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Abstract

Estimating Community Structure in Networks
by Spectral Methods

Can M. Le

Dissertation advisors: Elizaveta Levina, Roman Vershynin

Networks are studied in a wide range of fields, including social psychology,
sociology, physics, computer science, probability, and statistics. One of the
fundamental problems in network analysis is the problem of estimating com-
munity structure. Most of existing methods rely on maximizing a criterion
over the discrete set of community-label vectors. They require a good initial
estimate of communities, which is often found by spectral clustering. Several
problems arise from this approach: it has been empirically observed and the-
oretically predicted that spectral clustering fails when the network is sparse;
solving an optimization problem over a discrete set of label vectors is a chal-
lenging task; and the number of communities is often unknown in practice.
This dissertation contributes to progress on each of these problems.

We study random graphs with possibly different edge probabilities in the
challenging sparse regime of bounded expected degrees. Unlike in the dense
case, neither the network adjacency matrix nor its Laplacian concentrate
around their expectations due to the highly irregular distribution of node
degrees. We prove that simple regularization procedures force the adjacency
matrix and the Laplacian to concentrate. As an immediate consequence, we
establish the validity of regularized spectral clustering for estimating com-
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munity structure.

We propose a general approach for maximizing a function of a network
adjacency matrix over discrete labels by projecting the set of labels onto a
subspace approximating the leading eigenvectors of the expected adjacency
matrix. This projection onto a low-dimensional space makes the feasible set
of labels much smaller and the optimization problem much easier. We prove
a general result about this method and show how to apply it to several pre-
viously proposed community estimation criteria, establishing its consistency
for label estimation in each case.

We propose a simple spectral method for estimating the number of com-
munities. We show that the method performs well under several models and
a wide range of parameters, and is guaranteed to be consistent under several
asymptotic regimes. We compare the new method to several existing meth-
ods for estimating the number of communities and show that it is both more
accurate and more computationally efficient.
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Chapter 1

Introduction

Network analysis has become an important area in many research domains,
including social psychology, sociology, physics, computer science, probability,
and statistics. A common way to study real-world networks is to model them
as random graphs whose structure is encoded in the expectation matrix. In
this thesis we will investigate the behavior of such random networks, develop
methods to estimate the underlying structure, and apply those methods to
real-world data.

One important structure of interest in network analysis is the community
structure, where nodes are divided into groups (communities) which share
similar connectivity patterns. Networks with communities are often modeled
by the stochastic block model (SBM) [31] or the degree-corrected stochastic
block model (DCSBM) [34]. Under the SBM, the label vector c is assumed to
be drawn from a multinomial distribution with parameter π = {π1, . . . , πK},
where 0 ≤ πk ≤ 1 and

∑K
k=1 πk = 1. Edges are then formed independently

between every pair of nodes (i, j) with probability Pcicj , and the K×K matrix
P = (Pkl) controls the probability of edges within and between communities.
Thus, labels are the only node information affecting edges between nodes,
and all the nodes within the same community are stochastically equivalent.
The DCSBM is a generalization of the SBM which allows for heterogeneity
of node degrees, adding node-level parameters controlling a node’s overall
level of connectivity. Specifically, under DCSBM, P (Aij = 1) = θiθjPcicj ,
where θi’s are “degree parameters” satisfying some identifiability constraints.
A much more general model for a random network is the inhomogeneous
Erdös-Rényi model (IERM) in which edges are generated independently and
each edge is allowed to have an arbitrary probability [11].
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Community detection is the problem of estimating communities from a
single observed network, usually encoded by the adjacency matrix A. Here
A is a symmetric matrix with entries Aij = 1 if there is an edge between
nodes i, j and Aij = 0 otherwise. Most of existing community detection
methods rely on maximizing a criterion f(A, e), such as the likelihood of
the SBM or a modularity derived from a heuristic consideration, over the
discrete set of community-label vectors e. While the optimization problem is
usually NP-hard, an approximate solution can be often computed by MCMC,
variational or pseudo-likelihood methods. These methods require a good
initial estimate of communities, which is often found by spectral clustering.
Spectral clustering takes leading eigenvectors of A or its graph Laplacian
L(A) = D−1/2AD−1/2, where D = diag(di) is the diagonal matrix of degrees,
as input and uses K-means to cluster them into a given number of groups.

Several problems arise from this approach. First, it has been empirically
observed and theoretically predicted that spectral clustering fails when the
network is sparse. Second, solving an optimization problem over a discrete
set of label vectors is a challenging task. Third, the number of communities
is often unknown in practice. This thesis contributes to progress on each of
these problems. In Chapter 2 we prove that for a sparse network, a simple
regularization significantly improves the performance of spectral clustering;
in Chapter 3 we develop a general method for solving such optimization
problems and show that many existing criteria can be solved efficiently by
our method [41]; and in Chapter 4 we propose a fast and reliable method
for estimating the number of communities [38]. While this work has been
motivated by community detection, several results are very general and their
applications may go far beyond the community detection setting.

1.1 Concentration of sparse networks

Since network structure, including communities, is encoded in the expectation
of the adjacency matrix A or the Laplacian L(A), it is very important to
understand the deviation of those matrices from their expectations.

Concentration of dense random networks, where expected degrees grow at
least as fast as log n (n denotes the network size), is well understood. In this
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regime, Oliveira [63] showed that both the adjacency matrix and the Lapla-
cian generated from the IERM concentrate. Consequently, under the SBM,
their leading eigenvectors also concentrate according to Davis-Kahan theo-
rem [19], and therefore spectral clustering correctly recovers the communities
up to a vanishing fraction of mis-clustered nodes.

In contrast, for sparse random networks, those with bounded expected
degrees, neither the adjacency matrix nor the Laplacian concentrate due to
the high variance of the degree distribution [21]. The existence of isolated
nodes also implies that there is always a non-vanishing fraction of nodes that
no algorithm can correctly cluster.

Since the concentration of sparse random networks fails because the degree
distribution is too irregular, we may naturally ask if regularizing the network
in some way solves the problem. One simple way to deal with very low-degree
nodes, proposed by [5] and analyzed by [33], is to add the same small positive
number τ/n to all entries of the adjacency matrix A. That is, we replace A
with Aτ := A + τ/n11T and use the Laplacian of Aτ instead. Another way
to deal with low degree nodes, proposed by [13] and studied theoretically by
[69], is to add a constant τ directly to the diagonal of D in the definition
of the Laplacian. For both ways of regularization, the concentration which
implies the consistency of spectral clustering in estimating communities was
obtained in [69, 33], but only for dense networks.

In Chapter 2 we showed that for sparse random networks generated from
the IERM, both ways of regularization described above lead to the concentra-
tion of the Laplacian. Consequently, under the SBM the spectral clustering
correctly recovers the communities up to a small fraction of mis-clustered
nodes. This is the first result showing that the spectral clustering can find
communities in the sparse regime.

Our proof relies on the concentration of the adjacency matrix in cut norm
(it has been popular in theoretical computer science community), the use of
Grothendieck’s factorization theorem and a paving argument. It provides a
better understanding of the behavior of sparse random networks. Namely,
their failure to concentrate is caused by a small fraction of irregular nodes,
which is inversely proportional to the average expected degree; on the rest
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of the nodes, both the adjacency matrix and the Laplacian concentrate even
without regularization.

To deal with very high-degree nodes, we propose a general procedure to
reduce the total weight of their incident edges. This includes removing all
high-degree nodes, or removing just enough edges from high-degree nodes, or
reducing weight of edges of high-degree nodes. We show that this procedure
indeed forces the adjacency matrix of sparse random networks to concentrate
around its expectation.

1.2 Community detection via optimization

Community detection is the problem of estimating communities from a single
observed network. Roughly speaking, the large recent literature on commu-
nity detection in this scenario has followed one of two tracks: fitting proba-
bilistic models for the adjacency matrix, or optimizing global criteria derived
from other considerations over label assignments c, often via spectral approx-
imations. Fitting models such as the stochastic block model typically involves
maximizing a likelihood function over all possible label assignments, which is
in principle NP-hard. MCMC-type and variational methods have been pro-
posed, see for example [76, 62, 49], as well as maximizing profile likelihoods
by some type of greedy label-switching algorithms. The profile likelihood
was derived for the SBM by [10] and for the DCSBM by [34], but the label-
switching greedy search algorithms only scale up to a few thousand nodes. A
much faster pseudo-likelihood algorithm was proposed by [4] for fitting both
these models. Another fast algorithm for the block model based on belief
propagation has been proposed by [20]. Both these algorithms rely heavily
on the particular form of the SBM likelihood and are not easily generalizable.

The SBM likelihood is just one example of a function that can be opti-
mized over all possible node labels in order to perform community detection.
Many other functions, e.g. the Newman-Girvan modularity [60, 57] and the
community extraction criterion [88], have been proposed for this purpose, of-
ten not tied to a generative network model. For all these methods, finding the
exact solution requires optimizing a function of the adjacency matrix A over
all Kn possible label vectors, which is an infeasible optimization problem. In
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another line of work, spectral decompositions have been used in various ways
to obtain approximate solutions that are much faster to compute. One such
algorithm is spectral clustering (see, for example, [61]), a generic clustering
method which became popular for community detection. In this context,
the method has been analyzed by [72, 13, 71, 45], among others, while [32]
proposed a spectral method specifically for the DCSBM.

Existing methods for community detection are either slow (using MCMC
or variational methods) or depend heavily on the particular form of the crite-
ria and are not easily generalizable (pseudo-likelihood methods). We develop
a new general method for solving a class of optimization problems and show
that many existing criteria f(A, e) for community detection can be solved
efficiently by our method.

The main idea is to reduce the set ofKn community label vectors to a much
smaller set over which the optimization problem becomes easy (K denotes
the number of communities). To that end, we first note that under the SBM
or the DCSBM the expectation EA of the adjacency matrix A has a block
structure; its rank is the number of communities, which is often small. Under
some mild conditions, A concentrates around EA, therefore it is essentially
also a low-rank matrix. For a natural class of functions f , which contains
many existing community detection criteria, f(A, e) is essentially a function
of projections P (e) of community-label vectors e onto the subspace spanned
by a few principle components of A. In Chapter 3 we show that this function
achieves its maximum at extreme points of the convex hull of the projections
P (e). Since the projector P is a low-rank matrix, most of the community-
label vectors e become interior points after the projection. Therefore we can
find the maximum of f(A, e) simply by performing an exhaustive search over
the community-label vectors corresponding to the extreme points.

The set of extreme points can be computed by an existing reverse-search
algorithm [28, 84]. Its cardinality is at most polynomial in n; in particu-
lar, when we are looking to divide the network into two communities, the
number of extreme points is at most 2n and they can be found in O(n log n)
operations.
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1.3 Estimating the number of communities

Most of existing methods for community detection, including spectral cluster-
ing, require the number of communities K as input, but in practice K is often
unknown. To address this problem, a few methods have been proposed to es-
timate K, under either the SBM or the DCSBM. All these methods are either
restricted to a specific model or computationally intensive; they require either
computing the likelihood function, done by the variational method [83], or
a computationally challenging procedure, e.g. bootstrap or cross-validation
[9, 14].

We propose a fast and reliable method for estimating K that uses spectral
properties of the Bethe Hessian and the non-backtracking matrices. This
is inspired by [36, 73, 12], where these matrices were used to recover the
community structure under a simple SBM in the sparse regime. In Chapter 4
we show that a simple count of leading eigenvalues of these matrices directly
estimates the number of communities, and the estimate performs well under
different network models and over a wide range of parameters, outperforming
existing methods that are designed specifically for finding K under either
SBM or DCSBM. This method does not need any tuning parameters and is
very computationally efficient, since all it requires is computing a few leading
eigenvalues of just one typically sparse matrix.

We show that our estimate is consistent in either sparse regime of bounded
degrees or in a regime when the average expected degree grows sufficiently
fast. More work is needed on the case of “intermediate” rate of average
expected degree not covered by our result, which will require fundamentally
different approaches.
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Chapter 2

Concentration and regularization of random
graphs

2.1 Introduction

This chapter studies concentration properties of random graphs. To do this,
it will be useful to look at the graph G through the lens of the matrices
classically associated with G, namely the adjacency and Laplacian matrices.

Let us first build the theory for the adjacency matrix A; the Laplacian
will be discussed in Section 2.1.5. We say that G concentrates about its
expectation if A is close to its expectation EA in the spectral norm; we
interpret the expectation of G as the weighted graph with adjacency matrix
EA. Concentration of random graphs interpreted this way, and also of general
random matrices, has been studied in several communities, in particular in
radom matrix theory, combinatorics and network science. It automatically
gives us a tight control of eigenvalues and eigenvectors according to Davis-
Kahan theorem [19].

We will study random graphs generated from an inhomogeneous Erdös-
Rényi model G(n, (pij)), where edges are formed independently with given
probabilities pij, see [11]. This is a generalization of the classical Erdös-Rényi
model G(n, p) where all edge probabilities pij equal p. Many popular graph
models arise as special cases of G(n, (pij)), such as the stochastic block model,
a benchmark model in the analysis of networks [31] discussed in Section 2.1.7,
and random subgraphs of given graphs.
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2.1.1 Dense graphs concentrate

The cleanest concentration results are available for the classical Erdös-Rényi
model G(n, p) in the dense regime. In terms of the expected degree d = pn,
we have with high probability that

‖A− EA‖ = 2
√
d (1 + o(1)) if d� log4 n, (2.1.1)

see [22, 81, 46]. Since ‖EA‖ = d, we see that the typical deviation here
behaves like the square root of the magnitude of expectation – just like in
many other classical results of probability theory. In other words, dense
random graphs concentrate well.

The lower bound on density in (2.1.1) can be essentially relaxed all the
way down to d = Ω(log n). Thus, with high probability we have

‖A− EA‖ = O(
√
d) if d = Ω(log n). (2.1.2)

More generally, (2.1.2) holds for G(n, (pij)) with a somewhat larger but still
useful value

d = max
ij

npij, (2.1.3)

see [21, 44, 15]. Our main interest in this chapter is the sparse regime when
d = Ω(log n) no longer holds.

2.1.2 Sparse graphs do not concentrate

In the sparse regime, where the expected degree d is bounded, concentration
breaks down. According to [35], a random graph from G(n, p) satisfies with
high probability that

‖A‖ = (1 + o(1))
√
d(A) = (1 + o(1))

√
log n

log log n
if d = O(1), (2.1.4)

where d(A) denotes the maximal degree of the graph (a random quantity). So
in this regime we have ‖A‖ � ‖EA‖ = d, which shows that sparse random
graphs do not concentrate.

What exactly makes the norm A abnormally large in the sparse regime?
The answer is, the vertices with too high degrees. In the dense case where d�
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log n, all vertices typically have approximately the same degrees (1 + o(1))d.
This no longer happens in the sparser regime d � log n; the degrees do not
cluster tightly about the same value anymore. There are vertices with too
high degrees; they are captured by the second inequality in (2.1.4). Even
a single high-degree vertex can blow up the norm of the adjacency matrix.
Indeed, since the norm of A is bounded below by the Euclidean norm of each
of its rows, we have ‖A‖ ≥

√
d(A).

2.1.3 Regularization enforces concentration

If high-degree vertices destroy concentration, can we “tame” these vertices?
One proposal would be to remove these vertices from the graph altogether.
U. Feige and E. Ofek [21] showed that this works for G(n, p) – the removal of
the high degree vertices enforces concentration. Indeed, if we drop all vertices
with degrees, say, larger than 2d, the the remaining part of the graph satisfies

‖A′ − EA′‖ = O(
√
d) (2.1.5)

with high probability, where A′ denotes the adjacency matrix of the new
graph. The argument in [21] is based on the method developed by J. Kahn
and E. Szemeredi [23]. It extends to the inhomogeneous Erdös-Rényi model
G(n, (pij)) with d defined in (2.1.3), see [44, 15]. As we will see, our paper
provides an alternative and completely different approach to such results.

Although the removal of high degree vertices solves the concentration prob-
lem, such solution is not ideal, since those vertices are in some sense the
most important ones. In real-world networks, the vertices with highest de-
grees are “hubs” that hold the network together. Their removal would cause
the network to break down into disconnected components, which leads to a
considerable loss of structural information.

Would it be possible to regularize the graph in a more gentle way – instead
of removing the high-degree vertices, reduce the weights of their edges just
enough to keep the degrees bounded by O(d)? The main result of our paper
states that this is true. Let us first state this result informally; Theorem 2.2.1
provides a more general and formal statement.
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Theorem 2.1.1 (Concentration of regularized adjacency matrices). Consider
a random graph from the inhomogeneous Erdös-Rényi model, and let d be as in
(2.1.3). For all high degree vertices of the graph (say, those with degrees larger
than 2d), reduce the weights of the edges incident to them in an arbitrary
way, but so that all degrees of the new (weighted) graph become bounded by
2d. Then, with high probability, the adjacency matrix A′ of the new graph
concentrates:

‖A′ − EA‖ = O(
√
d).

Moreover, instead of requiring that the degrees become bounded by 2d, we can
require that the `2 norms of the rows of the new adjacency matrix become
bounded by

√
2d.

2.1.4 Examples of graph regularization

The regularization procedure in Theorem 2.1.1 is very flexible. Depending on
how one chooses the weights, one can obtain as partial cases several results
we summarized earlier, as well as some new ones.

