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CHAPTER I

Introduction

There are two ways to study a system of polynomial equations: using geometry,

and using algebra. Geometrically, we can work with the set of solutions of the

equations, called a variety, as in the curves pictured below in the real plane.

y = x2 y2 = x3

Figure 1.1: Solution sets of polynomial equations

We say that the curve defined by y = x2 is nonsingular, but the curve defined by

y2 = x3 has a singularity at the origin. A singularity can be a cusp as in this case,

a crossing, or any shape that causes there to be a non-unique tangent line to the

curve.

Another way to study systems of polynomial equations is to study the commuta-

tive ring of polynomial functions that vanish where the equations hold. For the curve

defined by y = x2 pictured above, this gives us the ring R[x, y]/(y−x2). In studying

general commutative rings, we search for properties similar to those of rings given

by systems of polynomial equations. When we find these properties, we can take
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advantage of the connections between commutative algebra and algebraic geometry.

My research focuses on the ring-centric point of view.

Rings that are local are of particular interest. Geometrically, a local ring consists

of polynomial functions defined on and around a point on the curve (or higher di-

mensional variety). For example, we can form the local ring at the origin for the

curve defined by y = x2. Algebraically, these functions are given by the local ring

R[x, y](x,y)/(y − x2), in which we invert all polynomials that do not vanish at (0, 0).

For example, 1 + x is now invertible. A local ring has a unique maximal ideal,

consisting of all non-invertible elements of the ring.

We call a ring of polynomial functions around a nonsingular point a regular local

ring. The ring R[x, y](x,y)/(y − x2) is an example of a regular local ring. However,

the local ring R[x, y](x,y)/(y
2 − x3) of y2 = x3 at the origin is not regular since the

origin is a singular point of the corresponding curve.

Both of the examples mentioned above are curves, which are 1-dimensional. An

example of a two dimensional variety is the boundary of a sphere. We study varieties

in higher dimensions as well, and define the dimension of a coordinate ring to be the

dimension of the highest dimensional piece that appears in the corresponding variety.

So R[x, y]/(y − x2) has dimension 1. For a local ring, we look only at the piece of

the geometric object near the point. The curve defined by y = x2 is one-dimensional

at every point. However, the set of points where xz = 0 and yz = 0 in 3-space is

a two-dimensional object that is locally one-dimensional at points along the z-axis

(see Figure 1.2).

Given the d-dimensional local ring R of a point, a system of parameters on the

ring is a set of d elements that vanish exactly at that point. For example, x, y form

a system of parameters on R[x, y] (the xy-plane): the origin is the only solution of
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(xz = 0) ∩ (yz = 0)

Figure 1.2: Two-dimensional variety that is not two-dimensional at every point

x = 0 and y = 0. Another example of a system of parameters is x, y − z on the ring

R[x, y](x,y,z)/(xz, yz).

A regular sequence on an R-module M is a set of elements x1, . . . , xn of a ring R

such that M 6= (x1, . . . , xn)M , x1 is not a zero-divisor on M , and for each 1 < i ≤ d,

the image xi is not a zero-divisor on M/(x1, . . . , xi−1)M . In particular, we can have

regular sequences on R. On R = R[x, y], x, y form a regular sequence. However,

x, y − z is not a regular sequence on R[x, y](x,y,z)/(xz, yz), since x is a zero-divisor.

Every regular sequence of length dim(R) is a system of parameters, but not every

system of parameters is a regular sequence. We say that a local ring R is Cohen-

Macaulay if every system of parameters on R is a regular sequence on R. Note

that in the local case, the elements of the regular sequence are all contained in

the unique maximal ideal. All regular local rings are Cohen-Macaulay, including

R[x, y](x,y)/(y − x2) and R[x, y]. As we saw above though, R[x, y, z](x,y,z)/(xz, yz) is

not a Cohen-Macaulay ring.

Commutative algebra often involves proving that arbitrary rings have properties

similar to those of polynomial rings and other regular local rings. Cohen-Macaulay

rings act quite a bit like polynomial rings, and there are many results describing
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their behavior. One such result states that if R is a Noetherian local ring and S a

regular local subring such that R is finitely-generated as a module over S, then R is

Cohen-Macaulay if and only if it is a free S-module [BH93].

When a local ring is not Cohen-Macaulay, a number of important results still

hold if the ring has a big Cohen-Macaulay module, a module M over the ring, not

necessarily finitely-generated, such that every system of parameters on the ring is a

regular sequence on the module. For example, the Monomial Conjecture holds on

rings with big Cohen-Macaulay modules. This result states that given a system of

parameters x1, . . . , xd on a local ring R, we have

(1.1) xt1x
t
2 · · ·xtk 6∈ (xt+1

1 , xt+1
2 , . . . , xt+1

k )R

for any t ≥ 0 or 1 ≤ k ≤ d. Note that it is simple to prove that (1.1) holds on any

Cohen-Macaulay ring, since it holds when x1, . . . , xd is a regular sequence.

The Monomial Conjecture is equivalent to a family of conjectures fundamental

to commutative algebra, including the Direct Summand Conjecture [Hoc73] and the

Canonical Element Conjecture [Hoc83]. These are implied by the existence of big

Cohen-Macaulay modules, as are many other conjectures such as the Syzygy Theorem

[EG85, Hoc75].

We know that certain local domains over fields of characteristic p > 0 (such as

finitely-generated algebras over Z/pZ) have big Cohen-Macaulay modules [HH90].

This was proved using the theory of tight closure developed by Mel Hochster and

Craig Huneke [HH88, HH89, HH90, BH93, Hun96, Hoc07] (and many others). This

result was then extended to the equal characteristic 0 case (e.g., algebras over

C[x1, . . . , xd]) by using reduction to characteristic p > 0 to develop a characteris-

tic 0 version of tight closure [HH99].

Tight closure is an example of a closure operation, a map taking each ideal of the
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ring to an ideal that contains it, with a similar action on submodules of all finitely-

generated R-modules (see Definition II.2). In characteristic p > 0, tight closure can

be defined using the Frobenius endomorphism, which raises elements of R to their pth

powers. The idea of the characteristic 0 version of tight closure can be seen from this

example: in the case of the characteristic 0 ring Q[x, y, z]/(x3 + y3 + z3), the image

of z2 is in the tight closure of (x, y) because this is true in Z/pZ[x, y, z]/(x3 +y3 +z3)

for almost all primes numbers p.

In characteristic p > 0, tight closure can also be defined by taking images of ideals

or submodules after tensoring with big Cohen-Macaulay R-algebras (see Theorem

II.9). This makes it clear that tight closure is closely tied to the question of the

existence of big Cohen-Macaulay modules.

However, there is currently no version of tight closure for rings of mixed charac-

teristic that can be shown to have the properties needed to prove the existence of

big Cohen-Macaulay modules. The mixed characteristic case includes localizations

of finitely-generated Z-algebras — many of the rings that number theorists study

are in this case. A slightly more complicated case involves a polynomial ring over a

discrete valuation ring, a ring with a single nonzero prime ideal, which is principal

(generated by 1 element). The p-adic integers Zp form a discrete valuation ring of

mixed characteristic that is heavily studied by number theorists.

In fact, we do not know whether mixed characteristic rings of dimension greater

than 3 have big Cohen-Macaulay modules. The existence of big Cohen-Macaulay

modules in mixed characteristic rings of dimension 3 was proved by very different

methods [Hei02, Hoc02], which do not appear to extend to higher-dimensional rings.

As a result, all of the conjectures mentioned above are unknown for rings of mixed

characteristic and dimension greater than 3. The obstruction to extending these
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results to the mixed characteristic case may be viewed as the lack of a good enough

version of tight closure on these rings.

There have been many attempts to find a version of tight closure for rings of

mixed characteristic, including solid closure [Hoc94], parameter tight closure [Hoc03],

diamond closure [HV04], and parasolid closure [Bre03]. In [Die10], Dietz gave a list

of axioms for a closure operation such that for a local domain R, the existence

of a closure operation satisfying these properties (we call these Dietz closure, see

Definition II.17) is equivalent to the existence of a big Cohen-Macaulay module.

The idea of the axioms is that they represent the properties that a closure operation

needs in order to fulfill the role of tight closure in one of the proofs of the existence

of big Cohen-Macaulay modules.

In characteristic p > 0, tight closure satisfies these properties for complete rings

(e.g. a power series ring over a field like Z/pZ[[x1, . . . , xd]]), as do plus closure [Smi94]

and closures coming from big Cohen-Macaulay modules (as in Definition II.4) [Die10].

The axioms do not depend on the characteristic of the ring, so a closure operation

in mixed characteristic could satisfy them. As a result, they provide a way to check

potential closure operations in mixed characteristic, as well as a direction in which

to look for such a closure operation.

The main idea of [Die10], following the method of [Hoc75], is that it is possible

to construct a big Cohen-Macaulay module by building modules that force certain

relations to hold on systems of parameters of the ring R. Starting with R, at each

stage new elements are added to the module to form the coefficients of the desired

relation, and then the quotient by this relation is taken (see Definition II.21 for a

more precise explanation). In the direct limit B, every system of parameters is a

regular sequence. The Dietz closure is used in lieu of tight closure to show that at
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each stage, the image of 1 stays out of the image of the maximal ideal of R, so that

for any system of parameters x1, . . . , xd on R, im(1) 6∈ im(x1, . . . , xd). This forces

B 6= (x1, . . . , xd)B.

We study Dietz closures in an effort to understand their properties and their rela-

tionship to better-understood closure operations. We prove that they are connected

to the singularities of the ring in a similar way to tight closure, and give an additional

axiom that allows us to construct big Cohen-Macaulay algebras, big Cohen-Macaulay

modules that are also R-algebras. While we do not prove that big Cohen-Macaulay

modules (or algebras) exist in any new cases, it is our hope that others will use these

results to find a suitable closure operation for rings of mixed characteristic, which

will imply the existence of big Cohen-Macaulay modules in that case.

We start with definitions and background information in Chapter II, including

some results from [Die10].

In Chapter III, we develop some basic properties of closure operations that are

used throughout the paper, including properties of big Cohen-Macaulay module clo-

sures. This is followed in Chapter IV by a discussion of properties of closure op-

erations for which there is a smallest closure satisfying the property. In particular,

any ring that has a Dietz closure has a smallest Dietz closure, as well as a smallest

big Cohen-Macaulay module closure. In certain rings of dimension 2, the smallest

big Cohen-Macaulay module closure comes from the S2-ification of R (see Definition

IV.15). Studying the smallest Dietz closure or big Cohen-Macaulay module closure

should provide information on the properties of R.

In Chapter V, we prove:

Theorem 1 (Theorem V.1). Let cl be a Dietz closure on a local domain (R,m).

Then cl is contained in clB for some big Cohen-Macaulay module B, i.e., for all
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finitely-generated R-modules N ⊆M , N cl
M ⊆ N clB

M .

Using this result, we prove:

Theorem 2 (Theorem V.9, Theorem V.11). Suppose that (R,m) is a local domain

that has at least one Dietz closure (in particular, it suffices for R to have equal

characteristic and any dimension, or mixed characteristic and dimension at most

3). Then R is regular if and only if all Dietz closures on R are equal to the trivial

closure.

This leads to a family of questions we wish to investigate (see Sections 8.2 and 9.3):

how does the prevalence of Dietz closures on a ring R correspond to the singularities

of R?

In the proof of Theorem V.11, we see that a particular module of syzygies gives a

closure operation not equal to the trivial closure, which we can compute explicitly.

In Section 6.3, we use these results to compare Dietz closures to better understood

closure operations, proving that all Dietz closures are contained in (liftable) integral

closure, and that persistent families of Dietz closures are contained in regular closure.

In Theorem VI.1, we show that integral closure and regular closure are not Dietz

closures using a criterion that can be applied more generally. As a corollary of the

above theorems, we also conclude that solid closure is not a Dietz closure for rings

of equal characteristic 0. Studying the reasons why certain closure operations are or

are not Dietz closures provides more information on the pieces that are needed to

get a good enough closure operation in mixed characteristic.

Dietz asked whether it was possible to give an additional axiom such that the

existence of a Dietz closure satisfying this axiom is equivalent to the existence of a

big Cohen-Macaulay algebra. Due to results on the existence of weakly functorial big
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Cohen-Macaulay algebras [HH95], one can work with families of big Cohen-Macaulay

algebras over a family of rings, making them more useful than big Cohen-Macaulay

modules, which do not appear to work well over families of rings. Further, big

Cohen-Macaulay algebras are known to exist in every case where big Cohen-Macaulay

modules are known to exist.

In this paper, we answer Dietz’s question in the positive, by giving an Algebra

Axiom, Axiom VII.1. We prove:

Theorem 3 (Theorem VII.3, Corollary VII.12). A local domain R has a Dietz clo-

sure that satisfies the Algebra Axiom if and only if R has a big Cohen-Macaulay

algebra.

In Section 7.2, we prove that many closure operations satisfy this axiom, including

tight closure, which is also a Dietz closure, and torsion-free algebra closures, which

are not in general Dietz closures. To prove this, we find alternative characterizations

of cl-phantom extensions for the closures cl that we discuss. We also show that the

big Cohen-Macaulay algebras that we construct using the Algebra Axiom give the

same closure operation as those constructed using algebra modifications as in [HH95],

and that this closure operation is the smallest big Cohen-Macaulay algebra closure

on the ring R.

In Section 8.2, we use these results to compare Dietz closures satisfying the Alge-

bra Axiom to other closure operations. We prove that each such closure is contained

in a big Cohen-Macaulay algebra closure. In characteristic p > 0, we also show that

all such closures are contained in tight closure. As a consequence, weakly F-regular

rings (see Definition II.10) have a unique Dietz closure satisfying the Algebra Axiom.

These results may lead to further characterizations of the singularities of a ring in

terms of these closure operations. We also give an example that shows that not all
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Dietz closures satisfy the Algebra Axiom.

We conclude with a list of further questions in Section IX. Interestingly, we do not

know whether there is a largest big Cohen-Macaulay module closure, as discussed in

Section 9.2.



CHAPTER II

Background

In this section we give the necessary definitions and some notation that will be

used throughout the paper. All rings are commutative Noetherian rings with a

multiplicative identity element 1. We use the term local ring to refer to rings that

are Noetherian and have a unique maximal ideal.

Definition II.1. Let (R,m) be a local ring. An R-module B is a (balanced) big

Cohen-Macaulay module over R if every system of parameters for R is a regular

sequence on B, and mB 6= B. The word “big” appears because B need not be

finitely-generated. A big Cohen-Macaulay algebra over R is a big Cohen-Macaulay

module over R that is also an R-algebra.

Definition II.2. A closure operation cl on a ring R is a map on the submodules

of each finitely-generated R-module M , taking each submodule N ⊆ M to another

submodule N cl
M of M such that if N ⊆ N ′ ⊆M are finitely-generated R-modules,

1. (Extension) N ⊆ N cl
M ,

2. (Idempotence) (N cl
M)cl

M = N cl
M , and

3. (Order-preserving) N cl
M ⊆ (N ′)cl

M .

Example II.3. Some straightforward examples of closure operations are:

11
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1. Trivial closure: N cl
M = N for all finitely-generated R-modules N ⊆M .

2. Improper closure: N cl
M = M for all finitely-generated R-modules N ⊆M .

3. Local closure: Assume that (R,m) is local. Set N cl
M = N +mM for all finitely-

generated R-modules N ⊆M .

Definition II.4. Suppose that S is an R-module (resp. R-algebra). We can define

a closure operation clS on R by u ∈ N clS
M if for all s ∈ S,

s⊗ u ∈ im(S ⊗N → S ⊗M)

for any N ⊆ M finitely-generated R-modules and u ∈ M . This is called the closure

given by S. A closure that is given by some R-module (resp. R-algebra) S is called

a module (resp. algebra) closure.

Remark II.5. If S is an R-algebra, u ∈ N clS
M if and only if

1⊗ u ∈ im(S ⊗N → S ⊗M).

Example II.6. 1. The 0 module gives the improper closure.

2. R gives the trivial closure.

We give a brief definition of tight closure; a more detailed one can be found in

[Hoc07].

Definition II.7. Let R be a ring of characteristic p > 0. The Frobenius endomor-

phism is the map F : R → R sending r 7→ rp. We use F e for the eth iteration of

F , which sends r 7→ rp
e
. Let F e

∗ (R) denote the abelian group R, viewed as an R-

module via the Frobenius endomorphism. For M an R-module, F e
∗ (M) will denote

F e
∗ (R)⊗RM .
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Definition II.8. Let R be a ring of characteristic p > 0, and N ⊆ M finitely-

generated R-modules. Let F denote the Frobenius functor, and F e its eth iteration.

We say that u ∈ N∗M , the tight closure of N in M , if there is some c ∈ R not in any

minimal prime of R such that c ⊗ u ∈ im(F e
∗ (N) → F e

∗ (M)) for all e � 0. When

M = R and N = I is an ideal of R, this definition can be written as u ∈ I∗ if there

is some c ∈ R not in any minimal prime such that cup
e ∈ (ip

e
: i ∈ I) for all e� 0.

We will use the following definition of tight closure later on.

Theorem II.9 [Hoc94, Theorem 11.1]. Let R be a complete local domain of char-

acteristic p > 0 and let N ⊆ M be finitely-generated R-modules. Then u ∈ N∗M

if and only if there is some big Cohen-Macaulay R-algebra B such that 1 ⊗ u ∈

im(B ⊗R N → B ⊗RM).

Definition II.10 [Hoc07]. We say that a ring R is weakly F-regular if all ideals of R

are tightly closed. Equivalently, we say that R is weakly F-regular if for all finitely-

generated R-modules N ⊆ M , N∗M = N (tight closure is equal to the trivial closure

on R).

Remark II.11. It is not known whether localizations of a weakly F-regular ring are

weakly F-regular. If they are, we say that the ring is F-regular.

Now we define a cl-phantom extension, which is a major component of the results

in this thesis.

