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CHAPTER 1

Introduction

1.1 Motivation and Literature Review

This dissertation addresses four different topics and the motivation and literature

review for each of the topics are given below.

1.1.1 Combined Homotopy and Neighboring Extremal Optimal Control

For most OCPs in engineering applications, it is difficult to obtain analytical or
closed form solutions using Pontryagin’s maximum principle (PMP) or dynamic pro-
gramming (DP). Consequently, iterative/numerical methods are utilized for solving
such OCPs [8], [78]. Two methods, which have been used independently in optimal
control theory are homotopy (see, e.g., [10], [18], [51], [79], [91], [100]) and neighboring
extremal optimal control (NEOC) (see, e.g., [14]). However, the combination of these
two techniques has not been investigated. With this motivation, we combine these
two techniques and arrive at a method for obtaining sub-optimal control in OCPs
defined on a Euclidean space.

The method exploits the idea of homotopy (see, e.g., [6]) to continuously deform
the trajectory from that of a linear system to that of a nonlinear system and it uses
NEOC to predict the optimal solution as the homotopy parameter changes. Note

that the method presented here is different from [42] as we, additionally, exploit the



idea of NEOC. The main motivation for the approach is that it is easier to solve
OCPs for linear systems than for nonlinear systems. Once, we obtain the optimal
control for the linear system, the control is iteratively updated using NEOC theory,
combined with only a few iterations of a convergent optimizer at each step. We note
that while the homotopy method is used in many practical trajectory optimization
methods, e.g., in aerospace applications (see [37], [77]), its use is limited to systems
with contractible state space, i.e., state space with a trivial fundamental group, such

as R™.

1.1.2 Constrained Spacecraft Attitude Control on SO(3) Using Fast Non-

linear Model Predictive Control

Nonlinear model predictive control (NMPC) is a powerful technique for obtaining
sub-optimal control in OCPs (see, e.g., [39]). However, in some cases, the system
dynamics might not evolve on a Euclidean space but on a smooth manifold. For such
OCPs the use of tools from differential geometry becomes advantageous (see, e.g.,
3], [9], [16], [48]). The optimization problem arising in NMPC of spacecraft attitude,
where the spacecraft attitude evolves on SO(3) was studied in [49], where it is shown
that SO(3) based NMPC feedback laws can accomplish global spacecraft reorientation
maneuvers and deal effectively with system nonlinearities and constraints. However,
the numerical solution of the optimization problem in [49] is based on a direct method
(input parameterization) and standard constrained optimizer in MATLAB (fmincon.m).
This optimizer uses the numerical approximation of the derivatives and does not
explicitly take advantage of the underlying Lie group structure. With this motivation,
we develop a numerical solver for NMPC problem in [49] exploiting the geometric
control formalism.

A nonlinear discrete-time spacecraft dynamics model based on a Lie group vari-

ational integrator (LGVI) is exploited in [49]. This model provides higher accuracy



in prediction and unlike continuous-time integrators, preserves the conserved quanti-
ties of motion (momentum and energy) to machine precision in absence of external
moments (see [61]). As SO(3) is closed under multiplication, the LGVI updates the
attitude by multiplying two matrices in SO(3) and hence ensures that the attitude
always evolves on SO(3). For a detailed introduction to variational integrators see
[69] and for the discrete-time rigid body equations see [73]. The numerical solver
uses the solution of the necessary conditions for optimality in a discrete-time OCP
defined over a prediction horizon, where the discrete-time dynamics are based on the
LGVI model. The inequality constraints (which may represent thrust constraint, in-
clusion/exclusion zone constraints, etc.) are handled using a exterior penalty function
approach. The indirect single shooting method is applied to the nonlinear root finding
problem resulting from the necessary conditions for optimality. Our implementation
also exploits sensitivity derivative expressions obtained from the necessary conditions
for optimality. There is a growing interest in constrained spacecraft attitude control
and in exploiting MPC and geometric control formalism to address these and related
problems. In particular, MPC of spacecraft attitude based on linearized dynamics is
studied in [40], [43], [87], [92]. NMPC problems on SO(3) are addressed in [38], where,
however, neither spacecraft attitude control nor LGVI based models are considered.
Related literature also includes publications on optimal control and motion planning
on Lie groups. Constrained motion planning for multiple vehicles on SE(3) using
barrier functions (rather than penalty functions) to handle constraints is considered
in [81]. An optimal control technique for control systems evolving on noncompact
Lie groups is developed in [82]. The necessary conditions for optimality for a related

OCP are derived in [63], where, however, inequality constraints are not considered.



1.1.3 Neighboring Extremal Optimal Control for Mechanical Systems on

Riemannian Manifolds

NEOC is well established for OCPs defined on a Euclidean space (see, e.g., [14]).
However, the configuration space for most mechanical systems is not a Euclidean
space but a smooth manifold. For instance, the configuration space of a spacecraft
modeled as a rigid body is SE(3) = R*® x SO(3). With this motivation, we extend

NEOC to OCPs for mechanical systems evolving on Riemannian manifolds.

1.1.4 Optimal Control Problems on Lie Groups with Symmetry Breaking

Cost Functions

Reduction is an indispensable tool in the study of Lagrangian/Hamiltonian sys-
tems (which include OCPs), as it allows the dynamics associated with the Lagrangian/
Hamiltonian to be described on a quotient space, e.g., in the case of a Lie group G, the
dynamics associated with a G-invariant Lagrangian/Hamiltonian can be described on
g/g* instead of TG/T*G.

Consider a G-invariant Lagrangian L : TG — R, then the dynamics associated
with this G-invariant Lagrangian can be described on g, given by the following Euler-

Poincaré equations

d ‘
ED&E = adg Dgﬁ,

where ¢ : g — R is the reduced Lagrangian and ¢(§) = L(e,&). For more details see
9], [45], [68]. Similarly, for a G-invariant Hamiltonian H : T*G — R, the dynamics
associated with this G-invariant Hamiltonian can be described on g*, given by the

following Lie-Poisson equations

/-J’ = ad]guhlu’v



where h : g* — R is the reduced Hamiltonian and h(p) = H(e, ). For more details
see [9], [45], [68].

Reduction is well established for OCPs on Lie groups (see [58]). However, reduc-
tion for OCPs on Lie groups with symmetry breaking cost functions has not been
investigated much, with an exception of [11]. With this motivation, we investigate
the reduction for OCPs on Lie groups with symmetry breaking cost functions.

From the Lagrangian point of view, we obtain the Euler-Poincaré equations and
from the Hamiltonian point of view, we obtain the Lie-Poisson equations. We also
study the relationship between both formalisms. The theory of reduction for OCPs on
Lie groups from a Hamiltonian point of view has been developed in [58]. The general
theory of reduction for OCPs from a Hamiltonian point of view has been developed in
[75]. However, [58], [75] do not consider symmetry breaking cost functions. Note that
the theory for semidirect product reduction for OCPs on Lie groups with symmetry
breaking cost functions from a Hamiltonian point of view has been developed in
[11]. A variational integrator for OCPs on Lie groups with symmetry breaking cost
functions is also developed. Note that variational integrators for OCPs on Lie groups
are also developed in [53], [54], [55] but do not consider symmetry breaking cost

functions.

1.2 Mathematical Preliminaries

We will now briefly review some of the mathematical tools used in this dissertation
but for the most part of this dissertation, we assume that the reader is familiar with
the basics of smooth manifold theory, Riemannian geometry, Lie groups and Lie
algebras. For an introduction to smooth manifold theory, we refer the unfamiliar
reader to [60]. For an introduction to Riemannian geometry, we refer the unfamiliar
reader to [29], [44], [72]. For an introduction to Lie groups, we refer the unfamiliar

reader to [44], [52], [68], [85]. For an introduction to Lie algebras, we refer the



unfamiliar reader to [44], [46], [85].

Definition I.1 ([9]). An n-dimensional smooth manifold Q is a set of points together
with a finite or countably infinite set of subsets U, < Q and one-to-one mappings
Oq : Uy — V,, € R™ such that
(a) JUs =9,
aeA
(b) For each nonempty intersection U, (| Ug, the set ¢, (U, [ Us) is an open subset of
R™ and the one-to-one and onto mapping ¢, o gbgl : 05(Ua Up) = ¢a(Ua[\Us)

is smooth,
(¢) The family {(Us, ¢a)}aea is maximal with respect to conditions (a) and (b).

Definition I.2 ([9]). The tangent space T;,Q is the set of all tangent vectors of Q at
qge Q.

Definition I.3 ([9]). The tangent bundle 7'Q is a smooth manifold, whose underlying

set is the disjoint union of the tangent spaces of Q at all points of Q, ie., TQ =

L 759.
qeQ

Definition 1.4 ([60]). A Riemannian metric on Q is a smooth symmetric covariant

2-tensor field on Q that is positive definite at each point.

Definition I.5 ([60]). A Riemannian manifold is a pair (Q,{.,.)), where Q is a

smooth manifold and (., .) is a Riemannian metric on Q.

Definition 1.6 ([29]). An affine connection V on a smooth manifold Q is a mapping
V:X(Q) x X(Q) — X(Q), which is denoted by (X,Y) Y, VxY and which satisfies

the following properties
(a) VfX+gyZ = vaZ +gVyZ,

(b) Vx(Y+72)=VxY +VxZ,



(¢) Vx(fY) = fVxY + X(f)Y,
where X, Y, Z € X(Q), f and g are functions of class C* defined on Q.

Definition 1.7 ([29]). The curvature R of a Riemannian manifold Q is a correspon-
dence that associates to every pair X, Y € X(Q) a mapping R(X,Y) : X(Q) — X(Q)

given by

R(X,Y)Z = VyVxZ —VxVyZ + Vixy Z,

where Z € X(Q) and V is the Riemannian connection of Q.

Definition I.8 ([9]). A Lie group G is a smooth manifold that is a group and for

which the group operations of multiplication (g, h) — gh, for g, h € G and inversion

1

g — g are smooth.

Definition 1.9 ([46]). A vector space g over a field F, with an operation g x g — g,
denoted (X,Y) — [X,Y] and called the bracket or the commutator of X and Y, is

called a Lie algebra over F if the following axioms are satisfied
(a) The bracket operation is bilinear,

(b) [X,X] =0, forall X €g,

(©) [X [V 21+ [V, [Z, X]] + [Z,[X, Y]] = 0,

where X, Y Zeg.

Definition I.10 ([45]). The adjoint action of G on g is given by

Ady & =Te(Lgo Ry1)E,

for € € g.



Remark 1.11. The coadjoint action of G on g* is given by Adj. (see, e.g., [45], [68]).

Definition I.12 ([45]). The infinitesimal generator map

d
Eanl = E(Adoxp(ti) n) = adg 7,
t=0

where &, n € g, is called the adjoint action of g on g, even though it is not a group

action.

Remark 1.13. The coadjoint action of g on g* is given by ad® (see, e.g., [45], [68]).

1.3 Contributions

The main contributions of this dissertation are summarized below.

(a) We have developed a method for obtaining sub-optimal control in OCPs defined

on a Euclidean space, that is based on the combined use of homotopy and NEOC.

(b) We have developed a numerical solver for NMPC of spacecraft attitude that
exploits the underlying Lie group structure of SO(3) and the geometric control
formalism. We have also extended the classical penalty convergence theorem to
the setting of smooth manifolds and the classical exact penalization theorem to

the setting of Riemannian manifolds.

(c) We have extended NEOC, which is well established for OCPs defined on a Eu-

clidean space, to the setting of Riemannian manifolds.

(d) We have extended reduction for OCPs on Lie groups with symmetry breaking
cost functions. We have also developed a variational integrator for OCPs on Lie

groups with symmetry breaking cost functions.



1.4 Dissertation Outline

(a)

The dissertation is organized as follows.

In Chapter II, we will describe a method for obtaining sub-optimal control in
OCPs defined on a Euclidean space, that is based on the combined use of homo-

topy and NEOC. We also present an example along with simulation results.

In Chapter III, we describe the implementation of a numerical solver for NMPC
of spacecraft attitude that exploits the underlying Lie group structure of SO(3)
and the geometric control formalism. The numerical solver is based on numer-
ically solving the necessary conditions for optimality. The control input/state
constraints are handled through the exterior penalty function approach. We also
extend the classical penalty convergence theorem to the setting of smooth man-
ifolds and the classical exact penalization theorem to the setting of Riemannian

manifolds.

In Chapter IV, we extend NEOC, which is well established for OCPs defined on
a Euclidean space, to the setting of Riemannian manifolds. We further specialize
the results to the case of Lie groups. We also present an example along with

simulation results.

In Chapter V, we investigate the reduction for OCPs on Lie groups with symmetry
breaking cost functions. From the Lagrangian point of view, we obtain the Euler-
Poincaré equations and from the Hamiltonian point of view, we obtain the Lie-
Poisson equations. We also study the relationship between both formalisms and
present several examples. A variational integrator for OCPs on Lie groups with

symmetry breaking cost functions is also developed.



CHAPTER 11

Combined Homotopy and Neighboring Extremal

Optimal Control

This chapter presents a new approach to trajectory optimization for nonlinear
systems. The method exploits a homotopy between a linear system and a nonlinear
system and NEOC, in combination with few iterations of a convergent optimizer at
each step, to iteratively update the trajectory as the homotopy parameter changes.
To illustrate the proposed method, a numerical example of a three dimensional orbit
transfer problem for a spacecraft is presented. We will now briefly discuss homotopy
and NEOC. In what follows, we will suppress the explicit dependence of the state,

costate and control trajectories on time unless otherwise necessary.