1. Do not do anything to the graph. In the dense regime where d = Ω(log n),
all degrees are already bounded by 2d with high probability. This means
that the original graph satisfies ‖A − EA‖ = O(

√
d). Thus we recover

the result of U. Feige and E. Ofek (2.1.2), which states that dense random
graphs concentrate well.

2. Remove all high degree vertices. If we remove all vertices with degrees
larger than 2d, we recover another result of U. Feige and E. Ofek (2.1.5),
which states that the removal of the high degree vertices enforces concen-
tration.

3. Remove just enough edges from high-degree vertices. Instead of removing
the high-degree vertices with all of their edges, we can remove just enough
edges to make all degrees bounded by 2d. This milder regularization still
produces the concentration bound (2.1.5).

4. Reduce the weight of edges proportionally to the excess of degrees. Instead
of removing edges, we can reduce the weight of the existing edges, a pro-
cedure which better preserves the structure of the graph. For instance, we
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can assign weight
√
λiλj to the edge between vertices i and j, choosing

λi := min(2d/di, 1) where di is the degree of vertex i. One can check that
this makes the `2 norms of all rows of the adjacency matrix bounded by
2d. By Theorem 2.1.1, such regularization procedure leads to the same
concentration bound (2.1.5).

2.1.5 Concentration of Laplacian

So far, we have looked at random graphs through the lens of their adjacency
matrices. A different matrix that captures the geometry of a graph is the
(symmmetric, normalized) Laplacian matrix, defined as

L(A) = D−1/2(D − A)D−1/2 = I −D−1/2AD−1/2. (2.1.6)

Here I is the identity matrix and D = diag(di) is the diagonal matrix with
degrees di =

∑n
j=1Aij on the diagonal. The reader is referred to [17] for

an introduction to graph Laplacians and their role in spectral graph theory.
Here we mention just two basic facts: the spectrum of L(A) is a subset of
[0, 2], and the smallest eigenvalue is always zero.

Concentration of Laplacians of random graphs has been studied in [63, 13,
69, 33, 39, 25]. Just like the adjacency matrix, the Laplacian is known to
concentrate in the dense regime where d = Ω(log n), and it fails to concentrate
in the sparse regime. However, the obstructions to concentration are opposite.
For the adjacency matrices, as we mentioned, the trouble is caused by high-
degree vertices. For the Laplacian, the problem lies with low-degree vertices.
In particular, for d = o(log n) the graph is likely to have isolated vertices; they
produce multiple zero eigenvalues of L(A), which are easily seen to destroy
the concentration.

In analogy to our discussion of adjacency matrices, we can try to regular-
ize the graph to “tame” the low-degree vertices in various ways, for example
remove the low-degree vertices, connect them to some other vertices, artifi-
cially increase the degrees di in the definition (2.1.6) of Laplacian, and so on.
Here we will focus on the following simple way of regularization proposed in
[5] and analyzed in [33, 39, 25]. Choose τ > 0 and add the same number τ/n
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to all entries of the adjacency matrix A, thereby replacing it with

Aτ := A+ (τ/n)11T

in the definition (2.1.6) of the Laplacian. This regularization raises all degrees
di to di+τ . If we choose τ ∼ d, the regularized graph does not have low-degree
vertices anymore.

The following consequence of Theorem 2.1.1 shows that such regularization
indeed forces Laplacian to concentrate. Here we state this result informally;
Theorem 2.4.1 provides a more formal statement.

Theorem 2.1.2 (Concentration of the regularized Laplacian). Consider a
random graph from the inhomogeneous Erdös-Rényi model, and let d be as in
(2.1.3). Choose a number τ ∼ d. Then, with high probability, the regularized
Laplacian L(Aτ) concentrates:

‖L(Aτ)− L(EAτ)‖ = O
( 1√

d

)
.

We will deduce this result from Theorem 2.1.1 in Section 2.4. Theo-
rem 2.1.2 is an improvement upon a bound in [39] that had an extra log3(d)
factor. The exponent 3 was reduced to 1/2 in [25], and it was conjectured
there that the logarithmic factor is not needed at all. Theorem 2.1.2 confirms
this conjecture.

2.1.6 A numerical experiment

To conclude our discussion of various ways to regularize sparse graphs, let us
illustrate the effect of regularization by a numerical experiment. Figure 2.1a
shows the histogram of the spectrum of A for a sparse random graph.1 The
high degree vertices generate the outliers of the spectrum, which appear as
two “tails” in the histogram. Regularization successfully removes those out-
liers; Figure 2.1b shows the histogram of the spectrum of A′. Thus from the
statistical viewpoint, regularization acts as shrinkage of the parasitic outliers
of spectrum toward the bulk.

1We removed one leading eigenvalue of order d from these figures. In other words, we plot the spectrum
of A− EA.
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(a) Spectrum before regularization (b) Spectrum after regularization

2.1.7 Application: community detection in networks

Among many possible applications of concentration of random graphs, let
us mention a well understood connection to the analysis of networks. A
benchmark model of networks with communities is the so-called the stochastic
block model G(n, an ,

b
n) [31]. This is a partial case of the inhomogeneous Erdös-

Rényi model considered in this paper, and it is defined as follows. The set
of vertices is divided into two subsets (communities) of size n/2 each. Edges
between vertices are drawn independently with probability a/n if they are
in the same community and with probability b/n otherwise. The community
detection problem is to detect which vertices belong to which communities as
accurately as possible.

The most basic and popular algorithm proposed for community detection
is spectral clustering [3, 51, 72, 13, 59, 44, 69, 82]. It works as follows: compute
the eigenvector v2(A) corresponding to the second largest eigenvalue of the
adjacency matrix A (or the Laplacian matrix); then classify the vertices based
on the signs of the coefficients of v2(A). If this vector is positive on vertex i
put i in the first community; otherwise put it in the second.

The success of the spectral clustering hinges upon concentration of random
graphs. If concentration does hold and A is close to EA, then the standard
perturbation theory (Davis-Kahan theorem) shows that v2(A) must be close
to v2(EA). In particular, the signs of these vectors must agree on most of the
vertices. But an easy calculation shows that the signs of v2(EA) detect the
communities exactly: this vector is a positive constant on one community and
negative constant on the other. Therefore, v2(A) must detect the communities
up to a small fraction of misclassified vertices.

Working out the details, one can conclude that regularized spectral clus-

13



tering (i.e. the spectral clustering applied to the graph reguralized in one
of the ways described in Section 2.1.4) recovers the communities up to an ε
fraction of misclassified vertices as long as

(a− b)2 > Cε(a+ b), (2.1.7)

where Cε = C/ε for some constant C > 0. The deduction of this from
concentration is standard; the reader can refer e.g. to [39, 15].

In conclusion let us mention that condition (2.1.7) appeared in the analysis
of other community detection algorithms, see [29, 15, 25]. It is tight up
to the constant Cε that must go to infinity with ε → 0 [87]. In fact, the
necessary and sufficient condition for recovering the two communities better
than random guessing is (a− b)2 > 2(a+ b) [55, 56, 54, 50].

2.2 Full version of Theorem 2.1.1, and reduction to a

graph decomposition

In this section we state a more general and quantitative version of Theo-
rem 2.1.1, and we reduce it to a new form of graph decomposition, which can
be of interest on its own.

Theorem 2.2.1 (Concentration of regularized adjacency matrices). Consider
a random graph from the inhomogeneous Erdös-Rényi model, and let d be as
in (2.1.3). For any r ≥ 1, the following holds with probability at least 1−n−r.
Consider any subset consisting of at most 10n/d vertices, and reduce the
weights of the edges incident to those vertices in an arbitrary way. Then the
adjacency matrix A′ of the new (weighted) graph satisfies

‖A′ − EA‖ = Cr3/2
(√

d+
√
d′
)
.

Here d′ denotes the degree of the new graph. Moreover, the same bound holds
for d′ being the maximal `2 norm of the rows of A′.

In this result and in the rest of the paper, C,C1, C2, . . . denote absolute
constants whose values may be different from line to line.

14



Remark 2.2.2 (Theorem 2.2.1 implies Theorem 2.1.1). The subset of 10n/d
vertices in Theorem 2.2.1 can be completely arbitrary. So let us choose the
high-degree vertices, say those with degrees larger than 2d. There are at most
10n/d such vertices with high probability; this follows by an easy calculation,
and also from Lemma 2.3.5. Thus we immediately deduce Theorem 2.1.1.

One may wonder if Theorem 2.2.1 can be proved by developing an ε-net
argument similar to the method of J. Kahn and E. Szemeredi [23] and its
versions [3, 21, 44, 15]. Although we can not rule out such possibility, we do
not see how this method could handle a general regularization. The reader
familiar with the method can easily notice an obstacle. The contribution of
the so-called light couples becomes hard to control when one changes, and
even reduces, the individual entries of A (the weights of edges).

We will develop an alternative and somewhat simpler approach, which will
be able to handle a general regularization of random graphs. Our method is
a development (and a considerable simplification) of the idea in [39]. It sheds
light on the specific structure of graphs that enables concentration. We are
going to identify this structure through a graph decomposition in the next
section. But let us pause briefly to mention the following useful reduction.

Remark 2.2.3 (Reduction to directed graphs). Our arguments will be more
convenient to carry out if the adjacency matrix A has all independent en-
tries. To be able to make this assumption, we can decompose A into the
upper-triangular and a lower-triangular parts, both of which have indepen-
dent entries. If we can show that each of these parts concentrate about its
expectation, it would follow that A concentrate about EA by triangle in-
equality.

In other words, we may prove Theorem 2.2.1 for directed inhomogeneous
Erdös-Rényi graphs, where edges between any vertices and in any direction
appear indepednently with probabilities pij. In the rest of the argument, we
will only work with such random directed graphs.

2.2.1 Graph decomposition

In this section, we reduce Theorem 2.2.1 to the following decomposition of
inhomogeneous Erdös-Rényi directed random graphs. This decomposition
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may have an independent interest. Throughout the paper, we denote by BN
the matrix which coincides with a matrix B on a subset of edges N ⊂ [n]×[n]
and has zero entries elsewhere.

Theorem 2.2.4 (Graph decomposition). Consider a random directed graph
from the inhomogeneous Erdös-Rényi model, and let d be as in (2.1.3). For
any r ≥ 1, the following holds with probability at least 1 − 3n−r. One can
decompose the set of edges [n]× [n] into three classes N , R and C so that the
following properties are satisfied for the adjacency matrix A.

• The graph concentrates on N , namely ‖(A− EA)N‖ ≤ Cr3/2
√
d.

• Each row of AR and each column of AC has at most 32r ones.

Moreover, R intersects at most n/d columns, and C intersects at most n/d
rows of [n]× [n].

Figure 2.2 illustrates a possible decomposition Theorem 2.2.4 can provide.
The edges in N form a big “core” where the graph concentrates well even
without regularization. The edges in R and C can be thought of (at least
heuristically) as those attached to high-degree vertices.

Figure 2.2: An example of graph decomposition in Theorem 2.2.4.

A weaker version of Theorem 2.2.4 was proved recently in [39], which had
parasitic log(d) factors. It became possible to remove them here by develop-
ing a related but considerably different method, which is also considerably
simpler than in [39]. The key difference is that instead of Grothendieck in-
equality, we will use here the Grothendieck-Pietsch factorization, which we
will explain in detail in Section 2.3.2.

We will prove Theorem 2.2.4 in Section 2.3; let us pause to deduce Theo-
rem 2.2.1 from it.
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2.2.2 Deduction of Theorem 2.2.1

First, let us explain informally how the graph decomposition could lead to
Theorem 2.2.1. The regularization of the graph does not destroy the proper-
ties of N , R and C in Theorem 2.2.4. Moreover, regularization creates a new
property for us, allowing for a good control of the columns of R and rows of
C. Let us focus on AR to be specific. The `1 norms of all columns of this ma-
trix are at most d′, and the `1 norms of all rows are O(1) by Theorem 2.2.4.
By a simple calculation which we will do in Lemma 2.2.5, this implies that
‖AR‖ = O(

√
d′). A similar bound can be proved for C. Combining N , R

and C together will lead to the error bound O(
√
d+
√
d′) in Theorem 2.2.1.

To make this argument rigorous, let us start with the simple calculation
we just mentioned.

Lemma 2.2.5. Consider a matrix B in which each row has `1 norm at most
a, and each column has `1 norm at most b. Then ‖B‖ ≤

√
ab.

Proof. The claim follows directly from the Riesz-Thorin interpolation theo-
rem (see e.g. [77, Theorem 2.1]), since the maximal `1 norm of columns is
the `1 → `1 operator norm, and the maximal `1 norm of rows is the `∞ → `∞
operator norm. For completeness, let us give here an alternative direct proof.
Let x be a vector with ‖x‖2 = 1. Using Cauchy-Schwarz inequality and the
assumptions, we have

‖Bx‖2
2 =

∑
i

(∑
j

Bijxj

)2

≤
∑
i

(∑
j

|Bij|
∑
j

|Bij|x2
j

)
≤
∑
i

(
a
∑
j

|Bij|x2
j

)
= a

∑
j

x2
j

∑
i

|Bij| ≤ a
∑
j

x2
jb = ab.

Since x is arbitrary, this completes the proof.

We are ready to formally deduce the main part of Theorem 2.2.1 from
Theorem 2.2.4; we defer the “moreover” part to Section 2.3.6.

Proof of Theorem 2.2.1 (main part). Fix a realization of the random graph
that satisfies the conclusion of Theorem 2.2.4, and decompose the deviation
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A′ − EA as follows:

A′ − EA = (A′ − EA)N + (A′ − EA)R + (A′ − EA)C. (2.2.1)

We will bound the spectral norm of each of the three terms separately.

Step 1. Deviation on N . Let us further decompose

(A′ − EA)N = (A− EA)N − (A− A′)N . (2.2.2)

By Theorem 2.2.4, ‖(A− EA)N‖ ≤ Cr3/2
√
d. To control the second term in

(2.2.2), denote by E ⊂ [n]× [n] the subset of edges we choose to reweight in
Theorem 2.2.4. Since A and A′ are equal on Ec, we have

‖(A− A′)N‖ = ‖(A− A′)N∩E‖ ≤ ‖AN∩E‖ (since 0 ≤ A− A′ ≤ A entrywise)

≤ ‖(A− EA)N∩E‖+ ‖EAN∩E‖ (by triangle inequality).
(2.2.3)

Further, a simple restriction property implies that

‖(A− EA)N∩E‖ ≤ 2‖(A− EA)N‖. (2.2.4)

Indeed, restricting a matrix onto a product subset of [n]× [n] can only reduce
its norm. Although the set of reweighted edges E is not a product subset, it
can be decomposed into two product subsets:

E =
(
I × [n]

)
∪
(
Ic × I

)
(2.2.5)

where I is the subset of vertices incident to the edges in E . Then (2.2.4) holds;
right hand side of that inequality is bounded by Cr3/2

√
d by Theorem 2.2.4.

Thus we handled the first term in (2.2.3).

To bound the second term in (2.2.3), we can use another restriction prop-
erty that states that the norm of the matrix with non-negative entries can
only reduce by restricting onto any subset of [n] × [n] (whether a product
subset or not). This yields

‖EAN∩E‖ ≤ ‖EAE‖ ≤ ‖EAI×[n]‖+ ‖EAIc×I‖ (2.2.6)

where the second inequality follows by (2.2.5). By assumption, the matrix
EAI×[n] has |I| ≤ 10n/d rows and each of its entries is bounded by d/n. Hence
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the `1 norm of all rows is bounded by d, and the `1 norm of all columns is
bounded by 10. Lemma 2.2.5 implies that ‖EAI×[n]‖ ≤

√
10d. A similar

bound holds for the second term of (2.2.6). This yields

‖EAN∩E‖ ≤ 5
√
d,

so we handled the second term in (2.2.3). Recalling that the first term there
is bounded by Cr3/2

√
d, we conclude that ‖(A− A′)N‖ ≤ 2Cr3/2

√
d.

Returning to (2.2.2), we recall that the first term in the right hand is
bounded by Cr3/2

√
d, and we just bounded the second term by 2Cr3/2

√
d.

Hence
‖(A′ − EA)N‖ ≤ 4Cr3/2

√
d.

Step 2. Deviation on R and C. By triangle inequality, we have

‖(A′ − EA)R‖ ≤ ‖A′R‖+ ‖EAR‖.

Recall that 0 ≤ A′R ≤ AR entrywise. By Theorem 2.2.4, each of the rows of
AR, and thus also of A′R, has `1 norm at most 32r. Moreover, by definition
of d′, each of the columns of A′, and thus also of A′R, has `1 norm at most d′.
Lemma 2.2.5 implies that ‖A′R‖ ≤

√
32rd′.

The matrix EAR can be handled similarly. By Theorem 2.2.4, it has at
most n/d entries in each row, and all entries are bounded by d/n. Thus each
column of EAR has `1 norm at most 1, and and each row has `1 norm at
most d. Lemma 2.2.5 implies that ‖EAR‖ ≤

√
d.

We showed that

‖(A′ − EA)R‖ ≤
√

32rd′ +
√
d.

