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CHAPTER I

Introduction

1.1 Motivation and Literature Review

This dissertation addresses four different topics and the motivation and literature

review for each of the topics are given below.

1.1.1 Combined Homotopy and Neighboring Extremal Optimal Control

For most OCPs in engineering applications, it is difficult to obtain analytical or

closed form solutions using Pontryagin’s maximum principle (PMP) or dynamic pro-

gramming (DP). Consequently, iterative/numerical methods are utilized for solving

such OCPs [8], [78]. Two methods, which have been used independently in optimal

control theory are homotopy (see, e.g., [10], [18], [51], [79], [91], [100]) and neighboring

extremal optimal control (NEOC) (see, e.g., [14]). However, the combination of these

two techniques has not been investigated. With this motivation, we combine these

two techniques and arrive at a method for obtaining sub-optimal control in OCPs

defined on a Euclidean space.

The method exploits the idea of homotopy (see, e.g., [6]) to continuously deform

the trajectory from that of a linear system to that of a nonlinear system and it uses

NEOC to predict the optimal solution as the homotopy parameter changes. Note

that the method presented here is different from [42] as we, additionally, exploit the
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idea of NEOC. The main motivation for the approach is that it is easier to solve

OCPs for linear systems than for nonlinear systems. Once, we obtain the optimal

control for the linear system, the control is iteratively updated using NEOC theory,

combined with only a few iterations of a convergent optimizer at each step. We note

that while the homotopy method is used in many practical trajectory optimization

methods, e.g., in aerospace applications (see [37], [77]), its use is limited to systems

with contractible state space, i.e., state space with a trivial fundamental group, such

as Rn.

1.1.2 Constrained Spacecraft Attitude Control on SO(3) Using Fast Non-

linear Model Predictive Control

Nonlinear model predictive control (NMPC) is a powerful technique for obtaining

sub-optimal control in OCPs (see, e.g., [39]). However, in some cases, the system

dynamics might not evolve on a Euclidean space but on a smooth manifold. For such

OCPs the use of tools from differential geometry becomes advantageous (see, e.g.,

[3], [9], [16], [48]). The optimization problem arising in NMPC of spacecraft attitude,

where the spacecraft attitude evolves on SOp3q was studied in [49], where it is shown

that SOp3q based NMPC feedback laws can accomplish global spacecraft reorientation

maneuvers and deal effectively with system nonlinearities and constraints. However,

the numerical solution of the optimization problem in [49] is based on a direct method

(input parameterization) and standard constrained optimizer in MATLAB (fmincon.m).

This optimizer uses the numerical approximation of the derivatives and does not

explicitly take advantage of the underlying Lie group structure. With this motivation,

we develop a numerical solver for NMPC problem in [49] exploiting the geometric

control formalism.

A nonlinear discrete-time spacecraft dynamics model based on a Lie group vari-

ational integrator (LGVI) is exploited in [49]. This model provides higher accuracy
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in prediction and unlike continuous-time integrators, preserves the conserved quanti-

ties of motion (momentum and energy) to machine precision in absence of external

moments (see [61]). As SOp3q is closed under multiplication, the LGVI updates the

attitude by multiplying two matrices in SOp3q and hence ensures that the attitude

always evolves on SOp3q. For a detailed introduction to variational integrators see

[69] and for the discrete-time rigid body equations see [73]. The numerical solver

uses the solution of the necessary conditions for optimality in a discrete-time OCP

defined over a prediction horizon, where the discrete-time dynamics are based on the

LGVI model. The inequality constraints (which may represent thrust constraint, in-

clusion/exclusion zone constraints, etc.) are handled using a exterior penalty function

approach. The indirect single shooting method is applied to the nonlinear root finding

problem resulting from the necessary conditions for optimality. Our implementation

also exploits sensitivity derivative expressions obtained from the necessary conditions

for optimality. There is a growing interest in constrained spacecraft attitude control

and in exploiting MPC and geometric control formalism to address these and related

problems. In particular, MPC of spacecraft attitude based on linearized dynamics is

studied in [40], [43], [87], [92]. NMPC problems on SOp3q are addressed in [38], where,

however, neither spacecraft attitude control nor LGVI based models are considered.

Related literature also includes publications on optimal control and motion planning

on Lie groups. Constrained motion planning for multiple vehicles on SEp3q using

barrier functions (rather than penalty functions) to handle constraints is considered

in [81]. An optimal control technique for control systems evolving on noncompact

Lie groups is developed in [82]. The necessary conditions for optimality for a related

OCP are derived in [63], where, however, inequality constraints are not considered.
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1.1.3 Neighboring Extremal Optimal Control for Mechanical Systems on

Riemannian Manifolds

NEOC is well established for OCPs defined on a Euclidean space (see, e.g., [14]).

However, the configuration space for most mechanical systems is not a Euclidean

space but a smooth manifold. For instance, the configuration space of a spacecraft

modeled as a rigid body is SEp3q � R3
� SOp3q. With this motivation, we extend

NEOC to OCPs for mechanical systems evolving on Riemannian manifolds.

1.1.4 Optimal Control Problems on Lie Groups with Symmetry Breaking

Cost Functions

Reduction is an indispensable tool in the study of Lagrangian/Hamiltonian sys-

tems (which include OCPs), as it allows the dynamics associated with the Lagrangian/

Hamiltonian to be described on a quotient space, e.g., in the case of a Lie group G, the

dynamics associated with a G-invariant Lagrangian/Hamiltonian can be described on

g/g� instead of TG/T �G.

Consider a G-invariant Lagrangian L : TG Ñ R, then the dynamics associated

with this G-invariant Lagrangian can be described on g, given by the following Euler-

Poincaré equations

d

dt
Dξ ℓ � ad�ξ Dξ ℓ,

where ℓ : g Ñ R is the reduced Lagrangian and ℓpξq � Lpe, ξq. For more details see

[9], [45], [68]. Similarly, for a G-invariant Hamiltonian H : T �G Ñ R, the dynamics

associated with this G-invariant Hamiltonian can be described on g�, given by the

following Lie-Poisson equations

9µ � ad�
Dµ h µ,
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where h : g� Ñ R is the reduced Hamiltonian and hpµq � Hpe, µq. For more details

see [9], [45], [68].

Reduction is well established for OCPs on Lie groups (see [58]). However, reduc-

tion for OCPs on Lie groups with symmetry breaking cost functions has not been

investigated much, with an exception of [11]. With this motivation, we investigate

the reduction for OCPs on Lie groups with symmetry breaking cost functions.

From the Lagrangian point of view, we obtain the Euler-Poincaré equations and

from the Hamiltonian point of view, we obtain the Lie-Poisson equations. We also

study the relationship between both formalisms. The theory of reduction for OCPs on

Lie groups from a Hamiltonian point of view has been developed in [58]. The general

theory of reduction for OCPs from a Hamiltonian point of view has been developed in

[75]. However, [58], [75] do not consider symmetry breaking cost functions. Note that

the theory for semidirect product reduction for OCPs on Lie groups with symmetry

breaking cost functions from a Hamiltonian point of view has been developed in

[11]. A variational integrator for OCPs on Lie groups with symmetry breaking cost

functions is also developed. Note that variational integrators for OCPs on Lie groups

are also developed in [53], [54], [55] but do not consider symmetry breaking cost

functions.

1.2 Mathematical Preliminaries

We will now briefly review some of the mathematical tools used in this dissertation

but for the most part of this dissertation, we assume that the reader is familiar with

the basics of smooth manifold theory, Riemannian geometry, Lie groups and Lie

algebras. For an introduction to smooth manifold theory, we refer the unfamiliar

reader to [60]. For an introduction to Riemannian geometry, we refer the unfamiliar

reader to [29], [44], [72]. For an introduction to Lie groups, we refer the unfamiliar

reader to [44], [52], [68], [85]. For an introduction to Lie algebras, we refer the
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unfamiliar reader to [44], [46], [85].

Definition I.1 ([9]). An n-dimensional smooth manifold Q is a set of points together

with a finite or countably infinite set of subsets Uα � Q and one-to-one mappings

φα : Uα Ñ Vα � Rn such that

(a)
�

αPA

Uα � Q,

(b) For each nonempty intersection Uα

�

Uβ , the set φαpUα

�

Uβq is an open subset of

Rn and the one-to-one and onto mapping φα � φ
�1
β : φβpUα

�

Uβq Ñ φαpUα

�

Uβq

is smooth,

(c) The family tpUα, φαquαPA is maximal with respect to conditions (a) and (b).

Definition I.2 ([9]). The tangent space TqQ is the set of all tangent vectors of Q at

q P Q.

Definition I.3 ([9]). The tangent bundle TQ is a smooth manifold, whose underlying

set is the disjoint union of the tangent spaces of Q at all points of Q, i.e., TQ �

²

qPQ

TqQ.

Definition I.4 ([60]). A Riemannian metric on Q is a smooth symmetric covariant

2-tensor field on Q that is positive definite at each point.

Definition I.5 ([60]). A Riemannian manifold is a pair pQ, x., .yq, where Q is a

smooth manifold and x., .y is a Riemannian metric on Q.

Definition I.6 ([29]). An affine connection ∇ on a smooth manifold Q is a mapping

∇ : XpQq � XpQq Ñ XpQq, which is denoted by pX, Y q
∇
Ñ ∇XY and which satisfies

the following properties

(a) ∇fX�gY Z � f∇XZ � g∇YZ,

(b) ∇XpY � Zq � ∇XY �∇XZ,
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(c) ∇XpfY q � f∇XY �XpfqY ,

where X , Y , Z P XpQq, f and g are functions of class C8 defined on Q.

Definition I.7 ([29]). The curvature R of a Riemannian manifold Q is a correspon-

dence that associates to every pair X , Y P XpQq a mapping RpX, Y q : XpQq Ñ XpQq

given by

RpX, Y qZ � ∇Y∇XZ �∇X∇YZ �∇
rX,Y s

Z,

where Z P XpQq and ∇ is the Riemannian connection of Q.

Definition I.8 ([9]). A Lie group G is a smooth manifold that is a group and for

which the group operations of multiplication pg, hq ÞÑ gh, for g, h P G and inversion

g ÞÑ g�1 are smooth.

Definition I.9 ([46]). A vector space g over a field F, with an operation g� g Ñ g,

denoted pX, Y q ÞÑ rX, Y s and called the bracket or the commutator of X and Y , is

called a Lie algebra over F if the following axioms are satisfied

(a) The bracket operation is bilinear,

(b) rX,Xs � 0, for all X P g,

(c) rX, rY, Zss � rY, rZ,Xss � rZ, rX, Y ss � 0,

where X , Y , Z P g.

Definition I.10 ([45]). The adjoint action of G on g is given by

Adg ξ � TepLg �Rg�1
qξ,

for ξ P g.
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Remark I.11. The coadjoint action of G on g� is given by Ad�g�1 (see, e.g., [45], [68]).

Definition I.12 ([45]). The infinitesimal generator map

ξgη �
d

dt
pAdexpptξq ηq

�

�

�

�

t�0

� adξ η,

where ξ, η P g, is called the adjoint action of g on g, even though it is not a group

action.

Remark I.13. The coadjoint action of g on g� is given by ad� (see, e.g., [45], [68]).

1.3 Contributions

The main contributions of this dissertation are summarized below.

(a) We have developed a method for obtaining sub-optimal control in OCPs defined

on a Euclidean space, that is based on the combined use of homotopy and NEOC.

(b) We have developed a numerical solver for NMPC of spacecraft attitude that

exploits the underlying Lie group structure of SOp3q and the geometric control

formalism. We have also extended the classical penalty convergence theorem to

the setting of smooth manifolds and the classical exact penalization theorem to

the setting of Riemannian manifolds.

(c) We have extended NEOC, which is well established for OCPs defined on a Eu-

clidean space, to the setting of Riemannian manifolds.

(d) We have extended reduction for OCPs on Lie groups with symmetry breaking

cost functions. We have also developed a variational integrator for OCPs on Lie

groups with symmetry breaking cost functions.

8



1.4 Dissertation Outline

The dissertation is organized as follows.

(a) In Chapter II, we will describe a method for obtaining sub-optimal control in

OCPs defined on a Euclidean space, that is based on the combined use of homo-

topy and NEOC. We also present an example along with simulation results.

(b) In Chapter III, we describe the implementation of a numerical solver for NMPC

of spacecraft attitude that exploits the underlying Lie group structure of SOp3q

and the geometric control formalism. The numerical solver is based on numer-

ically solving the necessary conditions for optimality. The control input/state

constraints are handled through the exterior penalty function approach. We also

extend the classical penalty convergence theorem to the setting of smooth man-

ifolds and the classical exact penalization theorem to the setting of Riemannian

manifolds.

(c) In Chapter IV, we extend NEOC, which is well established for OCPs defined on

a Euclidean space, to the setting of Riemannian manifolds. We further specialize

the results to the case of Lie groups. We also present an example along with

simulation results.

(d) In Chapter V, we investigate the reduction for OCPs on Lie groups with symmetry

breaking cost functions. From the Lagrangian point of view, we obtain the Euler-

Poincaré equations and from the Hamiltonian point of view, we obtain the Lie-

Poisson equations. We also study the relationship between both formalisms and

present several examples. A variational integrator for OCPs on Lie groups with

symmetry breaking cost functions is also developed.
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CHAPTER II

Combined Homotopy and Neighboring Extremal

Optimal Control

This chapter presents a new approach to trajectory optimization for nonlinear

systems. The method exploits a homotopy between a linear system and a nonlinear

system and NEOC, in combination with few iterations of a convergent optimizer at

each step, to iteratively update the trajectory as the homotopy parameter changes.

To illustrate the proposed method, a numerical example of a three dimensional orbit

transfer problem for a spacecraft is presented. We will now briefly discuss homotopy

and NEOC. In what follows, we will suppress the explicit dependence of the state,

costate and control trajectories on time unless otherwise necessary.

2.1 Homotopy

Homotopy is a topological concept (see, e.g., [41]), which can be used, typically

in combination with another optimization method, to solve OCPs. The basic idea

is to start out with a simpler problem, whose solution is easy to compute, and then

gradually evolve the solution to the solution of the harder problem by changing the

homotopy parameter. Consider an OCP, where the objective is to minimize a cost

10



functional given by

min
up.q

J � KpxpT qq �

» T

0

Lpxptq, uptqqdt (2.1)

subject to

9xptq � fpxptq, uptqq, xp0q � x0, (2.2)

where xp.q P ACpr0, T s,Rn
q, up.q P L8

pr0, T s,Rm
q, K : Rn

Ñ R, L : Rn
� Rm

Ñ R

and f : Rn
� Rm

Ñ Rn satisfy appropriate differentiability assumptions. Suppose

the OCP (2.1)-(2.2) is difficult to solve with the dynamic constraint given by the

model 9xptq � fpxptq, uptqq but is easier to solve with the dynamic constraint given

by the model 9xptq � gpxptq, uptqq (e.g., gpxptq, uptqq � Axptq � Buptq � d), where

g : Rn
� Rm

Ñ Rn also satisfies appropriate differentiability assumptions. Then by

creating a homotopy given by

9xptq � λfpxptq, uptqq � p1� λqgpxptq, uptqq, (2.3)

where λ P r0, 1s is the homotopy parameter and under appropriate assumptions, we

can solve the original OCP (2.1)-(2.2) by changing λ from 0 to 1 and re-using the

solution from the previous homotopy step as an initial guess for the solution at the

next homotopy step. For the background on homotopy methods see [4], [42]. The

survey paper [91] discusses continuation methods and their application to OCPs. For

the use of homotopy method in OCPs see also [10], [18], [51], [79], [100].

11



2.2 Neighboring Extremal Optimal Control

Consider a parameter dependent OCP, where the objective is to minimize a cost

functional given by

min
up.q

J � KpxpT q, pq �

» T

0

Lpxptq, uptq, pqdt (2.4)

subject to

9xptq � fpxptq, uptq, pq, xp0q � x0, (2.5)

where xp.q P ACpr0, T s,Rn
q, up.q P L8

pr0, T s,Rm
q, p P Rl is a parameter, K : Rn

�

Rl
Ñ R, L : Rn

�Rm
�Rl

Ñ R and f : Rn
�Rm

�Rl
Ñ Rn are functions of class C2.

Let px�p , u
�

pq be a solution for the OCP (2.4)-(2.5), where u�pptq denotes the optimal

control, which satisfies the Lagrange multiplier rule in a normal form (see, e.g., [9]).