2.1 Homotopy

Homotopy is a topological concept (see, e.g., [41]), which can be used, typically
in combination with another optimization method, to solve OCPs. The basic idea
is to start out with a simpler problem, whose solution is easy to compute, and then
gradually evolve the solution to the solution of the harder problem by changing the

homotopy parameter. Consider an OCP, where the objective is to minimize a cost

10



functional given by

I&lglJ = K(z(T)) + J L(x(t),u(t))dt (2.1)

subject to

#(t) = f(z(t),u(?)), x(0) = o, (2.2)

where z(.) € AC(]0,T],R"), u(.) € L*([0,T],R™), K : R* - R, L : R" x R™ - R
and f : R" x R™ — R” satisfy appropriate differentiability assumptions. Suppose
the OCP (2.1)-(2.2) is difficult to solve with the dynamic constraint given by the
model #(t) = f(x(t),u(t)) but is easier to solve with the dynamic constraint given
by the model @(t) = g(z(t),u(t)) (e.g., g(x(t),u(t)) = Ax(t) + Bu(t) + d), where
g : R" x R™ — R™ also satisfies appropriate differentiability assumptions. Then by

creating a homotopy given by

2(t) = Af(x(t), u(®)) + (1 = Ng(z(t), u(t)), (2.3)

where A € [0, 1] is the homotopy parameter and under appropriate assumptions, we
can solve the original OCP (2.1)-(2.2) by changing A from 0 to 1 and re-using the
solution from the previous homotopy step as an initial guess for the solution at the
next homotopy step. For the background on homotopy methods see [4], [42]. The
survey paper [91] discusses continuation methods and their application to OCPs. For

the use of homotopy method in OCPs see also [10], [18], [51], [79], [100].

11



2.2 Neighboring Extremal Optimal Control

Consider a parameter dependent OCP, where the objective is to minimize a cost

functional given by

min J = K (x(T), p) + J Lz (t), u(t), p)dt (2.4)

subject to

(1) = f((t), u(t),p), (0) = o, (2.5)

where x(.) € AC([0,T],R"™), u(.) € L*([0,T],R™), p € R is a parameter, K : R" x
R >R, L:R"xR™" xR - R and f: R" x R™ x R — R" are functions of class C?.
Let (x3,uy) be a solution for the OCP (2.4)-(2.5), where u(t) denotes the optimal
control, which satisfies the Lagrange multiplier rule in a normal form (see, e.g., [9]).
Let W* be the solution corresponding to (z,u) = (x,uy) of the following costate

equation
U = —H,(z,u,0,p), U(T)=K,(«(T),p),

where U(.) € AC([0,T],R"), H is the Hamiltonian and H(z,u,¥,p) := L(z,u) +
UT f(z,u,p). Altogether, (zy, uy, Wr) satisfy the following necessary conditions for

optimality

2(t) = f(z(t), u(t),p), z(0) = o, (2.6)
U(t) = —Ha(2(t), u(t), ¥(t),p), V(T) = Ku(x(T),p), (2.7)
0 = Hy(x(t), u(t), ¥(¢), p) (2.8)

12



Suppose there is a small variation in the initial condition and/or the parameter,
and we would like to update the optimal control. Instead of solving the original
OCP again, we employ a first order approximation of the necessary conditions for
optimality around the nominal trajectory. This approximation is given by (see, e.g.,

[14], [30], [31], [32])

dx(t) = gi z(t) + a—i u(t) + a—iép, dz(0) = dxy, (2.9)
0U(t) = —Hywbx(t) — Houbu(t) — Hpa6U(t) — Hypop, 6U(T) = Kppdx(T) + Kpydp,
(2.10)

0 = Hyuwdx(t) + Huwou(t) + How6(t) + H,,0p. (2.11)

Under the the second order sufficient optimality condition (see, e.g., [30], [32]), (2.9)-

(2.11) represents the optimality condition for the following OCP (see, e.g., [14], [30],

[31], [32])
T
62T — 1 dx(T) Ko (T) Kup(T) dx(T) .
ou(.) 2 op K,.(T) 0 op
T
. dz(t) H,.(t) Hpu(t) Hyp(t) dx(t)
%L du(t) Hyo(t) Hyu(t) Hyp(t) Su(t) | | dt (2.12)
op H,.(t) Hp(t) 0 op
subject to the perturbed dynamics
) 0 0
Si(t) = aﬁ o(t) + a—fi ult) + a—£5p, 52(0) — Gz, (2.13)

where the matrices in the cost functional (2.12) and the Jacobian matrices in the

dynamic constraint (2.13) are evaluated at the nominal trajectories. The optimal
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control for the OCP (2.12)-(2.13) is given by

Su*(t) = —Hy, (t) [Huo(t)0x(t) + fo (£)00(t) + H,p(t)dp], (2.14)

where all partial derivative matrices are evaluated at the nominal trajectories and
dWU(t) is a perturbation from W*(¢), ultimately expressible in terms of dz(¢) and dp.
The updated control is now calculated as the sum of u*(t) and du*(t) and can be
used directly or to warm start an optimizer for parameter p+dp. This is the basic idea
behind NEOC. For a detailed description of NEOC see [14]. For a mathematically

rigorous introduction to NEOC see [86].

Remark 11.1. The OCP (2.12)-(2.13) is known as the accessory minimum problem
in the calculus of variations (see, e.g., [90]). If there is no variation in the initial
condition, i.e., the initial condition remains fixed, then dx(0) = 0 and similarly, if
there is no variation in the parameter, i.e., the parameter remains fixed, then ép = 0.
Note that it is also possible to go back to the conventional NEOC setting (see, e.g.,

[14]), by adding p as a state, with p = 0.

For (z;(t),us(t)) to be a strong local minimizer for the OCP (2.4)-(2.5), the
second order sufficient condition (strengthened Legendre-Clebsch condition) requires
that H,,(t) > 0, for a.e. t € [0,7] and conjugate points for the OCP (2.12)-(2.13)
must not exist (Jacobi condition) (see, e.g., [86]). An indicator for the existence of
conjugate points is that the Riccati equation associated with the OCP (2.12)-(2.13)
has a finite escape time (see, e.g., [86]). Existence of a solution of the Riccati equation
associated with the OCP (2.12)-(2.13) over the interval [0,7"] is enough to rule out
the existence of conjugate points. For a modern exposition on conjugate points see
[3], [86]. For more on conjugate points for OCPs see [13], [14], [18], [20], [66], [71],
971, [98], [99].

We will now discuss the proposed method that combines the ideas of homotopy
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and NEOC.

2.3 Method Description

Consider a linear system and a nonlinear system given below

&= Az + Bu+d, x(0) = x, (2.15)
y=Cu, (2.16)
& = f(z,u), x(0) = o, (2.17)

where z(.) € AC([0,T],R"), u(.) € L*([0, T],R™), A e R"*" B e R™™ (C e R,
deR™ and f: R x R™ — R" is a function of class C?. Create a homotopy between

the linear system and the nonlinear system by
= A(z,u)+ (1 = A\)(Azx + Bu + d) =: F(x,u, \), (2.18)

where A € [0, 1]. Note that the linear system (2.15) can be defined as the linearization
of the nonlinear system (2.17) at a selected steady-state operating point (zp, Uep),
with d = f(2p, Uop) — Aoy — Bu,y,. Consider a class of problems with a quadratic
type cost defined over a finite horizon given by

J = %eT(T)Kfe(T) + % L [e” (£)Qe(t) + u” (t) Ru(t)]dt, (2.19)

where Ky, Q > 0, R > 0 and e(t) = y(t) — va(t), with y4(t) being the desired
trajectory.

Remark 11.2. While we introduce our ideas in the context of a specific OCP with cost
functional (2.19), many generalizations are possible. For instance, a minimum time

problem can be handled using the given approach by rescaling time and introduc-
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ing final time as an additional variable to be optimized. Note that for a minimum
time problem, the optimal control is usually discontinuous (at least for control affine
systems with a box constraint on u) and for the proposed approach to be used practi-
cally, the cost should be “regularized” with a small control-dependent term to make
the optimal control continuous (see, e.g., [7], [88]). The case when the homotopy pa-
rameter enters the cost or the cost is not quadratic can be handled as well. However,
simplifications do occur in the case of quadratic costs as is apparent from the next

section.

2.3.1 Algorithm

The proposed algorithm is based on applying neighboring extremal updates to
predict the optimal control trajectory as p = A changes. Note the superscripts in the
following discussion represent the iteration number.

Step 1: Start with & = 0 and set A(¥) = 0. Solve the OCP with the cost functional
(2.19) subject to the dynamic constraint (2.18). The solution to this OCP is given

by
uw'® = —R'BT P2 4 R71BTy, (2.20)
where P and r; are the solutions of the differential equations

—P=ATP+ PA—PBR'BTP+CTQC, P(T)=CTK,C, (2.21)

—71 = (A= BR™'BTP)Tr) — Pd + C"Qua, (T) = CT Kya(T). (2.22)

Note that (2.21) is a Riccati differential equation that does not depend on y; and
is solved backwards in time and (2.22) is a linear differential equation which is also
solved backwards in time. Obtain z%, from £ = F (2, u*© A©) = Az©) + By*©®

and u}, from (2.20).
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Step 2: Set k = k + 1 and A®) = X\*=D 1 §A®) wwhere §A®) > 0 is small and solve
the OCP given below

T _
Sx®)(T CTK;C 0| |dz®(T
min 62.J*) :1 ) d (T) 4
suk)(.) 21 50® 0 0 SAK)
8 L
ox®(t) 80 HE (6) H)(8) | | 02®(1)
1 T
3| ||oow | | mEe B0 | [0 || @ (223)
SAK) Sy HO ) 0 SAK)

subject to the perturbed dynamics

081 (t) = AV(1)0aM () + BB (0)ou® (1) + G (1)0AD, s2M(0) =0,  (2.24)

where

aat allf (wi(k_l)(t),u;‘(k_l)(t),)\(kfl))
0)(1) = 0 0H
ou Ox (xi(k—l)(t)’ui(k—l)(t)7)‘(k71))
oF
AR = ,
@ o1y Duf oy ()AETD)
oF
5O = |
@ o1y D0l oy ()AETD)
oF
G(k)(t) oy |
(mf\‘(k—l)(t)’uj(k—n (£),A(k—1))

1
with H(z,u, U, \) := 5[(01’ — )" Q(Cz —yg) + u” Ru| + T F(z,u, \). The solution
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to the OCP (2.23)-(2.24) is given by (see, e.g., [14])

uu

su*® = — {10 (1) [ng ()0z*) + BT®) (1)sw® 4 gtk) (t)dA(k)] : (2.25)

where dU®) = SHE)§zpk) rék), S®) and rék) are the solutions of the differential

equations

_ Sk — AT(k) (t)S® + S® A®) (1) — SBBE (1)) L C®)(1), S*EN(T) = CTK +C,
(2.26)

—i) = (AT® () — SO B® (1)) d) — (SO DO (1) + D (1))oA®, (1) =0,

(2.27)

where

AB(t) = AW() — BV () H,, W () HE(1),

BW(t) = BW(t)H,, ™ ()BT (1),

CW(t) = HE (1) — HE) () Hy W () HE (1),

DI(t) = GO (t) = BY(HLI D () H LY (1)

DY (1) = HY(t) — HE)OH OO (1),
Obtain dz}, ,, from (2.24), dus,,, from (2.25) and 6W%, ,, = S®ox?, ) —rék). Calcu-

*

ES * _ * ES * _ *
UNgy = Uygeo) T 5u5/\(k) and \If)\(k) = \If/\(k,l) + 5\115/\(k).

* _ *
late 23w = 301 +0TF 09,

Step 3: Repeat Step 2 until \(®) = 1.

Following the above steps, we can obtain a sub-optimal control for a nonlinear
system with a given cost functional. Note that special methods exist for solving
the differential equations (2.26)-(2.27) efficiently (see, e.g., [26], [95]). We consider a

numerical example in the next section.

Remark 11.3. We would like to clarify that by a sub-optimal control, we mean that we
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are close enough to the optimal control, where the closeness of sub-optimal control to
the optimal control can be controlled by controlling the rate of change of the homotopy
parameter (derivation of the estimates for such an error bound is left to future work).
The proposed algorithm can also be extended (under appropriate assumptions see,
e.g., [30], [31], [32]) to OCPs with control input/state constraints. An alternative way
to extend the proposed algorithm to OCPs with control input/state constraints is by
using the penalty function approach. Moreover, the weighting factor multiplying the
penalty function could be treated as an additional parameter in applying neighboring
extremal predictions, so as to avoid the problem of ill-conditioning caused by starting

directly with a very high value of the weighting factor.

Recall that an indicator for the existence of conjugate points is that (2.26) has a
finite escape time. We will now give three sufficient conditions for the nonexistence of
conjugate points, if the optimal control is obtained at each iteration of the proposed

algorithm.

C(k=1) (t) AT(k—1) (t) C'(k) (t) AT (k) (t)
= )

AF=D() =BG () AWy —BW(¢)
Hﬁ’i_l)(t) > 0 and Hgf)(t) > 0, for a.e. t € [0,T] and for k € Z,, then S*~D(t) >

Proposition I1.4. Assume that

S®)(t) on the interval [0,T]. Moreover, if there exists a solution S* =1 (t) for (2.26)
on the interval [0, T], then there ewists a solution S®)(t) for (2.26) on the interval

[0, 7).

Proof. Tt is easy to verify that A®=D(t), A®)(t), BED(t), B® (), C*-(t) and
C®)(t) are integrable on the interval [0, T]. Tt follows from Theorem 4.1.4 of [1] that
SE=D(t) = S®)(t) on the interval [0,T]. It is also easy to verify that B*=1(t) =
BTED(t) = 0, B®(t) = 0, C*ED(t) = CTED(¢) and SED(t) = ST*1(¢) on the
interval [0, T']. It follows from Theorem 5.7 of [35] that there exists a solution S®)(¢)

for (2.26) on the interval [0, T]. O
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Proposition IL.5. Assume that C*V(t) = 0 and Hﬁﬁ_l)(t) > 0, for a.e. t € [0,T]

and for k € 7., then there exists a solution S =1(t) for (2.26) on the interval [0, T).