Definition II.12 [Die10, Definition 2.2]. Let R be a ring with a closure operation

cl, M a finitely-generated R-module, and α : R→M an injective map with cokernel

Q. We have a short exact sequence

0 −−−→ R
α−−−→ M −−−→ Q −−−→ 0.

Let ε ∈ Ext1
R(Q,R) be the element corresponding to this short exact sequence via
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the Yoneda correspondence. Let P• be a projective resolution of Q and let ∨ denote

HomR(−, R). We say that α is a cl-phantom extension if a cocycle representing ε in

Ext1
R(Q,R) ⊆ P∨1 is contained in im(P∨0 → P∨1 )cl

P∨1
.

Remark II.13. This definition is independent of the choice of P• [Die10, Discus-

sion 2.3].

A split map α : R → M is cl-phantom for any closure operation cl: in this case,

the cocycle representing ε is in im(P∨0 → P∨1 ). We can view cl-phantom extensions

as maps that are “almost split” with respect to a particular closure operation.

Notation II.14. We use some notation from [Die10]. Let R be a ring, M a finitely

generated R-module, and α : R → M an injective map with cokernel Q. Let e1 =

α(1), e2, . . . , en be generators of M such that the images of e2, . . . , en in Q form a

generating set for Q. We have a free presentation for Q,

Rm ν−−−→ Rn−1 µ−−−→ Q −−−→ 0,

where µ sends the generators of Rn−1 to e2, . . . , en and ν has matrix (bij)2≤i≤n,1≤j≤m

with respect to some basis for Rm. We have a corresponding presentation for M ,

Rm ν1−−−→ Rn µ1−−−→ M −−−→ 0,

where µ1 sends the generators of Rn to e1, . . . , en. Using the same basis for Rm as

above, ν1 has matrix (bij)1≤i≤n,1≤j≤m where b1je1 + b2je2 + . . . + bnjen = 0 in M

[Die10, Discussion 2.4]. The top row of ν1 gives a matrix representation of the map

φ : Rm → R in the following diagram:

0 −−−→ R
α−−−→ M −−−→ Q −−−→ 0

φ

x ψ

x idQ

x x
Rm ν−−−→ Rn−1 µ−−−→ Q −−−→ 0
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In [Die10, Discussion 2.4], Dietz gives an equivalent definition of a phantom ex-

tension using the free presentations M and Q given above. While he assumes that

R is a complete local domain and that cl satisfies 2 additional properties, these are

not needed for all of the results. We restate some of his results in greater generality

below.

Lemma II.15 [Die10, Lemma 2.10]. Let R be a ring possessing a closure operation

cl. Let M be a finitely generated module, and let α : R→M be an injective map. Let

notation be as above. Then α is a cl-phantom extension of R if and only if the vector

(b11, . . . , b1m)tr is in Bcl
Rm, where B is the R-span in Rm of the vectors (bi1, . . . , bim)tr

for 2 ≤ i ≤ n.

Definition II.16. Let N,M, and W be finitely-generated R-modules with N ⊆M ,

and let cl be a closure operation on R.

1. Functorial property: We say that cl is functorial if given a homomorphism

f : M → W ,

f(N cl
M) ⊆ f(N)cl

W .

2. Semi-residual property: We say that cl is semi-residual if whenever N cl
M = N ,

0cl
M/N = 0.

3. Faithful property: Assume that (R,m) is local. We say that cl is faithful if

mcl
R = m.

Definition II.17 [Die10]. Let (R,m) be a fixed local domain and let N,M, and

W be arbitrary finitely generated R-modules with N ⊆ M . A closure operation cl

is called a Dietz closure if it is functorial, semi-residual, faithful, and satisfies the

generalized colon-capturing axiom:
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Let x1, . . . , xk+1 be a partial system of parameters for R, and let J = (x1, . . . , xk).

Suppose that there exists a surjective homomorphism f : M → R/J and v ∈M such

that f(v) = xk+1 + J . Then (Rv)cl
M ∩ ker f ⊆ (Jv)cl

M .

Remark II.18. The axioms originally included the assumption that 0cl
R = 0, but this

is implied by the other axioms [Die15].

We need to assume that R is local for this generalization of [Die10, Lemma 2.11]:

Lemma II.19. Let (R,m) be a local ring possessing a closure operation cl that is

functorial, semi-residual, and faithful. If M is a finitely generated R-module such

that α : R→M is cl-phantom, then α(1) 6∈ mM .

We restate the main result of [Die10], removing the assumption that R is complete.

The proof works without change.

Theorem II.20 [Die10, Theorems 3.16 and 4.2]. Let R be a local domain. Then R

has a Dietz closure if and only if it has a big Cohen-Macaulay module.

Definition II.21 [HH94c, Discussion 5.15]. Let R be local and M an R-module. A

parameter module modification of M is a map

M →M ′ =
M ⊕Rf1 ⊕ . . .⊕Rfk

R(u⊕ x1f1 ⊕ . . .⊕ xkfk)
,

where x1, . . . , xk+1 is part of a system of parameters for R and u1, . . . , uk, u are

elements of M such that

xk+1u = x1u1 + . . .+ xkuk.

Remark II.22. In his proof that a Dietz closure cl can be used to construct a big

Cohen-Macaulay module [Die10], Dietz shows that a parameter module modification

of a cl-phantom extension of R is also a cl-phantom extension of R, following the

method used by Hochster and Huneke to prove that rings of characteristic p > 0 have
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big Cohen-Macaulay modules [Hoc75, HH94c]. One could replace generalized colon-

capturing with any axiom that implies that given a cl-phantom extension α : R→M

and a parameter module modification M → M ′, the map R → M ′ is still a cl-

phantom extension. However, we do not know of a good candidate to replace the

generalized colon-capturing property.

We use a result on phantom extensions from [HH94c, Section 5], given in the

notation of Notation II.14.

Lemma II.23. [HH94c, Lemma 5.6a and c] Let

0 −−−→ R
α−−−→ M −−−→ Q −−−→ 0

be an exact sequence. Letting P• be a projective resolution for Q, we get a commu-

tative diagram with vertical maps induced by the identity map on Q:

0 −−−→ R
α−−−→ M −−−→ Q −−−→ 0x xφ x xid

P2 −−−→ P1
d−−−→ P0 −−−→ Q −−−→ 0.

By definition, α is cl-phantom if and only if

φ ∈ im(HomR(P0, R)→ HomR(P1, R))clHomR(P1,R).

1. For each c ∈ R, the image of cφ is a coboundary in H1(HomR(P•, R)) if and

only if there is a map γ : M → R such that γα = c(idR).

2. Let S be an R-algebra, and G• a projective resolution for S ⊗R Q that ends

. . .→ S ⊗ P1 → S ⊗ P0 → S ⊗Q→ 0.

The sequence

0 −−−→ R
α−−−→ M −−−→ Q −−−→ 0
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remains exact upon tensoring with S if and only if idS⊗Rφ ∈ HomS(S⊗RP1, S)

is a 1-cocycle in HomS(G•, S), in which case idS ⊗R φ represents the extension

over S given by the sequence

0 −−−→ S
idS⊗α−−−→ S ⊗RM −−−→ S ⊗R Q −−−→ 0.



CHAPTER III

Module Closures

We prove a number of properties of module closures, most of which will be used

in later chapters. The major result is Proposition III.8, which allows us to compare

module closures. We end with a discussion of the properties of big Cohen-Macaulay

module closures (as in Definition II.4), which are particularly relevant to the rest of

this thesis.

Lemma III.1. Let R be a ring possessing a closure operation cl. In the following,

N,N ′, and Ni ⊆Mi are all R-submodules of the finitely generated R-module M .

(a) Suppose that cl is functorial and semi-residual. Let N ′ ⊆ N ⊆ M . Then

u ∈ N cl
M if and only if u+N ′ ∈ (N/N ′)clM/N ′.

(b) Suppose that cl is functorial, I is a finite set, N =
⊕

i∈I Ni, and M =
⊕

i∈IMi.

Then N cl
M =

⊕
i∈I(Ni)

cl
Mi

.

(c) Let I be any set. If Ni ⊆M for all i ∈ I, then
(⋂

i∈I Ni

)cl
M
⊆
⋂
i∈I(Ni)

cl
Mi

.

(d) Let I be any set. If Ni is cl-closed in M for all i ∈ I, then
⋂
i∈I Ni is cl-closed

in M .

(e) (N1 +N2)clM =
(
(N1)clM + (N2)clM

)cl
M

.

(f) Suppose that cl is functorial. Let N ⊆ N ′ ⊆M . Then N cl
N ′ ⊆ N cl

M .

19
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(g) Suppose that R is a domain, cl is functorial, 0cl
R = 0, and M is a torsion-free

R-module. Then 0cl
M = 0.

(h) Suppose that (R,m) is local and cl is functorial, semi-residual, and faithful.

Then N cl
M ⊆ N +mM .

In particular, if cl is a Dietz closure on a local domain R, then it satisfies all of

the properties given above.

Proof. Parts (a) to (e) are proved in [Die10, Lemma 1.2].

For part (f), let f : N ′ →M be the inclusion map. Then since cl is functorial,

N cl
N ′ = f(N cl

N ′) ⊆ f(N)cl
M = N cl

M .

For part (g), notice that M ↪→ Rs for some s > 0. By part (f), 0cl
M ⊆ 0cl

Rs . By

part (b), 0cl
Rs =

⊕
0cl
R = 0.

For part (h), we first prove that for F a finitely-generated free module, (mF )cl
F =

mF . By part (a), this is equivalent to 0cl
F/mF = 0. Let u ∈ 0cl

F/mF be nonzero.

Then there exists a map φ : F/mF → R/m with φ(u) 6= 0. Since cl is functorial,

φ(u) ∈ 0cl
R/m = 0 (since mcl

R = m), which is a contradiction. Hence 0cl
F/mF = 0.

By part (a), it suffices to show that 0cl
M ⊆ mM . Let

F1 −−−→ F0
π−−−→ M −−−→ 0

be part of a minimal free resolution of M . Then im(F1) ⊆ mF0. This implies that

im(F1)cl
F0
⊆ (mF0)cl

F0
= mF0. By part (a), 0cl

M = π(im(F1)cl
F0

). We have

0cl
M = π(im(F1)cl

F0
) ⊆ π(mF0) = mπ(F0) = mM,

as desired.
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Lemma III.2. Let R be a ring and S an R-module or R-algebra. Then clS is func-

torial and semi-residual. Hence clS has properties (a)-(f) of Lemma III.1. Further,

for N ⊆M finitely generated R-modules, clS satisfies

IclSN clS
M ⊆ (IN)clSM

for all I ⊆ R. In particular, yN clS
M ⊆ (yN)clSM for all y ∈ R.

Remark III.3. If R is a domain, then this Lemma implies that clS is semi-prime as

in [Eps12].

Proof. First we show that clS is functorial and semi-residual. Suppose that N ⊆

M and W are finitely generated R-modules, and f : M → W is an R-module

homomorphism. Let u ∈ N clS
M . We will show that f(u) ∈ f(N)clS

W . For every s ∈ S,

s⊗ u ∈ im(S⊗N → S⊗M). Applying idS ⊗R f , we get s⊗ f(u) ∈ im(S⊗ f(N)→

S ⊗W ) for every s ∈ S. So clS is functorial.

Suppose N clS
M = N . We will show that 0clS

M/N = 0. Let ū ∈ 0clS
M/N . Then for every

s ∈ S, s⊗ū = 0 in S⊗M/N . Since S⊗ is right exact, S⊗M/N ∼= (S⊗M)/(S⊗N).

Thus s⊗ u ∈ im(S ⊗N → S ⊗M). Since this holds for every s ∈ S, u ∈ N clS
M = N .

Thus ū = 0 in M/N . So clS is semi-residual.

Now we prove that

IclSN clS
M ⊆ (IN)clS

M

for all I ⊆ R. Suppose that u ∈ N clS
M and y ∈ IclS . Then for every s ∈ S,

s⊗ u ∈ im(S ⊗N → S ⊗M),

and ys ∈ IS. In particular, for every s ∈ S,

s⊗ yu = ys⊗ u = i1(s1 ⊗ u) + i2(s2 ⊗ u) + . . .+ in(sn ⊗ u)
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for some i1, . . . , in ∈ I, s1, . . . , sn ∈ S. But each ij(sj⊗u) = sj⊗ iju ∈ im(S⊗IN →

S ⊗M). Hence yu ∈ (IN)clS
M .

The last statement follows, because

yN clS
M ⊆ (y)clSN clS

M ⊆ (yN)clS
M

by the previous statement.

The following lemma allows us to generalize the idea of an algebra closure.

Lemma III.4. Let S be a directed family of R-algebras. We can define a closure

operation clS by u ∈ N clS
M if for some S ∈ S, u ∈ N clS

M .

Proof. To see that N clS
M is a submodule of M , let u, v ∈ N clS

M . It is clear that for any

r ∈ R, ru ∈ N clS
M . To see that u + v ∈ N clS

M , note that there is some S, S ′ ∈ S such

that u ∈ N clS
M and v ∈ N clS′

M . Since S is a directed family, there is some T ∈ S such

that S, S ′ both map to T . We will have 1 ⊗ u, 1 ⊗ v ∈ im(T ⊗ N → T ⊗M), so

1⊗ (u+ v) ∈ im(T ⊗N → T ⊗M). Hence u+ v ∈ N clT
M ⊆ N clS

M .

The extension and order-preserving properties of a closure operation are not diffi-

cult to prove. We prove the idempotence property. Let u ∈ (N clS
M )clS

M . Then for some

S ∈ S, 1⊗ u ∈ im(S ⊗N clS
M → S ⊗M), say 1⊗ u =

∑n
i=1 si⊗ ui with the ui ∈ N clS

M .

For each i, there is some Si ∈ S such that ui ∈ N
clSi
M . There is some T ∈ S such that

each Si maps to T . Hence 1⊗ u ∈ im(T ⊗N → T ⊗M).

Definition III.5. Let R be a complete local domain and let B be the family of

big Cohen-Macaulay algebras of a ring R. By a result of Dietz [Die07], when R

has characteristic p > 0, this is a directed family of algebras, and so we can define

a closure operation clB as in Definition III.4. More generally, the family of big

Cohen-Macaulay algebras generates a closure operation as described in Definition

III.6 below. In either case, we call this the big Cohen-Macaulay algebras closure.
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When S is any family (not necessarily directed) of R-modules, it still generates a

closure operation:

Definition III.6. Let S be a family of R-modules. For N ⊆ M finitely-generated

R-modules, we define clS as follows:

1. Let N cl1
M be the submodule of M generated by the elements u ∈ M such that

u ∈ N clS
M for some S ∈ S.

2. Let N
clk+1

M = (N clk
M )cl1

M .

3. Since R is Noetherian, the chain of N clk
M will eventually stabilize. Set N clS

M equal

to the stable value of this chain.

By [Eps12, Construction 3.1.5], clS is a closure operation.

Proposition III.7. Let cl be a closure operation that commutes with finite direct

sums (in particular, it is enough to assume that cl is functorial). Suppose the map

R → M that sends 1 7→ u is cl-phantom, as is the map R → N that sends 1 7→ v.

Then the map f : R → (M ⊕ N)/(u ⊕ −v) that sends 1 7→ (u, 0) = (0, v) is cl-

phantom, too. Further, any phantom extension R→ Q that factors through both M

and N factors through (M ⊕N)/(u⊕−v) as well.

Note: If f split, we would have M = R⊕M0, N = R⊕N0, and (M⊕N)/(u⊕−v) =

R⊕ (M0 ⊕N0).

Proof. The last statement is automatic from the definition of a push-out. The coker-

nel of f that sends 1 7→ (u, 0) = (0, v) is the direct sum of the cokernels of the maps

R→M and R→ N , and the direct sum of free resolutions P• and P ′•, respectively,

of these cokernels gives us a free resolution of the cokernel of f . If φ : P1 → R

and φ′ : P ′1 → R are maps induced by the identity map on the cokernels, then the
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hypothesis tells us that

φ ∈ (im(Hom(P0, R)→ Hom(P1, R)))cl
Hom(P1,R)

and

φ′ ∈ (im(Hom(P ′0, R)→ Hom(P ′1, R)))
cl
Hom(P ′1,R) .

Since cl commutes with direct sums, we get

φ⊕ φ′ ∈ (im(Hom(P0 ⊕ P ′0, R)→ Hom(P1 ⊕ P ′1, R)))
cl
Hom(P1⊕P ′1,R) ,

as desired.

The following Proposition is a key component of the proofs of Proposition IV.14,

Proposition IV.16, Theorem IV.20, and Lemma V.4, all of which compare closure

operations.

Proposition III.8. Let S and T be R-modules such that for each t ∈ T , there is a

map S → T whose image contains t. Then clS ⊆ clT .

Proof. Suppose that N ⊆ M are finitely-generated R-modules, and that u ∈ N clS
M .

We will show that u ∈ N clT
M . Since u ∈ N clS

M , for each s ∈ S, s ⊗ u ∈ im(S ⊗ N →

S ⊗M). Let t ∈ T . Then there is some map f : S → T whose image contains t,

say s′ 7→ t. There is some element y of S ⊗ N that maps to s′ ⊗ u in S ⊗M . The

image (f ⊗ id)(y) of y in T ⊗ N maps to t ⊗ u in T ⊗M , by the commutativity of

the following diagram:

S ⊗N −−−→ S ⊗M

f⊗id

y f⊗id

y
T ⊗N −−−→ T ⊗M

Hence t⊗u ∈ im(T⊗N → T⊗M) for every t ∈ T , which implies that u ∈ N clT
M .
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Remark III.9. The assumption in Proposition III.8 can be replaced by the assumption

that some (possibly infinite) direct sum of copies of S maps onto T .

Proposition III.10. Let S and T be R-modules. Then clS⊕T = clS ∩ clT .

Proof. Suppose that N ⊆ M are finitely-generated R-modules, and u ∈ N
clS⊕T
M .