Let Ψ�

p be the solution corresponding to px, uq � px�p , u
�

pq of the following costate

equation

9Ψ � �Hxpx, u,Ψ, pq, ΨpT q � KxpxpT q, pq,

where Ψp.q P ACpr0, T s,Rn
q, H is the Hamiltonian and Hpx, u,Ψ, pq :

� Lpx, uq �

ΨTfpx, u, pq. Altogether, px�p , u
�

p ,Ψ
�

pq satisfy the following necessary conditions for

optimality

9xptq � fpxptq, uptq, pq, xp0q � x0, (2.6)

9Ψptq � �Hxpxptq, uptq,Ψptq, pq, ΨpT q � KxpxpT q, pq, (2.7)

0 � Hupxptq, uptq,Ψptq, pq. (2.8)
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Suppose there is a small variation in the initial condition and/or the parameter,

and we would like to update the optimal control. Instead of solving the original

OCP again, we employ a first order approximation of the necessary conditions for

optimality around the nominal trajectory. This approximation is given by (see, e.g.,

[14], [30], [31], [32])

δ 9xptq �
Bf

Bx
δxptq �

Bf

Bu
δuptq �

Bf

Bp
δp, δxp0q � δx0, (2.9)

δ 9Ψptq � �Hxxδxptq �Hxuδuptq �HxΨδΨptq �Hxpδp, δΨpT q � KxxδxpT q �Kxpδp,

(2.10)

0 � Huxδxptq �Huuδuptq �HuΨδΨptq �Hupδp. (2.11)

Under the the second order sufficient optimality condition (see, e.g., [30], [32]), (2.9)-

(2.11) represents the optimality condition for the following OCP (see, e.g., [14], [30],

[31], [32])

min
δup.q

δ2J �

1

2

�

�

�

δxpT q

δp

�

�

�

T �

�

�

KxxpT q KxppT q

KpxpT q 0

�

�

�

�

�

�

δxpT q

δp

�

�

�

�

1

2

» T

0

�

�

�

�

�

�

�

�

�

�

�

�

δxptq

δuptq

δp

�

�

�

�

�

�

T �

�

�

�

�

�

Hxxptq Hxuptq Hxpptq

Huxptq Huuptq Hupptq

Hpxptq Hpuptq 0

�

�

�

�

�

�

�

�

�

�

�

�

δxptq

δuptq

δp

�

�

�

�

�

�

�

�

�

�

�

�

dt (2.12)

subject to the perturbed dynamics

δ 9xptq �
Bf

Bx
δxptq �

Bf

Bu
δuptq �

Bf

Bp
δp, δxp0q � δx0, (2.13)

where the matrices in the cost functional (2.12) and the Jacobian matrices in the

dynamic constraint (2.13) are evaluated at the nominal trajectories. The optimal
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control for the OCP (2.12)-(2.13) is given by

δu�ptq � �H�1
uu ptq

�

Huxptqδxptq � fT
u ptqδΨptq �Hupptqδp

�

, (2.14)

where all partial derivative matrices are evaluated at the nominal trajectories and

δΨptq is a perturbation from Ψ�

ptq, ultimately expressible in terms of δxptq and δp.

The updated control is now calculated as the sum of u�ptq and δu�ptq and can be

used directly or to warm start an optimizer for parameter p�δp. This is the basic idea

behind NEOC. For a detailed description of NEOC see [14]. For a mathematically

rigorous introduction to NEOC see [86].

Remark II.1. The OCP (2.12)-(2.13) is known as the accessory minimum problem

in the calculus of variations (see, e.g., [90]). If there is no variation in the initial

condition, i.e., the initial condition remains fixed, then δxp0q � 0 and similarly, if

there is no variation in the parameter, i.e., the parameter remains fixed, then δp � 0.

Note that it is also possible to go back to the conventional NEOC setting (see, e.g.,

[14]), by adding p as a state, with 9p � 0.

For px�pptq, u
�

pptqq to be a strong local minimizer for the OCP (2.4)-(2.5), the

second order sufficient condition (strengthened Legendre-Clebsch condition) requires

that Huuptq ¡ 0, for a.e. t P r0, T s and conjugate points for the OCP (2.12)-(2.13)

must not exist (Jacobi condition) (see, e.g., [86]). An indicator for the existence of

conjugate points is that the Riccati equation associated with the OCP (2.12)-(2.13)

has a finite escape time (see, e.g., [86]). Existence of a solution of the Riccati equation

associated with the OCP (2.12)-(2.13) over the interval r0, T s is enough to rule out

the existence of conjugate points. For a modern exposition on conjugate points see

[3], [86]. For more on conjugate points for OCPs see [13], [14], [18], [20], [66], [71],

[97], [98], [99].

We will now discuss the proposed method that combines the ideas of homotopy
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and NEOC.

2.3 Method Description

Consider a linear system and a nonlinear system given below

9x � Ax�Bu� d, xp0q � x0, (2.15)

y � Cx, (2.16)

9x � fpx, uq, xp0q � x0, (2.17)

where xp.q P ACpr0, T s,Rn
q, up.q P L8

pr0, T s,Rm
q, A P Rn�n, B P Rn�m, C P Rq�n,

d P Rn and f : Rn
�Rm

Ñ Rn is a function of class C2. Create a homotopy between

the linear system and the nonlinear system by

9x � λfpx, uq � p1� λqpAx�Bu� dq �: F px, u, λq, (2.18)

where λ P r0, 1s. Note that the linear system (2.15) can be defined as the linearization

of the nonlinear system (2.17) at a selected steady-state operating point pxop, uopq,

with d � fpxop, uopq � Axop � Buop. Consider a class of problems with a quadratic

type cost defined over a finite horizon given by

J �

1

2
eT pT qKfepT q �

1

2

» T

0

reT ptqQeptq � uT
ptqRuptqsdt, (2.19)

where Kf , Q © 0, R ¡ 0 and eptq � yptq � ydptq, with ydptq being the desired

trajectory.

Remark II.2. While we introduce our ideas in the context of a specific OCP with cost

functional (2.19), many generalizations are possible. For instance, a minimum time

problem can be handled using the given approach by rescaling time and introduc-
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ing final time as an additional variable to be optimized. Note that for a minimum

time problem, the optimal control is usually discontinuous (at least for control affine

systems with a box constraint on u) and for the proposed approach to be used practi-

cally, the cost should be “regularized” with a small control-dependent term to make

the optimal control continuous (see, e.g., [7], [88]). The case when the homotopy pa-

rameter enters the cost or the cost is not quadratic can be handled as well. However,

simplifications do occur in the case of quadratic costs as is apparent from the next

section.

2.3.1 Algorithm

The proposed algorithm is based on applying neighboring extremal updates to

predict the optimal control trajectory as p � λ changes. Note the superscripts in the

following discussion represent the iteration number.

Step 1: Start with k � 0 and set λp0q � 0. Solve the OCP with the cost functional

(2.19) subject to the dynamic constraint (2.18). The solution to this OCP is given

by

u�p0q � �R�1BTPxp0q �R�1BT r1, (2.20)

where P and r1 are the solutions of the differential equations

�

9P � ATP � PA� PBR�1BTP � CTQC, P pT q � CTKfC, (2.21)

� 9r1 � pA�BR�1BTP qTr1 � Pd� CTQyd, r1pT q � CTKfydpT q. (2.22)

Note that (2.21) is a Riccati differential equation that does not depend on yd and

is solved backwards in time and (2.22) is a linear differential equation which is also

solved backwards in time. Obtain x�
λp0q

from 9xp0q � F pxp0q, u�p0q, λp0qq � Axp0q�Bu�p0q

and u�
λp0q

from (2.20).
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Step 2: Set k � k � 1 and λpkq � λpk�1q
� δλpkq, where δλpkq ¡ 0 is small and solve

the OCP given below

min
δupkqp.q

δ2J pkq
�

1

2

�

�

�

δxpkqpT q

δλpkq

�

�

�

T �

�

�

CTKfC 0

0 0

�

�

�

�

�

�

δxpkqpT q

δλpkq

�

�

�

�

1

2

» T

0

�

�

�

�

�

�

�

�

�

�

�

�

δxpkqptq

δupkqptq

δλpkq

�

�

�

�

�

�

T �

�

�

�

�

�

H
pkq
xx ptq H

pkq
xu ptq H

pkq

xλ ptq

H
pkq
ux ptq H

pkq
uu ptq H

pkq

uλ ptq

H
pkq

λx ptq H
pkq

λu ptq 0

�

�

�

�

�

�

�

�

�

�

�

�

δxpkqptq

δupkqptq

δλpkq

�

�

�

�

�

�

�

�

�

�

�

�

dt (2.23)

subject to the perturbed dynamics

δ 9xpkqptq � Apkq
ptqδxpkqptq �Bpkq

ptqδupkqptq �Gpkq
ptqδλpkq, δxpkqp0q � 0, (2.24)

where

H pkq
xx ptq �

B

Bx

BH

Bx

�

�

�

�

px�
λpk�1q

ptq,u�
λpk�1q

ptq,λpk�1q
q

,

H pkq
xu ptq �

B

Bu

BH

Bx

�

�

�

�

px�
λpk�1q

ptq,u�
λpk�1q

ptq,λpk�1q
q

,

...

Apkq
ptq �

BF

Bx

�

�

�

�

px�
λpk�1q

ptq,u�
λpk�1q

ptq,λpk�1q
q

,

Bpkq
ptq �

BF

Bu

�

�

�

�

px�
λpk�1q

ptq,u�
λpk�1q

ptq,λpk�1q
q

,

Gpkq
ptq �

BF

Bλ

�

�

�

�

px�
λpk�1q

ptq,u�
λpk�1q

ptq,λpk�1q
q

,

with Hpx, u,Ψ, λq :�
1

2
rpCx� ydq

TQpCx� ydq� uTRus �ΨTF px, u, λq. The solution
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to the OCP (2.23)-(2.24) is given by (see, e.g., [14])

δu�pkq � �H�1pkq
uu ptq

�

H pkq
ux ptqδx

pkq
�BT pkq

ptqδΨpkq
�H

pkq

uλ ptqδλ
pkq
�

, (2.25)

where δΨpkq
� Spkqδxpkq � r

pkq
2 , Spkq and r

pkq
2 are the solutions of the differential

equations

�

9Spkq
� ÃT pkq

ptqSpkq
� SpkqÃpkq

ptq � SpkqB̃pkq
ptqSpkq

� C̃pkq
ptq, Spkq

pT q � CTKfC,

(2.26)

� 9r
pkq
2 � pÃT pkq

ptq � SpkqB̃pkq
ptqqr

pkq
2 � pSpkqD̃

pkq
1 ptq � D̃

pkq
2 ptqqδλpkq, r

pkq
2 pT q � 0,

(2.27)

where

Ãpkq
ptq � Apkq

ptq �Bpkq
ptqH�1pkq

uu ptqH pkq
ux ptq,

B̃pkq
ptq � Bpkq

ptqH�1pkq
uu ptqBT pkq

ptq,

C̃pkq
ptq � H pkq

xx ptq �H pkq
xu ptqH

�1pkq
uu ptqH pkq

ux ptq,

D̃
pkq
1 ptq � Gpkq

ptq �Bpkq
ptqH�1pkq

uu ptqH
pkq

uλ ptq,

D̃
pkq
2 ptq � H

pkq

xλ ptq �H pkq
xu ptqH

�1pkq
uu ptqH

pkq

uλ ptq.

Obtain δx�
δλpkq

from (2.24), δu�
δλpkq

from (2.25) and δΨ�

δλpkq
� Spkqδx�

δλpkq
� r

pkq
2 . Calcu-

late x�
λpkq

� x�
λpk�1q � δx�

δλpkq
, u�

λpkq
� u�

λpk�1q � δu�
δλpkq

and Ψ�

λpkq
� Ψ�

λpk�1q � δΨ�

δλpkq
.

Step 3: Repeat Step 2 until λpkq � 1.

Following the above steps, we can obtain a sub-optimal control for a nonlinear

system with a given cost functional. Note that special methods exist for solving

the differential equations (2.26)-(2.27) efficiently (see, e.g., [26], [95]). We consider a

numerical example in the next section.

Remark II.3. We would like to clarify that by a sub-optimal control, we mean that we
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are close enough to the optimal control, where the closeness of sub-optimal control to

the optimal control can be controlled by controlling the rate of change of the homotopy

parameter (derivation of the estimates for such an error bound is left to future work).

The proposed algorithm can also be extended (under appropriate assumptions see,

e.g., [30], [31], [32]) to OCPs with control input/state constraints. An alternative way

to extend the proposed algorithm to OCPs with control input/state constraints is by

using the penalty function approach. Moreover, the weighting factor multiplying the

penalty function could be treated as an additional parameter in applying neighboring

extremal predictions, so as to avoid the problem of ill-conditioning caused by starting

directly with a very high value of the weighting factor.

Recall that an indicator for the existence of conjugate points is that (2.26) has a

finite escape time. We will now give three sufficient conditions for the nonexistence of

conjugate points, if the optimal control is obtained at each iteration of the proposed

algorithm.

Proposition II.4. Assume that

�

�

�

C̃pk�1q
ptq ÃT pk�1q

ptq

Ãpk�1q
ptq �B̃pk�1q

ptq

�

�

�

©

�

�

�

C̃pkq
ptq ÃT pkq

ptq

Ãpkq
ptq �B̃pkq

ptq

�

�

�

,

H
pk�1q
uu ptq © 0 and H

pkq
uu ptq © 0, for a.e. t P r0, T s and for k P Z

�

, then Spk�1q
ptq ©

Spkq
ptq on the interval r0, T s. Moreover, if there exists a solution Spk�1q

ptq for (2.26)

on the interval r0, T s, then there exists a solution Spkq
ptq for (2.26) on the interval

r0, T s.

Proof. It is easy to verify that Ãpk�1q
ptq, Ãpkq

ptq, B̃pk�1q
ptq, B̃pkq

ptq, C̃pk�1q
ptq and

C̃pkq
ptq are integrable on the interval r0, T s. It follows from Theorem 4.1.4 of [1] that

Spk�1q
ptq © Spkq

ptq on the interval r0, T s. It is also easy to verify that B̃pk�1q
ptq �

B̃T pk�1q
ptq © 0, B̃pkq

ptq © 0, C̃pk�1q
ptq � C̃T pk�1q

ptq and Spk�1q
ptq � ST pk�1q

ptq on the

interval r0, T s. It follows from Theorem 5.7 of [35] that there exists a solution Spkq
ptq

for (2.26) on the interval r0, T s.
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Proposition II.5. Assume that C̃pk�1q
ptq © 0 and H

pk�1q
uu ptq © 0, for a.e. t P r0, T s

and for k P Z
�

, then there exists a solution Spk�1q
ptq for (2.26) on the interval r0, T s.

Proof. It is easy to verify that Ãpk�1q
ptq, B̃pk�1q

ptq and C̃pk�1q
ptq are integrable on the

interval r0, T s. It is also easy to verify that B̃pk�1q
ptq © 0 on the interval r0, T s. It

follows from Theorem 4.1.6 of [1] that there exists a solution Spk�1q
ptq for (2.26) on

the interval r0, T s.

Proposition II.6. Assume that H
pk�1q
uu ptq © 0, for a.e. t P r0, T s and for k P Z

�

. In

addition, assume that there exists S̄pk�1q
p.q P ACpr0, T s,Rn�n

q on the interval r0, T s

such that

0 © 9S̄pk�1q
� ÃT pk�1q

ptqS̄pk�1q
� S̄pk�1qÃpk�1q

ptq � S̄pk�1qB̃pk�1q
ptqS̄pk�1q

� C̃pk�1q
ptq,

for a.e. t P r0, T s and S̄pk�1q
pT q © CTKfC, then there exists a solution Spk�1q

ptq for

(2.26) on the interval r0, T s and S̄pk�1q
ptq © Spk�1q

ptq on the interval r0, T s.

Proof. It is easy to verify that Ãpk�1q
ptq, B̃pk�1q

ptq and C̃pk�1q
ptq are integrable on the

interval r0, T s. It is also easy to verify that B̃pk�1q
ptq � B̃T pk�1q

ptq © 0, C̃pk�1q
ptq �

C̃T pk�1q
ptq and Spk�1q

ptq � ST pk�1q
ptq on the interval r0, T s. It follows from Theorem

5.8 of [35] that there exists a solution Spk�1q
ptq for (2.26) on the interval r0, T s and

S̄pk�1q
ptq © Spk�1q

ptq on the interval r0, T s.

Remark II.7. Note that the proposed algorithm only gives a prediction step and not

a correction step. To improve the solution, a prediction step can be augmented by a

correction step that can be implemented by a few iterations of a convergent optimizer.

