for the PSD. Using linear slices of a PSD plot containing mixed 

neutron and gamma-ray photon data, such as Figure 2-4, one obtains Gaussian fits, like those in 

Figure 2-5, for each individual slice. Picking the point of minimum misclassification of photons 

and neutrons for the two fitted Gaussians for each individual slice provides a dataset to which the 

PSD discrimination curve can be fitted. The curve, as shown in Figure 2-4, is quadratic and has 

three coefficients. The user might choose to bias the curve, however, if say a lower 

misclassification rate of gamma-ray photons as neutrons is more important than a low 

misclassification rate of neutrons as gamma-ray photons. The process of creating this PSD curve 

is well suited for automation [50].  
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Fig. 2-5. Histogram of tail-to-total integral ratio for 
252

Cf data acquired with 25 cm by 25 cm by 10 cm 

BC501A organic liquid scintillation detector. Fitted Gaussian distributions for gamma-ray photons (left, blue) and 

neutrons (right, yellow) are used for calculating FOM using equation (2-7) [49]. 

 

2.2.2. Types of organic scintillation detectors used 

 

Organic scintillation detectors are manufactured from a variety of material forms (liquids, 

crystals, plastics) and come in many different shapes and sizes. The detectors and their respective 

PMT light readouts used in the experiments discussed in this dissertation are listed in Table 1-1, 

and the material properties of these detectors are listed in Table 2-2. An example of the typical 

composition of an organic scintillator coupled to a PMT is given in Figure 2-6. Figure 2-7 shows 

a gallery of the detectors listed in Table 1-1. 
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Table 2-1. Manufacturer and model numbers for organic scintillation detectors used in measurements for 

this dissertation. 

Scintillator 

Type 
Detector PMT 

 Name Manufacturer Model # Manufacturer Model # 

Liquid 

7.62 cm ∅ EJ309 
SCIONIX-

Holland 

76A76/3M-

EJ309 E1XNEG 

Electron Tube 

Enterprises 
9821B 

12.7 cm ∅ EJ309 Eljen 
510-50X50-

4B/309 
Photonis XP4512B 

25x25x10 cm3 BC501A 
SCIONIX-

Holland 

R500$80A500/3-

LS-X-N 
Photonis P4312 

Plastic 
5.08 cm ∅ BB3 − 5 

(bibenzyl) 
RMD experimental 

Electron Tube 

Enterprises 
9821 

Crystal 5.08 cm ∅ stilbene Inrad Optics - 
Electron Tube 

Enterprises 
9821 

 

 

 

Table 2-2. Properties of various organic scintillators by the listed manufacturer [42,51–55]. 

Scintillator 

Type 

Model or 

Manufacturer 

Density 

(g/cm
3
) 

Light 

Production 

(% 

Anthracene) 

Decay 

Constant 

(ns) 

Softening 

or Flash 

Point (°C) 

PSD

? 

Plastic 
Bibenzyl 

(BB3-5) 
1.1 57 10 NA Yes 

Liquid 
EJ-301/BC501A 0.874 78 3.2 26 Yes 

EJ-309 0.959 75 3.5 144 Yes 

Stilbene Inrad Optics 1.16 >75 4.5 125 Yes 

Anthracene -- 1.25 100 30 217 Yes 
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Fig. 2-6. Example of standard composition of an organic scintillation detector coupled to a PMT. Detector 

cell could be a crystal (stilbene), plastic (BB3, EJ299-33,) or, as in this cases, a liquid cell (EJ309). 

 

Fig. 2-7. Examples of the detectors used in measurements in this dissertation including from left to right: 

7.62 𝑐𝑚 ∅ 𝐸𝐽309 organic liquid scintillation detector, 12.7 𝑐𝑚 ∅ 𝐸𝐽309 organic liquid scintillation detector, 25 cm 

by 25 cm by 10 cm BC501A organic liquid scintillation detector, 5.08 𝑐𝑚 ∅  stilbene crystal couple to PMT 

(5.08 𝑐𝑚 ∅ BB3 plastic scintillator looks identical when wrapped and coupled to PMT). Pictures are not to scale 

relative to each other. 

2.2.3 Digital acquisition systems 

 The block diagram in Figure 2-8 shows a typical measurement setup. The organic 

scintillation detector PMT is powered by a high voltage power supply. The PMT anode signal is 

fed to a digitizer in which the amplified detector signal from the collected and converted 

Voltage divider, 

base 

PMT 

detector 

cell 
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scintillation light output is sampled and digitized (i.e. for each pulse only a set of pulse heights 

sampled at equidistant time intervals are saved). For each pulse this PHD dataset and the time 

stamp of the pulse are transferred via USB cable or optical link to a computer. Acquisition 

software is used to set parameters such as the acquisition window for each pulse, the trigger 

threshold for acquiring/saving pulses, the measurement time, and many other parameters. A post-

processing script is then used to perform PSD on all pulses and determine the user desired 

outputs like neutron and gamma-ray count rates or PHDs. 

 

Fig. 2-8. Block diagram of a multi-detector setup, where the PMTs are powered by a high voltage (HV) power 

supply. Detector anode output signals are fed to a digitizer, and packets of digitized pulses with time stamps are fed 

via USB link or optical link to a data acquisition system (DAQ). Pulses are processed on the DAQ using PSD to 

determine parameters such as neutron and gamma-ray photon count rates or PHDs or any other user desired 

information. 

 For all experiments mentioned in this dissertation, detector anode pulses were digitized 

with waveform digitizers from CAEN including the DT5720/V1720 and DT5730/V1730 where 

the “DT” models are portable desktop digitizers with fewer channels whereas “V” models will 

have more channels but are used in conjunction with a VME crate. Otherwise the specification of 

a DT5720 and V1720, for example, are identical [56]. Examples of these digitizers are pictured 

in Figure 2-9. 
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Fig. 2-9. CAEN V1730 (top) and DT5720 (bottom) digitizers. 

 

 The sampling rates for these digitizers are either 250 MHz (DT5720/V1720) or 500 MHz, 

which means that every 4 ns or every 2 ns the local pulse height of the pulse in time is sampled. 

These digitizers have either 12-bit (212 = 4096 voltage bins) or 14-bit (214 = 16384 voltage 

bins) vertical resolution. Given a digitizer 2 V dynamic range, all non-clipped measured pulses 

will therefore theoretically have pulse heights between 0 V and 2 V. Due to the user set trigger 

threshold, and a user set offset for the baseline, the actual range of acceptable pulse heights will 

in reality be a bit more constricted.    

A variety of CAEN-provided and University of Michigan Detection for Nuclear 

Nonproliferation Group (DNNG)-written data acquisition scripts were utilized in all 

experiments. These tools are used to initiate and execute data acquisition and to set a variety of 

important measurement parameters such as channels to trigger on, measurement time, trigger 

thresholds, baseline offsets, acquisition window length for pulses, trigger location within pulse, 

and several other parameters.  Whenever a detector anode signal pulse exceeds the user-set 

trigger threshold, any signal in the digitizer buffer is converted into waveforms. These 

waveforms are written to a file and data is transferred from the digitizer to the DAQ via USB 

cable or optical link. In high count rate measurements the measurement system is limited by the 

80 MB/s processing limit of the digitizer, as well as additional limitations such as data transfer 

rate via USB versus optical link and the hard drive writing speed of the DAQ. Whenever the 

digitizer buffer is full due to an overwhelmingly high acquisition rate, additional incoming data 
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will be lost leading to an underestimation of count rate [56]. However, in the vast majority of 

measurements in this dissertation count rates were well below any of these upper limits. 

2.3. 
3
He neutron proportional counters 

3
He proportional tubes have long been the neutron detector of choice not only in RPM 

systems, but also in a wide variety of safeguards and nuclear security equipment. This isotope of 

helium exhibits an incredibly high interaction cross-section for undergoing the thermal neutron 

capture reaction in equation (2-8): 

                       3𝐻𝑒 + 𝑛𝑡ℎ →  3𝐻 +  1𝐻 + 764 𝑘𝑒𝑉, 𝜎 = 5330 𝑏,                                 (2-8) 

where the charged particles (proton and triton) share the Q of this reaction (764 keV) 

which has a cross-section 𝜎 for thermal neutron capture. This cross-section drops off rapidly 

with increasing neutron energy. SNM and other materials typically emit fast neutrons on the 

order of MeV, while the capture reaction is most efficient for thermal neutrons. Therefore 
3
He 

proportional tubes are usually embedded in a hydrogenous moderator, such as HDPE, which 

thermalizes the incident neutron flux. 

Proportional counters have been around since the 1940s. An anode wire runs through the 

cylindrical tube containing the fill gas (
3
He). HV is applied to the anode wire to create an electric 

field. The protons and tritons resulting from the thermal neutron captures will ionize the fill gas 

thus creating electron-ion pairs. If the applied bias is high enough, recombination of these pairs 

will be suppressed. The electric field will result in migration of the electrons to the anode wire 

and ions to the cathode tube wall. The accelerated electrons will liberate secondary electrons in 

subsequent collisions with neutral gas atoms. If the applied electric field is chosen carefully, 

these secondary ionizations will lead to an avalanche of subsequent secondary ionizations. This 

gas multiplication process is known as a Townsend avalanche. Because the electric field rapidly 

decreases with distance from the anode wire, nearly all multiplication will occur within very 

close proximity to the anode wire. While the electrons will be quickly collected at the anode 

wire, the vast majority of the signal pulse is made up of the slow drift of the ions to the far away 

cathode wall. In a certain applied voltage region, the avalanche signal will be proportional to the 

energy deposited, thus the name proportional counter. Within a voltage region, known as the 

plateau, the measured count rate for a given neutron source should be independent of any applied 
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voltage fluctuations. For each thermal neutron detected, one expects the same amount of energy 

to be deposited, so the neutron count rate should be proportional to energy deposited in the tube. 

In reality, the range of the triton and proton are large relative to the tube dimensions. For capture 

reactions taking place near the tube walls, the proton or triton might escape the tube, thus leading 

to incomplete energy deposition and a feature known as the wall effect. The efficiency of the 

detector will vary with fill pressure of the gas, typically between two and ten atmospheres 

[42,57]. 

Every pulse in a 
3
He proportional counter is typically fed into a module containing a 

charge sensitive pre-amplifier followed by an amplifier, wave shaping and discriminator circuits. 

This means that the output of the tube is simply a TTL logic pulse for each incident pulse over 

threshold. The TTL outputs of multiple tubes can be daisy-chained together to give a summed 

output. Gamma insensitivity is another important attribute for these detectors. With no threshold 

applied, 
3
He will register a pulse for approximately 1 in 10,000 incident gamma-ray photons. 

However, by implementing a small detection threshold, the gamma-ray rejection rate, i.e. the rate 

at which gamma-ray photons are falsely registered as neutrons, can be lowered to 10−8 [23]   

Because 
3
He is the gold standard that we are trying to replace due to the reasons 

explained in Chapter 1, it is important to benchmark all new RPM developments to 
3
He 

performance. Therefore many measurements were also performed with the 
3
He RPM system 

shown in Figure 2-10. This system consists of three 3.92 atm GE-Reuter-Stokes model RSP4-

1659-202 
3
He proportional tubes. These tubes have a 5.08 cm diameter and are 152.4 cm long. 

The neutron pulse monitoring modules containing the amplifier and discriminator logic circuits 

are Precision Data Technology models PDT 10A and PDT 20A-HN. The 20A-HN has its own 

internal HV power supply for the proportional tube anode wire, while the 10A neutron pulse 

monitoring module does not. For tubes with the 10A model module, external HV bias was 

supplied with a CAEN model N472 HV power supply. The neutron pulse monitoring modules 

are powered by +12V provided by an Agilent Technologies model E3641A low power supply. 

The TTL logic pulse outputs were daisy-chained and counted with a Tennelec model TC536 

counter/timer. 
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Fig. 2-10. Opened 
3
He RPM containing three 

3
He proportional tubes embedded in HDPE. 
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Chapter 3                                                                                    

Modeling and Designing RPMs with MCNPX-PoliMi and Benchtop 

Experiments 
 

 Several RPM prototypes were tested, and the results of those measurements are presented 

in Chapter 4. First, however, the RPM prototypes had to be designed and tested. This chapter 

focuses on three key design steps. First, particle transport codes were used to study a variety of 

design criteria and parameters in simulation space. This offers an inexpensive pathway to explore 

a wide variety of design ideas before committing to any particular hardware. Second, scaled 

down experiments with single detectors were used to confirm simulation findings, and establish 

basic system performance criteria like false alarm rates and minimum detectable activity through 

receiver operating characteristics curve analysis. Third, radiation detectors, occupancy sensors, 

data acquisition, and software had to all be integrated into a complete RPM system.  

3.1. Modeling RPMs with MCNPX-PoliMi 

3.1.1. The Particle Transport Code MCNPX-PoliMi 

 Simulation tools are a valuable commodity when developing a radiation detection system, 

such as an RPM. In particle transport codes, the user defines a radiation detection system, its 

surrounding environment, and the radiation source. The particle transport code then simulates a 

user-defined number of radiation source emissions, and tracks how each source particle travels 

though and interacts with the user defined environment. A random number generator and 

probabilities from cross-section libraries are used to create a random history for each source 

particle.  

For example, one might simulate a 
137

Cs gamma-ray photon point source, an organic 

liquid scintillation detector placed some distance from the radiation source, and environment, 

such as the walls and floors of the room of this experiment. Each source history begins with the 

creation of an isotropically-emitted 662 keV gamma-ray photon at the radiation point source 

location. Random numbers and interaction cross-sections for the materials in the environment 

would determine how this photon travels through and interacts with the environment. 

Interactions might lead to changes in energy, direction, and momentum of the photon. 
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Interactions might lead to the creation of additional particles, which are also tracked. In the end, 

every particle is either absorbed somewhere in the environment or escapes the user-defined 

geometry.  

The goal of these simulations for RPM design is to simulate the detector response to a 

variety of radiation sources. Simulations allow the user to quickly experiment with a wide range 

of radiation sources, detector types and configurations, and experimental environments at a 

fraction of the time and cost that would be required to perform with actual physical experiments. 

The RPM will have several required design parameter limitations, such as a minimum detection 

efficiency, or size/weight/cost constraints. One can thus simulate infinite design configurations 

to whittle down the selection to a handful of configurations with the most promising simulation 

results. 

 The particle transport code MCNPX-PoliMi was used for all simulations [58]. MCNPX-

PoliMi samples cross-section libraries, like ENDF-VII, to simulate the movement and 

interactions of gamma-ray photons and neutrons through a user-created environment as a 

function of particle energy and momentum. This particular code has several benefits over other 

particle transport codes, including built-in spontaneous fission and (alpha,n) sources. MCNPX-

PoliMi can produce a collision data output file for user-specified cells, such as the radiation 

detector material cells. The collision data file is useful for simulating detector response as it 

stores information for all neutron and photon interactions in the chosen cells. Stored information 

includes a total of 16 parameters, such as the particle type, the interaction type, the target 

nucleus, the time and location of the interaction, and the energy deposited, among others. 

 As explained in section 2.2, the scintillation light produced due to radiation interactions 

in an organic scintillation detector depends upon the incident particle type, the target nucleus, 

and the energy deposited. All of this information is included in the MCNPX-PoliMi collision 

output file. The MCNPX-PoliMi Post-Processing script, MPPost, has been developed and 

maintained by DNNG [59]. MPPost reads in the MCNPX-PoliMi collision data files. Light 

output is calculated as a function of energy deposited using relationships specified by the user in 

an input file. The total light output for all energy deposited for one history occurring within the 

scintillator’s pulse generation time is used to recreate an individual pulse. Processing the entire 

collision output file will result in thousands of pulses. MPPost outputs pulse height distributions 
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separated by particle type. The simulated number of source particles and the desired hypothetical 

source activity can be used to determine the simulated measurement time. The simulated 

measurement time and summed pulse height distributions yield simulated neutron and gamma-

ray photon count rates for the simulated RPM for the simulated radiation source scenario. 

3.1.2. Modeling Light Output for Organic Scintillators 

As already explained in section 2.2., a one-to-one relation exists between energy 

deposited by gamma-ray photons and light output in organic scintillation detectors when using 

electron-equivalent light output units. The light output produced as the result of neutron 

interactions in organic scintillators, however, is non-linear and exhibits significantly less than a 

one-to-one ratio. The light output for neutron collisions on carbon is very small for several 

reasons. From equation (2-5), it can be shown that the recoil carbon nucleus can at maximum 

only receive 28% of the incident neutron energy, whereas hydrogen recoil nuclei can receive up 

to 100% of the incident neutron energy. Additionally, due to the lower velocity of carbon recoil 

nuclei as well as their higher stopping power relative to lighter hydrogen recoil nuclei (see 

equation 2-6), neutron scattering on carbon should result in relatively low light output. Low light 

output for carbon scattering, often below the user-set energy threshold, has also been shown in 

measurements [60] . For MPPost light output conversions, it was assumed that carbon recoil 

nuclei resulted in light output equivalent to two percent of the energy deposited by the incident 

neutron [60]. 

Determining the light output response neutron collisions on hydrogen in organic 

scintillators often requires time-of-flight measurements, such as those described in [61]. 