Proof. Tt is easy to verify that A®=D(#), B*=1(¢) and C*~1(t) are integrable on the
interval [0,7]. It is also easy to verify that B®D(t) > 0 on the interval [0,7]. It
follows from Theorem 4.1.6 of [1] that there exists a solution S*~1(¢) for (2.26) on

the interval [0, T]. O

Proposition I1.6. Assume that Hgfl)(t) > 0, for a.e. t € [0,T] and for k€ Z,. In
addition, assume that there exists S*~V(.) € AC([0,T],R™") on the interval [0, T

such that
0> é(k_l) + AT(k_l)(t)g(k_l) + S(k_l)zzl(k_l)(t) — S’(k_l)f?(k_l)(t)g(k_l) + é(k_l)(t),

for a.e. t € [0,T] and S* V(T = CTK;C, then there exists a solution S*=(t) for

(2.26) on the interval [0,T] and S*=Y(t) = S*=Y(t) on the interval [0,T].

Proof. Tt is easy to verify that A*=D(¢), B&=1(t) and C*~1(t) are integrable on the
interval [0,7]. It is also easy to verify that B*=D(t) = BT*=1(t) = 0, C*=D(t) =
CTE=D(t) and S*-1(t) = STE=1(t) on the interval [0,T]. It follows from Theorem
5.8 of [35] that there exists a solution S*~1(¢) for (2.26) on the interval [0, 7] and
SE=D(#) = SE=(#) on the interval [0, T]. O

Remark I1.7. Note that the proposed algorithm only gives a prediction step and not
a correction step. To improve the solution, a prediction step can be augmented by a

correction step that can be implemented by a few iterations of a convergent optimizer.

It is possible to obtain a predictor-corrector algorithm in a slightly more general

setting and in the spirit of [33], we will now outline the predictor-corrector algorithm.
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2.3.2 General Algorithm

Consider the following OCP

min J = K(o(T) + L Lz (t), u(t))dt (2.28)

subject to
z(t) = F(z(t),u(t),N), z(0) = x, (2.29)

where z(.) € WH*([0, T],R™), u(.) € L*([0,T],U), with & = R™ (nonempty, closed
and convex), K : R" > R, L : R" x R™ - R and F : R" x R™ x [0,1] — R" are
functions of class C?. Let (x%,u}) be a solution for the OCP (2.28)-(2.29) and ¥* be

the solution corresponding to (z,u) = (x%,u}) of the following costate equation
U = —H,(z,u,¥,\), U(T) = K,(x(T)),

where ¥(.) € WH*([0, T],R"), H is the Hamiltonian and H(z,u, ¥, \) := L(x,u) +
UTF(x,u,\). It follows by PMP (see, e.g., [59]) that the following condition holds

HE(2*(t),u*(t), U*(t),\) (v — u*(t))dt = 0, for all ve U and for a.e. t € [0,T],

where

_oH

H,(x"(t),u"(t),¥*(t),\) = e :
(@* (8),u* (2), W (£),A)

Altogether, (x%,u}, U}) satisfy the following necessary conditions for optimality

#(8) — F(a(t), u(t),\) = 0, 2(0) = o, (2.30)
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T (t) + Ho (), u(t), U(t), \) = 0, W(T) = K,(x(T)), (2.31)

HE(2(t),u(t), ¥(t), \) (v —u(t))dt = 0, for all veld and for a.e. te[0,T]. (2.32)

Let the set Ny(u) := {0(.) € L*([0,T],U) | (t) € Ny(u(t)), for all ¢t € [0,T]}, where

the normal cone mapping (set-valued mapping) to the set U is given by

{w | (w,a—u(t)) <0, forall uel}, for u(t)eU,
Ny (u(t)) =

a, for u(t) ¢ U.

Note that there are some subtleties that we have glossed over in the above discussion
and we refer the reader to [34] for more details. Let w := (x,u, V), Q 1= {(z,u, V) |
(z,u, ) € Wh® x L® x Wh® 2(0) = o, U(T) = K,(z(T)), u(.) e L*([0,T],U)}
and Qg := L*® x L® x L®. The necessary conditions for optimality (2.30)-(2.32) can

now be re-written as a generalized equation as follows
F(w,A) + N(w) 20, (2.33)

where F : Q) x [0,1] — Qy and N : ; — 2% with

T — F(ZL’,U, )\) 0
Flw,A) == [ ¥+ H,(z,u, ¥, \) | and N(w):= 0
Hu(x,u,\I/,A) NU(U)

We are now ready to outline the algorithm. Note the superscripts in the following
discussion represent the iteration number.

Step 1: Start with k£ = 0 and set A(®) = 0. Solve the OCP with the cost functional
(2.28) subject to the dynamic constraint (2.29). Obtain w}, = (250, U}, Yi0)-
Step 2: Set k =k + 1 and \*) = \*=D 4 §XH*) where 6A® > 0 is small. The Euler
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predictor and the Newton corrector steps consist of solving the following linearized

generalized equations

.F(w;(k,D, )\(k_l)) + Dw .F(W)\(k—l), A(k_l))(a) - W:(k—l)) + D)\ .F(w;(k,D, )\(k_l))(5>\(k)+
N(@) 20, (2.34)

F(@, \?) + D, F(@, \B)(wiy) — @) + N(win) 20. (2.35)

Obtain wu = (T3u), Uiw, Vi) from (2.34)-(2.35).
Step 3: Repeat Step 2 until A*®) = 1.

Following the above steps, we can obtain a sub-optimal control for a nonlinear sys-
tem with a given cost functional, where the space of control parameters is nonempty,

closed and convex.

Remark 11.8. For computational purposes, (2.34) and (2.35) would result in linear

quadratic problems with control input constraints (see, e.g., [30], [31], [32]).

We will now present a numerical example.

2.4 Numerical Example

To illustrate our combined homotopy and NEOC method, we consider a three

dimensional orbit transfer problem for a spacecraft from an initial circular orbit of
radius R; (km) to a final circular orbit of radius Ry (km) (see, e.g., [51]). The OCP

is given below

in.J - %(a:(T) ) TE(@(T) — 2a) + % J T ()t dt (2.36)
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subject to

_i'l(t)_ _ za(t) _
2 2 2 H
ia(t) xq(t)x5(t) cos®(z5(t)) + x1(t)zg(t) — m + uq (t)
i5(t) 4(t) 237
. — | _20M2a®) o ) tan(e us(t) ’ ‘
4(t) (D) + 214 (t)x6(t) tan(zs (1)) + 1 (8 cos(zs (1))
a5(t) ze(t)
Tg(t _2m()ns(t) 23(t) sin(x cos(x us(0)
O] ) SOsin(es() cos@@(®) + 25|
u® (t)u(t) <1078, (2.38)
where
K; = diag(107%,1,1,1,1,1),
x(O)zxoz[Re-l—R,-OO ﬁoo] ,
177 0 o T
vy = R. + Rf 0 1 e @ 0
J (R + Ry)? cos? (ﬁ)

In (2.37), 1 = r (km) (radius of orbit), xo = 7 (km/sec), 3 = 6 (rad) (azimuth
angle), x4 = 0 (rad/sec), x5 = ¢ (rad) (clevation angle), x5 = ¢ (rad/sec), u; = a,
(km/sec?) (acceleration in the r direction), us = ag (km/sec?) (acceleration in the
6 direction), uz = a4 (km/sec?) (acceleration in the ¢ direction), R, = 6378 (km)
(radius of earth) and u = 398600.4 (km®/sec?) (gravitational parameter).

We consider a linear system given by & = Az + Bu + d, x(0) = x, which is
obtained by the linearization of (2.37) at a selected steady-state operating point
Top = o and u,, = [0 0 0]7. Instead of solving the OCP (2.36)-(2.38), we use the
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penalty function approach and solve the OCP given below

min = 5(@(T) = 2) Ky a(T) =) + 5 | [ (Ou(t) + v@(u(u(t) o
(2.39)
subject to
o] | ot |
() 21 (823 (t) cos? (w5 () + a (£)22(t) — % +ua(t)
Z3(t) | _ e 24(1) t (2.40)
iy | -2 g0 tans) + 20|
i5(1) (1)
o) | _% — (1) sin(as (1)) cos(zs (1)) + ng

where h(u) = uTu—1078, (Poh)(.) = max{0, h(.)}* is by choice a differentiable penalty
function and v € R, is the weighting factor. We create a homotopy between the
nonlinear system and the linear system and use the indirect single shooting method
as a solver for the OCP with the cost functional (2.39) at each homotopy iteration.
The indirect single shooting method converts the OCP into a root finding problem
and solves for the initial values of the costate variables.

To demonstrate the advantages of the combined homotopy and NEOC method,
two cases are considered. In the first case, we set the initial guess for the initial value
of the costate variables for the next iteration to be equal to the optimal value of the
costate variables obtained from the previous iteration. In the second case, we use the
combined homotopy and NEOC method discussed in the previous section to set the
initial guess for the initial value of the costate variables for the next iteration. Note

that [51] uses (2.3) to solve OCPs but does not use neighboring extremal updates to
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predict the change in the initial value of the costate variables. The Matlab function
fsolve.m has been used to solve the root finding problem, the weighting factor is
v = 103 and X has been varied from 0 to 1 in increments of 0.1.

Figures 2.1(a)-(f) show the trajectory for the states of the nonlinear system, along
with trajectories for some values of A, with R; = 600 (km) and Ry = 2000 (km). Fig-
ures 2.1(g)-(i) show the control inputs to the nonlinear system, along with trajectories
for some values of \. Figure 2.1(j) shows the control input constraint as A varies from
0 to 1. Figure 2.1(k) shows the total cost for the nonlinear system as A varies from 0
to 1. Figure 2.1(1) shows the spacecraft maneuver from an initial circular orbit of ra-
dius R; = 600 (km) to a final circular orbit of radius Ry = 2000 (km). Figure 2.1(m)
shows the total number of function evaluations of fsolve.m for different spacecraft
maneuvers, for the two cases described above. Figure 2.1(n) shows the total number
of iterations of fsolve.m for different spacecraft maneuvers, for the two cases de-
scribed above. From Figures 2.1(m)-(n), one can see that the second case described

above needs fewer function evaluations and iterations of fsolve.m.
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CHAPTER II1

Constrained Spacecraft Attitude Control on SO(3)

Using Fast Nonlinear Model Predictive Control

In this chapter, a numerical solver for the optimization problem arising in the
NMPC of spacecraft attitude is developed and simulation results of its application to
constrained spacecraft attitude control are presented. The numerical solver exploits
the solution of the necessary conditions for optimality in a discrete-time OCP de-
fined over a prediction horizon, where the discrete-time dynamics are based on the
LGVI model. The inequality constraints (thrust constraint, inclusion/exclusion zone
constraints, etc.) are handled using a exterior penalty function approach. Our de-
velopments exploit the geometric control formalism in deriving the numerical solver
for the NMPC problem, which is based on the indirect single shooting method and
is faster than the baseline solver (fmincon.m), which was used in [49]. In the last
section of this chapter, we include some convergence results, which extend the classi-
cal penalty convergence theorem to the setting of smooth manifolds and the classical
exact penalization theorem to the setting of Riemannian manifolds. We will now

discuss the NMPC problem formulation on SO(3) that follows [49].
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3.1 Nonlinear Model Predictive Control on SO(3)

Consider the following NMPC problem

N—
min jd = Kd(Rk+N\ka k+N\I~c Z Rk+g\k> k+]|kauk+]|k) (3-1)

{ k+j|k}j () =

subject to

RITX, . = Fpyinda — JoF/- 3.2
k+jlk — Lk+jlkdd dt k+j)k> ( : )
Ris14jie = BirjioFrr i (3.3)
i1 = Folgpllegin + hug g, (3.4)
Hi( R T 0 ) <0, 6= 0,...,m, (3.5)

where Ryijik, Fitji € SO(3), yijk, urrjix € R* and h € R, is the time step. Note
that Ry, is the spacecraft attitude, Il s is the spacecraft angular momentum
and w4 is the control torque. The terminal cost Ky is a real-valued non-negative
function with respect to its arguments such that Ky(I3x3,03x3) = 0. The incremental
cost Cy is a real-valued non-negative function with respect to its arguments Ry

and II;, .. and a positive function with respect to its argument wu, ik such that

k+j]
Ca(I3x3, 0343, 0353) = 0. It is assumed that the terminal cost Ky, the incremental cost
Cy and the inequality constraints H; satisfy appropriate differentiability assumptions.

Note that J; € R?>*3 is the nonstandard moment of inertia matrix and is related to
the standard moment of inertia matrix J € R3*3 as J; = %tr(J)ngg — J. To obtain
the necessary conditions for optimality, we follow the same variational approach as
in [62]. Since, the numerical solver is based on solving the necessary conditions for

optimality resulting from a discrete-time OCP over a prediction horizon, where the

inequality constraints are incorporated as soft constraints through a penalty function,
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we consider the following discrete-time OCP

N-1
min jd = Kd(RN,H ) + Cd(Rk,H;,u;) (36)
{ k}k o k=0
subject to
RIL = FyJy — J4FL, (3.7)
Ryy1 = Ry Iy, (3.8)
i1 = F i + huy, (3.9)
H;(Rg, 11} u;) <0, i =0,...,m. (3.10)

Define the augmented cost functional as follows

N— N—
Ji = Ky4(Ry, 11 2 a(Re, I ugt) + Z (log(Ry ' Ry41) — log(Fy))+
N-1 - N-1 m B
D A ((Mygy — B TL, — g )? Z Z Hi(Ri, 1 wy), (3.11)
k=0 k=0 i=0

where A\l € 50(3)*, A2 € 50(3), ®;(.) is a penalty function and p; € R,. Note that
the exponential map in the case of matrix Lie groups, coincides with the matrix

exponential.

Remark 111.1. Under the Lie algebra isomorphism .* : R® — s0(3), given by z*y =
xxy, forall z, y € R3, Kso(3)(., -) gets identified with the standard inner product on R3
(see, e.g., [52]). Specifically, if Kqo(3)(a™, ) := tr(ad a* oad b*), then kg ) (a™,b*) =
tr(a*0*) = —2{a,b). In fact, as SO(3) is compact and semisimple, —rqo(3)(., .) gives a
bi-invariant Riemannian metric on SO(3). Using the map .° : R® — s0(3)* and letting
the natural pairing a®(b*) := (a, b), it is easily seen that a®(b*) = —%Iiso(g) (a*,b%) =
1tlr((aX)TbX), which also shows that so(3) = s0(3)* (see, e.g., [45]). In this way, the

2
natural pairing between a covector and a vector gets identified with the Killing form
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on s0(3), which further gets identified with the standard inner product on R3. Using

this, it is possible to obtain the necessary conditions for optimality in R3.