It is possible to obtain a predictor-corrector algorithm in a slightly more general

setting and in the spirit of [33], we will now outline the predictor-corrector algorithm.
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2.3.2 General Algorithm

Consider the following OCP

min
up.q

J � KpxpT qq �

» T

0

Lpxptq, uptqqdt (2.28)

subject to

9xptq � F pxptq, uptq, λq, xp0q � x0, (2.29)

where xp.q P W 1,8
pr0, T s,Rn

q, up.q P L8

pr0, T s,Uq, with U � Rm (nonempty, closed

and convex), K : Rn
Ñ R, L : Rn

� Rm
Ñ R and F : Rn

� Rm
� r0, 1s Ñ Rn are

functions of class C2. Let px�λ, u
�

λq be a solution for the OCP (2.28)-(2.29) and Ψ�

λ be

the solution corresponding to px, uq � px�λ, u
�

λq of the following costate equation

9Ψ � �Hxpx, u,Ψ, λq, ΨpT q � KxpxpT qq,

where Ψp.q P W 1,8
pr0, T s,Rn

q, H is the Hamiltonian and Hpx, u,Ψ, λq :� Lpx, uq �

ΨTF px, u, λq. It follows by PMP (see, e.g., [59]) that the following condition holds

HT
u px

�

ptq, u�ptq,Ψ�

ptq, λqpv � u�ptqqdt ¥ 0, for all v P U and for a.e. t P r0, T s,

where

Hupx
�

ptq, u�ptq,Ψ�

ptq, λq �
BH

Bu

�

�

�

�

px�ptq,u�ptq,Ψ�

ptq,λq

.

Altogether, px�λ, u
�

λ,Ψ
�

λq satisfy the following necessary conditions for optimality

9xptq � F pxptq, uptq, λq � 0, xp0q � x0, (2.30)
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9Ψptq �Hxpxptq, uptq,Ψptq, λq � 0, ΨpT q � KxpxpT qq, (2.31)

HT
u pxptq, uptq,Ψptq, λqpv � uptqqdt ¥ 0, for all v P U and for a.e. t P r0, T s. (2.32)

Let the set NUpuq :� tṽp.q P L8

pr0, T s,Uq | ṽptq P NUpuptqq, for all t P r0, T su, where

the normal cone mapping (set-valued mapping) to the set U is given by

NUpuptqq �

$

'

'

&

'

'

%

tw | xw, ũ� uptqy ¤ 0, for all ũ P Uu, for uptq P U ,

H, for uptq R U .

Note that there are some subtleties that we have glossed over in the above discussion

and we refer the reader to [34] for more details. Let ω :
� px, u,Ψq, Ω1 :� tpx, u,Ψq |

px, u,Ψq P W 1,8
� L8

�W 1,8, xp0q � x0, ΨpT q � KxpxpT qq, up.q P L8

pr0, T s,Uqu

and Ω2 :� L8

� L8

� L8. The necessary conditions for optimality (2.30)-(2.32) can

now be re-written as a generalized equation as follows

Fpω, λq �N pωq Q 0, (2.33)

where F : Ω1 � r0, 1s Ñ Ω2 and N : Ω1 Ñ 2Ω2, with

Fpω, λq :�

�

�

�

�

�

�

9x� F px, u, λq

9Ψ�Hxpx, u,Ψ, λq

Hupx, u,Ψ, λq

�

�

�

�

�

�

and N pωq :�

�

�

�

�

�

�

0

0

NUpuq

�

�

�

�

�

�

.

We are now ready to outline the algorithm. Note the superscripts in the following

discussion represent the iteration number.

Step 1: Start with k � 0 and set λp0q � 0. Solve the OCP with the cost functional

(2.28) subject to the dynamic constraint (2.29). Obtain ω�

λp0q
� px�

λp0q
, u�

λp0q
,Ψ�

λp0q
q.

Step 2: Set k � k � 1 and λpkq � λpk�1q
� δλpkq, where δλpkq ¡ 0 is small. The Euler
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predictor and the Newton corrector steps consist of solving the following linearized

generalized equations

Fpω�

λpk�1q, λ
pk�1q

q �Dω Fpωλpk�1q, λpk�1q
qpω̄ � ω�

λpk�1qq �Dλ Fpω
�

λpk�1q, λ
pk�1q

qδλpkq�

N pω̄q Q 0, (2.34)

Fpω̄, λpkqq �Dω Fpω̄, λ
pkq
qpω�

λpkq
� ω̄q �N pω�

λpkq
q Q 0. (2.35)

Obtain ω�

λpkq
� px�

λpkq
, u�

λpkq
,Ψ�

λpkq
q from (2.34)-(2.35).

Step 3: Repeat Step 2 until λpkq � 1.

Following the above steps, we can obtain a sub-optimal control for a nonlinear sys-

tem with a given cost functional, where the space of control parameters is nonempty,

closed and convex.

Remark II.8. For computational purposes, (2.34) and (2.35) would result in linear

quadratic problems with control input constraints (see, e.g., [30], [31], [32]).

We will now present a numerical example.

2.4 Numerical Example

To illustrate our combined homotopy and NEOC method, we consider a three

dimensional orbit transfer problem for a spacecraft from an initial circular orbit of

radius Ri (km) to a final circular orbit of radius Rf (km) (see, e.g., [51]). The OCP

is given below

min
up.q

J �

1

2
pxpT q � xdq

TKf pxpT q � xdq �
1

2

» 14000

0

uT
ptquptqdt (2.36)
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subject to

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

9x1ptq

9x2ptq

9x3ptq

9x4ptq

9x5ptq

9x6ptq

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

x2ptq

x1ptqx
2
4ptq cos

2
px5ptqq � x1ptqx

2
6ptq �

µ

x2
1ptq

� u1ptq

x4ptq

�

2x2ptqx4ptq

x1ptq
� 2x4ptqx6ptq tanpx5ptqq �

u2ptq

x1ptq cospx5ptqq

x6ptq

�

2x2ptqx6ptq

x1ptq
� x2

4ptq sinpx5ptqq cospx5ptqq �
u3ptq

x1ptq

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

, (2.37)

uT
ptquptq ¤ 10�8, (2.38)

where

Kf � diagp10�4, 1, 1, 1, 1, 1q,

xp0q � x0 �

�

Re �Ri 0 0




µ

pRe �Riq
3
0 0

�T

,

xd �

�

�

Re �Rf 0
17π

4

g

f

f

e

µ

pRe �Rf q
3 cos2

�

5π

180




5π

180
0

�

�

T

.

In (2.37), x1 � r (km) (radius of orbit), x2 � 9r pkm{secq, x3 � θ (rad) (azimuth

angle), x4 �
9θ prad{secq, x5 � φ (rad) (elevation angle), x6 �

9φ prad{secq, u1 � ar

pkm{sec2q (acceleration in the r direction), u2 � aθ pkm{sec
2
q (acceleration in the

θ direction), u3 � aφ pkm{sec2q (acceleration in the φ direction), Re � 6378 (km)

(radius of earth) and µ � 398600.4 pkm3
{sec2q (gravitational parameter).

We consider a linear system given by 9x � Ax � Bu � d, xp0q � x0, which is

obtained by the linearization of (2.37) at a selected steady-state operating point

xop � x0 and uop � r0 0 0sT . Instead of solving the OCP (2.36)-(2.38), we use the
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penalty function approach and solve the OCP given below

min
up.q

J �

1

2
pxpT q � xdq

TKf pxpT q � xdq �
1

2

» 14000

0

ruT
ptquptq � νΦphpuptqqqsdt

(2.39)

subject to

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

9x1ptq

9x2ptq

9x3ptq

9x4ptq

9x5ptq

9x6ptq

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

x2ptq

x1ptqx
2
4ptq cos

2
px5ptqq � x1ptqx

2
6ptq �

µ

x2
1ptq

� u1ptq

x4ptq

�

2x2ptqx4ptq

x1ptq
� 2x4ptqx6ptq tanpx5ptqq �

u2ptq

x1ptq cospx5ptqq

x6ptq

�

2x2ptqx6ptq

x1ptq
� x2

4ptq sinpx5ptqq cospx5ptqq �
u3ptq

x1ptq

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

, (2.40)

where hpuq � uTu�10�8, pΦ�hqp.q � maxt0, hp.qu4 is by choice a differentiable penalty

function and ν P R
�

is the weighting factor. We create a homotopy between the

nonlinear system and the linear system and use the indirect single shooting method

as a solver for the OCP with the cost functional (2.39) at each homotopy iteration.

The indirect single shooting method converts the OCP into a root finding problem

and solves for the initial values of the costate variables.

To demonstrate the advantages of the combined homotopy and NEOC method,

two cases are considered. In the first case, we set the initial guess for the initial value

of the costate variables for the next iteration to be equal to the optimal value of the

costate variables obtained from the previous iteration. In the second case, we use the

combined homotopy and NEOC method discussed in the previous section to set the

initial guess for the initial value of the costate variables for the next iteration. Note

that [51] uses (2.3) to solve OCPs but does not use neighboring extremal updates to
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predict the change in the initial value of the costate variables. The Matlab function

fsolve.m has been used to solve the root finding problem, the weighting factor is

ν � 1030 and λ has been varied from 0 to 1 in increments of 0.1.

Figures 2.1(a)-(f) show the trajectory for the states of the nonlinear system, along

with trajectories for some values of λ, with Ri � 600 (km) and Rf � 2000 (km). Fig-

ures 2.1(g)-(i) show the control inputs to the nonlinear system, along with trajectories

for some values of λ. Figure 2.1(j) shows the control input constraint as λ varies from

0 to 1. Figure 2.1(k) shows the total cost for the nonlinear system as λ varies from 0

to 1. Figure 2.1(l) shows the spacecraft maneuver from an initial circular orbit of ra-

dius Ri � 600 (km) to a final circular orbit of radius Rf � 2000 (km). Figure 2.1(m)

shows the total number of function evaluations of fsolve.m for different spacecraft

maneuvers, for the two cases described above. Figure 2.1(n) shows the total number

of iterations of fsolve.m for different spacecraft maneuvers, for the two cases de-

scribed above. From Figures 2.1(m)-(n), one can see that the second case described

above needs fewer function evaluations and iterations of fsolve.m.
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CHAPTER III

Constrained Spacecraft Attitude Control on SO(3)

Using Fast Nonlinear Model Predictive Control

In this chapter, a numerical solver for the optimization problem arising in the

NMPC of spacecraft attitude is developed and simulation results of its application to

constrained spacecraft attitude control are presented. The numerical solver exploits

the solution of the necessary conditions for optimality in a discrete-time OCP de-

fined over a prediction horizon, where the discrete-time dynamics are based on the

LGVI model. The inequality constraints (thrust constraint, inclusion/exclusion zone

constraints, etc.) are handled using a exterior penalty function approach. Our de-

velopments exploit the geometric control formalism in deriving the numerical solver

for the NMPC problem, which is based on the indirect single shooting method and

is faster than the baseline solver (fmincon.m), which was used in [49]. In the last

section of this chapter, we include some convergence results, which extend the classi-

cal penalty convergence theorem to the setting of smooth manifolds and the classical

exact penalization theorem to the setting of Riemannian manifolds. We will now

discuss the NMPC problem formulation on SOp3q that follows [49].
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3.1 Nonlinear Model Predictive Control on SO(3)

Consider the following NMPC problem

min
tu�

k�j|k
u

N�1

j�0

Jd � KdpRk�N |k,Π
�

k�N |k
q �

N�1̧

j�0

CdpRk�j|k,Π
�

k�j|k
, u�

k�j|k
q (3.1)

subject to

hΠ�

k�j|k
� Fk�j|kJd � JdF

T
k�j|k, (3.2)

Rk�1�j|k � Rk�j|kFk�j|k, (3.3)

Πk�1�j|k � F T
k�j|kΠk�j|k � huk�j|k, (3.4)

HipRk�j|k,Π
�

k�j|k
, u�

k�j|k
q ¤ 0, i � 0, . . . , m, (3.5)

where Rk�j|k, Fk�j|k P SOp3q, Πk�j|k, uk�j|k P R3 and h P R
�

is the time step. Note

that Rk�j|k is the spacecraft attitude, Πk�j|k is the spacecraft angular momentum

and uk�j|k is the control torque. The terminal cost Kd is a real-valued non-negative

function with respect to its arguments such that KdpI3�3, 03�3q � 0. The incremental

cost Cd is a real-valued non-negative function with respect to its arguments Rk�j|k

and Π�

k�j|k
and a positive function with respect to its argument u�

k�j|k
such that

CdpI3�3, 03�3, 03�3q � 0. It is assumed that the terminal cost Kd, the incremental cost

Cd and the inequality constraints Hi satisfy appropriate differentiability assumptions.

Note that Jd P R3�3 is the nonstandard moment of inertia matrix and is related to

the standard moment of inertia matrix J P R3�3 as Jd �
1

2
trpJqI3�3 � J . To obtain

the necessary conditions for optimality, we follow the same variational approach as

in [62]. Since, the numerical solver is based on solving the necessary conditions for

optimality resulting from a discrete-time OCP over a prediction horizon, where the

inequality constraints are incorporated as soft constraints through a penalty function,
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we consider the following discrete-time OCP

min
tu�

k
u

N�1

k�0

Jd � KdpRN ,Π
�

Nq �

N�1̧

k�0

CdpRk,Π
�

k , u
�

k q (3.6)

subject to

hΠ�

k � FkJd � JdF
T
k , (3.7)

Rk�1 � RkFk, (3.8)

Πk�1 � F T
k Πk � huk, (3.9)

HipRk,Π
�

k , u
�

k q ¤ 0, i � 0, . . . , m. (3.10)

Define the augmented cost functional as follows

J a
d � KdpRN ,Π

�

Nq �

N�1̧

k�0

CdpRk,Π
�

k , u
�

k q �

N�1̧

k�0

λ1
kplogpR

�1
k Rk�1q � logpFkqq�

N�1̧

k�0

λ2
kppΠk�1 � F T

k Πk � hukq
�

q �

N�1̧

k�0

m̧

i�0

µiΦipHipRk,Π
�

k , u
�

k qq, (3.11)

where λ1
k P sop3q�, λ2

k P sop3q, Φip.q is a penalty function and µi P R
�

. Note that

the exponential map in the case of matrix Lie groups, coincides with the matrix

exponential.

Remark III.1. Under the Lie algebra isomorphism .� : R3
Ñ sop3q, given by x�y �

x�y, for all x, y P R3, κsop3qp., .q gets identified with the standard inner product on R3

(see, e.g., [52]). Specifically, if κsop3qpa
�, b�q :� trpad a� � ad b�q, then κsop3qpa

�, b�q �

trpa�b�q � �2xa, by. In fact, as SO(3) is compact and semisimple, �κsop3qp., .q gives a

bi-invariant Riemannian metric on SO(3). Using the map .� : R3
Ñ sop3q� and letting

the natural pairing a�pb�q :� xa, by, it is easily seen that a�pb�q � �

1

2
κsop3qpa

�, b�q �

1

2
trppa�qT b�q, which also shows that sop3q � sop3q� (see, e.g., [45]). In this way, the

natural pairing between a covector and a vector gets identified with the Killing form
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on sop3q, which further gets identified with the standard inner product on R3. Using

this, it is possible to obtain the necessary conditions for optimality in R3.

We will now derive the necessary conditions for optimality for the discrete-time

OCP (3.6)-(3.10).

3.1.1 Necessary Conditions for Optimality

The variations of Rk, Fk and Πk are given as follows

Rk,ǫ � Rk exppǫη
�

k q, (3.12)

Fk,ǫ � Fk exppǫξ
�

k q, (3.13)

Πk,ǫ � Πk � ǫδΠk, (3.14)

where ηk, ξk P R3, with η0 � 0, ξ0 � 0 and δΠ0 � 0. The infinitesimal variations of

Rk and Fk are given by

δRk �
dRk,ǫ

dǫ

�

�

�

�

ǫ�0

,

� Rkη
�

k , (3.15)

δFk �
dFk,ǫ

dǫ

�

�

�

�

ǫ�0

,

� Fkξ
�

k . (3.16)

Before proceeding further, we need a few facts.

Fact 1. ([62]) ηk�1 � F T
k ηk � ξk.

The variation of (3.7) yields the following fact.

Fact 2. ([62]) ξk � hF T
k ptrpFkJdqI3�3 � FkJdq

�1δΠk �: MkδΠk, where Mk P R3�3.

Fact 3. ([45])
1

2
trpBTa�q � xppBqAq

��, ay, for all a P R3 and B P R3�3.
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The above result is used to obtain the following fact.

Fact 4. ([45]) DRk
FpRkη

�

k q � xppRT
k pDRk

FqqAq
��, ηky.