Then for each (s, t) ∈ S ⊕ T ,

(s, t)⊗u ∈ im((S⊕T )⊗N → (S⊕T )⊗M) = im(S⊗N → S⊗M)⊕im(T⊗N → T⊗M).

So s ⊗ u is in the first image, and t ⊗ u is in the second. Thus u ∈ N clS
M ∩ N

clT
M . If

u ∈ N clS
M ∩N

clT
M , then for each s ∈ S, s⊗u ∈ im(S⊗N → S⊗M) and for each t ∈ T ,

u ∈ im(T ⊗N → T ⊗M). Hence (s, t)⊗ u ∈ im((S ⊕ T )⊗N → (S ⊕ T )⊗M).

Proposition III.12 gives an additional property of module closures.

Definition III.11 [Eps12]. A closure operation cl is hereditary if given R-modules

N ⊆ N ′ ⊆M , N cl
M ∩N ′ = N cl

N ′ .

Proposition III.12. Let S be a flat R-module and cl = clS. Then given finitely-

generated R-modules N,W ⊆M ,

N cl
M ∩W = N cl

N+W ∩W.

In particular, cl is hereditary.

Proof. The right side is contained in the left side by part (f) of Lemma III.1. To get

the other direction, suppose that m ∈ N cl
M ∩W . Then for each s ∈ S,

s⊗m ∈ im(S ⊗R N → S ⊗RM),

say s⊗m =
∑

i si ⊗ ni, with each si ∈ S and ni ∈ N .

S ⊗N −−−→ S ⊗ (N +W )

id

y y
S ⊗N −−−→ S ⊗M
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The element si ⊗ ni maps to yi in S ⊗ (N + W ). Set y =
∑
yi. Since m ∈ N , we

can view s⊗m as an element of S ⊗ (N +W ). If y = s⊗m in S ⊗ (N +W ), then

we are done. If not, then by the commutativity of the diagram, y − (s ⊗m) maps

to 0 in S ⊗M . But since S is flat, the kernel of S ⊗ (N +W )→ S ⊗M is 0. Hence

y = s⊗m in S ⊗ (N +W ), as desired.

To get the final statement, note that if N ⊆ N ′ ⊆M , the result gives N cl
M ∩N ′ =

N cl
N ′ .

3.1 Properties of Big Cohen-Macaulay Module Closures

We give several useful properties of big Cohen-Macaulay module closures that will

be used later on.

Definition III.13. Let cl be a closure operation on a ring R.

1. We say that cl satisfies colon-capturing if for every partial system of parameters

x1, . . . , xk+1 on R,

(x1, . . . , xk) : xk+1 ⊆ (x1, . . . , xk)
cl.

2. We say that cl satisfies strong colon-capturing, version A, if for every partial

system of parameters x1, . . . , xk on R,

(xt1, x2, . . . , xk)
cl : xa1 ⊆ (xt−a1 , x2, . . . , xk)

cl

for all a < t.

3. We say that cl satisfies strong colon-capturing, version B, if for every partial

system of parameters x1, . . . , xk+1 on R,

(x1, . . . , xk)
cl : xk+1 ⊆ (x1, . . . , xk)

cl.

This is a stronger condition than colon-capturing.
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Proposition III.14. Let B be a big Cohen-Macaulay module over a local domain

R. Then the module closure clB satisfies strong colon-capturing, version A.

Proof. Let x1, . . . , xk be a partial system of parameters on R. Suppose that a < t,

and that u ∈ (xt1, x2, . . . , xk)
cl : xa1. In other words, for each b ∈ B,

uxa1b ∈ (xt1, . . . , xk)B,

say uxa1b = xt1b1 +x2b2 + . . .+xkbk. Then xa1(ub−xt−a1 b1) ∈ (x2, . . . , xk)B. Since B is

a big Cohen-Macaulay module, this implies that ub− xt−a1 b1 ∈ (x2, . . . , xk)B. Hence

ub ∈ (xt−a1 , x2, . . . , xk)B. Since this holds for each b ∈ B, u ∈ (xt−a1 , x2, . . . , xk)
clB .

Proposition III.15. Let B be a big Cohen-Macaulay module over R and x1, . . . , xk+1

a partial system of parameters on R. Then (x1, . . . , xk)
clB : xk+1 ⊆ (x1, . . . , xk)

clB ,

i.e., clB satisfies strong colon-capturing, version B. In particular, clB satisfies colon-

capturing.

Proof. Suppose that v ∈ R such that vxk+1 ∈ (x1, . . . , xk)
clB . Then for each b ∈ B,

vxk+1b ∈ (x1, . . . , xk)B. Equivalently, xk+1(vb) ∈ (x1, . . . , xk)B. Since x1, . . . , xk+1

form part of a system of parameters on R, they form a regular sequence on B. Hence

vb ∈ (x1, . . . , xk)B. As we proved this for an arbitrary b ∈ B, v ∈ (x1, . . . , xk)
clB , as

desired.



CHAPTER IV

Smallest Closures

In this chapter, we show that many properties of closure operations extend to

intersections of closure operations, so that there is a smallest closure satisfying these

properties under certain conditions. We describe the smallest big Cohen-Macaulay

module closure on a general local domain, and give a specific module (the S2-ification

of R) that gives this closure in dimension 2. Finally, we construct the smallest module

closure containing a given closure.

4.1 Intersection Stable Properties

Given a set {clλ}λ∈Λ of closure operations, their intersection
⋂
λ∈λ clλ is also a

closure operation [Eps12, Construction 3.1.3].

Definition IV.1. Given a property P of a closure operation, we call P intersection

stable if whenever clλ satisfies P for every λ ∈ Λ,
⋂
λ∈Λ clλ also satisfies P.

The following lemma is immediate:

Lemma IV.2. Suppose that P is an intersection stable property of a closure operation

and that R has a closure operation satisfying P. Then R has a smallest closure

operation satisfying P.

Proposition IV.3. 1. Functoriality is intersection stable.

28
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2. Semi-residuality is intersection stable on sets of closures that are functorial.

3. When R is local, faithfulness and generalized colon-capturing are intersection

stable.

Proof. 1. Let {clλ}λ∈Λ be a family of closure operations, and

cl =
⋂
λ∈Λ

clλ.

If each clλ is functorial, f : M → W is anR-module map, andN ⊆M is a submodule,

then f(N cl
M) ⊆ f(N clλ

M ) ⊆ f(N)clλ
W for each λ. Thus f(N cl

M) ⊆
⋂
λ f(N)clλ

W = f(N)cl
W ,

as desired.

2. Suppose that N cl
M = N , and that for each λ, clλ is functorial and semi-residual.

We will show that 0cl
M/N = 0. Suppose that ū ∈ 0cl

M/N . Then for each λ, ū ∈ 0clλ
M/N .

By Lemma III.1, u ∈ N clλ
M if and only if ū ∈ 0clλ

M/N . Hence u ∈ N clλ
M for each λ, which

implies that u ∈ N cl
M = N . Thus ū = 0, and so cl is semi-residual.

3. It is clear that faithfulness is intersection stable.

Suppose that clλ satisfies generalized colon-capturing for each λ and that x1, . . . , xk+1

is part of a system of parameters for R, J = (x1, . . . , xk), and f : M � R/J

such that there is some v ∈ M with f(v) = xk+1 + J . We need to show that

(Rv)cl
M ∩ker(f) ⊆ (Jv)cl

M . Since (Rv)cl
M ∩ker(f) ⊆ (Rv)clλ

M ∩ker(f) ⊆ (Jv)clλ
M for each

λ, cl satisfies generalized colon-capturing.

Corollary IV.4. If a local domain R has a Dietz closure, then it has a smallest

Dietz closure.

In the case of a Cohen-Macaulay ring, the smallest Dietz closure is the trivial

closure. However, we do not know what it looks like in more generality.
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Remark IV.5. Colon-capturing is a useful property for a closure operation to have,

but it is not enough on its own to guarantee that a closure operation can be used to

construct big Cohen-Macaulay modules. For example, the closure N cl
M = M for all

N ⊆M finitely-generated R-modules captures colons, but is too large to be useful.

Lemma IV.6. Colon-capturing is an intersection stable property.

Proof. This is immediate from Definition III.13.

Lemma IV.7. Strong colon-capturing, version A, as in Definition III.13 is inter-

section stable.

Proof. To see this, notice that if x1, . . . , xk, t, and a are as in the definition of strong

colon-capturing, version A, then

(xt1, x2, . . . , xk)
cl :R x

a
1 ⊆ (xt1, x2, . . . , xk)

clλ :R x
a
1 ⊆ (xt−a1 , x2, . . . , xk)

clλ

for each λ. Hence (xt1, x2, . . . , xk)
cl :R x

a
1 ⊆ (xt−a1 , x2, . . . , xk)

cl.

Remark IV.8. A similar proof works for strong colon-capturing, version B.

Definition IV.9. Given a class of rings, a closure operation on the class consists of

an assignment of a closure operation to each ring.

The property defined below is one of the important properties of tight closure,

particularly when combined with colon-capturing. If cl is defined on a class of rings,

then we would like to find the smallest closure operation as above (if any such exist)

that satisfies colon-capturing and also satisfies the following property:

Definition IV.10. A closure operation cl on a class of rings with a class of ring

maps between them is persistent for change of rings if whenever R → S is a map

in the class, and N ⊆ M are finitely generated R-modules, then im(S ⊗R N cl
M →

S ⊗RM) ⊆ (im(S ⊗R N → S ⊗RM))cl
S⊗RM .



31

Tight closure is persistent for change of rings and satisfies colon-capturing on

classes of complete local domains with ring homomorphisms (or local ring homomor-

phisms) between them [HH94a].

Remark IV.11. The trivial closure on any class of rings and ring maps between them

is persistent for change of rings, but is colon-capturing if and only if R is Cohen-

Macaulay. The improper closure satisfies both properties on any class of rings and

ring maps between them.

Proposition IV.12. Persistence for change of rings is an intersection stable prop-

erty.

Proof. Suppose that clλ are closure operations on a class of rings with a class of ring

maps between them that are persistent for change of rings. Let cl =
⋂
λ∈Λ clλ. We will

show that cl is persistent for change of rings. Let R→ S be a map in the class, and

suppose that u ∈ N cl
M . Our goal is to show that 1⊗u ∈ (im(S⊗RN → S⊗RM))cl

S⊗RM .

By definition of cl, u ∈ N clλ
M for every λ ∈ Λ. Since each clλ is persistent for change

of rings, this implies that

1⊗ u ∈ (im(S ⊗R N → S ⊗RM))clλ
S⊗RM

for every λ ∈ Λ. Hence 1⊗ u ∈ (im(S ⊗R N → S ⊗RM))cl
S⊗RM .

Corollary IV.13. The category of all complete local domains (with local maps or

with all ring maps between them) has a smallest closure operation that is colon-

capturing and persistent for change of rings.

Proof. This follows immediately from Lemma IV.6, Remark IV.11, and Proposition

IV.12.
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Not much is known about the smallest persistent, colon-capturing closure opera-

tion on a class of rings, except when all of the rings in the class are Cohen-Macaulay,

in which case it is the trivial closure.

4.2 Smallest Big Cohen-Macaulay Module Closure

Given a big Cohen-Macaulay module B over a local domain R, we get a module

closure clB. In [Die10], Dietz proves that clB is a Dietz closure. We can define a new

closure operation by intersecting all closures clB for which B is a big Cohen-Macaulay

module. Since the property of being a Dietz closure is intersection stable, this is also

a Dietz closure. As we prove below, it is also a big Cohen-Macaulay module closure.

Proposition IV.14. Let R be a local domain, and let B be a big Cohen-Macaulay

module constructed using the method of [Die10]. If B′ is any big Cohen-Macaulay

module over R, then clB ⊆ clB′. As a result, the module closure clB is the smallest

big Cohen-Macaulay module closure on R.

Proof. Let B be a big Cohen-Macaulay module constructed as described in [Die10],

and B′ an arbitrary big Cohen-Macaulay module. Then for each map R→ B′, we can

construct a map B → B′ that takes the image of 1 in B to the image of 1 in B′ via the

given map R → B′. To get this map, we start with the map R → B′. Let M0 = R,

M1, . . . ,Mt, . . . be as in [Die10]. If we already have maps from M0 = R,M1, . . . , and

Mt to B′, we extend the map to Mt+1 as follows:

Mt+1 = (M ⊕Rf1 ⊕ . . .⊕Rfk)/(u⊕ x1f1 ⊕ . . . xkfk)

for some u ∈Mt and partial system of parameters x1, . . . , xk for R such that

xk+1u = x1m1 + . . .+ xkmk
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is a bad relation in Mt. Since B′ is a big Cohen-Macaulay module, the image of u in

B′ under the map already constructed is in (x1, . . . , xk)B
′, say u = x1b1 + . . .+ xkbk

with b1, . . . , bk ∈ B′. We extend our map Mt → B′ to a map from Mt+1 to B′ by

sending fi 7→ bi. Take the direct limit of this system of maps Mt → B′ as t → ∞

to get the desired map B → B′. Since we can start with any map R → B′, every

element of B′ is in the image of a map constructed this way. Hence Proposition III.8

implies that clB ⊆ clB′ .

In certain rings of dimension 2, we know more about the smallest big Cohen-

Macaulay module closure.

Definition IV.15 [HH94b]. For R a local domain, the S2-ification of R is the unique

smallest extension of R in its fraction field that satisfies Serre’s condition S2, if such

a ring exists. When it exists, it can be constructed by adding to R all elements

f ∈ Frac(R) such that some height 2 ideal of R multiplies f into R.

Proposition IV.16. Let R be a local domain of dimension 2 that has an S2-ification

S. Then the module closure clS is the smallest big Cohen-Macaulay module closure

on R.

Proof. Let B be a big Cohen-Macaulay module constructed by the method of [Die10],

so that clB is the smallest big Cohen-Macaulay module closure on R. Since S is

Cohen-Macaulay when R has dimension 2, we know that clB ⊆ clS. By Proposition

III.8, it is enough to show that for any map R→ B, 1 7→ u, we have a map S → B

whose image contains u. To do this, we need to extend the map from R to S by

defining it on elements f ∈ Frac(R) such that some height 2 ideal of R multiplies

f into R. Let f be such an element. Since dim(R) = 2, there is some system of

parameters x, y for R such that xf, yf ∈ R. Then the map is already defined on
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xf, yf , say xf 7→ v, yf 7→ w. The element xyf must map to yv, but also must map

to xw, so yv = xw. Since x, y is a regular sequence on B, v = xv0 and w = yw0

for some v0, w0 ∈ B. Then xyv0 = yv = xw, so w = yv0. Hence yv0 = yw0, which

implies that v0 = w0. Thus f 7→ v0 is a well-defined extension of the map R → B.

Further, 1S maps to u, so this is the map we need to see that clS ⊆ clB.

Example IV.17. Let R = k[[x4, x3y, xy3, y4]]. The S2-ification S of R must contain

x2y2, since x4(x2y2) = (x3y)2 ∈ R and y4(x2y2) = (xy3)2 ∈ R. In fact, S is the

subring k[[x4, x3y, x2y2, xy3, y4]] of k[[x, y]]. Since (x3y)2 = x4(x2y2) in S, (x3y)2 ∈

(x4)clS
R . Similarly, (xy3)2 ∈ (y4)clS

R . Hence (x3y)2 ∈ (x4)cl
R and (xy3)2 ∈ (y4)cl

R for

every Dietz closure cl on R.

4.3 Smallest module closure containing another closure

Given a closure operation cl on R, we construct the smallest module closure

containing cl. This will be used in Chapter V to prove that every Dietz closure is

contained in a big Cohen-Macaulay module closure. To construct the smallest module

closure containing a given closure, we use a second type of module modification.

Definition IV.18. Let cl be a closure operation on R, G ⊆ Rs a submodule of a

finitely-generated free R-module generated by

e1 = (e11, . . . , e1s), . . . , ek = (ek1, . . . , eks),

and let v = (v1, . . . , vs) ∈ Gcl
Rs − G. A containment module modification of an

R-module M relative to an element x ∈M is a map

M →M ′ =
M ⊕Rf1 ⊕ . . .⊕Rfk

R(v1x⊕ e11f1 ⊕ . . .⊕ ek1fk, . . . , vsx⊕ e1sf1 ⊕ . . .⊕ eksfk)
.

Proposition IV.19. Let R be a ring, W an R-module, and cl a closure operation

on R that is functorial and semi-residual. Then there is an R-module S with a map
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φ : W → S such that cl ⊆ clS, and for any R-module T such that cl ⊆ clT and any

map ψ : W → T , we have a map γ : S → T such that ψ = γ ◦ φ.

Proof. To create such an S, we apply containment module modifications to finitely-

generated submodules of W. First we show that we have a direct limit system of

containment module modifications. Given a finite set of modules G1, . . . , Gt with

Gi ⊆ Rsi , and for each i, a finite set of elements vi1, vi2, . . . , vi`i ∈ (Gi)
cl
Rsi − Gi, we

can apply finitely many containment module modifications to a finitely-generated

submodule W0 ⊆ W to get a module W1 such that for each 1 ≤ i ≤ t and 1 ≤ j ≤ `i,

im(vij ⊗W0 → Rsi ⊗W1) ⊆ im(Gi ⊗W1 → Rsi ⊗W1).

Then we apply finitely many containment module modifications to W1, forcing

im(vij ⊗W1 → Rsi ⊗W2) ⊆ im(Gi ⊗W2 → Rsi ⊗W2)

for all i, j. Repeating this process infinitely many times, we get a module W∞ that

is the direct limit of the Wr and such that

im(vij ⊗W∞ → Rs ⊗W∞) ⊆ im(Gi ⊗W∞ → Rs ⊗W∞)

for all i, j. We have a map W0 → W∞ since each containment module modification

comes with a map from W0.