We will now derive the necessary conditions for optimality for the discrete-time

OCP (3.6)-(3.10).

3.1.1 Necessary Conditions for Optimality

The variations of Ry, F}y and II, are given as follows

Ry . = Ry exp(eny), (3.12)
Fk,e = Fk exp(egkx), (313)
Hk,e =11, + E(SHk, (314)

where 1, & € R3, with 9 = 0, & = 0 and 0IIy = 0. The infinitesimal variations of

Ry and F}, are given by

dRy .
de

Ry, =

Y

e=0
= Rkﬁ,:, (315)

dFk,E
de

0F, =

’
e=0

= &y (3.16)

Before proceeding further, we need a few facts.

Fact 1. ([62]) mey1 = Flme + &

The variation of (3.7) yields the following fact.

Fact 2. ([62]) & = hF (tr(FyJg) [3x3 — FiJq) 72010, =: Mol where M, € R3*3.

1
Fact 3. ([45]) itr(BTaX) ={((B)a)™*,a), for all a € R* and B € R**3.
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The above result is used to obtain the following fact.

Fact 4. ([45]) Dg, F(Rn;) = (75 (D, F)a)™ -
Using Facts 1-4, the variation of the augmented cost functional is written as follows

074 = {(Ry(Dry Ka))a) " 1wy + (D, Ka)a) ™™, 01y )+

N-1

2, [K(REDr, Ca).a)™ my + (D Ca)a) ™, 011y + (D, Ca)a) ™, Sury]+

5=0
N1 N1
DOk ke = B — &) + DL, 0Ty — (Fr&y) T — F6TI, — héug)+
5=0 k=0

=

iing

i (R (D, (@i 0 Hi)))a) ™ me) + (D (@5 0 Hi))a) ™, 010 )+

D, - ((I)i o Hz))A) 75uk>]7

k

((RN(Dry Ka))a) ™ 1wy + (D, Ka)a) ™™, 1y )+

¢

~~
~~

=

[<((Rf(DRk Ca))a) ") + (D Ca)a) ™ 01y + (D Ca)a) ™ dur)] +

]

i
=)

N-1 N-1

D s — Ffne — & + D OF 6Ty + (BT )76 — FFSTL, — howgy+
k=0 k=0

N-1

Zu ((RE (D, (@5 0 H)))a) ™, i) + (Dyg (@ 0 H;)) )™, 611+

ling

(D (P30 Hi))a) ™", dus)],
(RS (D Ka)a) ™ + Ay o + 2 (—FL+ AL+

(R (DR, Ca))a)™* + Zu ((Ri (D, (@i 0 Hi)))a) ™ )] + {(Dygy Ka)a) ™+

N-1

Mot 0TIy + D [(=MEN, = (B = M (FITL) )] + N2y + (Dyy Ca)a) ™+
k=0
N-1
Z“ (®s 0 Hy))a) < 6T)] + D [(=hAT + ((D,x Ca)a) ™+
k=0

Zu o (@io Hi))a) ™, dul,
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where the analogue of integration by parts in the discrete-time setting is used along
with the fact that the variations 7, and 0lI; vanish at & = 0. Since, 0 should
vanish for all variations of 7, 0II; and duy, the necessary conditions for optimality

are as follows

AL = By — JuFY, (3.17)
Ryy1 = RpFy, (3.18)
M1 = BT + huy, (3.19)

>‘11c+1 = Flzll[)‘llc + ((R£+1(DRI€+1 Cd) “+ Zﬂz Rk)+1(DRk+1((I) o H; ))) ) ]7

=0

(3.20)

A1 = —((Rx(Dry Ka))a)™, (3.21)

>‘2+1 = (Fk+1 - Mgﬂ(FgﬂHkH)x)_l[_Mgﬂ)‘}cﬂ + Ai + ((DH;+1 Cd)A)_X""

Zm((Dn;H((I% o H;))a) "], (3.22)
Mo = —((Dpy Ka)a)™, (3.23)
WAL = (D, Ca)a +Z“Z (B0 Hy))a) " (3.24)

Remark I11.2. Note that we assume that the extremals for the OCP (3.6)-(3.10) are
normal (see, e.g., [9]). However, abnormal extremals do occur in practical problems
and there might exist abnormal extremals for the OCP (3.6)-(3.10) (a systematic

study of the abnormal extremals for the OCP (3.6)-(3.10) is left to future work).

We will now describe the cost and the inequality constraints that are used for the

subsequent numerical examples.
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3.1.2 Cost and Inequality Constraints

We now consider the terminal cost, the incremental cost and the inequality con-

straints as given in [49]

1, 1 1,1

Ki=51PF(Ry = L)} + 5|1 PF I, (3.25)
h, 3 PRI T S N S

Ca = S1Q7 (Re — Inua) I + 5 Q3T 3 + 5 1Q3 (3.26)
1 X

Ho = 5 |luy 17 — o, (3.27)

where Py, Py, 1, Q2 > 0 and Q3 > 0. Note that (3.27) represents a thrust constraint,
where a € R, (3.28) represents inclusion/exclusion zone constraints, where 3; € R,
v; is the spacecraft body-fixed vector and w; is the inertial direction vector (see, e.g.,
94]). Note that %Bl/zaxﬂ2 = %aTBa, for all @ € R® and B > 0/B > 0, where

B = tr(B)l3x3 — B (see, e.g., [49]).

Remark 111.3. Since, SO(3) is a matrix Lie group, a natural choice is to use the
Frobenius norm to define a metric (see, e.g., [22]), which in turn is used to define
the terminal and the incremental cost. The specific form of the terminal and the
incremental cost in (3.25) and (3.26), respectively, corresponds to a LQR type problem
on SO(3) x s0(3).

For the specific form of the terminal and the incremental cost in (3.25) and (3.26),

respectively, the necessary conditions for optimality (3.17)-(3.24) take the form

hILS = FyJy — J4FL, (3.29)
Ris1 = Ry Fy, (3.30)
My = FIT, + huy, (3.31)
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Mt = Bl = h((REa Q1) a) ™ — im((Rfﬂ(DH@-(@i o Hy)wivi ))a)™ ],

(3.32)
Avor = (RyP)a) ™, (3.33)
Mow1 = (Frpr = M (Fa ) ) T =M A + A+ h((Q2IT, 1) 4) %], (3.34)
Ao = —((RIIp) )7, (3.35)

hAL = h((Qsw)4) ™ + po((D i (o © Ho)ug)a) ™, (3.36)

where we have chosen the differentiable penalty function, (®;0H;)(.) = g max{0, H;(.)}%.

Remark T11.4. To obtain Fj, in (3.29), (3.29) is expressed on R =~ s0(3) using the
exponential map or the Cayley transform, to which a Newton method is applied
(see [63], pp. 96-100). Also, if a certain condition is satisfied, then Fj in (3.29)
can be obtained by solving a continuous-time algebraic Riccati equation (see [19]).
The trajectories for (Ry, g, AL, A\2) (starting from a given (Ry, Ily, A}, \2)), using the

necessary conditions for optimality are computed in the same way as in [62], p. 474.

We will now describe the numerical solver.

3.2 Description of the Numerical Solver

The necessary conditions for optimality (3.29)-(3.36) lead to a two-point boundary
value problem which is solved using the indirect single shooting method to determine
the initial values of the Lagrange multipliers. Sensitivity derivatives obtained from the
necessary conditions for optimality are used in the numerical solution. We follow the
same procedure as in [62] to characterize these sensitivity derivatives. The sensitivity

derivatives for (3.30)-(3.31) are given as follows

n Fr M, n 03
S I * S T R I P (3.37)

() N P O3x3 FF + (FLT)* My | | 611, hlsys
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The sensitivity derivatives for (3.32) and (3.34) are given as follows

Mke+1
) [ NP}
it =S| up |- (3.38)
041
SAL
R

where S;, € R®*1%. Assuming that duy is explicitly expressible in terms of u; and
dAZ (this assumption is not required but helps to present the idea clearly), from

(3.37)-(3.38) we obtain

Nk+1 Nk
511 oIl
S e (3.39)
A1 AL
Y=y | 0A7

where T}, € R?*12. From (3.39) we obtain

N Mo
5HN N1 51_[0
=[] ™ . (3.40)
SAL k=0 SN
N3 oA

In the indirect single shooting method, the initial values of the Lagrange multipliers
are unknowns that are determined by solving a nonlinear root finding problem. To

solve this nonlinear root finding problem, we employ a Newton-like method. The
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updates have the following form

i i SE) ;
AU Z 20—y 0 E®, (3.41)
0

where the superscripts represent the iteration number, v € (0, 1] is the step size and

EY is given as follows

A2 = (RO P a)
AL+ (BRI 4)

E® = (3.42)

Note that E® represents the error in satisfaction of the terminal boundary conditions
at the i-th iteration. The sensitivity derivative for E® is computed with the help of
the following expression

N+ (3 Ry P).a)

SE® = : (3.43)
5}\2(1') x(1)y y—x
N2t T ((F20I) )

For a given (R(()i),ﬂ(()i),)\(l)(i),)\g(i)), the trajectories for (R,(f),H,(j),)\i(i),)\z(i)) are ob-
tained using the necessary conditions for optimality (3.29)-(3.36) and E® is obtained
using (3.42). Letting 5>\(()i) = )\éi) — )\(()i_l), §EW is obtained using (3.44), which in turn

is obtained using (3.40) and (R,(f), Hl(f), )\i(i), )\i(i)) along with the facts that 770;’) =0
SE®

SAY)
mal initial values of the Lagrange multipliers are obtained, the optimal trajectories

and 5H(()i) = (. In this way, we obtain the Jacobian matrix, . Once the opti-

are calculated using the necessary conditions for optimality (3.29)-(3.36) obtained in

the previous section.

Remark I11.5. Continuation methods (see, e.g., [4]) can be exploited to obtain addi-
tional time savings. There are two scenarios where continuation methods can be used.

The first scenario occurs for the MPC problem over a fixed prediction horizon, when
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the weighting factor multiplying the penalty function is being increased. Generally,
starting with a very high value of the weighting factor is not recommended as this
might result in numerical ill-conditioning. Continuation with respect to the weighting
factor can be used to obtain a desired solution quickly and to avoid the problem of
numerical ill-conditioning. The second scenario occurs when going from one predic-
tion horizon to the next, wherein the initial state in the MPC problem changes. If
the state changes by a small amount, this can be seen as a small perturbation. Con-
tinuation with respect to the state along with the solution computed in the previous
prediction horizon can be used to predict a desired solution quickly. The idea of con-
tinuation presented here is similar to the one in [27], [28], [36], [76], [96]. While we do
not formally take advantage of continuation methods in this chapter, our subsequent

numerical examples warm-start the numerical solver with the previous solution.

We will now present numerical examples.

3.3 Numerical Examples

We consider a spacecraft with moment of inertia matrix J = diag(1,0.8,0.8) (kg-
m?), with time step h = 0.4 (sec). We take P, = P, = Q; = Qo = 0.01/343 and
Qs = Iyxs, in (3.25)-(3.26).

In some of the subsequent figures (Figures 3.4 and 3.9), the attitude maneuver is
i

plotted on S?, where the vectors [z y z]7 corresponding to the first, second and third

column of Ry are plotted in dashed-red, dashed-green and dashed-blue, respectively.
Similarly, the vectors [z y z]T corresponding to the first, second and third column of
Ry are plotted in red, green and blue, respectively. For all other Ry, k # 0, N, only

the coordinates are shown in the corresponding colors.
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3.3.1 Simulation with Thrust Constraint (Case I)

In this simulation we consider only the thrust constraint (3.27), with o = 10~* (N-
m). The simulation time is 150 (sec), the prediction horizon is 2 (sec), the weighting
factor is o = 10'° and the step size is v = 1. The initial condition for the attitude

and angular momentum are given as follows

Ry = eXP(CX)a

I, = [0 0 0],

where ¢ = [0.25 0.5 0.5]7. Results for the numerical solver are shown in Figures
3.1(a)-3.4(a) and results for the baseline solver are shown in Figures 3.1(b)-3.4(b). It
can be seen from Figures 3.1-3.4 that the solution obtained by the numerical solver

is close enough to the solution obtained by the baseline solver.

3.3.2 Simulation with Thrust and Exclusion Zone Constraints (Case II)

In this simulation we consider the thrust constraint and one exclusion zone con-

straint (3.27)-(3.28), with a = 107* (N-m), 8, = —0.9962, v; = [1 0 0]7 and
0.03 A ~ 0.03
f \ ”1
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(a) Numerical Solver. (b) Baseline Solver.

Figure 3.1: Angular Momentum.
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wy; = —[0.9276 0.3736 0]7. The simulation time is 300 (sec), the prediction hori-
zon is 2 (sec), the weighting factors are ug = 10'°, p; = 103 and a hybrid step size
method is used, i.e., we switch from one value of v to the other during the simulation.
We use a hybrid step size method because we observed that v < 1 is helpful to ensure
convergence of (3.41) when the exclusion zone constraint is active whereas with v =1
(3.41) is convergent, when the exclusion zone constraint is not active. The initial

condition for the attitude and angular momentum are given as follows

Ry = eXP(CX)a

I, = [0 0 0],

where ¢ = [0 0 0.5]7. Results for the numerical solver are shown in Figures 3.5(a)-
3.9(a) and results for the baseline solver are shown in Figures 3.5(b)-3.9(b). It can be
seen from Figures 3.5-3.9 that the solution obtained by the numerical solver is close
enough to the solution obtained by the baseline solver.