A similar bound holds for ‖(A′ − EA)C‖. Combining the bounds on the
deviation of A′ − EA on N , R and C and putting them into (2.2.1), we
conclude that

‖A′ − EA‖ ≤ 4Cr3/2
√
d+ 2

(√
32rd′ +

√
d
)
.

Simplifying this inequality, we complete the proof of the main part of Theo-
rem 2.2.1.
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2.3 Proof of Decomposition Theorem 2.2.4

2.3.1 Outline of the argument

We will construct the decomposition in Theorem 2.2.4 by an iterative proce-
dure. The first and crucial step is to find a big block2 N ′ ⊂ [n]× [n] of size
at least (n− n/d)× n/2 on which A concentrates, i.e.

‖(A− EA)N ′‖ = O(
√
d).

To find such block, we first establishing concentration in `∞ → `2 norm; this
can be done by standard probabilistic techniques. Next, we can automatically
upgrade this to concentration in the spectral norm (`2 → `2) once we pass
to an appropriate block N ′. This can be done using a general result from
functional analysis, which we call Grothendieck-Pietsch factorization.

Repeating this argument for the transpose, we obtain another block N ′′
of size at least n/2× (n− n/d) where the graph concentrates as well. So the
graph concentrates on N0 := N ′∪N ′′. The “core” N0 will form the first part
of the class N we are constructing.

It remains to control the graph on the complement of N0. That set of
edges is quite small; it can be described as a union of a block C0 with n/d
rows, a block R0 with n/d columns and an exceptional n/2× n/2 block; see
Figure 2.3b for illustration. We may consider C0 and R0 as the first parts of
the future classes C and R we are constructing.

Indeed, since C0 has so few rows, the expected number of ones in each
column of C0 is bounded by 1. For simplicity, let us think that all columns of
C0 have O(1) ones as desired. (In the formal argument, we will add the bad
columns to the exceptional block.) Of course, the block R0 can be handled
similarly.

At this point, we decomposed [n]× [n] into N0, R0, C0 and an exceptional
n/2× n/2 block. Now we repeat the process for the exceptional block, con-
structing N1, R1, and C1 there, and so on. Figure 2.3c illustrates this process.

2In this paper, by block we mean a product set I × J with arbitrary index subsets I, J ⊂ [n]. These
subsets are not required to be intervals of successive integers.
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At the end, we choose N , R and C to be the unions of the blocks Ni, Ri and
Ci respectively.

(a) The core. (b) After the first step. (c) Final decomposition.

Figure 2.3: Constructing decomposition iteratively in the proof of Theorem 2.2.4.

Two precautions have to be taken in this argument. First, we need to
make concentration on the core blocks Ni better at each step, so that the sum
of those error bounds would not depend of the total number of steps. This
can be done with little effort, with the help of the exponential decrease of the
size of the blocks Ni. Second, we have a control of the sizes but not locations
of the exceptional blocks. Thus to be able to carry out the decomposition
argument inside an exceptional block, we need to make the argument valid
uniformly over all blocks of that size. This will require us to be delicate with
probabilistic arguments, so we can take a union bound over such blocks.

2.3.2 Grothendieck-Pietsch factorization

As we mentioned in the previous section, our proof of Theorem 2.2.4 is based
on Grothendieck-Pietsch factorization. This general and well known result
in functional analysis [66, 67] has already been used in a similar probabilistic
context, see [42, Proposition 15.11].

Grothendieck-Pietsch factorization compares two matrix norms, the `2 →
`2 norm (which we call the spectral norm ) and the `∞ → `2 norm. For a
k ×m matrix B, these norms are defined as

‖B‖ = max
‖x‖2=1

‖Bx‖2, ‖B‖∞→2 = max
‖x‖∞=1

‖Bx‖2 = max
x∈{−1,1}m

‖Bx‖2.
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The `∞ → `2 norm is usually easier to control, since the supremum is taken
with respect to the discrete set {−1, 1}m, and any vector there has all coor-
dinates of the same magnitude.

To compare the two norms, one can start with the obvious inequality

‖B‖∞→2√
m

≤ ‖B‖ ≤ ‖B‖∞→2.

Both parts of this inequality are optimal, so there is an unavoidable slack
between the upper and lower bounds. However, Grothendieck-Pietsch factor-
ization allows us to tighten the inequality by changing B sightly. The next
two results offer two ways to change B – introduce weights and pass to a
sub-matrix.

Theorem 2.3.1 (Grothendieck-Pietsch’s factorization, weighted version).
Let B be a k × m real matrix. Then there exist positive weights µj with∑m

j=1 µj = 1 such that

‖B‖∞→2 ≤ ‖BD−1/2
µ ‖ ≤

√
π/2‖B‖∞→2, (2.3.1)

where Dµ = diag(µj) denotes the m×m diagonal matrix with weights µj on
the diagonal.

This result is a known combination of the Little Grothendieck Theorem
(see [78, Corollary 10.10] and [68]) and Pietsch Factorization (see [78, The-
orem 9.2]). In an explicit form, a version of this result can be found e.g. in
[42, Proposition 15.11]. The weights µj can be computed algorithmically, see
[79].

The following related version of Grothendieck-Pietsch’s factorization can
be especially useful in probabilistic contexts, see [42, Proposition 15.11]. Here
and in the rest of the paper, we denote by BI×J the sub-matrix of a matrix
B with rows indexed by a subset I and columns indexed by a subset J .

Theorem 2.3.2 (Grothendieck-Pietsch factorization, sub-matrix version).
Let B be a k × m real matrix and δ > 0. Then there exists J ⊆ [m] with
|J | ≥ (1− δ)m such that

‖B[k]×J‖ ≤
2‖B‖∞→2√

δm
.
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Proof. Consider the weights µi given by Theorem 2.3.1, and choose J to
consist of the indices j satisfying µj ≤ 1/δm. Since

∑
j µj = 1, the set J

must contain at least (1− δ)m indices as claimed. Furthermore, the diagonal

entries of (D
−1/2
µ )J×J are all bounded from below by

√
δm, which yields

‖(BD−1/2
µ )[k]×J‖ ≥

√
δm‖B[k]×J‖.

On the other hand, by (2.3.1) the left-hand side of this inequality is bounded
by 2‖B‖∞→2. Rearranging the terms, we complete the proof.

2.3.3 Concentration on a big block

We are starting to work toward constructing the core part N in Theo-
rem 2.2.4. In this section we will show how to find a big block on which
the adjacency matrix A concentrates. First we will establish concentration
in `∞ → `2 norm, and then, using Grothendieck-Pietsch factorization, in the
spectral norm.

The lemmas of this and next section should be best understood for m = n,
I = J = [n] and α = 1. In this case, we are working with the entire adjacency
matrix, and trying to make the first step in the iterative procedure. The
further steps will require us to handle smaller blocks I × J ; the parameter α
will then become smaller in order to achieve better concentration for smaller
blocks.

Lemma 2.3.3 (Concentration in `∞ → `2 norm). Let 1 ≤ m ≤ n and
α ≥ m/n. Then for r ≥ 1 the following holds with probability at least 1−n−r.
Consider a block I × J of size m×m. Let I ′ be the set of indices of the rows
of AI×J that contain at most αd ones. Then

‖(A− EA)I ′×J‖∞→2 ≤ C
√
αdmr log(en/m). (2.3.2)

Proof. By definition,

‖(A−EA)I ′×J‖2
∞→2 = max

x∈{−1,1}m

∑
i∈I ′

(∑
j∈J

(Aij−EAij)xj

)2

= max
x∈{−1,1}m

∑
i∈I

(
Xiξi

)2

(2.3.3)
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where we denoted

Xi :=
∑
j∈J

(Aij − EAij)xj, ξi := 1{∑i∈J Aij≤αd}.

Let us first fix a block I × J and a vector x ∈ {−1, 1}m. Let us analyze
the independent random variables Xiξi. Since |Xi| ≤

∑
j∈J |Aij − EAij| ≤∑

j∈J Aij, it follows by definition of ξi that

|Xiξi| ≤ αd. (2.3.4)

A more useful bond will follow from Bernstein’s inequality. Indeed, Xi is
a sum of m independent random variables with zero means and variances at
most d/n. By Bernstein’s inequality, for any t > 0 we have

P {|Xiξi| > tm} ≤ P {|Xi| > tm} ≤ 2 exp

(
−mt2/2
d/n+ t/3

)
, t ≥ 0. (2.3.5)

For tm ≤ αd, this can be further bounded by 2exp(−m2t2/4αd), once we
use the assumption α ≥ m/n. For tm > αd, the left-hand side of (2.3.5) is
automatically zero by (2.3.4). Therefore

P {|Xiξi| > tm} ≤ 2 exp

(
−m2t2

4αd

)
, t ≥ 0. (2.3.6)

We are now ready to bound the right-hand side of (2.3.3). By (2.3.6), the
random variable Xiξi is sub-gaussian3 with sub-gaussian norm at most

√
αd.

It follows that (Xiξi)
2 is sub-exponential with sub-exponential norm at most

2αd. Using Bernstein’s inequality for sub-exponential random variables (see
Corrollary 5.17 in [80]), we have

P

{∑
i∈I

(
Xiξi

)2
> εmαd

}
≤ 2 exp

[
−cmin

(
ε2, ε

)
m
]
, ε ≥ 0. (2.3.7)

Choosing ε := (10/c)r log(en/m), we bound this probability by (en/m)−5rm.

3For definitions and basic facts about sub-gaussian random variables, see e.g. [80].
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Summarizing, we have proved that for fixed I, J ⊆ [n] and x ∈ {−1, 1}m,
with probability at least 1− (en/m)−5rm, the following holds:∑

i∈I

(
Xiξi

)2 ≤ (10/c)r log(en/m) ·mαd. (2.3.8)

Taking a union bound over all possibilities of m, I, J, x and using (2.3.3),
(2.3.8), we see that the conclusion of the lemma holds with probability at
least

1−
n∑

m=1

2m
(
n

m

)2 (en
m

)−5rm

≥ 1− n−r.

The proof is complete.

Applying Lemma 2.3.3 followed by Grothendieck-Piesch factorization (The-
orem 2.3.2), we obtain the following.

Lemma 2.3.4 (Concentration in spectral norm). Let 1 ≤ m ≤ n and α ≥
m/n. Then for r ≥ 1 the following holds with probability at least 1 − n−r.
Consider a block I × J of size m×m. Let I ′ be the set of indices of the rows
of AI×J that contain at most αd ones. Then one can find a subset J ′ ⊆ J of
at least 3m/4 columns such that

‖(A− EA)I ′×J ′‖ ≤ C
√
αdr log(en/m). (2.3.9)

2.3.4 Restricted degrees

The two simple lemmas of this section will help us to handle the part of the
adjacency matrix outside the core block constructed in Lemma 2.3.4. First,
we show that almost all rows have at most O(αd) ones, and thus are included
in the core block.

Lemma 2.3.5 (Degrees of subgraphs). Let 1 ≤ m ≤ n and α ≥
√
m/n.

Then for r ≥ 1 the following holds with probability at least 1−n−r. Consider
a block I × J of size m×m. Then all but m/αd rows of AI×J have at most
8rαd ones.
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Proof. Fix a block I×J , and denote by di the number of ones in the i-th row
of AI×J . Then E di ≤ md/n by the assumption. Using Chernoff’s inequality,
we obtain

P {di > 8rαd} ≤
( 8rαd

emd/n

)−8rαd

≤
(2αn

m

)−8rαd

=: p.

Let S be the number of rows i with di > 8rαd. Then S is a sum of m
independent Bernoulli random variables with expectations at most p. Again,
Chernoff’s inequality implies

P {S > m/αd} ≤ (epαd)m/αd ≤ pm/2αd =
(2αn

m

)−4rm

.

The second inequality here holds since eαd ≤ p−1/2. (To see this, notice that
the definition of p and assumption on α imply that p−1/2 = (2αn/m)4rαd ≥
24rαd.)

It remains to take a union bound over all blocks I × J . We obtain that
the conclusion of the lemma holds with probability at least

1−
n∑

m=1

(
n

m

)2(2αn

m

)−4rm

≥ 1− n−r.

In the last inequality we used the assumption that α ≥
√
m/n. The proof is

complete.

Next, we handle the block of rows that do have too many ones. We show
that most columns of this block have O(1) ones.

Lemma 2.3.6 (More on degrees of subgraphs). Let 1 ≤ m ≤ n and α ≥√
m/n. Then for r ≥ 1 the following holds with probability at least 1− n−r.

Consider a block I×J of size k×m with some k ≤ m/αd. Then all but m/4
columns of AI×J have at most 32r ones.

Proof. Fix I and J , and denote by dj the number of ones in the j-th column
of AI×J . Then E dj ≤ kd/n ≤ m/αn by assumption. Using Chernoff’s
inequality, we have

P {dj > 32r} ≤
( 32r

em/αn

)−32r

≤
(10αn

m

)−32r

=: p.
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Let S be the number of columns j with dj > 32r. Then S is a sum of m
independent Bernoulli random variables with expectations at most p. Again,
Chernoff’s inequality implies

P {S > m/4} ≤ (4ep)m/4 ≤ pm/6 ≤
(10αn

m

)−5rm

.

The second inequality here holds since 4e < p1/2, which in turn follows by
assumption on α.

It remains to take a union bound over all blocks I × J . It is enough to
consider the blocks with largest possible number of columns, thus with k =
dm/αde. We obtain that the conclusion of the lemma holds with probability
at least

1−
n∑

m=1

(
n

m

)(
n

dm/αde

)(10αn

m

)−5rm

≤ 1− n−r.

In the last inequality we used the assumption that α ≥
√
m/n. The proof is

complete.

2.3.5 Iterative decomposition: proof of Theorem 2.2.1

Finally, we combine the tools we developed so far, and we construct an it-
erative decomposition of the adjacency matrix the way we outline in Sec-
tion 2.3.1. Let us set up one step of this procedure, where we consider an
m×m block and decompose almost all of it (everything except an m/2×m/2
block) into classes N , R and C satisfying the conclusion of Theorem 2.2.4.
Once we can do this, we repeat the procedure for the m/2×m/2 block, etc.

Lemma 2.3.7 (Decomposition of a block). Let 1 ≤ m ≤ n and α ≥
√
m/n.

Then for r ≥ 1 the following holds with probability at least 1−3n−r. Consider
a block I × J of size m × m. Then there exists an exceptional sub-block
I1 × J1 with dimensions at most m/2×m/2 such that the remaining part of
the block, that is (I × J) \ (I1× J1), can be decomposed into three classes N ,
R ⊂ (I \ I1)× J and C ⊂ I × (J \ J1) so that the following holds.

• The graph concentrates on N , namely ‖(A−EA)N‖ ≤ Cr3/2
√
αd log(en/m).

• Each row of AR and each column of AC has at most 32r ones.
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Moreover, R intersects at most n/αd columns and C intersects at most n/αd
rows of I × J .

After a permutation of rows and columns, a decomposition of the block
stated in Lemma 2.3.7 can be visualized in Figure 2.4c.

(a) Initial step. (b) Repeat for transpose. (c) Final decomposition.

Figure 2.4: Construction of a block decomposition in Lemma 2.3.7.

Proof. Since we are going to use Lemmas 2.3.4, 2.3.5 and 2.3.6, let us fix
realization of the random graph that satisfies the conclusion of those three
lemmas.

By Lemma 2.3.5, all but m/αd rows of AI×J have at most 8rαd ones; let
us denote by I ′ the set of indices of those rows with at most 8rαd ones. Then
we can use Lemma 2.3.4 for the block I ′ × J and with α replaced by 8rα;
the choice of I ′ ensures that all rows have small numbers of ones, as required
in that lemma. To control the rows outside I ′, we may use Lemma 2.3.6 for
(I \I ′)×J ; as we already noted, this block has at most m/αd rows as required
in that lemma. Intersecting the good sets of columns produced by those two
lemmas, we obtain a set of at most m/2 exceptional columns J1 ⊂ J such
that the following holds.

• On the blockN1 := I ′×(J\J1), we have ‖(A−EA)N1
‖ ≤ Cr3/2

√
αd log(en/m).

• For the block C := (I \ I ′)× (J \J1), all columns of AC have at most 32r
ones.

Figure 2.4a illustrates the decomposition of the block I × J into the set of
exceptional columns indexed by J1 and good sets N1 and C.
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To finish the proof, we apply the above argument to the transpose AT on
the block J × I. To be precise, we start with the set J ′ ⊂ J of all but m/αd
small columns of AI×J (those with at most 8rαd ones); then we obtain an
exceptional set I1 ⊂ I of at most m/2 rows; and finally we conclude that A
concentrates on the block N2 := (I \ I1)×J ′ and has small rows on the block
R := (I \ I1)× (J \ J ′). Figure 2.4b illustrates this decomposition.

It only remains to combine the decompositions for A and AT; Figure 2.4c
illustrates a result of the combination. Once we define N := N1 ∪ N2, it
becomes clear that N , R and C have the required properties.4

Proof of Theorem 2.2.4. Let us fix a realization of the random graph that
satisfies the conclusion of Lemma 2.3.7. Applying that lemma for m = n and
with α = 1, we decompose the set of edges [n] × [n] into three classes N0,
C0 and R0 plus an n/2× n/2 exceptional block I1 × J1. Apply Lemma 2.3.7
again, this time for the block I1 × J1, for m = n/2 and with α =

√
1/2. We

decompose I1 × J1 into N1, C1 and R1 plus an n/4 × n/4 exceptional block
I2 × J2.