Different neutron time-of-flight slices correspond to different incident neutron energies that can 

be computed from the known neutron flight path and flight time. For every incident neutron 

energy, the neutron can deposit from zero up to all of its energy in a collision with a hydrogen 

nucleus. Taking into account energy resolution broadening effects, one can use the upper limits 

of the pulse height distributions formed by these quasi-monoenergetic neutron interactions on 

hydrogen to build a dataset of neutron light output response. These data will vary with detector 

type and shape, and due to statistical and measurement limitations, these response data will often 

not cover the full neutron energy range of interest. Choosing the fitted and extrapolated neutron 

light output response curve therefore plays a crucial role in the degree to which simulated and 
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measured organic scintillator neutron pulse height distributions will agree. Exponential fits, as 

well as those suggested by Birks and Voltz are commonly used, and are shown in equation (3-1) 

through (3-3) [62,63]: 

                         𝐸𝑥𝑝𝑜𝑛𝑒𝑛𝑡𝑖𝑎𝑙: 𝐿(𝐸) = 𝑎𝐸 − 𝑏[1 − 𝑐 ∗ exp(−𝐸𝑑)],                            (3-1) 

                                        𝐵𝑖𝑟𝑘𝑠: 𝐿(𝐸) = ∫
𝑎

1+𝑏(
𝑑𝐸

𝑑𝑥
)

𝑑𝐸,                                                  (3-2) 

                            𝑉𝑜𝑙𝑡𝑧: 𝐿(𝐸) = 𝑎 ∫ [(1 − 𝑐) exp [−
𝑏(1−𝑐)𝑑𝐸

𝑑𝑥
] + 𝑐] 𝑑𝐸,                      (3-3) 

where 𝐿(𝐸) is the light output produced by the organic scintillator for neutrons depositing energy 

𝐸 in the detector through interactions on hydrogen. Coefficients 𝑎, 𝑏, 𝑐, and 𝑑 are determined 

through fitting the above functional forms to the measured neutron response data. For detectors 

discussed in this dissertation, Birks and Voltz were found to produce the best agreement to 

measured data [49].   

3.1.3. Modeling Moving Sources with MCNPX-PoliMi 

Radiation sources in MCNPX-PoliMi can be simple mono-energetic point sources, like a 

137
Cs calibration source, or complex volumetric sources with many different emissions, like a 

mixed-oxide (MOX) fuel canister. Regardless of the complexity of the source, the source 

position remains fixed throughout a MCNPX-PoliMi simulation. In order to fully simulate a 

realistic RPM measurement, however, it was important to capture the effects of a moving 

radiation source. 

All sources tested in the laboratory and during benchmark experiments were small 

enough or far enough away from the RPM as to be treated as point sources. Assuming that the 

source would be moving at a constant speed past the RPM, the source could be represented as a 

line source for which radiation emissions are equally probable along the entire length of the line. 

One important parameter to be determined through simulations was an optimum measurement 

time for the RPM, i.e. as a pedestrian or vehicle approaches the RPM, when does one start and 

end the data acquisition. When screening a pedestrian one can assume the radiation background 

to be relatively constant. For much larger screening objects, like cargo containers, the ship effect 

may increase neutron background, while the terrestrial gamma-ray photon background will be 
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suppressed due to the cargo container’s shielding effect [26]. Assuming constant background, 

there should be a diminishing signal to background return the further the source is away from the 

RPM.  

For example, an RPM consisting of eight 7.62 cm diameter EJ309 liquid organic 

scintillators was modeled in MCPX-PoliMi, as shown in Figure 3-1.  The length of the line 

source corresponds to the RPM measurement time assuming a user-defined source transit speed 

of 1.2 m/s for pedestrians [38]. For a given source strength, one can obtain a simulated RPM  

radiation count rate for different measurement times of a moving radiation source.  

For a simulated 0.59 MBq 
137

Cs source traveling at 1.2 m/s, Figure 3-2a shows the 

diminishing returns of increasing the RPM measurement time beyond 3 s, an ideal RPM 

measurement time found through other analysis methods as well [64]. As it would be impractical 

to develop a system in our laboratory to move radioactive sources at a constant speed parallel to 

the RPM, it was also desirable to determine a static measurement equivalent time to a three 

second dynamic measurement time.  Figure 3-2b overlays RPM count rates as a function of static 

and dynamic source measurement times. One can see that for a three second dynamic source 

measurement an equivalent number of counts are recorded in the RPM for a two second static 

measurement of the same radioactive source.   

 

 

Fig. 3-1. (a) Side and (b) front view of an eight 7.62 cm diameter EJ309 cylindrical liquid scintillator RPM 

modeled in MCNPX-PoliMi and later built as a prototype (c). A 0.59 MBq 
137

Cs line source is situated 75 cm 

parallel to RPM front face. The source is assumed to be moving at 1.2 m/s, and the length of the line source 

therefore represents the simulated measurement time [65]. 

(a) (b) 
(c) 
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Fig. 3-2. (a) Simulated RPM gamma-ray photon count rates for setup from Figure 3-1 for a range of 

different measurement times simulated via changing the length of the line source. (b) Comparison count rates of a 

static (red) versus a dynamic (blue) source measurement to establish that a 3 s measurement for a source moving at 

1.2 m/s can be reproduced in the laboratory with a 2 s static source measurement [65]. 

 

The type, shape, and number of detectors used in our RPM prototypes was determined 

through the use of receiver operating characteristics (ROC) curves, as explained further in 

Chapter 3.2. However, MCNPX-PoliMi simulations were also used to optimize the layout of the 

detectors in rows and columns, and the spacing between detectors. Differences in efficiency for 

the different layouts simulated were, in the end, relatively small, but these simulation results 

were used, for instance, to choose the two row and four column layout for the pedestrian RPM 

shown in Figure 3-1.    

3.2. Establishing System False Alarm Rate and Minimum Detectable Activity 

Using Receiver Operating Characteristic Curves 

3.2.1. What are Receiver Operating Characteristics Curves? 

 An ideal RPM would exhibit high absolute detection efficiency at low total detector and 

system cost. The size, type, and number of detectors dictates cost, but the detector with the 

highest intrinsic efficiency might not be the ideal RPM detector if it is costly and many are 

needed to achieve the desired absolute system efficiency. When comparing different RPM 

systems, two interlaced parameters are of great importance. On the one hand, the RPM should 

reliably alarm on some minimum detectable activity (MDA) source. On the other hand, the RPM 

0 2 4
0

100

200

300

400

Measurement Time (s)

T
o

ta
l 

C
o

u
n

ts

(a) (b) 



33 

 

should exhibit a very low false alarm rate on natural background. As neutron nuisance alarms are 

exceedingly rare and any neutron RPM neutron alarm is treated very seriously, a very low 

neutron false alarm rate is particularly important. 

 Focusing on the example of neutron background and some MDA neutron source, one can 

represent the RPM neutron detection response to this source as two overlapping Poisson 

distributions, as shown in Figure 3-3. The user defines some neutron count rate as an alarm 

threshold, 𝑡𝑛, that should result in a very low false alarm rate, i.e. minimizes the area of the 

background neutron Poisson distribution that falls to the right of 𝑡𝑛. At the same time it is 

imperative that the probability of neutron alarming on the MDA source is high, i.e. minimize the 

area of MDA neutron source Poisson distribution that is to the left of 𝑡𝑛. Selecting an appropriate 

𝑡𝑛 is trivial if the background and MDA Poisson distributions are well separated, but much more 

challenging when they are overlapping, as they are in Figure 3-3.  

 

Fig. 3-3. Example of the probability of an RPM detecting N neutrons per second from a background and some MDA 

neutron Poisson distributions. For a user defined alarm threshold neutron count rate, 𝑡𝑛,the true negative rate, 𝑇𝑁, is 

the probability of correctly not neutron alarming on neutron background, whereas the false negative rate, 𝐹𝑁, is the 

probability of not alarming on the MDA neutron source. The false positive rate, 𝐹𝑃, the false alarm rate probability 

on neutron background, whereas the true positive rate, 𝑇𝑃, is the correct alarm rate on the neutron MDA source. 

[49] 
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 The false alarm probability, 𝑃𝐹𝑃, and true alarm probability, 𝑃𝑇𝑃, can be calculated using 

equations (3-4) and (3-5), where 𝜇𝐵𝐺 and 𝜇𝑆𝐼𝐺 are means of background and MDA neutron 

Poisson distributions: 

                                                        𝑃𝐹𝑃(𝑡𝑛, 𝜇𝐵𝐺) = 𝑒−𝜇𝐵𝐺 ∑
𝜇𝐵𝐺

𝑖

𝑖!

∞
𝑖=𝑡𝑛

,                                       (3-4) 

                                   𝑃𝑇𝑃(𝑡𝑛, 𝜇𝐵𝐺) = 𝑒−(𝜇𝐵𝐺+𝜇𝑆𝐼𝐺) ∑
(𝜇𝐵𝐺+𝜇𝑆𝐼𝐺)𝑖

𝑖!

∞
𝑖=𝑡𝑛

                                       (3-5) 

An ROC curve, like the one shown in Figure 3-4, can be obtained by computing 𝑃𝐹𝑃 and 𝑃𝑇𝑃 

over a range of different alarm thresholds, 𝑡𝑛, and then plotting these two probabilities against 

each other. Looking at the ROC curve for an RPM allows one to find the desired false alarm 

probability, 𝑃𝐹𝑃, and see if the corresponding true alarm probability, 𝑃𝑇𝑃, for the MDA source is 

acceptable. This allows for an easy comparison between may different RPM systems.    

 

Fig. 3-4. Example of an ROC curve for the sample background and MDA source neutron Poisson distributions from 

Figure 3-3 [49]. 

3.2.2. Experimental Setup for Comparing Different Detectors for RPM Suitability 

 The three differently-shaped and sized liquid organic scintillation detectors from Table 2-

1 and Figure 2-7 were compared amongst themselves and against the 
3
He RPM described in 

section 2.3 using ROC analysis for a moderated 
252

Cf source MDA scenario [49,66]. The setups, 

shown in Figure 3-5, included a 110,000 n/s 
252

Cf source placed 100 cm from the detector front 
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face and shielded by a 10 cm thick HDPE slab. A 50-keVee light output threshold was applied to 

all organic liquid scintillators, corresponding to a neutron energy of approximately 470 keV. All 

three organic scintillators were gain matched by aligning the 
137

Cs 478-keV Compton edge at a 

pulse height of 1.6 V using the CAEN DT5720 digitizer which features a 2 V dynamic range. 

This relatively high gain was intentionally chosen to preserve the ability of the RPM to detect 

low energy gamma-ray photon sources, such as 
241

Am (60 keV gamma-ray photon) and 
57

Co 

(122 keV gamma-ray photon). Using the PSD curves described in [49,66] and measurement 

times varying between 10 and 90 minutes, neutron count rates were obtained for all four 

detection setups pictured in Figure 3-5.  

 

Fig. 3-5. (a) 
3
He RPM, (b) 7.62 cm  ∅ cylindrical EJ309, (c) 12.7 cm  ∅ cylindrical EJ309, and (d) 25 cm x 25 cm x 

10 cm BC501A; 110,000 n/s 
252

Cf + 10 cm HDPE at 100 cm from detector front face [49]. 

3.2.3. Receiver Operating Characteristics Curve Results for Comparing Different 

Organic Liquid Scintillation Detector Shapes and Volumes 

 Table 3-1 lists the measured neutron count rates observed from background and the 

setups shown in Figure 3-5, as well as simulated neutron count rates obtained from MCNPX-

PoliMi simulations of the same measurements. Measured and simulated neutron count rates 

agree well with the exception of the 25x25x10 cm
3
 BC501A paddle. The measured and 

simulated PHDs for that detector are shown Figure 3-6. The fractional difference plot between 

measurement and simulation, shown in Figure 3-7, shows that measurement and simulation agree 

within ten to fifteen percent at light output over 250 keVee or 1.5 MeV neutron energy. The 

discrepancy of measured and simulated count rate for this largest volume detector thus arises 

from the lower pulse height region where overlapping of the neutron and gamma-ray photon 
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bands required a conservative PSD curve at the cost of low neutron energy detection efficiency 

[49]. A material with better PSD characteristics would allow one to operate at low thresholds 

without sacrificing neutron efficiency at lower energies [43,51,67]. 

Table 3-1. Measured and simulated neutron count rates for moderated 
252

Cf setup shown in Figure 3-5 [49,66]. 

Neutron Count Rate Detector 
3
He RPM 

7.62 cm ∅ 

EJ309 

12.7 cm ∅ 

EJ309 

25x25x10 𝒄𝒎𝟑 

BC501A 

Measured Background [n/s] 3.13 ± 0.02 0.24 ± 0.01 0.25 ± 0.01 2.60 ± 0.07 

Measured [n/s] 373.3 ± 0.5 6.0 ± 0.1 17.6 ± 0.1 26.5 ± 0.2 

Simulated [n/s], 100 cm 415.2 ± 2.6 6.1 ± 0.3 17.7 ± 0.2 82.2 ± 0.3 

 

 

Fig. 3-6. Measured and MCNPX-PoliMi simulated neutron pulse height distributions for moderated 
252

Cf 

measurement with 25x25x10 cm BC501A shown in Figure 3-5d [49]. 
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Fig. 3-7. Fractional difference plot for measured and simulated PHDs from figure 3-6, showing 10-15 percent 

agreement between measurement and simulation at light output over 300 keVee[49]. 

 These measured neutron count rates were then scaled to a 20,000 n/s source strength to 

make the MDA scenario more challenging. The total counts for a two second measurement, 

equivalent to a three second dynamic measurement (see section 3.1.3.), was then used in 

equations (3-4) an (3-5) as 𝜇𝑆𝐼𝐺, and the measured background count rates were modified 

accordingly to be used as 𝜇𝐵𝐺 in the same equations. For this given MDA scenario and a desired 

false alarm rate of 1 in 10,000 [38,39] one can now create ROC curves to compare the four 

different detectors, as show in Figure 3-8. The 
3
He RPM excels at this MDA scenario, while 

none of the single liquid organic scintillation detectors come close to the desired 100% true 

positive alarm probability. Increasing the size of the liquid detector from the 7.62 cm diameter 

EJ309 to the 12.7 cm diameter EJ309 exhibits a steep improvement in the ROC curve, but not 

much is gained from the increased volume of the 25x25x10 cm
3
 BC501A due to the loss of 

neutron efficiency at lower energies because of the conservative PSD curve.  

In terms of developing an RPM, one can easily scale this ROC analysis to determine how 

many of any given detector are needed to achieve a 100% true positive alarm probability for this 

MDA scenario while also not exceeding the desired 1 in 10,000 false alarm rate. ROC curves for 

different numbers of 7.62 cm diameter and 12.7 cm diameter EJ309 organic liquid scintillation 

detectors are shown in Figures 3-9 and 3-10. Data for a wide variety of different RPM 
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configuration scenarios are also summarized in Table 3-2. The ROC curve analysis suggests that 

this particular MDA neutron source scenario could therefore be satisfactorily detected with a 1 in 

10,000 false alarm rate by using either eight 7.62 cm diameter cylindrical volume EJ309 organic 

liquid scintillation detectors, two 12.7 cm diameter cylindrical volume EJ309 organic liquid 

scintillation detectors, or three 25x25x10 cm
3
 paddle-shaped BC501 organic scintillation 

detectors. As later described in Section 4.2, the pedestrian RPM using eight 7.62 cm diameter 

cylindrical volume EJ309 organic liquid scintillation detectors did indeed exhibit satisfactory 

neutron alarming performance for a very similar MDA neutron source test scenario. 

 

 

Fig. 3-8. ROC curve comparison of three different organic liquid scintillators and a 
3
He RPM for the moderated 

252
Cf setup from Figure 3-5 [49]. A 1 in 10,000 desired neutron false alarm rate is indicated by the dashed vertical 

black line [38]. 
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Fig. 3-9. ROC curve comparison of different number of 7.62 cm diameter EJ309 cylindrical active volume organic 

scintillation detectors for the moderated 
252

Cf setup from Figure 3-5b [49]. A 1 in 10,000 desired neutron false alarm 

rate is indicated by the dashed vertical black line [38]. 

 

 

Fig. 3-10. ROC curve comparison of different number of 12.7 cm diameter EJ309 cylindrical active volume organic 

scintillation detectors for the moderated 
252

Cf setup from Figure 3-5c [49]. A 1 in 10,000 desired neutron false alarm 

rate is indicated by the dashed vertical black line [38]. 
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Table 3-2. Probabilities of a true alarm as a function of number of detectors and assuming a 1 in 10,000 false alarm 

rate for a 2 s measurement of a 20,000 n/s 
252

Cf source placed 100 cm from the detector front face and shielded by 

10 cm of HDPE, as show in the setups in Figure 3-5 [49]. 

Detector PTA 

 3He RPM (3 tubes) 1 

One 25x25x10 cm3 BC501A 0.56 

Two 25x25x10 cm3 BC501A 0.91 

Three 25x25x10 cm3 BC501A 0.99 

One 12.7 cm ∅ EJ309 0.56 

Two 12.7 cm ∅ EJ309 0.99 

Three 12.7 cm ∅ EJ309 1 

One 7.62 cm ∅ EJ309 0.03 

Four 7.62 cm ∅ EJ309 0.71 

Eight 7.62 cm ∅ EJ309 0.96 

 

 

3.3. Designing a Complete RPM System Architecture 

 Two RPM systems were designed and tested extensively in benchmark campaigns 

discussed in Chapter 4. The pedestrian RPM, depicted in Figure 3-11a, consisted of eight 7.62 

cm diameter cylindrical volume EJ309 organic liquid scintillation detectors and used a CAEN 

V1720 digitizer board. The vehicle RPM, depicted in Figure 3-11b, consisted of four 12.7 cm 

diameter cylindrical volume EJ309 organic liquid scintillation detectors and one 25x25x10 cm
3
 

paddle-shaped BC501 organic scintillation detector. Based upon measurements and simulations, 

ideally the vehicle RPM would have contained two or more 25x25x10 cm
3
 paddle-shaped 

BC501 organic scintillation detectors, but due to planning and logistics constraints, the 12.7 cm 

diameter EJ309 liquids were used as an adequate substitute. The vehicle RPM used a CAEN 

V1730 digitizer board. 
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Fig. 3-11. (a) Pedestrian RPM consisting of eight 7.62 cm diameter cylindrical volume EJ309 organic liquid 

scintillation detectors; (b) vehicle RPM consisting of four 12.7 cm diameter EJ309 cylindrical active volume organic 

scintillation detectors and one 25x25x10 cm
3
 BC501A liquid detector. Both RPMs used two web-cameras and 

motion detection software as a makeshift occupancy sensor [40,41]. 