Table 3.1 compares the total computational time for the numerical solver and
the baseline solver, to obtain solutions to the NMPC problems, on a 3.6 GHz Intel

Xeon desktop computer with 16 GB of RAM. This comparison demonstrates the time
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£ §
Z -0.02 Z -0.02}
cC |y
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-0.041 —0.04+
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(a) Numerical Solver. (b) Baseline Solver.

Figure 3.5: Angular Momentum.
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savings with the numerical solver versus the baseline solver. For Case I, the maximum
time taken by the numerical solver to obtain the optimal solution for one time step
is approximately 0.44 (sec). For Case II, the maximum time taken by the numerical
solver to obtain the optimal solution for one time step is approximately 3.76 (sec).
The code has been implemented using a MATLAB m-file and the computational time

has been assessed using the tic-toc function in MATLAB.

Case Numerical Solver Baseline Solver
I 39.39 (sec) (approx.) | 271.01 (sec) (approx.)
IT | 126.52 (sec) (approx.) | 767.97 (sec) (approx.)

Table 3.1: Total Computational Time for both the Solvers.

We will now show that under appropriate assumptions, it is possible to obtain
the minimizer for the constrained optimization problem using the exterior penalty
function approach. This analysis extends the classical penalty convergence theorem
to the setting of smooth manifolds and the classical exact penalization theorem to

the setting of Riemannian manifolds.
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3.4 Convergence Analysis for the Penalty Function Approach

Let M be a n-dimensional smooth manifold and ¢/ be a m-dimensional smooth

manifold. Consider the following discrete-time OCP

N—1
min Ju = Ka(qn) + Z Calqr, ur) (3.44)
{uk}k;ol k=0
subject to
@1 = F(qr, ug), (3.45)

where Kg: M >R, Cy - MxU >R F- MxU—->M,H;: MxU—->R, g, e M

and up, €eU. Let M := M x ... x M xU x ... xU. It is easy to verify that M is also

N—c:;pies N—c:;pies
a smooth manifold. Let the set S © M be the feasible region for the discrete-time

OCP (3.44)-(3.46). The discrete-time OCP (3.44)-(3.46) can be shown to reduce to

the following constrained optimization problem (P)

min f(m), (3.47)

meS

where f : M — R. Consider the following unconstrained optimization problem P (u*)

min_ f(m) + u*p(m), (3.48)

where p* € R, and p : M — R, is a penalty function, which has the following

properties
(a) p is a function of class C°,

(b) p(m) =0, for all me M,
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(¢) p(m) =0, if and only if m e S.

In addition, {¢*}? | is a strictly increasing sequence such that klim k= oo, Let m*
—00

and m* be the solutions for (P) and P(u*), respectively. We are now ready to prove

that under appropriate assumptions, the exterior penalty function approach recovers

the minimizer for the constrained optimization problem.

Theorem IIL.6. (Penalty Convergence Theorem) Assume that f is a function
of class C° and let {m*}_, be a sequence of solutions for P(u*). In addition, assume
that there exists a chart (U, ¢) of M such that m* € U and with respect to which

mF}® . converges, then the limit point of {m*}* | solves (P).
k=1 k=1

Proof. The proof follows arguments similar to the one given in [67]. Let m be the
limit point of {m*}_,. By hypothesis, there exists a K > 0 such that m"* € U, for all
k> K and {¢(mF*)}* . converges to ¢(m). Let 2% := ¢(m*+*5-1) for all k € Z, and
T = ;}E{}Oxk = I}ggloqﬁ(mk) = ¢(m). By using the fact that ¢ is a diffeomorphism, it

is easy to verify that z* is the solution for the following unconstrained optimization

problem

min (f o ¢~ ") (x) + pF(po ™) (z).

zed(U)

Let z* := ¢(m*). Again, by using the fact that ¢ is a diffeomorphism, it is easy to

verify that x* is the solution for the following constrained optimization problem

min (fo¢ ') (2).

redp(SNU)

To complete the proof, we require some properties of the exterior penalty function

approach.

Lemma II1.7. (Penalty Lemma) The following inequalities hold
(i) (F 0 67)(@) + 15 (p o 6™)(a) < (F 0 6™)(@H) + b (p o 61 (ah*1),
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(ii) (pod™)(z*) = (po o) (@*).

(iii) (f 0 ¢~)(@*) < (f o ™))

(iv) (fod™")(@*) = (fo¢™)(a*) + pf(pod™)(@¥) = (f 0 671)(2").
Proof.

(i) We have the following

(foe™ )@ ) +p po ™) @) = (fo ™)@ ) + pf(pog™) (@),

> (foo™)(@") + u(poo™")(a"),

(ii) We have the following

(f oo™ (") +pf(po ™) (@) < (fod™) (@) + i (po ™) (=",

(fod™) @)+t po ™) (@) < (foo™) (") + u" T (po o™ (a").

Subtracting the above two inequalities gives the following

(W =) (po o™ (@) = (W — 1) (po o ) ().

From the above inequality, it follows that (po ¢~1)(z*) = (po ¢~ 1) (aF+1).

(iii) From (i), we have the following
(foo ™)@ +uf(poe™) @) = (fo o ) (@) + pt(pod™h)(=").
From (i), (po ¢ 1)(z%) = (po ¢ 1) (a**!), which implies that (f o ¢ !)(2*) <

(foo )@
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(iv) We have the following

(foo )(*) = (fod )(=*)+u (pod t)(a"),
> (fog @™+ pFpoo M) (ah),
> (foo ().

O

We are now ready to complete the proof of Theorem III.6. From Lemma III.7, it
follows that {(fo¢ ) (z*) + pF(pod 1) (2¥)}, is a nondecreasing sequence, bounded
above by (fo¢ ')(x*), which implies that kli_r}rolo[(fogbfl)(xk) +pk(pogp 1) (ak)] = r* <
(fo¢™)(z*). Using the continuity of the function (fo¢™1), it follows that kh_rélouk (po
¢ 1) (2%) =r* — (f o 1)(Z). Using the facts that (po¢~1)(z*) = 0 and I}L{Igouk = 0,
it follows from the above equality that kh—r& (po¢~1)(x*F) = 0. Using the continuity of
the function (po¢™'), it follows that (po¢~")(z) = 0. This shows that m is a feasible
solution for (P). From Lemma IIL.7, it follows that (f o ¢~ 1)(a*) < (f 0 ¢~ 1) (x*),
which implies that (fo¢™")(z) < (fo¢™')(x*), or equivalently, f(m) < f(m*), which
further implies that f(m) = f(m*). This shows that the limit point of {m*}? | solves

(P). O

Corollary IIL.8. Let M = R" and U = R™. Assume that f is a function of class
C% and let {m*}_, be a sequence of solutions for P(u*). If {m*}_, converges, then

the limit point of {mF}*_, solves (P).

Proof. By setting U = M and ¢ = idy,, it is easy to verify that Theorem III.6
holds. O

The above convergence analysis shows that the exterior penalty function approach
recovers the minimizer for the constrained optimization problem only in the limit.

This may not be desirable as the solution from the exterior penalty function approach
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is not guaranteed to be a feasible solution for the constrained optimization problem
and the problem may become numerically ill-conditioned as the penalty factor in-
creases (see Remark II1.5). To avoid this situation, under appropriate assumptions,
it is possible to come up with an exact penalization approach.

Let M be a n-dimensional connected Riemannian manifold and U/ be a m-dimensi-
onal connected Riemannian manifold. It is easy to verify that M is also a connected
Riemannian manifold. For p, ¢ € M, the Riemannian distance function is given by

d(p,q) := inf I(v), (3.49)

e

where Q) denotes the collection of all piecewise C! curves joining p, ¢ and the length

of v is given by

10) = | 1Ol (3.50

where 7 : [a,b] — M, with y(a) = p, v(b) = ¢ and |.|,, denotes the induced norm at

the point m € M. The distance between a point m € M and the set § is given by

ds(m) := inf d(m,m'). (3.51)

m'eS
We will now introduce the definition of a Lipschitz function on an open subset of M.

Definition IIL.9. Let U be an open subset of M. A function f : U — R is said to

be Lipschitz, with Lipschitz constant K < o, if

|f(m1) — f(my)| < Kd(my,my), for all my, my e U. (3.52)

Theorem III.10. (Exact Penalization Theorem) Assume that f is a Lipschitz

function on M, with Lipschitz constant K. Choose any K > K, then m* is also a
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mainimizer for the following unconstrained optimization problem

min f(m) + Kds(m). (3.53)

meM

If K > K and the set S is closed, then any minimizer m for (3.53) is also a minimizer

for (P) and so, in particular, m € S.

Proof. Tt is well known that with the Riemannian distance function, any connected
Riemannian manifold is a metric space whose metric topology is the same as the
original manifold topology (see, e.g., [60]). The proof now follows from Theorem

3.2.1 of [93]. n
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CHAPTER IV

Neighboring Extremal Optimal Control for

Mechanical Systems on Riemannian Manifolds

In this chapter, we extend NEOC, which is well established for OCPs defined on
a Euclidean space (see, e.g., [14]), to the setting of Riemannian manifolds. See also
Chapter II for the discussion on NEOC for OCPs defined on a Euclidean space. We
further specialize the results to the case of Lie groups. An example along with the
simulation results is presented. We will now discuss the OCP that will be studied in
this chapter. In what follows, we will suppress the explicit dependence of the state,

costate and control trajectories on time unless otherwise necessary.

4.1 Optimal Control Problem

Let Q be a n-dimensional complete connected Riemannian manifold and {X;}!
be smooth vector fields on Q. For a given time interval [0, 7], it is assumed that
the flow of each vector field in {X;}?, exists, for all £ € [0,7]. Additionally, if Q
is compact, then each vector field in {X;}!, is complete (see, e.g., [60]). Note that
in this chapter, we only consider the class of fully-actuated controlled mechanical

1
systems for which the Lagrangian L : TQ — R is given by L(v,) = §<vq, v,), where
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vy € T,Q. Consider the following OCP (P)

. 1"
Iil(lglJ = §L Cu(t), u(t))dt (4.1)
subject to
0 =), a(0) = a0, o(T) = ar, (4.2)
%(t) =u(t), v(0) = vy, v(T) = vr, (4.3)

where ¢(.) € C*([0,T], Q), v(.) € C*([0,T],Ty)Q) and the n-tuple of control inputs

[ul..

.u"]T take values in R™. Note that in general, the n-tuple of control inputs
[u'...u"]T are constrained to take values in the set & < R™ (nonempty, connected,
with 0 € int(U) and also generally assumed to be compact and convex). In a more
general setting, e.g., when admissible controls are only assumed to be measurable

locally bounded mappings taking values in the set U, more technical assumptions are

needed (see, e.g., [3], [16]) but we do not consider such a setting in this chapter.

Remark IV.1. 1t is possible to generalize the idea presented in this chapter to a cost
functional, which has a more general form with a more complicated dynamic con-
straint (see, e.g., [47]). We choose to work with the cost functional (4.1) as the
solution for (P) has a nice geometric interpretation thereby helping to present the
main idea of the chapter clearly and avoid unnecessary mathematical complications.
In fact, (P) is equivalent to the well known Riemannian geodesic problem (see, e.g.,
[9]). The local existence and uniqueness of the solution for (P) follows from the
theorems on local existence and uniqueness of the solution for ordinary differential

equations. The equations of motion for the class of fully-actuated controlled mechan-
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ical systems with the Lagrangian defined above are given by

Vg = Zn:ule(q), (4.4)

where ¢ : [0,7] — Q. The vertical lift of a vector field X on Q is the vector field
XVift on TQ given by

, d
XVt (y,) = — (v, + tX (q)) e T, TQ, (4.5)
dt =0
where v, € T,Q. In local coordinates, (4.5) has a simple interpretation. Let (¢*,...,q")
be the local coordinates for Q and (', ..., q" vt .. ") be the corresponding local

0 0
coordinates for TQ. If X = ZXZ— then XVIift — ZXZ—Z., where (X1,..., X™)
are the component functions of X in some given chart We can now re-write (4.4) as

follows

=20y + Y u XM (), (4.6)
=1

where v : [0,T] — T'Q and Z is the geodesic spray associated with the connection V.

Z Z F vjv —. Note that 7 is the canonical
i=1 i=1j,k=1
lifting of ¢, i.e., (mo)(t) = q( ) It is not difficult to see that (4.4) is equivalent to

(4.6). Indeed, in local coordinates, (4.4) has the following form

q + Z ijd q —Zule(q), i=1,...,n. (4.7)

7,k=1

Observe that (4.7) is system of second order ordinary differential equations on Q,

which is equivalent to a system of first order ordinary differential equations on T'Q,
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which has the following form

=", i=1,...,n, (4.8)
B == 3 Tt + YulXi(a), i=L...n. (49)
jik=1 1=1

The connection V induces an Ehresmann connection on 7 : TQ — Q such that, for
all v, € T,Q, there is a splitting of T;, T'Q into a horizontal subspace and a vertical

subspace, i.e., T, TQ = H, (TQ)®V,, ( ), where H,, (T'Q) = T,Q and V,, (1) = T, Q.

ZF Uﬂ—} and V, (7)) = span{aii} :

7,k=1 -1 i=1
It is easy to verify that with respect to the above sphttlng, for all v, € T,Q, Z(v,) €

Note that H, (T'Q) = Span{

H, (TQ) and X"(v,) € V,, (). For more details see [2], [5], [9], [17], [64], [65], [89].
In view of the above discussion, we note that (4.2)-(4.3) are equivalent to (4.6). Using
the splitting of T, T'Q discussed above, for all r € T, T'Q, r can be uniquely written

as follows
r=rt4r

where " € H, (TQ) and r” € V,, (m). For all pairs r, 7, € T;,,TQ, the Riemannian
metric (Sasaki metric) on 7'Q is obtained in terms of the Riemannian metric on Q as

follows
{{ri,rayy = (it ey + Gy rs).

1 (T

It is easy to verify that (4.1) makes sense as if Cu(t), u(t))ydt = J Cu(t), u(t))dt.
0

For more details see [83], [84], [89].