Repeat this process for α =
√
m/n where m is the running size of the

block; we halve this size at each step, and so we have αi ≤ 2−i/2. Figure 2.3c
illustrates a decomposition that we may obtain this way. In a finite number of
steps (actually, in O(log n) steps) the exceptional block becomes empty, and
the process terminates. At that point we have decomposed the set of edges
[n]× [n] into N , R and C, defined as the union of Ni, Ci and Ri respectively,
which we obtained at each step. It is clear that R and C satisfy the required
properties.

It remains to bound the deviation of A on N . By construction, Ni satisfies

‖(A− EA)Ni
‖ ≤ Cr3/2

√
αid log(eαi).

Thus, by triangle inequality we have

‖(A− EA)N‖ ≤
∑
i≥0

Cr3/2
√
αid log(eαi) ≤ C ′r3/2

√
d.

4It may happen that an entry ends up in more than one class N , R and C. In such cases, we split the tie
arbitrarily.
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In the second inequality we used that αi ≤ 2−i/2, which forces the series to
converge. The proof of Theorem 2.2.4 is complete.

2.3.6 Replacing the degrees by the `2 norms in Theorem 2.2.1

Let us now prove the “moreover” part of Theorem 2.2.1, where d′ is the the
maximal `2 norm of the rows and columns of the regularized adjacency matrix
A′. This is clearly a stronger statement than in the main part of the theorem.
Indeed, since all entries of A′ are bounded in absolute value by 1, each degree,
being the `1 norm of a row, is bounded below by the `2 norm squared.

This strengthening is in fact easy to check. To do so, note that the def-
inition of d′ was used only once in the proof of Theorem 2.2.1, namely in
Step 2 where we bounded the norms of A′R and A′C. Thus, to obtain the
strengthening, it is enough to replace the application of Lemma 2.2.5 there
by the following lemma.

Lemma 2.3.8. Consider a matrix B with entries in [0, 1]. Suppose each row
of B has at most a non-zero entries, and each column has `2 norm at most√
b. Then ‖B‖ ≤

√
ab.

Proof. To prove the claim, let x be a vector with ‖x‖2 = 1. Using Cauchy-
Schwarz inequality and the assumptions, we have

‖Bx‖2
2 =

∑
j

(∑
i

Bijxi

)2

≤
∑
j

( ∑
i:Bij 6=0

B2
ij

∑
i:Bij 6=0

x2
i

)
≤
∑
j

(
b
∑

i:Bij 6=0

x2
i

)
= b

∑
i

x2
i

∑
j:Bij 6=0

1 ≤ b
∑
i

x2
ia = ab.

Since x is arbitrary, this completes the proof.

2.4 Concentration of the regularized Laplacian

In this section, we state the following formal version of Theorem 2.1.2, and
we deduce it from concentration of adjacency matrices (Theorem 2.2.1).
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Theorem 2.4.1 (Concentration of regularized Laplacians). Consider a ran-
dom graph from the inhomogeneous Erdös-Rényi model, and let d be as in
(2.1.3). Choose a number τ > 0. Then, for any r ≥ 1, with probability at
least 1− e−r one has

‖L(Aτ)− L(EAτ)‖ ≤
Cr2

√
τ

(
1 +

d

τ

)5/2

.

Proof. Two sources contribute to the deviation of Laplacian – the deviation
of the adjacency matrix and the deviation of the degrees. Let us separate
and bound them individually.

Step 1. Decomposing the deviation. Let us denote Ā := EA for
simplicity; then

E := L(Aτ)− L(Āτ) = D−1/2
τ AτD

−1/2
τ − D̄−1/2

τ ĀτD̄
−1/2
τ .

Here Dτ = diag(di + τ) and D̄τ = diag(d̄i + τ) are the diagonal matrices
with degrees of Aτ and Āτ on the diagonal, respectively. Using the fact that
Aτ − Āτ = A− Ā, we can represent the deviation as E = S + T , where

S = D−1/2
τ (A− Ā)D−1/2

τ , T = D−1/2
τ ĀτD

−1/2
τ − D̄−1/2

τ ĀτD̄
−1/2
τ .

Let us bound S and T separately.

Step 2. Bounding S. Let us introduce a diagonal matrix ∆ that should
be easier to work with than Dτ . Set ∆ii = 1 if di ≤ 8rd and ∆ii = di/τ + 1
otherwise. Then entries of τ∆ are upper bounded by the corresponding
entries of Dτ , and so

τ‖S‖ ≤ ‖∆−1/2(A− Ā)∆−1/2‖.

Next, by triangle inequality,

τ‖S‖ ≤ ‖∆−1/2A∆−1/2 − Ā‖+ ‖Ā−∆−1/2Ā∆−1/2‖ =: R1 +R2. (2.4.1)

In order to boundR1, we use Theorem 2.2.1 to show thatA′ := ∆−1/2A∆−1/2

concentrates around Ā. This should be possible because A′ is obtained from
A by reducing the degrees that are bigger than 8rd. To apply the “moreover”
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part of Theorem 2.2.1, let us check the magnitude of the `2 norms of the rows
A′i of A′:

‖A′i‖2
2 =

n∑
j=1

Aij

∆ii∆jj
≤ di

∆ii
≤ max(8rd, τ).

Here in the first inequality we used that ∆jj ≥ 1 and
∑

j Aij = di; the second
inequality follows by definition of ∆ii. Applying Theorem 2.2.1, we obtain
with probability 1− n−r that

R1 = ‖A′ − Ā‖ ≤ C1r
2(
√
d+
√
τ).

To bound R2, we note that by construction of ∆, the matrices Ā and
∆−1/2Ā∆−1/2 coincide on the block I × I, where I is the set of vertices satis-
fying di ≤ 8rd. This block is very large – indeed, Lemma 2.3.5 implies that
|Ic| ≤ n/d with probability 1 − n−r. Outside this block, i.e. on the small
blocks Ic × [n] and [n]× Ic, the entries of Ā−∆−1/2Ā∆−1/2 are bounded by
the corresponding entries of Ā, which are all bounded by d/n. Thus, using
Lemma 2.2.5, we have

R2 ≤ ‖ĀIc×[n]‖+ ‖Ā[n]×Ic‖ ≤ 2
√
d.

Substituting the bounds for R1 and R2 into (2.4.1), we conclude that

‖S‖ ≤ C2r
2

τ
(
√
d+
√
τ)

with probability at least 1− 2n−r.

Step 3. Bounding T . Bounding the spectral norm by the Hilbert-
Schmidt norm, we get

‖T‖ ≤ ‖T‖HS =
n∑

i,j=1

T 2
ij, where Tij = (Āij + τ/n)

[
1/
√
δij − 1/

√
δ̄ij

]
and δij = (di + τ)(dj + τ) and δ̄ij = (d̄i + τ)(d̄j + τ). To bound Tij, we note
that

0 ≤ Āij+τ/n ≤
d+ τ

n
and

∣∣1/√δij−1/
√
δ̄ij
∣∣ =

∣∣∣∣∣∣∣
δij − δ̄ij

δij

√
δ̄ij + δ̄ij

√
δij

∣∣∣∣∣∣∣ ≥
|δij − δ̄ij|

2τ 3
.
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Recalling the definition of δij and δ̄ij and adding and subtracting (di+τ)(d̄j+
τ), we have

δij − δ̄ij = (di + τ)(dj − d̄j) + (d̄j + τ)(di − d̄i).

So, using the inequality (a+ b)2 ≤ 2(a2 + b2) and bounding d̄j + τ by d+ τ ,
we obtain

‖T‖2 ≤ (d+ τ)2

n2τ 6

[ n∑
i=1

(di+τ)2
n∑
j=1

(dj− d̄j)2 +n(d+τ)2
n∑
i=1

(di− d̄i)2
]
. (2.4.2)

We claim that

n∑
j=1

(dj − d̄j)2 ≤ C3r
2nd with probability 1− e−2r. (2.4.3)

Indeed, since the variance of each di is bounded by d, the expectation of
the sum in (2.4.3) is bounded by nd. To upgrade the variance bound to
an exponential deviation bound, one can use one of the several standard
methods. For example, Bernstein’s inequality implies that Xi = dj − d̄j

satisfies P
{
Xi > C4t

√
d
}
≤ e−t for all t ≥ 1. This means that the random

variable X2
i belongs to the Orlicz space Lψ1/2

and has norm ‖X2
i ‖ψ1/2

≤ C3d,
see [42]. By triangle inequality, we conclude that ‖

∑n
i=1X

2
i ‖ψ1/2

≤ C3nd,
which in turn implies (2.4.3).

Furthermore, (2.4.3) implies

n∑
i=1

(di+τ)2 ≤ 2
n∑
i=1

(di−d̄i)2+2
n∑
i=1

(d̄i+τ)2 ≤ 2C3r
2nd+2n(d+τ)2 ≤ C5r

2n(d+τ)2.

Substituting this bound and (2.4.3) into (2.4.2) we conclude that

‖T‖2 ≤ (d+ τ)2

n2τ 6
· C3r

2nd
[
C5r

2n(d+ τ)2 + n(d+ τ)2
]
≤ C6r

4

τ

(
1 +

d

τ

)5

.

It remains to substitute the bounds for S and T into the inequality ‖E‖ ≤
‖S‖ + ‖T‖, and simplify the expression. The resulting bound holds with
probability at least 1− n−r − n−r − e−2r ≥ 1− e−r, as claimed.

33



2.5 Numerical comparisons

We briefly compare the empirical performance of spectral clustering that uses
three different matrices as the input: the adjacency matrix, the regularized
adjacency matrix, and the regularized Laplacian. Given an input matrix B,
we first compute K leading eigenvectors associated with K largest eigenvalues
of B; we then form an n × K matrix using these eigenvectors as column
vectors, and apply k-means on row vectors of the newly formed matrix to get
an estimate of the communities.

We generate networks either from the stochastic block model or the degree-
corrected stochastic block model with 900 nodes and three communities of
equal sizes (n = 900, K = 3). The number of replications for each setting is
100. Following [4], the node degree parameters θi are drawn independently
from the distribution P(Θ = 0.2) = γ, and P(Θ = 1) = 1 − γ. Setting
γ = 0 gives the standard SBM, and γ > 0 gives the DCSBM, with 1 − γ
the fraction of hub nodes. The matrix of edge probabilities P is controlled
by two parameters: the out-in probability ratio r, which determines how
likely edges are formed within and between communities, and the weight
vector w = (w1, w2, w3), which determines the relative node degrees within
communities. Let

P0 =

 w1 r r

r w2 r

r r w3

 .

The difficulty of the problem is largely controlled by r and the overall ex-
pected network degree λ. Thus, we rescale P0 to control the expected degree,
setting

P =
λP 0

(n− 1)(πTP 0π)(EΘ)2
,

where entries of π = (1/3, 1/3, 1/3)T are fractions of nodes in three communi-
ties. Finally, edges Aij are drawn independently from a Bernoulli distribution
with P(Aij = 1) = θiθjPcicj , where c is the true label vector. In simulations,
we fix r = 0.25 and w = (1, 1, 1)T.

The regularized adjacency matrix A′ is formed as follows. For each node
i with degree di greater than the average degree d̄ = (d1 + · · · + dn)/n, we
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normalize i-th row and column of A by multiplying all their entries with
d̄/di. The resulting matrix A′ has all (weighted) degrees bounded by d̄. To
compute the regularized Laplacian, we first compute A′′ = A + (d̄/10n)11T

by adding a small value d̄/10n to all entries of A; the regularized Laplacian
is computed as the Laplacian of the weighted network with adjacency matrix
A′′.

We measure the accuracy of a community estimate e by the overlap it has
with the true label vector c, defined by

max
η

(
1

n

n∑
i=1

1(ci = η(ei))−
1

K

)/(
1− 1

K

)
,

where the maximum is taken over the set of all permutations η of K labels.
The overlap is one for the true labeling and zero for a uniformly random
labeling.
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Figure 2.5: The performance of spectral clustering with different input matrices: adjacency
matrix (AM), regularized adjacency matrix (RA), and regularized Laplacian (RL).

Figure 2.5 shows the performance of spectral clustering with three different
input matricecs: adjacency matrix (AM), regularized adjacency matrix (RA),
and regularized Laplacian (RL). On the left plot we see the performance of
these methods under the SBM (γ = 0) with average degree λ varying from 2
to 20. All methods perform similarly, with RL being the best, especially when
networks are sparse. The right plot shows the performance of three methods
under the DCSBM with average degree λ = 10 and the degree parameter γ
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varying from 0 to 0.5; as γ increases, the variation of node degrees increases.
We see that RL is the most accurate method and its performance is very
stable under the change of γ. In contrast, the accuracy of AM significantly
drops as γ increases. This is expected because the Laplacian is a node-degree
normalized version of the adjacency matrix; the normalization partially can-
cels out the effect of degree variation. Due to a similar normalization effect,
RA is more accurate than AM, although it is not as stable as RL under the
change of γ.
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Chapter 3

Optimization via Low-rank Approximation
for Community Detection in Networks

3.1 Introduction

One of the fundamental problems in network analysis, and one of the most
studied, is detecting network community structure. Community detection is
the problem of inferring the latent label vector c ∈ {1, . . . , K}n for the n
nodes from the observed adjacency matrix A. In this chapter we assume that
the number of communities K is known; we address the problem of estimating
K in Chapter 4. We focus on the undirected network case, where A is sym-
metric. Roughly speaking, the large recent literature on community detection
in this scenario has followed one of two tracks: fitting probabilistic models
for the adjacency matrix, or optimizing global criteria derived from other
considerations over label assignments c, often via spectral approximations.

Fitting models such as the stochastic block model typically involves max-
imizing a likelihood function over all possible label assignments, which is
in principle NP-hard. MCMC-type and variational methods have been pro-
posed, see for example [76, 62, 49], as well as maximizing profile likelihoods
by some type of greedy label-switching algorithms. The profile likelihood
was derived for the SBM by [10] and for the DCSBM by [34], but the label-
switching greedy search algorithms only scale up to a few thousand nodes.
[4] proposed a much faster pseudo-likelihood algorithm for fitting both these
models, which is based on compressing A into block sums and modeling them
as a Poisson mixture. Another fast algorithm for the block model based on
belief propagation has been proposed by [20]. Both these algorithms rely
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heavily on the particular form of the SBM likelihood and are not easily gen-
eralizable.

The SBM likelihood is just one example of a function that can be opti-
mized over all possible node labels in order to perform community detection.
Many other functions have been proposed for this purpose, often not tied to a
generative network model. One of the best-known such functions is modular-
ity [60, 57]. The key idea of modularity is to compare the observed network
to a null model that has no community structure. To define this, let e be an
n-dimensional label vector, nk(e) =

∑n
i=1 I{ei = k} the number of nodes in

community k,

Okl(e) =
n∑

i,j=1

AijI{ei = k, ej = l} (3.1.1)

the number of edges between communities k and l, k 6= l, and Ok =
∑K

l=1Okl

the sum of node degrees in community k. Let di =
∑n

j=1Aij be the degree
of node i, and m =

∑n
i=1 di be (twice) the total number of edges in the

graph. The Newman-Girvan modularity is derived by comparing the observed
number of edges within communities to the number that would be expected
under the Chung-Lu model [16] for the entire graph, and can be written in
the form

QNG(e) =
1

2m

∑
k

(Okk −
O2
k

m
) (3.1.2)

The quantities Okl and Ok turn out to be the key component of many com-
munity detection criteria. The profile likelihoods of the SBM and DCSBM
discussed above can be expressed as

QBM(e) =
K∑

k,l=1

Okl log
Okl

nknl
, (3.1.3)

QDC(e) =
K∑

k,l=1

Okl log
Okl

OkOl
. (3.1.4)

Another example is the extraction criterion [88] to extract one community
at a time, allowing for arbitrary structure in the remainder of the network.
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The main idea is to recognize that some nodes may not belong to any com-
munity, and the strength of a community should depend on ties between its
members and ties to the outside world, but not on ties between non-members.
This criterion is therefore not symmetric with respect to communities, unlike
the criteria previously discussed, and has the form (using slightly different
notation due to lack of symmetry),

QEX(V ) = |V ||V c|
(
O(V )

|V |2
− B(V )

|V ||V c|

)
, (3.1.5)

where V is the set of nodes in the community to be extracted, V c is the
complement of V , O(V ) =

∑
i,j∈V Aij, B(V ) =

∑
i∈V,j∈V c Aij. The only

known method for optimizing this criterion is through greedy label switching,
such as the tabu search algorithm [27].