 In order to trigger a measurement, a makeshift occupancy sensor had to be constructed. 

Two USB commercial web-cameras pointing in opposite directions were used in conjunction 

with motion detection freeware [68]. Assuming a constant source-transit speed, such as 1.2 m/s 

for the pedestrian RPM, and assuming a three second measurement time, we measured out the 

distances to the left and right of the RPM at which we wished to trigger the three second data 

acquisition. The motion detection software uses a mask for which the user defines the region of 

the image in which any image change, i.e. motion, triggers a motion detection event. An example 

of a mask and an image taken at the time of a motion trigger event are shown in Figure 3-12. A 

low resolution trigger picture was saved for each trigger for debugging purposes, and to filter out 

any unintended trigger events. 

 Any time motion is detected a three second data acquisition is triggered. A modified near 

real-time data acquisition and processing software was used. This script was originally 

developed by Alexis Poitrasson-Riviere for the DNNG Dual Particle Imager [69,70]. Acquired 

pulses are passed from the digitizer buffer to the DAQ in packets which then have PSD applied 

to them to build up gamma-ray photon and neutron count rates as well as PHDs. Within a few 

seconds of the RPM measurement finishing, a standardized XML file containing relevant 

measurement data is created. The XML file contains information on what type of alarm was 

registered (no alarm, gamma alarm, neutron alarm) and lists parameters such as measured 

(a) (b) 
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gamma-ray and photon count rates and, in the case of a gamma alarm, what radionuclide was 

identified.    

 

Fig. 3-12. (a) Example of a trigger picture captured by the vehicle RPM occupancy sensor [40]. (b) The motion 

detection software [68] will signal that motion has been detected if the image in the white portion of this mask 

changes. Separate masks are used to detect motion approaching from the left and right of the RPM.  

                       

 

 

 

 

 

 

 

(a) (b) 
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Chapter 4                                                                                        

Testing RPM Prototypes Under Real-World Conditions 
 

 The two RPM prototypes described Chapter 3 needed to be rigorously tested with a 

variety of moving gamma-ray photon and neutron sources, including SNM. The majority of data 

was collected in two extended measurements trips to an RPM testing facility in Italy in 2014. 

4.1. The European Commission SCINTILLA RPM Testbed Facility 
 

 Testing conditions and scenarios for RPMs are outlined in the ANSI standard N42.35 

[38] and IAEA-TECDOC-1312 [71]. A number of RPM testbeds with appropriate facilities and 

nuclear and radiological reference sources have been developed around the world. We were 

granted access to the European Commission’s RPM testbed at the JRC in Ispra, Italy. Data were 

collected with the pedestrian RPM (see Chapter 3.3) for two weeks in February 2014 and with 

the vehicle RPM (see Chapter 3.3) for two weeks in November 2014. 

 The JRC RPM testbed is an indoor facility consisting of an electric rail-cart system. 

Sources are placed in an adjustable source holder with a 2.1 m maximum source height. The 

maximum possible source transit speed is 3 m/s, though the ANSI standard only calls for 1.2 m/s 

for pedestrian RPMs and 2.2 m/s for vehicle RPMs. Sources can be shielded with a variety of 

common shield materials, like lead, steel, and HDPE. The facility has been used for a variety of 

RPM test campaigns, like ITRAP+10 [72]. We participated in the 2
nd

 and 3
rd

 of three RPM 

benchmark campaigns that were part of the European Commission’s SCINTILLA project which 

was launched in 2012 to develop and test new technologies for detecting nuclear and radiological 

materials. The SCINTILLA component relevant to us focused on the development and testing of 

3
He-free RPM systems [73]. The facility is shown in Figure 4-1. 

 Other invited participants at SCINTILLA included representatives from the French 

Alternative Energies and Atomic Energy Commission (CEA), SAPHYMO, Istituto Nazionale di 

Fisica Nucleare (INFN), Ansaldo Nucleare, symetrica, Arktis Radiation Detectors and others. 

Detector materials used by these institutions included PSD capable plastic organic scintillators 
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[74], gadolinium capture-gated plastic scintillators [75], and 
6
LiZnS(Ag) [76]. All laboratories 

and companies provided their own 
3
He-free systems for testing. During official benchmark 

measurements, all RPMs were operated by JRC staff and modifications or interventions by the 

RPM designers were prohibited.  

 

Fig. 4-1. RPM testing facility at European Commission JRC Ispra, Italy. Left: 2
nd

 SCINTILLA benchmark campaign 

in February 2014. Right: Electric rail cart system. (Photo credit: JRC Ispra). 

  
252

Cf was used as a source of spontaneous fission neutrons for all neutron alarm tests. 

Most tests were performed with ANSI recommended 20,000 n/s activity 
252

Cf sources [38], 

though tests also included weaker sources with activities of 7,000, 10,000, and 13,000 n/s. All 

neutron alarm tests included a 0 cm, 4 cm, or 8 cm thick HDPE moderator  sphere for the 
252

Cf. 

neutron source. 

 The ANSI RPM standards lists a number of recommended gamma-ray photon emitting 

radionuclides and activities with which to test RPM gamma-ray alarm sensitivities. Table 4-1  

shows that all sources used at the two SCINTILLA benchmarks were of approximately the 

recommended activity. No 
232

Th source was available for testing, even though it is an ANSI 

recommended source. A number of medical isotopes were originally planned to be part of the 

SCINTILLA benchmarks, but had to be left out due to issues with the JRC cyclotron. A host of 

medical isotopes, including 
99m

Tc, 
18

F, 
67

Ga, 
111

In, 
123

I, 
131

I and 
201

Tl were measured in June 2016 

at the University of Michigan’s C.S. Mott Children’s Hospital. 
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Table 4-1. Gamma-ray photon source activities for ANSI recommended sources as well as activities used at 

the two SCINTILLA RPM benchmark experiments at the JRC Ispra in February and November 2014.  

Source Source Activity 

[kBq] (ANSI) [38] 

Source Activity [kBq] (2
nd

 

SCINTILLA, pedestrian RPM) [39] 

Source Activity [kBq] (3
rd

 

SCINTILLA, vehicle RPM) [40,77] 
57

Co 185 204 262 
133

Ba 518 301 212 
137

Cs 592 370 350 
60

Co 259 259 181 
232

Th 517 NA NA 
241

Am 1740 2220 2200 

    

HEU NA 51 g; 89.9 % 
235

U NA 

WGPu NA 6.6 g; 93% 
239

Pu 6.6 g; 93% 
239

Pu 

 

 

4.2. RPM False Alarm Tests 

 False alarms are defined as radiation alarms in the presence of no external radiation 

source except natural background radiation. Unless the neutron and gamma-ray photon alarm 

threshold are set incredibly high, there always exists some non-zero probability of fluctuations in 

background radiation resulting in a false alarm. The ANSI RPM standards require a 1 in 10,000 

false alarm rate. This means that in 10,000 occupancies the RPM should register no more than 

one false alarm. In practice, an even lower false alarm rate is highly desirable. To test RPM false 

alarm rates at SCINTILLA, the electric cart was run for thousands occupancy passages overnight 

with no radiation sources placed on the cart. Alarm rates were set at five standard deviations 

above mean background. For the pedestrian RPM the alarm threshold settings were 8 neutrons 

and/or 3,856 gamma-ray photons measured in three seconds [39]. For the vehicle RPM the alarm 

threshold settings were 14 neutrons and 11,044 gamma-ray photons. For the pedestrian RPM at 

the 2
nd

 SCINTILLA benchmark our RPM recorded zero false alarms in the 2,739 overnight RPM 

occupancies. For the vehicle RPM at the 3
rd

 SCINTILLA benchmark our RPM recorded zero 

false alarms in 1,781 overnight RPM occupancies. While the lack of false alarms is encouraging 

in these data, a larger dataset would have been preferable given more time. Histograms of the 

pedestrian RPM false alarm rate test data are shown in Figure 4-2. 
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Fig. 4-2.Histograms of measured (a) neutrons and (b) gamma-ray photons in 2,739 three second measurements for 

the false alarm test for the pedestrian RPM during the 2
nd

 SCINTILLA benchmark in February 2014 at the European 

Commission JRC in Ispra, Italy. The alarm thresholds shown are set five standard deviations above the mean 

background count rates. 

4.3. RPM Neutron Alarm Tests 

4.3.1. Pedestrian RPM Neutron Alarm Results 

 ANSI standards [38] for pedestrian RPMs require the RPM to alarm at least 59 out of 60 

times  on a 20,000 n/s 
252

Cf moving at 1.2 m/s (2.7 miles per hour, 4.3 kilometers per hour)  at a 

source to single pillar RPM distance of 1 m. The neutron source is to be placed at a 1.2 m source 

height. The same test is to be repeated with the neutron source shielded with 4 cm thick HDPE 

moderator. The test is also to be repeated at a range of source heights to test the RPM sensitivity 

to sources high off of or low to the ground. 

 Neutron alarm tests were included in the February 2014 2
nd

 SCINTILLA benchmark. As 

the DNNG system is eventually intended as a two pillar system, a source to detector distance of 

70 cm was used. This reduced distance doubles the observed RPM radiation count rates based 

upon the one over distance squared dependence of the RPM solid angle relative to the radiation 

source. 

 Due to time constraints, most tests were only run for 30 repetitions as opposed to the 

prescribed 60 iterations. In order to go beyond the ANSI standards, several even more 

challenging scenarios were tested. These included elevated source speeds of 2.2 m/s and 3 m/s, a 

reduced source activity of 10,000 n/s, and an increased HDPE moderator thickness of 8 cm. 

Detailed neutron alarm test conditions and results are included in Table B-1 in Appendix B. A 

subset of these results are highlighted in Table 4-2. These results show that the pedestrian RPM 

met the basic ANSI standards. Many beyond ANSI standard tests were successfully passed as 

well, though the RPM struggled when multiple parameters went well beyond the ANSI standard, 

such as the combination of a halved source activity, doubled HDPE shielding, and elevated 

source transit speed. 
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Table 4-2. Highlights of February 2014 2
nd

 SCINTILLA benchmark pedestrian RPM neutron alarm test 

results [39,41] for ANSI [38] and beyond ANSI standard test conditions using a 10,000 n/s or 20,000 n/s 
252

Cf 

source with 1 cm steel and 0.5 cm lead shielding. Underlined values indicate parameters set at beyond ANSI 

standard for pedestrian RPM. Full neutron alarm dataset may be found in Table B-1 in Appendix B.  

ANSI Standard Tests 

Activity 

[n/s] 

Speed 

[m/s] 

HDPE 

[cm] 

Source Height 

[m] 

Average n 

counts 

Neutron 

Alarms 

20,000 1.2 0 1.2 63 30/30 

20,000 1.2 4 1.2 24 30/30 

Beyond ANSI Standard Tests 

20,000 2.2 0 1.2 30 30/30 

20,000 3 0 1.2 23 30/30 

20,000 2.2 0 1.9 22 60/60 

20,000 2.2 0 2.1 20 30/30 

10,000 1.2 0 1.2 23 30/30 

10,000 2.2 0 1.2 15 28/30 

20,000 2.2 4 1.2 15 30/30 

10,000 1.2 4 1.2 9 17/30 

10,000 2.2 4 1.2 8 15/30 

20,000 1.2 8 1.2 14 29/30 

20,000 2.2 8 1.2 8 14/30 

10,000 1.2 8 1.2 6 5/30 

10,000 2.2 8 1.2 3 0/30 

 

 To visualize the test results, neutron counts per trial were extracted from the XML files, 

like the one in Figure A-1 in Appendix A, for the various neutron alarm test cases described in 

Table 4-2 and Table B-1 in Appendix B. Figure 4-3 shows the pedestrian RPM neutron count 

distribution shifting downwards when the source transit speed is increased from 1.2 m/s (4.3 

km/h) to 3 m/s (10.8 km/h). In both cases, however, the neutron count distribution remains well 

above the 9 neutron alarm threshold, thus resulting in a perfect pass rate for these test scenarios. 
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Fig. 4-3.     Histograms of measured neutrons for 30 three second measurements of an unshielded 20,000 n/s 
252

Cf 

moving at 1.2 m/s (red) or 3 m/s (blue). These histograms correspond to the data from folders 2 (red) and 3 (blue) in 

Table B-1 in Appendix B. These measurements were part of the pedestrian RPM neutron alarm testing during the 2
nd

 

SCINTILLA benchmark in February 2014 at the European Commission JRC in Ispra, Italy [39,41]. The 9 neutrons 

alarm threshold shown is set five standard deviations above the mean background count rate. 

 The effects of adding increasing amounts of HDPE shielding around the 
252

Cf neutron 

source are shown in the histograms in Figure 4-4. The unshielded source results in neutron 

counts in the pedestrian RPM that are consistently well above the 9 neutron alarm threshold. The 

addition of 4 cm of HDPE shielding, however, shifts the neutron counts distribution to much 

lower neutron counts on average, thus even resulting in one undetected trial out of thirty trials. 

The addition of 8 cm of HDPE shielding moves the lower end of the neutron distribution to just 

above the 9 neutron alarm threshold. Keeping all other parameters constant, any further increase 

in the shielding thickness would undoubtedly detrimentally affect the ability of the pedestrian 

RPM to reliably detect the shielded neutron source.  
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Fig. 4-4.     Histograms of measured neutrons for 30 three second measurements of a 20,000 n/s 
252

Cf moving at 1.2 

m/s past the pedestrian RPM. Histograms are shown for tests with different amounts of HDPE shielding around the 

neutron source: (a) unshielded, (b) 4 cm thick HDPE, and (c) 8 cm thick HDPE. These histograms correspond to the 

data from folders (a) 2, (b) 16, and (c) 10 in Table B-1 in Appendix B. These measurements were part of the 

pedestrian RPM neutron alarm testing during the 2
nd

 SCINTILLA benchmark in February 2014 at the European 

Commission JRC in Ispra, Italy [39,41]. The 9 neutrons alarm threshold shown is set five standard deviations above 

the mean background count rate. 
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 Finally, some test cases that went above and beyond the basic ANSI standards [38] give 

us an idea of the limitations of the current system. In Figure 4-5, three different test scenarios are 

depicted in which the pedestrian RPM failed to neutron alarm on the 
252

Cf source more than 50% 

of the time. All three of these cases involve 8 cm of HDPE source shielding, as well as a reduced 

source activity and/or an elevated source transit speed. Overall, nevertheless, the pedestrian RPM 

showed strong performance in its ability to reliably detect neutron source under a variety of 

different circumstances. 
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Fig. 4-5.     Histograms of measured neutrons for 30 three second measurements of a 
252

Cf source from the 

pedestrian RPM neutron alarm testing during the 2
nd

 SCINTILLA benchmark in February 2014 at the European 

Commission JRC in Ispra, Italy [39,41]. All three cases involve test scenarios well beyond ANSI standard neutron 

alarming test conditions [38] and a majority of runs resulted in neutron counts below the 9 neutrons alarm threshold 

which is set five standard deviations above the mean neutron background count rate. The three test cases shown are: 

(a) 20,000 n/s 
252

Cf with 8 cm HDPE shielding and moving at 2.2 m/s, (b) 10,000 n/s 
252

Cf with 8 cm HDPE 

shielding and moving at 1.2 m/s, and (c) 10,000 n/s 
252

Cf with 8 cm HDPE shielding and moving at 2.2 m/s. These 

histograms correspond to the data from folders (a) 9, (b) 12, and (c) 11 in Table B-1 in Appendix B. 
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4.3.2. Vehicle RPM Neutron Alarm Results 

 The ANSI standards for vehicle RPMs differ only in a few areas from those described 

already in 4.3.1 for pedestrian RPMs [38]. The source transit speed for vehicle RPM testing is 

prescribed to be 2.2 m/s, as opposed to the slower 1.2 m/s for pedestrian RPMs. The distance 

between vehicle RPM panels is set at 5 m. Our vehicle RPM consisted of a single panel at 2.5 m 

from the source rail track center. 

 Our vehicle RPM (see section 3.3 and Figure 3-11b) was tested during the 3
rd

 

SCINTILLA benchmark at the European Commission JRC in Ispra, Italy, in November 2014. 

Once again, due to time constraints most neutron alarm tests were run for fewer than the ANSI 

[38] recommended 60 trials. The 
252

Cf source activities used for these experiments were 7,000 

n/s, 13,000 n/s, and the ANSI [38] recommended 20,000 n/s. The source height used was 1.1 m 

instead of the usual 1.2 m. No 4 cm HDPE shielded neutron source tests were performed, as all 

participants agreed that their systems would easily pass this scenario. Therefore only iterations of 

the more challenging 8 cm HDPE shielded 
252

Cf were run. 

 The full set of neutron alarm test results for our vehicle RPM are presented in Table 4-3. 