Before we proceed further, we introduce the concept of a variation (see, e.g., [2],

9], [16], [29], [68], [72]). Let Q denote the set of all C* curves on Q satisfying the
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boundary conditions (4.2)-(4.3). The set € is also referred to as the path space of
Q (see, e.g., [72]). For a curve ¢(t) € Q, Ty is a vector space consisting of all C*?

vector fields w(t) along ¢(t) such that w(0) = 0 and w(T") = 0.

Definition IV.2 ([72]). A one-parameter variation of a curve ¢ €  is a function

q: (—€,¢) — Q, for some € > 0 such that

(a) ¢(0) = ¢,

(b) The map g, : [0,T] x (—¢,¢) — Q defined by ¢.(t,€) = G(¢)(t) is C* on [0,T] x
(=€, €).

Note that a one-parameter variation of a curve ¢(t) € €2 defined above is proper (see,

e.g., [29]). The vector field v(t) := a@%

Jqe : - : :
and the vector field w(t) := 8q (¢,0) is the variation vector field associated with the
€

(t,0) is the velocity vector field along ¢(t)

one-parameter variation ¢. (see, e.g., [29], [72]). By setting q.(t,€) := expy (€w(?)),
we obtain a one-parameter variation of a curve ¢(t) € €, where w(t) € Ty (see,
e.g., [29], [72]).

To demonstrate NEOC for (P), we first obtain the nominal trajectory, by solving
(P) using two methods. The first method is solving (P) using Lagrange multipliers

and the second method is solving (P) as a variational problem.

4.2 Solution Using Lagrange Multipliers

We proceed by following the same procedure as given in [24] and defining the

augmented cost functional as follows

ro [T on (2 (2|

where A\;(.), A2(.) € C*([0, T, Ty ,Q)- We will now fix some notation.
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4.2.1 Notation

For any smooth vector field y = Zy X;(q) along the curve ¢, with velocity

Dy -
vector field v, — = ) + ), or in shorthand is written
dt ; Zy

D
as =Y = y + V,y. Using this shorthand,

dt = 0y + V,y. Similarly, for any

06 =0
smooth covector field a = Zai (t)w;(q) along the curve ¢, with velocity vector field v,
i=1

n
a . . L Da .
— = Zoﬂ —I—Za )(Vowi)(q), or in shorthand is written as = a+V,a.

Using this shorthand, —

= da + V. For more details see [24]. Before we
€

e=0
proceed further, we need a few lemmas.

Lemma IV.3 ([24]).

LT Ao (5%) dt = LT [_Dd_)tﬂ(év) + )\Q(VM;)] dt.

Lemma IV.4 ([29], [72]). If the connection V is symmetric, then

D dq. D dqe

Oe Ot Ot Oc

The necessary conditions for a normal extremal (see, e.g., [9]) for (P) are obtained

by setting

where

1 04 Do,
J! =L [§<ue,ue>+>\1 (8655 —Ue> +)\2< pn —ue>] dt.
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The above condition, with the use of Lemmas IV.3-1V .4, gives the following

4z

g D
T = f [<u, ou + Vyuy + A (_w — v — va> +

. dt

Dv Dv
)\2 (6@ + Vw% —ou — un>:| dt,

e=0

_ J ' l<u, Vo) + (u, 6ud + Ay (% - vwv> — A1(dv)+

0

Dv Dv
>\2 (Vwﬁ - un> + )\2 ((SE) — >\2(5u):| dt,

Cdt

DX,
W(év) — A (6v) + A2(Vsov) + (u, duy — )\2(5U)] dt,

0

_ J ' [ DM (w) = A (V) + Ao (vw% - un> +(u, V)=

where we have used integration by parts along with the fact that the one-parameter

variation ¢, is proper. We are now ready to state a theorem.

Theorem IV.5 ([24]). A normal extremal for (P) satisfies the following equations

da_,
dt
Dv
dt
D)\
dt
DX,
dt

=u,
— — M (Vo) + X (VA)),

= —)\1 + AQ(VU),

where u = )xg.

(4.11)
(4.12)
(4.13)

(4.14)

We assume that the nominal solution has been obtained for a fixed initial condition.

Suppose there is a small variation in the initial condition and we would like to update

the optimal control for (P). Instead of solving (P) from scratch, we employ NEOC

as described previously. We will now fix some more notation.
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4.2.2 Notation

In what follows, we use superscript n to denote the nominal trajectory and the
corresponding vector and covector fields. The one-parameter variation of ¢™(t) is

denoted by ¢”. Note that the one-parameter variation of ¢"(t) is not proper as there

a mn
is a small variation in the initial condition. The vector field v"(t) := aq; (t,0) is the
a n
velocity vector field along ¢"(t) and the vector field w"(t) := %(t, 0) is the variation
€

vector field associated with the one-parameter variation ¢'.
Employing the NEOC approach described previously, the variational equations
for (4.11)-(4.14) are given as follows

%aaqt? o Datg Y (4.15)
n DA™

%Da% o ajﬁ . (4.16)

%Dg} o % (—Xﬂe(W? )+ A5‘,6(VX£,‘1)) R (4.17)

Note that the change in the control trajectory corresponding to the change in the
nf
2

initial condition is given by Before we proceed further, we need a few

lemmas.

Lemma IV.6 ([29], [72]). Given any smooth vector field y along q., then

DDy DDy, (%0 2
Oe Ot ot 0 Oe’ Ot ’

Remark IV.7. Note that the definition of the curvature tensor of the connection V

used in this chapter, differs by a negative sign from the one defined in [29], [72].
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Lemma IV.8 ([24]). Given y, z € X(Q) and o € X*(Q), then

D Da D
oY) = 22V.) + o (5 (V) = Vo).

e

D
Remark IV.9. Note that the expression, —(V,y) — Vp:y in Lemma IV.8 represents

oe

the second covariant derivative.

We are now ready to state two theorems.

Theorem IV.10. The variational equations (4.15)-(4.18) give the following equations

w" = ov" + [w", "], (4.19)
50" 4 Vyn 00" + Vpn 0™ + Vn 0™ 4+ Vin V0™ = A5 + Vo AS, (4.20)
(OA? 4+ Vin AT 4 Vopn AT 4+ VAT 4+ Vi Von A7) (2) = (=0 — Vpn X (V.0™) —
AU V00" + Von V0" — Vi, 0™) + (0AF + Vi A2 (VNS + XV +

Vurn VoA = VA0, (4.21)
(OAF + Vign NI + Vpn AD + V0L 4+ Vin Vi AB) (2) = (=N — Vi AT) (2) +

(A7 + Vi ALY (V0") + A (V00" + Vo V0" — Vg, ,0"), (4.22)

where z € X(Q).

Proof. Using Lemma IV.4, (4.15) can be re-written as follows

Dy?

€

Oe

D oq
Ot Oe

e=0

e=0

The above equation gives the following

w" = 00" + V" = V™.

Using the symmetry of the connection V, the above equation can be re-written as
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follows

w" = 0" + [w",v"].

Using Lemma IV.6, (4.16) can be re-written as follows

D Dv¢?
ot de | _,

DA}
R n n n o __ ,€
+ R(w",v"™)v Ge |,

€

where R(w™, v")v" i= Vun Vin ™ = Viyn Viyn ™ — Vin nv™. The above equation gives

the following

S0 4 Vipn " 4 V0" 4 Vn 0™ + Von V0™ 4+ R(w™, 0™ 0™ = AT 4+ Vopn A,

Substituting w" = dv™ + [w™, v"] into the above equation, gives the following

50" 4 V80" + Vun 0" + Vg™ + Vo V™ = SAT 4V A2F

Similarly, the other two variational equations can be derived using Lemma IV.8. [

Theorem IV.11. The variational equations (4.19)-(4.20) give the following Jacobi

equation

W 4 2V th™ + Vin " + Vi Vgn™ + R(w™, 0™) 0™ = OADF + Vo A2E. (4.23)

Proof. Substituting (4.19) into (4.20), gives the following

W" — [W", 0" = [w", "] + V" — Vi [w"™, 0" ] + Vim0 — Vign yn 0" + V0" +

Von V0™ = AT+ W yn A%,

Using the symmetry of the connection V, the above equation can be re-written as
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follows

w" + anw" — Vu',n'Un + V@nw" — an'Un + anw" + anvvnw" — VUannv"-l-

Vn 0™ = Vg om0 + Vign 0™ + Vo Vn 0™ = GA5F + Vn ApF

Using the definition of the curvature tensor of the connection V, the above equation

can be re-written as follows
D" + 2V b + Vin " + Von Vnw™ + R(w™, 0™) 0" = X3 4+ Vo S,

where R(w", v")v" := Viyn V0™ = Viyn Vin "™ — Vg ynjv™. O

Remark IV.12. It should be noted that (4.23) plays a crucial role in determining
conjugate points for (P). It is also worthwhile to note that (4.23) corresponds to
(3.3) in Theorem 4 of [15], where the case of a Lie group has been considered but not
in a control theoretic setting. For computational purposes, (4.19)-(4.22) would result
in a TPBVP and the change in the control trajectory corresponding to the change in
the initial condition can then be computed after solving the TPBVP. This point will

become more clear, when we consider an example presented later in the chapter.

4.3 Solution as a Variational Problem

We will follow the same procedure as given in [9]. Before we proceed further, we

need a lemma.

Lemma IV.13 ([29], [72]). Given w, x, y, z € X(Q), then

<R(£L’, y)Z’ w> = <R(wa Z)?/a $>
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The necessary conditions for a normal extremal for (P) are obtained by setting

dJ.
de

e=0

where

1 T D2 2
_ _J e D\
2 Jo ot? ' ot?

The above condition, with the use of Lemmas IV.4, IV.6, IV.13, gives the following

J<D” l?; (,v)v>dt,
RESEEe

where we have used integration by parts twice along with the fact that the one-

parameter variation ¢. is proper. We are now ready to state a theorem.

Remark TV.14. Tt is sometimes appropriate to assume that Q is parallelizable (see,
e.g., [9]). This means that there exist smooth vector fields {X;}" ; on Q such that the
vectors {X;(¢)}?, form an orthonormal basis for 7,0Q, for all ¢ € Q. Given smooth
vector fields {X;}* | on Q, there exist unique smooth covector fields {w'}? ; on Q such
that the covectors {w'(q)}_, are the dual basis for T*Q, for all ¢ € Q. Equivalently,
the assumption that Q is parallelizable means that 7'Q is a trivial bundle. The
assumption that Q is parallelizable is restrictive in some sense but it is satisfied for

the case of Lie groups (see, e.g., [60]), which are of special interest.

Theorem IV.15 ([74]). A necessary condition for a curve g € C*([0,T], Q) to be a

d
normal extremal for (P) is that the velocity vector field v = d—z satisfies the following
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equation

D3y Dv
— — = 0. 4.24
e +R<dt,v>v 0 (4.24)

Remark IV.16. In [24], it has been shown that (4.11)-(4.14) are equivalent to (4.24).
In the case when Q = R", with the standard inner product, the covariant derivative
is the usual derivative and R = 0. We now see that (4.24) simplifies to the equation
G = 0, which shows that each coordinate function of a normal extremal ¢ for (P) is

a cubic spline.

We do not give all the details, as they are similar to the previous section. The

variational equation for (4.24) is given as follows

D (Dl (D N\
oc \ o or Ve ) Ve

Note that the change in the control trajectory corresponding to the change in the
D?q.
ot?

= 0. (4.25)

e=0

. We will now specialize the results to the case
e=0

initial condition is given by

of Lie groups.

4.4 Application to Lie Groups

We will now present NEOC for OCPs for mechanical systems evolving on Lie
groups. Let G be a a finite-dimensional compact semisimple Lie group. Given z, y
and z are left invariant vector fields on G and given « is a left invariant one-form on

G, then V,y = 1[a:,y], V.o = —% ad; a (see, e.g., [24]) and R(z,y)z = —i[zz, ly, ]]

2
(see, e.g., [23], [89]).

Remark TV.17. Note that the adjoint representation is equivalent to the coadjoint

representation for semisimple Lie algebras.

We will still retain the same notation (P), in the case when Q@ = G. We are now
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ready to state a lemma.

Lemma IV.18 (]24]). A normal extremal for (P) satisfies the following equations

g ="T.Ly(v), (4.26)
b =u, (4.27)
Ay = ad* Ay, (4.28)
Ao = =\, (4.29)

where u = .

We assume that the nominal solution has been obtained for a fixed initial condition.
Suppose there is a small variation in the initial condition and we would like to update
the optimal control for (P). Instead of solving (P) from scratch, we employ NEOC as

described previously. The variational equations for (4.26)-(4.29) are given as follows

w" = ov" + [w",v"], (4.30)
50" = N, (4.31)
SAT = adf . AT 4 ad’, oA, (4.32)
SN = —OAT. (4.33)

To illustrate NEOC for OCPs for mechanical systems evolving on Lie groups, we now

consider an example, which is a slightly modified form of the example presented in

[24].