Consider all finite sets G = {G1, . . . , Gt, v11, v12, . . . , v1`1 , v21, v22, . . . , vt`t} with

Gi ⊆ Rsi and finitely many elements vi1, . . . , vi`i ∈ (Gi)
cl
Rs − Gi for each 1 ≤ i ≤ t,

and also all finitely-generated submodules W0 of W . Suppose that G ⊆ G ′ are two

such sets, that W0 ⊆ W ′
0 are finitely-generated submodules of W , and that W∞

and W ′
∞ are corresponding direct limit modules constructed from W0 using G and

from W ′
0 from G ′, respectively, using the process described above. We build a map

W∞ → W ′
∞, starting with the map W0 ⊆ W ′

0 → W ′
∞.
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It suffices to demonstrate that the map can be extended to a single containment

module modification. Let P be an intermediate module in the direct limit system

of W∞ with a map P → W ′
∞, v = vij ∈ G for some i, j, e1, . . . , ek be the generators

of G = Gi, and x ∈ Q as in Definition IV.18. We need to specify the images of

f1, . . . , fk in W ′
∞. Since v⊗W ′

∞ ⊆ G⊗W ′
∞, vx = e1w1 + e2w2 + . . .+ ekwk for some

w1, . . . , wk ∈ W ′
∞. Then the map that sends fi 7→ wi is a well-defined extension of

the map P → W ′
∞. Hence we have a map W∞ → W ′

∞ for any G ⊆ G ′.

The W∞ form a partially ordered set via W∞ ≤ W ′
∞ if the corresponding finite

sets satisfy G ⊆ G ′. This is a directed set, using the maps W∞ → W ′
∞ we constructed

above. Let S be the direct limit. By the set-up above, we have a well-defined map

φ : W → S. We are now done proving that for submodules G of finitely-generated

free R-modules Rs, Gcl
Rs ⊆ GclS

Rs .

Suppose that N ⊆ M are arbitrary finitely-generated R-modules. We will show

that N cl
M ⊆ N clS

M . There is some s for which M/N ∼= Rs/G, where G is a submodule

of Rs. Let u ∈ N cl
M . By Lemma III.1, part (a), ū ∈ 0cl

M/N
∼= 0cl

Rs/G. Applying the

Lemma again, any lift v of im(ū) to Rs is in Gcl
Rs , which is contained in GclS

Rs by

the previous paragraph. Applying the Lemma twice more, we get ū ∈ 0clS
M/N , which

implies that u ∈ N clS
M .

Now suppose that T is an R-module such that cl ⊆ clT , and we have a map

ψ : W → T . Let φ : W → S be as above. For any intermediate module P in the

direct limit system of S, let φP be the corresponding map W → P . Suppose that

we have a map γP : P → T such that ψ = γP ◦ φP . We demonstrate how to extend

the map to a map γP ′ : P ′ → T such that ψ = γP ′ ◦ φP ′ when P ′ is a containment

module modification of P . We have:

P → P ′ =
P ⊕Rf1 ⊕ . . .⊕Rfk

R(v1x⊕ e11f1 ⊕ . . .⊕ ek1fk, . . . , vsx⊕ e1sf1 ⊕ . . .⊕ eksfk)
,
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where x ∈ P , and v, e1, . . . , ek are as in Definition IV.18. We need to specify the

images of the fi. Since cl ⊆ clT , vx ∈ (e1, . . . , ek)T , say vx = e1t1 + . . . + ektk.

Then sending fi 7→ ti gives us a well-defined extension of γP such that ψ = γP ′ ◦φP ′ .

Since S is a direct limit of such containment module modifications, we get a map

γ : S → T such that ψ = γ ◦ φ.

Theorem IV.20. Let R be a ring and cl a closure operation on R that is functorial

and semi-residual. Then if we set W = R and construct a module S as in Proposition

IV.19, clS is the smallest module closure containing cl, i.e., if T is any R-module

such that cl ⊆ clT , we have clS ⊆ clT . In particular, if cl is a module closure, then

cl = clS (conversely, if cl is not a module closure, then cl ( clS).

Proof. By Proposition IV.19, for every R-module map R→ T , we have a map S → T

that agrees with the original map on the image of R. So for every element t ∈ T , we

have a map S → T whose image contains t. By Proposition III.8, this implies that

clS ⊆ clT .



CHAPTER V

A Connection between Dietz Closures and Singularities

In this section, we show that for any local domain R that has a Dietz closure,

R is regular if and only if all Dietz closures on R are equal to the trivial closure.

First, we prove a result on the relationship between general Dietz closures and big

Cohen-Macaulay module closures.

Theorem V.1. Let cl be a Dietz closure on a local domain (R,m). Then cl is

contained in clB for some big Cohen-Macaulay module B.

Proof. Let cl be a Dietz closure on R. To construct B, we use both parameter

module modifications and containment module modifications. First, we construct a

big Cohen-Macaulay module S1 using parameter module modifications as in [Die10].

We apply containment module modifications to S1 as in Proposition IV.19 to get a

module S2 such that cl ⊆ clS2 and a map S1 → S2, and then we use parameter module

modifications to construct an R-module S3 such that every system of parameters on

R is a regular sequence on S3 and a map S2 → S3. We repeat these two constructions

countably many times, getting maps

R = S0 → S1 → S2 → S3 → . . .

The direct limit B is an R-module such that cl ⊆ clB and every system of parameters

38



39

on R is a regular sequence on B. We need to show that im(1) 6∈ mB when we apply

the map R→ B that is the direct limit of the maps R→ Si.

We follow the proof of [HH95, Proposition 3.7]. If im(1) ∈ mB, then there is a

finitely-generated R-module P with 1 ∈ mP such that P maps to B.

Claim: There is an R-module W constructed from R by taking finitely many

module modifications (of either or both types) such that the map P → B passes

through W .

Proof of Claim. Given any finitely-generated R-module P with a map P → B, there

is some i > 0 for which im(P ) ⊆ Si. Then there is also a finite sequence of con-

tainment module modifications and parameter module modifications of Si−1 giving

a module Wi−1 such that the map P → B passes through Wi−1. We use induction

on the value of i. If i = 1, then the result is immediate. Suppose the result holds

for i = 1, 2, . . . , k − 1, and let S be a module gotten from Sk−1 by applying a finite

sequence of module modifications, such that im(P ) ⊆ S. By induction, there is an

R-module Wk−1 that is constructed from R by taking finitely many module modifi-

cations, and such that im(P ∩ Sk−1) ⊆ Wk−1. Any element of P not in Sk−1 must

come from one of the module modifications applied to Si−1 to get S. So when we

apply the same sequence of module modifications to Wk−1, we get an R-module Wk

that is constructed by applying finitely many module modifications to R and such

that im(P ) ⊆ Wk.

Further, if we apply any finite sequence of module modifications to R to get a

module W , we have a map W → B, constructed in the same way as the maps

W∞ → W ′
∞ in the proof of Proposition IV.19 and the maps Mt → B′ in the proof

of Proposition IV.14. Therefore, im(1) ∈ mB if and only if im(1) ∈ mW , where W



40

is an R-module obtained by applying finitely many module modifications to R. We

will show that we cannot have im(1) ∈ mW . To do this, we show that if we have a

cl-phantom map R → M , and we apply a single module modification to M to get

M ′, the resulting map R→M ′ is cl-phantom. Hence im(1) 6∈ mM ′.

Assume R
α→ M is a phantom extension of R. If we apply a parameter module

modification to M , we know that the resulting map α′ : R → M ′ is phantom by

[Die10]. In the following Lemma, we show that α′ : R → M ′ is phantom when we

apply a containment module modification to M . Hence by Lemma II.19, α′(1) 6∈

mM ′. This guarantees that in the limit, mB 6= B.

Lemma V.2. Suppose that (R,m) is a local domain and cl is a Dietz closure on R

that is functorial and semi-residual, and such that 0cl
R = 0. Suppose that α : R→M

is a phantom extension, and let M ′ be a containment module modification of M .

Then α′ : R→M ′ is a phantom extension.

Proof. Let v = (v1, . . . , vs) ∈ Gcl
Rs − G for some nonzero submodule G ⊆ Rs (as

0cl
Rs = 0 by assumption), and let x ∈ M . Let u be the image of 1 in M . Taking a

single module modification, we get

M ′ =
M ⊕Rf1 ⊕ . . .⊕Rfk

R (v1x⊕ e11f1 ⊕ . . .⊕ ek1fk, . . . , vsx⊕ e1sf1 ⊕ . . .⊕ eksfk)
.

First, we need to show that the composite map α′ : R → M → M ′ is injective.

Let F = Frac(R). Then F → F ⊗R M is injective, and it suffices to show that

F → F ⊗ M ′ is injective, i.e. that it is nonzero (if R → M ′ were not injective,

applying F⊗ would preserve this). We claim that v ∈ im(F ⊗ G → F s). To see

that this is true, notice that by Lemma III.1, 0cl
Rs/G is contained in the torsion part

of Rs/G. Hence v ∈ Gcl
Rs implies that v̄ is a torsion element of Rs/G. Hence v̄ = 0

in F s/(F ⊗G), which implies that v ∈ im(F ⊗G→ F s). Then the relations we kill
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to get F ⊗M ′ already hold in F ⊗M , so there is a retraction F ⊗M ′ → F ⊗M .

This implies that F ⊗M → F ⊗M ′ is injective, and so F → F ⊗M ′ is injective, as

desired.

Remark V.3. In the special case s = 1, we can show that the map M →M ′ sending

each element y 7→ y ⊕ 0 ⊕ . . . ⊕ 0 is injective. If y 7→ 0, then y ⊕ 0 ⊕ . . . ⊕ 0 =

r(vx⊕ r1f1 ⊕ . . .⊕ rkfk) in M ⊕Rf1 ⊕ . . .⊕Rfk, for some r ∈ R. We may assume

without loss of generality that some ri is nonzero, say r1. Then rr1f1 = 0, so rr1 = 0.

Since R is a domain, r = 0. So y = rvx = 0.

Following Notation II.14 and [Die10, Discussion 2.4], pick a generating set w1, . . . , wn

for M such that w1 = u and wn = x. Then the images of w2, . . . , wn form a generating

set for Q. Let

Rm ν−−−→ Rn−1 µ−−−→ Q −−−→ 0

be a free presentation of Q, where µ sends the generators of Rn−1 to w2, . . . , wn,

respectively. We can choose a basis for Rm such that ν is given by the (n− 1)×m

matrix (bij)2≤i≤n,1≤j≤m. As in [Die10], we construct the diagram

Rm ν1−−−→ Rn µ1−−−→ M −−−→ 0yid

yπ y
Rm ν−−−→ Rn−1 µ−−−→ Q −−−→ 0,

where π kills the first generator of Rn and the rows are exact. The map µ1 sends the

generators of Rn to w1, . . . , wn, respectively, and ν1 has matrix (bij)1≤i≤n,1≤j≤m with

respect to the same basis for Rm used to give ν.

Now we construct corresponding resolutions for M ′ and Q′. M ′ has k new gener-

ators and s new relations, as does Q′, so we get the following diagram:
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Rm+s ν′1−−−→ Rn+k µ′1−−−→ M ′ −−−→ 0yid

yπ y
Rm+s ν′−−−→ Rn−1+k µ′−−−→ Q′ −−−→ 0

The maps µ′ and µ′1 take the generators of Q′ and M ′ to w2, . . . , wn, f1, . . . , fk

and w1, . . . , wn, f1, . . . , fk, respectively. The map π kills the first generator of Rn+k.

The map ν ′1 can be given by the matrix

0

ν1
...

0

v

e1

0 ...

ek



,

and ν ′ is this matrix with the top row removed.

The rows of this diagram are exact. We demonstrate the exactness at Rn+k. To

see that µ′1◦ν ′1 = 0, we observe that µ1◦ν1 = 0, and for all i, vix+e1if1+. . .+ekifk = 0

in M ′. To see that ker(µ′1) ⊆ im(ν ′1), suppose that µ′1(a1, . . . , an+k)
tr = 0. Then

a1w1 + . . .+ anwn + an+1f1 + . . .+ an+kfk = r1(v1x+ e11f1 + . . .+ ek1fk)

+ r2(v2x+ e12f1 + . . .+ ek2fk)

+ . . .+ rs(vsx+ e1sf1 + . . .+ eksfk)

in M ⊕Rf1 ⊕ . . .⊕Rfk, for some r1, . . . , rs ∈ R. So

a1w1 + . . .+ an−1wn−1 + (an −
s∑
i=1

rsv)x = 0,
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and

an+i =
s∑
j=1

rjeij

for 1 ≤ i ≤ k. This implies that (a1, . . . , an−1, an −
∑s

i=1 rsv, 0, . . . , 0)tr is in the

image of the first m columns of ν ′1, and (0, . . . , 0,
∑s

i=1 rsv, an+1, . . . , ank)
tr is in the

image of the last s columns of ν ′1. Hence (a1, . . . , an+k)
tr is in the image of ν ′1, as

desired.

By Lemma II.15, α′ is phantom if and only if the top row of ν ′1 is in the cl-closure

of the span of the other rows. Denote the top row of ν1 by x, the bottom row by y,

and the span of the middle rows by H. Then α′ is phantom if and only if

x⊕ 0 ∈ (R(y ⊕ v) + (H ⊕ 0) + (0⊕G))cl
Rm+s .

But since α is phantom, x ∈ (Ry +H)cl
Rm . Hence x⊕ 0 ∈ (Ry +H)cl

Rm ⊕ 0, and we

have

(Ry +H)cl
Rm ⊕ 0 = (Ry +H)cl

Rm ⊕ 0cl
Rs

= ((Ry +H)⊕ 0)cl
Rm+s

= ((Ry ⊕ 0) + (H ⊕ 0))cl
Rm+s

We want to show that this is contained in (R(y ⊕ v) + (H ⊕ 0) + (0⊕G))cl
Rm+s . We

have

(Ry ⊕ 0) + (H ⊕ 0) ⊆ R(y ⊕ v) + (H ⊕ 0) + (0⊕Gcl
Rs)

= (Ry ⊕ v) + (H ⊕ 0) + ((0⊕G))cl
Rm+s

⊆ (R(y ⊕ v) + (H ⊕ 0))cl
Rm+s + (0⊕G)cl

Rm+s .

Thus

((Ry ⊕ 0) + (H ⊕ 0))cl
Rm+s ⊆

(
(R(y ⊕ v) + (H ⊕ 0))cl

Rm+s + (0⊕G)cl
Rm+s

)cl

Rm+s

= (R(y ⊕ v) + (H ⊕ 0) + (0⊕G))cl
Rm+s

by Lemma III.1. Therefore, α′ is phantom.
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It turns out that the closure operation clB from Theorem V.1 is the smallest big

Cohen-Macaulay module closure containing cl, the initial Dietz closure.

Lemma V.4. Let notation be as in Theorem V.1. Given a big Cohen-Macaulay-

module B′ such that cl ⊆ clB′, clB ⊆ clB′.

Proof. For any map R → B′, we construct a map B → B′. We already know from

the proof of Proposition IV.14 how to extend the map M → B′ to a map M ′ → B′,

where M ′ is a parameter module modification of M . We need to know how to extend

the map when

M ′ =
M ⊕Rf1 ⊕ . . .⊕Rfk

R (v1x⊕ e11f1 ⊕ . . .⊕ ek1fk, . . . , vsx⊕ e1sf1 ⊕ . . .⊕ eksfk)
.

Since (v1, . . . , vs) ∈ Gcl
Rs , for each b′ ∈ B′, (v1, . . . , vs)⊗ b′ ∈ im(G⊗ B′ → Rs ⊗ B′).

In particular, for each 1 ≤ i ≤ s, vix = e1ib1 +e2ib2 + . . .+ekibk where b1, . . . , bk ∈ B′.

Define the map M ′ → B′ by sending fi 7→ bi.

Now for every map R→ B′ sending 1 7→ u, we have a map B → B′ whose image

contains u. So by Proposition III.8, clB ⊆ clB′ .

Question V.5. 1. Are all Dietz closures big Cohen-Macaulay module closures, or

any kind of module closure? If not, is there a nice way of characterizing the

difference between Dietz closures that are big Cohen-Macaulay module closures

and those that are not?

2. If we use only containment module modifications as in Proposition IV.19, are

there useful hypotheses that guarantee that the constructed module S is a big

Cohen-Macaulay module?

We use the following definition in our proof that Dietz closures are the trivial

closure on regular rings.
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Definition V.6. Given a closure operation cl, a ring R is weakly cl-regular if for

N ⊆M finitely generated R-modules, N cl
M = N . This is a generalization of Definition

II.10.

Remark V.7. It is equivalent to say that Icl
R = I for all ideals I of R. This follows

from an argument in [HH90].

Proposition V.8. Let cl be a closure operation on a regular local ring (R,m) that

satisfies

1. if x1, . . . , xk is part of a system of parameters for R, then (xt1, x2, . . . , xk)
cl :R

xa1 ⊆ (xt−a1 , x2, . . . , xk)
cl (strong colon-capturing, version A),

2. mcl = m, and

3. if N ′ ⊆ N ⊆M are finitely-generated R-modules, then (N ′)clN ⊆ (N ′)clM .

Then R is weakly cl-regular.

Proof. Let N ⊆ M be finitely-generated R-modules, and let x1, . . . , xd be regular

parameters for R (i.e., (x1, . . . , xd) = m). Since N =
⋂
s(N + msM), by Lemma

III.1 it suffices to show that N + msM is cl-closed in M for each s. Fix a value

of s. By the same Lemma, we may replace M by M/(N + msM) and show that

0 is cl-closed in this module instead. Since M now has finite length, for some t,

It = (xt+1
1 , xt+1

2 , . . . , xt+1
d ) kills M , and so M is an R/It-module. Now It is m-

primary, so R/It is 0-dimensional. Additionally, R is regular and x1, . . . , xd form a

system of parameters, so R/It is Gorenstein. Hence R/It is injective as a module

over itself and is also the only indecomposable injective R/It-module. This implies

that M ↪→ (R/It)
h for some h ≥ 0. Now it suffices to show that It is cl-closed

in R, as then 0 is cl-closed in (R/It)
h. Since 0 ⊆ M ⊆ (R/It)

h, this implies that

0cl
M ⊆ 0cl

(R/It)h
= 0.
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We show that It is cl-closed in R for all t. Let x = x1x2 · · ·xd. Since (x1, . . . , xd) =

m, 1 generates the socle in R/I0 = R/m. Then xt generates the socle in R/It for

t ≥ 1. So if It is not cl-closed, we must have xt ∈ (It)
cl
R. Thus it suffices to show that

xt 6∈ (It)
cl
R.