Using Facts 1-4, the variation of the augmented cost functional is written as follows

δJ a
d � xppRT

NpDRN
KdqqAq

��, ηNy � xppDΠ
�

N
KdqAq

��, δΠNy�

N�1̧

k�0

rxppRT
k pDRk

CdqqAq
��, ηky � xppDΠ

�

k
CdqAq

��, δΠky � xppDu�
k
CdqAq

��, δukys�

N�1̧

k�0

xλ1
k, ηk�1 � F T

k ηk � ξky �

N�1̧

k�0

xλ2
k, δΠk�1 � pFkξ

�

k q
TΠk � F T

k δΠk � hδuky�

N�1̧

k�0

m̧

i�0

µirxppR
T
k pDRk

pΦi �HiqqqAq
��, ηky � xppDΠ

�

k
pΦi �HiqqAq

��, δΠky�

xppDu�
k
pΦi �HiqqAq

��, δukys,

� xppRT
NpDRN

KdqqAq
��, ηNy � xppDΠ

�

N
KdqAq

��, δΠNy�

N�1̧

k�0

rxppRT
k pDRk

CdqqAq
��, ηky � xppDΠ

�

k
CdqAq

��, δΠky � xppDu�
k
CdqAq

��, δukys�

N�1̧

k�0

xλ1
k, ηk�1 � F T

k ηk � ξky �

N�1̧

k�0

xλ2
k, δΠk�1 � ppF T

k Πkq
�

q

T ξk � F T
k δΠk � hδuky�

N�1̧

k�0

m̧

i�0

µirxppR
T
k pDRk

pΦi �HiqqqAq
��, ηky � xppDΠ

�

k
pΦi �HiqqAq

��, δΠky�

xppDu�
k
pΦi �HiqqAq

��, δukys,

� xppRT
NpDRN

KdqqAq
��

� λ1
N�1, ηNy �

N�1̧

k�0

rx�Fkλ
1
k � λ1

k�1�

ppRT
k pDRk

CdqqAq
��

�

m̧

i�0

µippR
T
k pDRk

pΦi �HiqqqAq
��, ηkys � xppDΠ

�

N
KdqAq

��

�

λ2
N�1, δΠNy �

N�1̧

k�0

rx�MT
k λ

1
k � pFk �MT

k pF
T
k Πkq

�

qλ2
k � λ2

k�1 � ppDΠ�

k
CdqAq

��

�

m̧

i�0

µippDΠ
�

k
pΦi �HiqqAq

��, δΠkys �

N�1̧

k�0

rx�hλ2
k � ppDu�

k
CdqAq

��

�

m̧

i�0

µippDu�
k
pΦi �HiqqAq

��, δukys,
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where the analogue of integration by parts in the discrete-time setting is used along

with the fact that the variations ηk and δΠk vanish at k � 0. Since, δJ a
d should

vanish for all variations of ηk, δΠk and δuk, the necessary conditions for optimality

are as follows

hΠ�

k � FkJd � JdF
T
k , (3.17)

Rk�1 � RkFk, (3.18)

Πk�1 � F T
k Πk � huk, (3.19)

λ1
k�1 � F T

k�1rλ
1
k � ppRT

k�1pDRk�1
CdqqAq

��

�

m̧

i�0

µippR
T
k�1pDRk�1

pΦi �HiqqqAq
��

s,

(3.20)

λ1
N�1 � �ppRT

N pDRN
KdqqAq

��, (3.21)

λ2
k�1 � pFk�1 �MT

k�1pF
T
k�1Πk�1q

�

q

�1
r�MT

k�1λ
1
k�1 � λ2

k � ppDΠ
�

k�1

CdqAq
��

�

m̧

i�0

µippDΠ
�

k�1

pΦi �HiqqAq
��

s, (3.22)

λ2
N�1 � �ppDΠ

�

N
KdqAq

��, (3.23)

hλ2
k � ppDu�

k
CdqAq

��

�

m̧

i�0

µippDu�
k
pΦi �HiqqAq

��. (3.24)

Remark III.2. Note that we assume that the extremals for the OCP (3.6)-(3.10) are

normal (see, e.g., [9]). However, abnormal extremals do occur in practical problems

and there might exist abnormal extremals for the OCP (3.6)-(3.10) (a systematic

study of the abnormal extremals for the OCP (3.6)-(3.10) is left to future work).

We will now describe the cost and the inequality constraints that are used for the

subsequent numerical examples.
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3.1.2 Cost and Inequality Constraints

We now consider the terminal cost, the incremental cost and the inequality con-

straints as given in [49]

Kd �
1

2
}P

1

2

1 pRN � I3�3q}
2
F �

1

2
}P

1

2

2 Π
�

N}
2
F , (3.25)

Cd �
h

2
}Q

1

2

1 pRk � I3�3q}
2
F �

h

2
}Q

1

2

2Π
�

k }
2
F �

h

2
}Q

1

2

3 u
�

k }
2
F , (3.26)

H0 �
1

2
}u�k }

2
F � α, (3.27)

Hi � βi � vTi R
T
kwi, i � 1, . . . , m, (3.28)

where P1, P2, Q1, Q2 © 0 and Q3 ¡ 0. Note that (3.27) represents a thrust constraint,

where α P R
�

, (3.28) represents inclusion/exclusion zone constraints, where βi P R,

vi is the spacecraft body-fixed vector and wi is the inertial direction vector (see, e.g.,

[94]). Note that
1

2
}B1{2a�}2F �

1

2
aT B̃a, for all a P R3 and B © 0{B ¡ 0, where

B̃ � trpBqI3�3 �B (see, e.g., [49]).

Remark III.3. Since, SO(3) is a matrix Lie group, a natural choice is to use the

Frobenius norm to define a metric (see, e.g., [22]), which in turn is used to define

the terminal and the incremental cost. The specific form of the terminal and the

incremental cost in (3.25) and (3.26), respectively, corresponds to a LQR type problem

on SOp3q � sop3q.

For the specific form of the terminal and the incremental cost in (3.25) and (3.26),

respectively, the necessary conditions for optimality (3.17)-(3.24) take the form

hΠ�

k � FkJd � JdF
T
k , (3.29)

Rk�1 � RkFk, (3.30)

Πk�1 � F T
k Πk � huk, (3.31)
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λ1
k�1 � F T

k�1rλ
1
k � hppRT

k�1Q1qAq
��

�

m̧

i�1

µippR
T
k�1pDHi

pΦi �Hiqwiv
T
i qqAq

��

s,

(3.32)

λ1
N�1 � ppRT

NP1qAq
��, (3.33)

λ2
k�1 � pFk�1 �MT

k�1pF
T
k�1Πk�1q

�

q

�1
r�MT

k�1λ
1
k�1 � λ2

k � hppQ2Π
�

k�1qAq
��

s, (3.34)

λ2
N�1 � �ppP2Π

�

NqAq
��, (3.35)

hλ2
k � hppQ3u

�

k qAq
��

� µ0ppDH0
pΦ0 �H0qu

�

k qAq
��, (3.36)

where we have chosen the differentiable penalty function, pΦi�Hiqp.q �
h

2
maxt0, Hip.qu

2.

Remark III.4. To obtain Fk in (3.29), (3.29) is expressed on R3
� sop3q using the

exponential map or the Cayley transform, to which a Newton method is applied

(see [63], pp. 96–100). Also, if a certain condition is satisfied, then Fk in (3.29)

can be obtained by solving a continuous-time algebraic Riccati equation (see [19]).

The trajectories for pRk,Πk, λ
1
k, λ

2
kq (starting from a given pR0,Π0, λ

1
0, λ

2
0q), using the

necessary conditions for optimality are computed in the same way as in [62], p. 474.

We will now describe the numerical solver.

3.2 Description of the Numerical Solver

The necessary conditions for optimality (3.29)-(3.36) lead to a two-point boundary

value problem which is solved using the indirect single shooting method to determine

the initial values of the Lagrange multipliers. Sensitivity derivatives obtained from the

necessary conditions for optimality are used in the numerical solution. We follow the

same procedure as in [62] to characterize these sensitivity derivatives. The sensitivity

derivatives for (3.30)-(3.31) are given as follows

�

�

�

ηk�1

δΠk�1

�

�

�

�

�

�

�

F T
k Mk

03�3 F T
k � pF T

k Πkq
�Mk

�

�

�

�

�

�

ηk

δΠk

�

�

�

�

�

�

�

03�3

hI3�3

�

�

�

δuk. (3.37)
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The sensitivity derivatives for (3.32) and (3.34) are given as follows

�

�

�

δλ1
k�1

δλ2
k�1

�

�

�

� Sk

�

�

�

�

�

�

�

�

�

�

�

�

ηk�1

δΠk�1

δuk

δλ1
k

δλ2
k

�

�

�

�

�

�

�

�

�

�

�

�

, (3.38)

where Sk P R6�15. Assuming that δuk is explicitly expressible in terms of uk and

δλ2
k (this assumption is not required but helps to present the idea clearly), from

(3.37)-(3.38) we obtain

�

�

�

�

�

�

�

�

�

ηk�1

δΠk�1

δλ1
k�1

δλ2
k�1

�

�

�

�

�

�

�

�

�

� Tk

�

�

�

�

�

�

�

�

�

ηk

δΠk

δλ1
k

δλ2
k

�

�

�

�

�

�

�

�

�

, (3.39)

where Tk P R12�12. From (3.39) we obtain

�

�

�

�

�

�

�

�

�

ηN

δΠN

δλ1
N

δλ2
N

�

�

�

�

�

�

�

�

�

�

�

N�1
¹

k�0

Tk

�

�

�

�

�

�

�

�

�

�

η0

δΠ0

δλ1
0

δλ2
0

�

�

�

�

�

�

�

�

�

. (3.40)

In the indirect single shooting method, the initial values of the Lagrange multipliers

are unknowns that are determined by solving a nonlinear root finding problem. To

solve this nonlinear root finding problem, we employ a Newton-like method. The
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updates have the following form

λ
pi�1q

0 � λ
piq
0 � γ

�

δEpiq

δλ
piq
0

�

�1

Epiq, (3.41)

where the superscripts represent the iteration number, γ P p0, 1s is the step size and

Epiq is given as follows

Epiq
�

�

�

�

λ
1piq

N�1 � ppR
T piq

N P1qAq
��

λ
2piq

N�1 � ppP2Π
�piq

N qAq
��

�

�

�

. (3.42)

Note that Epiq represents the error in satisfaction of the terminal boundary conditions

at the i -th iteration. The sensitivity derivative for Epiq is computed with the help of

the following expression

δEpiq
�

�

�

�

δλ
1piq

N�1 � ppη
�piq

N R
T piq

N P1qAq
��

δλ
2piq

N�1 � ppP2δΠ
�piq

N qAq
��

�

�

�

. (3.43)

For a given pR
piq
0 ,Π

piq
0 , λ

1piq
0 , λ

2piq
0 q, the trajectories for pR

piq

k ,Π
piq

k , λ
1piq

k , λ
2piq

k q are ob-

tained using the necessary conditions for optimality (3.29)-(3.36) and Epiq is obtained

using (3.42). Letting δλ
piq
0 � λ

piq
0 �λ

pi�1q

0 , δEpiq is obtained using (3.44), which in turn

is obtained using (3.40) and pR
piq

k ,Π
piq

k , λ
1piq

k , λ
2piq

k q along with the facts that η
piq
0 � 0

and δΠ
piq
0 � 0. In this way, we obtain the Jacobian matrix,

�

δEpiq

δλ
piq
0

�

. Once the opti-

mal initial values of the Lagrange multipliers are obtained, the optimal trajectories

are calculated using the necessary conditions for optimality (3.29)-(3.36) obtained in

the previous section.

Remark III.5. Continuation methods (see, e.g., [4]) can be exploited to obtain addi-

tional time savings. There are two scenarios where continuation methods can be used.

The first scenario occurs for the MPC problem over a fixed prediction horizon, when
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the weighting factor multiplying the penalty function is being increased. Generally,

starting with a very high value of the weighting factor is not recommended as this

might result in numerical ill-conditioning. Continuation with respect to the weighting

factor can be used to obtain a desired solution quickly and to avoid the problem of

numerical ill-conditioning. The second scenario occurs when going from one predic-

tion horizon to the next, wherein the initial state in the MPC problem changes. If

the state changes by a small amount, this can be seen as a small perturbation. Con-

tinuation with respect to the state along with the solution computed in the previous

prediction horizon can be used to predict a desired solution quickly. The idea of con-

tinuation presented here is similar to the one in [27], [28], [36], [76], [96]. While we do

not formally take advantage of continuation methods in this chapter, our subsequent

numerical examples warm-start the numerical solver with the previous solution.

We will now present numerical examples.

3.3 Numerical Examples

We consider a spacecraft with moment of inertia matrix J � diagp1, 0.8, 0.8q (kg-

m2), with time step h � 0.4 (sec). We take P1 � P2 � Q1 � Q2 � 0.01I3�3 and

Q3 � I3�3, in (3.25)-(3.26).

In some of the subsequent figures (Figures 3.4 and 3.9), the attitude maneuver is

plotted on S2, where the vectors rx y zsT corresponding to the first, second and third

column of R0 are plotted in dashed-red, dashed-green and dashed-blue, respectively.

Similarly, the vectors rx y zsT corresponding to the first, second and third column of

RN are plotted in red, green and blue, respectively. For all other Rk, k � 0, N , only

the coordinates are shown in the corresponding colors.
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3.3.1 Simulation with Thrust Constraint (Case I)

In this simulation we consider only the thrust constraint (3.27), with α � 10�4 (N-

m). The simulation time is 150 (sec), the prediction horizon is 2 (sec), the weighting

factor is µ0 � 1010 and the step size is γ � 1. The initial condition for the attitude

and angular momentum are given as follows

R0 � exppζ�q,

Π0 � r0 0 0sT ,

where ζ � r0.25 0.5 0.5sT . Results for the numerical solver are shown in Figures

3.1(a)-3.4(a) and results for the baseline solver are shown in Figures 3.1(b)-3.4(b). It

can be seen from Figures 3.1-3.4 that the solution obtained by the numerical solver

is close enough to the solution obtained by the baseline solver.

3.3.2 Simulation with Thrust and Exclusion Zone Constraints (Case II)

In this simulation we consider the thrust constraint and one exclusion zone con-

straint (3.27)-(3.28), with α � 10�4 (N-m), β1 � �0.9962, v1 � r1 0 0sT and
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Figure 3.1: Angular Momentum.

40



0 50 100 150
−8

−6

−4

−2

0

2

4

6

8
x 10

−3

Time (sec)

u 
(N

−
m

)

 

 

u
1

u
2

u
3

(a) Numerical Solver.

0 50 100 150
−8

−6

−4

−2

0

2

4

6

8
x 10

−3

Time (sec)

u 
(N

−
m

)

 

 

u
1

u
2

u
3

(b) Baseline Solver.

Figure 3.2: Control Input.
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Figure 3.3: Thrust Constraint.
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Figure 3.4: Attitude Maneuver.
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w1 � �r0.9276 0.3736 0sT . The simulation time is 300 (sec), the prediction hori-

zon is 2 (sec), the weighting factors are µ0 � 1010, µ1 � 103 and a hybrid step size

method is used, i.e., we switch from one value of γ to the other during the simulation.

We use a hybrid step size method because we observed that γ   1 is helpful to ensure

convergence of (3.41) when the exclusion zone constraint is active whereas with γ � 1

(3.41) is convergent, when the exclusion zone constraint is not active. The initial

condition for the attitude and angular momentum are given as follows

R0 � exppζ�q,

Π0 � r0 0 0sT ,

where ζ � r0 0 0.5sT . Results for the numerical solver are shown in Figures 3.5(a)-

3.9(a) and results for the baseline solver are shown in Figures 3.5(b)-3.9(b). It can be

seen from Figures 3.5-3.9 that the solution obtained by the numerical solver is close

enough to the solution obtained by the baseline solver.

Table 3.1 compares the total computational time for the numerical solver and

the baseline solver, to obtain solutions to the NMPC problems, on a 3.6 GHz Intel

Xeon desktop computer with 16 GB of RAM. This comparison demonstrates the time
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Figure 3.5: Angular Momentum.
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Figure 3.6: Control Input.
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Figure 3.7: Thrust Constraint.
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Figure 3.8: Exclusion Zone Constraint.
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Figure 3.9: Attitude Maneuver.

savings with the numerical solver versus the baseline solver. For Case I, the maximum

time taken by the numerical solver to obtain the optimal solution for one time step

is approximately 0.44 (sec). For Case II, the maximum time taken by the numerical

solver to obtain the optimal solution for one time step is approximately 3.76 (sec).

The code has been implemented using a MATLAB m-file and the computational time

has been assessed using the tic-toc function in MATLAB.

Case Numerical Solver Baseline Solver
I 39.39 (sec) (approx.) 271.01 (sec) (approx.)
II 126.52 (sec) (approx.) 767.97 (sec) (approx.)

Table 3.1: Total Computational Time for both the Solvers.