The vehicle RPM passed all basic neutron alarm tests with perfect marks. Tests with the 
252

Cf at 

elevated heights of 2.1 m and 2.7 m posed no challenges. Performance for detecting the 

unshielded but weaker activity 7,000 n/s and 13,000 n/s 
252

Cf sources ranged from modest to 

good. Performance for the 8 cm HDPE shielded 
252

Cf trials, however, was poor, especially when 

using any of the lower activity neutron sources. Overall, the performance for neutron alarming 

was quite satisfying. 
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Table 4-3. Results of November 2014 3
rd

 SCINTILLA benchmark vehicle RPM neutron alarm test results 

[40,77] for ANSI [38] and beyond ANSI standard test conditions using 7,000 n/s, 13,000 n/s, or 20,000 n/s 
252

Cf 

sources with 1 cm steel and 0.5 cm lead shielding. Underlined values indicate parameters set at beyond ANSI 

standard for vehicle RPM. 

Cf Activity 

(n/s) 

Speed 

(m/s) 

HDPE 

(cm) 

Source 

Height (m) Passages Alarms 

ANSI standard tests 

20,000 2.2 0 1.1 52 52 

20,000 1.2 0 1.1 32 32 

Beyond ANSI standard tests 

20,000 2.2 8 1.1 34 11 

20,000 1.2 8 1.1 32 21 

13,000 2.2 0 1.1 32 30 

13,000 1.2 0 1.1 31 31 

13,000 2.2 8 1.1 32 4 

13,000 1.2 8 1.1 30 17 

7,000 2.2 0 1.1 34 18 

20,000 2.2 0 2.1 32 32 

20,000 2.2 0 2.7 32 32 

 

4.4. RPM Gamma-Ray Photon Alarm Tests 

4.4.1. Pedestrian RPM Gamma-Ray Photon Alarm Results 

 This section concerns only the ability to alarm on the presence of the gamma-ray photon 

sources. The ability to identify radionuclides based upon gamma-ray photon measurements with 

the RPMs is discussed separately in Chapter 5. The testing conditions for  gamma-ray photon 

alarming are very similar to those already described for neutron alarm tests in section 4.3; a list 

of ANSI prescribed sources and source activities were listed previously in Table 4-1. All sources 

are to be detected in at least 59 out of 60 iterations with the source moving at 1.2 m/s at a source 

height of 1.2 m. A single pillar RPM is to be placed 1 m from the source track [38]. 

 Gamma-ray photon alarm tests were performed with the pedestrian RPM at the 2
nd

 

SCINTILLA benchmark at the European Commission JRC in Ispra, Italy, in February 2014 

[39,41]. The gamma-ray photon sources and source activities used are listed in Table 4-1 and 

differ from the ANSI required source activities. Most gamma-ray photon sources used are of 
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lower activity, thus making the tests more challenging. The one exception is 
241

Am, for which a 

higher than prescribed activity source was used. Additionally, two SNM sources were included 

in the gamma-ray photon alarm tests. These were a 6.6 g WGPu plutonium-oxide sample (93% 

239
Pu), as well as a 51 g HEU (89.9 % 

235
U) sample. Due to time constraints, typically only 30 

trials were run per source scenario rather than the ANSI prescribed 60 trials. Up to 3 cm of steel 

source shielding was included in some measurements. The full list of test scenarios and 

pedestrian RPM results are listed in Table 4-4. 

Table 4-4. Results of February 2014 2
nd

 SCINTILLA benchmark pedestrian RPM gamma-ray photon alarm 

test results [40,77] for ANSI [38] and beyond ANSI standard test conditions using a variety of gamma-ray photon 

sources, including SNM. More detailed information on these trials can also be found in Table B-1 in Appendix B 

folders 17-40. 

 

Source Activity 

[kBq] 

Source Speed 

[m/s] 

Source Height 

[m] 

Steel Shielding 

[cm] 
Average 𝜸 

counts 

Gamma-Ray 

Alarms 
57

Co 204 1.2 1.2 0 4021 29/30 
57

Co 204 2.2 1.2 0 3867 15/30 
133

Ba 110 1.2 1.2 0 4004 30/30 
133

Ba 110 2.2 1.2 0 3877 22/30 
133

Ba 301 1.2 1.2 0 4808 30/30 
133

Ba 301 1.2 2.0 0 4239 30/30 
133

Ba 301 2.2 1.2 0 4432 30/30 
133

Ba 301 2.2 2.5 0 3945 28/30 
137

Cs 370 1.2 1.2 0 4635 30/30 
137

Cs 370 2.2 1.2 0 4298 30/30 
137

Cs 3700 1.2 1.9 3 5648 30/30 
137

Cs 3700 2.2 2.1 3 4839 30/30 
60

Co 259 1.2 1.2 0 4572 30/30 
60

Co 259 2.2 1.2 0 4277 30/30 
60

Co 259 1.2 2.0 0 4212 30/30 
60

Co 259 2.2 2.5 0 3944 29/30 
241

Am 2220 1.2 1.2 0 4025 30/30 
241

Am 2220 2.2 1.2 0 3864 18/30 

HEU 51 g 1.2 1.2 0 4502 30/30 

HEU 51 g 2.2 1.2 0 4223 30/30 

WGPu 6.6 g 1.2 1.2 0 5381 30/30 

WGPu 6.6 g 2.2 1.2 0 4757 30/30 

WGPu 6.6 g 1.2 1.2 1 4546 30/30 

WGPu 6.6 g 2.2 1.2 1 4215 30/30 
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 Overall the pedestrian RPM performed very well. Nearly all test scenarios resulted in 

perfect detection rates. Figure 4-6a shows that the pedestrian RPM can easily detect the 6.6 g 

WGPu sample, while Figure 4-6b shows that this statement holds even when the source transit 

speed is raised to 2.2 m/s. Figure 4-6c shows the effects of adding 1 cm thick steel source 

shielding, which further lower the average number of gamma-ray photons detected by the 

pedestrian RPM, but still results in a 100% detection rate. 

 The 51 g HEU sample was also reliably detected, as shown in Figure 4-7a. However, the 

pedestrian RPM exhibits the most difficulty with low energy gamma-ray photon sources, like 

241
Am. Despite using source activity almost 30% higher than prescribed by ANSI [38], Figure 4-

7b shows that the pedestrian RPM alarm threshold is barely low enough to reliably alarm on the 

241
Am source travelling at 1.2 m/s. When the source transit speed is raised to 2.2 m/s the 

successful detection rate drops to 60%, as shown in Figure 4-7c.  
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Fig. 4-6.     Histograms of measured gamma-ray photons for 30 three second measurements of a 6.6 g sample of 

WGPu moving at 1.2 m/s past the pedestrian RPM. Histograms are shown for different test scenarios: (a) 1.2 m/s 

source transit speed; source unshielded, (b) 2.2 m/s source transit speed; source unshielded, and (c) 2.2 m/s source 

transit speed; source shielded with 1 cm steel. These histograms correspond to the data from folders (a) 21, (b) 22, 

and (c) 23 in Table B-1 in Appendix B. These measurements were part of the pedestrian RPM gamma-ray photon 

alarm testing during the 2
nd

 SCINTILLA benchmark in February 2014 at the European Commission JRC in Ispra, 

Italy [39,41]. The 3,856 gamma-ray photons alarm threshold shown is set five standard deviations above the mean 

background count rate. 
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Fig. 4-7.     Histograms of measured gamma-ray photons for 30 three second measurements with the pedestrian RPM 

of: (a) 51 g sample of HEU moving at 1.2 m/s, (b) 2,220 kBq 
241

Am moving at 1.2 m/s, and (c)  2,220 kBq 
241

Am 

moving at 2.2 m/s. These histograms correspond to the data from folders (a) 40, (b) 35, and (c) 34 in Table B-1 in 

Appendix B. These measurements were part of the pedestrian RPM gamma-ray photon alarm testing during the 2
nd

 

SCINTILLA benchmark in February 2014 at the European Commission JRC in Ispra, Italy [39,41]. The 3,856 

gamma-ray photons alarm threshold shown is set five standard deviations above the mean background count rate. 
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4.4.2. Vehicle RPM Gamma-Ray Photon Alarm Results 

 Identical to the vehicle RPM neutron alarm tests, the vehicle gamma-ray photon alarm 

tests require that sources travel at 2.2 m/s. The distance between a two pillar vehicle RPM should 

be 5 m. The same ANSI sources and associated source activities (Table 4-1) used for the 

pedestrian RPMs should be detected at least 59 out of 60 times with the vehicle RPM [38]. 

 Vehicle RPM gamma-ray photon alarm tests were successfully performed at the 3
rd

 

SCINTILLA benchmark at the European Commission JRC in Ispra, Italy, in November 2014 

[40,77]. Once again, due to time constraints anywhere between 30 and 43 passages were run per 

source scenario as opposed to the minimum of 60 trials suggested by ANSI [38].The source 

activities used (see Table 4-1 and Table 4-5) were as much as 80% lower than prescribed by 

ANSI [38], making these test conditions quite challenging. Exceptions to this were the two low 

energy gamma-ray photon sources, 
57

Co and 
241

Am, for which a majority of SCINTILLA 

participants requested that higher activity sources be used in the tests. 

 The full set of tests and results achieved with our vehicle RPM for these gamma-ray 

photon alarm tests are presented in Table 4-5. The results were very mixed. For source activities 

well below the ANSI-suggested activity, like the 107 kBq vs 518 kBq 
133

Ba, the vehicle RPM 

had zero successful alarms. For higher energy gamma-ray photons sources and sources with 

activities closer to the ANSI-recommended values, the vehicle RPM performed satisfactorily. 

 The sensitivity of both RPMs to detection scenarios beyond ANSI standards could be 

improved with the use of additional detectors or more efficient detectors in the RPM designs.   
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Table 4-5. Results of November 2014 3
rd

 SCINTILLA benchmark vehicle RPM gamma-ray photon alarm 

test results [40,77] for ANSI [38] and beyond ANSI standard test conditions using a variety of gamma-ray photon 

sources. 

Isotope Activity (kBq) Speed (m/s) Source Height (m) Passages Alarms 
241

Am 1,480 2.2 0.8 32 1 
241

Am 2,220 2.2 0.8 32 5 
133

Ba 107 2.2 0.8 35 0 
133

Ba 212 2.2 0.8 33 32 
133

Ba 107 1.2 0.6 32 0 
57

Co 262 2.2 0.8 34 0 
57

Co 333 2.2 0.6 30 0 
60

Co 181 1.2 0.6 43 38 
137

Cs 350 2.2 0.8 32 26 
226

Ra 290 2.2 0.8 30 30 
226

Ra 290 1.2 0.6 32 31 
137

Cs 350 2.2 1.7 32 28 
137

Cs 350 2.2 2.4 30 15 
60

Co 826 2.2 0.8 32 32 
60

Co 826 2.2 0.8 32 32 
137

Cs 3,500 2.2 0.8 32 31 
137

Cs 3,500 1.2 0.6 32 30 

WGPu 6.6 g 2.2 0.8 31 7 

WGPu 6.6 g 1.2 0.6 32 25 
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Chapter 5                                                                                    

Reducing Nuisance Alarms Through On-The-Fly Radionuclide 

Identification 
 

5.1. Challenges for On-The-Fly Identification 

On-the-fly radionuclide identification, as discussed in Chapters 1 and 2, could provide 

some cost and time savings to CBP by lowering the number of nuisance alarms that would need 

to undergo a secondary inspections. Ideally, any alarm during primary inspection would report 

identified radionuclides with some associated certainty. For cases in which clearly only NORM 

or medical isotopes are present, secondary inspections could be skipped. 

In Chapter 2 the differences between organic scintillators, like those used for the RPMs 

in Chapter 4, and inorganic scintillators and semi-conductor-based gamma-ray photon detectors 

were discussed. The latter two detector types depend upon the photo-electric effect to form 

distinct full energy photopeaks in their PHDs. These photopeaks are characteristic of a given 

isotope’s decay scheme, like the many photopeaks of WGPu shown in a PHD taken with a high 

purity Germanium (HPGe) semi-conductor-based gamma-ray photon detector (see Figure 5-1).  

Organic scintillators completely rely upon Compton scattering for detecting incident 

gamma-ray photons. Therefore a PHD of WGPu acquired with the liquid scintillator-based RPM 

will show no characteristic photopeaks even for a long measurement time. In a realistic RPM 

measurement scenario, long measurement times are a luxury that is rarely granted. Measurement 

times on the order of three seconds are common. Figure 5-2 shows PHDs before and after 

background subtraction. These PHDs were acquired with the pedestrian RPM during a three 

second measurement of 6.6 g WGPu moving past the RPM at 1.2 m/s. Background radiation 

subtraction and the short measurement time result in a jittery PHD with no immediately 

discernible features that would identify the radiation source as WGPu to the naked eye. 

In the following sections a variety of algorithms are discussed that were implemented to 

draw radionuclide identification information from these noisy short measurement time PHDs. 
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Figure 5-1. Example of a gamma-ray photon PHD of 500 g metal WGPu sample (6% 
240

Pu) acquired with 

coaxial HPGe detector [78,79]. Peaks without isotope label stem directly from 
239

Pu decay, while other peaks stem 

from other isotopes always found in WGPu, such as 
241

Am as well as other isotopes of plutonium. 
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Figure 5-2. Gamma-ray photon PHDs before (blue squares) and after (red circles) background subtraction for 

three second dynamic measurement of 6.6 g WGPu with pedestrian RPM during 2
nd

 SCINTILLA benchmark at JRC 

Ispra, Italy, in February 2014 [39,80,81]. Such a background subtracted PHD would provide the raw basis for any 

subsequent on-the-fly radionuclide identification attempts [39,80].    

5.2. Identification Using Least Squares Comparison with Modified PHDs 

The first rudimentary radionuclide identification algorithm implemented for the 

pedestrian RPM utilized a least squares comparison between the short three-second PHDs of the 

moving sources and the much longer previously acquired library spectra shown in Figure 5-3. As 

mentioned in Chapter 2.2, the organic scintillators are energy calibrated assuming 80% of the 

137
Cs Compton edge corresponds to the expected 478 keVee light output. The calibration gives 

the linear relationship between the pulse height in Volts and light output in keVee. The 2 V 

dynamic range of the V1720 digitizer used for the pedestrian RPM is insufficient to capture the 

full PHDs of both low energy gamma-ray photon emitting sources, like 
241

Am, and high energy 

gamma-ray photon emitting sources, like 
40

K. Therefore, as shown in Figure 5-3, one set of 

detectors was calibrated at a higher gain to capture the PHDs of the lower energy gamma-ray 

photons, while another set of detectors was calibrated at a lower gain to capture the full PHDs of 

higher energy gamma-ray photons. Not all isotopes in the library PHDs ended up being used in 

the dynamic tests. 
40

K and 
226

Ra were dropped from the tests due to time constraints.   
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Figure 5-3. High (a) and low (b) gain matrices used as library spectra for on-the-fly radionuclide identification 

with the pedestrian RPM at the 2
nd

 SCINTILLA benchmark at the JRC Ispra, Italy, in February 2014. Measurement 

times for all PHDs exceeded 600 s. Of the eight detectors, five used the high gain setting and three used the low gain 

setting [39,80]. 

 The identification methodology relies on finding the lowest residual value (𝑆𝑖) when 

doing a least squares comparison between the dynamic three second measurement PHD and all 

of the library PHDs using equation (5-1): 

                                                                                 𝑆𝑖 =  ∑ (𝑚𝑏 − 𝑙𝑖𝑏)2𝐵
𝑏=1 ,                                                           (5-1) 
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where B is the number of bins in the PHD, mb is the preprocessed count rate in the b
th

 bin of the 

PHD, and lib is the preprocessed count rate in the b
th

 bin of the i
th

 isotope in the library. Figure 5-

4a shows a three second measurement of 
57

Co using the pedestrian RPM during the 2
nd

 

SCINTILLA benchmark. Included in this Figure is the 
57

Co library PHD that the three second 

measurement should match, in theory.  In practice, the three second measurement is very noisy 

resulting in large residuals for all PHD comparisons. Therefore a number of modifications are 

performed on both the three second and library PHDs to improve the identification accuracy. 

The background radiation PHD that is subtracted from the three second measurement has 

excellent statistics due to the much longer measurement time. The three second measurements 

have poor statistics and only very few counts in most PHD bins. Therefore it is probable that the 

background corrected three second PHDs will showcase jitter and exhibit many bins with 

negative counts. These negative count bins substantially add to the residual value, especially for 

low energy gamma-ray photon PHDs for which only a few bins contain a substantial number of 

counts. Therefore, the first step is to filter out some of the noise by zeroing out all PHD bins with 

negative counts or counts below some small user defined threshold. Figure 5-4b shows the much 

cleaner 
57

Co PHD after this noise suppression has been applied. 

To increase the statistics of individual PHD bins, bin coarsening was applied, as shown 

for the same 
57

Co PHD in Figure 5-4c.  Too much bin coarsening, however, will eliminate 

characteristic features in the PHDs. A bin coarsening factor of two was found to give satisfactory 

results [39,80]. 

Finally one has to also decide which lowest residual value to use: the overall lowest 

residual, or the lowest residual from the low or the high gain matrix? The algorithm uses three 

criteria to make a selection. A high energy gamma-ray photon will create more counts in the low 

gain detector PHDs than in high gain detector PHDs. The ratio of counts in the low gain versus 

the high gain detectors is used as the first decision-making criteria. If this ratio exceeds 0.75, it is 

assumed that a high energy gamma-ray photon source was being measured, so the lowest 

residual value of the low gain detector set is chosen. For very low count rate scenarios, however, 

the ratio might be meaningless. When there are fewer than 50 counts in the low gain detectors, 

the identification result from the low gain detectors is thrown out. Finally, if neither of the 

previous two criteria leads to a conclusive answer, then simply the lowest residual value is used 
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to pick the radionuclide [39,80]. Originally the method also included the use of user-defined 

weighting masks, but these had mixed effects on the identification results and were deemed to be 

too arbitrary [80]. 