Suppose that xt ∈ (It)
cl
R. Then

xt1(xt2 · · ·xtd) ∈ (xt+1
1 , . . . , xt+1

d )cl.

By hypothesis (1) on cl,

xt2 · · ·xtd ∈ (x1, x
t+1
2 , . . . , xt+1

d )cl.

Using this hypothesis again,

xt3 · · ·xtd ∈ (x1, x2, x
t+1
3 , . . . , xt+1

d )cl.

Continuing in this manner, we see that

xtd ∈ (x1, x2, . . . , xd−1, x
t+1
d )cl,

and taking one more step, that 1 ∈ (x1, . . . , xd)
cl. However, mcl = m, so this is a

contradiction. Therefore, (It)
cl
R = It for all t, which finishes the proof that N cl

M = N

for all submodules N of finitely-generated R-modules M .

Theorem V.9. Dietz closures are all equal to the trivial closure on regular local

rings.

Proof. Earlier, we showed that any Dietz closure is contained in a big Cohen-Macaulay

module closure and that big Cohen-Macaulay module closures satisfy strong colon-

capturing, version A. Since they are Dietz closures, they satisfy the other two proper-

ties required to use Proposition V.8. Therefore, Dietz closures are the trivial closure

on regular rings.
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Remark V.10. It is also possible to show that big Cohen-Macaulay module closures

are the trivial closure on regular rings by noting that a big Cohen-Macaulay module

B over a regular ring is faithfully flat [HH92], so that ideals and submodules of

finitely-generated modules are “contracted” from B.

Theorem V.11. Suppose that (R,m,K) is a local domain that has at least one

Dietz closure (in particular, it suffices for R to have equal characteristic and any

dimension, or mixed characteristic and dimension at most 3), and that all Dietz

closures on R are equal to the trivial closure. Then R is regular.

Proof. Since R has a big Cohen-Macaulay module B that gives a Dietz closure clB

equal to the trivial closure, R is Cohen-Macaulay. We show that R is also approxi-

mately Gorenstein. If dim(R) ≥ 2, then depth(R) ≥ 2, so this follows from [Hoc77].

If dim(R) = 0, then R is a field, which is approximately Gorenstein. If dim(R) = 1,

then the integral closure S of R is a big Cohen-Macaulay algebra for R. Let b/a ∈ S.

We have b ∈ (a)clS , but clS must be the trivial closure on R, so b ∈ (a). Hence

S = R, and so R is normal. By [Hoc77], R is approximately Gorenstein.

Let I1 ⊇ I2 ⊇ . . . ⊇ It ⊇ . . . be a sequence of m-primary ideals such that each

R/It is Gorenstein and the It are cofinal with the powers of m. Let E = ER(K),

the injective hull of K over R. Then E is equal to the increasing union
⋃
t AnnE(It).

Further, each AnnE(It) is isomorphic to ER/It(K) ∼= R/It, so we have injective maps

R/It → R/It+1 for each t ≥ 1. Let u1 be a generator of the socle in R/I1. For t ≥ 1,

let ut+1 be the image of ut in R/It+1, which will generate the socle in R/It+1.

Suppose that M is a finitely-generated Cohen-Macaulay module with no free

summand. We will show that M is equal to the increasing union of ItM : ut, so

that utM ⊆ ItM for t � 1. This will imply that M gives us a Dietz closure

not equal to the trivial closure. To see that the union is increasing, suppose that
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v ∈ ItM : ut. Then utv ∈ ItM . Applying the map ItM → It+1M induced by the

map R/It → R/It+1, we see that ut+1v ∈ It+1M .

Suppose that M 6=
⋃
t ItM : ut. Then we can pick v ∈M−

⋃
t ItM : ut. For every

t ≥ 1, utv 6∈ ItM . Consider the map R → M given by multiplication by v. Since R

is local and M is finitely-generated, this splits if and only if E → E⊗M is injective.

But this is true if and only if R/It → M/ItM is injective for all t � 1. For any t,

ut 7→ utv 6∈ It+1M , so the socle of R/It is not contained in the kernel of the map

R/It → M/ItM . Hence R/It → M/ItM is injective, which implies that R → M

splits. This contradicts our assumption that M had no free summand.

If R is not regular, then since R is Cohen-Macaulay, syzd(k) is a finitely-generated

Cohen-Macaulay module that is not free. Then it has some minimal direct summand

(which can’t be written as a nontrivial direct sum) that is not free. This gives us a

Dietz closure not equal to the trivial closure on R. Therefore, R must be regular.

Remark V.12. By a result of [Dut89], syzd(k) has no free summand when R is not

regular, so we can use syzd(k) instead of a minimal direct summand of it.

The following is a corollary to the proof of Theorem V.11.

Corollary V.13. Let R be a local domain with at least one Dietz closure. Suppose

that R has a finitely-generated Cohen-Macaulay module B with no free summands

and that R is approximately Gorenstein but not regular. Then R has a Dietz closure

clB that is not equal to the trivial closure.

R satisfies these hypotheses when it is Cohen-Macaulay, dim(R) 6= 1, and R is

not regular. Alternatively, it suffices for R to be complete but not regular. If R is

Cohen-Macaulay of dimension not equal to 1 but is not regular, B = syzd(k) gives

a nontrivial closure on R. In particular, if R has equal characteristic, dim(R) 6= 1,
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and R is weakly F-regular but not regular, clB is nontrivial on R.



CHAPTER VI

Further Studies of Dietz Closures

6.1 Proofs that Certain Closures are not Dietz Closures

Dietz gives some examples of Dietz closures, as well as some closures that fail

to be Dietz closures. Understanding why certain closure operations fail to be Dietz

closures adds to our understanding of Dietz closures, and may help us find a good

closure operation for rings of mixed characteristic. The following result gives one

way for a closure operation to be “too big” to be a Dietz closure.

Theorem VI.1. Let R be a local domain with x1, . . . , xk part of a system of pa-

rameters for R and (x1 · · ·xk)t ∈ (xt+1
1 , xt+1

2 , . . . , xt+1
k )cl for some t ≥ 0 and closure

operation cl. Then cl is not a Dietz closure.

Proof. Suppose that cl is a Dietz closure. Then by Theorem V.1, there is a big

Cohen-Macaulay module B such that cl ⊆ clB. Then we have

(x1 · · · xk)t ∈ (xt+1
1 , . . . , xt+1

k )cl ⊆ (xt+1
1 , . . . , xt+1

k )clB .

By Proposition III.14, this implies that

(x2 · · ·xk)t ∈ (x1, x
t+1
2 , . . . , xt+1

k )clB ,

which implies that

(x3 · · ·xk)t ∈ (x1, x2, x
t+1
3 , . . . , xt+1

k )clB ,

50
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and so on until

1 ∈ (x1, . . . , xk)
clB .

But (x1, . . . , xk)
clB ⊆ mclB = m. As B 6⊆ (x1, . . . , xk)B, this is a contradiction.

Therefore, cl is not a Dietz closure.

The following is not a new result, but it is interesting that it follows directly from

Theorem VI.1.

Corollary VI.2. Suppose that a local domain R has a Dietz closure cl. Then the

Monomial Conjecture holds on R.

Next we use Theorem VI.1 to prove that certain closure operations are not Dietz

closures.

Corollary VI.3. Integral closure is not a Dietz closure on R if dim(R) ≥ 2.

Proof. Let x, y be part of a system of parameters for R. We always have xy ∈ (x2, y2),

so by Theorem VI.1, integral closure is not a Dietz closure.

Definition VI.4 [McD99]. We define regular closure on a ring R by u ∈ N reg
M if for

every regular R-algebra S, u ∈ N clS
M , where N ⊆M are finitely-generated R-modules

and u ∈M .

Lemma VI.5. Let R = k[[x, y, z]]/(x3 + y3 + z3), where char(k) 6= 3. Then (x, y)t ⊆

(xt, yt)reg.

Proof. In [HH93], Hochster and Huneke show that z ∈ (x, y)reg but z 6∈ (x, y)∗. To do

this, they reduce to the case of maps to complete regular local rings with algebraically

closed residue field and show that any solution (a, b, c) of u3 + v3 + w3 = 0 in S has

the form (αd, βd, γd), where d ∈ S and (α, β, γ) is a solution of the same equation

such that either at least two of α, β, and γ are units, or all three are 0.
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If all three are 0, then clearly (x, y)tS ⊆ (xt, yt)S. If at least one of α or β

is a unit, then (xt, yt)S = (dt), which must contain (x, y)tS. Since these are the

only possible cases, we have (x, y)tS ⊆ (xt, yt)S for any regular R-algebra S. Hence

(x, y)t ⊆ (xt, yt)reg.

Corollary VI.6. Regular closure may fail to be a Dietz closure.

Proof. Consider the ring R = k[[x, y, z]]/(x3 + y3 + z3), where char(k) 6= 3. In this

ring, xy ∈ (x2, y2)reg by Lemma VI.5.

Remark VI.7. By the exact argument used in Lemma VI.5, UFD closure (consider

all R-algebras that are UFD’s, rather than the regular R-algebras) may fail to be a

Dietz closure.

The following result is a consequence of Theorem V.9.

Theorem VI.8. For rings of equal characteristic 0, solid closure is not always a

Dietz closure. In particular, solid closure is not a Dietz closure on regular local rings

containing the rationals with dimension at least 3.

Proof. By Theorem V.9, Dietz closures are equal to the trivial closure on regular

rings. By [Hoc94, Corollary 7.24] and [Rob94], if R is a regular local ring containing

the rationals with dimension at least 3, then solid closure is not the trivial closure

on R. Hence solid closure is not a Dietz closure on these rings.

6.2 Full Extended Plus Closure

We do not know whether Heitmann’s mixed characteristic plus closure, full ex-

tended plus closure, and full rank one closure [Hei02] are Dietz closures, even in

dimension 3. To discuss this question, we first extend the definition of full extended
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plus closure (epf) to finitely generated modules. The other definitions can be ex-

tended similarly.

Definition VI.9. Let R be a mixed characteristic local domain, whose residue field

has characteristic p. Let N ⊆M be finitely generated modules over R. We define the

full extended plus closure of N in M by u ∈M is in N epf
M if there is some c 6= 0 ∈ R

such that for all n ∈ Z+,

c1/n ⊗ u ∈ im(R+ ⊗N +R+ ⊗ pnM → R+ ⊗M).

Proposition VI.10. For R a local domain of mixed characteristic p, full extended

plus closure is a closure operation that is functorial, semi-residual, and faithful, and

0epf
R = 0.

Proof. It is easy to prove the extension and order-preserving properties. To see that

epf satisfies idempotence, making it a closure operation, let u ∈ (N epf
M )epf

M . Then there

is some c 6= 0 in R such that

c1/n ⊗ u ∈ im(R+ ⊗N epf
M +R+ ⊗ pnM → R+ ⊗M)

for all n, say

c1/n ⊗ u =
∑
i

ri ⊗ yi +
∑
j

sj ⊗ pnmj,

with ri, sj ∈ R+, yi ∈ N epf
M , and mj ∈ M . For each i, there is some nonzero di ∈ R

such that

d
1/n
i ⊗ yi ∈ im(R+ ⊗N +R+ ⊗ pnM → R+ ⊗M).

Then

c1/n·Πid
1/n
i ⊗u = Πid

1/n
i

(∑
i

ri ⊗ yi +
∑
j

sj ⊗ pnmj

)
∈ im(R+⊗N+R+⊗pnM → R+⊗M).

Since c · Πidi is a nonzero element of R, this proves that u ∈ N epf
M .
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To check that epf is functorial, let f : M → W be an R-module homomorphism

and N ⊆M . Let u ∈ N epf
M . Then there is some nonzero c ∈ R such that

c1/n ⊗ u ∈ im(R+ ⊗N +R+ ⊗ pnM → R+ ⊗M)

for every n > 0. Apply f . This tells us that

c1/n ⊗ f(u) ∈ im(R+ ⊗ f(N) +R+ ⊗ pnW → R+ ⊗W )

for every n > 0, which implies that f(u) ∈ f(N)epf
W .

Next, suppose that N epf
M = N . We will show that 0epf

M/N = 0. Let ū ∈ 0epf
M/N , where

u ∈M . Then there is some nonzero c ∈ R with

c1/n ⊗ ū ∈ im(R+ ⊗ pn(M/N)→ R+ ⊗M).

But R+ ⊗ pn(M/N) is isomorphic to pn(R+ ⊗M)/(R+ ⊗N), which tells us that

c1/n ⊗ u ∈ im(R+ ⊗ pnM +R+ ⊗N → R+ ⊗M).

This implies that u ∈ N epf
M = N , so ū = 0 in M/N .

To see that mepf
R = m, let u ∈ mepf

R . Then

c1/nu ∈ (m, pn)R+

for some nonzero c ∈ R (using the ideal version of the definition of epf) and for all

n. Since pn ∈ m, c1/nu ∈ mR+ for all n. If u 6∈ m, then c1/n ∈ mR+ for all n. But

we can extend the m-adic valuation on R to a Q-valued valuation on R+. The order

of c1/n will be 1
n
ord(c). So this is impossible.

Now let u ∈ 0epf
R . Then c1/nu ∈ pnR+ for some c 6= 0 in R and for all n. Let ord

denote a Q-valued valuation on R+ that extends the m-adic valuation on R. Let

s = ord(c) and t = ord(p). Then we must have s/n + ord(u) ≥ nt for all n. This

implies that u = 0.
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A similar argument works for mixed characteristic plus closure and for full rank

one closure.

If at least one of these closures is a Dietz closure in dimension 3, this would tie

the results of [Hei02, Hoc02] in to the results of this paper. If they are not Dietz

closures in dimension 3, this would imply that the Dietz axioms are stronger than

they need to be–there could be a weaker set of axioms that would be sufficient for

the proof of the Direct Summand Conjecture in mixed characteristic rings.

6.3 Connections between Dietz closures and other closure operations

We show that Dietz closures are contained in (liftable) integral closure. This is

proved for ideals in [Die05] with the added assumption that the closures are persistent

for change of rings, but we do not need this assumption here. This result gives a

weak upper bound for all Dietz closures; we give better bounds for certain classes of

Dietz closures in Proposition VI.17 and Theorem VIII.4.

Theorem VI.11. Let R be a domain and cl = clM where M is a solid module over

R. Then Icl ⊆ Ī for every ideal I of R.

Proof. Since M is solid, there is some nonzero map f : M → R, with image a, a

nonzero ideal of R. Suppose that I ⊆ J ⊆ Icl. Then JM = IM . Applying f , we get

Ja = Ia. Since R is a domain, a is a finitely-generated, torsion-free R-module. By

the lemma below, J ⊆ Ī.

Lemma VI.12 [HS06]. Suppose that I ⊆ J are ideals of a domain R such that

IM = JM for some finitely-generated, torsion-free R-module M . Then J ⊆ Ī.

Corollary VI.13. Let R be a complete local domain and B a big Cohen-Macaulay

module over R. Then IclB ⊆ Ī for all ideals I of R.
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Proof. By [Hoc94, Proposition 10.5], B is a solid module over R. Hence by Theorem

VI.11, IclB ⊆ Ī for every ideal I of R.

There are several ways to extend integral closure to modules. Here we use liftable

integral closure, denoted `, as defined by Epstein and Ulrich.

Definition VI.14 [EU14]. Let G be a submodule of a finitely-generated free R-

module F , let S be the symmetric algebra over R defined by F , and let T be the

subring of S induced by the inclusion G ⊆ F . Observe that S is N-graded and

generated in degree 1 over R, and that T is an N-graded subring of S, also generated

in degree 1 over R. We define the integral closure G−F of G in F to be the degree 1

part of the integral closure of the subring T of S.

Now let N ⊆ M be finitely-generated R-modules. Take a finitely-generated free

module F and a surjection π : F → M , and let G = π−1(N). We define the liftable

integral closure of N in M by

N`M = π(G−F ).

Proposition VI.15. Let R be a domain and cl = clM where M is a solid R-module.

Then for all finitely-generated free modules F over R and all submodules G of F ,

Gcl
F ⊆ G`F .

Proof. Let F be a free module of rank h over R and G ⊆ F . Let S = Sym(F ) ∼=

R[x1, . . . , xh], I the ideal generated by the image of G in S, and M̃ = S ⊗RM . We

will show that Gcl
F is contained in the degree one piece of I

cl
M̃

S .

Suppose that u ∈ Gcl
F . Then for every m ∈ M , m ⊗ u ∈ im(M ⊗ G → Mh).

This implies that m⊗ u⊗ 1 ∈ im(M ⊗R G⊗R S →Mh ⊗R S). By associativity and

commutativity of tensor, M ⊗R G ⊗R S ∼= M̃ ⊗S I ∼= IM̃ . This isomorphism takes

m⊗ u⊗ 1 7→ u(1⊗m). Then u(s ⊗m) ∈ IM̃ for all s ∈ S, m ∈ M , which implies
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that u ∈ Icl
M̃

S . Since u ∈ G, its image in S is of degree 1.

Since S is a domain and M̃ is solid over S, Icl
M̃ ⊆ Ī for all ideals I of S. This

implies that u is contained in the degree 1 piece of Ī, and hence u ∈ G`F .

Theorem VI.16. Let R be a domain and cl = clM where M is a solid module over

R. Then cl is contained in liftable integral closure. In particular, if R is a complete

local domain, all big Cohen-Macaulay modules closures on R are contained in liftable

integral closure. This implies that all Dietz closures on R are contained in liftable

integral closure.