We will now show that under appropriate assumptions, it is possible to obtain

the minimizer for the constrained optimization problem using the exterior penalty

function approach. This analysis extends the classical penalty convergence theorem

to the setting of smooth manifolds and the classical exact penalization theorem to

the setting of Riemannian manifolds.

44



3.4 Convergence Analysis for the Penalty Function Approach

Let M be a n-dimensional smooth manifold and U be a m-dimensional smooth

manifold. Consider the following discrete-time OCP

min
tuku

N�1

k�0

Jd � KdpqNq �

N�1̧

k�0

Cdpqk, ukq (3.44)

subject to

qk�1 � F pqk, ukq, (3.45)

Hipqk, ukq ¤ 0, i � 0, . . . , L, (3.46)

where Kd : M Ñ R, Cd : M� U Ñ R, F : M� U Ñ M, Hi : M� U Ñ R, qk P M

and uk P U . Let M :
� M� . . .�M
looooooomooooooon

N-copies

�U � . . .� U
looooomooooon

N-copies

. It is easy to verify that M is also

a smooth manifold. Let the set S � M be the feasible region for the discrete-time

OCP (3.44)-(3.46). The discrete-time OCP (3.44)-(3.46) can be shown to reduce to

the following constrained optimization problem (P)

min
mPS

fpmq, (3.47)

where f : M Ñ R. Consider the following unconstrained optimization problem P(µk)

min
mPM

fpmq � µkppmq, (3.48)

where µk
P R

�

and p : M Ñ R
�

is a penalty function, which has the following

properties

(a) p is a function of class C0,

(b) ppmq ¥ 0, for all m P M ,
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(c) ppmq � 0, if and only if m P S.

In addition, tµk
u

8

k�1 is a strictly increasing sequence such that lim
kÑ8

µk
� 8. Let m�

and mk be the solutions for (P) and P(µk), respectively. We are now ready to prove

that under appropriate assumptions, the exterior penalty function approach recovers

the minimizer for the constrained optimization problem.

Theorem III.6. (Penalty Convergence Theorem) Assume that f is a function

of class C0 and let tmk
u

8

k�1 be a sequence of solutions for P(µk). In addition, assume

that there exists a chart pU, φq of M such that m�

P U and with respect to which

tmk
u

8

k�1 converges, then the limit point of tmk
u

8

k�1 solves (P).

Proof. The proof follows arguments similar to the one given in [67]. Let m̄ be the

limit point of tmk
u

8

k�1. By hypothesis, there exists a K ¡ 0 such that mk
P U , for all

k ¡ K and tφpmk
qu

8

k�K converges to φpm̄q. Let xk :
� φpmk�K�1

q, for all k P Z
�

and

x̄ :
� lim

kÑ8

xk
� lim

kÑ8

φpmk
q � φpm̄q. By using the fact that φ is a diffeomorphism, it

is easy to verify that xk is the solution for the following unconstrained optimization

problem

min
xPφpUq

pf � φ�1
qpxq � µk

pp � φ�1
qpxq.

Let x� :
� φpm�

q. Again, by using the fact that φ is a diffeomorphism, it is easy to

verify that x� is the solution for the following constrained optimization problem

min
xPφpS

�

Uq
pf � φ�1

qpxq.

To complete the proof, we require some properties of the exterior penalty function

approach.

Lemma III.7. (Penalty Lemma) The following inequalities hold

(i) pf � φ�1
qpxk

q � µk
pp � φ�1

qpxk
q ¤ pf � φ�1

qpxk�1
q � µk�1

pp � φ�1
qpxk�1

q.
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(ii) pp � φ�1
qpxk

q ¥ pp � φ�1
qpxk�1

q.

(iii) pf � φ�1
qpxk

q ¤ pf � φ�1
qpxk�1

q.

(iv) pf � φ�1
qpx�q ¥ pf � φ�1

qpxk
q � µk

pp � φ�1
qpxk

q ¥ pf � φ�1
qpxk

q.

Proof.

(i) We have the following

pf � φ�1
qpxk�1

q � µk�1
pp � φ�1

qpxk�1
q ¥ pf � φ�1

qpxk�1
q � µk

pp � φ�1
qpxk�1

q,

¥ pf � φ�1
qpxk

q � µk
pp � φ�1

qpxk
q.

(ii) We have the following

pf � φ�1
qpxk

q � µk
pp � φ�1

qpxk
q ¤ pf � φ�1

qpxk�1
q � µk

pp � φ�1
qpxk�1

q,

pf � φ�1
qpxk�1

q � µk�1
pp � φ�1

qpxk�1
q ¤ pf � φ�1

qpxk
q � µk�1

pp � φ�1
qpxk

q.

Subtracting the above two inequalities gives the following

pµk�1
� µk

qpp � φ�1
qpxk

q ¥ pµk�1
� µk

qpp � φ�1
qpxk�1

q.

From the above inequality, it follows that pp � φ�1
qpxk

q ¥ pp � φ�1
qpxk�1

q.

(iii) From (i), we have the following

pf � φ�1
qpxk�1

q � µk
pp � φ�1

qpxk�1
q ¥ pf � φ�1

qpxk
q � µk

pp � φ�1
qpxk

q.

From (ii), pp � φ�1
qpxk

q ¥ pp � φ�1
qpxk�1

q, which implies that pf � φ�1
qpxk

q ¤

pf � φ�1
qpxk�1

q.
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(iv) We have the following

pf � φ�1
qpx�q � pf � φ�1

qpx�q � µk
pp � φ�1

qpx�q,

¥ pf � φ�1
qpxk

q � µk
pp � φ�1

qpxk
q,

¥ pf � φ�1
qpxk

q.

We are now ready to complete the proof of Theorem III.6. From Lemma III.7, it

follows that tpf �φ�1
qpxk

q�µk
pp�φ�1

qpxk
qu

8

k�1 is a nondecreasing sequence, bounded

above by pf �φ�1
qpx�q, which implies that lim

kÑ8

rpf �φ�1
qpxk

q�µk
pp�φ�1

qpxk
qs � r� ¤

pf �φ�1
qpx�q. Using the continuity of the function pf �φ�1

q, it follows that lim
kÑ8

µk
pp�

φ�1
qpxk

q � r�� pf � φ�1
qpx̄q. Using the facts that pp � φ�1

qpxk
q ¥ 0 and lim

kÑ8

µk
� 8,

it follows from the above equality that lim
kÑ8

pp � φ�1
qpxk

q � 0. Using the continuity of

the function pp�φ�1
q, it follows that pp�φ�1

qpx̄q � 0. This shows that m̄ is a feasible

solution for (P). From Lemma III.7, it follows that pf � φ�1
qpxk

q ¤ pf � φ�1
qpx�q,

which implies that pf �φ�1
qpx̄q ¤ pf �φ�1

qpx�q, or equivalently, fpm̄q ¤ fpm�

q, which

further implies that fpm̄q � fpm�

q. This shows that the limit point of tmk
u

8

k�1 solves

(P).

Corollary III.8. Let M � Rn and U � Rm. Assume that f is a function of class

C0 and let tmk
u

8

k�1 be a sequence of solutions for P(µk). If tmk
u

8

k�1 converges, then

the limit point of tmk
u

8

k�1 solves (P).

Proof. By setting U � M and φ � idM , it is easy to verify that Theorem III.6

holds.

The above convergence analysis shows that the exterior penalty function approach

recovers the minimizer for the constrained optimization problem only in the limit.

This may not be desirable as the solution from the exterior penalty function approach
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is not guaranteed to be a feasible solution for the constrained optimization problem

and the problem may become numerically ill-conditioned as the penalty factor in-

creases (see Remark III.5). To avoid this situation, under appropriate assumptions,

it is possible to come up with an exact penalization approach.

LetM be a n-dimensional connected Riemannian manifold and U be am-dimensi-

onal connected Riemannian manifold. It is easy to verify that M is also a connected

Riemannian manifold. For p, q P M , the Riemannian distance function is given by

dpp, qq :� inf
γPΩ

lpγq, (3.49)

where Ω denotes the collection of all piecewise C1 curves joining p, q and the length

of γ is given by

lpγq �

» b

a

} 9γptq}γptqdt, (3.50)

where γ : ra, bs Ñ M , with γpaq � p, γpbq � q and }.}m denotes the induced norm at

the point m P M . The distance between a point m P M and the set S is given by

dSpmq :� inf
m1

PS
dpm,m1

q. (3.51)

We will now introduce the definition of a Lipschitz function on an open subset of M .

Definition III.9. Let U be an open subset of M . A function f̃ : U Ñ R is said to

be Lipschitz, with Lipschitz constant K̃   8, if

|f̃pm1q � f̃pm2q| ¤ K̃dpm1, m2q, for all m1, m2 P U. (3.52)

Theorem III.10. (Exact Penalization Theorem) Assume that f is a Lipschitz

function on M, with Lipschitz constant K. Choose any K̄ ¥ K, then m� is also a

49



minimizer for the following unconstrained optimization problem

min
mPM

fpmq � K̄dSpmq. (3.53)

If K̄ ¡ K and the set S is closed, then any minimizer m̄ for (3.53) is also a minimizer

for (P) and so, in particular, m̄ P S.

Proof. It is well known that with the Riemannian distance function, any connected

Riemannian manifold is a metric space whose metric topology is the same as the

original manifold topology (see, e.g., [60]). The proof now follows from Theorem

3.2.1 of [93].

50



CHAPTER IV

Neighboring Extremal Optimal Control for

Mechanical Systems on Riemannian Manifolds

In this chapter, we extend NEOC, which is well established for OCPs defined on

a Euclidean space (see, e.g., [14]), to the setting of Riemannian manifolds. See also

Chapter II for the discussion on NEOC for OCPs defined on a Euclidean space. We

further specialize the results to the case of Lie groups. An example along with the

simulation results is presented. We will now discuss the OCP that will be studied in

this chapter. In what follows, we will suppress the explicit dependence of the state,

costate and control trajectories on time unless otherwise necessary.

4.1 Optimal Control Problem

Let Q be a n-dimensional complete connected Riemannian manifold and tXiu
n
i�1

be smooth vector fields on Q. For a given time interval r0, T s, it is assumed that

the flow of each vector field in tXiu
n
i�1 exists, for all t P r0, T s. Additionally, if Q

is compact, then each vector field in tXiu
n
i�1 is complete (see, e.g., [60]). Note that

in this chapter, we only consider the class of fully-actuated controlled mechanical

systems for which the Lagrangian L : TQ Ñ R is given by Lpvqq �
1

2
xvq, vqy, where
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vq P TqQ. Consider the following OCP (P)

min
up.q

J �

1

2

» T

0

xuptq, uptqydt (4.1)

subject to

dq

dt
ptq � vptq, qp0q � q0, qpT q � qT , (4.2)

Dv

dt
ptq � uptq, vp0q � v0, vpT q � vT , (4.3)

where qp.q P C2
pr0, T s,Qq, vp.q P C1

pr0, T s, Tqp.qQq and the n-tuple of control inputs

ru1 . . . un
s

T take values in Rn. Note that in general, the n-tuple of control inputs

ru1 . . . un
s

T are constrained to take values in the set U � Rn (nonempty, connected,

with 0 P intpUq and also generally assumed to be compact and convex). In a more

general setting, e.g., when admissible controls are only assumed to be measurable

locally bounded mappings taking values in the set U , more technical assumptions are

needed (see, e.g., [3], [16]) but we do not consider such a setting in this chapter.

Remark IV.1. It is possible to generalize the idea presented in this chapter to a cost

functional, which has a more general form with a more complicated dynamic con-

straint (see, e.g., [47]). We choose to work with the cost functional (4.1) as the

solution for (P) has a nice geometric interpretation thereby helping to present the

main idea of the chapter clearly and avoid unnecessary mathematical complications.

In fact, (P) is equivalent to the well known Riemannian geodesic problem (see, e.g.,

[9]). The local existence and uniqueness of the solution for (P) follows from the

theorems on local existence and uniqueness of the solution for ordinary differential

equations. The equations of motion for the class of fully-actuated controlled mechan-
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ical systems with the Lagrangian defined above are given by

∇
9q 9q �

ņ

l�1

ulXlpqq, (4.4)

where q : r0, T s Ñ Q. The vertical lift of a vector field X on Q is the vector field

Xvlift on TQ given by

Xvlift
pvqq �

d

dt
pvq � tXpqqq

�

�

�

�

t�0

P TvqTQ, (4.5)

where vq P TqQ. In local coordinates, (4.5) has a simple interpretation. Let pq1, . . . , qnq

be the local coordinates for Q and pq1, . . . , qn, v1, . . . , vnq be the corresponding local

coordinates for TQ. If X �

ņ

i�1

X i
B

Bqi
, then Xvlift

�

ņ

i�1

X i
B

Bvi
, where pX1, . . . , Xn

q

are the component functions of X in some given chart. We can now re-write p4.4q as

follows

9γ � Zpγq �

ņ

l�1

ulXvlift
l pγq, (4.6)

where γ : r0, T s Ñ TQ and Z is the geodesic spray associated with the connection ∇.

In local coordinates, Z �

ņ

i�1

vi
B

Bqi
�

ņ

i�1

ņ

j,k�1

Γi
jkv

jvk
B

Bvi
. Note that γ is the canonical

lifting of q, i.e., pπ � γqptq � qptq. It is not difficult to see that p4.4q is equivalent to

p4.6q. Indeed, in local coordinates, p4.4q has the following form

:qi �

ņ

j,k�1

Γi
jk 9q

j
9qk �

ņ

l�1

ulXlpqq, i � 1, . . . , n. (4.7)

Observe that p4.7q is system of second order ordinary differential equations on Q,

which is equivalent to a system of first order ordinary differential equations on TQ,
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which has the following form

9qi � vi, i � 1, . . . , n, (4.8)

9vi � �

ņ

j,k�1

Γi
jkv

jvk �

ņ

l�1

ulXlpqq, i � 1, . . . , n. (4.9)

The connection ∇ induces an Ehresmann connection on π : TQ Ñ Q such that, for

all vq P TqQ, there is a splitting of TvqTQ into a horizontal subspace and a vertical

subspace, i.e., TvqTQ � HvqpTQq`Vvqpπq, where HvqpTQq � TqQ and Vvqpπq � TqQ.

Note that HvqpTQq � span

#

B

Bqi
�

ņ

j,k�1

Γk
ijv

j
B

Bvk

+n

i�1

and Vvqpπq � span

"

B

Bvi

*n

i�1

.

It is easy to verify that with respect to the above splitting, for all vq P TqQ, Zpvqq P

HvqpTQq and Xvlift
pvqq P Vvqpπq. For more details see [2], [5], [9], [17], [64], [65], [89].

In view of the above discussion, we note that p4.2q-p4.3q are equivalent to p4.6q. Using

the splitting of TvqTQ discussed above, for all r P TvqTQ, r can be uniquely written

as follows

r � rh � rv,

where rh P HvqpTQq and rv P Vvqpπq. For all pairs r1, r2 P TvqTQ, the Riemannian

metric (Sasaki metric) on TQ is obtained in terms of the Riemannian metric on Q as

follows

xxr1, r2yy � xrh1 , r
h
2y � xrv1, r

v
2y.

It is easy to verify that p4.1q makes sense as
1

2

» T

0

xxuptq, uptqyydt �
1

2

» T

0

xuptq, uptqydt.

For more details see [83], [84], [89].

Before we proceed further, we introduce the concept of a variation (see, e.g., [2],

[9], [16], [29], [68], [72]). Let Ω denote the set of all C2 curves on Q satisfying the
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boundary conditions (4.2)-(4.3). The set Ω is also referred to as the path space of

Q (see, e.g., [72]). For a curve qptq P Ω, TqptqΩ is a vector space consisting of all C2

vector fields wptq along qptq such that wp0q � 0 and wpT q � 0.

Definition IV.2 ([72]). A one-parameter variation of a curve q P Ω is a function

q̄ : p�ǫ, ǫq Ñ Ω, for some ǫ ¡ 0 such that

(a) q̄p0q � q,

(b) The map qǫ : r0, T s � p�ǫ, ǫq Ñ Q defined by qǫpt, ǭq � q̄pǭqptq is C2 on r0, T s �

p�ǫ, ǫq.

Note that a one-parameter variation of a curve qptq P Ω defined above is proper (see,

e.g., [29]). The vector field vptq :
�

Bqǫ

Bt
pt, 0q is the velocity vector field along qptq

and the vector field wptq :�
Bqǫ

Bǫ
pt, 0q is the variation vector field associated with the

one-parameter variation qǫ (see, e.g., [29], [72]). By setting qǫpt, ǭq :� expqptqpǭwptqq,

we obtain a one-parameter variation of a curve qptq P Ω, where wptq P TqptqΩ (see,

e.g., [29], [72]).

To demonstrate NEOC for (P), we first obtain the nominal trajectory, by solving

(P) using two methods. The first method is solving (P) using Lagrange multipliers

and the second method is solving (P) as a variational problem.