For all these methods, finding the exact solution requires optimizing a
function of the adjacency matrix A over all Kn possible label vectors, which
is an infeasible optimization problem. In another line of work, spectral de-
compositions have been used in various ways to obtain approximate solutions
that are much faster to compute. One such algorithm is spectral clustering
(see, for example, [61]), a generic clustering method which became popular
for community detection. In this context, the method has been analyzed by
[72, 13, 71, 45], among others, while [32] proposed a spectral method specif-
ically for the DCSBM. In spectral clustering, typically one first computes
the normalized Laplacian matrix L = D−1/2AD−1/2, where D is a diagonal
matrix with diagonal entries being node degrees di, though other normaliza-
tions and no normalization at all are also possible (see [75] for an analysis of
why normalization is beneficial). Then the K eigenvectors of the Laplacian
corresponding to the first K largest eigenvalues are computed, and their rows
clustered using K-means into K clusters corresponding to different labels. It
has been shown that spectral clustering performs better with further regu-
larization, namely if a small constant is added either to D [13, 70] or to A

[4, 33, 39].

In this chapter we propose a new general method of optimizing a gen-
eral function f(A, e) (satisfying some conditions) over labels e. We start by
projecting the entire feasible set of labels onto a low-dimensional subspace
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spanned by vectors approximating the leading eigenvectors of E[A]. Project-
ing the feasible set of labels onto a low-dimensional space reduces the number
of possible solutions (extreme points) from exponential to polynomial, and in
particular from O(2n) to O(n) for the case of two communities, thus making
the optimization problem much easier. This approach is distinct from spec-
tral clustering since one can specify any objective function f to be optimized
(as long as it satisfies some fairly general conditions), and thus applicable to
a wide range of network problems. It is also distinct from initializing a search
for the maximum of a general function with the spectral clustering solution,
since even with a good initialization the feasible space is still extremely large
and it is not clear how to update labels effectively.

We show how our method can be applied to maximize the likelihoods
of the stochastic block model and its degree-corrected version, Newman-
Girvan modularity, and community extraction, which all solve different net-
work problems. While spectral approximations to some specific criteria that
can otherwise be only maximized by a search over labels have been obtained
on a case-by-case basis [57, 71, 59], ours is, to the best of our knowledge, the
first general method that would apply to any function of the adjacency ma-
trix. In this paper, we mainly focus on the case of two communities (K = 2).
For methods that are run recursively, such as modularity and community
extraction, this is not a restriction. For the stochastic block model, the case
K = 2 is of special interest and has received a lot of attention in the prob-
ability literature (see [53] for recent advances). An extension to the general
case of K > 2 is briefly discussed in Section 3.2.3.

The rest of this chapter is organized as follows. In Section 3.2, we set up
notation and describe our general approach to solving a class of optimization
problems over label assignments via projection onto a low-dimensional sub-
space. In Section 3.3, we show how the general method can be applied to
several community detection criteria. Section 3.4 compares numerical per-
formance of different methods. The proofs are given in Section 3.5 and Sec-
tion 3.6.
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3.2 A general method for optimization via low-rank

approximation

To start with, consider the problem of detection K = 2 communities. Many
community detection methods rely on maximizing an objective function f(A, e) ≡
fA(e) over the set of node labels e, which can take values in, say, {−1, 1}.
Since A can be thought of as a noisy realization of E[A], the “ideal” solution
corresponds to maximizing fE[A](e) instead of maximizing fA(e). For a natu-
ral class of functions f described below, fE[A](e) is essentially a function over
the set of projections of labels e onto the subspace spanned by eigenvectors of
E[A] and possibly some other constant vectors. In many cases E[A] is a low-
rank matrix, which makes fE[A](e) a function of only a few variables. It is then
much easier to investigate the behavior of fE[A](e), which typically achieves
its maximum on the set of extreme points of the convex hull generated by the
projection of the label set e. Further, most of the 2n possible label assign-
ments e become interior points after the projection, and in fact the number
of extreme points is at most polynomial in n (see Remark 3.2.2 below); in
particular, when projecting onto a two-dimensional subspace, the number of
extreme points is of order O(n). Therefore, we can find the maximum simply
by performing an exhaustive search over the labels corresponding to the ex-
treme points. Section 3.3.5 provides an alternative method to the exhaustive
search, which is faster but approximate.

In reality, we do not know E[A], so we need to approximate its columns
space using the data A instead. Let UA be an m× n matrix computed from
A such that the row space of UA approximates the column space of E[A]
(the choice of m × n rather than n × m is for notational convenience that
will become apparent below). Existing work on spectral clustering gives us
multiple option for how to compute this matrix, e.g., using the eigenvectors of
A itself, of its Laplacian, or of their various regularizations – see Section 3.2.1
for further discussion of this issue. The algoritm works as follows:

1. Compute the approximation UA from A.

2. Find the labels e associated with the extreme points of the projection
UA[−1, 1]n.
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3. Find the maximum of fA(e) by performing an exhaustive search over the
set of labels found in step 2.

Note that the first step of replacing eigenvectors of E[A] with certain vectors
computed from A is very similar to spectral clustering. Like in spectral
clustering, the output of the algorithm does not change if we replace UA with
UAR for any orthogonal matrix R. However, this is where the similarity ends,
because instead of following the dimension reduction by an ad-hoc clustering
algorithm like K-means, we maximize the original objective function. The
problem is made feasible by reducing the set of labels over which to maximize,
to a particular subset found by taking into account the specific behavior of
fE[A](e) and fA(e).

While our goal in the context of community detection is to compare fA(e)
to fE[A](e), the results and the algorithm in this section apply in a general
settingwhere A may be any deterministic symmetric matrix. To emphasize
this generality, we write all the results in this section for a generic matrix A
and a generic low-rank matrix B, even though we will later apply them to
the adjacency matrix A and B = E[A].

Let A and B be n × n symmetric matrices with entries bounded by an
absolute constant, and assume B has rank m � n. Assume that fA(e) has
the general form

fA(e) =
κ∑
j=1

gj(hA,j(e)), (3.2.1)

where gj are scalar functions on R and hA,j(e) are quadratic forms of A and
e, namely

hA,j(e) = (e+ sj1)
TA(e+ sj2). (3.2.2)

Here κ is a fixed number, sj1 and sj2 are constant vectors in {−1, 1}n. Note
that by (3.3.1), the number of edges between communities has the form
(3.2.2), and by (3.3.2), the log-likelihood of the degree-corrected block model
QDC is a special case of (3.2.1) with gj(x) = ±x log x, x > 0. We similarly
define fB and hB,j, by replacing A with B in (3.2.1) and (3.2.2). By allowing
e to take values on the cube [−1, 1]n, we can treat h and f as functions over
[−1, 1]n.
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Let UB be the m×n matrix whose rows are the m leading eigenvectors of
B. For any e ∈ [−1, 1]n, UAe and UBe are the coordinates of the projections
of e onto the row spaces of UA and UB, respectively. Since hB,j are quadratic
forms of B and e and B is of rank m, hB,j’s depend on e through UBe only,
and therefore fB also depends on e only through UBe. In a slight abuse
of notation, we also use hB,j and fB to denote the corresponding induced
functions on UB[−1, 1]n.

Let EA and EB denote the subsets of labels e ∈ {−1, 1}n corresponding
to the sets of extreme points of UA[−1, 1]n and UB[−1, 1]n, respectively. The
output of our algorithm is

e∗ = argmax
{
fA(e), e ∈ EA

}
. (3.2.3)

Our goal is to get a bound on the difference between the maxima of fA
and fB that can be expressed through some measure of difference between A
and B themselves. In order to do this, we make the following assumptions.

(1) Functions gj are continuously differentiable and there exists M1 > 0 such
that |g′j(t)| ≤M1 log(t+ 2) for t ≥ 0.

(2) Function fB is convex on UB[−1, 1]n.

Assumption (1) essentially means that Lipschitz constants of gj do not grow
faster than log(t+ 2). The convexity of fB in assumption (2) ensures that fB
achieves its maximum on UBEB. In some cases (see Section 3.3), the convexity
of fB can be replaced with a weaker condition, namely the convexity along a
certain direction.

Let c ∈ {−1, 1}n be the maximizer of fB over the set of label vectors
{−1, 1}n. As a function on UB[−1, 1]n, fB achieves its maximum at UB(c),
which is an extreme point of UB[−1, 1]n by assumption (2). Lemma 3.2.1
provides a upper bound for fA(c)− fA(e∗).

Throughout the paper, we write ‖ · ‖ for the l2 norm (i.e., Euclidean norm
on vectors and the spectral norm on matrices), and ‖ · ‖F for the Frobenius
norm on matrices. Note that for label vectors e, c ∈ {−1, 1}n, ‖e− c‖2 is four
times the number of nodes on which e and c differ.
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Lemma 3.2.1. If assumptions (1) and (2) hold then there exists a constant
M2 > 0 such that

fT (c)− fT (e∗) ≤M2n log(n)
(
‖B‖ · ‖UA − UB‖+ ‖A−B‖

)
, (3.2.4)

where T is either A or B.

The proof of Lemma 3.2.1 is given in Section 3.5. To get a bound on
‖c− e∗‖, we need further assumptions on B and fB.

(3) There exists M3 > 0 such that for any e ∈ {−1, 1}n,

‖c− e‖2 ≤M3

√
n‖UB(c)− UB(e)‖.

(4) There exists M4 > 0 such that for any x ∈ UB[−1, 1]n

fB(UB(c))− fB(x)

‖UB(c)− x‖
≥ max fB −min fB

M4

√
n

.

Assumption (3) rules out the existence of multiple label vectors with the
same projection UB(c). Assumption (4) implies that the slope of the line
connecting two points on the graph of fB at UB(c) and at any x ∈ UB[−1, 1]n

is bounded from below. Thus, if fB(x) is close to fB(UB(c)) then x is also
close to UB(c). These assumptions are satisfied for all functions considered
in Section 3.3.

Theorem 3.2.2. If assumptions (1)–(4) hold, then there exists a constant
M5 such that

1

n
‖e∗ − c‖2 ≤

M5n log n
(
‖B‖ · ‖UA − UB‖+ ‖A−B‖

)
max fB −min fB

.

Theorem 3.2.2 follows directly from Lemma 3.2.1 and Assumptions (3) and
(4). When A is a random matrix, B = E[A], and UA contains the leading
eigenvectors of A, a bound on ‖A−B‖ is readily available by Theorem 2.2.1,
which in turn yields a bound on ‖UA−UB‖ by the Davis-Kahan Theorem (see
Lemma 3.6.2). Under certain conditions, the upper bound in Theorem 3.2.2 is
of order o(n) (see Section 3.3), which shows consistency of e∗ as an estimator
of c (i.e., the fraction of mislabeled nodes goes to 0 as n→∞).
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3.2.1 The choice of low rank approximation

An important step of our method is replacing the “population” space UB
with the “data” approximation UA. As a motivating example, consider the
case of the SBM, with A the network adjacency matrix and B = E[A]. When
the network is relatively dense, eigenvectors of A are good estimates of the
eigenvectors of B = E[A] (see [64, 45] for recent improved error bounds).
Thus, UA can just be taken to be the leading eigenvectors of A. However,
when the network is sparse, this is not necessarily the best choice, since
the leading eigenvectors of A tend to localize around high degree nodes,
while leading eigenvectors of the Laplacian of A tend to localize around small
connected components [52, 13, 70, 39]. This can be avoided by regularizing
the Laplacian in some form; we follow the algorithm of [4]; see also [33, 39]
for theoretical analysis. This works for both dense and sparse networks.

The regularization works as follows. We first add a small constant τ to
each entry of A, and then approximate UB through the Laplacian of A+τ11T

as follows. Let Dτ be the diagonal matrix whose diagonal entries are sums
of entries of columns of A + τ11T , Lτ = D

−1/2
τ (A + τ11T )D

−1/2
τ , and ui be

leading eigenvectors of Lτ , 1 ≤ i ≤ K. Since A+ τ11T = D
1/2
τ LτD

1/2
τ , we set

the appoximation UA the be the basis of the span of {D1/2ui : 1 ≤ i ≤ K}.
Following [4], we set τ = ε(λn/n), where λn is the node expected degree
of the network and ε ∈ (0, 1) is a constant which has little impact on the
performance [4].

3.2.2 Computational complexity

Since we propose an exhaustive search over the projected set of extreme
points, the computational feasibility of this is a concern. A projection of the
unit cube UA[−1, 1]n is the Minkowski sum of n segments in Rm, which, by
[28], implies that it has O(nm−1) vertices of UA[−1, 1]n and they can be found
in O(nm) arithmetic operations. When m = 2, which is the primary focus of
our paper, there exists an algorithm that can find the vertices of UA[−1, 1]n in
O(n log n) arithmetic operations [28]. Informally, the algorithm first sorts the
angles between the x-axis and column vectors of UA and −UA. It then starts
at a vertex of UA[−1, 1]n with the smallest y-coordinate, and based on the
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order of the angles, finds neighbor vertices of UA[−1, 1]n in a counter-clockwise
order. If the angles are distinct (which occurs with high probability), moving
from one vertex to the next causes exactly one entry of the corresponding label
vector to change the sign, and therefore the values of hA,j(e) in (3.2.2) can be
updated efficiently. In particular, if A is the adjacency matrix of a network
with average degree λn, then on avarage, each update takes O(λn) arithmetic
operations, and given UA, it only takes O(nλn log n) arithmetic operations
to find e∗ in (3.2.3). Thus the computational complexity of this search for
two communities is not at all prohibitive – compare to the computational
complexity of finding UA itself, which is at least O(nλn log n) for m = 2.

3.2.3 Extension to more than two communities

Let K be the number of communities and S be an n ×K label matrix: for
1 ≤ i ≤ n, if node i belongs to community k then Sik = 1 and Sil = 0 for
all l 6= k. The numbers of edges between communities defined by (3.1.1) are
entries of STAS. Let B =

∑K
i=1 ρiūiū

T
i define the eigendecomposition of B.

The population version of STAS is

STBS = ST

(
K∑
j=1

ρjūjū
T
j

)
S =

K∑
j=1

ρj
(
ST ūj

) (
ST ūj

)T
.

Let UB be the K × n matrix whose rows are ūTj . Then STBS is a function

of UBS. We approximate UB by UA described in Section 3.2.1. Let S̃ be the
the first K − 1 columns of S. Note that the rows of S sum to one, therefore
UAS can be recovered from UAS̃. Now relax the entries of S̃ to take values in
[0, 1], with the row sums of at most one. For 1 ≤ i ≤ n and 1 ≤ j ≤ K − 1,
denote by Vij the K × (K − 1) matrix such that the j-th column of Vij is the
i-th column of UA and all other columns are zero. Then

UAS̃ =
n∑
i=1

K−1∑
j=1

S̃ijVij.

Since
∑K−1

j=1 S̃ij ≤ 1,
∑K−1

j=1 S̃ijVij is a convex set in RK×(K−1), isomorphic to a

K− 1 simplex. Thus, UAS̃ is a Minkowski sum of n convex sets in RK×(K−1).
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Similar to the case K = 2, we can first find the set of label matrices S̃
corresponding to the extreme points of UAS̃ and then perform the exhaustive
search over that set.

A bound on the number of vertices of UAS̃ and a polynomial algorithm to
find them are derived by [28]. If d = K(K − 1), then the number of vertices
of UAS̃ is at most O

(
n(d−1)K2(d−1)

)
, and they can be found in O

(
ndK(2d−1)

)
arithmetic operations. An implementation of the reverse-search algorithm of
[24] for computing the Minkowski sum of polytopes was presented in [84],
who showed that the algorithm can be parallelized efficiently. We do not
pursue these improvements here, since our main focus in this paper is the
case K = 2.

3.3 Applications to community detection

Here we apply the general results from Section 3.2 to a network adjacency
matrix A, B = E[A], and functions corresponding to several popular commu-
nity detection criteria. Our goal is to show that our maximization method
gets an estimate close to the true label vector c, which is the maximizer of
the corresponding function with B = E[A] plugged in for A. We focus on the
case of two communities and use m = 2 for the low rank approximation.

Recall the quantities O11, O22, and O12 defined in (3.1.1), which are used
by all the criteria we consider. They are quadratic forms of A and e and can
be written as

O11(e) =
1

4
(1 + e)TA(1 + e), O22(e) =

1

4
(1− e)TA(1− e), (3.3.1)

O12(e) =
1

4
(1 + e)TA(1− e),

where 1 is the all-ones vector.
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3.3.1 Maximizing the likelihood of the degree-corrected stochastic
block model

When a network has two communities, (3.1.4) takes the form

QDC(e) = O11 logO11 +O22 logO22 + 2O12 logO12 (3.3.2)

− 2O1 logO1 − 2O2 logO2.

Thus, QDC has the form defined by (3.2.1).

For simplicity, instead of drawing c from a multinomial distribution with
parameter π = (π1, π2), we fix the true label vector by assigning the first
n̄1 = nπ1 nodes to community 1 and the remaining n̄2 = nπ2 nodes to
community 2. Let r be the out-in probability ratio, and

P = λn

(
1 r

r ω

)
(3.3.3)

be the probability matrix. We assume that the node degree parameters θi
are an i.i.d. sample from a distribution with E[θi] = 1 and 1/ξ ≤ θi ≤ ξ for
some constant ξ ≥ 1. The adjacency matrix A is symmetric and for i > j

has independent entries generated by Aij = Bernoulli(θiθjPcicj). Throughout
the paper, we let λn depend on n, and fix r, ω, π, and ξ. Since λn and
the network expected node degree are of the same order, in a slight abuse of
notation, we also denote by λn the network expected node degree.

Theorem 3.3.1 establishes consistency of our method in this setting.