Proof. Let L ⊆ N be finitely-generated modules over R, and let π : F → N be

a surjection of a finitely-generated free module F onto M . Let K = π−1(L). Let

u ∈ Lcl
N . Then by Lemma III.1, any lift ũ of u to F is contained in Kcl

F . By

Proposition VI.15, ũ ∈ K`F . Hence u ∈ L`N .

Recall that a family of closure operations cl on a class of rings and maps between

them is persistent for change of rings if given any R → S in the class, and N ⊆ M

finitely-generated R-modules,

S ⊗R N cl
M ⊆ (S ⊗R N)cl

S⊗RM .

Proposition VI.17. Let cl denote a Dietz closure defined on a class of local domains

and ring maps between them such that for each ring R in the class, all regular R-

algebras and their structure maps are also contained in the class. If cl is persistent

for change of rings, then it is contained in regular closure.

Proof. Suppose that u ∈ Icl. Then in any map to a regular ring S, u ∈ (IS)cl = IS

by persistence. So u ∈ Ireg.



CHAPTER VII

Big Cohen-Macaulay Algebras

In [Die10], Dietz asked whether it was possible to give a characterization of Dietz

closures that induced big Cohen-Macaulay algebras. Below, I answer this question

positively.

There are many reasons to prefer big Cohen-Macaulay algebras to big Cohen-

Macaulay modules; one is the ability to compare big Cohen-Macaulay algebra clo-

sures on a family of rings. Suppose that we have the following commutative diagram:

B −−−→ Cx x
R −−−→ S

with R → S a local map of local domains, B an R-algebra, and C an S-algebra.

Then if u ∈ N clB
M , 1 ⊗ u ∈ (S ⊗R N)clC

S⊗RM . This property is a special case of being

persistent for change of rings.

Proof of Persistence. By assumption, 1 ⊗ u ∈ im(B ⊗R N → B ⊗R M). We show

that

1⊗ (1⊗ u) ∈ im(C ⊗S (S ⊗R N)→ C ⊗S (S ⊗RM)).

We can identify C ⊗S (S ⊗R N) with C ⊗R N , and C ⊗S (S ⊗R M) with C ⊗R M .

Under these identifications, 1⊗ (1⊗ u) 7→ 1⊗ u. So our goal is to show that

1⊗ u ∈ im(C ⊗R N → C ⊗RM).

58
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There is some element d ∈ B⊗RN that maps to 1⊗ u in B⊗RM . Then d 7→ d′, an

element of C ⊗R N. Then by the commutativity of the diagram

B ⊗R N −−−→ B ⊗RMy y
C ⊗R N −−−→ C ⊗RM,

d′ is an element of C ⊗R N that maps to 1 ⊗ u ∈ C ⊗R M . Thus 1 ⊗ u ∈ (S ⊗R

N)clC
S⊗RM .

This implies that big Cohen-Macaulay algebra closures are persistent for change

of rings in any case where we can build a commutative diagram as above, with B and

C big Cohen-Macaulay algebras. We have a diagram of this form when R and S are

of equal characteristic and R → S is permissible [HH95, Discussion and Definition

3.8].

Now we describe the extra condition needed to get big Cohen-Macaulay algebras.

Suppose that we add the following to the list of axioms for a Dietz closure cl:

Axiom VII.1 (Algebra Axiom). If R
α→ M, 1 7→ e1 is cl-phantom, then the map

R
α′→ Sym2(M), 1 7→ e1 ⊗ e1 is cl-phantom.

Remark VII.2. While the Algebra Axiom as stated uses a map to Sym2(M), the ax-

iom is more easily understood using the isomorphism to Sym≤2(M)/(1−e1)Sym≤1(M).

This is the module consisting of all elements of Sym(M) in R, M , and Sym2(M),

with the following relations: for r ∈ R, r ∼ re1 ∼ re1 ⊗ e1, and for m ∈ M ,

m ∼ m ⊗ e1. The map α′ in the Algebra Axiom is cl-phantom if and only if the

map R → Sym≤2(M)/(1 − e1)Sym≤1(M) sending 1 7→ e1 ⊗ e1 is cl-phantom, since

these modules are isomorphic. To see that the modules are isomorphic, first notice

that we can identify any element of Sym≤2(M)/(1− e1)Sym≤1(M) with an element
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of Sym2(M) by tensoring with copies of e1. Next we show that

(1− e1)Sym≤1(M)
⋂

Sym2(M) = 0.

Given m ∈ M , (1 − e1)m = m − e1 ⊗ m ∈ Sym2(M). Since m ∈ Sym1(M) and

m⊗ e1 ∈ Sym2(M), the only way for them to be equal is to have m = 0. This works

similarly for r ∈ R. So we have the desired isomorphism. This holds when we replace

2 by 2k for any k ≥ 0 as well.

The axiom will be used to show that when we take the direct limit of the Sym2k(M),

the image of 1 stays out of the image of m. When we view this direct limit as a

direct limit of the Sym≤2k(M)/(1− e1)Sym≤2k−1(M), we get

lim−→ Sym≤2k(M)/(1− e1)Sym≤2k−1(M) = lim−→ Sym≤n(M)/(1− e1)Sym≤n−1(M)

= Sym(M)/(1− e1)Sym(M).

Theorem VII.3. If a local domain R has a Dietz closure cl that satisfies the Algebra

Axiom, then R has a big Cohen-Macaulay algebra.

Remark VII.4. Note that if S is an R-algebra, and we have an R-module M and an

R-module map f : M → S, we can extend the map to a map from Sym2(M) → S

via m⊗ n 7→ f(m)f(n). If we also have a map R→ M , 1 7→ e, then we can extend

f to a map from

Sym≤2k(M)/(1− e)Sym≤2k−1(M)

to S, since f(e) is equal to the image of 1 in S under the composition of maps

R→M → S.

Proof. We construct a big Cohen-Macaulay module B1 as in [Die10] with a map

R → B1, 1 7→ e, and then take Sym(B)/(1− e)Sym(B). We repeat these two steps

infinitely many times, and take the direct limit B. This will be an R-algebra such
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that every system of parameters on R is a regular sequence on B. We need to show

that mB 6= B.

At any intermediate stage M , after we have applied module modifications and

taken symmetric powers, there is always a map R → M that factors through all

previous intermediate modules. It suffices to show that im(1) 6∈ mM . By the argu-

ments of Theorem V.1, [HH95, Proposition 3.7], and Remark VII.4, if im(1) ∈ mB

then there is some M obtained from R by a finite sequence of module modifications

and finite symmetric powers as in Remark VII.2 for which im(1) ∈ mM . However,

M is a cl-phantom extension of R by [Die10] and the Algebra Axiom. Thus Lemma

II.19 implies that im(1) 6∈ mM . Hence im(1) 6∈ mB, which implies that B is a big

Cohen-Macaulay algebra for R.

7.1 A description of the Algebra Axiom in terms of a presentation of
Sym2(M)

In this section, we provide a presentation for Sym2(M) built from a presentation

of M . This technique, used by Dietz in [Die10], allows us to work with specific

matrices when studying maps R→ Sym2(M) that may be phantom.

Let α : R → M be an injective map sending 1 7→ e1. We use the notation of

Notation II.14. In particular, Q = coker(α) and B is the matrix (bij)1≤i≤n,1≤j≤m of

the map ν1 with respect to the basis e1, . . . , en of Rn and the chosen basis of Rm.

We have a map

α′ : R→ Sym2(M),

taking 1 7→ e1⊗e1. Denote the cokernel byQ′. This is isomorphic to Sym2(M)/(R(e1⊗

e1)).

To get a presentation for Sym2(M), we start with the map Rm2 → Rn2
given by

the matrix B ⊗B, and then add in the columns needed for the symmetry relations.
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There are n2−n
2

of these columns, one for each pair i < j, with an entry equal to 1

in the row corresponding to ei⊗ ej, an entry equal to -1 in the row corresponding to

ej ⊗ ei, and 0’s elsewhere. Call the corresponding map ν ′1.

To get a presentation for Q′, we use this matrix with the top row removed. Call

this matrix ν ′. We use this presentation to get the following diagram:

0 −−−→ R
α′−−−→ Sym2(M) −−−→ Q′ −−−→ 0x φ′

x ψ′

x id

x
F2 −−−→ Rm2+n2−n

2
ν′−−−→ Rn2−1 µ′−−−→ Q′ −−−→ 0

Let ⊕ denote horizontal concatenation of matrices, and Bi the ith row of the

matrix B. The map φ′ is given by the row matrix (B1 ⊗B1)⊕ 0
n2−n

2 , i.e.,

(b11B1 b12B1 . . . b1nB1 0 . . . 0),

which is the first row of ν ′1.

The map α′ is phantom if and only if im(φ′tr) ⊆ im(ν ′tr)cl. We can rewrite this

statement as:

(B1 ⊗B1)⊕ 0
n2−n

2 ∈

(
n∑
i=2

(
(Bi ⊗Bi)⊕ 0

n2−n
2

)
+

∑
1≤i<j≤n

((Bi ⊗Bj)⊕ fi,j − (Bj ⊗Bi)⊕ fi,j)

)cl

Rm
2+n

2−n
2

,

where fi,j is the vector of length n2−n
2

with an entry equal to 1 in the
(∑i−1

`=1(n− `)
)

+

(j − i)th spot and 0’s elsewhere.

7.2 Proofs that the Algebra Axiom holds for many closure operations

In this section, we demonstrate that the Algebra Axiom is a weak condition on a

closure operation by proving that it holds for large classes of closures, most of which

are not Dietz closures.
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7.2.1 Tight Closure

Let R be a reduced ring of characteristic p > 0, and let ∗ denote tight closure.

For tight closure, we prove the axiom using the following equivalent definition of

a phantom extension:

Proposition VII.5 [HH94c, Proposition 5.8]. Given a short exact sequence 0 →

R
α→ M → Q → 0, α is *-phantom if and only if there is some c ∈ R◦ such that

for all sufficiently large e, there exist maps γe : F e(M) → F e(R) = R such that

γe ◦ F e(α) = c · idR.

Proposition VII.6. If an injective map α : R → M sending 1 7→ u is *-phantom,

then so is the map α′ : R → Sym2(M) sending 1 7→ u ⊗ u. As a result, * satisfies

the Algebra Axiom.

Proof. Since R
α→M is *-phantom, we have maps γe as described above. Notice that

F e(Sym2(M)) is the symmetric tensor product Sym2(F e(M)). For any e for which

γe exists, define a map δe : F e(Sym2(M))→ R by δe(m
q ⊗ nq) = γe(m

q)γe(n
q). (To

see that this is well-defined, define it from the tensor product first, then notice that

δe(m
q ⊗ nq) = δe(n

q ⊗mq).) Since δe(F
e(α))(1) = δe(e

q
1 ⊗ e

q
1) = c2, and c does not

depend on the choice of e, R
α′→ Sym2(M) is *-phantom.

7.2.2 Algebra Closures

Let R be a ring and A a directed family of R-algebras, so that given A,A′ ∈ A ,

there is a B ∈ A that both A and A′ map to. We can define a closure operation

using A as in Definition III.4.

Example VII.7. All algebra closures clA are closures of this type, with A = {A}.

In particular, if R is a domain, plus closure is a closure of this type, with A = {R+}.
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Example VII.8. If R is a complete local domain and we let A be the set of solid

algebras of R (algebras A such that HomR(A,R) 6= 0), we get solid closure [Hoc94].

To show that the axiom holds for algebra closures, we give an equivalent definition

of cl-phantom for these closures that is easier to work with.

Lemma VII.9. Let α : R ↪→ M be an R-module homomorphism. Let A be an

R-algebra, and W the multiplicative set of non-zerodivisors of R. If

1. all elements of W are non-zerodivisors on A

2. and W−1A embeds in a free W−1R-module,

then idA ⊗ α : A→ A⊗RM is injective. In particular, if R is a domain and A is a

torsion-free algebra over R, then A ↪→ A⊗RM .

Proof. For all finitely-generated R-submodules A′ of A, W−1A′ embeds in a free

W−1R-module, F . The map W−1R → W−1M is injective, and this holds when we

replace W−1R by F . Since F → F ⊗RM is injective, so is W−1A′ → W−1A′ ⊗RM .

Since elements of W are non-zerodivisors on A, and hence on A′, this implies that

A′ → A′ ⊗RM is injective. Hence A→ A⊗RM is injective.

Proposition VII.10. Suppose that every A ∈ A satisfies the hypotheses of Lemma

VII.9. Then an injective map α : R → M is cl-phantom if and only if for some

A ∈ A there is a map γ : A⊗M → A such that γ ◦ (idA⊗α) = idA, i.e., if and only

if idA ⊗ α splits.

Proof. By Lemma VII.9, idA ⊗ α : A→ A⊗RM is injective.

We use the notation of Lemma II.23. By Lemma II.23, since tensoring with A

preserves the exactness of

0 −−−→ R
α−−−→ M −−−→ Q −−−→ 0,
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idA ⊗ φ is a cocycle in HomA(G•, A) representing the short exact sequence

0 −−−→ A −−−→ A⊗M −−−→ A⊗Q −−−→ 0.

The map α is cl-phantom if and only if φ ∈ im(HomR(P0, R)→ HomR(P1, R))cl
HomR(P1,R).

This holds if and only if idA ⊗ φ ∈ im(HomA(G0, A) → HomA(G1, A)), i.e. if and

only if idA ⊗ φ is a coboundary in H1(HomA(G•, A)). By Lemma II.23, this holds if

and only if there is a map γ : A⊗M → A such that γ ◦ (idA ⊗ α) = idA.

Proposition VII.11. Let R be a domain, and cl be a closure operation coming from

a directed family of torsion-free algebras A . Suppose that a map α : R ↪→M sending

1 7→ u is cl-phantom. Then the map α′ : R → Sym2(M) sending 1 7→ u ⊗ u is also

cl-phantom.

Proof. Since α is cl-phantom, for some A ∈ A , there is a map γ : A⊗M → A such

that γ◦(idA⊗α) = idA. Define λ : A⊗Sym2(M)→ A by λ(a⊗(m⊗n)) = aγ(m)γ(n).

Let u be the image of 1 in M . Then

(λ ◦ (idA ⊗ α′))(1) = λ(1⊗ (u⊗ u)) = 1.

Hence α′ is cl-phantom.

We emphasize the following corollary:

Corollary VII.12. Let B be a big Cohen-Macaulay algebra over a local domain.

Then clB is a Dietz closure that satisfies the Algebra Axiom.

Proof. Since B is a big Cohen-Macaulay module, clB is a Dietz closure by [Die10].

Since B is torsion-free, clB also satisfies the Algebra Axiom.

The above relies on the elements of A being algebras, rather than modules. We

do not know of a simpler condition for a map to be a cl-phantom extension when cl

is a module closure, though we have the following:
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Lemma VII.13. Let R be a domain, W a torsion-free R-module, and α : R ↪→ M

an R-module map with M finitely-generated. If

α′ = (idW ⊗ α) : W → W ⊗M

splits or is pure, then α is clW -phantom.

Proof. Let notation be as in Notation II.14. We have the following commutative

diagram:

0 −−−→ R
α−−−→ M −−−→ Q −−−→ 0x xφ xψ xid

P2 −−−→ P1
d−−−→ P0 −−−→ Q −−−→ 0.

By definition, α is clW -phantom if and only if

φ ∈ (im(HomR(P0, R)→ HomR(P1, R)))clW
HomR(P1,R) .

This holds if and only if, for every w ∈ W ,

w ⊗ φ ∈ im(W ⊗ HomR(P0, R)→ W ⊗ HomR(P1, R)).

We can identify W ⊗ HomR(P0, R) with HomR(P0,W ) and W ⊗ HomR(P1, R) with

HomR(P1,W ). Under this identification, w⊗φ 7→ φw, where φw(y) = φ(y)w ∈ W . So

α is clW -phantom if and only if for every w ∈ W , φw = λw ◦d for some λw : P0 → W .

We have the following commutative diagram for each w ∈ W :

0 −−−→ W
α′−−−→ W ⊗RM −−−→ W ⊗R Q −−−→ 0x xφw xψw xidw

P2 −−−→ P1
d−−−→ P0 −−−→ Q −−−→ 0.

Here ψw(y) = w ⊗ ψ(y) and idw(z) = w ⊗ z. We know that α′ is injective because

W is torsion-free.
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Suppose that α′ splits. Then there is some map β : W ⊗ M → W such that

β ◦ α′ = idW . For w ∈ W , define λw : P0 → W to be β ◦ ψw. Then we have:

φw = β ◦ α′ ◦ φw = β ◦ ψw ◦ d = λw ◦ d.

In the case that α′ is pure, given any u1, . . . , uk ∈ W ⊗M , we have a splitting

of W → im(W ) + Ru1 + . . . + Ruk. In particular, for each w ∈ W , we have a map

βw : im(ψw)→ W such that βw ◦ α′ = idW . Then we can define λw : P0 → W to be

βw ◦ ψw.

Remark VII.14. More generally, there are two ways to think about cl-phantom maps,

where cl = clW is a module closure. First, using notation as above, notice that α is

cl-phantom if and only if

W ⊗ φ ⊆ im(W ⊗ HomR(P0, R)→ W ⊗ HomR(P1, R)).

Then this holds if and only if for each w ∈ W there are maps λi : W ⊗ d(P1) → W

and elements wi ∈ W such that w ⊗ φ =
∑
λi ◦ (wi ⊗ d).

Second, we can identify W⊗HomR(Pi, R) with HomR(Pi,W ), since P0, P1 are free.

Under this identification, w ⊗ φ becomes φw, the map that sends z 7→ φ(z)w. Then

the statement that α is phantom is equivalent to the existence of maps λw : P0 → W

such that φw = λw ◦ d for each w ∈ W .

These maps may not glue together away from the image of d, since in general

W ⊗ Hom(Pi, R) is not isomorphic to Hom(W ⊗ Pi,W ). When they glue together,

the map idW ⊗ α is split.