The radionuclide identification results for samples measured with the pedestrian RPM at 

the 2
nd

 SCINTILLA benchmark at the JRC Ispra, Italy, in February 2014 are listed in Table 5-1. 

The identification results are listed for both high- and low-gain detectors as the PHDs are 

modified step by step. The final identification results were excellent for 
133

Ba and HEU, but only 

middling for 
241

Am, 
57

Co, 
60

Co, and 
137

Cs.  The WGPu was misidentified for all thirty trials. 

Figure 5-5 shows that the library WGPu PHD does not match the PHDs from the dynamic 

WGPu measurements. Possible explanations could include improper gain settings when 

measuring the WGPu library PHD. Overall, the modified PHD least squares method did not 

produce high quality and fidelity identification results, and relied too heavily on user choices, 

like bin coarsening. These challenges inspired the subsequent radionuclide identification 

algorithm developments. 
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Figure 5-4. PHD modification steps for a three second 
57

Co measurement with pedestrian RPM at February 

2014 SCINTILLA benchmark at JRC Ispra, Italy. All PHDs are subdivided into 200 bins. See Figure 5-3a for 

energy scale. (a) Background corrected three second PHD (blue) versus library spectrum of 
57

Co (red) from Figure 

5-3a; (b) PHDs after noise suppression has been applied to zero out negative and low count rate bins; (c) PHDs after 

bin coarsening by a factor of two [39,80]. 
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Table 5-1. Correct radionuclide identification using the modified least squares method out of 30 trials for 

different isotopes measured with the pedestrian RPM at the 2
nd

 SCINTILLA benchmark at the JRC Ispra, Italy, in 

February 2014 [39,80]. Identification results are shown for both high- and low-gain detector sets, and for the 

different PHD modification steps outlined in Figure 5-4. 

Correct IDs 

(High-gain, Low-gain) 
60

Co WGPu 
133

Ba 
57

Co 
241

Am 
137

Cs HEU 

Raw Spectrum 0 23 0 0 30 0 9 0 19 0 23 27 30 0 

Noise Suppression 0 19 0 0 30 0 9 0 18 0 10 23 30 0 

Bin Coarsening 0 19 0 0 30 0 12 0 20 0 11 22 30 0 

Final HG/LG Selection 14 0 30 12 20 11 30 

 

 

Figure 5-5. Average dynamically measured PHD for WGPu and WGPu library PHD for pedestrian RPM at 

2
nd

 SCINTILLA benchmark at JRC Ispra, Italy, in February 2014. These two PHDs do not match well, explaining 

why WGPu was never identified correctly [39]. 

 

5.3. Identification Using Least Squares Comparison with Cumulative 

Distribution Functions 

The least squares method with modified PHDs described in 5.2 did not consistently 

produce satisfactory radionuclide identification results for the set of radionuclides measured with 
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the pedestrian RPM. Its multi-step process and reliance on user-defined parameters made the 

method inelegant and convoluted. A simpler, more robust, and more successful radionuclide 

identification algorithm had to be developed. All background corrected measured PHDs were 

saved, so other identification algorithms could easily be tested on the dataset. 

The goal of all developed identification algorithms was to find a bridge between the 

jittery dynamically measured PHDs with low counting statistics, and the smooth and well-

defined library PHDs of radionuclides used for identification. In the previous method this was 

attempted through de-emphasizing unimportant PHD regions through noise suppression, and 

emphasizing distinctive PHD features through bin coarsening and weighting functions. 

The next proposed radionuclide identification method uses least squares comparisons of 

modified CDFs of both the library PHDs and the dynamically measured PHDs. It is hypothesized 

that CDFs would smooth out the statistical jitter of the short measurement time dynamically 

measured PHDs, while also preserving and emphasizing any distinctive PHD features that might 

not be obvious when viewing the noisy unmodified PHDs.  

The CDF, 𝑥(𝑛), of any distribution 𝐹𝑋 (𝑥) represents the probability that X takes a value 

less than x, i.e., 𝑃(𝑋 ≤ 𝑥). The PHD is integrated bin-by-bin, thus expressing what fraction of 

the total PHD exists to the left of each bin. Our subsequent analysis uses 𝑦(𝑛) = (1 − 𝑥(𝑛)). 

The CDFs thus are formed by integrating the PHDs from right to left and normalizing to unity. 

The integration from high to low energy was chosen to minimize the effects of variable noise 

found at low energies right above the threshold [81]. The algorithm still utilizes equation (5-1) to 

compute the residual values when comparing dynamically measured 𝑦(𝑛) to the library 𝑦(𝑛) 

spectra. The radionuclide is identified by finding the library 𝑦(𝑛) that produces the smallest 

residual when compared with the dynamically measured 𝑦(𝑛). High- and low-gain 𝑦(𝑛) 

matrices are shown in Figures 5-6a and 5-6b. 

Figures 5-7a and 5-7b show examples of the three second dynamic measurements of 

radionuclides with the pedestrian RPM at the 2
nd

 SCINTILLA benchmark, and how their 𝑦(𝑛) 

spectra match well with the library 𝑦(𝑛) for a variety of radionuclides in the high- and low-gain 

matrices. While the modified PHD method required several steps and user chosen parameters to 

smoothen the jittery short measurement time PHDs, the CDF method only uses one operation to 
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transform a noisy and messy PHD into a form that is easily comparable and relatable to the 

smoother library 𝑦(𝑛). 

Table 5-2 compares the success rate of the modified PHD and CDF radionuclide 

identification methods for the pedestrian RPM data from the 2
nd

 SCINTILLA benchmark at JRC 

Ispra, Italy, from February 2014. With the exception of 
241

Am, all radionuclides were identified 

correctly at a significantly higher success rate, even at the higher source transit speed of 2.2 m/s. 

Nevertheless, the average correct radionuclide identification rate of 90%, while good for an 

initial attempt, would need to be further improved for commercial viability.   
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Figure 5-6. (a) High-gain modified CDF library matrix for RPM radionuclide identification, (b) low-gain 

modified CDF library matrix for radionuclide identification [39,66].  
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Figure 5-7. High-gain modified CDF library matrix for RPM radionuclide identification with 𝑦(𝑛) of dynamic 

measurements of (a) 
133

Ba and (b) 
137

Cs with pedestrian RPM at 2
nd

 SCINTILLA benchmark at JRC Ispra, Italy, in 

February 2014 [39,66,81]. 
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Table 5-2. Comparison of correct radionuclide identifications out of 30 trials using the modified least 

squares method versus the CDF method for different isotopes measured with the pedestrian RPM at the 2
nd

 

SCINTILLA benchmark at the JRC Ispra, Italy, in February 2014 [39,80]. A slightly higher pulse height threshold 

of 0.06 V vs 0.03 V was used for the 
57

Co results. 

Source Speed [m/s] 

 

Modified PHD method 

Correct ID (#/30) 

CDF method 

Correct ID (#/30) 
137

Cs 1.2 11 27 
137

Cs 2.2 3 25 

HEU 1.2 30 30 

HEU 2.2 30 25 
60

Co 1.2 14 26 
60

Co 2.2 7 20 
133

Ba
 

1.2 30 30 
133

Ba
 

2.2 21 30 
57

Co
 

1.2 12 25 
241

Am 1.2 20 13 

 

5.4. Adding Medical Isotopes to the Mix 
As mentioned in Chapter 1, medical isotopes, especially 

99m
Tc, have become a common source of 

RPM nuisance alarms [30]. Therefore, it was highly desirable to add these isotopes to the RPM 

radionuclide identification library.  

 

Figure 5-8. Measuring medical isotopes with the pedestrian RPM at the University of Michigan’s 

C.S. Mott Children’s Hospital in December 2013. 
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In June 2016, medical isotope gamma-ray photon emissions were measured with four different 

detectors, including a 7.6 cm diameter and a 12.7 cm diameter cylindrical volume EJ309 organic liquid 

scintillation detector, a 5.1 cm diameter and 5.1 cm height cylindrical volume stilbene crystal from Inrad 

Optics, as well as an experimental 5.1 cm diameter and 5.1 cm height cylindrical volume plastic 

scintillator named BB3 from Radiation Monitoring Devices (see  Figure 5-9 for setup). 

 

Figure 5-9. June 2016 setup for measuring medical isotopes at University of Michigan’s C.S. Mott 

Children’s Hospital using: (a) a 7.6 cm diameter cylindrical volume EJ309 organic liquid scintillation detector, (b) a 

5.1 cm diameter and 5.1 cm height cylindrical volume stilbene crystal from Inrad Optics, a 12.7 cm diameter 

cylindrical volume EJ309 organic liquid scintillation detector (d) an experimental 5.1 cm diameter and 5.1 cm height 

cylindrical volume plastic scintillator name BB3 from Radiation Monitoring Devices [81]. 

The medical isotopes came in solution form packaged in glass vials. A total of seven medical 

isotopes were measured, including 
18

F, 
67

Ga, 
123

I, 
131

I, 
111

In, 
99m

Tc, and 
201

Tl. At time of calibration each 

source had an activity of 7 − 8 𝜇𝐶𝑖 with a 20% uncertainty. The sources are pictured in Figure 5-10 and 

more source information is listed in Table 5-3. 
18

F has a relatively short half-life of 1.83 hours, so even 

though it was included in these measurements, it is considered to be a very unlikely source of nuisance 

alarms at border crossing as its activity decreases so rapidly with time [30].   
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Figure 5-10. 7 − 8 𝜇𝐶𝑖 medical isotope samples measured at the University of Michigan’s C.S. Mott 

Children’s Hospital in June 2016. From left to right: 
111

In, 
18

F, 
67

Ga, 
123

I, 
201

Tl, 
99m

Tc, and 
201

Tl. Labeled activities 

are desired activities, which at times differed by 1 𝜇𝐶𝑖 from the actual activities listed on separate calibration source 

sheets provided by the hospital. 

Table 5-3. List of medical isotopes measured at University of Michigan’s C.S. Mott Children’s 

Hospital in June 2016 and their respective radioactive half-lives in hours, and their activities at time of sample 

calibration and at time we measured them [81].   

Isotope T
1/2 

[h] Activity at noon 
6/2/16 [mCi] ±20% 

Activity at time of 
measurement [mCi] ±20% 

99m

Tc 6.0 0.008 0.007 
123

I 13.3 0.007 0.007 
201

Tl 72.9 0.008 0.008 
131

I 192.5 0.008 0.008 
111

In 67.3 0.007 0.007 
18

F 1.8 0.007 0.001 
67

Ga 78.3 0.007 0.007 

 

Each of the seven medical sources was measured for thirty minutes. Four background 

measurements were taken interspersed throughout the day of the measurements. The background 

corrected CDFs of the PHDs measured with the 7.6 cm diameter cylindrical volume EJ309 organic liquid 

scintillation detector were added to the high gain identification matrix for the pedestrian RPM (see Figure 

5-6a). This updated identification matrix for low energy gamma-ray photon sources is shown in Figure 5-

11.  The figure also includes a modified CDF (𝑦(𝑛)) of a short measurement (1000 pulses) of 
131

I. 
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Figure 5-11. High-gain modified CDF library matrix, including medical isotopes, for RPM 

radionuclide identification with 𝑦(𝑛) of measurement of 
131

I with pedestrian RPM detector at University of 

Michigan’s C.S. Mott Children’s Hospital in June 2016 [81]. 

From Figure 5-11 it becomes clear that the addition of many low gamma-ray photon energy 

emitting medical radionuclides increases the difficulty of correctly identifying any of the low energy 

sources. The performance of the least squares comparison identification method with CDFs, introduced in 

Section 5.4, degrades with the addition of more and more radionuclides to the library, so a more robust 

identification algorithm is needed. 

5.5. Identification Using Power Spectral Density and Spectral Angular 

Mapping 
 All of the previously described radionuclide identification algorithms worked well to a degree, 

but none of them were able to correctly identify nuisance and threat alarms 100% of the time. It would be 

entirely unacceptable for CBP to misidentify an HEU source as a benign medical source, as it would also 

be utterly embarrassing for CBP to cause a security panic if a medical isotope was misidentified as 

WGPu. While the modified CDFs do well at smoothing out the noisiness of the short measurement time 

PHDs, the least squares comparison does not constitute a robust enough identification metric. Two 

modified CDFs might look very similar to the naked eye overall. However, a small shift or offset, or an 

outlier data point in the short measurement time modified CDF could all easily lead to a large residual 

value computed in the least squares comparison, and thus lead to a probable misidentification of the 

radionuclide. 
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In other words, the least squares method compares the exact match of the two modified CDFs 

point by point, but says nothing about similarities in overall shapes and trends between two modified 

CDFs. The discrete Fourier transform (DFT) (see Equation 5-2) of 𝑦(𝑛) describes how rapidly 𝑦(𝑛) 

changes over its energy domain. A fast Fourier transform (FFT) speeds up the computation of the DFT 

which converts a signal in time into the frequency domain [82]. However, Fourier analysis can be applied 

to many other areas, such as image processing, so it could be a power tool in analyzing and comparing 

measured modified CDFs. 

                          𝐷𝐹𝑇(𝑘) = ∑ 𝑦(𝑛) exp (−𝑖 ∗ 2 ∗ 𝑝𝑖 ∗ (𝑘 − 1) ∗
𝑛−1

𝑁
) ,  1 <=  𝑘 <=  𝑁𝑁

𝑛=1 ,                 (5-2) 

where DFT(k) is the amount of frequency in the signal, y(n) is the modified CDF, n is the sample energy 

domain, N is the number of samples, and k is the sample in the frequency domain. 

For a continuous signal, the power spectral density (Equation 5-3) computes how “power” is 

distributed over frequency of the CDF by computing the square of the DFT: 

                                                                            𝑃𝑆𝐷(𝑘) = |𝐷𝐹𝑇(𝑘)|2.                                                 (5-3) 

 In electrical engineering applications this “power” refers to actual physical power, for instance in 

a circuit, but for more abstract signals, like CDFs from RPMs, “power” has no physical meaning, so one 

can just think of power spectral density as the square value of the signal. The power spectral density 

provides a metric now to describe how the CDF behaves over its entire domain. So even though two 

CDFs might not look identical at first glance, they might behave very similarly thus suggesting they may 

have both arisen from the same radiation source. Examples of modified CDF, FFT, and power spectral 

density are shown for a dynamic 
137

Cs measurement from SCINTILLA pedestrian RPM data in Figure 5-

12. 
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Figure 5-12. Examples of (a) modified CDF (𝑦(𝑛)), (b) FFT, and (c) power spectral density for signal from a 

three second measurement of 
137

Cs with the pedestrian RPM at the SCINTILLA benchmark at JRC Ispra, Italy, in 

February 2014.   

Spectral angle mapping (SAM) offers a new way of comparing measured and reference spectra 

for the purpose of identifying radionuclides. SAM computes the spectral angle (in radians, see Equation 

5-4) between the power spectral density of the measured spectrum and a matrix of reference power 

spectral density spectra for the library of radionuclides. A smaller SAM value indicates better agreement 

between measured and reference spectra: 

                                                             𝛼𝑖 = cos−1 [
(𝑃𝑆𝐷(𝑘)∙𝑃𝑆𝐷𝑚𝑎𝑡𝑟𝑖𝑥(:,𝑖))

‖𝑃𝑆𝐷(𝑘)‖‖𝑃𝑆𝐷𝑚𝑎𝑡𝑟𝑖𝑥(:,𝑖)‖
],   [83]                                (5-4) 

where we compute the spectral angle 𝛼 between the power spectral density of a measured spectra and the 

library power spectral density spectra for any isotope 𝑖.  

SAM was developed by J. W. Boardman while working for the Center for the Study of Earth 

from Space (CSES), Cooperative Institute for Research in Environmental Sciences (CIRES), University 

of Colorado, Boulder USA in the early 1990s. SAM was developed to analyze spectral similarities 

between measured and reference spectra for imaging spectrometry for creating maps of the distribution of 

and composition of materials on the Earth’s surface [83,84]. The SAM method has since been widely 

adopted for a variety of image analysis needs [85–88], especially in environmental, earth, and space 

sciences, but also in limited ways in nuclear security applications [89,90]. SAM has not yet been used for 
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radionuclide identification. Figure 5-13 shows how SAM could be used to compare a reference spectrum 

to a measurement spectrum. A measurement spectrum would be compared to all library reference spectra 

representing the different radionuclides. The match with the smallest SAM value would be picked as the 

match. The absolute value of this SAM value could then also be used to quantify the confidence of the 

match being correct. The SAM analysis could be applied directly to the CDFs, as shown in Figure 5-13, 

or it could be applied to the power spectral densities of the measurement and reference CDFs. 

 

Figure 5-13. Example of SAM angle being computed between a RPM measured CDF and reference CDF of 
137

Cs. This process would be repeated for all data points in the measured spectrum. SAM values would then be 

computed for comparisons with all reference CDFs representing all library radionuclides. The overall smallest SAM 

value gives the likeliest radionuclide to cause the measured CDF. 

 For the following radionuclide identification analysis all isotopes shown in Figure 5-11, with the 

exception of 
18

F, are used. As previously mentioned, 
18

F is not considered a threat to cause RPM nuisance 

alarms due to its short half-life [28,30]. That leaves us with two SNM sources, six medical isotopes, and 

five industrial gamma-ray photon sources. The reference matrix consists of the power spectral densities of 

the long measurement time CDFs of these sources acquired at the 2
nd

 SCINTILLA benchmark and the 

University of Michigan’s C.S. Mott Children’s Hospital with the 7.6 cm diameter cylindrical volume 

EJ309 organic liquid scintillation detectors. 