Theorem 3.3.1. Let A be the adjacency matrix generated from the DCSBM
with λn growing at least as log2 n as n → ∞. Let UA be an approximation
of UE[A], and e∗ the label vector defined by (3.2.3) with fA = QDC. Then for
any δ ∈ (0, 1), there exists a constant M = M(r, ω, π, ξ, δ) > 0 such that with
probability at least 1− δ, we have

1

n
‖c− e∗‖2 ≤M log n

(
λ−1/2
n + ‖UA − UE[A]‖

)
.

In particular, if UA is a matrix whose row vectors are leading eignvectors of
A, then the fraction of mis-clustered nodes is bounded by M log n/

√
λn.
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Note that assumption (2) is difficult to check for QDC but a weaker ver-
sion, namely convexity along a certain direction, is sufficient for proving The-
orem 3.3.1. The proof of Theorem 3.3.1 consists of checking assumptions (1),
(3), (4), and a weaker version of assumption (2). For details, see [40].

3.3.2 Maximizing the likelihood of the stochastic block model

While the regular SBM is a special case of DCSBM when θi = 1 for all i, its
likelihood is different and thus maximizing it gives a different solution. With
two communities, (3.1.3) admits the form

QBM(e) = QDC(e) + 2O1 log
O1

n1
+ 2O2 log

O2

n2
,

where n1 = n1(e) and n2 = n2(e) are the numbers of nodes in two communities
and can be written as

n1 =
1

2
(1 + e)T1 =

1

2
(n+ eT1), n2 =

1

2
(1− e)T1 =

1

2
(n− eT1). (3.3.4)

Theorem 3.3.2. Let A be the adjacency matrix generated from the SBM
with λn growing at least as log2 n as n → ∞. Let UA be an approximation
of UE[A], and e∗ the label vector defined by (3.2.3) with fA = QBM . Then for
any δ ∈ (0, 1), there exists a constant M = M(r, ω, π, ξ, δ) > 0 such that with
probability at least 1− n−δ, we have

1

n
‖c− e∗‖2 ≤M log n

(
λ−1/2
n + ‖UA − UE[A]‖

)
.

In particular, if UA is a matrix whose row vectors are leading eignvectors of
A, then the fraction of mis-clustered nodes is bounded by M log n/

√
λn.

Note that QBM does not have the exact form of (3.2.1) but a small mod-
ification shows that Lemma 3.2.1 still holds for QBM . Also, assumption
(2) is difficult to check for QBM but again a weaker condition of convexity
along a certain direction is sufficient for proving Theorem 3.3.2. The proof
of Theorem 3.3.2 consists of showing the analog of Lemma 3.2.1, checking
assumptions (3), (4), and a weaker version of assumption (2). For details,
see [40].
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3.3.3 Maximizing the Newman-Girvan modularity

When a network has two communities, up to a constant factor the modularity
(3.1.2) takes the form

QNG(e) = O11 +O22 −
O2

1 +O2
2

O1 +O2
=

2O1O2

O1 +O2
− 2O12.

Again, QNG does not have the exact form (3.2.1), but with a small modifi-
cation, the argument used for proving Lemma 3.2.1 and Theorem 3.2.2 still
holds for QNG under the regular SBM.

Theorem 3.3.3. Let A be the adjacency matrix generated from the SBM
with λn growing at least as log n as n → ∞. Let UA be an approximation of
UE[A], and e∗ the label vector defined by (3.2.3) with fA = QNG. Then for
any δ ∈ (0, 1), there exists a constant M = M(r, ω, π, ξ, δ) > 0 such that with
probability at least 1− n−δ, we have

1

n
‖c− e∗‖2 ≤M

(
λ−1/2
n + ‖UA − UE[A]‖

)
.

In particular, if UA is a matrix whose row vectors are leading eignvectors of
A, then the fraction of mis-clustered nodes is bounded by M/

√
λn.

It is easy to see that QNG is Lipschitz with respect to O1, O2, and O12,
which is stronger than assumption (1) and ensures the proof of Lemma 3.2.1
goes through. The proof of Theorem 3.3.3 consists of checking assumptions
(2), (3), (4), and the Lipschitz condition for QNG. For details, see [40].

3.3.4 Maximizing the community extraction criterion

Identifying the community V to be extracted with a label vector e, the cri-
terion (3.1.5) can be written as

QEX(e) =
n2

n1
O11 −O12,

where n1, n2 are defined by (3.3.4). Once again QEX does not have the exact
form (3.2.1), but with small modifications of the proof, Lemma 3.2.1 and
Theorem 3.2.2 still hold for QEX .
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Theorem 3.3.4. Let A be the adjacency matrix generated from the SBM
with the probability matrix (3.3.3), ω = r, and λn growing at least as log n as
n→∞. Let UA be an approximation of UE[A], and e∗ the label vector defined
by (3.2.3) with fA = QEX. Then for any δ ∈ (0, 1), there exists a constant
M = M(r, ω, π, ξ, δ) > 0 such that with probability at least 1− n−δ, we have

1

n
‖c− e∗‖2 ≤M

(
λ−1/2
n + ‖UA − UE[A]‖

)
.

In particular, if UA is a matrix whose row vectors are leading eignvectors of
A, then the fraction of mis-clustered nodes is bounded by M/

√
λn.

The proof of Theorem 3.3.4 consists of verifying a version of Lemma 3.2.1
and assumptions (2), (3), and (4), and is included in [40].

3.3.5 An Alternative to Exhaustive Search

While the projected feasible space is much smaller than the original space, we
may still want to avoid the exhaustive search for e∗ in (3.2.3). The geometry
of the projection of the cube can be used to derive an approximation to e∗

that can be computed without a search.

Recall that UE[A] is an 2× n matrix whose rows are the leading eigenvec-
tors of E[A], and UA approximates UE[A]. For SBM, it is easy to see that
UE[A][−1, 1]n, the projection of the unit cube onto the two leading eigenvectors
of UE[A], is a parallelogram with vertices {±UE[A]1,±UE[A]c}, where 1 ∈ Rn is
a vector of all 1s (see Lemma 6 in [40]). We can then expect the projection
UA[−1, 1]n to look somewhat similar – see the illustration in Figure 3.1. Note
that ±UE[A]c are the farthest points from the line connecting the other two
vertices, UE[A]1 and −UE[A]1. Motivated by this observation, we can estimate
c by

ĉ = arg max
{
〈UAe, (UA1)⊥〉 : e ∈ {−1, 1}n

}
(3.3.5)

= sign(uT1 1u2 − uT2 1u1),

where UA = (u1, u2)
T and (UA1)⊥ is the unit vector perpendicular to UA1.

Note that ĉ depends on UA only, not on the objective function, a property it
shares with spectral clustering. However, ĉ provides a deterministic estimate
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Figure 3.1: The projection of the cube [−1, 1]n onto two-dimensional subspace. Blue cor-
responds to the projection onto eigenvectors of A, and red onto the eigenvectors of E[A].
The red contour is the boundary of UE[A][−1, 1]n; the blue dots are the extreme points of
UA[−1, 1]n. Circles (at the corners) are ± projections of the true label vector; squares are ±
projections of the vector of all 1s.

of the labels based on a geometric property of UA, while spectral clustering
uses K-means, which is iterative and typically depends on a random ini-
tialization. Using this geometric approximation allows us to avoid both the
exhaustive search and the iterations and initialization of K-means, although
it may not always be as accurate as the search. When the community de-
tection problem is relatively easy, we expect the geometric approximation to
perform well, but when the problem becomes harder, the exhaustive search
should provide better results. This intuition is confirmed by simulations in
Section 3.4. Theorem 3.3.5 shows that ĉ is a consistent estimator. The proof
is given in Section 3.6.

Theorem 3.3.5. Let A be an adjacency matrix generated from the SBM with
λn growing at least as log n as n→∞. Let UA be an approximation to UE[A].
Then for any δ ∈ (0, 1) there exists M = M(r, ω, π, ξ, δ) > 0 such that with
probability at least 1− n−δ, we have

1

n
‖ĉ− c‖2 ≤M‖UA − UE[A]‖2.

In particular, if UA is a matrix whose row vectors are leading eignvectors of
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A, then the fraction of mis-clustered nodes is bounded by M/λn.

3.4 Numerical comparisons

Here we briefly compare the empirical performance of our extreme point
projection method to several other methods for community detection, both
general (spectral clustering) and those designed specifically for optimizing a
particular community detection criterion, using both simulated networks and
two real network datasets, the political blogs and the dolphins data described
in in Section 3.4.5. Our goal in this comparison is to show that our general
method does as well as the algorithms tailored to a particular criterion, and
thus we are not trading off accuracy for generality.

For the four criteria discussed in Section 3.3, we compare our method
of maximizing the relevant criterion by exhaustive search over the extreme
points of the projection (EP, for extreme points), the approximate version
based on the geometry of the feasible set described in Section 3.3.5 (AEP,
for approximate extreme points), and regularized spectral clustering (SCR)
proposed by [4], which are all general methods. We also include one method
specific to the criterion in each comparison. For the SBM, we compare to
the unconditional pseudo-likelihood (UPL) and for the DCSBM, to the con-
ditional pseudo-likelihood (CPL), two fast and accurate methods developed
specifically for these models by [4]. For the Newman-Girvan modularity, we
compare to the spectral algorithm of [57], which uses the leading eigenvector
of the modularity matrix (see details in Section 3.4.3). Finally, for community
extraction we compare to the algorithm proposed in the original paper [88]
based on greedy label switching, as there are no faster algorithms available.

The simulated networks are generated using the parametrization of [4],
as follows. Throughout this section, the number of nodes in the network is
fixed at n = 300, the number of communities K = 2, and the true label
vector c is fixed. The number of replications for each setting is 100. First,
the node degree parameters θi are drawn independently from the distribution
P(Θ = 0.2) = γ, and P(Θ = 1) = 1 − γ. Setting γ = 0 gives the standard
SBM, and γ > 0 gives the DCSBM, with 1−γ the fraction of hub nodes. The
matrix of edge probabilities P is controlled by two parameters: the out-in
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probability ratio r, which determines how likely edges are formed within and
between communities, and the weight vector w = (w1, w2), which determines
the relative node degrees within communities. Let

P0 =

[
w1 r
r w2

]
.

The difficulty of the problem is largely controlled by r and the overall ex-
pected network degree λ. Thus we rescale P0 to control the expected degree,
setting

P =
λP 0

(n− 1)(πTP 0π)(E[Θ])2
,

where π = n−1(n1, n2), and nk is the number of nodes in community k.
Finally, edges Aij are drawn independently from a Bernoulli distribution with
P(Aij = 1) = θiθjPcicj .

As discussed in Section 3.2.1, a good approximation to the eigenvectors
of E[A] is provided by the eigenvectors of the regularized Laplacian. SCR
uses these eigenvectors u1, u2 as input to K-means (computed here with the
kmeans function in Matlab with 40 random initial starting points). EP and
AEP use {D1/2u1, D

1/2u2} to compute the matrix UA (see Section 3.2.1). To
find extreme points and corresponding label vectors in the second step of EP,
we use the algorithm of [28]. For m = 2, it essentially consists of sorting the
angles of between the column vectors of UA and the x-axis. In case of multiple
maximizers, we break the tie by choosing the label vector whose projection
is the farthest from the line connecting the projections of ±1 (following the
geometric idea of Section 3.3.5). For CPL and UPL, following [4], we initialize
with the output of SCR and set the number of outer iterations to 20.

We measure the accuracy of all methods via the normalized mutual in-
formation (NMI) between the label vector c and its estimate e. NMI takes
values between 0 (random guessing) and 1 (perfect match), and is defined by

[85] as NMI(c, e) = −
∑

i,j Rij log
Rij

Ri+R+j

(∑
ij Rij logRij

)−1

, where R is the

confusion matrix between c and e, which represents a bivariate probability
distribution, and its row and column sums Ri+ and R+j are the corresponding
marginals.
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3.4.1 The degree-corrected stochastic block model
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Figure 3.2: The degree-corrected stochastic block model. Top row: boxplots of NMI between
true and estimated labels. Bottom row: average NMI against the out-in probability ratio r.
In all plots, n1 = n2 = 150, λ = 15, and γ = 0.5.

Figure 3.2 shows the performance of the four methods for fitting the
DCSBM under different parameter settings. We use the notation EP[DC] to
emphasize that EP here is used to maximize the log-likelihood of DCSBM. In
this case, all methods perform similarly, with EP performing the best when
community-level degree weights are different (w = (1, 3)), but just slightly
worse than CPL when w = (1, 1). The AEP is always somewhat worse than
the exact version, especially when w = (1, 3), but overall their results are
comparable.

3.4.2 The stochastic block model

Figure 3.3 shows the performance of the four methods for fitting the regu-
lar SBM (γ = 0). Over all, four methods provide quite similar results, as
we would hope good fitting methods will. The performance of the appoxi-
mate method AEP is very similar to that of EP, and the model-specific UPL
marginally outperforms the three general methods.
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Figure 3.3: The stochastic block model. Top row: boxplots of NMI between true and
estimated labels. Bottom row: average NMI against the out-in probability ratio r. In all
plots, n1 = n2 = 150, λ = 15, and γ = 0.

3.4.3 Newman-Girvan Modularity

The modularity function Q̂NG can be approximately maximized via a fast
spectral algotithm when partitioning into two communities [57]. Let B =
A− P where Pij = didj/m, and write Q̂NG(e) = 1

2me
TBe. The approximate

solution (LES, for leading eigenvector signs) assigns node labels according to
the signs of the corresponding entries of the leading eigenvector of B. For
a fair comparison to other methods relying on eigenvectors, we also use the
regularized A + τ11T instead of A here, since empirically we found that it
slightly improves the performance of LES. Figure 3.4 shows the performance
of AEP, EP[NG], and LES, when the data are generated from a regular block
model (γ = 0). The two extreme point methods EP[NG] and AEP both do
slightly better than LES, especially for the unbalanced case of w = (1, 3),
and there is essentially no difference between EP[NG] and AEP here.
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Figure 3.4: Newman-Girvan modularity. Top row: boxplots of NMI between true and
estimated labels. Bottom row: average NMI against the out-in probability ratio r. In all
plots, n1 = n2 = 150, λ = 15, and γ = 0.

3.4.4 Community Extraction Criterion

Following the original extraction paper of [88], we generate a community with
background from the regular block model with K = 2, n1 = 60, n2 = 240,
and the probability matrix proportional to

P0 =

(
0.4 0.1
0.1 0.1

)
.

Thus, nodes within the first community are tightly connected, while the rest
of the nodes have equally weak links with all other nodes and represent the
background. We consider four values for the average expected node degree,
15, 20, 25, and 30. Figure 3.5 shows that EP[EX] performs better than SCR
and AEP, but somewhat worse than the greedy label-switching tabu search
used in the original paper for maximizing the community extraction criterion
(TS). However, the tabu search is very computationally intensive and only
feasible up to perhaps a thousand nodes, so for larger networks it is not an
option at all, and no other method has been previously proposed for this
problem. The AEP method, which does not agree with AE as well as in the
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other cases, probably suffers from the inherent assymetry of the extraction
problem.
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Figure 3.5: Community extraction. The boxplots of NMI between true and estimated labels.
In all plots, n1 = 60, n2 = 240, and γ = 0.

3.4.5 Real-world Network Data

The first network we test our methods on, assembled by [1], consists of blogs
about US politics and hyperlinks between blogs. Each blog has been man-
ually labeled as either liberal or conservative, which we use as the ground
truth. Following [34], and [89], we ignore directions of the hyperlinks and
only examine the largest connected component of this network, which has
1222 nodes and 16,714 edges, with the average degree of approximately 27.
Table 3.1 and Figure 3.6 show the performance of different methods. While
AEP, EP[DC], and CPL give reasonable results, SCR, UPL, and EP[BM]
clearly miscluster the nodes. This is consistent with previous analyses which
showed that the degree correction has to be used for this network to achieve
the correct partition, because of the presense of hub nodes.

The second network we study represents social ties between 62 bottlenose
dolphins living in Doubtful Sound, New Zealand [48, 47]. At some point
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(a) True Labels.

(b) UPL. (c) CPL. (d) SCR.

(e) EP(BM). (f) EP(DC). (g) AEP.

Figure 3.6: The network of political blogs. Node diameter is proportional to the logarithm
of its degree and the colors represent community labels.
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Table 3.1: The NMI between true and estimated labels for real-world networks.

Method SCR AEP EP[BM] EP[DC] UPL CPL

Blogs 0.290 0.674 0.278 0.731 0.001 0.725

Dolphins 0.889 0.814 0.889 0.889 0.889 0.889

during the study, one well-connected dolphin (SN100) left the group, and the
group split into two separate parts, which we use as the ground truth in this
example. Table 3.1 and Figure 3.7 show the performance of different methods.
In Figure 3.7, node shapes represent the actual split, while the colors represent
the estimated label. The star-shaped node is the dolphin SN100 that left the
group. Excepting that dolphin, SCR, EP[BM], EP[DC], UPL, and CPL all
miscluster one node, while AEP misclusters two nodes. Since this small
network can be well modelled by the SBM, there is no difference between
DCSBM and SBM based methods, and all methods perform well.
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(a) Output of AEP.
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Figure 3.7: The network of 62 bottlenose dolphins. Node shapes represent the split after
the dolphin SN100 (represented by the star) left the group. Node colors represent their
estimated labels.
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3.5 Proof of results in Section 2

The following Lemma bounds the Lipschitz constants of hB,j and fB on
UB[−1, 1]n.