7.2.3 Heitmann’s Closure Operations for Mixed Characteristic Rings

We prove that the Algebra Axiom holds for the extended plus closure as defined

in Definition VI.9, as well as for the other closure operations defined by Heitmann in
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[Hei02]. These closure operations do not quite fit the pattern of the closure operations

above–they are not module or algebra closures. We assume that R is a domain.

We focus on a definition of phantom for the full extended plus closure, as full rank

one closure will be similar. In this case, we need a new version of Lemma II.23. Let

α : R→M be an injective map, and use the notation of Notation II.14. Notice that

if we have a map γ : M → R such that γ ◦ α = c1/nidR for every n ∈ Z+, then by

Lemma II.23,

c1/nφ ∈ im(R+ ⊗B → R+ ⊗ HomR(P1, R)),

where B is the module of coboundaries in HomR(P1, R). This image is contained in

im(R+ ⊗B +R+ ⊗ pnHomR(P1, R)→ R+ ⊗ HomR(P1, R)).

Since this holds for every n, φ ∈ Bepf
HomR(P1,R). However, the reverse implication is no

longer true. Instead we get the following result:

Lemma VII.15. Let R, α, φ, P•, etc. be as above, and B the submodule of cobound-

aries in HomR(P1, R). For every c ∈ R− {0} and for every n ∈ Z+,

c1/nφ ∈ im(B + pnHomR(P1, R)→ HomR(P1, R))

if and only if there is a map γ : M → R/pnR such that γ ◦ α = c1/nidR where ¯

denotes image modulo pn.

Proof. Observe that c1/nφ is in this image if and only if there exist λ : P0 → R,

δ : P1 → R such that

c1/nφ = (λ ◦ d) + pnδ.

This holds if and only if

c1/nφ− (λ ◦ d) ∈ pnHomR(P1, R).
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This is true if and only if the map

c1/nidR ⊕ λ : R⊕ P0 → R/pnR

kills {φ(u)− d(u) : u ∈ P1}. Giving this map is equivalent to giving a map

γ : (R⊕ P0)/{c1/nφ(u)− d(u) : u ∈ P1} → R/pnR

such that γ ◦ α = c1/nidR, and

M ∼= (R⊕ P0)/{c1/nφ(u)− d(u) : u ∈ P1}.

This lemma allows us to give an alternate definition of epf-phantom.

Proposition VII.16. A map R
α→ M is epf-phantom if there is some c ∈ R − {0}

such that for every n ∈ Z+, there is a map γn : R+ ⊗M → R+/pnR+ such that

γn ◦ α+ = c1/nidR+, where α+ = idR+ ⊗ α and ¯denotes image modulo pn.

Proof. Notice that α+ is injective, so we can apply Lemma VII.15 with R+, idR+ ,

etc. By the lemma, γn exists if and only if

c1/nφ ∈ im(R+ ⊗B +R+ ⊗ pnHomR(P1, R)→ R+ ⊗ HomR(P1, R)).

So we have a map γn for each n if and only if c1/nφ ∈ Bepf
HomR(P1,R), i.e., if and only if

φ is epf-phantom.

Remark VII.17. The result for full rank one closure is very similar–in this case, we

have maps γε,n, where n ∈ Z+ and ε > 0.

Proposition VII.18. If a map α : R→ M sending 1 7→ u is epf-phantom, then so

is the map α′ : R→ Sym2(M) sending 1 7→ u⊗ u.
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Proof. Suppose that α : R→M is phantom. Then there is a c ∈ R− {0} such that

for every n ∈ Z+, there is a map γn : R+ ⊗M → R+/pnR+ with γn ◦ α+ = c1/nidR.

We need to find an appropriate d ∈ R − {0} to show that α′ : R → Sym2(M) is

phantom. Let d = c2. Define γ′n : R+ ⊗ Sym2(M)→ R+/pnR+ by

γ′n(s⊗ (m⊗m′)) = sγn(m)γn(m′).

Then

γ′n(α+(1)) = γ′n(1⊗ (e1 ⊗ e1)) = γn(e1)2 = c2/n = (c2)1/n = d1/n,

as desired.

7.2.4 Mixed characteristic pullback tight closure

Definition VII.19. Let R be a ring of mixed characteristic p > 0, and define a

closure cl on R by u ∈ N cl
M if ū ∈ (N/pN)∗M/pM , where the asterisk denotes tight

closure in the characteristic p setting. We call this closure pullback tight closure.

For the rest of this section, assume that R is reduced.

Lemma VII.20. Suppose that R/pR is reduced, and ᾱ : R/pR → M/pM is injec-

tive. Then F e(α) : F e(R/pR)→ F e(M/pM) is injective for all e ≥ 0.

Proof. Replace R by R/pR, and M by M/pM . By assumption, R is reduced. Let

W be the multiplicative system of non-zerodivisors of R, so that Q = W−1R is the

total quotient ring of R. The map Q → W−1M is injective. Since Q is a product

of fields, W−1M is a product of vector spaces over these fields, and so Q→ W−1M

splits. Hence F e(Q) → F e(Q−1M) is injective for all e ≥ 0. The restriction of this

map to F e(R) has image in F e(M), and will still be injective, as desired.

We then get the following lemma:
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Lemma VII.21. Let R be a ring of mixed characteristic p > 0, and let cl denote

pullback tight closure as defined above. Suppose that α : R → M and α : R/pR →

M/pM are injective, and R/pR is reduced. Then α is cl-phantom if and only if there

is some c ∈ R/pR−{0} such that for every e ≥ 0, there is a map γe : F e(M/pM)→

R/pR such that γe ◦ F e(α) = c · idR/pR.

Proof. Let P• be a resolution of Q = M/im(R). Then we have a commutative

diagram
0 −−−→ R

α−−−→ M −−−→ Q −−−→ 0x xφ x xid

P2 −−−→ P1
d−−−→ P0 −−−→ Q −−−→ 0

Taking the tensor product of this diagram with F e(R/pR), the top row remains exact

by assumption. By Lemma II.23, γe exists if and only if cF e(φ) is a coboundary. So

γe exists for all sufficiently large e if and only if for each e� 0,

cim(F e(φ)) ⊆ im(HomR/pR(P0/pP0, R/pR)→ HomR/pR(P1/pP1, R/pR)).

This holds if and only if

φ ∈ (im(Hom(P0, R)→ Hom(P1, R)))cl
Hom(P1,R),

i.e., if and only if α is phantom by the homological definition.

Proposition VII.22. Let R be a ring of mixed characteristic p > 0 and let cl denote

pullback tight closure. If α : R→M is cl-phantom, α : R/pR→M/pM is injective,

and R/pR is reduced, then α′ : R→ Sym2(M) is cl-phantom.

Proof. Using Lemma VII.21, we can define γ′e : F e(Sym2(M)/pSym2(M)) → R/pR

by

γ′e(m
q ⊗ nq) = γe(m

q)γe(n
q),
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where γe : F e(M/pM)→ R/pR is as in the lemma. Notice that Sym2(M)/pSym2(M) ∼=

Sym2(M/pM), which allows us to use the maps γe to define γ′e.

Note that this closure operation is not generally a Dietz closure.

Example VII.23. Let R = V [x2, . . . , xd], where (V, pV ) is a discrete valuation ring.

Then 0 is not closed in R: for any u ∈ pR 6= 0, ū ∈ 0∗R/pR = 0. Since 0cl
R = 0 for all

Dietz closures cl, pullback tight closure is not a Dietz closure.

7.2.5 Closures constructed from other closures

The results below describe cases in which if every closure operation in a family

satisfies the Algebra Axiom, so does a closure constructed from the family. The

constructions are among those that appear in [Eps12]. We use the notation of Lemma

II.23.

Proposition VII.24. The Algebra Axiom is intersection stable.

Proof. Let {clλ}λ∈Λ be a set of closure operations, and define the closure operation

cl by N cl
M = ∩λ∈ΛN

clλ
M . Suppose that every clλ satisfies the Algebra Axiom. We will

show that cl also satisfies it.

Suppose that φ ∈ im(Hom(P0, R) → Hom(P1, R))cl. It suffices to show that this

forces ψ ∈ im(Hom(G0, R)→ Hom(G1, R))cl. By our supposition, we know that

φ ∈ im(Hom(P0, R)→ Hom(P1, R))clλ

for each λ ∈ Λ. Since each clλ satisfies the axiom, ψ ∈ im(Hom(G0, R)→ Hom(G1, R))clλ

for all λ, which immediately gives us the result we want.

Proposition VII.25. Let {clλ}λ∈Λ be a directed set of closure operations satisfying

the axiom. Then the closure operation cl defined by N cl
M =

∑
λ∈ΛN

clλ
M also satisfies

this axiom.
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Proof. Note that since R is Noetherian and M is finitely generated over R, for each

N ⊆M there is a λ ∈ Λ such that N cl
M = N clλ

M [Eps12]. Suppose that

φ ∈ im(Hom(P0, R)→ Hom(P1, R))cl.

Then for some λ ∈ Λ,

φ ∈ im(Hom(P0, R)→ Hom(P1, R))clλ .

Hence

ψ ∈ im(Hom(G0, R)→ Hom(G1, R))clλ ⊆ im(Hom(G0, R)→ Hom(G1, R))cl.

Hence the axiom holds for cl.

Proposition VII.26. Let φ : R → S be a ring map, and cl′ a closure operation on

S satisfying the Algebra Axiom. Define a closure operation cl on R by

N cl
M =

{
x ∈M : 1⊗ x ∈ (im (S ⊗R N → S ⊗RM))cl

′

S⊗RM

}
.

If S satisfies the hypotheses of Lemma VII.9 (in particular, R a domain and S

torsion-free works), then cl satisfies the Algebra Axiom as well.

Remark VII.27. We call closures defined in this way pullback closures. Mixed char-

acteristic pullback tight closure as in Definition VII.19 is one example of this type of

closure, with S = R/pR and cl′ = ∗.

Proof. Assume that α : R → M is cl-phantom. By Lemma VII.9, idS ⊗ α : S →

S ⊗R M is injective. We claim that it is cl′-phantom. Since α is cl-phantom, using

Notation II.14,

φ ∈ (im(HomR(P0, R)→ HomR(P1, R)))cl
HomR(P1,R).



74

this implies that

1⊗ φ ∈ (im(S ⊗R HomR(P0, R)→ S ⊗R HomR(P1, R)))cl′

S⊗RHomR(P1,R).

We have S⊗R HomR(Pi, R) ∼= HomS(S⊗Pi, S) for i = 0, 1. This isomorphism takes

1⊗ φ→ idS ⊗ φ. Thus

idS ⊗ φ ∈ (im(HomS(S ⊗ P0, S)→ HomS(S ⊗ P1, S)))cl′

HomS(S⊗P1,S).

By Lemma II.23, since idS ⊗ α : S → S ⊗RM is injective, this implies that idS ⊗ α

is cl′-phantom. Since cl′ satisfies the Algebra Axiom, this implies that the map

(idS ⊗ α)′ : S → Sym2(S ⊗R M) is also phantom. Using the notation from Lemma

II.23 applied to (idS ⊗α)′, this implies that idS ⊗ψ ∈ HomS(S⊗G0, S)cl′

HomS(S⊗G1,S).

We have HomS(S⊗Gi, S) ∼= S⊗HomR(Gi, R), and the isomorphism takes idS⊗ψ 7→

1⊗ ψ. By the definition of cl, this tells us that cl satisfies the Algebra Axiom.

One special case is the case where cl′ is the trivial closure on S, which is Con-

struction 3.1.1 from [Eps12]. The resulting closure on R is the algebra closure clS:

N cl
M = {x ∈M : 1⊗ x ∈ im(S ⊗N → S ⊗M)}.

We proved in Proposition VII.11 that this closure operation satisfies the Algebra

Axiom when S is torsion-free over a domain R.

7.3 Partial algebra modifications and phantom extensions

In this section we show that if cl is a Dietz closure on R satisfying the Algebra

Axiom, a partial algebra modificationof a cl-phantom extension of R is also a cl-

phantom extension of R. Partial algebra modifications are found in [HH95, Hoc07]

as part of a proof of the existence of big Cohen-Macaulay algebras in characteristic

p > 0. In order to define a partial algebra modification, we first define an algebra

modification.
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Definition VII.28. Let x1, . . . , xk+1 be part of a system of parameters for R and

s1x1 + . . . + skxk = sxk+1 a relation on an R-algebra S. An algebra modification of

S is

S ′ = S[X1, . . . , Xk]/(s+ x1X1 + . . .+ xkXk)S

Compare this to a parameter module modification of R as given in Definition

II.21–the main difference is that the algebra modification preserves the algebra struc-

ture. However, an algebra modification is not generally a module-finite extension of

R, and so we work with partial algebra modifications, where we limit ourselves to

elements of low degree.

Definition VII.29. Let x1, . . . , xk+1, S, and s1, . . . , sk, s ∈ S be as above. A partial

algebra modification of S is

S ′ = S[X1, . . . , Xk]≤n/(s+ x1X1 + . . .+ xkXk)S[X1, . . . , Xk]≤n−1,

where S[X1, . . . , Xk]≤n is the set of elements of S[X1, . . . , Xk] of total degree ≤ n.

This is a finitely-generated R-module, but not an R-algebra.

Remark VII.30. A partial algebra modification of S is not an R-algebra, but the

direct limit of the partial algebra modifications as n increases is an R-algebra, actu-

ally the algebra modification S ′ of S given in Definition VII.28. As a result, proving

that partial algebra modifications of a cl-phantom extension of R are cl-phantom

extensions of R will imply that algebra modifications of cl-phantom extensions of R

are lim cl-phantom in the sense of Definition VII.32.

Lemma VII.31. Let R be a local domain, cl a Dietz closure on R, M a finitely-

generated R-module with α : R → M a cl-phantom extension, and x1, . . . , xk+1 part

of a system of parameters for R. Suppose that xk+1mk+1 =
∑k

i=1 ximi for some
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m1, . . . ,mk+1 ∈M . Let

M ′ = M [X1, . . . , Xk]≤1/RF,

where

F = mk+1 −
k∑
i=1

xiXi.

By M [X1, . . . , Xk]≤1 we denote the module generated by all m ∈M , X1, . . . , Xk, and

mXi for m ∈M and 1 ≤ i ≤ k. We have a map α′ : R→M →M ′, where the map

M →M ′ takes m 7→ m. Then α′ : R→M ′ is a cl-phantom extension.

Proof. We return to the notation of Notation II.14. As Dietz does in [Die10], we build

a resolution of Q′, where Q′ = M ′/im(R). Let w1, w2, . . . , wn be a set of generators

for M , not necessarily minimal, with w1 = α(1) and wn = mk+1. Then a presentation

of Q′ is

Rm(k+1)+1 ν′−−−→ Rnk+n−1 µ′−−−→ Q′ −−−→ 0,
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where ν ′ is given by the matrix

0

ν 0 . . . . . .
...

0

1

x1

0

0 ν1 0 . . .
...

0

...
. . .

...
...

xk

0

0 . . . 0 ν1
...

0



,

The corresponding matrix ν ′1 in a presentation of M ′ is this matrix with the top row

of ν1 followed by 0’s added to the top. Note that there are m columns for each of

1, X1, . . . , Xk, and one additional column for the relation given by F .

To see that M ′ is a cl-phantom extension of R, we first need to show that α′ is

injective. It is enough to show that β : M → M ′ is injective. Suppose that u ∈ M

maps to 0. Then u = r(mk+1 −
∑k

i=1 xiXi). This forces rxi = 0 for all i. Since R is

a domain, r = 0. But then u = rmk+1 = 0.

To finish, it suffices to show that the top row of ν ′1 is in the closure of the image of

the other rows. Let x,y, and H be as in [Die10, Notation 3.5], let I = (x1, . . . , xk),

and let EXα denote the n×m(k+ 1) matrix that has an n×n identity matrix in the
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columns corresponding to Xα and 0’s elsewhere. Then we need to show that xE1⊕0

is contained in(
(HE1 ⊕ 0) +R(yE1 ⊕ 1) +

k∑
i=1

(R(xEXi ⊕ xi) + (HEXi ⊕ 0) +R(yEXi ⊕ 0))

)cl

Rm(k+1)+1

.

By the proof of [Die10, Proposition 3.15] and Lemma III.1.b, we have

xE1 ⊕ 0 ∈ ((HE1 ⊕ 0) + I(yE1 ⊕ 0))cl
Rm(k+1)+1 .

So it suffices to show that (HE1 ⊕ 0) + I(yE1 ⊕ 0) is contained in the closure of

(7.1) (HE1⊕ 0) +R(yE1⊕ 1) +
k∑
i=1

(R(xEXi ⊕ xi) + (HEXi ⊕ 0) +R(yEXi ⊕ 0)) .

It is clear that (HE1⊕0) is in (7.1). To see that I(yE1⊕0) is in the closure of (7.1),

let r ∈ I, say r = −r1x1 − . . .− rkxk. Then

r(yE1⊕0) = r(yE1⊕1)+r1(xEX1⊕x1)+. . .+rk(xEXk⊕xk)−r1(xEX1⊕0)−. . .−rk(xEXk⊕0).

The only parts not obviously contained in the closure of (7.1) are the ri(xEXi ⊕ 0).

However, since α is phantom, by [Die10, Lemma 3.14] and Lemma III.1.b, we have

xEXi ⊕ 0 ∈ ((HEXi ⊕ 0) +R(yEXi ⊕ 0))cl
Rm(k+1)+1 ,

which is sufficient.

Definition VII.32. [Die05, Definition 5.2.8] Let α : R → P be an injective map,

where P may not be finitely-generated over R, and cl a closure operation on R. We

say that R→ P is a lim cl-phantom extension if for all M ⊆ P such that α(R) ⊆M ,

R→M is a cl-phantom extension.

Proposition VII.33. Let cl be a closure operation on R that is functorial. Let P be

an R-module, not necessarily finitely generated, that is a direct limit of R-modules

R→M1 →M2 → . . .→ P
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such that R ↪→Mi is cl-phantom for all i ≥ 1. Then P is a lim cl-phantom extension

of R.