 These reference spectra are compared with the pedestrian RPM data for the 30 trials per gamma-

ray photon source at 1.2 m/s source transit speed from the 2
nd

 SCINTILLA benchmark. The 

corresponding folder numbers from Table B-1 from Appendix B give the full setup information, and are 

as follows: 
241

Am (35), 
133

Ba (28), 
57

Co (32), 
60

Co (18), 
137

Cs (37), HEU (40), and WGPu (22). The 
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pedestrian RPM, on average, measured between 4,000 and 5,000 gamma-ray photons for the three second 

measurement time and 1.2 m/s source transit speed case at the 2
nd

 SCINTILLA benchmark. The 

background contribution to this number, however, is quite high, as the alarm level was set at 3,856 

gamma-ray photons. Therefore the net number of detected source gamma-ray photons per three second 

measurement varied between a few hundred and about a thousand. For the medical isotope data, the 

number of pulses processed for each of the  thirty trials was selected as to result in a similar number of net 

detected source photons after background subtraction. 

 For the previously described measurement conditions, the SAM method now gives 100% correct 

identification for all thirty trials of all thirteen radionuclides. An example of the SAM identification 

output is shown in Table B-2 in Appendix B for thirty datasets of 1,000 net detected source pulses for 

99m
Tc. The 

99m
Tc is identified correctly for every single dataset. It is of great importance to know at what 

point this identification method starts breaking down. In other words, what is the minimum number of 

detected source gamma-ray photons needed for a consistently reliable source identification via this 

algorithm? For 
99m

Tc it was found that starting at around 400 net detected source pulses, the first 

misidentifications started occurring. Table B-3 shows that for this scenario two out of thirty 
99m

Tc datasets 

were misidentified as 
123

I, which has a very similar CDF to 
99m

Tc (see Figure 5-11). 

 Tables 5-4 and 5-5 list the average 𝛼 SAM values computed for the correct radionuclide for two 

different dataset scenarios. Table 5-4 uses the less challenging dataset containing the aforementioned 1.2 

m/s source transit speed SCINTILLA datasets and the medical radionuclide datasets containing 1,000 net 

accepted pulses. Table 5-5 uses a more challenging dataset containing the 2.2 m/s source transit speed 

SCINTILLA datasets and medical radionuclide datasets containing only 400 net accepted pulses. Two 

trends can be seen in these tables. First, lower energy sources (
241

Am, 
57

Co) exhibit the highest 𝛼 SAM 

values, indicating that these sources are the most difficult sources to correctly identify. Second, 𝛼 SAM 

values increase in Table 5-5 relative to Table 5-4. This increase confirms that using less data makes 

correct radionuclide identification more challenging. 

Table 5-4. Average and standard deviations of the SAM 𝛼 values computed for the correct isotope for thirty 

datasets for each of the 13 tested radionuclides. The SNM and industrial radionuclide datasets come from the 

datasets from Table B-1 listed previously in this section. The medical datasets consist of 1,000 net detected pulses 

from the respective medical sources. Examples of full datasets showing SAM 𝛼 values for all 30 datasets for one 

isotope for all possible radionuclide identification options are given in Tables B-2 and B-3 in Appendix B [81].   

 241Am 133Ba 57Co 137Cs HEU WGPu 67Ga 123I 131I 111In 99mTc 201Tl 

𝛼𝑎𝑣𝑔 0.0061 0.0040 0.0065 0.0049 0.0047 0.0031 0.0018 0.0030 0.0016 0.0017 0.0020 0.0019 

𝛼𝑠𝑡𝑑 9.8E-04 5.2E-04 9.7E-04 5.3E-04 6.8E-04 3.9E-04 2.0E-4 3.3E-04 9.4E-04 2.0E-04 2.7E-04 1.9E-04 
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Table 5-5. Average and standard deviations of the SAM 𝛼 values computed for the correct isotope for thirty 

datasets for each of the 12 tested radionuclides. The SNM and industrial radionuclide datasets come from the 

following datasets from Table B-1 in Appendix B: folders 17, 21, 27,31, 34, 36. All of these tests are the same as 

those used for Table 5-4 except that the source transit speed is increased from 1.2 m/s to 2.2 m/s . The medical 

datasets consist of 400 net detected pulses from the respective medical sources, which is at the limit of detection for 

the pedestrian RPM for the background conditions and associated gamma alarm threshold used at the JRC Ispra 

[81].  

 241Am 133Ba 57Co 137Cs HEU WGPu 67Ga 123I 131I 111In 99mTc 201Tl 

𝛼𝑎𝑣𝑔 0.0072 0.0051 0.0076 0.0060 0.0062 0.0043 0.0034 0.0047 0.0030 0.0017 0.0037 0.0036 

𝛼𝑠𝑡𝑑 8.2E-04 6.9E-04 1.1E-03 5.0E-04 6.6E-04 5.6E-04 3.7E-4 4.9E-04 2.5E-04 2.0E-04 4.7E-04 3.7E-04 

 

 One must also take into account that even a nonsensical input will result in an 𝛼 SAM value. 

Three  such inputs, that should not result in a positive identification of any of the reference spectra, are 

shown in Figure 5-14. The 𝛼 SAM values resulting from these inputs are listed in Table 5-6. 

 

Figure 5-14. Non-source inputs for testing the radionuclide identification algorithms. Test inputs include the 

CDFs of a gamma ray PHD background measurement, a linear function through the origin, and a square function 

through the origin. The 𝛼 SAM values resulting from these inputs are listed in Table 5-4 [81]. 
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Table 5-6. SAM 𝛼-values computed for the test cases shown in Figure 5-14. As none of these inputs should 

match any of the reference spectra, the 𝛼 SAM values should be larger than, for example, the average 𝛼 SAM value 

of 0.003 ± 0.000 for positive identification of WGPu shown in the right most column [81]. 

Radionuclide SAM 𝛼𝐶𝐷𝐹𝐵𝐺
 SAM 𝛼𝐶𝐷𝐹𝑦=𝑥

 SAM 𝛼𝐶𝐷𝐹
𝑦=𝑥2  

SAM 

𝛼𝐶𝐷𝐹𝑊𝐺𝑃𝑢𝑎𝑣𝑔±𝑊𝐺𝑃𝑢𝑠𝑡𝑑𝑒𝑣
 

241
Am 0.022 0.017 0.013 0.008±0.001 

133
Ba 0.016 0.010 0.004 0.006±0.000 

57
Co 0.020 0.014 0.009 0.005±0.001 

137
Cs 0.012 0.004 0.004 0.009±0.001 

HEU 0.020 0.014 0.008 0.005±0.001 
226

Ra 0.014 0.007 0.003 0.007±0.001 

WGPu 0.019 0.013 0.007 0.003±0.000 
67

Ga 0.020 0.014 0.008 0.008±0.001 
123

I 0.026 0.020 0.014 0.011±0.001 
131

I 0.014 0.007 0.003 0.009±0.001 
111

In 0.022 0.015 0.010 0.009±0.001 
99m

Tc 0.028 0.022 0.016 0.013±0.001 
201

Tl 0.020 0.014 0.008 0.008±0.001 

 

 Overall, however, the SAM and power spectral density method shows tremendous improvement 

over the methods described in Sections 5.2 and 5.3. If this new method had been implemented earlier, we 

would have shown perfect identification results with the pedestrian RPM at the 2
nd

 SCINTILLA 

benchmark for all sources travelling at 1.2 m/s. Section 5-6 attempts to quantify how the different 

radionuclide identification algorithms match up against each other. 

 

5.6 Comparison of radionuclide identification methods using F-scores 

 F-scores provide a statistical measure of radionuclide identification algorithm 

performance, while also factoring in a system’s susceptibility to false negatives, i.e. not even 

alarming on a present source [91].The F-score (F) (Equation 5-7) utilizes both precision (p) and 

recall (r) values shown in Equations 5-5 and 5-6. Precision and recall values are based upon the 

system’s true positive alarms and correct IDs (𝑡𝑝), incorrect IDs or false positives (𝑓𝑝), and not 

seeing a present source or false negatives (𝑓𝑛): 

                                                                       𝑝 =
𝑡𝑝

𝑡𝑃+𝑓𝑝
,                                                            (5-5) 

                                                                          𝑟 =
𝑡𝑝

𝑡𝑝+𝑓𝑛
,                                                             (5-6) 
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                                                                  𝐹 =
(1+𝛽2)𝑝𝑟

𝛽2𝑝+𝑟
,                                                            (5-7) 

 where 𝛽 is a weighting factor that can be used to emphasize the importance of precision 

(higher correct ID rate at cost of more false negatives) versus recall (lower false positive rate at 

cost of worse correct ID rate). In the former case, a 𝛽 value of 2 might be chosen, whereas in the 

latter case a 𝛽 value of 0.5 might be chosen. A 𝛽 value of 1 indicates no bias towards either 

precision or recall. 

 The three different isotope identification algorithms introduced in Sections 5.2, 5.3, and 

5.5 are compared for a mixture of SCINTILLA and medical isotope data in Table 5-7 [81]. The 

F-scores reveal the CDF method was an improvement over the modified PHD method, while the 

power spectral density and spectral angular mapper-based identification radionuclide 

identification algorithm performs best overall. Even this method has its limitation too. Table 5-8 

compares F-scores for the dataset used in Table 5-7 with a more challenging dataset for which 

the 2.2 m/s versus 1.2 m/s source transit speed datasets are used from SCINTILLA and only 400 

versus 1,000 good pulses are used for each medical isotope data trial. While the F-scores 

decrease to 0.91 for this more challenging dataset, the power spectral density and spectral 

angular mapper-based identification algorithm still manages to outperform the other algorithms’ 

performances even though these inferior algorithms are using a less challenging dataset. 

 Many different algorithms were explored with the goal of performing on-the-fly 

radionuclide identification with organic scintillators. The most challenging sources to detect 

were low energy gamma-ray photon sources, like 
241

Am and 
57

Co. The identification algorithm 

using power spectral density and spectral angular mapper showed the most promise in the end. 

This algorithm resulted in a very high positive identification rate even for low energy gamma-ray 

photon sources, and for datasets with very few counts. 
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Table 5-7. Precision, recall, and F-scores computed for SCINTILLA pedestrian RPM datasets with 1.2 m/s 

source transit speed, and medical isotope datasets consisting of 1,000 good pulses. The following three isotope 

identification algorithms are compared: identification using least squares comparison with modified PHDs from 

Section 5.2 (Method 1), identification using least squares comparison with cumulative distribution functions from 

Section 5.3 (Method 2), and identification using power spectral density and spectral angular mapper from Section 

5.5 [81]. 

 Method 1 Method 2 Method 3 

Precision 0.58 0.70 1.0 

Recall 0.99 0.99 1.0 

    

F(𝛽 = 1) 0.73 0.82 1.0 

F(𝛽 = 0.5) 0.63 0.74 1.0 

F(𝛽 = 2) 0.87 0.92 1.0 
 

Table 5-8. Precision, recall, and F-scores computed for two datasets. Dataset 1 contains SCINTILLA 

pedestrian RPM datasets with 1.2 m/s source transit speed, and medical isotope datasets consisting of 1,000 good 

pulses. The more challenging dataset 2 contains the 2.2 m/s source transit speed SCINTILLA datasets and medical 

radionuclide datasets containing only 400 net accepted pulses. F-scores are computed for both datasets using the 

identification algorithm using power spectral density and spectral angular mapper from Section 5.5 [81]. 

 
Dataset 1 Dataset 2 

Precision 1.0 0.90 

Recall 1.0 0.92 

   
F(𝛽 = 1) 1.0 0.91 

F(𝛽 = 0.5) 1.0 0.91 

F(𝛽 = 2) 1.0 0.91 

 

5.7 Identifying Multiple Isotopes Simultaneously 

 So far all examples have only involved the presence of a single radionuclide. Correctly 

identifying two or more present radionuclides simultaneously represents a serious escalation in 

problem difficulty and complexity. Two scenarios must be addressed for a typical RPM. The first 

scenario involves the presence of two or more nuisance sources. For example, a truck driver 

might have recently undergone a nuclear medicine procedure and the truck driver might be 

transporting a large shipment of NORM-bearing cargo. The resulting mixed radiation signal 

must be resolved by the RPM and must not result in a misidentification. The second scenario 

involves an attempt to mask an SNM source with a NORM or medical source. The NORM to 
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SNM signal ratio would ideally be high as to spoof the RPM operator into believing that only a 

harmless NORM source is present. 

 Linear spectral un-mixing (LSU) algorithms are commonly used to dissect a mixed signal 

into its constituent components [92–94]. This algorithm assumes that the mixed signal 𝑀 

consists of a linear combination of 𝑛 possible source terms (radionuclides 𝑆𝑖) at different 

fractions 𝑐𝑖 as shown in Equation 5-8: 

                                          𝑀 = 𝑐1𝑆1 + 𝑐2𝑆2 + ⋯ + 𝑐𝑛𝑆𝑛.                                            (5-8) 

One then calculates all difference equations simultaneously between 𝑀 and all reference 

spectra 𝑆𝑖 for all values of 𝑐𝑖 constrained to 𝑐𝑖 ≥ 0 (Equation 5-9). One then solves for minima to 

get best fit values for 𝑐𝑖 as shown in Equation 5-10: 

                                       𝑀 − 𝑐1𝑆1 − 𝑐2 𝑆2 − ⋯ 𝑐𝑛𝑆𝑛 = 𝑚𝑖𝑛,                                       (5-9) 

                                          min𝑐‖𝑺 ∗ 𝑐 − 𝑀‖,  𝑐 ≥ 0  .                                                (5-10) 

The mixed source signal array M and reference matrix S could consist of gamma-ray 

PHDs, CDFs, or power spectral densities of CDFs. A code was written to test all three data 

formats with M containing up to three isotopes mixed in user-defined ratios. The simplest 

scenario involves an un-mixed single source. The results for 1.2 m/s source transit speed 

pedestrian RPM 
137

Cs and WGPu data are shown in Table 5-9. The coefficients for the correct 

radionuclide, in particular in the case of the WGPu, show a high degree of variability between 

datasets. Overall, however, the coefficient for the correct isotope clearly stands out against the 

much lower coefficients for absent isotopes. 
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Table 5-9. Isotope fraction coefficients computed for an LSU algorithm for un-mixing pedestrian 

RPM data consisting solely of WGPu or 
137

Cs measurements. The averages and standard deviations of 

coefficients computed for each possible isotope use 30 three second measurement data sets as inputs. Inputs 

are either PHDs, modified CDFs (𝑦(𝑛)), or power spectral densities of 𝑦(𝑛). 

 

100% WGPu 100% Cs137 

Isotopes PHD LSU CDF LSU CDF PSD LSU PHD LSU CDF LSU CDF PSD LSU 
241Am 0.19±0.13 0.11±0.12 0.18±0.14 0.05±0.07 0.01±0.03 0.03±0.05 
133Ba 0.07±0.12 0.05±0.08 0.07±0.12 0.01±0.03 0.00±0.01 0.00±0.02 
57Co  0.06±0.08 0.02±0.04 0.03±0.06 0.02±0.05 0.00±0.01 0.01±0.02 
137Cs 0.01±0.02 0.00±0.00 0.01±0.03 0.75±0.14 0.93±0.12 0.85±0.09 

HEU   0.05±0.09 0.00±0.01 0.02±0.04 0.00±0.01 0.00±0.00 0.00±0.01 
226Ra 0.01±0.04 0.00±0.00 0.01±0.03 0.00±0.02 0.01±0.05 0.00±0.01 

WGPu  0.47±0.29 0.66±0.20 0.53±0.27 0.00±0.00 0.00±0.00 0.00±0.00 
18F   0.02±0.04 0.00±0.01 0.01±0.03 0.07±0.07 0.03±0.07 0.08±0.08 

67Ga  0.01±0.03 0.03±0.06 0.01±0.04 0.00±0.01 0.00±0.01 0.00±0.00 
123I  0.01±0.03 0.01±0.02 0.02±0.04 0.00±0.01 0.00±0.01 0.00±0.00 
131I  0.05±0.06 0.04±0.05 0.03±0.05 0.03±0.05 0.01±0.02 0.02±0.04 

111In 0.01±0.02 0.01±0.02 0.02±0.03 0.01±0.02 0.01±0.02 0.00±0.00 
99mTc  0.02±0.03 0.02±0.03 0.02±0.03 0.00±0.01 0.00±0.01 0.00±0.00 
201Tl 0.03±0.08 0.03±0.05 0.02±0.06 0.01±0.04 0.00±0.00 0.01±0.03 

 

Table 5-10 shows LSU results for two sources mixed in a 1:1 ratio. The 1:1 mixture of 

the two medical isotopes 
99m

Tc and 
67

Ga un-mixes nearly perfectly with the LSU code. The 

CDFs in question, including the CDF for the mixed source are given in Figure 5-15. The 

averaged un-mixing results for 𝑐𝑖 are shown in pie chart for in Figure 5-16. For the 1:1 mixture 

of 
137

Cs and WGPu, the 
137

Cs is easily identified at approximately the correct percentage, but the 

WGPu content, while mostly noticeably above any of the absent sources, is significantly 

underestimated. However, for purposes of RPM operation it is most important that the presence 

of SNM is detected. The estimate of the exact ratio of which it might be present with other 

sources is not a consequential measurement parameter. 
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Table 5-10. Isotope fraction coefficients computed for an LSU algorithm for un-mixing pedestrian 

RPM data consisting of 
99m

Tc and 
67

Ga or 
137

Cs and WGPu mixed in a 1:1 ratio. The averages and standard 

deviations of coefficients computed for each possible isotope use 30 three second measurement data sets as 

inputs. Inputs are either PHDs, modified CDFs (𝑦(𝑛)), or power spectral densities of 𝑦(𝑛). 