4.4.1 Numerical Example

Consider the following OCP
. 1T 2
minJ = = | |u(t)|zdt (4.34)
ul.) 2 Jo
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subject to

Q(t) = Q)U(t), Q) =Qo, Q(T) =Qr, (4.35)
Q1 () = u(t), Q1(0) = o, X(T) = Qur, (4.36)

where Q(.) € C?([0,T],S0(n)) and Q(.) € C*([0,T],s0(n)). A normal extremal for
the OCP (4.34)-(4.36) satisfies the following equations (see [24])

Q = QW (4.37)
Q1 = X, (4.38)
A o= —\0Q7, (4.39)
o = Q"N —XQ), (4.40)

where \;(.), Aa(.) € C*([0,T],s0(n)) and the optimal control u* = A\y. By hypothe-
sizing a solution of the form A\; = QQ,, with Qy(.) € C*([0,T],50(n)), (4.37)-(4.40)

give the following equations

Q= QW (4.41)
Q) = Ay, (4.42)
Qy = [Q, ], (4.43)
Ay = —Qs, (4.44)

which are in the form of (4.26)-(4.29). For more details see [24]. We assume that
the nominal solution has been obtained for a fixed initial condition [Q(0) 2,(0)]T =
[Qo ©10]T. Suppose there is a small variation in the initial condition, i.e., [Q(0) ©(0)]*
= [QoQo Do + Quo]*, where Qo € SO(n) and Qi € s0(n). We would now like to
update the optimal control for the OCP (4.34)-(4.36). Instead of solving the OCP
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(4.34)-(4.36) from scratch, we employ NEOC as described previously. The variational

equations for (4.41)-(4.44) are given as follows

with w(0) = log(Qo), w™(T)

W = 6T + [w", Q7
SO = 6AL,

[0€23, Q] + [$25, 097],

—50,

(4.45)
(4.46)
(4.47)

(4.48)

Opxn, 027(0) = Qip and §QHT) = 0nxn. Note

that the change in the control trajectory corresponding to the change in the initial

condition is given by dA]. We will now present simulation results for the case when

n =3, with 7" = 10 (sec) and the following data

with

Qo = exp(vy),

Qr = exp(vy),

X
Qo = )
X
Oy = Vg
Qo = Vg

v; = [0.25 0.5 0.5]7,
vy = [0 0 0],
vz = [0.1 0.1 0.1]7,

vy = [0 0 0]7,
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vs = [0 0 0],

v = [0.01 0.01 0.01]".

In the subsequent figure (Figure 4.3), the attitude maneuver is plotted on S?, where
the vectors [z y z]T corresponding to the first, second and third column of Q, are
plotted in dashed-red, dashed-green and dashed-blue, respectively. Similarly, the
vectors [ y z]T corresponding to the first, second and third column of Q7 are plotted
in red, green and blue, respectively. For all other Q(t), t € (0,T"), only the coordinates
are shown in the corresponding colors.

Figure 4.1 shows the trajectories of €); obtained from NEOC and by re-solving
the OCP (4.34)-(4.36). Figure 4.2 shows the trajectories of u obtained from NEOC
and by re-solving the OCP (4.34)-(4.36). Figure 4.3 shows the attitude maneuver
obtained from NEOC and by re-solving the OCP (4.34)-(4.36). From Figures 4.1-4.3,
one can see that the solution obtained from NEOC is close enough to the solution

obtained by re-solving the OCP (4.34)-(4.36).
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Figure 4.1: Angular Velocity.
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Figure 4.3: Attitude Maneuver.
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CHAPTER V

Optimal Control Problems on Lie Groups with

Symmetry Breaking Cost Functions

In this chapter, we investigate the reduction for OCPs on Lie groups with symme-
try breaking cost functions. From the Lagrangian point of view, by considering the
OCP as a constrained variational problem, we obtain the Euler-Poincaré equations.
Furthermore, from the Hamiltonian point of view, we obtain the Lie-Poisson equa-
tions. We also study the relation between both formalisms using a reduced Legendre
transform.

Several examples are presented, which illustrate the application of the proposed
approach. We also develop a variational integrator for OCPs on Lie groups with sym-
metry breaking cost functions. The resulting variational integrator has the preserva-
tion properties of the standard variational integrators. We will now discuss the OCP
that will be studied in this chapter. In what follows, we will suppress the explicit
dependence of the state, costate and control trajectories on time unless otherwise

necessary.
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5.1 Optimal Control Problems on Lie Groups

Let G be a n-dimensional Lie group. We will now define a left-invariant control

system on G.

Definition V.1. A left-invariant control system on G is given by
g = TeLy(u),

where g(.) € C'([0,T],G) and u is a curve in the vector space g. More precisely, if

g =span{ey, ..., €m, Emi1,-- ., CEn}, then u is given by
u(t) = eo + Y u'(t)e,
i—1

where the m-tuple of control inputs [u'...u™]" take values in R™.

Remark V.2. If m < n, then the left-invariant control system is under-actuated

otherwise it is fully-actuated.

Consider the following OCP (P)

min J = f [Cg(t), ult)) + V(g(t)] dt (5.1)

u(.) 0
subject to
g(t) = TeLyy (u(t)), 9(0) = go, 9(T) = gr, (5.2)

where C' : TG — R is a G-invariant function, i.e., C(Ly(h),u) = C(h,u), for all
(h,u) e G x gand V : G — R (potential function) is not a G-invariant function. We

will now study the Euler-Poincaré reduction for (P).
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5.1.1 Euler-Poincaré Reduction

We can solve (P) as a constrained variational problem using the method of La-
grange multipliers (see, e.g, [9], [57]). The Lagrangian L : G x g@®T*G — R for (P)

is given by
L(g,u, \g) = C(g,u—eo) + V(g9) + Ag(TeLg(u — e)), (5.3)

where \g(t) = T Lg-1(A(t)) € TG, with A(.) € C*([0,T], g*). Let g* = span{e’, ...,
em em™tt e}, then A(t) = A\o(t)e® + Z Ai(t)e’, where the (n—m+1)-tuple of La-

i=m+1
grange multipliers [Ag A\t ... AT take values in R"=™*1. The reduced Lagrangian

(:G x g®g* — R can now be obtained and is given by
(g, u, ) = C(u—ep) +V(g) + AMu—ep), (5.4)

where with a slight abuse of notation, we write C'(e,u —¢y) = C(u — ep). A nor-
mal extremal (see, e.g., [9]) for (P) now satisfies the following Euler-Poincaré type

equations

d * *
7(DuC+ ) = adi(D, O+ 1) + T Ly(D, V). (5.5)

For more details see [57], [75].
In order to describe the time evolution of v and A in (5.5), we state the following

proposition.

Proposition V.3. Assume that g = €@ p such that

[£, €] < p,

[p, €] < ¢,
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[p,p] b,

where € = span{ey, ..., ey} and p = span{eg, €mi1,-..,en 1}. The time evolution of

w and X in (5.5) are given by the following equations

d ® * *

5 DuC =ad!, D, C +ad; A+ T} Ly(D, V) e
d)\ * F3 *
E = adeo A+ adug Du C+ Te Lg(Dg V)‘p*’

m
where uy = Zu’ei et
i=1

Proof. 1t is easy to verify that g* = €* @ p* such that

ady € < p*,
ad, £ < £,
ad, p* < p*,

ady p* < £,

where £* = span{e',...,e™} and p* = span{e?,e™*! ... e""'}. By using the fact
that u = eg + wg, it is also easy to verify that D, C' € €*. Also, by construction A\ € p*.
We now have a splitting of the left hand side of (5.5) in €* and p*. Again, by using

the fact that u = eg + ug, we have the following

ad*D, C = ad?, D, C +ad’, D, C,

ady A = adj A +ad;, A,

where by using the above relations, it is also easy to verify that ad’ D,C € £,

ady, D, C € p*, ad’ A € p* and ady, A € ¢*. Since, T} L,(D, V) € g*, we define the
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following

Te*Lg(Dg V)‘g* = Z Te*Lg(Dg V)ei’
=1
n—1 .
TP Ly(D, V)|, o= T Ly(Dy V)e" + > TIL(D,V)e'.
i=m-+1

We now have a splitting of the right hand side of (5.5) in €* and p*. So, (5.5) splits

into the following equations

d : . .

7 D, C = ad} D, C +adj, A + T Ly(Dy V)|,
d)\ * * *
= = adi A +ad] D, O+ T7Ly(Dy V)|,

O

Remark V.4. Note that semisimple Lie algebras admit a Cartan decomposition, i.e.,

if g is semisimple, then g = €@ p such that

[€, €] < p,
[p, €] < ¢,

[p,p] b,

where ¢ = {z € g | 0(z) = —=x} is the —1 eigenspace of the Cartan involution ¢ and
p={reg|b(r)=ux}is the +1 eigenspace of the Cartan involution ¢. In addition,
Kg(.,.) is positive definite on € and negative definite on p. So, connected semisimple
Lie groups are potential candidates that satisfy the assumption of Proposition V.3.
Conversly, a Cartan decomposition (above relations) determines a Cartan involution
6 (see, e.g., [52]). For more details see [25], [44], [52]. Also, note that the roles of ¢

and p can be reversed in Proposition V.3.

We will now present some examples.
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5.1.2 Minimum Weighted Input Energy Optimal Control Problem

Consider (P), with ey equal to zero and let the cost function be given by

Clg ) = 5 1(w), (5.6

where I : g — g is a linear mapping, with 7 > 0. A normal extremal for (P), with eg
equal to zero and with the cost function (5.7) satisfies the following Euler-Poincaré

type equations

(i) = ad® A,

A =ad; I(u).
Note that a similar case is also studied in [57], [58].

5.1.3 Linear Quadratic Regulator Type Problem on SO(3)

Consider (P), with G = SO(3), ey equal to zero and let the cost function be given
by

1, 1
Clg.u) = 5| Rbul}. (5.7
1, .1
V(9) = 51Q2(9 = Isxs) (5.8)
where @ > 0 and R > 0. This is a LQR type problem on SO(3) (see [80]) and it

is easy to verify that the potential function V' is not invariant under the action of
2

SO(3). Note that u(t) = Zui(t)ei, where the elements of the basis of s0(3) are given
i=1
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0 0 0 0 0 1 0 -1 0
et=10 0 —1f, e2= 0 0 O],e=(1 0 O
0 1 0 -1 0 0 0 0 0

Also, note that so(3) is semisimple and the elements of the basis of so(3) satisfy the

following relations

[61, 62] = €3,
[62, 63] = €1,

[63, 61] = €9.

It is also easy to verify that with ¢ = span{e;, e2} and p = span{esz}, g = €@ p such

that

[€, €] < p,
[p, €] < ¢,

[p, p] < p.

Under the trace pairing, the elements of the basis of s0(3)* are given by

1 1
0 0 0 0o 0 - 0 —= 0
1 2 P2
el=10 0 —=|,e=| 0 0o ol],¢=[= 0 o0
9 9
o Lo L 0 0 0
9 9

We will now assume that R = I33, for the ease of computations. A normal extremal

for (P), with G = SO(3), ey equal to zero and with the cost function (5.7)-(5.8),
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satisfies the following Fuler-Poincaré type equations

i =ad; AN+ T Ly(Dy V)|, (5.9)
A=adl u+TrLy(Dy V)| ., (5.10)
where

0 0 6"l
1,0, V) = | 0 0 L6k |

S Qs 3l Dake 0

0 Qa0
LDy V)l = | 567 Q0 0

| 0 0 0

The coadjoint action of s0(3) on s0(3)* is given by
adg pp = p x &,

for £ € R® =~ 50(3) and p € R® = s0(3)*. For more details see [45]. If we write

A = Xze?, then we have ad,i 2 gr[0 0 A3]" = [—u*A3 u'A3 0]", which gives

1
0 0 §u1)\3
* 1
adj A\=| 0 0 Uk
1 1
—§U1)\3 —§u2A3 O

Similarly, adf,: 2 gr[u' v 0] = [0 0 0], which gives ad} u = 03.3. So, (5.9)-

(5.10) give the following equations

it = =502 = (5" Qo) (511)
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i = (M + (67 Qo). (5.12)

5\3 = [(QTQ)A]12~ (5.13)

Note that if the potential function is identically equal to zero, i.e., V(g) = 0, for all
g € G, then (5.11)-(5.13) reduce to

1
ut = —§u2)\3, (5.14)
1
i = ul)s, (5.15)
A3 = 0. (5.16)

Also, note that the solution for (5.14)-(5.16) is given by

wt . wt
ul(t) CoS e} —sin > ul(O)

u?(t) sin w_t) cos %t> u?(0)

where A3 = w is a constant.

5.1.4 Motion Planning of a Unicycle with Obstacles

We study the OCP for the motion planning of a unicycle with obstacles. To avoid
the obstacle, we use the navigation function approach (see, e.g., [50], [56]), which
plays the role of the potential function in the cost function of the OCP.

The unicycle is a homogeneous disk on a horizontal plane and it is equivalent to
a wheel rolling on a plane. The configuration of the unicycle at any given time is

completely determined by the element g € SE(2) = R? x S! = R? x SO(2) (as a set)
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Figure 5.1: The Unicycle.

given by

cos) —sinf =z
g = |sind cosf y|>
0 0 1

where [z y]* € R? represents the point of contact of the wheel with the ground and
6 € S' represents the angular orientation of the overall system (see Figure 5.1). For

more details see [9], [58]. The controlled equations for the unicycle are given by

i =u®cosb, (5.17)
Y =u’sin6, (5.18)
0=u'. (5.19)

Note that (5.17)-(5.18) are equivalent to the nonholonomic constraint z sinf —
ycosf = 0. Also, note that (5.17)-(5.19) can be viewed as a left-invariant control
system on SE(2) (see [58]). A navigation function is a potential field based function
used to model an obstacle as a repulsive area or surface. Let the obstacle be circular

in shape and be located in the z-y plane, with its center located at the point (x., y.).
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Let the potential function V : R®\{(z.,y.)} — R be given by

k

1
Viwy) =3 (T —2e)? + (y — ye)?

where k € R,. Equivalently, the potential function V : SE(2)\{g.} — R is given by

1 k
V(9) = 57— =
2 gegl7 -3
where
1 0 —=x,
ge=10 1 —y.|€SE(Q2).
0 0 1

It is easy to verify that the potential function V' is invariant under the action of SO(2)
but not under the action of SE(2). With the above motivation, we now consider (P),

with G = SE(2), ey equal to zero and with the cost function given by

1
Clo.) = - (5:20)
1 k
V(g) = -——=- 5.21
9= 3 Tglz 3 o2

2
Note that u(t) = Zui(t)ei, where the elements of the basis of se(2) are given by

Also, note that se(2) is not semisimple and the elements of the basis of se(2) satisfy
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the following relations

[61, 62] = €3,
[6’2, 63] =0,
[63, 61] = €y,

It is also easy to verify that with ¢ = span{e;,e2} and p = span{es}, g = €@ p such

that

[€, €] < p,
[p, €] S &

[P, p] < p.