4.2 Solution Using Lagrange Multipliers

We proceed by following the same procedure as given in [24] and defining the

augmented cost functional as follows

Ja
�

» T

0

�

1

2
xu, uy � λ1

�

dq

dt
� v




� λ2

�

Dv

dt
� u


�

dt, (4.10)

where λ1p.q, λ2p.q P C1
pr0, T s, T �

qp.qQq. We will now fix some notation.
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4.2.1 Notation

For any smooth vector field y �

ņ

i�1

yiptqXipqq along the curve q, with velocity

vector field v,
Dy

dt
�

ņ

i�1

9yiptqXipqq �

ņ

i�1

yiptqp∇vXiqpqq, or in shorthand is written

as
Dy

dt
� 9y � ∇vy. Using this shorthand,

Dy

Bǫ

�

�

�

�

ǫ�0

� δy � ∇wy. Similarly, for any

smooth covector field α �

ņ

i�1

αi
ptqωipqq along the curve q, with velocity vector field v,

Dα

dt
�

ņ

i�1

9αi
ptqωipqq�

ņ

i�1

αi
ptqp∇vωiqpqq, or in shorthand is written as

Dα

dt
� 9α�∇vα.

Using this shorthand,
Dα

Bǫ

�

�

�

�

ǫ�0

� δα � ∇wα. For more details see [24]. Before we

proceed further, we need a few lemmas.

Lemma IV.3 ([24]).

» T

0

λ2

�

δ
Dv

dt




dt �

» T

0

�

�

Dλ2

dt
pδvq � λ2p∇δvvq

�

dt.

Lemma IV.4 ([29], [72]). If the connection ∇ is symmetric, then

D

Bǫ

Bqǫ

Bt
�

D

Bt

Bqǫ

Bǫ
.

The necessary conditions for a normal extremal (see, e.g., [9]) for (P) are obtained

by setting

dJa
ǫ

dǫ

�

�

�

�

ǫ�0

� 0,

where

Ja
ǫ �

» T

0

�

1

2
xuǫ, uǫy � λ1

�

Bqǫ

Bt
� vǫ




� λ2

�

Dvǫ

Bt
� uǫ


�

dt.
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The above condition, with the use of Lemmas IV.3-IV.4, gives the following

dJa
ǫ

dǫ

�

�

�

�

ǫ�0

�

» T

0

�

xu, δu�∇wuy � λ1

�

Dw

dt
� δv �∇wv




�

λ2

�

δ
Dv

dt
�∇w

Dv

dt
� δu�∇wu


�

dt,

�

» T

0

�

xu,∇wuy � xu, δuy � λ1

�

Dw

dt
�∇wv




� λ1pδvq�

λ2

�

∇w

Dv

dt
�∇wu




� λ2

�

δ
Dv

dt




� λ2pδuq

�

dt,

�

» T

0

�

�

Dλ1

dt
pwq � λ1p∇wvq � λ2

�

∇w

Dv

dt
�∇wu




� xu,∇wuy�

Dλ2

dt
pδvq � λ1pδvq � λ2p∇δvvq � xu, δuy � λ2pδuq

�

dt,

where we have used integration by parts along with the fact that the one-parameter

variation qǫ is proper. We are now ready to state a theorem.

Theorem IV.5 ([24]). A normal extremal for (P) satisfies the following equations

dq

dt
� v, (4.11)

Dv

dt
� u, (4.12)

Dλ1

dt
� �λ1p∇vq � λ2p∇λ

7

2q, (4.13)

Dλ2

dt
� �λ1 � λ2p∇vq, (4.14)

where u � λ
7

2.

We assume that the nominal solution has been obtained for a fixed initial condition.

Suppose there is a small variation in the initial condition and we would like to update

the optimal control for (P). Instead of solving (P) from scratch, we employ NEOC

as described previously. We will now fix some more notation.
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4.2.2 Notation

In what follows, we use superscript n to denote the nominal trajectory and the

corresponding vector and covector fields. The one-parameter variation of qnptq is

denoted by qnǫ . Note that the one-parameter variation of qnptq is not proper as there

is a small variation in the initial condition. The vector field vnptq :�
Bqnǫ
Bt

pt, 0q is the

velocity vector field along qnptq and the vector field wn
ptq :�

Bqnǫ
Bǫ

pt, 0q is the variation

vector field associated with the one-parameter variation qnǫ .

Employing the NEOC approach described previously, the variational equations

for (4.11)-(4.14) are given as follows

D

Bǫ

Bqnǫ
Bt

�

�

�

�

ǫ�0

�

Dvnǫ
Bǫ

�

�

�

�

ǫ�0

, (4.15)

D

Bǫ

Dvnǫ
Bt

�

�

�

�

ǫ�0

�

Dλ
n7
2,ǫ

Bǫ

�

�

�

�

ǫ�0

, (4.16)

D

Bǫ

Dλn
1,ǫ

Bt

�

�

�

�

ǫ�0

�

D

Bǫ

�

�λn
1,ǫp∇vnǫ q � λn

2,ǫp∇λ
n7
2,ǫq

	

�

�

�

�

ǫ�0

, (4.17)

D

Bǫ

Dλn
2,ǫ

Bt

�

�

�

�

ǫ�0

�

D

Bǫ

�

�λn
1,ǫ � λn

2,ǫp∇vnǫ q
�

�

�

�

�

ǫ�0

. (4.18)

Note that the change in the control trajectory corresponding to the change in the

initial condition is given by
Dλ

n7
2,ǫ

Bǫ

�

�

�

�

ǫ�0

. Before we proceed further, we need a few

lemmas.

Lemma IV.6 ([29], [72]). Given any smooth vector field y along qǫ, then

D

Bǫ

Dy

Bt
�

D

Bt

Dy

Bǫ
� R

�

Bqǫ

Bǫ
,
Bqǫ

Bt




y.

Remark IV.7. Note that the definition of the curvature tensor of the connection ∇

used in this chapter, differs by a negative sign from the one defined in [29], [72].
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Lemma IV.8 ([24]). Given y, z P XpQq and α P X�

pQq, then

D

Bǫ
αp∇zyq �

Dα

Bǫ
p∇zyq � α

�

D

Bǫ
p∇zyq �∇Dz

Bǫ
y




.

Remark IV.9. Note that the expression,
D

Bǫ
p∇zyq �∇Dz

Bǫ
y in Lemma IV.8 represents

the second covariant derivative.

We are now ready to state two theorems.

Theorem IV.10. The variational equations p4.15q-p4.18q give the following equations

9wn
� δvn � rwn, vns, (4.19)

δ 9vn �∇vnδv
n
�∇δvnv

n
�∇wn

9vn �∇wn∇vnv
n
� δλ

n7
2 �∇wnλ

n7
2 , (4.20)

pδ 9λn
1 �∇wn 9λn

1 �∇δvnλ
n
1 �∇vnδλ

n
1 �∇wn∇vnλ

n
1 qpzq � p�δλn

1 �∇wnλn
1 qp∇zv

n
q�

λn
1 p∇zδv

n
�∇wn∇zv

n
�∇∇wnzv

n
q � pδλn

2 �∇wnλ2
qp∇zλ

n7
2 � λn

2 p∇zλ
n7
2 q�

∇wn∇zλ
n7
2 �∇∇wnzλ

n7
2 q, (4.21)

pδ 9λn
2 �∇wn 9λn

2 �∇δvnλ
n
2 �∇vnδλ

n
2 �∇wn∇vnλ

n
2 qpzq � p�δλn

1 �∇wnλn
1 qpzq�

pδλn
2 �∇wnλn

2 qp∇zv
n
q � λn

2 p∇zδv
n
�∇wn∇zv

n
�∇∇wnzv

n
q, (4.22)

where z P XpQq.

Proof. Using Lemma IV.4, (4.15) can be re-written as follows

D

Bt

Bqnǫ
Bǫ

�

�

�

�

ǫ�0

�

Dvnǫ
Bǫ

�

�

�

�

ǫ�0

.

The above equation gives the following

9wn
� δvn �∇wnvn �∇vnw

n.

Using the symmetry of the connection ∇, the above equation can be re-written as
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follows

9wn
� δvn � rwn, vns.

Using Lemma IV.6, (4.16) can be re-written as follows

D

Bt

Dvnǫ
Bǫ

�

�

�

�

ǫ�0

�Rpwn, vnqvn �
Dλ

n7
2,ǫ

Bǫ

�

�

�

�

ǫ�0

,

where Rpwn, vnqvn :
� ∇wn∇vnv

n
�∇vn∇wnvn�∇

rwn,vnsv
n. The above equation gives

the following

δ 9vn �∇
9wnvn �∇wn

9vn �∇vnδv
n
�∇vn∇wnvn �Rpwn, vnqvn � δλn7

2 �∇wnλn7
2 .

Substituting 9wn
� δvn � rwn, vns into the above equation, gives the following

δ 9vn �∇vnδv
n
�∇δvnv

n
�∇wn

9vn �∇wn∇vnv
n
� δλ

n7
2 �∇wnλ

n7
2 .

Similarly, the other two variational equations can be derived using Lemma IV.8.

Theorem IV.11. The variational equations p4.19q-p4.20q give the following Jacobi

equation

:wn
� 2∇vn 9w

n
�∇

9vnw
n
�∇vn∇vnw

n
�Rpwn, vnqvn � δλn7

2 �∇wnλn7
2 . (4.23)

Proof. Substituting (4.19) into (4.20), gives the following

:wn
� r 9wn, vns � rwn, 9vns �∇vn 9w

n
�∇vnrw

n, vns �∇
9wnvn �∇

rwn,vnsv
n
�∇wn

9vn�

∇wn∇vnv
n
� δλ

n7
2 �∇wnλ

n7
2 .

Using the symmetry of the connection ∇, the above equation can be re-written as
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follows

:wn
�∇vn 9w

n
�∇

9wnvn �∇
9vnw

n
�∇wn

9vn �∇vn 9w
n
�∇vn∇vnw

n
�∇vn∇wnvn�

∇
9wnvn �∇

rwn,vnsv
n
�∇wn

9vn �∇wn∇vnv
n
� δλ

n7
2 �∇wnλ

n7
2 .

Using the definition of the curvature tensor of the connection ∇, the above equation

can be re-written as follows

:wn
� 2∇vn 9w

n
�∇

9vnw
n
�∇vn∇vnw

n
�Rpwn, vnqvn � δλ

n7
2 �∇wnλ

n7
2 ,

where Rpwn, vnqvn :
� ∇wn∇vnv

n
�∇vn∇wnvn �∇

rwn,vnsv
n.

Remark IV.12. It should be noted that (4.23) plays a crucial role in determining

conjugate points for (P). It is also worthwhile to note that (4.23) corresponds to

(3.3) in Theorem 4 of [15], where the case of a Lie group has been considered but not

in a control theoretic setting. For computational purposes, (4.19)-(4.22) would result

in a TPBVP and the change in the control trajectory corresponding to the change in

the initial condition can then be computed after solving the TPBVP. This point will

become more clear, when we consider an example presented later in the chapter.

4.3 Solution as a Variational Problem

We will follow the same procedure as given in [9]. Before we proceed further, we

need a lemma.

Lemma IV.13 ([29], [72]). Given w, x, y, z P XpQq, then

xRpx, yqz, wy � xRpw, zqy, xy.
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The necessary conditions for a normal extremal for (P) are obtained by setting

dJǫ

dǫ

�

�

�

�

ǫ�0

� 0,

where

Jǫ �
1

2

» T

0

B

D2qǫ

Bt2
,
D2qǫ

Bt2

F

dt.

The above condition, with the use of Lemmas IV.4, IV.6, IV.13, gives the following

dJǫ

dǫ

�

�

�

�

ǫ�0

�

» T

0

B

Dv

dt
,
D2w

dt2
�Rpw, vqv

F

dt,

�

» T

0

B

D3v

dt3
�R

�

Dv

dt
, v




v, w

F

dt,

where we have used integration by parts twice along with the fact that the one-

parameter variation qǫ is proper. We are now ready to state a theorem.

Remark IV.14. It is sometimes appropriate to assume that Q is parallelizable (see,

e.g., [9]). This means that there exist smooth vector fields tXiu
n
i�1 on Q such that the

vectors tXipqqu
n
i�1 form an orthonormal basis for TqQ, for all q P Q. Given smooth

vector fields tXiu
n
i�1 on Q, there exist unique smooth covector fields tωi

u

n
i�1 onQ such

that the covectors tωi
pqquni�1 are the dual basis for T �

q Q, for all q P Q. Equivalently,

the assumption that Q is parallelizable means that TQ is a trivial bundle. The

assumption that Q is parallelizable is restrictive in some sense but it is satisfied for

the case of Lie groups (see, e.g., [60]), which are of special interest.

Theorem IV.15 ([74]). A necessary condition for a curve q P C2
pr0, T s,Qq to be a

normal extremal for (P) is that the velocity vector field v �
dq

dt
satisfies the following
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equation

D3v

dt3
�R

�

Dv

dt
, v




v � 0. (4.24)

Remark IV.16. In [24], it has been shown that (4.11)-(4.14) are equivalent to (4.24).

In the case when Q � Rn, with the standard inner product, the covariant derivative

is the usual derivative and R � 0. We now see that p4.24q simplifies to the equation

<q � 0, which shows that each coordinate function of a normal extremal q for (P) is

a cubic spline.

We do not give all the details, as they are similar to the previous section. The

variational equation for (4.24) is given as follows

D

Bǫ

�

D3vnǫ
Bt3

�R

�

Dvnǫ
Bt

, vnǫ




vnǫ




�

�

�

�

ǫ�0

� 0. (4.25)

Note that the change in the control trajectory corresponding to the change in the

initial condition is given by
D2qǫ

Bt2

�

�

�

�

ǫ�0

. We will now specialize the results to the case

of Lie groups.

4.4 Application to Lie Groups

We will now present NEOC for OCPs for mechanical systems evolving on Lie

groups. Let G be a a finite-dimensional compact semisimple Lie group. Given x, y

and z are left invariant vector fields on G and given α is a left invariant one-form on

G, then ∇xy �
1

2
rx, ys, ∇xα � �

1

2
ad�x α (see, e.g., [24]) and Rpx, yqz � �

1

4
rx, ry, zss

(see, e.g., [23], [89]).

Remark IV.17. Note that the adjoint representation is equivalent to the coadjoint

representation for semisimple Lie algebras.

We will still retain the same notation (P), in the case when Q � G. We are now
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ready to state a lemma.

Lemma IV.18 ([24]). A normal extremal for (P) satisfies the following equations

9g � TeLgpvq, (4.26)

9v � u, (4.27)

9λ1 � ad�v λ1, (4.28)

9λ2 � �λ1, (4.29)

where u � λ
7

2.

We assume that the nominal solution has been obtained for a fixed initial condition.

Suppose there is a small variation in the initial condition and we would like to update

the optimal control for (P). Instead of solving (P) from scratch, we employ NEOC as

described previously. The variational equations for p4.26q-p4.29q are given as follows

9wn
� δvn � rwn, vns, (4.30)

δ 9vn � δλ
n7
2 , (4.31)

δ 9λn
1 � ad�δvn λ

n
1 � ad�vn δλ

n
1 , (4.32)

δ 9λn
2 � �δλn

1 . (4.33)

To illustrate NEOC for OCPs for mechanical systems evolving on Lie groups, we now

consider an example, which is a slightly modified form of the example presented in

[24].