Lemma 3.5.1. Assume that Assumption (1) holds. For any j ≤ κ (see
3.2.1), and x, y ∈ UB[−1, 1]n, we have∣∣hB,j(x)− hB,j(y)

∣∣ ≤ 4
√
n‖B‖ · ‖x− y‖,∣∣fB(x)− fB(y)

∣∣ ≤ M
√
n log(n)‖B‖ · ‖x− y‖,

where M is a constant independent of n.

Proof of Lemma 3.5.1. Let e, s ∈ [−1, 1]n such that x = UBe, y = UBs and
denote L =

∣∣hB,j(x)− hB,j(y)
∣∣. Then

L =
∣∣(e+ sj1)

TB(e+ sj2)− (s+ sj1)
TB(s+ sj2)

∣∣
=
∣∣eTB(e− s) + (e− s)TBs+ (sj2 + sj1)

TB(e− s)
∣∣

≤ 4
√
n‖B(e− s)‖.

Let B =
∑m

i=1 ρiuiu
T
i be the eigendecomposition of B. Then

‖B(e− s)‖2 =
∥∥∥ m∑
i=1

ρiuiu
T
i (e− s)

∥∥∥2

=
∥∥∥ m∑
i=1

ρi(xi − yi)ui
∥∥∥2

=
m∑
i=1

ρ2
i (xi − yi)2 ≤ ‖B‖2

m∑
i=1

(xi − yi)2 = ‖B‖2 · ‖x− y‖2.

Therefore L ≤ 4
√
n‖B‖ · ‖x− y‖. Since hB,j are quadratic, they are of order

O(n2). Hence by Assumption (1), the Lipschitz constants of gj are of order
log(n). Therefore∣∣fB(x)− fB(y)

∣∣ ≤ 4
√
n log(n)‖B‖ · ‖x− y‖,

which completes the proof.

In the following proofs we use M to denote a positive constant independent
of n the value of which may change from line to line.
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Proof of Lemma 3.2.1. Since ‖e+ sj1‖ ≤ 2
√
n and ‖e+ sj2‖ ≤ 2

√
n,

|hA,j(e)− hB,j(e)| = |(e+ sj1)
T (A−B)(e+ sj2)|

≤ 4n‖A−B‖.
Since hA,j and hB,j are of order O(n2), g′j are bounded by log(n). Together
with assumption (1) it implies that there exists M > 0 such that

|fA(e)− fB(e)| ≤Mn log(n)‖A−B‖. (3.5.1)

Let ê = arg max{fB(e), e ∈ EA}. Then fA(e∗) ≥ fA(ê) and by (3.5.1) we get

fB(ê)− fB(e∗) ≤ fB(ê)− fA(ê) + fA(e∗)− fB(e∗) (3.5.2)

≤ Mn log(n)‖A−B‖.
Denote by conv(S) the convex hull of a set S. Then UAc ∈ conv(UAEA) and
therefore, there exists ηe ≥ 0,

∑
e∈EA ηe = 1 such that

UAc =
∑
e∈EA

ηeUA(e) = UA

(∑
e∈EA

ηee
)
.

Hence

dist
(
UBc, conv(UBEA)

)
≤
∥∥∥UBc− UB(∑

e∈EA

ηee
)∥∥∥ (3.5.3)

=
∥∥∥(UB − UA)c+ (UA − UB)

∑
e∈EA

ηee
∥∥∥

≤ 2
√
n ‖UA − UB‖.

Let y ∈ conv(UBEA) be the closest point from conv(UBEA) to UBc, i.e.

‖UBc− y‖ = dist
(
UBc, conv(UBEA)

)
.

By 3.5.3 and Lemma 3.5.1, we have

fB(UBc)− fB(y) ≤Mn log(n)‖B‖ · ‖UA − UB‖. (3.5.4)

The convexity of fB implies that fB(y) ≤ fB(UB ê), and in turn,

fB(UBc)− fB(UB ê) ≤Mn log(n)‖B‖ · ‖UA − UB‖. (3.5.5)

Note that fB(UBe) = fB(e) for every e ∈ [−1, 1]n. Adding (3.5.2) and (3.5.5),
we get (3.2.4) for T = B. The case T = A then follows from (3.5.1) because
replacing B with A induces an error which is not greater than the upper
bound of (3.2.4) for T = B.
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3.6 Proof of Theorem 6

We first present the closed form of eigenvalues and eigenvectors of E[A] under
the regular block models.

Lemma 3.6.1. Under the SBM, the nonzero eigenvalues ρi and corresponding
eigenvectors ūi of E[A] have the following form. For i = 1, 2,

ρi =
λn
2

[
(π1 + π2ω) + (−1)i−1

√
(π1 + π2ω)2 − 4π1π2(ω − r2)

]
,

ūi =
1√

n(π1r2
i + π2)

(ri, ri, ..., ri, 1, 1, ..., 1)T , where

ri =
2π2r

(π2ω − π1) + (−1)i
√

(π1 + π2ω)2 − 4π1π2(ω − r2)
.

The first n̄1 = nπ1 entries of ūi equal ri
(
n(π1r

2
i + π2)

)−1/2
and the last n̄2 =

nπ2 entries of ūi equal
(
n(π1r

2
i + π2)

)−1/2
.

Proof of Lemma 3.6.1. Under the SBM E[A] is a two-by-two block matrix
with equal entries within each block. It is easy to verify directly that E[A]ūi =
ρiūi for i = 1, 2.

Lemma 3.6.2 bounds the difference between the eigenvalues and eigenvec-
tors of A and those of E[A] under the SBM. It also provides a way to simplify
the general upper bound of Theorem 3.2.2.

Lemma 3.6.2. Under the SBM, let UA and UE[A] be 2 × n matrices whose
rows are the leading eigenvectors of A and E[A], respectively. For any δ > 0,
there exists a constant M = M(r, ω, π, δ) > 0 such that if λn > M log(n)
then with probability at least 1− n−δ, we have

‖A− E[A]‖ ≤M
√
λn, (3.6.1)

‖UA − UE[A]‖ ≤
M√
λn
. (3.6.2)
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Proof of Lemma 3.6.2. Inequality (3.6.1) follows directly from Theorem 2.2.1.
Inequality (3.6.2) is a consequence of (3.6.1) and the Davis-Kahan theorem
(see Theorem VII.3.2 of [8]) as follows. By Lemma 3.6.1, the nonzero eigen-
values ρ1 and ρ2 of Ā are of order λn. Let

S =
[
ρ2 −M

√
λn, ρ1 +M

√
λn

]
.

Then ρ1, ρ2 ∈ S and the gap between S and zero is of order λn. Let P̄ be
the projector onto the subspace spanned by two leading eigenvectors of E[A].
Since λn grows faster than ‖A−E[A]‖ by 3.6.1, only two leading eigenvalues
of A belong to S. Let P be the projector onto the subspace spanned by two
leading eigenvectors of A. By the Davis-Kahan theorem,

‖UA − UE[A]‖ = ‖P̄ − P‖ ≤ 2‖A− E[A]‖
λn

≤ 2M√
λn
,

which completes the proof.

Before proving Theorem 3.3.5 we need to establish the following lemma.

Lemma 3.6.3. Let x, y, x̄, and ȳ be unit vectors in Rn such that 〈x, y〉 =
〈x̄, ȳ〉 = 0. Let P and P̄ be the orthogonal projections on the subspaces
spanned by {x, y} and {x̄, ȳ} respectively. If ‖P − P̄‖ ≤ ε then there exists
an orthogonal matrix K of size 2× 2 such that ||(x, y)K − (x̄, ȳ)||F ≤ 9ε.

Proof of Lemma 3.6.3. Let x0 = Px̄ and y0 = P ȳ. Since ‖P − P̄‖ ≤ ε, it
follows that ‖x̄− x0‖ ≤ ε and ‖ȳ − y0‖ ≤ ε. Let x⊥ = x0

‖x0‖ , then

‖x̄− x⊥‖ ≤ ‖x̄− x0‖+ ‖x0 − x⊥‖ ≤ ε+ |1− ‖x0‖| ≤ 2ε.

Also 〈x⊥, y0〉 = 〈x⊥, y0 − ȳ〉+ 〈x⊥ − x̄, ȳ〉 implies that |〈x⊥, y0〉| ≤ 3ε. Define
z = y0 − 〈y0, x

⊥〉x⊥. Then 〈z, x⊥〉 = 0, ‖ȳ − z‖ ≤ ‖ȳ − y0‖ + ‖y0 − z‖ ≤ 4ε,
and |1− ‖z‖| = |‖ȳ‖ − ‖z‖| ≤ 4ε. Let y⊥ = 1

‖z‖z, then

‖ȳ − y⊥‖ ≤ ‖ȳ − z‖+ ‖z − y⊥‖ ≤ 4ε+ |1− ‖z‖| ≤ 8ε.

Therefore ‖(x̄, ȳ)− (x⊥, y⊥)‖F ≤ 9ε. Finally, let K = (x, y)T (x⊥, y⊥).
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Proof of Theorem 3.3.5. Denote ε = ‖UA − UE[A]‖, U = (u1, u2)
T = UA, and

Ū = (ū1, ū2)
T = UE[A]. We first show that there exists a constant M > 0 such

that with probability at least 1− δ,

min
∥∥∥(uT1 1u2 − uT2 1u1)± (ūT1 1ū2 − ūT2 1ū1)

∥∥∥ ≤Mε
√
n. (3.6.3)

Let R = ( 0 −1
1 0 ) be the π/2-rotation on R2. Then

uT1 1u2 − uT2 1u1 = UTRU1, ūT1 1ū2 − ūT2 1ū1 = ŪTRŪ1.

By Lemma 3.6.2 and Lemma 3.6.3, there exists an orthogonal matrix K such
that if E = (E1, E2) = UT − ŪTK then ||E||F ≤ 9ε. By replacing UT with
E + ŪTK, the left hand side of (3.6.3) becomes

min
∥∥∥(E + ŪTK

)
R
(
E + ŪTK

)T
1± ŪTRŪ1

∥∥∥ .
Note that KTRK = R if K is a rotation, and KTRK = −R if K is a reflection.
Therefore, it is enough to show that∥∥ŪTKRET1 + ERKT Ū1 + ERET1

∥∥ ≤Mε
√
n.

Note that |ET
i 1| ≤

√
n‖Ei‖ ≤ 9ε

√
n and ‖E‖F ≤ 9ε ≤ 18, so

‖ERET1‖ = ‖ET
2 1E1 − ET

1 1E2‖ ≤ 182ε
√
n.

From Lemma 3.6.1 we see that Ū1 =
√
n(s1, s2)

T for some s1 and s2 not
depending on n. It follows that

‖ERKT Ū1‖ =
√
n‖(E2 − E1)KT (s1, s2)

T‖ ≤Mε
√
n

for some M > 0. Analogously,

‖ŪTKRET1‖ = ‖ŪTK(−ET
2 1, E

T
1 1)T‖ ≤Mε

√
n,

and (3.6.3) follows. By Lemma 3.6.1, we have

ŪTRŪ1 = α(π2, π2, ..., π2,−π1, ...,−π1)
T ,

where α does not depend on n; the first n1 entries of ŪTRŪ1 equal απ2 and
the last n2 entries of ŪTRŪ1 equal απ1. For simplicity, assume that in (3.6.3)
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the minimum is when the sign is negative (because ĉ is unique up to a factor
of −1). If node i is mis-clustered by ĉ then

|(UTRU1)i − (ŪTRŪ1)i| ≥ min
i
|(ŪTRŪ1)i| =: η.

Let k be the number of mis-clustered nodes, then by (3.6.3), η
√
k ≤Mε

√
n.

Therefore the fraction of mis-clustered nodes, k/n, is of order ε2. If UA is
formed by the leading eigenvectors of A, then it remains to use inequality
(3.6.2) of Lemma 3.6.2.
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Chapter 4

Estimating the number of communities in
networks by spectral methods

4.1 Introduction

A large number of methods have been proposed for finding the underlying
community structure [51, 58, 2, 10, 72, 13, 5, 36, 82, 56, 73]. Most of these
methods require the number of communities K as input, but in practice K
is often unknown. To address this problem, a few likelihood-based methods
have been proposed to estimate K [18, 37, 65, 74, 83], under either the SBM
or the DCSBM. These methods use BIC-type criteria for choosing the num-
ber of communities from a set of possible values, which requires computing
the likelihood, done using either MCMC or the variational method, which
are both computationally very challenging for large networks. A different
approach based on the distribution of leading eigenvalues of an appropriately
scaled version of the adjacency matrix was proposed by [9, 43]. Under the
SBM, distributions of the leading eigenvalues converge to the Tracy-Widom
distribution; this fact is used to determine K through a sequence of hypothe-
sis tests. Since the rate of convergence is slow for relatively sparse networks,
a bootstrap correction procedure was employed, which also leads to a high
computational cost. A cross-validation approach was proposed by [14], which
requires estimating communities on many random network splits, and was
shown to be consistent under the SBM and the DCSBM.

To the best of our knowledge, all existing methods are either restricted
to a specific model or computationally intensive. In this chapter we pro-
pose a fast and reliable method that uses spectral properties of either the
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Bethe Hessian or the non-backtracking matrices. Under a simple SBM in
the sparse regime, these matrices have been used to recover the community
structure [36, 73, 12]; it was also observed that the informative eigenvalues
(i.e., those corresponding to eigenvectors which encode the community struc-
ture) of these matrices are well separated from the bulk. We will show that
the number of “informative” (to be defined explicitly below) eigenvalues of
these matrices directly estimates the number of communities, and the esti-
mate performs well under different network models and over a wide range of
parameters, outperforming existing methods that are designed specifically for
finding K under either SBM or DCSBM. This method is also very computa-
tionally efficient, since all it requires is computing a few leading eigenvalues
of just one typically sparse matrix.

4.2 Preliminaries

Recall A is the n × n symmetric adjacency matrix. Let di =
∑n

j=1Aij be
the degree of node i. Treating A as a random matrix, we denote by Ā the
expectation of A, and by λn the average of expected node degrees, λn =
1
n

∑n
i=1 E di. For a symmetric matrix X, let ρk(X) the k-th largest eigenvalue

of X. We say that a property holds with high probability if the probability
that it occurs tends to one as n → ∞. Next, we recall the definitions of
the non-backtracking and the Bethe Hessian matrices which we will use to
estimate the number of communities.

4.2.1 The non-backtracking matrix

Let m be the number of edges in the undirected network. To construct the
non-backtracking matrix B, we represent the edge between node i and node
j by two directed edges, one from i to j and the other from j to i. The
2m× 2m matrix B, indexed by these directed edges, is defined by

Bi→j,k→l =

{
1 if j = k and i 6= l
0 otherwise.
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It is well-known [6][36] that the spectrum of B consists of ±1 and eigenvalues
of an 2n× 2n matrix

B̃ =

(
0n D − In
−In A

)
.

Here 0n is the n× n matrix of all zeros, In is the n× n identity matrix, and
D = diag(di) is n×n diagonal matrix with degrees di on the diagonal. It was
observed in [36] that if a network has K communities then the first K largest
eigenvalues in magnitude of B̃ are real-valued and well separated from the
bulk, which is contained in a circle of radius ‖B̃‖1/2. We will refer to these
K eigenvalues as informative eigenvalues of B̃. It was also shown in [36] that
the spectral norm of the non-backtracking matrix is approximated by

d̃ =
( n∑

i=1

di

)−1( n∑
i=1

d2
i

)
− 1. (4.2.1)

For the special case of the SBM, [12] proved that the leading eigenvalues of
B̃ concentrate around non-zero eigenvalues of Ā and the bulk is contained in
a circle of radius ‖B̃‖1/2, and used the corresponding leading eigenvectors to
recover the community labels.

4.2.2 The Bethe Hessian matrix

The Bethe Hessian matrix is defined as

H(r) = (r2 − 1)I − rA+D, (4.2.2)

where r ∈ R is a parameter. In graph theory, the determinant of H(r) is the
Ihara-Bass formula for the graph zeta function. It vanishes if r is an eigen-
value of the non-backtracking matrix [30, 7, 6]. Saade et al [73] used the Bethe
Hessian for community detection. Under the SBM, they argued that the best
choice of r is |rc| =

√
λn, depending on whether the network is assortative or

disassortative; for a more general network, their choice of r is |rc| = ‖B̃‖1/2.
For assortative sparse networks with K communities and bounded λn, they
showed that the K eigenvalues of H(rc) whose corresponding eigenvectors
encode the community structure are negative, while the bulk of H(rc) are
positive. Thus, the number of negative eigenvalues of H(rc) corresponds to
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the number of communities. We will refer to these negative eigenvalues of
H(rc) as informative eigenvalues.

4.3 Spectral estimates of the number of communities

The spectral properties of the non-backtracking and the Bethe Hessian ma-
trices lead to natural estimates of the number of communities, but they have
not been previously considered specifically for this purpose. We now propose
two methods (one for each matrix) to determine the number of communities
K.