Under the trace pairing, the elements of the basis of se(2)* are given by

O N|= O

A normal extremal for (P), with G = SE(2), ey equal to zero and with the cost

function (5.20)-(5.21), satisfies the following Euler-Poincaré type equations

i =ad; AN+ T Ly(Dy V)|, (5.22)

A=ad; u+ T Ly(D,V)| (5.23)

p*’
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where

0 0 — k([ngchcg]ls)
2 2
(lgegllz —3)
Te*Lg(Dg V)‘g* = 0 0 0 ,

0 0 0
0 0 0
T T

T2 L, (D, V), =0 0 k(9" gc 9egl2s)

T (lgeglz — 3)2
0 0 0

The coadjoint action of se(2) on se(2)* is given by

adfy ,rpr[p 871" = [(a, =18) (€38)"]",

where

[€ o] € R = se(2) and [p BT]" € R? = se(2)*. For more details see [68]. If we

write A = Aze?, then we have adf,: ,o or[0 0 A3]” = [—u®A3 u' A3 0], which gives

1
0 §U2)\3 ul)\g
* 1
ad,, A = —§u2)\3 0 0
0 0 0
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Similarly, adf,: 2 gr[u' v 0]" =[0 0 —w'w?]", which gives

0 O 0
ady,u= 10 0 —u'u?
0 0 0

So, (5.22)-(5.23) give the following equations

1

ot = —§u2>\3, (5.24)
. k‘([ngTgcg]l?,)
0?2 =ulhg — = , 5.25
"~ gl - 3 (5.25)
S k‘([ngTgcg]zza)
A3 = —ulu? — 2 : (5.26)
(lgeglF — 3)2

Note that if the potential function is identically equal to zero, i.e., V(g) = 0, for all
g € G, then (5.24)-(5.26) reduce to

it = —suths, (5.27)
u? = u'\s, (5.28)
Ay = —u'u?. (5.29)

Remark V.5. We will now show that (5.24)-(5.26) are equivalently obtained by view-
ing (P), with G = SE(2), ey equal to zero and with the cost function (5.20)-(5.21),
as a constrained variational problem. The above OCP is equivalent to the following

constrained variational problem

k
Gl — 2o+ D) yc>2> i
(5.30)

: 1 JT (,2 ,2 -
(=0) yOIT00) 2 ), (t) +4°(1) (t)
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subject to

@(t)sin0(t) — y(t) cosO(t) = 0, with given boundary conditions ([2(0) y(0)]*,6(0))

and ([z(T) y(T)]*,0(T)). (5.31)

The Lagrangian for the constrained variational problem (5.30)-(5.31) is given by

’ +
(= xe)® + (¥ — ve)?

. 1 . 1
L(0,3,7,0,)\) = 5(:;;2 + 2+ 20%) + 5 (g cos @ — i sin ),

where ) is the Lagrange multiplier. A solution for the constrained variational problem

(5.30)-(5.31) must satisfy the following Euler-Lagrange equations

Z—Asinf — N\dcosf = — , 5.32
(=27 + (- P 0:32)

L - k(y —ye)
+ Acosf — \0sinf = — , 5.33
/ (@ =22 + (v — 5P (>:33)
0 = —%)\(x' cosf + ysind). (5.34)

Using the facts that &sinf —gcosf = 0, u! = 6, u2 = i cos 6 + §sin 0 and after a few

simple calculations, (5.32)-(5.34) give the following equations

ut = —%u2)\, (5.35)
o2 _ oty M9 9:9e911s) (5.36)
(lgegllE —3)*
5=ty M9 9c 9egles) (5.37)
(lgegllE — 3)2

We can now see that (5.24)-(5.26) are the same as (5.35)-(5.37).

We will now use the reduced Legendre transform to derive the Lie-Poisson type

equations associated with (P).
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5.1.5 Reduced Legendre Transform and Lie-Poisson Type Equations

Consider the reduced Lagrangian ¢(g,u,\) = C(u — eg) + V(g) + AMu — eg). If
the reduced Lagrangian /¢ is hyper-regular, then we can define the reduced Legendre
transform (see, e.g., [45], [68]) to obtain a reduced Hamiltonian h: G x g* ® g* - R

given by

where p =D, ¢ =D, C+ X € g*. The Euler-Poincaré type equations for the reduced

Lagrangian ¢ can now be written as the Lie-Poisson type equations given below
fo=adn+TrL,(D,V). (5.39)
We will now study the Lie-Poisson reduction for (P) using PMP.

5.1.6 Lie-Poisson Reduction

Define the augmented cost functional as follows

S = J [C(g(1), u(®)) + V(g(8)) + pg(1)(§(1) = TeLgery (u(t)))]dt,

0

where 114(t) = T L1 (u(t)) € TG, with pu(.) € C*([0,T], g*). We now introduce the
Hamiltonian H : G x g@® T*G — R given by

H(g,u, pg) = pg(TeLy(u)) — Clg,u) = V(g),

to rewrite the augmented cost functional as

JO = J g ()(9(t)) — H(g(t), ult), py(t))]dt.

0
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By PMP, we can obtain the optimal Hamiltonian H : T*G — R given by

H(g, ptg) = max H(g, u, 1) = H(g,u”, py), (5.40)

where u* denotes the optimal control. The reduced Hamiltonian h : G x g* — R can

now be obtained and is given by
g, 1) = p(u®) = Cu®) = V(g). (5.41)
A normal extremal for (P) now satisfies the following Lie-Poisson type equations
fo=adyspu+ T L,(Dy V). (5.42)
For more details see [58], [75]. We will now present some examples.

5.1.7 Linear Quadratic Regulator Type Problem on SO(3) Revisited

This example was studied in Section 5.1.3. By PMP, we have the following

1

1 _ —
U - 2:“17

1

2% _ —
Uu = 2,&2

A normal extremal for (P), with G = SO(3), ey equal to zero and with the cost

function (5.7)-(5.8), satisfies the following Lie-Poisson type equations

fo=adyspu+ T L,(D, V). (5.43)
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1 1 r
We now have adp,ix 2 gr[p1 po ps]” = [—§M2M3 SHaks 0] and so, (5.43) gives

the following equations

1

i = =5 (napts = [(97 Q) alos), (5.44)
jio = 5 maps + (67 Q) ), (5.45)
fi5 = [(9" Q) a)r2. (5.46)

Note that if the potential function is identically equal to zero, i.e., V(g) = 0, for all
g € G, then (5.44)-(5.46) reduce to

) 1

fu = —Halts, (5.47)
. 1

M2 = 5#1/137 (5.48)
i3 = 0. (5.49)

Also, note that the solution for (5.47)-(5.49) is given by
Gt (!
,ul (t) Cos 5 S 5 ,ul (0)
N t t ’
p?(t) sin %) cos (%) 1?(0)

where p3 = w is a constant.

5.1.8 Motion Planning of a Unicycle with Obstacles Revisited

This example was studied in Section 5.1.4. By PMP, we have the following

1
1 _ —
u - 2:“17
U2* = L.
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A normal extremal for (P), with G = SE(2), ey equal to zero and with the cost

function (5.20)-(5.21), satisfies the following Lie-Poisson type equations

ji = ad®s i+ T*Ly(D, V). (5.50)
\ T 1 1 4
We now have adj,ix ,2x o[t pi2 pa]™ = | —popia SHLls — Sfuz and so, (5.50)

gives the following equations

[ = —Hapts, (5.51)
o1 k(9" 97 geglis)
M2 = JH1H3 — 5 ) (5.52)
2 (lgegl — 3)2
: 1 k([9"gr geg2s)
Pz = —5Hapz — 5 : (5.53)
2 (lgeglz — 3)2

Note that if the potential function is identically equal to zero, i.e., V(g) = 0, for all
g € G, then (5.51)-(5.54) reduce to

fin = —Hapt3, (5.54)
. 1

fiz = SHafis, (5.55)
. 1

fiz = =5 H1pta: (5.56)

Also, note that (5.54)-(5.56) are exactly the same as the equations obtained in [58],

with the cost function given by

1
Clg,u) = 5 ul3.

We will now describe the variational integrator for (P).
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5.2 Variational Integrator for Optimal Control Problems on

Lie Groups

Recall that the augmented cost functional is given by

S = J [C(g(1), u(®)) + V(g(8)) + pg(1)(§(1) = TeLgery (u(t)))]dt.

0

The discrete-time reduced augmented cost functional can now be obtained and is

given by

i = X[t + Vi 4 (e - )|

where h € R, is the time step and Nh = T. In order to obtain the variational
integrator for (P), we will use discrete-time variational calculus. The variation of gy

is given as follows

e = grexp(en), (5.57)

where 7, € g. The infinitesimal variation of g, is given by

dgk,s
de | _o

€=

= Gk (5.58)

0gr =

Before proceeding further, we need a few facts.

Lo 4, 1 -1
Fact 5. ([12], [53], [55]) 707 (9% gr+1) = EdThuk(_nk + Adr(hay) Mies1)-
Fact 6. ([12]) dTgll(é-Q) = dT:gll (Ad'r(f&) 52), fOI' 51, 52 € g

Using Facts 5-6, the variation of the discrete-time reduced augmented cost functional
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is written as follows

N—
1
5% = Z [DW C(duy,) + Dy, V(dgx) + px (E&-l(gk ") — M)]

Zw
,_.o

1
h[ng V(grnk) + (ﬁ d T{ulk (=1 + Adr(huy) 77k+1)> +

i

0

em+Dwmwmﬁ

=

« L.
= h[Te Ly Dy, V(nr) + p (E d 70 (=1 + Adr ) 77k+1)> +

e
Il
o

em+Dwmwmﬁ

=2

1
_ l((dﬁw)ﬂw+mfwwl)ﬂk1+hﬂﬂmD%VUWH+

i
=)

hem+D%mwwﬁ

where the analogue of integration by parts in the discrete-time setting is used along
with the fact that the variation 7 vanishes at k = 0, N. Since, 0.J¢ should vanish for

all variations of 7, and duy, the necessary conditions for optimality are as follows

Gr+1 = g7 (ur), (5.59)
(A7 )k = (A7, )pk—1 + hTFLy Dy, V, (5.60)
e =D, C. (5.61)

Note that if the potential function is identically equal to zero, i.e., V(g) = 0, for all
g € G, then (5.59)-(5.61) reduce to

g1 = grT (ur), (5.62)
(d T ) e = (AT 70 ) i1, (5.63)
fi = Dy, C. (5.64)
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CHAPTER VI

Conclusions and Future Work

This dissertation has focused on extending some of the existing analytical and
numerical methods for OCPs on manifolds and Lie groups. The research not only
addressed OCPs defined on a Euclidean space but also on Riemannian manifolds.
In particular, we considered four different problems. The first problem dealt with
obtaining sub-optimal control in OCPs defined on a Euclidean space using the com-
bination of two techniques, homotopy and NEOC. The second problem dealt with
constrained spacecraft attitude control on SO(3) using fast NMPC. The third prob-
lem dealt with extending NEOC for mechanical systems on Riemannian manifolds.
The fourth problem dealt with OCPs on Lie groups with symmetry breaking cost

functions.

6.1 Conclusions

The main results of this dissertation are summarized below.

(a) In Chapter II, we described a method for obtaining sub-optimal control in OCPs
defined on a Euclidean space, that is based on the combined use of homotopy
and NEOC, which to the author’s knowledge has not been reported in the previ-

ous literature. This approach was illustrated using a numerical example, which
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suggested the benefits of the combined use of homotopy and NEOC, in terms of

reducing the number of function evaluations and iterations.

In Chapter III, we described the implementation of a numerical solver for NMPC
of spacecraft attitude that exploits the underlying Lie group structure of SO(3)
and the geometric control formalism. The numerical solver is based on numer-
ically solving the necessary conditions for optimality. The control input/state
constraints are handled through the exterior penalty function approach. This
work compliments [49] which addressed the NMPC problem formulation and the
stability analysis but used a baseline solver for numerical computations which
was of direct type and relied on the conventional constrained optimizer in MATLAB
(fmincon.m). The simulation results indicate that the numerical solver we have
implemented is faster than the baseline solver and enables the spacecraft to per-
form a variety of constrained reorientation maneuvers. We also extended the
classical penalty convergence theorem to the setting of smooth manifolds and the

classical exact penalization theorem to the setting of Riemannian manifolds.

In Chapter IV, we extended NEOC, which is well established for OCPs defined on
a Euclidean space, to the setting of Riemannian manifolds. We further specialized
the results to the case of Lie groups. We also presented an example along with

simulation results.

In Chapter V, we investigated the reduction for OCPs on Lie groups with sym-
metry breaking cost functions. From the Lagrangian point of view, we obtained
the Euler-Poincaré equations and from the Hamiltonian point of view, we ob-
tained the Lie-Poisson equations. We also study the relationship between both
formalisms and present several examples. A variational integrator for OCPs on

Lie groups with symmetry breaking cost functions is also developed.
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6.2 Future Work

(a)

The possible future directions are given below.

In the future, we intend to investigate the use of the method described in Chapter
IT for more complicated control input/state constrained OCPs. We also intend to

test numerical examples for the predictor-corrector method described in Chapter

IT.

The numerical solver implementation in MATLAB described in Chapter III is cur-
rently slower than real-time but the implementation in C/C++ is expected to be
faster and further computational improvements will be pursued in future research.
Extensions of NMPC to mechanical systems evolving on other Lie groups, e.g.,
SE(3) = R3 x SO(3), etc., use of other indirect methods and the integration with

continuation methods will also be pursued in future research.

NEOC described in Chapter IV only gives a prediction step and not a correction
step. To improve the solution, a prediction step can be augmented by a correction
step. In the future, we intend to extend the idea presented in Chapter IV to
include a correction step as well along with the generalization to a more general

cost function, with a more complicated dynamic constraint.

The idea presented in Chapter V can be taken a step further, if one assumes that
the potential function V' is invariant under the action of a subgroup of G but not
under the action of G (see, e.g., [11], [21], [70] and also Section 5.1.4). Also, in
the future, we intend to test numerical examples for the variational integrator

developed in Chapter V.
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