4.4.1 Numerical Example

Consider the following OCP

min
up.q

J �

1

2

» T

0

}uptq}2Fdt (4.34)
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subject to

9Qptq � QptqΩ1ptq, Qp0q � Q0, QpT q � QT , (4.35)

9Ω1ptq � uptq, Ω1p0q � Ω10, Ω1pT q � Ω1T , (4.36)

where Qp.q P C2
pr0, T s, SOpnqq and Ω1p.q P C1

pr0, T s, sopnqq. A normal extremal for

the OCP (4.34)-(4.36) satisfies the following equations (see [24])

9Q � QΩ1, (4.37)

9Ω1 � λ2, (4.38)

9λ1 � �λ1Ω
T
1 , (4.39)

9λ2 � �

1

2
pQTλ1 � λT

1Qq, (4.40)

where λ1p.q, λ2p.q P C1
pr0, T s, sopnqq and the optimal control u� � λ2. By hypothe-

sizing a solution of the form λ1 � QΩ2, with Ω2p.q P C1
pr0, T s, sopnqq, p4.37q-p4.40q

give the following equations

9Q � QΩ1, (4.41)

9Ω1 � λ2, (4.42)

9Ω2 � rΩ2,Ω1s, (4.43)

9λ2 � �Ω2, (4.44)

which are in the form of p4.26q-p4.29q. For more details see [24]. We assume that

the nominal solution has been obtained for a fixed initial condition rQp0q Ω1p0qs
T
�

rQ0 Ω10s
T . Suppose there is a small variation in the initial condition, i.e., rQp0q Ω1p0qs

T

� rQ0Q̄0 Ω10 � Ω̄10s
T , where Q̄0 P SOpnq and Ω̄10 P sopnq. We would now like to

update the optimal control for the OCP (4.34)-(4.36). Instead of solving the OCP
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(4.34)-(4.36) from scratch, we employ NEOC as described previously. The variational

equations for p4.41q-p4.44q are given as follows

9wn
� δΩn

1 � rwn,Ωn
1 s, (4.45)

δ 9Ωn
1 � δλn

2 , (4.46)

δ 9Ωn
2 � rδΩn

2 ,Ω
n
1 s � rΩn

2 , δΩ
n
1 s, (4.47)

δ 9λn
2 � �δΩn

2 , (4.48)

with wn
p0q � logpQ̄0q, wn

pT q � 0n�n, δΩn
1 p0q � Ω̄10 and δΩn

1 pT q � 0n�n. Note

that the change in the control trajectory corresponding to the change in the initial

condition is given by δλn
2 . We will now present simulation results for the case when

n � 3, with T � 10 (sec) and the following data

Q0 � exppv�1 q,

QT � exppv�2 q,

Q̄0 � exppv�3 q,

Ω10 � v�4 ,

Ω1T � v�5 ,

Ω̄10 � v�6 ,

with

v1 � r0.25 0.5 0.5sT ,

v2 � r0 0 0sT ,

v3 � r0.1 0.1 0.1sT ,

v4 � r0 0 0sT ,
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v5 � r0 0 0sT ,

v6 � r0.01 0.01 0.01sT .

In the subsequent figure (Figure 4.3), the attitude maneuver is plotted on S2, where

the vectors rx y zsT corresponding to the first, second and third column of Q0 are

plotted in dashed-red, dashed-green and dashed-blue, respectively. Similarly, the

vectors rx y zsT corresponding to the first, second and third column of QT are plotted

in red, green and blue, respectively. For all other Qptq, t P p0, T q, only the coordinates

are shown in the corresponding colors.

Figure 4.1 shows the trajectories of Ω1 obtained from NEOC and by re-solving

the OCP (4.34)-(4.36). Figure 4.2 shows the trajectories of u obtained from NEOC

and by re-solving the OCP (4.34)-(4.36). Figure 4.3 shows the attitude maneuver

obtained from NEOC and by re-solving the OCP (4.34)-(4.36). From Figures 4.1-4.3,

one can see that the solution obtained from NEOC is close enough to the solution

obtained by re-solving the OCP (4.34)-(4.36).
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Figure 4.1: Angular Velocity.
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Figure 4.2: Control Input.
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Figure 4.3: Attitude Maneuver.
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CHAPTER V

Optimal Control Problems on Lie Groups with

Symmetry Breaking Cost Functions

In this chapter, we investigate the reduction for OCPs on Lie groups with symme-

try breaking cost functions. From the Lagrangian point of view, by considering the

OCP as a constrained variational problem, we obtain the Euler-Poincaré equations.

Furthermore, from the Hamiltonian point of view, we obtain the Lie-Poisson equa-

tions. We also study the relation between both formalisms using a reduced Legendre

transform.

Several examples are presented, which illustrate the application of the proposed

approach. We also develop a variational integrator for OCPs on Lie groups with sym-

metry breaking cost functions. The resulting variational integrator has the preserva-

tion properties of the standard variational integrators. We will now discuss the OCP

that will be studied in this chapter. In what follows, we will suppress the explicit

dependence of the state, costate and control trajectories on time unless otherwise

necessary.
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5.1 Optimal Control Problems on Lie Groups

Let G be a n-dimensional Lie group. We will now define a left-invariant control

system on G.

Definition V.1. A left-invariant control system on G is given by

9g � TeLgpuq,

where gp.q P C1
pr0, T s, Gq and u is a curve in the vector space g. More precisely, if

g � spante1, . . . , em, em�1, . . . , enu, then u is given by

uptq � e0 �

m̧

i�1

ui
ptqei,

where the m-tuple of control inputs ru1 . . . um
s

T take values in Rm.

Remark V.2. If m   n, then the left-invariant control system is under-actuated

otherwise it is fully-actuated.

Consider the following OCP (P)

min
up.q

J �

» T

0

rCpgptq, uptqq � V pgptqqs dt (5.1)

subject to

9gptq � TeLgptqpuptqq, gp0q � g0, gpT q � gT , (5.2)

where C : TG Ñ R is a G-invariant function, i.e., CpLgphq, uq � Cph, uq, for all

ph, uq P G� g and V : GÑ R (potential function) is not a G-invariant function. We

will now study the Euler-Poincaré reduction for (P).
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5.1.1 Euler-Poincaré Reduction

We can solve (P) as a constrained variational problem using the method of La-

grange multipliers (see, e.g, [9], [57]). The Lagrangian L : G� g` T �GÑ R for (P)

is given by

Lpg, u, λgq � Cpg, u� e0q � V pgq � λgpTeLgpu� e0qq, (5.3)

where λgptq � T �

g Lg�1
pλptqq P T �

g G, with λp.q P C1
pr0, T s, g�q. Let g� � spante1, . . . ,

em, em�1, . . . , enu, then λptq � λ0ptqe
0
�

ņ

i�m�1

λiptqe
i, where the pn�m�1q-tuple of La-

grange multipliers rλ0 λm�1 . . . λns
T take values in Rn�m�1. The reduced Lagrangian

ℓ : G� g` g� Ñ R can now be obtained and is given by

ℓpg, u, λq � Cpu� e0q � V pgq � λpu� e0q, (5.4)

where with a slight abuse of notation, we write Cpe, u � e0q � Cpu � e0q. A nor-

mal extremal (see, e.g., [9]) for (P) now satisfies the following Euler-Poincaré type

equations

d

dt
pDu C � λq � ad�upDu C � λq � T �

e LgpDg V q. (5.5)

For more details see [57], [75].

In order to describe the time evolution of u and λ in (5.5), we state the following

proposition.

Proposition V.3. Assume that g � k` p such that

rk, ks � p,

rp, ks � k,
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rp, ps � p,

where k � spante1, . . . , emu and p � spante0, em�1, . . . , en�1u. The time evolution of

u and λ in (5.5) are given by the following equations

d

dt
Du C � ad�e0 Du C � ad�uk

λ� T �

e LgpDg V q
�

�

k�
,

dλ

dt
� ad�e0 λ� ad�uk

DuC � T �

e LgpDg V q
�

�

p�
,

where uk �

m̧

i�1

uiei P k.

Proof. It is easy to verify that g� � k� ` p� such that

ad�k k
�

� p�,

ad�p k
�

� k�,

ad�p p
�

� p�,

ad�k p
�

� k�,

where k� � spante1, . . . , emu and p� � spante0, em�1, . . . , en�1
u. By using the fact

that u � e0�uk, it is also easy to verify that DuC P k�. Also, by construction λ P p�.

We now have a splitting of the left hand side of (5.5) in k� and p�. Again, by using

the fact that u � e0 � uk, we have the following

ad�uDu C � ad�e0 DuC � ad�uk
Du C,

ad�u λ � ad�e0 λ� ad�uk
λ,

where by using the above relations, it is also easy to verify that ad�e0 DuC P k�,

ad�uk
DuC P p�, ad�e0 λ P p� and ad�uk

λ P k�. Since, T �

e LgpDg V q P g�, we define the
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following

T �

e LgpDg V q
�

�

k�
:
�

m̧

i�1

T �

e LgpDg V qe
i,

T �

e LgpDg V q
�

�

p�
:
� T �

e LgpDg V qe
0
�

n�1̧

i�m�1

T �

e LgpDg V qe
i.

We now have a splitting of the right hand side of (5.5) in k� and p�. So, (5.5) splits

into the following equations

d

dt
Du C � ad�e0 Du C � ad�uk

λ� T �

e LgpDg V q
�

�

k�
,

dλ

dt
� ad�e0 λ� ad�uk

DuC � T �

e LgpDg V q
�

�

p�
.

Remark V.4. Note that semisimple Lie algebras admit a Cartan decomposition, i.e.,

if g is semisimple, then g � k` p such that

rk, ks � p,

rp, ks � k,

rp, ps � p,

where k � tx P g | θpxq � �xu is the �1 eigenspace of the Cartan involution θ and

p � tx P g | θpxq � xu is the �1 eigenspace of the Cartan involution θ. In addition,

κgp., .q is positive definite on k and negative definite on p. So, connected semisimple

Lie groups are potential candidates that satisfy the assumption of Proposition V.3.

Conversly, a Cartan decomposition (above relations) determines a Cartan involution

θ (see, e.g., [52]). For more details see [25], [44], [52]. Also, note that the roles of k

and p can be reversed in Proposition V.3.

We will now present some examples.
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5.1.2 Minimum Weighted Input Energy Optimal Control Problem

Consider (P), with e0 equal to zero and let the cost function be given by

Cpg, uq �
1

2
xu, Ipuqy, (5.6)

where I : g Ñ g is a linear mapping, with I ¡ 0. A normal extremal for (P), with e0

equal to zero and with the cost function (5.7) satisfies the following Euler-Poincaré

type equations

Ip 9uq � ad�u λ,

9λ � ad�u Ipuq.

Note that a similar case is also studied in [57], [58].

5.1.3 Linear Quadratic Regulator Type Problem on SO(3)

Consider (P), with G � SOp3q, e0 equal to zero and let the cost function be given

by

Cpg, uq �
1

2
}R

1

2u}2F , (5.7)

V pgq �
1

2
}Q

1

2
pg � I3�3q}

2
F , (5.8)

where Q © 0 and R ¡ 0. This is a LQR type problem on SOp3q (see [80]) and it

is easy to verify that the potential function V is not invariant under the action of

SOp3q. Note that uptq �
2̧

i�1

ui
ptqei, where the elements of the basis of sop3q are given
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by

e1 �

�

�

�

�

�

�

0 0 0

0 0 �1

0 1 0

�

�

�

�

�

�

, e2 �

�

�

�

�

�

�

0 0 1

0 0 0

�1 0 0

�

�

�

�

�

�

, e3 �

�

�

�

�

�

�

0 �1 0

1 0 0

0 0 0

�

�

�

�

�

�

.

Also, note that sop3q is semisimple and the elements of the basis of sop3q satisfy the

following relations

re1, e2s � e3,

re2, e3s � e1,

re3, e1s � e2.

It is also easy to verify that with k � spante1, e2u and p � spante3u, g � k ` p such

that

rk, ks � p,

rp, ks � k,

rp, ps � p.

Under the trace pairing, the elements of the basis of sop3q� are given by

e1 �

�

�

�

�

�

�

0 0 0

0 0 �

1

2

0
1

2
0

�

�

�

�

�

�

, e2 �

�

�

�

�

�

�

0 0
1

2

0 0 0

�

1

2
0 0

�

�

�

�

�

�

, e3 �

�

�

�

�

�

�

0 �

1

2
0

1

2
0 0

0 0 0

�

�

�

�

�

�

.

We will now assume that R � I3�3, for the ease of computations. A normal extremal

for (P), with G � SOp3q, e0 equal to zero and with the cost function (5.7)-(5.8),
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satisfies the following Euler-Poincaré type equations

9u � ad�uk
λ� T �

e LgpDg V q
�

�

k�
, (5.9)

9λ � ad�uk
u� T �

e LgpDg V q
�

�

p�
, (5.10)

where

T �

e LgpDg V q
�

�

k�
�

�

�

�

�

�

�

0 0
1

2
rpgTQqAs13

0 0 �

1

2
rpgTQqAs23

1

2
rpgTQqAs31 �

1

2
rpgTQqAs32 0

�

�

�

�

�

�

,

T �

e LgpDg V q
�

�

p�
�

�

�

�

�

�

�

0 �

1

2
rpgTQqAs12 0

�

1

2
rpgTQqAs21 0 0

0 0 0

�

�

�

�

�

�

.

The coadjoint action of sop3q on sop3q� is given by

ad�ξ µ � µ� ξ,

for ξ P R3
� sop3q and µ P R3

� sop3q�. For more details see [45]. If we write

λ � λ3e
3, then we have ad�

ru1 u2 0sT r0 0 λ3s
T
� r�u2λ3 u1λ3 0sT , which gives

ad�uk
λ �

�

�

�

�

�

�

0 0
1

2
u1λ3

0 0
1

2
u2λ3

�

1

2
u1λ3 �

1

2
u2λ3 0

�

�

�

�

�

�

.

Similarly, ad�
ru1 u2 0sT ru

1 u2 0sT � r0 0 0sT , which gives ad�uk
u � 03�3. So, (5.9)-

(5.10) give the following equations

9u1
� �

1

2
pu2λ3 � rpgTQqAs23q, (5.11)
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9u2
�

1

2
pu1λ3 � rpgTQqAs13q, (5.12)

9λ3 � rpgTQqAs12. (5.13)

Note that if the potential function is identically equal to zero, i.e., V pgq � 0, for all

g P G, then (5.11)-(5.13) reduce to

9u1
� �

1

2
u2λ3, (5.14)

9u2
�

1

2
u1λ3, (5.15)

9λ3 � 0. (5.16)

Also, note that the solution for (5.14)-(5.16) is given by

�

�

�

u1
ptq

u2
ptq

�

�

�

�

�

�

�

�

cos

�

ωt

2




� sin

�

ωt

2




sin

�

ωt

2




cos

�

ωt

2




�

�

�

�

�

�

�

u1
p0q

u2
p0q

�

�

�

,

where λ3 � ω is a constant.

5.1.4 Motion Planning of a Unicycle with Obstacles

We study the OCP for the motion planning of a unicycle with obstacles. To avoid

the obstacle, we use the navigation function approach (see, e.g., [50], [56]), which

plays the role of the potential function in the cost function of the OCP.

The unicycle is a homogeneous disk on a horizontal plane and it is equivalent to

a wheel rolling on a plane. The configuration of the unicycle at any given time is

completely determined by the element g P SEp2q � R2
� S1

� R2
� SOp2q (as a set)
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θ

x

y

Figure 5.1: The Unicycle.

given by

g �

�

�

�

�

�

�

cos θ � sin θ x

sin θ cos θ y

0 0 1

�

�

�

�

�

�

,

where rx ysT P R2 represents the point of contact of the wheel with the ground and

θ P S1 represents the angular orientation of the overall system (see Figure 5.1). For

more details see [9], [58]. The controlled equations for the unicycle are given by

9x � u2 cos θ, (5.17)

9y � u2 sin θ, (5.18)

9θ � u1. (5.19)

Note that (5.17)-(5.18) are equivalent to the nonholonomic constraint 9x sin θ �

9y cos θ � 0. Also, note that (5.17)-(5.19) can be viewed as a left-invariant control

system on SEp2q (see [58]). A navigation function is a potential field based function

used to model an obstacle as a repulsive area or surface. Let the obstacle be circular

in shape and be located in the x-y plane, with its center located at the point pxc, ycq.

78



Let the potential function V : R2
ztpxc, ycqu Ñ R be given by

V px, yq �
1

2

k

px� xcq
2
� py � ycq2

,

where k P R
�

. Equivalently, the potential function V : SEp2qztgcu Ñ R is given by

V pgq �
1

2

k

}gcg}
2
F � 3

,

where

gc �

�

�

�

�

�

�

1 0 �xc

0 1 �yc

0 0 1

�

�

�

�

�

�

P SEp2q.

It is easy to verify that the potential function V is invariant under the action of SOp2q

but not under the action of SEp2q. With the above motivation, we now consider (P),

with G � SEp2q, e0 equal to zero and with the cost function given by

Cpg, uq �
1

2
}u}2F , (5.20)

V pgq �
1

2

k

}gcg}
2
F � 3

. (5.21)

Note that uptq �
2̧

i�1

ui
ptqei, where the elements of the basis of sep2q are given by

e1 �

�

�

�

�

�

�

0 �1 0

1 0 0

0 0 0

�

�

�

�

�

�

, e2 �

�

�

�

�

�

�

0 0 1

0 0 0

0 0 0

�

�

�

�

�

�

, e3 �

�

�

�

�

�

�

0 0 0

0 0 1

0 0 0

�

�

�

�

�

�

.

Also, note that sep2q is not semisimple and the elements of the basis of sep2q satisfy
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the following relations

re1, e2s � e3,

re2, e3s � 0,

re3, e1s � e2,

It is also easy to verify that with k � spante1, e2u and p � spante3u, g � k ` p such

that

rk, ks � p,

rp, ks � k,

rp, ps � p.