 1:1 99mTc:67Ga 1:1 137Cs:WGPu 

Isotopes PHD LSU CDF LSU CDF PSD LSU PHD LSU CDF LSU CDF PSD LSU 
241Am 0.00±0.00 0.00±0.00 0.00±0.00 0.14±0.09 0.17±0.07 0.15±0.08 
133Ba 0.00±0.01 0.01±0.01 0.00±0.01 0.03±0.06 0.05±0.09 0.02±0.04 
57Co 0.01±0.01 0.01±0.01 0.01±0.01 0.06±0.07 0.07±0.08 0.07±0.07 
137Cs 0.00±0.01 0.02±0.01 0.04±0.03 0.40±0.11 0.41±0.11 0.52±0.10 

HEU 0.00±0.00 0.00±0.00 0.00±0.00 0.03±0.05 0.02±0.05 0.02±0.05 
226Ra 0.00±0.00 0.00±0.01 0.00±0.00 0.09±0.13 0.06±0.12 0.07±0.10 

WGPu 0.00±0.00 0.00±0.00 0.00±0.00 0.14±0.18 0.05±0.10 0.08±0.12 
18F 0.01±0.01 0.00±0.00 0.03±0.02 0.03±0.04 0.04±0.05 0.02±0.04 

67Ga 0.41±0.06 0.42±0.05 0.25±0.08 0.00±0.01 0.02±0.04 0.00±0.00 
123I 0.01±0.03 0.02±0.04 0.01±0.03 0.00±0.01 0.00±0.01 0.01±0.02 
131I 0.02±0.02 0.01±0.02 0.05±0.04 0.04±0.07 0.05±0.07 0.02±0.05 

111In 0.02±0.03 0.02±0.03 0.00±0.00 0.01±0.02 0.02±0.04 0.01±0.02 
99mTc 0.50±0.04 0.49±0.04 0.53±0.05 0.02±0.03 0.02±0.03 0.02±0.02 
201Tl 0.01±0.03 0.00±0.00 0.08±0.06 0.02±0.04 0.01±0.02 0.01±0.04 

 

 

Figure 5-15. Library CDFs and example of RPM data consisting of 
67

Ga and 
99m

Tc mixed in a 1:1 ratio. 
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Figure 5-16. Average isotope fraction coefficients, 𝑐𝑖, computed for an LSU algorithm for un-mixing pedestrian 

RPM data consisting of 
67

Ga and 
99m

Tc mixed in a 1:1 ratio. The averages and standard deviations of coefficients 

computed for each possible isotope use 30 three second measurement data sets as inputs. Inputs are PHDs. 

A more challenging scenario involves the mixing of sources in unequal proportions. This 

represents a masking scenario in which a stronger (benign) source is used to overshadow the 

signatures of a weaker but illicit radiation source. Table 5-11 shows LSU un-mixing results for 

137
Cs and WGPu pedestrian RPM data mixed in a 2:1 and 1:2 ratio. The ratios might not 

reconstruct perfectly in the LSU results, but the trends between the 1:2 versus 2:1 ratio are 

apparent. Both sources are clearly identified in the 1:2 source ratio scenario, but the WGPu is 

barely detected in many of the 2:1 
137

Cs to WGPu ratio examples. 
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Table 5-11. Isotope fraction coefficients computed for an LSU algorithm for un-mixing pedestrian 

RPM data consisting of 
137

Cs and WGPu in a 2:1 or 1:2 ratio. The averages and standard deviations of 

coefficients computed for each possible isotope use 30 three second measurement data sets as inputs. Inputs 

are either PHDs, modified CDFs (𝑦(𝑛)), or power spectral densities of 𝑦(𝑛). 

 

 2:1 137Cs:WGPu 1:2 137Cs:WGPu 

Isotopes PHD LSM CDF LSM CDF PSD LSM PHD LSM CDF LSM CDF PSD LSM 
241Am 0.10±0.08 0.13±0.07 0.11±0.08 0.17±0.10 0.20±0.09 0.18±0.10 
133Ba 0.03±0.06 0.03±0.07 0.01±0.04 0.05±0.07 0.07±0.12 0.03±0.05 
57Co 0.05±0.07 0.06±0.08 0.05±0.07 0.06±0.07 0.08±0.08 0.07±0.07 
137Cs 0.56±0.12 0.59±0.13 0.67±0.09 0.24±0.10 0.24±0.08 0.34±0.11 

HEU 0.02±0.03 0.01±0.02 0.02±0.05 0.04±0.07 0.03±0.07 0.03±0.06 
226Ra 0.06±0.09 0.03±0.10 0.03±0.07 0.09±0.14 0.05±0.11 0.08±0.12 

WGPu 0.07±0.10 0.01±0.04 0.03±0.06 0.23±0.22 0.14±0.17 0.17±0.18 
18F 0.03±0.04 0.04±0.06 0.03±0.04 0.03±0.04 0.03±0.04 0.02±0.04 

67Ga 0.00±0.01 0.01±0.04 0.00±0.01 0.00±0.02 0.01±0.04 0.00±0.00 
123I 0.00±0.01 0.00±0.02 0.01±0.02 0.01±0.02 0.01±0.02 0.01±0.03 
131I 0.03±0.06 0.04±0.05 0.02±0.04 0.05±0.07 0.07±0.07 0.03±0.07 

111In 0.01±0.02 0.03±0.03 0.00±0.01 0.01±0.02 0.02±0.04 0.01±0.01 
99mTc 0.01±0.02 0.01±0.02 0.01±0.02 0.02±0.03 0.02±0.03 0.02±0.03 
201Tl 0.01±0.03 0.01±0.02 0.01±0.03 0.02±0.05 0.01±0.03 0.02±0.04 

 

 Finally, Table 5-12 contains LSU results for a source consisting of three radionuclides 

together, namely WGPU (SNM), 
137

Cs (industrial), and 
99m

Tc (medical) in 1:3:1 ratio. The CDFs 

in question, including the CDF for the mixed source are given in Figure 5-17. The averaged un-

mixing results for 𝑐𝑖 are shown in pie chart for in Figure 5-18.The presence of all three isotopes 

is clear in the un-mixed identification results, though 
241

Am is erroneously also identified. This is 

the lowest energy gamma-ray source considered, and its CDF and PHD lines up with the low 

energy portion of many other sources, thus causing it to often look similar to other sources. 

241
Am also contributes heavily as a decay product to the gamma emissions from WGPu. 

241
Am 

has a specific intensity of 4.54 ∗ 1010 𝛾

𝑠  𝑔
 for its characteristic 60 keV gamma ray. This value is 

orders of magnitudes higher than the specific activities for many of the most common plutonium 

characteristic gamma ray photons. Even though 
241

Am only accounts for a tenth of a percent of 

the mass of the JRC WGPu sample, its high specific decay activity results in the 
241

Am 60 keV 
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gamma ray accounting for over 97% of the WGPu sample gamma ray emissions. The frequent 

misidentification of WGPu as 
241

Am therefore should not be surprising. 

Overall, it is unclear whether using PHDs, CDFs, or power spectral densities as inputs for 

a LSU algorithm will produce the best results. However, with data of high statistical uncertainty 

and no isotope characteristic photopeaks, it is remarkable to what degree the constituents of a 

mixed source consisting of up to three radionuclides can be correctly identified. 

  

Table 5-12. Isotope fraction coefficients computed for an LSU algorithm for un-mixing pedestrian RPM data 

consisting of 
137

Cs, WGPu, and 
99m

Tc mixed in a 1:3:1. The averages and standard deviations of coefficients 

computed for each possible isotope use 30 three second measurement data sets as inputs. Inputs are either PHDs, 

modified CDFs (𝑦(𝑛)), or power spectral densities of 𝑦(𝑛). 

 1:3:1 137Cs:WGPu:99mTc 

Isotopes PHD LSU CDF LSU CDF PSD LSU 
241Am 0.12±0.10 0.16±0.08 0.18±0.07 
133Ba 0.03±0.07 0.03±0.06 0.00±0.00 
57Co 0.06±0.06 0.10±0.10 0.09±0.08 
137Cs 0.13±0.07 0.14±0.05 0.32±0.07 

HEU 0.03±0.05 0.03±0.07 0.05±0.07 
226Ra 0.03±0.08 0.02±0.05 0.01±0.03 

WGPu 0.28±0.22 0.17±0.16 0.07±0.11 
18F 0.02±0.04 0.02±0.03 0.02±0.03 

67Ga 0.01±0.02 0.01±0.03 0.00±0.00 
123I 0.01±0.03 0.01±0.02 0.05±0.06 
131I 0.04±0.05 0.07±0.06 0.00±0.01 

111In 0.01±0.02 0.02±0.03 0.00±0.00 
99mTc 0.19±0.04 0.20±0.04 0.20±0.07 
201Tl 0.02±0.05 0.02±0.03 0.02±0.04 
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Figure 5-17. Library CDFs and example of RPM data consisting of 
137

Cs, WGPu, and 
99m

Tc mixed in a 1:3:1 

ratio.  

 

Figure 5-18. Average isotope fraction coefficients, 𝑐𝑖, computed for an LSU algorithm for un-mixing pedestrian 

RPM data consisting of 
137

Cs, WGPu, and 
99m

Tc mixed in a 1:3:1 ratio. The averages and standard deviations of 

coefficients computed for each possible isotope use 30 three second measurement data sets as inputs. Inputs are 

PHDs.  
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Chapter 6. Summary and Conclusions 
 

 In the first 2016 United States Presidential debate candidate Hillary Clinton said the 

following about her opponent and nuclear weapons: “And, in fact, his cavalier attitude about 

nuclear weapons is so deeply troubling. That is the number-one threat we face in the world. And 

it becomes particularly threatening if terrorists ever get their hands on any nuclear material [95].” 

Terrorists getting their hands on nuclear material is one of the major threats that RPMs address 

by making it difficult for terrorists to move nuclear and radiological material across borders with 

impunity. 

 RPMs screen vehicles, cargo, and people by looking for elevated neutron and gamma-ray 

photon count rates above natural background radiation. However, two challenges are hampering 

the effectiveness of our globally deployed RPM network. First, supplies of the detector material 

of choice for neutron detection, 
3
He, are gradually running out and are becoming prohibitively 

expensive. Second, the number of actual interdictions of nuclear and radiological materials pales 

in comparison to the hundreds of thousands of radiation nuisance alarms that RPM operators 

must sift through annually. Because RPMs only measure radiation count rates, the vast majority 

of currently deployed RPMs have no way of quickly distinguishing a radiation alarm caused by 

hidden SNM from radiation alarms caused by NORM-bearing cargo and recent nuclear medicine 

patients. Processing these nuisance alarms is time and money intensive for the RPM operators, it 

distracts from their actual mission and lowers the seriousness with which each subsequent RPM 

radiation alarm is treated, and it’s a nuisance to nuclear medicine patients and truck drivers who 

experience additional delays while crossing a border. 

 To address these aforementioned issues, we have developed RPMs that use alternatives to 

3
He for neutron detection, and that can perform on-the-fly radionuclide identification for gamma-

ray photon alarms. Modeling and lab-scale experiments were extensively used to investigate the 

feasibility of this undertaking and to design our RPM. MCNP models and ROC curve analysis 

were used to develop a pedestrian and a vehicle RPM using organic liquid scintillation detectors 

[49].  
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 The RPM prototypes were extensively tested at two experimental campaigns at the 

European Commission Joint Research Centre in Ispra, Italy, at a purpose-built RPM testing 

facility. This facility allowed for RPMs to be tested with moving radiation sources in a variety of 

shielding configurations. Sources included a variety of 
252

Cf neutron sources, industrial gamma-

ray photon sources, and, most importantly, actual SNM sources of HEU and WGPu. The RPMs 

were tested on their ability to not false alarm on occupancies in which only natural background 

radiation was present. Additionally RPMs were tested for their ability to alarm on the presence of 

(shielded) neutron and gamma-ray photon sources. Our prototypes performed exceedingly well 

in all of these categories [39]. 

 Reliable on-the-fly radionuclide identification is one of the cornerstones of this 

dissertation. The challenge of this undertaking is twofold. First, unlike inorganic scintillators and 

semi-conductor-based radiation detectors, organic scintillators provide no isotope-specific photo-

peak information. Instead organic scintillator output arises from Compton scattering interactions 

in the detectors. Second, RPM measurement times are incredibly short, on the order of three 

seconds, so the acquired signal is often poorly converged and exhibits dreadful statistics with so 

few measured data. Making a positive identification on such poor quality data is incredibly 

challenging. 

 In addition to the radionuclides measured in Italy, we measured seven different common 

medical isotopes at the University of Michigan’s C.S. Mott Children’s Hospital. Medical 

isotopes are a growing source of RPM nuisance alarms. In fact, in addition to kitty litter, the 

medical isotope 
99m

Tc is the most common source of RPM nuisance alarms[28,30]. Therefore it 

was crucial to add medical isotopes to our radionuclide identification efforts. 

  Many radionuclide identification algorithms were explored, developed, implemented, and 

then later discarded for not producing results with the type of reliability and precision required 

for such an important task. Initial efforts focused on template matching with reference PHDs 

using a least squares comparison method between measured and reference spectra. While many 

ways of improving this method were explored, none could completely overcome the inherent 

noisiness of the short measurement time PHDs. The next phase of algorithm development 

focused on using CDFs to smoothen the inherent noisiness of short measurement time PHDs. 

While this method led to drastic improvements for identifying some isotopes, the CDF  method 
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did not show improvements across the board for all radionuclides. Especially for lower energy 

gamma-ray photon emitting sources, too many radionuclides’ gamma-ray photon emissions 

resulted in CDFs too similar in appearance to be distinguished reliably through a simple least 

squares algorithm. Finally, Fourier analysis was used to compute the power spectral densities of 

CDFs. The power spectral densities of measured and reference spectra were compared with a 

spectral angle mapper to compute the best matches. This method resulted in near 100% correct 

identification rates for all SNM, industrial, and medical isotopes with datasets containing as few 

as 400 detected events from the radiation source. 

 F-score analysis was used to quantitatively compare the three developed radionuclide 

identification algorithms. For the less challenging dataset 1, the F-score for 𝛽 = 1 improved 

from 0.72 for the PHD least squares comparison method, to 0.82 for the CDF least squares 

comparison method, to 1.0 for the power spectral density and spectral angle mapper method. For 

this final identification algorithm, even the more challenging dataset 2 resulted in a high F-score 

for 𝛽 = 1 of 0.91. 

 While these radionuclide identification results are excellent, further work must go into 

handling the presence of multiple different radiation sources as well as the effects of shielding on 

the identification algorithms. Nevertheless, some degree of success was achieved with a LSU 

algorithm for identifying the components of mixed sources with up to three constituents.  

The designed RPM shows great promise in a lab controlled environment. However, more 

research and development would be required to bring the developed prototypes to market. Given 

more time and resources, more investigations into the choice of detector material and detector 

readout would be appropriate. Due to time and budget constraints, and early decision was made 

to design the prototypes with liquid organic scintillation detectors which were available to us in 

abundance. Due to the small probability of leaks developing in liquid scintillator detectors, solid 

detector materials are favored over liquids for field deployment. Alternative solid organic 

scintillator detectors should be further investigated for their RPM suitability. These materials 

include stilbene [43,51,67], a crystalline solid organic scintillator, as well as pulse shape 

discrimination-capable plastic organic scintillation detectors [96]. Further ROC curve and cost 

analysis would be required to investigate the feasibility of using these detectors in an RPM.  
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Furthermore, all measurements in this dissertation were performed in relatively climate 

controlled laboratory environments. RPMs in the field must cope with a wide range of operating 

temperatures, air humidity, and other climatic phenomena. Some detector materials, like stilbene, 

cannot cope with large temperature gradients [43,51,67,97,98]. Therefore, before field 

deployment all candidate RPM detector material performances would need to be studied in depth 

in a user controllable environmental chamber. 

Another potential area of further improvement and investigation pertains to the detector 

light readout. Photomultiplier tubes, as used in our RPM prototypes, have two significant 

drawbacks. Photomultiplier tubes requires high voltage to operate, and they take up a lot of 

volume relative to the active detector volume. Solid state readouts, like SiPMs, have emerged as 

a viable alternative to photomultiplier tubes. SiPMs require low voltage to operate, and only take 

up a small fraction of the volume of photomultiplier tubes [43]. However, each individual SiPM 

only reads out a small surface area, so there exist associated physical and cost challenges with 

expanding the use of SiPMs to large arrays of larger volume detectors, as would be likely in an 

RPM application. 

Finally, further studies are needed to investigate the RPM response to high activity 

gamma-ray photon sources. The digitizer uses an acquisition time window 100s of nanoseconds 

in length for each pulse above the set energy threshold. In the presence of a high activity source 

(GBq or higher), the probability of measuring multiple gamma-ray photons within this set time 

window increases substantially. Such pulses are often referred to as double pulses or pile-up 

pulses. If not corrected for, double pulses would be treated as a single pulse with a very large tail 

integral, leading to the misclassification of double pulses from gammas as a single neutron pulse. 

However, current research into double pulse cleaning and/or recovery could be implemented in 

the RPM algorithms to deal with the issue of double pulses [99].   