Proof. Let M be a finitely-generated R-module such that R ↪→ M ↪→ P . Since M

is finitely-generated, there is some i such that im(M) ⊆ im(Mi). By [Die05, Lemma

7.3.3.b], since R→Mi is cl-phantom, so is R→M .

Proposition VII.34. Let R be a local domain and let cl be a Dietz closure that

satisfies the Algebra Axiom. Suppose that T is an R-algebra, α : R → T is an R-

algebra homomorphism that is a cl-phantom extension, and T ′ is a partial algebra

modification of T . Then the map α′ : R→ T ′ is cl-phantom.

Proof. By Lemma VII.31, if T ′ = T [X1, . . . , Xk]≤N/FT [X1, . . . , Xk]≤N−1 withN ≤ 1,

then the result is immediate. If not, let T1 = T [X1, . . . , Xk]≤1/FR. By Lemma

VII.31, R→ T1 is cl-phantom. Since cl satisfies the Algebra Axiom, R→ Sym2(T1)

is also cl-phantom, and so R→ Sym(T1) is lim cl-phantom (since T1 is an R-algebra,

the image of 1 in T is 1, so the direct limit of the Sym2k(T1) is Sym(T1)). However,

Sym(T1) ∼= T [X1, . . . , Xk]/(F ). So we have

R→ T ′ → Sym(T1),

where the map R → Sym(T1) is cl-phantom. By Proposition VII.33, R → T ′ is

cl-phantom.



CHAPTER VIII

Connections with Smallest Closures and Other Closure
Operations

8.1 Smallest big Cohen-Macaulay algebra closure

In this section we show that the closure we get from a big Cohen-Macaulay algebra

constructed as in the proof of Theorem VII.3 is the same as the closure we get from a

big Cohen-Macaulay algebra constructed using algebra modifications [HH95, Hoc07],

and that both are the smallest big Cohen-Macaulay algebra closure on the ring.

By Proposition VII.24, the Algebra Axiom is intersection stable as defined in

Definition IV.1.

Corollary VIII.1. If R has a Dietz closure that satisfies the Algebra Axiom, then

it has a smallest such closure.

This is immediate from Proposition VII.24. We do not know whether this closure

is a big Cohen-Macaulay algebra closure, but we do have a smallest big Cohen-

Macaulay algebra closure for R.

Proposition VIII.2. If R has a big Cohen-Macaulay algebra (equivalently, a Dietz

closure that satisfies the Algebra Axiom), then it has a smallest big Cohen-Macaulay

algebra closure. This closure is equal to the closure clB where B is constructed as

in Theorem VII.3. It is also equal to the closure clB where B is constructed using

80
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algebra modifications as in [HH95, Hoc07].

Proof. For the second statement, let B be a big Cohen-Macaulay algebra constructed

by the method of Theorem VII.3, and B′ another big Cohen-Macaulay algebra for R.

We show that for any element of B′, there is a map B → B′ whose image contains

that element. This is enough by Proposition III.8. Let R → B′ be any map of

R-modules. We construct a map B → B′ that extends this map. If at any stage, we

have a map M → B′, and we take a module modification of M , the map extends as

in Proposition IV.14. If we have a map M → B′, and the map R→M takes 1 7→ u,

it extends to a map Sym(M)/(1 − u)Sym(M) → B′ as B′ is an R-algebra. Hence

starting with the map R→ B′, we can construct a map B → B′ with the necessary

properties. This implies both the first and second statements of the Proposition.

For the last statement, it suffices to show that if B is a big Cohen-Macaulay

algebra constructed with algebra modifications, clB is also the smallest big Cohen-

Macaulay algebra closure. Let B′ be any big Cohen-Macaulay algebra. We show that

for any element of B′, there is a map B → B′ whose image contains that element.

We start with any R-module map R → B′. Suppose that we have a map S → B′,

and that we take an algebra modification

S ′ = S[X1, . . . , Xk]/FS[X1, . . . , Xk],

where s− x1X1 − . . .− xkXk, x1, . . . , xk+1 are part of a system of parameters for R,

and sxk+1 = s1x1+. . .+skxk is a bad relation in S. Since B′ is a big Cohen-Macaulay

algebra for R, s ∈ (x1, . . . , xk)B
′, say

s = x1b1 + . . .+ xkbk.

Then we can extend the map S → B′ to S ′ by sending Xi 7→ bi. This gives us a
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well-defined map S ′ → B′. Hence we have a map B → B′ whose image includes the

image of the original map R→ B′.

8.2 Dietz Closures Satisfying the Algebra Axiom in characteristic p > 0

In this section, we prove that in characteristic p > 0, any Dietz closure that

satisfies the Algebra Axiom is contained in tight closure. As a consequence of this

result, we show that there exist Dietz closures that do not satisfy the Algebra Axiom,

and that there is a nonzero test ideal for the Dietz closures that do satisfy the Algebra

Axiom.

Proposition VIII.3. Let R be a local domain and cl be a Dietz closure on R that

satisfies the Algebra Axiom. Then cl is contained in a big Cohen-Macaulay algebra

closure clB.

Proof. This proof follows the method of the proof of Theorem V.1. We can construct

B by first constructing a big Cohen-Macaulay algebra as in Chapter VII. Then we can

use the containment module modifications to create a module whose closure contains

cl. At every stage, we have preserved 1 6∈ im(m). Repeating these two steps infinitely

many times, we get a big Cohen-Macaulay algebra B such that cl ⊆ clB.

Theorem VIII.4. Let R be a complete local domain (or analytically irreducible

excellent local domain) of characteristic p > 0, and cl a Dietz closure on R that

satisfies the Algebra Axiom. Then cl is contained in tight closure (*).

Proof. In characteristic p > 0, Theorem II.9 implies that tight closure is equal to the

closure clB given in Definition III.5. Since by Proposition VIII.3, cl is contained in

clB for some big Cohen-Macaulay algebra B, and clB is contained in clB, we have

cl ⊆ ∗.
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Note that in equal characteristic 0 it is known that ∗EQ, big equational tight

closure, is contained in clB but it is not known whether they are equal, so we cannot

currently prove Theorem VIII.4 in this case.

The following Corollaries are immediate from this result.

Corollary VIII.5. Let R be a complete local domain of characteristic p > 0. Then

tight closure is the largest Dietz closure satisfying the Algebra Axiom on R.

Corollary VIII.6. Let R be a complete local domain of characteristic p > 0, and

suppose that R is weakly F -regular. Then all Dietz closures on R that satisfy the

Algebra Axiom are equal to the trivial closure.

Theorem VIII.4 also allows us to prove that the Algebra Axiom is independent of

the Dietz axioms.

Theorem VIII.7. The Dietz Axioms do not imply the Algebra Axiom, i.e., there

exist Dietz closures that do not satisfy the Algebra Axiom.

Proof. Let (R,m, k) be a complete local domain of characteristic p > 0 that is

weakly F-regular but not regular and has dimension d. By Corollary V.13, R has a

Dietz closure that is not the trivial closure, cl = clsyzd(k). If cl satisfied the Algebra

Axiom, then by Corollary VIII.6 it would be equal to the trivial closure, which is

a contradiction. Hence cl is a Dietz closure on R that does not satisfy the Algebra

Axiom.

Definition VIII.8. Let cl be a closure operation on a ring R. Define the cl-test

ideal of R by

τcl(R) =
⋂

N⊆M f.g.

N : N cl
M .

This is a definition that extends the notion of a test ideal for tight closure, inspired

by [EU14]. In the case below, they could prove to be interesting objects to study.
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Lemma VIII.9. Let R be a complete local domain of characteristic p > 0, and cl

a Dietz closure on R that satisfies the Algebra Axiom. Then the cl-test ideal of R is

nonzero.

Proof. By [HH90], R has at least one nonzero test element for tight closure. Since cl ⊆

∗, this will also be a test element for cl. Hence the cl-test ideal of R is nonzero.

This notion of a test ideal should lead to further connections between Dietz clo-

sures on a ring R and the singularities of R. We discuss this further in Chapter

IX.



CHAPTER IX

Further Questions

9.1 Examples of Cohen-Macaulay Module Closures

In the proof of Theorem V.11, we showed that if a local domain (R,m, k) is

Cohen-Macaulay but not regular, clsyzd(k) is a Dietz closure for R that is not equal

to the trivial closure. We give another class of Dietz closures not equal to the trivial

closure, which can only occur when R is not regular.

Example IX.1. Let R = k[[x2, xy, y2]]. Then M = (x2, xy) is a non-maximal

Cohen-Macaulay module over R (it has height=depth=1). Let I = (x4, x3y, xy3, y4)

and J = (x4, x3y, x2y2, xy3, y4). Then I $ J , but

I(x2, xy) = (x6, x5y, x3y3, x2y4, x5y, x4y2, x2y4, xy5) = J(x2, xy).

So IclM = JclM .

Example IX.2. Let R = k[[x, y, u, v]]/(xy−uv). Then M = (x, u) is a non-maximal

Cohen-Macaulay module over R. Let I = (y2, v2) and J = (yv). Then I 6= J , but

IM = JM = (xyv, yuv), so IclM = JclM .

In addition, if we let I = (x2, u2) and J = (x2, xu, u2), then IM = JM =

(x3, x2u, xu2, u3), even though I 6= J .

This gives rise to a more general class of examples: suppose that (x, u) is a non-

principal ideal that is a Cohen-Macaulay module (height 1, depth 1), and xu 6∈

85
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(x2, u2). Then (x2, u2)(x, u) = (x2, xu, u2)(x, u).

Example IX.3. Let R = k[[x, y, z]]/(x3 + y3 + z3), with the characteristic of k not

equal to 3. Then (x, y+z) is a height 1 prime of depth 1. Since x(y+z) 6∈ (x, y+z)2,

we are in the case above.

All of these examples are Gorenstein rings, so in each case the canonical module

(a maximal Cohen-Macaulay module) is equal to the ring.

Question IX.4. If R is not Gorenstein and has a canonical module ω, then ω is a

Cohen-Macaulay module for R with no free summand. Hence by the proof of Theorem

V.11, clω is not the trivial closure on R. How else might we characterize this closure?

Question IX.5. How can we describe the smallest big Cohen-Macaulay module clo-

sure on a ring R explicitly, when R is not Cohen-Macaulay?

Question IX.6. If R has only finitely many indecomposable Cohen-Macaulay mod-

ules, what can we say about the resulting family of Dietz closures (the closures from

each of the indecomposable Cohen-Macaulay modules and intersections of these clo-

sures)?

9.2 Largest Big Cohen-Macaulay Module Closure

We do not know whether there is a largest Dietz closure. If there is one, then by

Theorem V.1 it will also be the largest big Cohen-Macaulay module closure. Hence

there is a largest big Cohen-Macaulay module closure if and only if there is a largest

Dietz closure.

Proposition IX.7. If Dietz closures on a local domain R form a directed set, then

the sum of all Dietz closures is equal to the largest Dietz closure.
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Proof. Let D denote the sum of all Dietz closures. To see that it is a Dietz closure

(it will be a closure operation, by [Eps12]), we use the fact [Eps12] that since R is

Noetherian, for any particular N ⊆ M finitely-generated R-modules, there is some

Dietz closure cl such that N cl
M = ND

M .

Functorial: Let f : M → W be a map of R-modules, and N ⊆ M . Let cl be a

Dietz closure such that N cl
M = ND

M . Then f(ND
M) = f(N cl

M) ⊆ f(N)cl
W ⊆ f(N)D

W .

Semi-residual: Suppose that ND
M = N . Then N cl

M = N for every Dietz closure cl.

Hence 0cl
M/N = 0 for every Dietz closure cl, which implies that 0D

M/N = 0.

Faithful: We must have mD = m, since m is cl-closed for any Dietz closure cl.

Generalized colon-capturing: With R, v, and J as in the statement of Axiom

4, let cl be a Dietz closure such that (Rv)D
M = (Rv)cl

M . Then (Rv)D
M ∩ ker(f) =

(Rv)cl
M ∩ ker(f) ⊆ (Jv)cl

M ⊆ (Jv)D
M .

So to prove that there is a largest Dietz closure, it suffices to show that Dietz

closures form a directed set. To do this, it would be enough to show that given 2

Dietz closures cl and cl′, we can construct a big Cohen-Macaulay module B such

that cl, cl′ ⊆ clB. It is not clear that if we perform a modification that is cl-phantom,

then one that is cl’-phantom, that im(1) stays out of the image of m, so we do not

know of a way to construct such a big Cohen-Macaulay module.

Question IX.8. Is there a largest big Cohen-Macaulay module closure? What mod-

ule gives this closure?

9.3 Further Connections Between Dietz Closures and Singularities

Question IX.9. If R has a unique Dietz closure (not necessarily the trivial closure),

is R regular? What does the assumption that R has few Dietz closures tell us about

the singularities of R? More generally, are rings with more distinct Dietz closures
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more singular than rings with fewer distinct Dietz closures?

Question IX.10. Can we characterize the singularities of a ring R using properties

of its family of Dietz closures, or of a particular Dietz closure on R? In particular,

can we do this using properties of the test ideal from Definition VIII.8? In charac-

teristic p > 0, we know that the test ideal is nonzero when R is complete, but is it

nonzero in other characteristics?

Question IX.11. By Definitions V.6 and VIII.8, a ring R is weakly cl-regular when

τcl(R) = R. What rings are weakly cl-regular?

We can define a big test ideal τb,cl(R) by removing the assumption that the modules

are finitely-generated from Definition VIII.8, and say that a ring R is strongly cl-

regular when τb,cl(R) = R. What rings are strongly cl-regular? Are some or all weakly

cl-regular rings strongly cl-regular?

9.4 More Questions

Question IX.12. When do two indecomposable big Cohen-Macaulay modules give

the same closure operation? When do two modules give the same closure operation?

We have a sufficient condition from Proposition III.8, but can we find a necessary

one? What do we learn about modules from studying them up to equality of their

closure operations?

Question IX.13. When R is a complete local domain that is not Cohen-Macaulay,

what is the smallest closure operation that satisfies colon-capturing and is persistent

for change of rings?

Question IX.14. Are all Dietz closures big Cohen-Macaulay module closures? Are

they module closures at all? There exist examples of Dietz closures that are not
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obviously module closures [AB12]. If there exist Dietz closures that are not big Cohen-

Macaulay module closures, is there a useful way of characterizing these? Additionally,

if a module closure is a Dietz closure, is the module a big Cohen-Macaulay module?

Question IX.15. Is the smallest Dietz closure a big Cohen-Macaulay module clo-

sure?

Question IX.16. Do the Dietz axioms imply strong colon-capturing, version A or

strong colon-capturing, version B, or vice versa?

Question IX.17. Are all versal big Cohen-Macaulay modules (big Cohen-Macaulay

modules that map to every other big Cohen-Macaulay module) the direct limit of some

set of module modifications? In particular, is every big Cohen-Macaulay module that

gives the smallest big Cohen-Macaulay module closure the direct limit of a set of

module modifications?

Question IX.18. Is full extended plus closure a Dietz closure, either in dimension

3 or in general?

Question IX.19. In equal characteristic 0, is (big) equational tight closure a big

Cohen-Macaulay algebra closure?

Question IX.20. How should one extend the notion of a Dietz closure to rings that

are not domains? Rings that are not local?



BIBLIOGRAPHY

90



91

BIBLIOGRAPHY

[AB12] Mohsen Asgharzadeh and Rajsekhar Bhattacharyya, Application of closure operations on
big cohen-macaulay algebras, preprint, http://arxiv.org/abs/1009.1454, 2012.

[BH93] Winfried Bruns and Jürgen Herzog, Cohen-Macaulay rings, Cambridge Studies in Ad-
vanced Mathematics, vol. 39, Cambridge University Press, Cambridge, 1993.

[Bre03] Holger Brenner, How to rescue solid closure, J. Algebra 265 (2003), no. 2, 579–605.

[Die05] Geoffrey Dietz, Closure operations in positive characteristic and big cm algebras, Ph.D.
thesis, University of Michigan, Ann Arbor, 2005.

[Die07] Geoffrey D. Dietz, Big Cohen-Macaulay algebras and seeds, Trans. Amer. Math. Soc. 359
(2007), no. 12, 5959–5989.

[Die10] , A characterization of closure operators that induce big Cohen-Macaulay modules,
Proc. Amer. Math. Soc. 138 (2010), no. 11, 3849–3862.

[Die15] Geoffrey Dietz, Axiomatic closure operations, phantom extensions, and solidity, preprint,
http://arxiv.org/abs/1511.04286, 2015.

[Dut89] S. P. Dutta, Syzygies and homological conjectures, Commutative algebra (Berkeley, CA,
1987), Math. Sci. Res. Inst. Publ., vol. 15, Springer, New York, 1989, pp. 139–156.

[EG85] E. Graham Evans and Phillip Griffith, Syzygies, London Mathematical Society Lecture
Note Series, vol. 106, Cambridge University Press, Cambridge, 1985.

[Eps12] Neil Epstein, A guide to closure operations in commutative algebra, Progress in commu-
tative algebra 2, Walter de Gruyter, Berlin, 2012, pp. 1–37.

[EU14] Neil Epstein and Bernd Ulrich, Liftable integral closure, preprint, http://arxiv.org/

abs/1309.6966, 2014.

[Hei02] Raymond C. Heitmann, The direct summand conjecture in dimension three, Ann. of Math.
(2) 156 (2002), no. 2, 695–712.

[HH88] Melvin Hochster and Craig Huneke, Tightly closed ideals, Bull. Amer. Math. Soc. (N.S.)
18 (1988), no. 1, 45–48.

[HH89] , Tight closure, Commutative algebra (Berkeley, CA, 1987), Math. Sci. Res. Inst.
Publ., vol. 15, Springer, New York, 1989, pp. 305–324.

[HH90] , Tight closure, invariant theory, and the Briançon-Skoda theorem, J. Amer. Math.
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