Under the trace pairing, the elements of the basis of sep2q� are given by

e1 �

�

�

�

�

�

�

0 �

1

2
0

1

2
0 0

0 0 0

�

�

�

�

�

�

, e2 �

�

�

�

�

�

�

0 0 1

0 0 0

0 0 0

�

�

�

�

�

�

, e3 �

�

�

�

�

�

�

0 0 0

0 0 1

0 0 0

�

�

�

�

�

�

.

A normal extremal for (P), with G � SEp2q, e0 equal to zero and with the cost

function (5.20)-(5.21), satisfies the following Euler-Poincaré type equations

9u � ad�uk
λ� T �

e LgpDg V q
�

�

k�
, (5.22)

9λ � ad�uk
u� T �

e LgpDg V q
�

�

p�
, (5.23)
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where

T �

e LgpDg V q
�

�

k�
�

�

�

�

�

�

�

�

0 0 �

kprgTgTc gcgs13q

p}gcg}
2
F � 3q2

0 0 0

0 0 0

�

�

�

�

�

�

�

,

T �

e LgpDg V q
�

�

p�
�

�

�

�

�

�

�

�

0 0 0

0 0 �

kprgTgTc gcgs23q

p}gcg}
2
F � 3q2

0 0 0

�

�

�

�

�

�

�

.

The coadjoint action of sep2q on sep2q� is given by

ad�
rξ αT

s

T rµ βT
s

T
� rxα,�Jβy pξJβqT sT ,

where

J �

�

�

�

0 1

�1 0

�

�

�

,

rξ αT
s

T
P R3

� sep2q and rµ βT
s

T
P R3

� sep2q�. For more details see [68]. If we

write λ � λ3e
3, then we have ad�

ru1 u2 0sT r0 0 λ3s
T
� r�u2λ3 u1λ3 0sT , which gives

ad�uk
λ �

�

�

�

�

�

�

0
1

2
u2λ3 u1λ3

�

1

2
u2λ3 0 0

0 0 0

�

�

�

�

�

�

.
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Similarly, ad�
ru1 u2 0sT ru

1 u2 0sT � r0 0 � u1u2
s

T , which gives

ad�uk
u �

�

�

�

�

�

�

0 0 0

0 0 �u1u2

0 0 0

�

�

�

�

�

�

.

So, (5.22)-(5.23) give the following equations

9u1
� �

1

2
u2λ3, (5.24)

9u2
� u1λ3 �

kprgTgTc gcgs13q

p}gcg}
2
F � 3q2

, (5.25)

9λ3 � �u1u2
�

kprgTgTc gcgs23q

p}gcg}
2
F � 3q2

. (5.26)

Note that if the potential function is identically equal to zero, i.e., V pgq � 0, for all

g P G, then (5.24)-(5.26) reduce to

9u1
� �

1

2
u2λ3, (5.27)

9u2
� u1λ3, (5.28)

9λ3 � �u1u2. (5.29)

Remark V.5. We will now show that (5.24)-(5.26) are equivalently obtained by view-

ing (P), with G � SEp2q, e0 equal to zero and with the cost function (5.20)-(5.21),

as a constrained variational problem. The above OCP is equivalent to the following

constrained variational problem

min
prxp.q yp.qsT ,θp.qq

J �

1

2

» T

0

�

9x2
ptq � 9y2ptq � 2 9θ2ptq �

k

pxptq � xcq
2
� pyptq � ycq2




dt

(5.30)
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subject to

9xptq sin θptq � 9yptq cos θptq � 0, with given boundary conditions prxp0q yp0qsT , θp0qq

and prxpT q ypT qsT , θpT qq. (5.31)

The Lagrangian for the constrained variational problem (5.30)-(5.31) is given by

Lpθ, 9x, 9y, 9θ, λq �
1

2
p 9x2

� 9y2 � 2 9θ2q �
1

2

k

px� xcq
2
� py � ycq2

� λp 9y cos θ � 9x sin θq,

where λ is the Lagrange multiplier. A solution for the constrained variational problem

(5.30)-(5.31) must satisfy the following Euler-Lagrange equations

:x� 9λ sin θ � λ 9θ cos θ � �

kpx� xCq

ppx� xcq
2
� py � ycq2q2

, (5.32)

:y � 9λ cos θ � λ 9θ sin θ � �

kpy � yCq

ppx� xcq
2
� py � ycq2q2

, (5.33)

:θ � �

1

2
λp 9x cos θ � 9y sin θq. (5.34)

Using the facts that 9x sin θ� 9y cos θ � 0, u1
�

9θ, u2
� 9x cos θ� 9y sin θ and after a few

simple calculations, (5.32)-(5.34) give the following equations

9u1
� �

1

2
u2λ, (5.35)

9u2
� u1λ �

kprgTgTc gcgs13q

p}gcg}
2
F � 3q2

, (5.36)

9λ � �u1u2
�

kprgTgTc gcgs23q

p}gcg}
2
F � 3q2

. (5.37)

We can now see that (5.24)-(5.26) are the same as (5.35)-(5.37).

We will now use the reduced Legendre transform to derive the Lie-Poisson type

equations associated with (P).
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5.1.5 Reduced Legendre Transform and Lie-Poisson Type Equations

Consider the reduced Lagrangian ℓpg, u, λq � Cpu � e0q � V pgq � λpu � e0q. If

the reduced Lagrangian ℓ is hyper-regular, then we can define the reduced Legendre

transform (see, e.g., [45], [68]) to obtain a reduced Hamiltonian h : G� g� ` g� Ñ R

given by

hpg, µ, λq � µpuq � ℓpg, u, λq, (5.38)

where µ � Du ℓ � DuC �λ P g�. The Euler-Poincaré type equations for the reduced

Lagrangian ℓ can now be written as the Lie-Poisson type equations given below

9µ � ad�u µ� T �

e LgpDg V q. (5.39)

We will now study the Lie-Poisson reduction for (P) using PMP.

5.1.6 Lie-Poisson Reduction

Define the augmented cost functional as follows

Ja
�

» T

0

rCpgptq, uptqq � V pgptqq � µgptqp 9gptq � TeLgptqpuptqqqsdt,

where µgptq � T �

g Lg�1
pµptqq P T �

g G, with µp.q P C1
pr0, T s, g�q. We now introduce the

Hamiltonian H̄ : G� g` T �G Ñ R given by

H̄pg, u, µgq � µgpTeLgpuqq � Cpg, uq � V pgq,

to rewrite the augmented cost functional as

Ja
�

» T

0

rµgptqp 9gptqq � H̄pgptq, uptq, µgptqqsdt.
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By PMP, we can obtain the optimal Hamiltonian H : T �G Ñ R given by

Hpg, µgq � max
u

H̄pg, u, µgq � H̄pg, u�, µgq, (5.40)

where u� denotes the optimal control. The reduced Hamiltonian h : G� g� Ñ R can

now be obtained and is given by

hpg, µq � µpu�q � Cpu�q � V pgq. (5.41)

A normal extremal for (P) now satisfies the following Lie-Poisson type equations

9µ � ad�u� µ� T �

e LgpDg V q. (5.42)

For more details see [58], [75]. We will now present some examples.

5.1.7 Linear Quadratic Regulator Type Problem on SO(3) Revisited

This example was studied in Section 5.1.3. By PMP, we have the following

u1�
�

1

2
µ1,

u2�
�

1

2
µ2.

A normal extremal for (P), with G � SOp3q, e0 equal to zero and with the cost

function (5.7)-(5.8), satisfies the following Lie-Poisson type equations

9µ � ad�u� µ� T �

e LgpDg V q. (5.43)
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We now have ad�
ru1� u2� 0sT rµ1 µ2 µ3s

T
�

�

�

1

2
µ2µ3

1

2
µ1µ3 0

�T

and so, (5.43) gives

the following equations

9µ1 � �

1

2
pµ2µ3 � rpgTQqAs23q, (5.44)

9µ2 �
1

2
pµ1µ3 � rpgTQqAs13q, (5.45)

9µ3 � rpgTQqAs12. (5.46)

Note that if the potential function is identically equal to zero, i.e., V pgq � 0, for all

g P G, then (5.44)-(5.46) reduce to

9µ1 � �

1

2
µ2µ3, (5.47)

9µ2 �
1

2
µ1µ3, (5.48)

9µ3 � 0. (5.49)

Also, note that the solution for (5.47)-(5.49) is given by

�

�

�

µ1
ptq

µ2
ptq

�

�

�

�

�

�

�

�

cos

�

ωt

2




� sin

�

ωt

2




sin

�

ωt

2




cos

�

ωt

2




�

�

�

�

�

�

�

µ1
p0q

µ2
p0q

�

�

�

,

where µ3 � ω is a constant.

5.1.8 Motion Planning of a Unicycle with Obstacles Revisited

This example was studied in Section 5.1.4. By PMP, we have the following

u1�
�

1

2
µ1,

u2�
� µ2.
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A normal extremal for (P), with G � SEp2q, e0 equal to zero and with the cost

function (5.20)-(5.21), satisfies the following Lie-Poisson type equations

9µ � ad�u� µ� T �

e LgpDg V q. (5.50)

We now have ad�
ru1� u2� 0sT rµ1 µ2 µ3s

T
�

�

�µ2µ3

1

2
µ1µ3 �

1

2
µ1µ2

�T

and so, (5.50)

gives the following equations

9µ1 � �µ2µ3, (5.51)

9µ2 �
1

2
µ1µ3 �

kprgTgTc gcgs13q

p}gcg}
2
F � 3q2

, (5.52)

9µ3 � �

1

2
µ1µ2 �

kprgTgTc gcgs23q

p}gcg}
2
F � 3q2

. (5.53)

Note that if the potential function is identically equal to zero, i.e., V pgq � 0, for all

g P G, then (5.51)-(5.54) reduce to

9µ1 � �µ2µ3, (5.54)

9µ2 �
1

2
µ1µ3, (5.55)

9µ3 � �

1

2
µ1µ2. (5.56)

Also, note that (5.54)-(5.56) are exactly the same as the equations obtained in [58],

with the cost function given by

Cpg, uq �
1

2
}u}2F .

We will now describe the variational integrator for (P).
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5.2 Variational Integrator for Optimal Control Problems on

Lie Groups

Recall that the augmented cost functional is given by

Ja
�

» T

0

rCpgptq, uptqq � V pgptqq � µgptqp 9gptq � TeLgptqpuptqqqsdt.

The discrete-time reduced augmented cost functional can now be obtained and is

given by

Ja
d �

N�1̧

k�0

h

�

Cpukq � V pgkq � µk

�

1

h
τ�1

pg�1
k gk�1q � uk


�

,

where h P R
�

is the time step and Nh � T . In order to obtain the variational

integrator for (P), we will use discrete-time variational calculus. The variation of gk

is given as follows

gk,ǫ � gk exppǫηkq, (5.57)

where ηk P g. The infinitesimal variation of gk is given by

δgk �
dgk,ǫ

dǫ

�

�

�

�

ǫ�0

,

� gkηk. (5.58)

Before proceeding further, we need a few facts.

Fact 5. ([12], [53], [55])
1

h
δτ�1

pg�1
k gk�1q �

1

h
d τ�1

huk
p�ηk � Adτphukq

ηk�1q.

Fact 6. ([12]) d τ�1
ξ1
pξ2q � d τ�1

�ξ1
pAdτp�ξ1q ξ2q, for ξ1, ξ2 P g.

Using Facts 5-6, the variation of the discrete-time reduced augmented cost functional
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is written as follows

δJa
d �

N�1̧

k�0

h

�

Duk
Cpδukq �Dgk V pδgkq � µk

�

1

h
δτ�1

pg�1
k gk�1q � δuk


�

,

�

N�1̧

k�0

h

�

Dgk V pgkηkq � µk

�

1

h
d τ�1

huk
p�ηk � Adτphukq

ηk�1q




�

p�µk �Duk
Cqpδukq

�

,

�

N�1̧

k�0

h

�

T �

e Lg Dgk V pηkq � µk

�

1

h
d τ�1

huk
p�ηk � Adτphukq

ηk�1q




�

p�µk �Duk
Cqpδukq

�

,

�

N�1̧

k�0

�

p�pd τ�1
huk

q

�µk � pd τ�1
�huk�1

q

�µk�1 � hT �

e Lg Dgk V qpηkq�

hp�µk �Duk
Cqpδukq

�

,

where the analogue of integration by parts in the discrete-time setting is used along

with the fact that the variation ηk vanishes at k � 0, N . Since, δJa
d should vanish for

all variations of ηk and δuk, the necessary conditions for optimality are as follows

gk�1 � gkτpukq, (5.59)

pd τ�1
huk

q

�µk � pd τ�1
�huk�1

q

�µk�1 � hT �

e Lg Dgk V, (5.60)

µk � Duk
C. (5.61)

Note that if the potential function is identically equal to zero, i.e., V pgq � 0, for all

g P G, then (5.59)-(5.61) reduce to

gk�1 � gkτpukq, (5.62)

pd τ�1
huk

q

�µk � pd τ�1
�huk�1

q

�µk�1, (5.63)

µk � Duk
C. (5.64)
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CHAPTER VI

Conclusions and Future Work

This dissertation has focused on extending some of the existing analytical and

numerical methods for OCPs on manifolds and Lie groups. The research not only

addressed OCPs defined on a Euclidean space but also on Riemannian manifolds.

In particular, we considered four different problems. The first problem dealt with

obtaining sub-optimal control in OCPs defined on a Euclidean space using the com-

bination of two techniques, homotopy and NEOC. The second problem dealt with

constrained spacecraft attitude control on SOp3q using fast NMPC. The third prob-

lem dealt with extending NEOC for mechanical systems on Riemannian manifolds.

The fourth problem dealt with OCPs on Lie groups with symmetry breaking cost

functions.

6.1 Conclusions

The main results of this dissertation are summarized below.

(a) In Chapter II, we described a method for obtaining sub-optimal control in OCPs

defined on a Euclidean space, that is based on the combined use of homotopy

and NEOC, which to the author’s knowledge has not been reported in the previ-

ous literature. This approach was illustrated using a numerical example, which
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suggested the benefits of the combined use of homotopy and NEOC, in terms of

reducing the number of function evaluations and iterations.

(b) In Chapter III, we described the implementation of a numerical solver for NMPC

of spacecraft attitude that exploits the underlying Lie group structure of SOp3q

and the geometric control formalism. The numerical solver is based on numer-

ically solving the necessary conditions for optimality. The control input/state

constraints are handled through the exterior penalty function approach. This

work compliments [49] which addressed the NMPC problem formulation and the

stability analysis but used a baseline solver for numerical computations which

was of direct type and relied on the conventional constrained optimizer in MATLAB

(fmincon.m). The simulation results indicate that the numerical solver we have

implemented is faster than the baseline solver and enables the spacecraft to per-

form a variety of constrained reorientation maneuvers. We also extended the

classical penalty convergence theorem to the setting of smooth manifolds and the

classical exact penalization theorem to the setting of Riemannian manifolds.

(c) In Chapter IV, we extended NEOC, which is well established for OCPs defined on

a Euclidean space, to the setting of Riemannian manifolds. We further specialized

the results to the case of Lie groups. We also presented an example along with

simulation results.

(d) In Chapter V, we investigated the reduction for OCPs on Lie groups with sym-

metry breaking cost functions. From the Lagrangian point of view, we obtained

the Euler-Poincaré equations and from the Hamiltonian point of view, we ob-

tained the Lie-Poisson equations. We also study the relationship between both

formalisms and present several examples. A variational integrator for OCPs on

Lie groups with symmetry breaking cost functions is also developed.
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6.2 Future Work

The possible future directions are given below.

(a) In the future, we intend to investigate the use of the method described in Chapter

II for more complicated control input/state constrained OCPs. We also intend to

test numerical examples for the predictor-corrector method described in Chapter

II.

(b) The numerical solver implementation in MATLAB described in Chapter III is cur-

rently slower than real-time but the implementation in C/C++ is expected to be

faster and further computational improvements will be pursued in future research.

Extensions of NMPC to mechanical systems evolving on other Lie groups, e.g.,

SEp3q � R3
� SOp3q, etc., use of other indirect methods and the integration with

continuation methods will also be pursued in future research.

(c) NEOC described in Chapter IV only gives a prediction step and not a correction

step. To improve the solution, a prediction step can be augmented by a correction

step. In the future, we intend to extend the idea presented in Chapter IV to

include a correction step as well along with the generalization to a more general

cost function, with a more complicated dynamic constraint.

(d) The idea presented in Chapter V can be taken a step further, if one assumes that

the potential function V is invariant under the action of a subgroup of G but not

under the action of G (see, e.g., [11], [21], [70] and also Section 5.1.4). Also, in

the future, we intend to test numerical examples for the variational integrator

developed in Chapter V.
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