Despite these outstanding challenges, several RPM prototypes were developed, built, and 

tested rigorously under a variety of testing conditions. The results should provide encouragement 

to the prospects of commercializing 
3
He-free RPMs, and RPMs capable of distinguishing SNM 

sources from nuisance radiation sources. 
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Appendices                                                                                 

Appendix A                                                                                        

RPM XML File Output Example 
 

  

Figure A-1. Example of an XML file output for a single RPM occupancy for the pedestrian RPM tested at the 

2
nd

 SCINTILLA benchmark at the European Commission JRC in Ispra, Italy, in February 2014. The standardized 

XML file contains vital information, including a time stamp, gross neutron and gamma-ray photon counts and count 

rates, alarm type, and radionuclide identification result in the case of gamma alarms. 
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Appendix B                                                                               

Pedestrian RPM Results for 2
nd

 SCINTILLA Benchmark 

 

Table B-1.  Overview of test results for pedestrian RPM at 2
nd

 SCINTILLA benchmark at JRC Ispra, Italy, 

in February 2014. Test results include false alarm test (top left), neutron alarm tests (folders 1-16), as well as 

gamma-ray photon alarm and ID tests (folders 17-50). The ID results in this table still use a method with weighting 

masks on the PHDs, thus the discrepancy to values shown elsewhere in Table 5-1 and Table 5-2. 

False 

Alarm 

Test 

0/2739               

Folder 

Number 
Source 

Activity 

(kBq or 

n/s) 

Source ID 

Spee

d 

(m/s) 

Shielding 

Steel (cm) 

Shieldin

g Lead 

(cm) 

Shielding 

HDPE 

(cm) 

Source 

Height 

(m) 

# 

Passage

s 

Date 

(2014) 

All 

Clear

s 

Gamm

a 

Alarms 

Neutron 

Alarms 

Correct 

ID 
Comments 

1 Cf-252 20000 5549 2.2 1 0.5 0 1.2 30 10-Feb 
     

2 Cf-252 20000 5549 1.2 1 0.5 0 1.2 30 10-Feb 0 19 30 30 
 

3 Cf-252 20000 5549 3 1 0.5 0 1.2 30 10-Feb 0 0 30 30 
 

4 Cf-252 20000 5549 2.2 1 0.5 0 1.9 30 10-Feb 0 0 30 30 

Two portals 

crashed. The 

test will be 

repeated. 

5 Cf-252 20000 5549 2.2 1 0.5 0 1.9 30 11-Feb 0 0 30 30 

Repetition 

of previous 
test 

6 Cf-252 20000 5549 2.2 1 0.5 0 2.1 30 11-Feb 0 0 30 30 
 

7 Cf-252 10000 5987 2.2 1 0.5 0 1.2 30 11-Feb 2 0 28 28 
 

8 Cf-252 10000 5987 1.2 1 0.5 0 1.2 30 11-Feb 0 0 30 30 
 

9 Cf-252 20000 5549 2.2 1 0.5 8 1.2 30 11-Feb 16 1 14 14 
 

10 Cf-252 20000 5549 1.2 1 0.5 8 1.2 30 11-Feb 1 0 29 29 
 

11 Cf-252 10000 5987 2.2 1 0.5 8 1.2 30 11-Feb 30 0 0 0 
 

12 Cf-252 10000 5987 1.2 1 0.5 8 1.2 30 11-Feb 25 0 5 5 
 

13 Cf-252 10000 5987 2.2 1 0.5 4 1.2 30 11-Feb 15 0 15 15 
 

14 Cf-252 10000 5987 1.2 1 0.5 4 1.2 30 11-Feb 13 0 17 17 

One portal 

crashed. No 

repetition 

15 Cf-252 20000 5549 2.2 1 0.5 4 1.2 30 11-Feb 0 0 30 30 
 

16 Cf-252 20000 5549 1.2 1 0.5 4 1.2 30 11-Feb 1 18 29 29 
 

17 Co-60 259 591 2.2 0 0 0 1.2 30 11-Feb 0 30 0 5 
 

18 Co-60 259 591 1.2 0 0 0 1.2 30 12-Feb 0 30 0 17 
 

19 Co-60 259 591 2.2 0 0 0 2.5 30 12-Feb 1 29 0 0 
Vehicular 

limits 

20 Co-60 259 591 1.2 0 0 0 2 30 12-Feb 0 30 0 3 
Pedestrian 

limits 

21 WGPu 93% CBNM93 2.2 0 0 0 1.2 30 12-Feb 0 30 0 13 
 

22 WGPu 93% CBNM93 1.2 0 0 0 1.2 30 12-Feb 0 30 0 17 
 

23 WGPu 93% CBNM93 2.2 1 0 0 1.2 30 12-Feb 0 30 0 2 
 

24 WGPu 93% CBNM93 1.2 1 0 0 1.2 30 12-Feb 0 30 0 0 
 

25 Ba-133 110 6505 2.2 0 0 0 1.2 30 12-Feb 8 22 0 3 
 

26 Ba-133 110 6505 1.2 0 0 0 1.2 30 12-Feb 0 30 0 3 
 

27 Ba-133 
110, 95, 

96 

6505, 

6506, 6507 
2.2 0 0 0 1.2 30 12-Feb 0 30 0 13 

 

28 Ba-133 
110, 95, 

97 
6505, 

6506, 6508 
1.2 0 0 0 1.2 30 12-Feb 0 30 0 29 
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29 Ba-133 
110, 95, 

98 

6505, 

6506, 6509 
2.2 0 0 0 2.5 30 12-Feb 2 28 0 1 

 

30 Ba-133 
110, 95, 

99 

6505, 

6506, 6510 
1.2 0 0 0 2 30 12-Feb 0 30 0 10 

 

31 Co-57 143, 61 
 

2.2 0 0 0 1.2 30 13-Feb 11 19 0 15 
 

32 Co-57 143, 61 
 

1.2 0 0 0 1.2 30 13-Feb 0 30 0 29 
 

33 Am-241 
1480, 370, 

370 
 2.2 0 0 0 1.2 30 13-Feb     

The rail 

broke down. 

Runs 

discarded. 

34 Am-241 
1480, 370, 

370 
 2.2 0 0 0 1.2 30 13-Feb 12 18 0 13 

Repeated 

measuremen
t 

35 Am-241 
1480, 370, 

370 
 1.2 0 0 0 1.2 30 13-Feb 0 30 0 16  

36 Cs-137 370 
 

2.2 0 0 0 1.2 30 13-Feb 0 30 0 4 
 

37 Cs-137 370 
 

1.2 0 0 0 1.2 30 13-Feb 0 30 0 17 
 

38 Cs-137 3700 
 

2.2 3 0 0 2.1 30 13-Feb 0 30 0 0 
 

39 Cs-137 3700 
 

1.2 3 0 0 1.9 30 13-Feb 0 30 0 0 
 

40 HEU 
51g - 

89.9%  
1.2 0 0 0 1.2 30 13-Feb 0 30 0 30 

 

41 
HEU + 
Ra-226 

51g - 
89.9%, 

300 

 1.2 0 0 0 1.2 30 13-Feb 0 30 0 1 

42 
HEU + 

Co-57 

51g - 

89.9%, 

634 

 1.2 0 0 0 1.2 30 13-Feb 0 30 0 0 

43 HEU 
51g - 

89.9%  
2.2 0 0 0 1.2 30 13-Feb 0 31 0 26 

 

44 Cs-137 370000 
 

2.2 0 0 0 1.2 6 14-Feb 0 6 6 6 
 

45 Cs-137 370000 
 

1.2 0 0 0 1.2 6 14-Feb 0 6 6 6 
 

46 
Cs-137, 

Cf-252 

370000, 

20000 
 1.2    1.2 6 14-Feb 0 6 6 6 

47 
Cs-137, 

Cf-252 

370000, 

20000 
 2.2    1.2 6 14-Feb 0 6 6 6 

48 Cs-137 370000 
 

Static 

30s 
0 0 0 1.2 2 14-Feb 0 8 6 6 

 

49 
WGPu, 

U-232 

93%, 

370000  
1.2 0 0 0 1.2 30 14-Feb 0 30 1 0 

 

50 
WGPu, 

Ba-133 

93%, 110, 

95, 96 
 1.2 0 0 0 1.2 40 14-Feb 0 40 0 0 

Added 
another 430 

kBq in the 

last 10 

passages 
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Table B-2. Radionuclide identification results using SAM on power spectral densities of measured CDFs of thirty datasets of ~1000 good pulses of 
99m

Tc 

measured with the 7.6 cm diameter cylindrical volume EJ309 organic liquid scintillation detector. These measured spectra are compared the reference spectra for 

each of the thirteen radionuclides measured with the pedestrian RPM. The lowest SAM value corresponds to the best identification match. For this scenario, all 

thirty measurements of 
99m

Tc were identified correctly. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Trial 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 

Am241 0.021 0.021 0.021 0.021 0.021 0.021 0.021 0.021 0.021 0.021 0.021 0.021 0.021 0.021 0.021 0.021 0.021 0.021 0.021 0.021 0.021 0.021 0.021 0.021 0.021 0.021 0.021 0.021 0.021 0.021 

Ba133 0.013 0.013 0.014 0.014 0.013 0.014 0.013 0.014 0.013 0.014 0.013 0.013 0.013 0.013 0.013 0.013 0.013 0.014 0.013 0.013 0.013 0.013 0.014 0.013 0.013 0.013 0.014 0.013 0.014 0.013 

Co57 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016 

Co60 0.019 0.019 0.019 0.019 0.019 0.019 0.019 0.019 0.019 0.019 0.019 0.018 0.019 0.019 0.019 0.019 0.019 0.019 0.019 0.019 0.018 0.019 0.019 0.019 0.018 0.018 0.019 0.019 0.019 0.019 

Cs137 0.008 0.008 0.008 0.009 0.008 0.008 0.008 0.009 0.008 0.008 0.008 0.008 0.009 0.008 0.008 0.008 0.008 0.009 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 

HEU 0.015 0.015 0.016 0.016 0.016 0.016 0.015 0.016 0.016 0.016 0.016 0.015 0.016 0.016 0.016 0.015 0.016 0.016 0.015 0.015 0.015 0.015 0.016 0.016 0.015 0.015 0.016 0.016 0.016 0.015 

Ra226 0.017 0.017 0.017 0.018 0.017 0.017 0.017 0.018 0.017 0.017 0.017 0.017 0.018 0.017 0.017 0.017 0.018 0.018 0.017 0.017 0.017 0.017 0.017 0.017 0.017 0.017 0.018 0.017 0.018 0.017 

WGPu 0.019 0.019 0.020 0.020 0.019 0.019 0.019 0.019 0.019 0.019 0.019 0.019 0.019 0.019 0.019 0.019 0.019 0.019 0.019 0.019 0.019 0.019 0.020 0.019 0.019 0.019 0.019 0.019 0.019 0.019 

Ga67 0.010 0.009 0.010 0.010 0.010 0.010 0.009 0.010 0.009 0.010 0.010 0.009 0.010 0.010 0.010 0.009 0.010 0.010 0.009 0.010 0.009 0.009 0.010 0.009 0.009 0.009 0.010 0.009 0.010 0.010 

I123 0.004 0.004 0.004 0.005 0.004 0.005 0.004 0.005 0.004 0.004 0.004 0.003 0.004 0.004 0.004 0.004 0.005 0.005 0.004 0.004 0.004 0.004 0.005 0.004 0.004 0.004 0.005 0.005 0.005 0.004 

I131 0.015 0.015 0.016 0.016 0.016 0.016 0.015 0.016 0.016 0.016 0.016 0.015 0.016 0.016 0.016 0.016 0.016 0.016 0.015 0.016 0.015 0.015 0.016 0.016 0.015 0.015 0.016 0.016 0.016 0.016 

In111 0.008 0.008 0.009 0.009 0.009 0.009 0.008 0.009 0.009 0.009 0.009 0.008 0.009 0.009 0.009 0.009 0.009 0.009 0.009 0.009 0.008 0.008 0.009 0.009 0.008 0.008 0.009 0.009 0.009 0.009 

Tc99 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.003 0.002 0.002 0.002 0.002 0.002 0.002 0.002 

Tl201 0.010 0.009 0.010 0.010 0.010 0.010 0.009 0.010 0.009 0.010 0.010 0.009 0.010 0.010 0.010 0.009 0.010 0.010 0.010 0.010 0.009 0.009 0.010 0.010 0.009 0.009 0.010 0.010 0.010 0.010 

Result Tc99 Tc99 Tc99 Tc99 Tc99 Tc99 Tc99 Tc99 Tc99 Tc99 Tc99 Tc99 Tc99 Tc99 Tc99 Tc99 Tc99 Tc99 Tc99 Tc99 Tc99 Tc99 Tc99 Tc99 Tc99 Tc99 Tc99 Tc99 Tc99 Tc99 
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Table B-3. Radionuclide identification results using SAM on power spectral densities of measured CDFs of thirty datasets of ~400 good pulses of 
99m

Tc 

measured with the 7.6 cm diameter cylindrical volume EJ309 organic liquid scintillation detector. These measured spectra are compared the reference spectra for 

each of the thirteen radionuclides measured with the pedestrian RPM. The lowest SAM value corresponds to the best identification match. For this scenario, only 

28 of thirty measurements of 
99m

Tc were identified correctly, and the SAM values for 99mTc are twice as high on average compared to those from Table B-2 . 

 

 

 

 

 

Trial 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 

Am241 0.017 0.017 0.018 0.018 0.018 0.017 0.018 0.018 0.018 0.018 0.018 0.017 0.017 0.017 0.018 0.017 0.018 0.017 0.017 0.017 0.017 0.017 0.017 0.017 0.018 0.017 0.018 0.018 0.018 0.017 

Ba133 0.013 0.012 0.014 0.014 0.013 0.013 0.013 0.014 0.014 0.013 0.014 0.012 0.013 0.013 0.014 0.013 0.013 0.013 0.012 0.012 0.012 0.013 0.013 0.013 0.013 0.013 0.014 0.013 0.013 0.013 

Co57 0.011 0.010 0.011 0.012 0.011 0.011 0.011 0.012 0.012 0.011 0.012 0.010 0.011 0.011 0.012 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.012 0.011 0.011 0.011 

Co60 0.017 0.016 0.018 0.018 0.018 0.018 0.018 0.018 0.019 0.018 0.018 0.017 0.017 0.017 0.018 0.017 0.018 0.018 0.017 0.017 0.017 0.017 0.018 0.018 0.018 0.017 0.018 0.018 0.018 0.018 

Cs137 0.010 0.009 0.011 0.012 0.011 0.010 0.011 0.011 0.011 0.011 0.011 0.010 0.010 0.010 0.011 0.010 0.011 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.011 0.010 0.011 0.010 0.011 0.010 

HEU 0.014 0.014 0.015 0.016 0.015 0.015 0.015 0.016 0.016 0.015 0.015 0.014 0.015 0.015 0.015 0.015 0.015 0.015 0.014 0.014 0.014 0.015 0.015 0.015 0.015 0.015 0.016 0.015 0.015 0.015 

Ra226 0.012 0.011 0.013 0.013 0.012 0.012 0.013 0.013 0.013 0.013 0.013 0.011 0.012 0.012 0.013 0.012 0.013 0.012 0.012 0.012 0.012 0.012 0.012 0.012 0.013 0.012 0.013 0.012 0.013 0.012 

WGPu 0.018 0.017 0.019 0.020 0.019 0.019 0.019 0.019 0.020 0.019 0.019 0.018 0.018 0.018 0.019 0.018 0.019 0.019 0.018 0.018 0.018 0.019 0.019 0.019 0.019 0.018 0.019 0.019 0.019 0.019 

Ga67 0.009 0.008 0.010 0.010 0.010 0.009 0.009 0.010 0.010 0.009 0.010 0.008 0.009 0.009 0.010 0.009 0.010 0.009 0.008 0.009 0.009 0.009 0.009 0.009 0.010 0.009 0.010 0.009 0.010 0.009 

I123 0.005 0.004 0.006 0.006 0.005 0.005 0.006 0.005 0.005 0.005 0.005 0.004 0.004 0.005 0.005 0.004 0.006 0.005 0.004 0.004 0.005 0.005 0.006 0.005 0.005 0.006 0.006 0.005 0.005 0.005 

I131 0.014 0.014 0.016 0.016 0.015 0.015 0.015 0.016 0.016 0.015 0.016 0.014 0.015 0.015 0.015 0.015 0.016 0.015 0.014 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.016 0.015 0.016 0.015 

In111 0.008 0.007 0.009 0.010 0.009 0.009 0.009 0.009 0.009 0.009 0.009 0.007 0.008 0.009 0.009 0.008 0.009 0.009 0.008 0.008 0.008 0.008 0.009 0.009 0.009 0.009 0.009 0.009 0.009 0.008 

Tc99 0.004 0.004 0.004 0.005 0.003 0.003 0.004 0.003 0.003 0.004 0.003 0.004 0.003 0.003 0.004 0.003 0.004 0.004 0.004 0.003 0.004 0.003 0.004 0.003 0.004 0.004 0.003 0.003 0.003 0.003 

Tl201 0.009 0.008 0.010 0.011 0.010 0.009 0.010 0.010 0.010 0.009 0.010 0.008 0.009 0.009 0.010 0.009 0.010 0.009 0.009 0.009 0.009 0.009 0.009 0.010 0.009 0.010 0.010 0.009 0.010 0.009 

Result Tc99 I123 Tc99 Tc99 Tc99 Tc99 Tc99 Tc99 Tc99 Tc99 Tc99 I123 Tc99 Tc99 Tc99 Tc99 Tc99 Tc99 Tc99 Tc99 Tc99 Tc99 Tc99 Tc99 Tc99 Tc99 Tc99 Tc99 Tc99 Tc99 
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