4.3.1 Estimating K from the non-backtracking matrix

Under the SBM, the informative eigenvalues of the non-backtracking matrix
are real-valued and separated from the bulk of radius ‖B̃‖1/2 [12]. Therefore
we can estimate K by counting the number of real eigenvalues of B̃ that
are at least ‖B̃‖1/2. We denote this method by NB (for non-backtracking).
As shown by numerical results in Section 4.5, this estimate of K also works
under the DCSBM. When the network is balanced (communities have sim-
ilar sizes and edge densities), NB performs well; however, the accuracy of
NB drops if the communities are unbalanced in either size or edge density.
Computationally, since B̃ is not symmetric, computing the eigenvalues of B̃
is more demanding for large networks. Thus we focus instead on the Bethe
Hessian matrix, which is symmetric.

4.3.2 Estimating K from the Bethe Hessian matrix

The number of communities corresponds to the number of negative eigenval-
ues of H(r); the challenge is in choosing an appropriate value of r.

It was argued in [73] that when r = ‖B̃‖1/2, the informative eigenvalues
of H(r) are negative, while the bulk are positive; by [36], ‖B̃‖ can be ap-
proximated by d̃ from (4.2.1). Following these results, we first choose r to be
rm = d̃1/2 and denote the corresponding method by BHm. Simulations show
that using r = rm and r = ‖B̃‖1/2 produce similar results; we choose r = rm
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because computing rm is less demanding than computing ‖B̃‖1/2.

Another choice of r is ra =
√

(d1 + · · ·+ dn)/n, which was proposed in [73]
for recovering the community structure under the SBM; we denote the corre-
sponding method by BHa. We have found that when the network is balanced,
NB, BHm, and BHa perform similarly; when the network is unbalanced, BHa
produces better results.

Both BHm and BHa tend to underestimate the number of communities,
especially when the network is unbalanced. In that setting, some informative
eigenvalues of H(r) become positive, although they may still be far from the
bulk. Based on this observation, we correct BHm and BHa by also using
positive eigenvalues of H(r) that are much close to zero than to the bulk.
Namely, we sort eigenvalues of H(r) in non-increasing order ρ1 ≥ ρ2 ≥ · · · ≥
ρn, and estimate K by

K̂ = max{k : tρn−k+1 ≤ ρn−k}, (4.3.1)

where t > 0 is a tuning parameter. Note that if ρn−k0+1 < 0 then K̂ ≥ k0

because ρn−k0+1 ≤ ρn−k0, therefore the number of negative eigenvalues of H(r)
is always upper bounded by K̂. Heuristically, if the bulk follows the semi-
circular law and ρn−k ≥ 0 is given, then the probability that 0 ≤ ρn−k+1 ≤
ρn−k/t is less than 1/t. When 1/t is sufficiently small, we may suspect that
ρn−k+1 is an informative eigenvalue. In practice we find that t ∈ [4, 6] works
well; we will set t = 5 for all computations in this paper. Simulations show
that K̂ performs well, especially for unbalanced networks. The resulting
methods are denoted by BHmc and BHac, respectively. We will also use BH
to refer to all the methods that use the Bethe Hessian matrix.

4.4 Consistency

The consistency of the non-backtracking matrix based method (NB) for esti-
mating the number of communities in the sparse regime under the stochastic
block model follows directly from Theorem 4 in [12]. We state this consis-
tency result here for completeness. The proof given in [12] is combinatorial in
nature and this approach unfortunately does not extend to any other regimes
or the Bethe-Hessian matrix.
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Theorem 4.4.1 (Consistency in the sparse regime). Consider a stochastic
block model with π = (π1, ..., πK) and P = (Pkl) = 1

nP
(0) for some fixed

K ×K symmetric matrix P (0). Assume that (diag(π)P )r has positive entries
for some positive integer r. Further, assume that E di = λn > 1 for all i, and
all K non-zero eigenvalues of P are greater than

√
λn. Then with probability

tending to one as n → ∞, the number of real eigenvalues of B̃ that are at
least ‖B̃‖1/2 is equal to K.

To better understand the condition on the eigenvalues of P , consider the
simple model G(n, an ,

b
n). This model assumes that there are two communities

of equal sizes and nodes are connected with probability a/n if they are in the
same community, and b/n otherwise. Since the two non-zero eigenvalues of
P are (a+ b)/2 and (a− b)/2, the condition on eigenvalues of P is (a− b)2 >
2(a+ b).

For the Bethe Hessian, no formal results have been previously established
that can be applied directly. We will show that both BHm and BHa methods
produce consistent estimator of K = rank(Ā) in the dense regime when λn
grows linearly in n, under the inhomogeneous Erdos-Renyi model with edge
probability matrix Ā (see [11]), which includes as a special case the stochastic
block model with K communities. The inhomogeneous Erdos-Renyi model
assumes that edges are drawn independently between nodes i and j with
probabilities Āij. Let

d0 = minE di, d = max
i,j

nĀij.

It is clear that d0 ≤ λn ≤ d. For the simple model G(n, an ,
b
b) we have

d0 = λn = d = (a+ b)/2.

Theorem 4.4.2 (Consistency in the dense regime). Consider an inhomoge-
neous Erdos-Renyi model with rank(Ā) = K such that

ρK(Ā) ≥ 5d/
√
d0, and d0 ≥ (1 + ε)d(1− d/n)

for some constant ε > 0. Then with high probability, the Bethe Hessian H(r)
with r = rm or r = ra has exactly K negative eigenvalues.
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Proof. Let us first rewrite the Bethe Hessian as

H(r) = (r2 − 1)I − r(A− Ā) +D − rĀ =: Ĥ(r)− rĀ.

We will show that eigenvalues of Ĥ(r) are non-negative and are of smaller or-
der than non-zero eigenvalues of rĀ. This in turn implies that K eigenvalues
of H(r) are negative while the rest are positive.

To bound A− Ā, we use the concentration result in [81]: with high prob-
ability,

‖A− Ā‖ ≤ 2
√
d(1− d/n) + C0n

1/4 log n, (4.4.1)

for some constant C0 > 0. To bound the node degrees, we use the standard
Bernstein’s inequality: there exists a constant C1 > 0 such that, with high
probability,

‖D − ED‖ ≤ C1

√
d log n, |r2 − λn| ≤ C1

√
d log n. (4.4.2)

For square matrices X, Y we use X � Y to signify that X − Y is semi-
positive definite. Since ED � d0I, from (4.4.1), (4.4.2), and the assumption
that d0 ≥ (1 + ε)d(1− d/n), we obtain

Ĥ(r) �
[
d0 + λn − 2

√
λnd(1− d/n) + o(d)

]
I � 0. (4.4.3)

For a subspace U ⊆ Rn, we denote by dim(U) the dimension of U , and by U⊥

the orthogonal complement of U . Let col(Ā) be the column space of Ā. Using
the Courant min-max principle (see e.g. [8, Corollary III.1.2]) and (4.4.3),
we have

ρn−K(H(r)) = max
dim(U)=n−K

min
x∈U,‖x‖=1

〈H(r)x, x〉 ≥ min
x∈col(Ā)⊥,‖x‖=1

〈H(r)x, x〉 ≥ 0.

Therefore the n−K largest eigenvalues of H(r) are non-negative.

It remains to show that the K smallest eigenvalues of H(r) are negative.
From (4.4.1), (4.4.2), and the triangle inequality, we obtain

‖Ĥ(r)‖ ≤ λn + d+ 2d
√

1− d/n+ o(d) < 4d. (4.4.4)

On the other hand, from (4.4.2) and the assumption ρK(Ā) ≥ 5d/
√
d0, we

have
ρK(rĀ) ≥

[
1 + o(1)

]
λ1/2
n ρK(Ā) ≥ 4d. (4.4.5)
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Combining (4.4.4), (4.4.5), and using the Courant min-max principle again
implies that K smallest eigenvalues of H(r) are negative, which completes
the proof.

More work is needed on the case of “intermediate” rate of λn not covered by
either of the theorems, which will require fundamentally different approaches.
This is a topic for future work.

4.5 Numerical results

Here we empirically compare the accuracy in estimating the number of com-
munities using the non-backtracking matrix (NB), and all the versions based
on the Bethe Hessian matrix (BHm, BHmc, BHa, and BHac), described in
Sections 4.3.1 and4.3.2. We compare them with two other methods proposed
specifically for estimating the number of communities in networks: the net-
work cross-validation method (NCV) proposed by [14] and a likelihood-based
BIC-type method (VLH, for variational likelihood) proposed by [83]. We use
NCVbm and NCVdc to denote the versions of the NCV method specifically
designed for the SBM and the DCSBM, respectively; VLH is only designed
to work under the SBM, so it is not included in the DCSBM comparisons. To
make comparisons with VLH computationally feasible, instead of using the
variational method to estimate the posterior of the community labels as done
in [83], we estimate the node labels by the pseudo-likelihood method proposed
by [5] and then compute the posterior following [83]. In small-scale simula-
tions where both approaches are computationally feasible (results omitted)
we found that substituting pseudo-likelihood for the variational method has
very little effect on the estimate of K. The tuning parameter of VLH is set to
one (following [83]). We do not include the method of [9] in these comparisons
due to its high computational cost.

4.5.1 Synthetic networks

To generate test case networks, we fix the label vector c ∈ {1, ..., K}n so that
ci = k if nπk−1 + 1 ≤ i < nπk, where π0 = 0. The label matrix Z ∈ Rn×K

encodes c by representing each node with a row of K elements, exactly one
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of which is equal to 1 and the rest are equal to 0: Zik = 1(ci = k). Let
P̃ be an K × K matrix with diagonal w = (w1, ..., wK) and off-diagonal
entries β, and M = ZPZT . Under the stochastic block model, we generate
A according to an edge probability matrix Ā = EA proportional to M ; the
average degree λn is controlled by appropriately rescaling M . The parameter
w controls the relative edge densities within communities, and β controls the
out-in probability ratio. Smaller values of β and larger values of λn make
the problem easier. For the DCSBM, we generate the degree parameters θi
from a distribution that takes two values, P(θ = 1) = 1 − γ and P(θ =
0.2) = γ. Parameter γ controls the fraction of “hubs”, the high-degree nodes
in the network, and setting γ = 0 gives back the regular SBM. Given θ =
(θi, ..., θn), the edges are generated independently with probabilities Ā = EA
proportional to diag(θ)Mdiag(θ), where diag(θ) is a diagonal matrix with θi’s
on the diagonal.

The number of nodes is set to n = 1200, the out-in probability ratio
β = 0.2, and we vary the average degree λn, weights w, and community
sizes. We consider three different values for the number of communities,
K = 2, 4, and 6. For each setting, we generate 200 replications of the
network and record the accuracy, defined as the fraction of the times a method
correctly estimates the true number of communities K. The methods NCV
and VLH require a pre-specified set of K values to choose from; we use the set
{1, 2, ..., 8} for synthetic networks and {1, 2, ..., 15} for real-world networks.

We start by varying the average degree λn, which controls the overall
difficulty of the problem, and keeping all community sizes equal. Figure 4.1
shows the performance of all methods when all edge density weights are also
equal, wi = 1 for all 1 ≤ i ≤ K; in Figure 4.2, w = (1, 2) for K = 2,
w = (1, 1, 2, 3) for K = 4, and w = (1, 1, 1, 1, 2, 3) for K = 6, resulting in
communities with varying edge density. In all figures, the top row corresponds
to the SBM (γ = 0) and the bottom row to the DCSBM (γ = 0.9, which
means that 10% of nodes are hubs).

In general, we see that when everything is balanced (Figure 4.1), all spec-
tral methods perform fairly similarly and outperform both cross-validation
(NCV) and the BIC-type criterion (VLH). Also, for larger K and especially
under DCSBM, we can see that the corrected versions are slightly better than
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the uncorrected ones, and the best Bethe Hessian based methods are better
than the non-backtracking estimator.

For networks with equal size communities but different edge densities
within communities (Figure 4.2), cross-validation performs poorly, but VLH
relatively improves. For larger K the spectral methods are also distinguish-
able, with all BH methods dominating NB, and corrected versions providing
improvement. Overall, BHac is the best spectral method, comparable to VLH
for the SBM, and best overall for DCSBM where VLH is not applicable.
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Figure 4.1: The accuracy of estimating K as a function of the average degree. All commu-
nities have equal sizes, and wi = 1 for all 1 ≤ i ≤ K.

Communities of different sizes present a challenge for community detec-
tion methods in general, and the presence of relatively small communities
makes the problem of estimating K difficult. To test the sensitivity of all
the methods to this factor, we change the proportions of nodes falling into
each community setting π1 = r/K, πK = (2 − r)/K, and πi = 1/K for
2 ≤ i ≤ K − 1, and varying r in the range [0.2, 1]. As r increases, the
community sizes become more similar, and are all equal when r = 1. Figure
4.3 shows the performance of all methods as a function of r. The top row
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Figure 4.2: The accuracy of estimating K as a function of the average degree. All communi-
ties have equal sizes; w = (1, 2) for K = 2, w = (1, 1, 2, 3) for K = 4, and w = (1, 1, 1, 1, 2, 3)
for K = 6.

corresponds to the SBM (γ = 0), the bottom row to the DCSBM (γ = 0.9),
and the within-community edge density parameters wi = 1 for all 1 ≤ i ≤ K.
Here we see that VLH is less sensitive to r than the spectral methods, but
unfortunately it is not available under the DCSBM. Cross-validation is still
dominated by spectral methods except for very small values of r, where all
methods perform poorly. The corrections still provide a slight improvement
for Bethe Hessian based methods, although all spectral methods perform
fairly similarly in this case.

4.5.2 Real world networks

Finally, we test the proposed methods on several popular network datasets.
In the college football network [26], nodes represent 115 US college football
teams, and edges represent the games played in 2000. Communities are the
12 conferences that the teams belong to. The political books network [57],
compiled around 2004, consists of 105 books about US politics; an edge is
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Figure 4.3: The accuracy of estimating K as a function of the community-size ratio r:
π1 = r/K, πK = (2 − r)/K, and πi = 1/K for 2 ≤ i ≤ K − 1. In all plots, wi = 1 for
1 ≤ i ≤ K; the average degrees are λn = 10 (left), 15 (middle), and 20 (right).

“frequently purchased together” on Amazon. Communities are “conserva-
tive”, “liberal”, or “neutral”, labelled manually based on contents. The dol-
phin network [48] is a social network of 62 dolphins, with edges representing
social interactions, and communities based on a split which happened after
one dolphin left the group. Similarly, the karate club network [86] is a social
network of 34 members of a karate club, with edges representing friendships,
and communities based on a split following a dispute. Finally, the political
blog network [1], collected around 2004, consists of blogs about US politics,
with edges representing web links, and communities are manually assigned
as “conservative” or “liberal”. For this dataset, as is commonly done in the
literature, we only consider its largest connected component of 1222 nodes.

Table 4.1 shows the estimated number of communities in these networks.
All spectral methods estimate the correct number of communities for dol-
phins and the karate club, and do a reasonable job for the college football
and political books data. For political blogs, all methods but NCV and VLH
estimate a much larger number of communities, suggesting the estimates cor-
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respond to smaller sub-communities with more uniform degree distributions
that have been perviously detected by other authors. We also found that
the VLH method was highly dependent on the tuning parameter, and the
estimates of NCVbm and NCVdc varied noticeably from run to run due to
their use of random partitions.

Dataset NB BHm BHmc BHa BHac NCVbm NCVdc VLH Truth

College football 10 10 10 10 10 14 13 9 12

Political books 3 3 4 4 4 8 2 6 3

Dolphins 2 2 2 2 2 4 3 2 2

Karate club 2 2 2 2 2 3 3 4 2

Political blogs 8 7 8 7 8 10 2 1 2

Table 4.1: Estimates of the number of communities in real-world networks.
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Chapter 5

Some Research Topics of Interest

Network sampling. The goal of network sampling is to obtain sub-networks
that preserve certain features of the original network, e.g., community struc-
ture. As technology advances, rapid increase in recorded real-world network
sizes makes many current methods, including the spectral clustering, compu-
tationally challenging; increasing memory required for storing large networks
poses another problem. One way to reduce the network size is to select a small
number of nodes and consider the induced sub-network instead; another way
is to select a small number of edges, and store the sparsified network. In many
cases the network is also not immediately available and constructing the full
network is costly, which makes sampling methods, such as respondent-driven
sampling, natural alternatives. Develop methods for selecting representative
sub-networks is an interesting problem to address.

Dynamic networks. Social networks, such as Facebook or Tweeter, change
over time. As data are observed in a streaming fashion, they provide much
more information for understanding the underlying structure of networks
than static snapshots; a huge amount of data observed over a short period of
time also requires novel methods to process. Although some methods have
been developed for handling specific types of data, general methods are still
lacking.

Network representation. Networks arise naturally from many MCMC algo-
rithms. Running times of these algorithms are mixing times of certain random
walks on the networks associated with them. They are determined by the
spectral gaps of the transition matrix of these random walks. For a simple
random walk on a random network generated from the IERM, the transition
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matrix is the Laplacian; our result on concentration of Laplacian provides
an effective way for bounding its spectral gap. New insights about mixing
times of these algorithms can be potentially obtained from their network
representations.
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